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Abstract

Collaborative filtering is a method for making predictions about consumer interests by
collecting preferences or information about opinions from other consumers. For this pur-
pose statistical modeling techniques are applied to learn personalized models for each
consumer based on every purchase or provided rating to the available items. Such a
technique is probabilistic Latent Semantic Analysis (pLSA), which within this thesis at-
tempts to model consumers into groups based on similarities in movie preferences to
improve personalized rating predictions on unseen movies. The main challenge with
pLSA in collaborative filtering is the overfitting problem, which results in model param-
eters that are strictly determined by the past ratings and thus gives unreliable predic-
tions for unknown data. To counteract the overfitting a regularization method called
conjugate-prior-regularization is proposed to introduce additional information about the
proportions of the model parameters. It is shown that the proposed regularization pro-
vides more robust learning from sparse data sets and also improves the recommendation
performance on discrete ratings.
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1 Introduction

1.1 Background

Since streaming sites like Netflix and Spotify were launched the number of users has
increased rapidly. Also, e-commerce has skyrocketed in recent years. The purchase
of media or items has thus been more accessible, e.g., by introduction of new services
such as mobile apps, which in turn probably lead to an increase of objects to select.
With the extended range of items users seem to request recommendations for items they
have not observed. For instance, a user whose favorite movies are Interstellar and The
Deer Hunter may request for other movies that the user would enjoy, or need service in
finding which accessories that would fit to a certain garment. However, people tend to
be disturbed by getting ”bad” recommendations.

It is indeed difficult to recommend something to a person who has not purchased any-
thing from a particular service, or to purchasers who occasionally or often change their
consumption pattern. Good tools for this are hard to find, but recommender systems
that are employed in the correct way may actually aid good statistical predictions of the
most likely choice by the consumer.

A very important question to ask is how the recommender system is supposed to
handle the data collection, i.e., what kind of information should the recommendations
be based upon? There are different ways to do so, but the two techniques most commonly
used are (i) content-based filtering and (ii) collaborative filtering. Content-based filtering
learns to recommend items that the purchaser has liked in the past and calculates the
similarity of items based on features associated with the compared items. Collaborative
filtering (CF) on the other hand, recommends items to the purchaser that others with
similar tastes liked in the past and the calculations are based on the similarity in the
rating history of the purchasers. CF techniques’ main advantage is their simplicity,
because only past ratings are needed in the learning process [2, p. 13][3, p. 11-12].

Collaborative filtering approaches can be divided in two categories; namely memory-
based and model-based methods, where the latter will be focused on within this thesis.
Memory-based methods uses neighborhood-based techniques, e.g., K-nearest-neighbours
(K-NN), to compute a similarity between pairs of users and items based on known
ratings. These methods directly transform stored preference data into predictions, but
the whole data set has to be accessible in order to make recommendations. Model-based
methods use all known ratings to learn a personalized model for each user and then
utilizes the model to predict the user’s degree of interest for particular items [2, p. 14],
[3, p. 784]. A refinement of model-based methods is to use statistical methods relying on
probabilistic modeling in both learning and prediction phases. A generalization of such
probabilistic approaches is the probabilistic Latent Semantic Analysis (pLSA), which

1



was developed in the context of information retrieval and first presented by Thomas
Hofmann in 1999 [1, p. 90].

1.2 Some Main Challenges With Recommender Systems

Sparseness. In any recommender system the amount of users and items are typically
large. Still, most users consume only a small fraction of the available items and rarely
provide a rating for the purchased item if they are requested to. Therefore, the data
collected may not contain enough information about particular users and items. An in-
sufficient set of data with respect to the modeling purpose can of course seriously affect
the accuracy of recommendations. Several techniques has been proposed to deal with the
data sparsity, such as dimensionality reduction methods and user/item-clustering tech-
niques [1, p. 91], [2, p. 9], but so far no technique have been proven better than the other.

Unbalancedness. There occurs significant differences in levels of activity between
users and the popularity of items. Every user has its personalized consumption behavior
in how often and how much they consume items. If providing ratings to items is optional,
another important aspect is how often they end up rating a consumed item and how
they use the rating scale. The user activities corresponds thus to various popularity of
items. Popular items also tend to be more easily accessible, since they are often more
visible in the systems application or web site.

Cold start. A ”cold start” is when a new user or item is registered by the system.
The recommendation engine cannot give any suggestions to new users, since the recom-
mendations are based on user preferences. Moreover, an unknown item that no potential
consumer has purchased yet can be difficult to relate to other items. To deal with this
issue new users could be asked to rate a list of items or to select some favorite genres
in the registration phase. Another approach to the deal with cold start is to consider
both ratings and additional information, such as demographic information about users;
i.e., age, gender, and item features such as genre, rating, or year of release. Using more
specific information will probably make it easier to find relationships between new users
or items and already registered users and items in the system catalog. [2, p. 9].

Scalability. The recommender system needs to rapidly generate high-quality sugges-
tions among a large collection of items. This calls for the adoption of well-defined data
structures for data analysis and scalable methods, which could be focusing on item-
to-item relationships or tend to model individual users in communities. Scalability is
typically measured by experimenting with growing data sets, showing how the speed and
resource consumption behave as the task scales up [2, p. 9].

It is very important to measure how fast the system can generate recommendations,
e.g., by investigating the number of recommendations the system can provide per second.
Thus, evaluations of the computational complexity of algorithms is an essential part in
the construction of recommender systems. The possibilities for an algorithm to be suc-
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cessful is preferably enhanced by changing some parameters, such as the complexity of
the model or the sample size [3, p. 293]. Another aspect of scalability is the usage of
multiple processors in order to parallelize the algorithms computational tasks.

Privacy. Collection of user preferences can of course be exploited to identify infor-
mation about particular consumers. Therefore, recommender systems pose a serious
threat to individual privacy. Analysis of a person’s private integrity tends to focus on a
worst case scenario, such that private information from all the users is revealed. For rec-
ommender systems in general, the disclosure of information gathered on a single user is
considered very inappropriate. However, experimental studies have shown that accurate
recommendations are possible while user privacy is preserved [2, p. 9], [3, p. 291-292].

1.3 Scope of the Thesis

This thesis proceeds from Hofmann’s article [1] in order to understand and reproduce
his proposed pLSA method used for predicting movie ratings. The multinomial pLSA
model is considered, so that the predicted ratings are modeled with a multinomial distri-
bution, and with an extended regularization method called conjugate-prior-regularized
learning. The experiments will investigate if the multinomial distribution can do a better
job at modeling discrete rating data with the proposed regularization technique rather
than modeling the ratings as continuous variables described by a Gaussian distribution,
which is proposed in [1]. As for pLSA and most model-based CF techniques, the main
drawback when making predictions is the overfitting phenomenon, which results in un-
reliable parameter estimations. Introducing a prior distribution, such as a conjugate
prior, to the model has been proven to be successful in mitigating overfitting in [11],
[12]. For these experiments, the retired EachMovie data set is used in order to make
comparisons to the results in [1], since the EachMovie data was used there as well. All
implementations are made in Matlab.

For future studies, a case study is included in Appendix B where a thresholding or
quantization will be made on the rating scale in order to represent the ratings as a
like or dislike. This can be viewed as a discrete version of the normalization of the
Gaussian-emission pLSA in [1]. Three different rating scale setups will be utilized by
the conjugate-prior-regularized multinomial pLSA model to investigate and compare
their prediction and recommendation performances. The 1M MovieLens data set is used
for these experiments.
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2 Theoretical Background

This chapter explains in general how a recommender system with collaborative filtering
could be designed. The main discussion is about the pLSA model and the essential math-
ematics behind it, such as parameter estimations, prediction metrics and regularization
methods.

2.1 Formal Framework for Collaborative Filtering

Further in the report the terms users and items will be used thoroughly, where user
means a registered consumer in a community and item is a certain movie within that
community’s movie collection. Let U = {u1, . . . , um} be a set of m users and I =
{i1, . . . , in} a set of n items. It is possible for users to rate items with a preference
value, such as a degree of appreciation. That user preference or rating data ru,i is stored
in a m × n matrix called R, where Figure 2.1 shows an example of such a matrix. In
real-world applications, R is characterized by an exceptional sparseness which is due to
the fact that individual users tend to only rate a small amount of the available items.
In a way, it is also because the number of users and items often are very large (typically
with m >> n) [1, p. 91][2, p. 2].

The user preferences are considered either as implicit or explicit. Implicit data cor-
respond to the observation of the co-occurrence of u and i, and can be collected from,
e.g., clicks, likes/dislikes or check-ins. Hence, the entry ru,i in the rating matrix R is a
binary value, i.e., ru,i = 0 if there are no co-occurrence and ru,i = 1 if the co-occurrence
exists. Entries ru,i could also be a count variable, such that the variable value is the
number of clicks that a user has made on an item. Explicit data are actual ratings
from individual users on experienced items from which users are asked to proactively
evaluate the purchased/selected item on a given rating scale R, where r ∈ R. The corre-
sponding feedback offers thus the users a chance to explicitly express their preferences.
These ratings ru,i may be represented as a positive or negative integer corresponding to
like/dislike or as a score on a fixed rating scale [1, p. 91], [2, p. 2-3].

In collaborative filtering frameworks using explicit ratings, there are two different set-
tings for the prediction problem; forced prediction and free prediction. Forced prediction
involves predicting the preference value or rating for a particular item that a certain
user is able to purchase. Thus, one may state the conditional probability P (r|u, i) that
user u will rate item i with r. Forced prediction mimics an experimental setup where
a person is presented with various items and it is compulsory to give a response to the
items. This is a typical scenario when items are presented as recommendations to a user
and one is interested in foreseeing the user’s response [1, p. 91-92], [2, p. 26-27].
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i1 i2 i3 i4 i5
u1 4 3 3 1

u2 4 4 5

u3 3 3 3

u4 4 1 2

u5 5

Figure 2.1: Example of a 5×5 user preference matrix R with explicit ratings on a 5-level scale.

In free prediction, the item selection is part of the predictive model and the goal is to
learn the probabilities P (r, i|u) in order to predict both which item the user will select
and (optionally) the associated rating. The probability P (r, i|u) may be rewritten as
P (r, i|u) = P (r|i, u)P (i|u). Thus, the problem is partitioned into predicting which item
the user will select and then predicting the provided rating to the hypothetically selected
item. This setting mimics a scenario where the user is free to select an item by choice
and - in the case of explicit ratings - provides a rating for it [1, p. 91-92], [2, p. 26-27].

2.2 Probabilistic Latent Semantic Analysis

Probabilistic Latent Semantic Analysis is a statistical method for analysis of co-occurrence
data. It was presented in 1999 by Thomas Hofmann and is influenced by Latent Semantic
Analysis (LSA), which is based on Singular Value Decomposition (SVD). Unlike those
methods pLSA offers statistical techniques for inference, such as maximum likelihood
(ML) estimation, and utilizes model selection and complexity control for model fitting
to enhance the reliance in resulting calculations. The applications of pLSA ranges from
information retrieval and filtering, natural language processing and machine learning
from text in addition to recommender systems [1, p. 90-91]. The idea is to discover
meaningful and semantic relationships in the given data, such that different topics are
distinguished from the data. Within this thesis, preference data is exploited to the model
in order to find the latent structure of topics or concepts, which are supposed to capture
”abstract preference patterns” about users and items [2, p. 45-46].

2.2.1 Model Definition

Initially, pLSA is specified by a co-occurrence data model, where the data is thought of
as implicit preferences represented as user-item pairs 〈u, i〉 [1, p. 94]. This model is called
the aspect model [5, p. 290] and all observation pairs 〈u, i〉 that are exploited by the model
are assumed to have been generated independently. The key idea is to introduce hidden
variables Z which associates an unobserved latent state z ∈ {z1, . . . , zk} with each user-
item pair 〈u, y〉 (observation) [1, p. 94][8, p. 180]. This is assumed in most statistical
latent variable models in order to make user u and item i conditionally independent on
the state z [5, p. 290]. The maximum number of possible states is finite and of size k.

The aspect model is defined by a mixture model which aims to model the joint prob-
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ability P (u, i) with a set of parameters θ. A mixture model is a general probabilistic
approach that introduces a set of latent factor variables to represent a generative process
in which data points may be generated from a finite set of probability distributions. The
distributions may be quite complex, but the introduction of latent variables allows sim-
pler modeling of the distribution components [2, p. 32]. The aspect model explains both
components in an observation pair 〈u, i〉 in terms of a latent variable, i.e., associating
both user u and item i in the pair to a latent state z [2, p. 38], such that

P (u, i; θ) =
∑
z

P (u, i, z) =
∑
z

P (i|z)P (z|u)P (u), (2.1)

where the summation symbol over z means summing over all possible k states [1, p. 94].
Note that the parameter vector θ contains every probability distribution in the model
and that P (z|u) and P (i|z) are proper conditioned probabilities, i.e.,

∑
z P (z|u) = 1

and
∑

i P (i|z) = 1. Equation (2.1) is the most commonly used structure of the aspect
model, but it may also be parameterized equivalently by applying Bayes’ rule such that
P (u, i; θ

′
) =

∑
z P (z)P (u|z)P (i|z) and P (u, y; θ

′′
) =

∑
z P (u|z)P (z|i)P (i) [1, p. 94], [5,

p. 290]. Since the latent states z will be modeled based on the user preferences within
this thesis, it may be assumed that no further information about the users is provided
in the probability to purchase a certain item. This assumption states the conditional
independence between u and i through z.

The typical situation in collaborative filtering is to make personalized, user-specific rec-
ommendations. The recommendation engine’s main goal is thus to find which items the
consumer would most likely purchase and therefore the conditioned probability P (i|u)
is considered instead of P (u, i) [1, p. 94]. By also applying the law of total probability,
the outcome of this is the mixture model

P (i|u; θ) =
∑
z

P (i|z, u)P (z|u). (2.2)

Since the conditional independence described above is assumed then P (i|z, u) = P (i|z),
which leads to

P (i|u; θ) =
∑
z

P (i|z)P (z|u), (2.3)

where θ = {P (i|z), P (z|u)} is the parameter vector containing all P (i|z) and P (z|u) in
a total of k|I|+ k|U | probabilities, where |I| and |U | denotes the total number of items
and users in the sets I and U respectively.

By taking the response variable or rating r into account and considering the forced
prediction case, P (i|z) is replaced with P (r|i, z). Item i is then treated as a fix con-
ditioned variable and the observations becomes triplets 〈u, i, r〉. If r is a categorical
(discrete) variable, e.g., a score on a rating scale, one can parameterize the conditional

probability P (r|i, z) by introducing so called success probability parameters π
(r)
i,z ∈ [0; 1]

and defining P (r|i, z) ≡ π(r)i,z . Then the properties for P (r|i, z) will be [1, p. 99]
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P (r|i, z) = π
(r)
i,z , where

∑
r∈R

π
(r)
i,z = 1. (2.4)

Finally, this and the earlier assumptions leads to the following mixture model

P (r|u, i; θ) =
∑
z

P (r|i, z)P (z|u). (2.5)

Note that θ = {P (r|i, z), P (z|u)} consists of k|I||R| + k|U | variables now, where |R|
denotes the number of possible ratings on the rating scale R.

The latent states z of a hidden variable Z may seem unclear and there are actually no
priori or theoretically built meaning associated to them [1, p. 95]. Moreover, the latent
state itself is not directly observable, but the outcome will hopefully be some interesting
data structure about user communities and groups of related or similar items. A state
z associated to an observation 〈u, i, r〉 is intended to model a hidden cause for the
occurrence/situation when user u has selected and rated item i with r. Each z provides
thus a hypothetical explanation to the given rating if the user or item clusters are grouped
in a reasonable way. Also, since the number of possible states k is typically selected to be
much smaller than both the number of users and items, the model encourages grouping
users into user communities and, correspondingly, groups together related items. Due to
the sparseness of available data in practice, the size of k should be selected with great
care as the k-factor immediately adjusts the model complexity [1, p. 95].

The pLSA model may seem very similar to probabilistic clustering models, but it is
important not to confuse them with each other [1, p. 98]. In clustering techniques each
user would be associated with a single latent state, while in pLSA each observation
〈u, i, r〉 is connected to a latent state. In other words, different observations for the same
user are explained with different latent causes z in the pLSA model, whereas in a user
clustering model all the ratings from a certain user are related to the same underlying
cluster/community [2, p. 47].

The pLSA and aspect model shares many similarities, such as; single observations
are associated to latent states rather than to users, and also that the probability for a
co-occurrence is governed by a distribution over all possible items. But the aspect model
is focused on free prediction and aims directly at modeling the joint probability P (u, i),
while pLSA considers the probability P (i|u) [2, p. 47]. Also, pLSA may apply free or
forced prediction mode when ratings are included to the model. Within this thesis the
forced prediction case is considered, since the interest lays in modeling how users tend
to rate particular items and not their consumption behavior. This is because the aim is
to recommend movies that will receive high ratings from the consumers and not suggest
movies that they just usually would watch.

2.2.2 Drawbacks with pLSA

A major drawback with pLSA (and most other model-based approaches to recommender
systems) is overfitting, which is a model selection problem. A rough definition of over-
fitting is to say that the model has an exceptionally good capability to describe the
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observations in the training set, but has poor prediction accuracy for unseen observa-
tions [2, p. 55]. The model selection and complexity is controlled by the latent state size
k in pLSA and the model is trained, usually with some iterative procedure, to generate
parameter values with respect to a known data set called training set. Since the goal with
the recommender system is to achieve good prediction accuracy for new or missing data,
then the model must be validated on some independent data referred to as a validation
set. From a machine learning perspective, this evaluation phase is part of the training by
validating, e.g., the prediction error, model order selection or a particular hyperparam-
eter. The prediction accuracy is measured for both the training and validation set with
some statistical metric, such as the root mean squared error (RMSE) or mean absolute
error (MAE). The prediction error of the training set is typically non-increasing, while
the validation set error often shows a decrease at first followed by an increase as the
number of iterations grows. The final evaluation of the model is made with a second
unknown data set, which is usually called a test set. The test set is exposed to the model
to the selected prediction error metrics after the training phase in order to strengthen
the validated model’s credibility.

A way to reduce overfitting is to increase the size of the training data set, if such fac-
tor is available. Since the pLSA model is quite complex (some may say ”more flexible”)
with many parameters to estimate, the model needs a lot of data points in the training
data set in order to fit the parameters correctly according to the data [4, p. 9]. Another
technique to control overfitting involves adding a coefficient to an optimization function;
the technique called regularization. There are different approaches to achieve regulariza-
tion, such as introducing Lagrange multipliers or using conjugate-prior-penalization [11],
[12], where the latter mainly will be used within this thesis. There is also alternatives
to regularization, such as early stopping, which will be tested to mitigate overfitting [1],
[4]. These methods will be explained in more detail later.

Another, but rather minor, disadvantage with pLSA is the sensitivity to the initial
conditions in the learning procedure. Model sensitivity can be tested by performing
several training runs using different initial configurations on the parameters, or just by
applying some fair setting to the initial parameter values [2, p. 52]. The initial P (z|u)
was selected uniformly in the experiments within this thesis, since it seemed reasonable
not to force a user to belong in a specific state in the initialization phase. P (r|i, z) was
initialized by selecting a random Normal distributed number to all possible ratings for
a fixed item and state and then normalizing each number into probabilities by dividing
with the sum of the randomly selected numbers. This initial setting could of course
be selected the other way around with P (z|u) being selected randomly and P (r|i, z)
uniformly. But this should not have a major impact on the outcome, since the parameter
values depends more on the training data set than their initialized values. It should be
mentioned that both parameters should not be selected uniformly, because it will make
the parameter values converge back to the initial values after a couple of iterations.
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2.3 Expectation Maximization Algorithm

In latent variable models, such as pLSA, the parameter learning optimization procedure
for ML estimation is the Expectation Maximization (EM) algorithm. EM is alternated
between two steps: (i) the expectation (E) step, where the variational probabilities for
the latent states given the current parameter estimates are computed and (ii) the maxi-
mization (M) step, where the parameters are updated based on the likelihood function,
which depends on the posterior probabilities computed in the previous E-step [6, p. 4-5],
[8, p. 182].

2.3.1 Maximum Likelihood Estimation

Before deriving the EM algorithm, it may be appropriate to recall the definition of ML
estimation. The parameter vector θ consisting of the conditional probabilities P (z|u)
and P (r|i, z) is supposed to be fitted to the observed data, where the data is assumed
to be independent and identically distributed. The probability for the parameters in θ
given the observation triplets 〈u, i, r〉 is called ”likelihood”. It is defined as the product
of P (r|u, i; θ) for all observations given by

L(θ) =
∏
〈u,i,r〉

P (r|u, i; θ), (2.6)

where 〈u, i, r〉 under a summation or product symbol is used as shorthand notation
referring to all observation triplets. To make calculations easier and numerically more
tractable, it is preferable to use the log-likelihood

`(θ) = logL(θ) = log
∏
〈u,i,r〉

P (r|u, i; θ) =
∑
〈u,i,r〉

logP (r|u, i; θ). (2.7)

The log-likelihood `(θ) should be maximized in order to obtain the optimal parameters
in θ, i.e., the model parameters that are most suitable to regenerate the given data.
Thus, the ML estimator is obtained and given by

θ∗ML = arg max
θ

`(θ) = arg max
θ

∑
〈u,i,r〉

logP (r|u, i; θ). (2.8)

The above equation can be solved by taking the derivative of `(θ) with respect to the
model parameters, setting the equations to zero and solving them directly. It may
though be difficult to find such analytic expressions in estimation problems involving
latent variables. Consequently, elaborated techniques, such as the EM algorithm, has to
be used for parameter estimations of this kind [9, p. 1].

2.3.2 Derivation of the EM Algorithm

This section will show the derivations of the EM algorithm for multinomial P (r|i, z) only,
since the rating data will be considered as discrete. The pLSA model’s log-likelihood
function is given by
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`(θ) =
∑
〈u,i,r〉

logP (r|u, i; θ) =
∑
〈u,i,r〉

log
∑
z

P (r|i, z)P (z|u). (2.9)

In optimization problems there is typically some cost or loss function that is to be
minimized. Hence, it is appropriate to minimize the negative log-likelihood, such that
the best fit parameters are given by

θ∗ = arg min
θ

(− `(θ)) = arg min
θ

− ∑
〈u,i,r〉

log
∑
z

P (r|i, z)P (z|u)

 . (2.10)

The fact that the latent states z are unknown, and also because the negative log-
likelihood includes the logarithm of a sum over the latent states, will make the minimiza-
tion of −`(θ) quite difficult. To circumvent this problem, variational probability distribu-
tions Q(z;u, i, r; θ) are introduced for every observation triplet, where Q(z;u, i, r; θ) ≥ 0
and

∑
z Q(z;u, i, r; θ) = 1 ∀〈u, i, r〉. Intuitively, the Q-distribution models the proba-

bility for a latent state z to be associated with a certain observation 〈u, i, r〉, such that
there are k · |R| number of parameters Q(z;u, i, r; θ), where |R| is the total number of
observations. Extending the negative log-likelihood function with the Q-distributions
results in

− `(θ) = −
∑
〈u,i,r〉

log
∑
z

P (r|i, z)P (z|u)
Q(z;u, i, r; θ)

Q(z;u, i, r; θ)
(2.11a)

= −
∑
〈u,i,r〉

log
∑
z

Q(z;u, i, r; θ)
P (r|i, z)P (z|u)

Q(z;u, i, r; θ)
(2.11b)

≤ −
∑
〈u,i,r〉

∑
z

Q(z;u, i, r; θ) log
P (r|i, z)P (z|u)

Q(z;u, i, r; θ)
(2.11c)

where the last step holds due to Jensen’s inequality [1, p. 95-96]. For a convex function
f , Jensen’s inequality states that

f

(
N∑
n=1

λnxn

)
≤

N∑
n=1

λnf(xn), (2.12)

for the constants λn ≥ 0 with
∑N

n=1 λn = 1 [6, p. 3]. By letting the constants λn to be
Q-distributions, because Q(z;u, i, r; θ) is a probability measure and they have the same
properties, and since the negative logarithm is a convex function, it is clear that Jensen’s
inequality is applicable between Equation (2.11b) and (2.11c) [6, p. 5-6]. A proof for
Jensen’s inequality from [6] can be found in appendix A.1.

The upper bound in Equation (2.11c), which further on will be called L(Q, θ), may
be derived to
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L(Q, θ) =−
∑
〈u,i,r〉

∑
z

Q(z;u, i, r; θ) [ logP (r|i, z)P (z|u)− logQ(z;u, i, r; θ) ] (2.13a)

=−
∑
〈u,i,r〉

(∑
z

Q(z;u, i, r; θ) logP (r|i, z)P (z|u)−
∑
z

Q(z;u, i, r; θ) logQ(z;u, i, r; θ)

)
(2.13b)

=−
∑
〈u,i,r〉

(
Ez∼Q(z;u,i,r;θ) [ logP (r|i, z)P (z|u) ] +H [Q(z;u, i, r; θ)]

)
, (2.13c)

where z ∼ Q(z;u, i, r; θ) means that z was drawn from that particular Q-distribution and
H is the entropy1 with respect to Q(z;u, i, r; θ) [2, p. 155]. Therefore, the Expectation
step (E-step) includes evaluating the expected value of logP (r|i, z)P (z|u) with respect
to z drawn from Q(z;u, i, r; θ). The term entropy is a measure for uncertainty in the
outcome of a discrete random variable. In this setup, it can be interpreted as some
uncertainty in the estimated Q-distributions. When the entropy is zero, the ”true” Q-
distributions, i.e., the Q(z;u, i, r; θ) that describe every observations association to all
possible states z best, have been found and then equality holds in Equation (2.11).

Suppose that θold is the current parameter estimates. In the E-step, the upper bound
L(Q, θold) is minimized with respect to the Q-distributions while θold is held fixed [4,
p. 451]. Thus, one has to find an expression for the optimal Q(z;u, i, r; θold), denoted
by Q∗(z;u, i, r; θold). Introducing a Lagrange multiplier to L(Q, θold), such that the
normalization constraints

∑
z Q(z;u, i, r; θ) = 1 ∀ 〈u, i, r〉 holds, a Lagrange function

can be formed. Minimizing that Lagrange function with respect to Q(z;u, i, r; θ), an
expression for the optimal variational distributions Q∗(z;u, i, r; θ) can be derived, such
that

Q∗(z;u, i, r; θ) =
P (r|i, z)P (z|u)∑
z′ P (r|i, z′)P (z′|u)

, (2.14)

where θ = θold such that P (z|u) and P (r|i, z) are the current parameter estimates. The
latent state z denotes the single state whose variational probability is computed, while
the sum over z′ still means summing over all possible latent states [1, p. 96]. For the
complete derivation of (2.14) see appendix A.2. The computed Q∗-distributions will
then be applied to the upper bound, such that L(Q∗, θ) will represent an approximation
of the negative log-likelihood −`(θ) for any given parameter vector θ [2, p. 156]. In other
words, the equality will hold in Equation (2.11)

In the subsequent M-step, the distribution Q∗(z;u, i, r; θold) is held fixed and the
upper bound L(Q∗, θold) is minimized with respect to θ in order to give a new parameter
estimate θnew. This will cause L to decrease further, unless L(Q∗, θold) = −`(θold)
already is the upper bounds minimum. Since L and −` are coupled together in the E-
step through Q(z;u, i, r; θ), any minimization of the upper bound will make the negative

1H [Q(z;u, i, r; θ)] = −
∑
z Q(z;u, i, r; θ) logQ(z;u, i, r; θ)
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log-likelihood follow it constantly. Also, because the Q∗-distributions are determined
using old parameter values and are held fixed during the M-step, they will not equal
the new Q∗-distributions computed with the next parameter updates. Then through the
entropy in Equation (2.13c), there will be a difference between the upper bound and the
negative log-likelihood, which causes −`(θ) to decrease at least as much as L(Q∗, θold)
does [4, p. 451].

After the E-step, the upper bound takes the form

L(Q∗, θold) = −
∑
〈u,i,r〉

∑
z

Q∗(z;u, i, r; θold) logP (r|i, z)P (z|u) + constant, (2.15)

where the constant is the entropy of the Q-distribution, since it is independent of
θ. Thus, in the M-step, the quantity that is being minimized is the expectation of
logP (r|i, z)P (z|u) in Equation (2.13c), since the parameter vector θ, which is opti-
mized, only appears inside the logarithm. Minimizing Equation (2.15) with respect to
the parameters in θ separately yields the new vector of optimal parameters θnew. In
order to achieve this, some constrained optimization problems for the parameters using
Lagrange multipliers need to be solved. The derivations, which can be found in appendix
A.3, give the set of equations

P (z|u) =

∑
〈u′,i,r〉:u′=uQ

∗(z;u, i, r; θ)∑
z′
∑
〈u′,i,r〉:u′=uQ

∗(z′;u, i, r; θ)
, (2.16a)

P (r|i, z) =

∑
〈u,i′,r′〉:i′=i, r′=rQ

∗(z;u, i, r; θ)∑
〈u,i′,r〉:i′=iQ

∗(z;u, i, r; θ)
, (2.16b)

where the prime signs under the summations denote a fixed variable for the conditional
probability computed.

To summarize the EM algorithm, the procedure can be viewed graphically through
Figure 2.2, which shows a two-dimensional space consisting of −`(θ) with respect to θ.
The negative log-likelihood function −`(θ) is represented as a convex function with a
local minimum. Starting with the initial parameter set θold, the first E-step evaluating
Q(z;u, i, r; θold) gives rise to the blue upper bound Lold(Q, θ) in Figure 2.2. The blue
bound is a convex approximation in the point −`(θold), such that equality only holds for
Lold(Q, θold) = −`(θold). Thus, the upper bound makes tangential contact with −`(θ)
at θold, so that both curves have the same gradient. In the M-step, the upper bound
is minimized with respect to θ resulting in the new parameter set θnew, which gives
a smaller value of the negative log-likelihood than θold. Since Lold(Q, θnew) is not a
convex approximation of −`(θnew), i.e., Lold(Q, θnew) 6= −`(θnew), the upper bound need
to be updated for the new optimal parameter vector θnew. Hence, the following E-step
constructs the green upper bound Lnew(Q, θ), which is a convex approximation in the
point −`(θnew), such that Lnew(Q, θnew) = −`(θnew) [4, p. 452-453].
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Figure 2.2: The EM algorithm described graphically with the negative log-likelihood function
−`(θ), shown as the red curve, with respect to the parameter values in θ. The blue and green
curves are the upper bounds Lold(Q, θ) and Lnew(Q, θ) constructed from the parameter vectors
θold and θnew respectively.

The EM procedure alternates between the two steps until the optimal parameters re-
sulting in the smallest negative log-likelihood value has been found. The EM algorithms
optimization procedure, where the upper bound L(Q, θ) is optimized, thus consists of
[2, p. 156]:

• Initialize θ(0)

• Repeat until convergence, for increasing EM step t:

E-step: Given θ(t), compute Q∗(z;u, i, r; θ(t)) = arg minQ L(Q, θ(t))

M-step: Given Q∗(z;u, i, r; θ(t)), compute θ(t+1) = arg minθ(t) L(Q∗, θ(t))

As explained above, for any given parameter vector θ there is a unique minimum of
the upper bound L(Q, θ) with respect to Q = Q∗(z;u, i, r; θ) and this choice of Q results
in L(Q, θ) = −`(θ) for one specific value of θ. This concludes that since the algorithm
converges to the global minimum of L(Q, θ), it will also find a value of θ that gives the
global minimum of the negative log-likelihood −`(θ) [4, p. 454].

The requirement of minimization may be relaxed to simply decreasing −`(θ), instead
of necessarily finding its local minimum [6, p. 8]. This approach is called Generalized
Expectation Maximization (GEM) algorithm and is useful in cases where the M-step
optimization is intractable. Since L(Q, θ) is still an upper bound on −`(θ), each complete
EM step of GEM is guaranteed to decrease (or be unchanged if the parameters already
correspond to the local minimum) the negative log-likelihood [4, p. 454].
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2.4 Rating Predictions and Evaluation Metrics

The goal in collaborative filtering in recommender systems is to predict ratings or pref-
erences as accurately as possible. Thus, the recommendation problem can be interpreted
as a missing value prediction problem [2, p. 5], such that for a given active user, the
system is asked to predict the user’s preferences among a set of items. Let the predicted
rating be denoted by r̂u,i for the observation pair 〈u, i〉. When computing the predicted
rating the formula for the expected rating is used, which is given by [1, p. 100]

r̂u,i = E[r|u, i] =
∑
r∈R

rP (r|u, i) =
∑
r∈R

r
∑
z

P (r|i, z)P (z|u), (2.17)

where R is the given discrete rating scale. Note that if the rating scale would be con-
tinuous, then the summation symbol over r ∈ R is replaced with integration.

2.4.1 Metrics for Prediction Accuracy

In the evaluation of a ratings-based recommender system a preferred metric is to measure
how close the predicted ratings are to the actual ratings. The aim is then to minimize
the difference between the provided rating and the predicted one. Some widely known
statistical metrics for prediction accuracy are [2, p. 5]:

• The Root Mean Squared Error (RMSE). Measures the deviation of observed
ratings from predicted values and emphasizes large errors. RMSE is defined as

RMSE =

√√√√ 1

|S|
∑
〈u,i〉∈S

(ru,i − r̂u,i)2. (2.18)

• The Mean Absolute Error (MAE). Measures the average absolute deviation
between the predicted and actual rating. MAE is defined as

MAE =
1

|S|
∑
〈u,i〉∈S

|ru,i − r̂u,i|. (2.19)

S is the set containing all real ratings ru,i in the user preference matrix R. The estimate
in Equation (2.17) minimizes the RMSE and MAE if the model is correct.

2.4.2 Leave-one-out Algorithm

The training, validation and test data sets are obtained with the leave-one-out algorithm.
The main idea is to randomly pick one rating from every user and remove it from the
entire data set. The model is then trained on the reduced entire set, which is called the
training set, and the left out ratings are used in a validation or test phase [1, p. 104].
Left out ratings are thus mostly for measuring and evaluating the recommender systems
ability to predict ratings [3, p. 517].
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The leave-one-out demands that users possess a minimal number of M ≥ 2 observed
ratings. Otherwise, if a particular user has only provided a single preference to R this
user’s preference will not be considered during the model training phase. When using
both validation and test data sets the minimal number has to be M ≥ 3, since the
validation and test sets are picked out separately. The minimal number of observations
M may be varied to investigate the prediction accuracy for users with M available ratings
[1, p. 104]. By increasing M the prediction accuracies would probably improve for the
valid users with enough observed ratings, since the trained model has only considered
users who has provided a sufficient amount of preference information to the model.

2.4.3 Baselines in Collaborative Filtering

As explained earlier, collaborative filtering techniques are based on past ratings and their
main feature is their capability to summarize experiences on multiple users and items.
However, there are other less robust methods that still rely on the preference matrix,
but only focuses on individual entries while ignoring their collaborative characteristics.
Such methods are [2, p. 13]:

• The item average, defined as

itemAvg(i) ≡ r̄i =
1

|U(i)|
∑

u∈U(i)

ru,i, (2.20)

where U = {u1, . . . , um} is the set of all m users and U(i) denotes a set of all users
that have rated item i.

• The user average, defined as

userAvg(u) ≡ r̄u =
1

|I(u)|
∑

i∈ I(u)

ru,i, (2.21)

where I = {i1, . . . , in} is the set of all n items and I(u) denotes a set of all items
rated by user u.

These averages can be used for comparisons in prediction accuracy between different
recommendation techniques and are typically called baselines. The item average, which
is also referred to as pop, is a non-personalized algorithm that ranks every item according
to their popularity of the items in the training set that the users have rated [13, p. 5].
Within this thesis, pop will mainly be used as baseline, since it was also used as baseline
for the experiments in [1, p. 104].

2.5 Regularization Methods

Regularization is a technique regularly practiced to reduce overfitting. Usually, it in-
volves adding a penalty term to an error function in order to discourage the parameters
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from reaching large or undesirable values [4, p. 10]. This section discusses the maximum
a posteriori (MAP) regularization approach, but also an alternative to regularization
called early stopping. Both methods are widely known in the field of machine learning
when trying to avoid the overfitting problem.

2.5.1 Early Stopping

Since the negative log-likelihood is decreasing for every EM iteration, the prediction
errors of the training set will typically decrease as well. The validation error will also
decrease in the beginning of the training, but will flatten out or even increase, if the
number of model parameters are larger than the available data points, after some itera-
tions. Therefore, the training can be stopped when the validation sets smallest possible
error has been reached. This condition is called early stopping [4, p. 259] and is used for
controlling overfitting to a minor extent.

In [1, p. 107] it is proposed that after the stopping condition is reached to run one
last EM iteration using the full data set, i.e., training plus validation set. This is a
quite different approach from the general early stopping setting as the training and
validation sets are merged together. Thus, there will probably occur some hassles when
the model is exploited with new independent data from the test set. The latter early
stopping approach will still be tested in the experiments to make comparisons with the
regularized pLSA model.

2.5.2 Maximum a Posteriori (MAP) Estimation

Since there are no assumptions made on the prior likelihood of θ in ordinary ML estima-
tion, all kinds of values on the parameters within the constraints, e.g.,

∑
z P (z|u) = 1,

are equally probable. Optimal parameter values will thus be uniquely identified by the
observed data. The following approach allows the parameter estimations to include some
prior knowledge by weighting the parameters with a prior distribution P (θ). The prior
knowledge is then combined with the observed data to obtain the optimal parameter
vector θ∗. Hence, instead of optimizing the likelihood P (D|θ), the posterior probability
P (θ|D) is maximized to find the best fitted parameters given the data and the prior [2,
p. 53-54]. Note that D is a set containing all observation triplets: 〈u, i, r〉 ∈ D ∀ 〈u, i, r〉.
This new setting may be introduced by expressing the likelihood through Bayes’ rule
[10, p. 2], given by2

P (θ|D) =
P (D|θ)P (θ)

P (D)
. (2.22)

The corresponding terminology is

posterior =
likelihood · prior

evidence
.

2Derivation: P (θ|D) · P (D) = P (D, θ) = P (D|θ) · P (θ).
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As the name maximum a posteriori, the objective is to maximize the posterior with
respect to the parameters in θ in order to obtain new optimal parameter estimates

θ∗MAP = arg max
θ

P (θ|D), (2.23)

which is proportional to

θ∗MAP = arg max
θ

P (D|θ)P (θ)

P (D)
∝ arg max

θ
P (D|θ)P (θ). (2.24)

It is also preferred in MAP estimation to take the negative logarithm of the posterior,
or product of the likelihood and the prior, which is given by [12, p. 200]

− logP (θ|D) ∝ − logP (D|θ)P (θ) = − logP (D|θ)− logP (θ). (2.25a)

Since logP (D|θ) represents the log-likelihood, then −logP (D|θ) = −`(θ) from Equation
(2.11). Hence, an upper bound on the log-posterior is constructed in the same fashion
as for the EM case, such that

− logP (θ|D) ∝ − `(θ)− logP (θ) (2.26a)

≤ −
∑
〈u,i,r〉

∑
z

Q∗(z;u, i, r; θ) log
P (r|i, z)P (z|u)

Q∗(z;u, i, r; θ)
− logP (θ). (2.26b)

The best fit of the regularized parameters is thus given by minimizing the upper bound
in Equation (2.26b) with respect to θ,

θ∗MAP = arg min
θ

−
∑
〈u,i,r〉

∑
z

Q∗(z;u, i, r; θ) log
P (r|i, z)P (z|u)

Q∗(z;u, i, r; θ)
− logP (θ). (2.27)

The MAP approach allows a smoothing in the estimation procedure, such that the
regularization constrains the optimal parameter values in a specific range. Including the
prior in the estimations allows thus better control of the overfitting problems [2, p. 54].
The next section discusses how to select the prior distribution P (θ).

2.5.3 Conjugate Prior Distributions

In Bayesian statistics, the model is allowed to have some prior belief about the parame-
ters that are to be estimated. In MAP estimation, and therefore Bayesian inference, it
is a practical choice to represent the prior distribution P (θ) with a conjugate prior [11,
p. 288], [12, p. 200]. Each possible likelihood function is said to have a conjugate prior
distribution, which in fact has the same distribution as the posterior but with different
parameters. Since the posterior and the prior then would belong to the same ”fam-
ily of distributions”, EM update rules can be derived to obtain the optimal parameter
estimates [11, p. 288], [15, p. 641].
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Conjugate priors are constructed through derivations and partitioning of a likelihood
function that are based on finding parts that are dependent and independent of the
model parameters. The conjugate prior is defined proportional to the derived function
segment that is dependent of the model parameters of interest. This function needs to
be derived further with elaborated techniques for transformation and reparameterization
in order to find the prior hyperparameters, see e.g., [14, p. 3-8]. These derivations will
yield a tractable posterior distribution with the same distributional form as the obtained
prior [11, p. 287].

Since the conjugate priors belongs to different distributional families, their paramet-
ric structures looks different depending on which likelihood function they have been
derived from. Advantageously, probably most of the available likelihood distributions
have already been derived earlier in literature studies, such as [14], to determine which
particular distribution their conjugate prior belongs to. In pLSA models using MAP es-
timations, the commonly used conjugate priors are for the Gaussian distribution, which
is the product of a Gaussian and a Wishart density, and the multinomial distribution,
which is a Dirichlet density [11, p. 288], [12, p. 200].

A Dirichlet distribution of order m ≥ 2 with parameters w = (w1, . . . , wm) where
wi ≥ 0 with

∑m
i=1wi = 1 has a probability density function given by

Dir({w}|{γ}) =
Γ (
∑m

i=1 γi)∏m
i=1 Γ(γi)

m∏
i=1

wγi−1i , (2.28)

where the hyperparameters γ = (γ1, . . . , γm) and Γ(·) is the Gamma function3 [4, p. 76-
77].

The hyperparameters of the Dirichlet distribution can be selected with relatively great
freedom. They may be updated iteratively in the parameter estimation stage (M-step)
[12, p. 202], or they may be set constant for their corresponding distribution [11, p. 289].
Optionally, the hyperparameters could have a constant parameter-specific value based on
some particular prior belief on the user or item. Within this thesis, every hyperparameter
in the Dirichlet distributions will have the same value for their individual distribution
for simplicity.

2.5.4 Conjugate-Prior-Regularized Learning

In MAP approaches the prior distribution P (θ) is seen as a penalty term added to the
log-likelihood function. The main advantage when this penalty term is chosen as the
logarithm of a conjugate prior is that a variant of the M-step can be derived to obtain op-
timal regularized parameter estimates. This method is called conjugate-prior-regularized
learning, which was proposed in [11] to improve the learning ability of Gaussian mixture
models (GMMs). Note that in [11] the regularization method is referred to as conjugate-
prior-penalized learning, but within this thesis emphasizing the actual regularization was
preferred.

3The Gamma function is defined by Γ(x) ≡
∫∞
0
tx−1e−t dt [4, p. 62].
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Since the model consists of two multinomial distributions, consequently the prior
distribution is thus given by

P (θ) =
∏
〈u,i,r〉

∏
z

Dir({P (r|i, z)}|{γi,r,z}) ·Dir({P (z|u)}|{γu,z}) (2.29a)

∝
∏
z

∏
i,r

P (r|i, z)γi,r,z−1
∏
u

P (z|u)γu,z−1

 , (2.29b)

where ϕ = {γi,r,z, γu,z} are the hyperparameters of each Dirichlet densities [12, p. 200].
The product over both i and r denotes the product for all possible items and ratings. For
simplicity, the normalization constant with Gamma functions of the Dirichlet densities
has been omitted, because the Gamma functions are independent of the parameters in
θ. The logarithm of P (θ) is thus proportional to

logP (θ) =
∑
z

∑
i,r

log Dir({P (r|i, z)}|{γi,r,z}) +
∑
u

log Dir({P (z|u)}|{γu,z})

 (2.30a)

∝
∑
z

∑
i,r

(γr,i,z − 1)logP (r|i, z) +
∑
u

(γu,z − 1)logP (z|u)

 . (2.30b)

By inserting Equation (2.30) in (2.26), the negative log-posterior function is expressed
as

−logP (θ|D) =− `(θ)− logP (θ) (2.31a)

≤−
∑
〈u,i,r〉

∑
z

Q∗(z;u, i, r; θ) log
P (r|i, z)P (z|u)

Q∗(z;u, i, r; θ)

−
∑
z

∑
i,r

log Dir({P (r|i, z)}|{γi,r,z}) +
∑
u

log Dir({P (z|u)}|{γu,z})

 .
(2.31b)

As for the EM algorithm, the upper bound in the above equation is minimized with
respect to θ in order to find the optimal MAP parameter estimates,

θ∗MAP = arg min
θ

−
∑
〈u,i,r〉

∑
z

Q∗(z;u, i, r; θ) log
P (r|i, z)P (z|u)

Q∗(z;u, i, r; θ)

−
∑
z

∑
i,r

(γr,i,z − 1)logP (r|i, z) +
∑
u

(γu,z − 1)logP (z|u)

 . (2.32)
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A more thorough derivation of the prior distribution is shown in appendix A.4.
The optimization is performed using Lagrange multipliers subject to the constraints∑
r P (r|i, z) = 1 and

∑
z P (z|u) = 1 [12, p. 200]. Hence, the set of equations for the

regularized parameters is given by

P (z|u) =

∑
〈u′,i,r〉:u′=uQ

∗(z;u, i, r; θ) + (γu,z − 1)∑
z′
∑
〈u′,i,r〉:u′=uQ

∗(z′;u, i, r; θ) + (γu,z′ − 1)
(2.33a)

P (r|i, z) =

∑
〈u,i′,r′〉:i′=i, r′=rQ

∗(z;u, i, r; θ) + (γi,r,z − 1)∑
〈u,i′,r〉:i′=iQ

∗(z;u, i, r; θ) + (γi,r,z − 1)
. (2.33b)

These derivations are found in appendix A.5. It is worth mentioning that conjugate-
prior-regularization only affects the M-step. Since the prior distribution P (θ) is inde-
pendent of the Q-distributions, minimizing the negative log-posterior with respect to
Q(z;u, i, r; θ) will result in the same expression for the optimal Q∗(z;u, i, r; θ) as in
Equation (2.14). This implies that extending the model with the prior P (θ) will have
no influence on the E-step.

2.5.5 Selection of the Hyperparameters γu,z and γi,r,z

The hyperparameters for the conjugate priors may be interpreted as sufficient statistics
of an additional set of artificial data observations [4, p. 117], [15, p. 642]. Since, e.g.,
P (z|u) depends on the real observations 〈u, i, r〉 plus the value for the hyperparameter
γu,z, therefore these two factors are called the sufficient statistics for the Dirichlet dis-
tribution Dir({P (z|u)}|{γu,z}) [4, p. 93, 117]. Consequently, γi,r,z is a sufficient statistic
for Dir({P (r|i, z)}|{γi,r,z}). By including the artificial observations, the parameter esti-
mates are given extra knowledge beyond the real data used in the training procedure.
This results in softer user clustering within P (z|u) and, respectively within P (r|i, z), a
greater chance for providing different ratings on the rating scale. Thus, the selection of
hyperparameter values is quite crucial, because they adjust the randomness of the pLSA
parameters [12, p. 202].

By introducing the same hyperparameters for each Dirichlet distribution, the prior
belief is that each multinomial is generated from an equal number of samples. The size
of the artificial data is then defined by adopting the notation of an equivalent sample sizes
ω{P (z|u)} and ω{P (r|i,z)} [11, p. 289], [15, p. 642], which leads to the following equations

γu,z = 1 + ω{P (z|u)}, (2.34a)

γi,r,z = 1 + ω{P (r|i,z)}. (2.34b)

The degree of regularization is thus determined by varying the equivalent sample sizes
ω{P (z|u)} and ω{P (r|i,z)} [11, p. 289]. Note that the original EM algorithm is obtained
by setting ω{P (z|u)} and ω{P (r|i,z)} equal to zero. These few artificial data points are
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thus uniformly distributed over each state and rating. Hence, one could interpret that
by increasing the equivalent sample size, one is increasing the belief that each state, or
rating, is equally probable.
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3 Methodology

This chapter discusses the different parts in the experiments of the pLSA model, such
as data sets, evaluation metrics and practical methods.

3.1 The EachMovie Data set

The EachMovie data set has been collected by DEC Research, today known as HP/Compac
Research, from 1995 to 1997 [1, p. 103][17]. The number of users and items in the data
set used in the experiments differs a bit from the ones described in [1] and [17], probably
because the references has different end dates of the data collection. The data set that
was used for these experiments contains 2, 811, 718 ratings entered by 61, 265 users for
1623 movies (items). The average amount of ratings per user is 45.9. The ratings are
given from a discrete six-star scale with values from the lowest rating 1 to the highest
rating 6. The mean rating over all observation triplets is ≈ 4.04 and the overall rating
variance is ≈ 2.44.

3.2 Evaluation Metrics

The EachMovie data set was divided into training, validation and test data sets using
the leave-one-out algorithm. This procedure was performed twice on the complete data
set by first picking out the test set and thereafter the validation set. The remaining data
set was used for training and consisted of about 2, 692, 585 ratings, while the test and
validation sets consisted of about 60, 087 and 59, 044 ratings, respectively. The minimum
amount of observations for the users was set to M = 2 and users with less than M ratings
were removed from the data sets. Since one randomly picked rating is removed from the
valid users, this will lead to that some users that are included in the test set are removed
from the training and validation set because these users may only have one rating left
after the first leave-one-out procedure. This may lead to worse prediction performances
when evaluating the model on the test set.

During each EM iteration the user ratings were predicted with the expected value
of the rating from equation (2.17). The prediction error, i.e., the deviation between
the predicted rating and the real observed rating, was then measured with RMSE and
MAE, since both were used for model evaluation in [1]. The pop (item average) defined
by equation (2.20) was used as baseline measure [1, p. 104] and was calculated based
on the training set ratings only. RMSE and MAE for the pop baseline was computed
separately for training, validation and test sets.
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3.3 First Experiment - pLSA

The first setup investigates how the pLSA models prediction accuracy is affected when
the number of possible latent states is varied. The same amount of states used for the
pLSA in [1, p. 104-108] will be used to compare the results. Ten training, validation
and test sets are obtained with different random seeds from the EachMovie data set
using leave-one-out algorithm in order to gain some statistical significance and reduce
the variance in the results.

For every EM step the negative log-likelihood is evaluated for the current parameter
estimates. The EM algorithm stops the training when the log-likelihood has decreased
with less than 10−3, according to the condition

| `(θ(t))− `(θ(t−1)) | < 10−3, (3.1)

where t is the current iteration step in the EM algorithm. The parameter values are thus
said to have converged when the decrease of the negative log-likelihood is that small.

The stopping condition in Equation (3.1) will depend relatively on the amount of
data, i.e., the more data available in the training set, the smaller absolute overall log-
likelihood. This is due to that the likelihood is calculated from the product of probability
mass functions over all observations. Smaller values of the log-likelihood will lead to
smaller differences between the iteration steps, which may result in that the stopping
criteria is reached too quickly. Another factor that also could lead to small values of the
log-likelihood is the total number of probability mass functions in the model, which is
dependent on the number of available latent states z and the possible rating levels.

3.4 Second Experiment - ES pLSA

This setup is an attempt to reproduce the pLSA using the early stopping (ES) method
described in Section 2.5.1, which will further on be called ES pLSA. The data sets picked
for the first experiment are also used here and the model is trained for the same states
sizes k as earlier. The ES condition is reached if the validation sets RMSE increases at
any iteration and then performs one last EM step with the training plus validation data.
The algorithm will also be terminated if the log-likelihood condition in Equation (3.1)
occurs, but then the extra EM step is not taken.

3.5 Third Experiment - Conjugate-Prior-Regularized pLSA

The conjugate prior hyperparameters γu,z and γi,r,z are held constant during the training
procedures for simplicity and each hyperparameter value is varied with Equation (2.34).

3.5.1 Grid Search Procedure

In order to find beneficial hyperparameter values, or degrees of regularization on each
multinomial parameter P (z|u) and P (r|i, z), that could decrease the prediction errors, a
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cross-validation method was used. By executing the training with various values on each
hyperparameter and evaluating the RMSE, a 3-D shaded surface plot was constructed for
the RMSE values with respect to the different γu,z and γi,r,z. Hence, the hyperparameters
which may lead to the best prediction accuracies are obtained by studying the grid. As
earlier, the training procedure was terminated when the stopping condition in Equation
(3.1) is reached. The grid procedure was performed with k = 200 states, since the lowest
prediction errors were obtained with 200 latent states in the second experiment setup.
It is worth mentioning that it may be advantageous to run some pre-experiments for
different intervals and combinations of the hyperparameters to see for which intervals
the RMSE seems to have its minimum, because the grid search is a time-costly procedure.

3.5.2 Finding the Optimal State Size k

When appropriate hyperparameter intervals have been found based on the grid search,
investigations to see if the same hyperparameters combinations fit well for other latent
state sizes than k = 200 will be made. The selected state sizes was k = 10, 50, 100. The
computational time was due in large part to the number of points in both intervals for
γu,z and γi,r,z. Thus, the number of differently picked data sets with the leave-one-out
algorithm, such that some statistical significance may be achieved, would depend on how
long a simulation takes for one set of training, validation and test data. The purpose
with this experiment was to find which ranges for k that are appropriate to use when
the main goal is to mitigate overfitting.
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4 Results

4.1 Experiment With pLSA

The training procedure of the pLSA model required around 40-50 EM iterations before
the log-likelihood tolerance level was reached, and one single EM step took on average
about 90 seconds. Note that the computational time for training and number of iterations
grows proportional with larger k.

As seen in Figure 4.1, the prediction errors for the training set decreases when the
state size increases. But the errors for the validation and test sets begin to increase
a bit after k ≥ 20 and become quite constant for k ≥ 40. Their prediction errors are
almost the same with the validation set errors a little bit smaller than the test errors,
which could be due to their similarity in data size. The large gap between the training
and test set errors indicates that the model suffers from severe overfitting. The model’s
prediction capacity is best using 10 latent states according to the results for the test set.
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Figure 4.1: Predictive performance averaged over 10 runs in terms of RMSE and MAE for
training, validation and test sets for the pLSA model as a function of the number of latent states
k.

Figure 4.2 shows the EM iteration procedure for the data split that resulted in the
largest RMSE difference from training to validation and test sets when using k = 100
states. After about 15 iterations, the validation and test error begins to slowly increase,
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while the training error strictly decreases. This is a typical phenomenon for model
training procedures affected by overfitting.
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Figure 4.2: RMSE for the EM iteration procedure for the pLSA model with state size k = 100.
The popularity baselines for the data sets are also included.
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Figure 4.3: RMSE for the best performing EM iteration procedure for the multinomial pLSA
model with state size k = 10. The popularity baselines for the data sets are also included.
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The best prediction performances were achieved when the model used k = 10 states
and such procedure with the data split that gave the lowest RMSE is shown in Figure 4.3.
The validation and test errors actually decreases for every iteration and the gap between
the errors is not as wide as for the model with 100 states. Also, the log-likelihood as a
function of iterations from this pLSA model is included in Figure 4.4, where it is shown
that the negative log-likelihood decreases monotonically.
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Figure 4.4: The negative log-likelihood as a function of iterations for the best performing EM
iteration procedure with k = 10 states.

4.2 Experiment With ES pLSA

When applying the ES condition described in Section 2.5.1 to the pLSA model, the
number of iterations for the model training has decreased to around 20 for state sizes
k ≥ 30, while it takes 4-10 iterations for smaller state sizes. The results from this
experiment are shown in Figure 4.5. All three mean errors have a decreasing trend when
the state size increases, so the best averaged prediction performance occurs when the
model uses k = 200 states. For most state sizes k the validation set errors are much lower
than the test set errors. This is due to the validation set being exploited to the training
in the extra EM step after stopping, which leads to an improvement in the prediction
errors for the validation set. The test set is still held unknown, thus leading to worse
prediction performances compared to the validation set.

Figure 4.6 shows the EM training for the best performing data split when k = 150.
The validation and test set RMSE follow each other until to the last iteration, but after
the extra EM step the validation error is pushed down towards the training error. This
shows the controversy of including data in the training procedure which is also used for

27



evaluating the model.
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Figure 4.5: Average predictive performance over 10 runs in terms of RMSE and MAE for
training, validation and test sets for the pLSA model with early stopping as a function of the
number of latent states k.
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Figure 4.6: RMSE for the best performing EM iteration procedure using state size k = 150
for the pLSA model with early stopping. The popularity baselines for the data sets are also
included. The black dashed vertical line at iteration 20 is where the early stopping condition is
reached. The last iteration trains the model using the training plus validation set.

28



4.3 Experiment With Conjugate-Prior-Regularized pLSA

This experiment began with the grid search procedure in order to find favorable values
on the hyperparameters for k = 200 that reduces the prediction errors. After this,
the experiments focused on finding the best suitable latent state size k for suitable
hyperparameter values from the grid search procedure.

4.3.1 Grid Search Procedure Experiment

After some test simulations, the hyperparameter intervals which would be inspected in
the grid search procedure were selected to be

1.0 ≤ γu,z ≤ 1.2, (4.1a)

1.0 ≤ γi,r,z ≤ 6.0. (4.1b)

For γu,z = 1.2 and γi,r,z = 6.0 it was found that the stopping condition in Equation (3.1)
was reached after very few iterations. The pre-experiments indicated that the value of
γu,z resulted in lower RMSE than for only adjusting γi,r,z. Why the parameters converges
faster for some hyperparameters will be investigated further later on by using a stopping
condition based on a certain amount of EM iterations instead of Equation (3.1).

Figure 4.7: Grid over RMSE for test set with respect to different combinations of hyperparam-
eter values for γu,z and γi,r,z.

In the grid search procedure γu,z used eleven equidistant points in [1.0; 1.10] followed
by five equidistant points in [1.12; 1.20]. The varied distance between the intervals was
chosen because the RMSE showed an increasing trend when γu,z > 1.04. The other
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hyperparameter, γi,r,z, used eleven equidistant points in [1.0; 6.0]. Hence, the grid search
was run for a total of 176 combinations of the hyperparameters which corresponds to the
same amount of EM algorithm simulations. Due to the costly computational time, the
procedure was only simulated once for one set of training, validation and test data. The
resulting grid is shown in Figure 4.7 and the blue area in the grid is where the RMSE is
the lowest. In this area the parameter estimates converges after about 50 EM iterations.
The largest RMSE values are found in the yellow area, where the parameter estimates
converges after 4-5 iterations.

For the first values in both hyperparameter intervals the RMSE grid begins to de-
crease, but the lowest RMSE value is achieved when only γu,z is varied. The other
hyperparameter, γi,r,z, has a rather stable RMSE value on the interval, while the RMSE
for γu,z decreases fast but then starts to slowly increase. If both priors are combined with
the first values on their individual intervals, the grid takes the shape of a small valley
with low RMSE. However, the RMSE suddenly increases for growing hyperparameter
values and retains an increasing trend further on the grid. Since γu,z seems to have the
best impact in terms of decreasing the RMSE, the grid was plotted in two dimensions
with respect to this hyperparameter only. The resulting plot is shown in Figure 4.8 and
demonstrates the RMSE’s behavior when combining γu,z with a fixed γi,r,z. When both
conjugate priors are applied, the hyperparameters need to be small in order to not reach
the stopping condition after few EM iterations. Also, the lowest possible RMSE value
increases a bit for increasing γi,r,z. The lowest RMSE value was obtained for the hyper-
parameters {γu,z, γi,r,z} = {1.03, 1.0} and was found to be 1.24. Hence, the conjugate
prior for the probability over the user clustering seems to be the most beneficial one.
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Figure 4.8: RMSE on test set from the grid in Figure 4.7 with respect to γu,z. The RMSE
values is plotted for the first five values of the interval for γi,r,z.
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The yellow area in Figure 4.7 is where the negative log-likelihoods stopping condition
in Equation (3.1) is reached after few iterations. Since the increase of RMSE is very
rapid it may be interesting to see what happens to the RMSE if the EM algorithm is
run for some hyperparameter combinations in the yellow area with a larger amount of
iterations. This led to the next experiment where the maximum number of iterations
was chosen to 60, because the blue area of the grid had been trained for about 50 EM
steps. The chosen grid points were selected to be five equidistant points in the intervals
γu,z = [1.04; 1.2] and γu,z = [1.0; 5.0]. The state size was still k = 200 and the results
is shown in Figure 4.9. The grid still retains its increasing shape in terms of RMSE for
increasing hyperparameter values, but will increase more smoothly when the training is
terminated based on a reasonable maximum amount of iterations. The hyperparameter
γu,z is still the most beneficial prior in keeping the RMSE low.

Figure 4.9: Grid over RMSE for test set with respect to various grid points from Figure 4.7.
The EM algorithm stopped after 60 iterations for every hyperparameter combination.

The negative log-likelihood was also plotted for the hyperparameter combinations
γu,z = {1.04, 1.12, 1.20} and γi,r,z = {1, 3, 5} and Figure 4.10 shows this graph. By
increasing any of the hyperparameters the negative log-likelihood gets a slower change,
which corresponds to less variations of the estimated parameter values. When γi,r,z
increases, the negative log-likelihood gets larger at the second iteration for each EM
procedure. Furthermore, it seems that both hyperparameters have an impact on how
many iterations that are needed for the log-likelihood to start decreasing, since the
training needs more iterations for the log-likelihood to decrease when increasing the
hyperparameter values. By inspecting the parameter values for the first EM iterations
it appears that the parameters are distributed equally, since the log-likelihood is fairly
constant. This means that a user is equally probable to be in any state or cluster, or
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that an item within any state could be provided with any rating on the rating scale. The
conjugate priors thus generates an uncertainty or ”fuzziness” to the parameter estimates
when adding more artificial data points, i.e., that the estimates need more EM iterations
to learn which their optimal values are. Unfortunately, this can be seen as a drawback of
using conjugate-prior-regularization with too much regularization, since the optimization
procedure is not aware of the slow training or uncertainty that the priors yield to the
parameter estimates in the beginning.
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Figure 4.10: Negative log-likelihood with respect to number of iterations. The log-likelihoods
comes from pLSA models with different combinations of prior hyperparameters, such as γi,r,z =
{1, 3, 5} and γu,z = {1.04, 1.12, 1.2}. The EM algorithm stopped after 60 iterations for every
combination of the hyperparameters.

4.3.2 Varying the Latent State Size k Experiment

The following experiment was made to show how the conjugate-prior-regularized pLSA
performs for various state sizes k. The selected state sizes were k = 10, 50, 100 and
200. After some test simulations it was found that the intervals for the hyperparameters
would be set to

1.0 ≤ γu,z ≤ 1.8, (4.2a)

1.0 ≤ γi,r,z ≤ 1.5. (4.2b)

Based on the grid in Figure 4.7, varying γu,z appeared to benefit the decrease of pre-
diction errors more than γi,r,z. Therefore, it was decided to use many more points on
the interval of γu,z than γi,r,z. Since the smallest RMSE values was found for γu,z ≤ 1.1
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when k = 200, the interval 1 ≤ γu,z ≤ 1.2 had the most points. In total 18 points
was used for the interval of γu,z with gradually increasing distances between the points.
The values for the interval of γi,r,z was chosen to consist of only 1 and 1.5 in order to
avoid that the log-likelihood stopping criteria would be reached after a small amount of
iterations. Since this experiment was very time consuming, only three differently picked
training, validation and test sets were used to make an average over RMSE. The results
are shown in Figure 4.11.
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Figure 4.11: Average RMSE on three differently picked test sets with respect to γu,z, different
state sizes k and γi,r,z = 1 and 1.5.

All state sizes k have the ability to decrease the RMSE using some hyperparameter
combination in the range 1.0 < γu,z ≤ 1.1. By decreasing k, the RMSE will increase
more slowly when γu,z gets larger. Also, γi,r,z plays a role for this case, where it is
more beneficial for every state size to have γi,r,z = 1.0. It appears that for larger k the
hyperparameter γi,r,z is not really worth using, because it increases the sensitivity to
select γu,z in a favorable way. The RMSE for every model grows for increasing γu,z, but
the model with k = 10 seems to be the most robust since it has a slow increase of RMSE
and it is approximately the same independent of γi,r,z.

The benefits from small state sizes, e.g., reduced model complexity and shorter com-
putational time, suggests that the conjugate-prior-regularized pLSA should use 10 or
50 latent states for the EachMovie data set. The next experiment will therefore be to
investigate these state sizes further. The interval of γi,r,z will also be extended with one
more point at γi,r,z = 2, in order to investigate if this prior could have different impact
on the RMSE for these state sizes than for larger ones. To cut down on the simulation
time, the points for γu,z was shortened to 16 points. Only three training, validation and
test sets were picked with different seeds and the results are shown in Figure 4.12. The
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models with k = 10 still shows the robustness in terms of RMSE independent of γi,r,z
when both priors are included. For k = 50, the lowest RMSE can be found for γu,z ≤ 1.1,
but the RMSE increases fast right after the lowest value has been found. The RMSE
when k = 10 increases slowly when γu,z ≤ 1.2.
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Figure 4.12: Average RMSE on three differently picked test sets with respect to γu,z for state
sizes k = 10, 50 and γi,r,z = 1, 1.5, 2.

Since the hyperparameter γi,r,z appears to have less impact on the RMSE for lower
values on γu,z, it was decided to plot the RMSE with respect to an interval of γi,r,z and
fixed values for γu,z = {1.0, 1.1, 1.2}. To get a picture of when the RMSE increases for
these hyperparameter combinations, the interval of γi,r,z was selected to be 10 equidistant
points in [1; 19] after some test simulations. The resulting plot is shown in Figure 4.13
and with some respects it is similar to the earlier figures. The lowest RMSE values are
achieved when 1 ≤ γi,r,z ≤ 3 and also applying 1.1 ≤ γu,z ≤ 1.2 for k = 10 or γu,z = 1.1
for k = 50. The figure clearly shows that it is not possible to achieve low RMSE for
both k = 10 and 50 by only varying γi,r,z.

4.4 Comparing Prediction Errors of pLSA Models

To establish a concluding result that shows that the conjugate-prior-regularized pLSA
can mitigate the overfitting and reduce the prediction error, two models were selected
with k = 10 and {γu,z, γi,r,z} = {1.2, 1.5} respectively k = 50 and {γu,z, γi,r,z} =
{1.08, 1.5}. These models were trained with the same 10 data sets as for the first and
second pLSA experiments. Table 4.1 shows the best performing models from the made
experiments and the pop baseline in terms of RMSE and MAE based on the averaged
prediction errors on the 10 test sets.
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Figure 4.13: Average RMSE on three differently picked test sets with respect to γi,r,z for state
sizes k = 10, 50 and γu,z = 1, 1.1, 1.2.

Error Relative improvement
Method RMSE MAE RMSE MAE

Popularity baseline 1.371 1.091 ±0 ±0

pLSA, k = 10 1.271 0.983 7.3% 9.8%
ES pLSA, k = 200 1.273 0.983 7.2% 9.8%

CPR pLSA, k = 10, {γu,z, γi,r,z} = {1.2, 1.5} 1.240 0.971 9.6% 11.0%
CPR pLSA, k = 50, {γu,z, γi,r,z} = {1.08, 1.5} 1.238 0.971 9.7% 11.0%

Table 4.1: Prediction errors for the ”Pop” baseline (item average) and various methods for the
pLSA averaged over the 10 different data sets.

The best performing EM procedure with the conjugate-prior-regularized pLSA model
using k = 10 states is shown in Figure 4.14. The error for validation and test set has
been decreased, but the training error has increased. Thus, the gap between the training
error and validation and test error is not as wide as in the earlier figures showing the EM
procedures. The same happens with the model using k = 50, where the best performing
EM procedure is shown in Figure 4.15. The training error gets smaller when increasing k,
which was seen in the first experiments. It is clear that the conjugate-prior-regularization
does mitigate the overfitting problem to pLSA, although it only improves the prediction
errors with about 2% from the standard and ES pLSA.
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Figure 4.14: RMSE for the best performing EM iteration procedure for the conjugate-prior-
penalized pLSA model with state size k = 10 and {γu,z, γi,r,z} = {1.2, 1.5}. The popularity
baselines for the data sets are also included.
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Figure 4.15: RMSE for the best performing EM iteration procedure for the conjugate-prior-
penalized pLSA model with state size k = 50 and {γu,z, γi,r,z} = {1.08, 1.5}. The popularity
baselines for the data sets are also included.
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5 Discussion

5.1 Data sets

In the leave-one-out procedure, all users with less than M = 2 ratings are removed from
the complete data set twice when splitting the data set into training, validation and test
sets. The test set is picked before the validation set, so there might be some users with
less than 2 ratings in the temporary data which is partitioned into training and validation
set. This means that the test set may contain ratings from users that are not included
in the training and validation set, such as users with only 2 ratings in the complete
data set. In this case, the prediction errors for the test set may be larger than for the
validation set, since the model is never trained with observations from these particular
users. This could have been solved by removing all the users with M = 3 ratings in the
first leave-one-out procedure and then use M = 2 for the second procedure. But since
M = 2 happened to be used on both leave-one-out procedures for the experiments with
pLSA and ES pLSA, the same setting was used for every experiment in order to have
equivalent initialization between them.

It is difficult to guess a consumer’s preference based on few rated items. It may thus be
better to remove these users from the training and validation procedures to minimize the
prediction errors. But on the other hand, maybe users with few observations are the ones
that are the most important consumers to provide with recommendations. In long-term,
it could be advantageously that the recommender system tries to give recommendations
to users with few rated items in order to encourage the users to provide the system with
more ratings. It would hopefully make the users get more involved in rating items, so
that the recommender system acquires more knowledge about the user preferences and
can give better recommendations. However, this really depends on the user activity and
also if the system’s movie rating phase is forced or optional.

In the Eachmovie data set, there are some items that only have been given a rating
once, and these items are removed before the leave-one-out procedure. Because no
statistical significance, such as variance, is provided for these particular items, it is
unnecessary to make predictions for items that only one user has rated. If item i′ has
only been rated once with r′, the probabilities P (r 6= r′|i′, z) will be equal to zero for
every possible state z. Thus, the only predicted rating the model could give to item i′

would be the deterministic value r′, which simply is a non-reasonable prediction by the
recommendation engine. In other words, the model would overfit this item to rating r′.
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5.2 Implementation Issues

The multinomial pLSA was implemented in Matlab. All ratings from the data sets have
been stored in sparse matrices due to the computational advantages, e.g., that only
the non-zero elements are stored and operations on zero elements are eliminated [19].
The parameter values of P (z|u) and P (r|i, z) were stored in a matrix and a cell array
respectively. Since P (r|i, z) depends of three variables, all the items are linked to a cell
that contains a matrix with probabilities for every rating r on the rating scale in the rows
and all possible latent states in the columns. The variational probability distributions Q
were separated into two cell arrays in the E-step, because the parameter estimates are
summed over Q-distributions for fixed items or fixed users and ratings in the M-step.

Most of the simulations or experiments have been very time consuming, so there
has been lots of thoughts about optimizing the computational speed of the algorithms.
Allocating memory takes a lot of time due to the vast amount of data, so it is good
to do the allocation before the algorithm starts running. Since the prediction accuracy
only can be evaluated from already provided ratings, all the indices for viewed items
and their ratings were stored in cell arrays for every single user. This speeded up the
prediction metrics, because the rating matrix was filled with predicted ratings for items
that had already been observed by the users.

If the pLSA program uses for loops where the involved variables are independent of
the loop steps, then Matlab’s parfor could be used to parallelize the loops to reduce
the computational time. The parfor function starts up a number of Matlab worker
stations by the programmer’s choice and the independent worker runs the separate loop
steps. But it is important to be aware of how much memory that is used for all the
started Matlab workers, since the risk for ”out of memory” errors increases because of
the multiple worker activities. This problem, and also the computational time issue,
could probably have been dealt with using the computer clusters at Lunarc1. However,
there were a lot of troubles starting programs and running code in Matlab on the cluster,
which the staff at Lunarc could not solve at the time.

To be humble, there is most certainly lots of modifications that can be made in the code
to optimize the computational speed of the algorithms. It would also be very interesting
to investigate how effectively the pLSA works if it is implemented in an object oriented
programming language, such as C++ or Python.

5.3 pLSA With Tolerance Level Condition Only

It was expected that the results in Figure 4.1 would display the overfitting problem.
However, it was not foreseen but rather obvious that the model would perform almost
equally bad for state sizes k ≥ 40 despite the strictly decreasing errors for the training
set. A typical situation when overfitting occurs is when the number of model parameters
is larger than the training data set. Assuming that k = 40 and that no users or items
are removed from the data set, the number of parameters is given by

1Center for scientific and technical computing at Lund University, http://www.lunarc.lu.se/ .
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k|I||R|+ k|U | = 40 · 1623 · 6 + 40 · 61, 265 = 2, 840, 120 parameters,

which is larger than the amount of observations in the EachMovie data set. The model
thus reaches an upper limit in prediction accuracy for models with 40 or more states.
The prediction errors could be decreased by adding more data to the model training and
validation procedures if that is available. Still, the main conclusion drawn from these
results is that some regularization method should be applied to the model in order to
mitigate the severe overfitting.

5.4 pLSA With Early Stopping Condition

Applying the early stopping condition results in a decreasing trend for the prediction
errors when the state size increases, which can be seen in Figure 4.5. Also, the validation
and test set errors follow each other until k ≥ 40, which is due to the fact that the number
of parameters is larger than the available observations. The difference in prediction
errors is very small for k = 100, 150 and 200 and it is neither better nor worse than
the prediction performance from the pLSA model using k = 10 states from the first
experiment. The decreasing prediction error by using larger state sizes may principally
be due to that the EM algorithm is stopped after fewer iterations for small k. Thus,
the models with small k may have gained better performance if there were some other
condition, e.g., forcing the algorithm to run for a certain number of iterations before
the early stopping condition is allowed to kick in. This is the main drawback with early
stopping, namely how and when the algorithm should continue or terminate the training
if the early stopping is reached.

Figure 4.6 shows that the RMSE for both the validation and test set follow each other
until the stopping condition is reached. Thanks to the extra EM step after stopping,
which includes training plus validation data, the RMSE for the validation data will be
pushed down towards the training error. The RMSE for the test set will also decrease,
but not as much as the RMSE for the validation set. If the standard pLSA and ES pLSA
were evaluated by the validation data sets, the ES pLSA would obviously perform better
due to the extra EM step. It is doubtful that any unknown data set would perform as
good as when the validation set is exploited to this model, which makes this setting of
early stopping quite problematic.

5.5 Conjugate-Prior-Regularized pLSA

This section discusses the experiments with the conjugate-prior-regularization technique,
such as the impact from the conjugate priors and their hyperparameters, the grid search
procedure, the prediction performances when varying the latent state size k and also
some potential extensions to the regularized model.
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5.5.1 Selection of Conjugate Prior Hyperparameters

In [11], [12], [15] about MAP estimation and conjugate priors the hyperparameter for
a multinomial distributions, sometimes called mixing probability, is greater or equal to
1. Due to these earlier studies, the experiments on the hyperparameters have only been
for γ{·} ≥ 1 and hence can the analogy between priors and artificial data points be
made. But perhaps adding ”imagined” observations to the model is not the only way a
prior can contribute to the modeling and learning procedure. The Dirichlet distribution
is allowed to have hyperparameters less than 1 and this was also tested briefly. Then
the training procedure went on well in the beginning, but after some iterations the
prediction error values exploded. Since this setting did not seem to be profitable at
the time, these experiments were not continued. It would though be interesting to
investigate this further to make some reliable assumptions on using γ{·} ≤ 1, because
these hyperparameter values could maybe allow new approaches to the conjugate priors
in helping to reduce overfitting.

The range in magnitudes of the hyperparameters differs quite much in order for them
to establish a good fit of the estimated parameters. By increasing the hyperparame-
ter value the corresponding parameter estimates become more equally distributed, e.g.,
P (z|u) for user u becomes uniformly distributed over all possible states z, since the corre-
sponding normalization constant gets larger. In the case for P (z|u) to achieve the equal
probabilities, the normalization constant depends on both the hyperparameter value and
the state size k, such that the range for the hyperparameter value shrinks for growing
k. Since P (r|i, z) always consists of six probabilities in the case for the EachMovie data
set, then a large hyperparameter value is needed to reach a uniformly distributed rating
scale. This may imply why the hyperparameters have such different ranges in values
compared to each other and also explains that some parameters need more regulariza-
tion than others. Note that this explanation holds for the EachMovie data set, so if
another data set would have been used, such as MovieLens, the hyperparameters could
have different values compared to the ones in this thesis.

5.5.2 The Grid Search Procedure

The grid in Figure 4.7 displays that γu,z has more beneficial impact in reducing the
RMSE and mitigating overfitting than γi,r,z. Both conjugate priors reduce the RMSE,
but γu,z should always be preferred or a combination of both priors with a not too high
value on γi,r,z in this case. Using only one conjugate prior is advantageously when trying
to find an optimal hyperparameter, since the grid search is scaled down to a 1-D grid
over RMSE on γu,z.

Regarding the yellow area in the grid where the parameters converges after only a
few iterations, there are still some questions that need to be answered. For the hyper-
parameter combinations which reaches the stopping condition quickly, the parameter
estimates do not vary much in the beginning of the training procedure according to
Figure 4.10. This is due to that the absolute differences of the decreasing negative log-
likelihood are so small, which makes it look like the log-likelihood has converged. This
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shows the problem that comes from using large values on the hyperparameters, because
the uncertainty in the model parameter values increases in the beginning of the training
phase when lots of artificial data points are added through the hyperparameters. Since
the initial P (z|u) parameters are uniformly distributed, this may also contribute to the
slow variations in the log-likelihood of the parameters. Perhaps the log-likelihood would
be less static in the beginning of the EM training by using randomly selected initial
parameters, e.g., that the initialization of P (z|u) is treated in the same manner as for
the initialization of P (r|i, z). Also, the steep RMSE increase in Figure 4.7 is actually
growing more smoothly if the EM algorithm is allowed to run for some larger number
of iterations than 4-5 in the training procedure and therefore, maybe, another stop-
ping condition should be considered. The RMSE seemed to always have been increased
for hyperparameter combinations in the yellow area, so hopefully it does not occur a
combination that decreases the RMSE further in the yellow area.

Another consideration between the log-likelihood and fast convergence is the fact
that the log-likelihood is the product of every available model parameter. A latent
variable model using k = 200, or any large k for that matter, will obviously result in a
vast amount of multiplications of probability densities. This will result in a small log-
likelihood value, since a probability density has a value between 0 and 1. The outcome of
that may be that the negative log-likelihood is very close to the tolerance level (= 10−3)
in the beginning of the training. Moreover, since the variation of the model parameters is
small in the beginning, especially when the priors are included, then the risk for reaching
the convergence condition is more possible. This could be avoided to a certain limit by
excluding or using a small value of γi,r,z.

5.5.3 Varying the Latent State Size k

It is clear in Figures 4.11 and 4.12 that γu,z has a promising ability to decrease the
prediction error for different state sizes k. Also, the conjugate prior for P (r|i, z) has
noticeable less impact on adding the uncertainty to the model parameters estimates for
smaller state sizes, since the RMSE is approximately the same independent of the value
of γi,r,z. Thus, it seems that it does not really matter how many artificial data points are
added to the estimate of P (r|i, z) when using few states, which could have something to
do with that the amount of model parameters is larger than the available training data.
The rating emission prior therefore becomes not as necessary as the user clustering prior
when the goal is to decrease the prediction errors.

In Figure 4.12, the RMSE curves remain relatively low and flat over γu,z when k = 10,
which tells that the model is then more robust to the extrapolation from training data to
test data. Also, from the grid in Figure 4.7 it was seen that by only varying γu,z gave rise
to the smallest RMSE. Thus, γu,z has a greater influence on decreasing the prediction
errors for larger k. However, using more states will add more sensitivity in the selection
of an optimal γu,z. This makes sense because the complexity of θ, which is dependent of
k, enforces overfitting. The smoothing effect of the prior, which is achieved with MAP
estimation, gets more limited with a complex parameter vector θ [2, p. 55]. Therefore,
the hyperparameters must be selected with greater care when k grows. Another flaw
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with using large k is that the computational time increases both by more parameters to
estimate and also longer EM procedures with more iterations.

The experiment in Figure 4.13 gives a clearer picture of how γi,r,z, for k = 10 and
k = 50, affects the RMSE. The error gets the same increasing trend as in the earlier
experiments, while γi,r,z can have a large value for k = 10 before the RMSE clearly
increases. This adds trust in the statement that γi,r,z gets less impact on the prediction
errors for models with small k, especially when γu,z > 1 is applied as well. Also note
that rather low RMSE values can be established by using 1 ≤ γi,r,z ≤ 3 together with
γu,z > 1 for both k in the experiment.

The RMSE curves in Figures 4.11 and 4.12 are very sharp and edgy, so it would be
good to establish more statistical significance in the results by running more simulations
with differently picked data sets. Also, in the further experiments it could have been
beneficial to run the grid procedure for the latent state sizes that are to be investigated.
Since the courses become more flat for smaller state sizes, the hyperparameter intervals,
and therefore the grids, should look a lot different than the grid in Figure 4.7.

For a future project about pLSA, it would be interesting to analyze more about the
associations between observations and the latent states and also investigate why some
state sizes are more beneficial than others. There is probably more information that can
be extracted from the states, e.g., how does the rating history influence the probability
of a user belonging to a certain state. Maybe this could help when trying to find which
state size k that is optimal for mitigating the overfitting.

5.5.4 Extensions of the Model

Further work on conjugate-prior-regularization could be to use or elaborate some meth-
ods in the selection and variations of the prior hyperparameters instead of just having
constant hyperparameter values for both multinomial distributions. One approach with
the prior on P (z|u) could be to add more regularization to users with few preferences
and correspondingly less to the ones who have rated many movies. This means that the
users with few ratings would be less controlled in being associated with a certain state.
Intuitively, the more ratings a user has provided the more the system knows about the
user’s movie preferences. This approach relies on if the users have provided possible
ratings from the whole scale. For certain users with a typical behavior of only providing
high or low ratings, it could be inappropriate to push them farther away from the state
that describes their characteristics best by establishing softer clustering to the model.

Considering P (r|i, z), one approach could be to regularize user’s towards belonging
more to a particular state. Assume that an item in a state is overfitted to the high-
est rating. One user who clearly belongs to the state becomes less probable in being
connected to the state, because the user rated the overfitted item with a lower rating
than the highest. Thus, it could be beneficial to add regularization to that item’s rating
scale in order for the user to regain the possibility probability to belong in that state.
The added regularization thus makes the possible rating probabilities to become more
distributed over the rating scale for that item in the state.

Another approach regarding the prior for P (r|i, z) is to regularize depending on the
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items mean rating in a state. For now the regularization biases the rating scale towards
the middle, i.e., r̄ = 3.5 for the case using the EachMovie data set. Thus, it could be
beneficial to add some bias to P (r|i, z) towards the items average rating in the certain
state in order to make the predictions more accurate.

The rating probability P (r|i, z) may be replaced with a Gaussian probability density
function P (r;µi,z, σi,z)

2, which showed good improvements in prediction accuracies in
[1]. In that setting, the M-step updates the mean µi,z and standard deviation σi,z in
order to compute the current ratings scale probabilities with a Gaussian distribution.
The Gaussian pLSA was also elaborated by having a user normalization on the rating
scale, since all users utilizes the rating scale in different ways in reality, i.e., everyone
does not interpret an overall movie rating with 3-stars similarly. Thus, it was proposed
to broaden the scale in order to model the user preferences arbitrary equivalent by using
a Gaussian normalization method per user, which involves the user-specific mean ratings
and normalizing the variance of ratings for each user to one [1, p. 100].

Another approach would be to quantize all ratings into like or dislike, which would
be made by putting a threshold on the rating data. By investigating every user’s rating
behavior and drawing a conclusion on what rating that corresponds to each user’s pref-
erence, then all user preferences are bonded together in the modeling and the same thing
happens for the disliked items. This can be viewed as the discrete version of the normal-
ization scheme proposed for the Gaussian pLSA, which showed significant improvement
over the non-normalized Gaussian model. Thus, the hope is that the multinomial pLSA
model with a good choice of normalization strategy could improve the prediction per-
formance further. The conjugate priors would of course be applied to that model as
well. The issue with giving suggestions to users that only have rated movies they think
are bad still holds, but as before it could possibly be fixed in some sense with a user-
specific hyperparameter selection as regularization. The quantization would also reduce
the number of model parameters in P (r|i, z), which was the case for the Gaussian pLSA
model.

2P (r;µi,z, σi,z) = 1√
2πσ2

i,z

exp

{
− (r−µi,z)

2

2σ2
i,z

}
[4, p. 78].
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6 Conclusion

The thesis work began with reproducing the multinomial pLSA with the generalized EM
algorithm for training and learning of the model parameters. The implemented model
is however affected with severe overfitting, which is a common problem in this kind of
statistical modeling setup. The first try to mitigate the overfitting was to apply the
early stopping method from [1]. This technique worked best for models with a large
amount of latent states (k ≥ 100) and could decrease the computational time for the
EM training. But in terms of prediction error, the ES pLSA was almost exactly as good
as the pLSA that only used a log-likelihood tolerance level as stopping condition. Thus,
it was proposed to apply a regularization method to the pLSA in order to improve the
prediction performance on unseen data by reducing the overfitting problem.

The proposed regularization method, conjugate-prior-regularization, is done by ex-
tending the pLSA model with a conjugate prior distribution. By using conjugate priors
in the regularization it is allowed to develop the EM algorithm with a MAP approach and
therefore new expressions for parameter estimates can be derived. The conjugate prior
for a multinomial distribution is the Dirichlet distribution, which yielded two hyperpa-
rameters corresponding to each conjugate prior of the pLSAs multinomial probabilities.
To find the optimal hyperparameters, the RMSE grid search procedure was used for
k = 200, which was the best k to use with the ES pLSA. This is a slow variant of cross
validation, but it is intuitive since the differences in prediction errors between various
hyperparameter combinations are very clear in the grid. The RMSE grid will probably
look very different for various latent state sizes k since the hyperparameter intervals
vary in length depending on k, but also because a log-likelihood tolerance condition was
used for terminating the training procedure. The drawback with a log-likelihood toler-
ance controlling the EM algorithm is that the training is usually slow in the beginning
of the training, which results in small differences in the evaluated log-likelihood. This
sometimes results in that the training is terminated earlier than what is desired. Still it
is common to use the evaluated log-likelihood for stopping conditions, but perhaps that
could be evaluated on the differences in the parameter values instead.

Both hyperparameters have the ability to reduce the prediction errors, but the user
clustering prior is the more beneficial one for this purpose. However, in most cases γu,z
has to be chosen with greater care than γi,r,z, since γu,z is usually slightly larger than
1. The choice of hyperparameter values also differ for different latent state sizes k, but
usually results in an increase of possible hyperparameter combinations that will decrease
the prediction errors significantly. This do not translate to always use small state sizes
to the regularized pLSA model, since the state sizes used in the experiments have been
able to achieve the same low prediction errors, more or less.

The final results of the conjugate-prior-regularized pLSA showed promising results in
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mitigating the overfitting problem and decreasing the prediction error. Thus, it has been
shown that modeling discrete ratings with a multinomial distribution may be favorable
in describing such data with an applied conjugate prior distribution. There is most
likely more research that could be done on these methods, especially in comparing the
multinomial with the Gaussian rating emission pLSA. The pLSA model for collaborative
filtering have proven to be a promising method and it would be interesting to apply
the conjugate-prior-regularization technique in a setting different from recommender
systems.
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A Proofs and Derivations

A.1 Proof of Jensen’s Inequality

Jensen’s inequality is used for the derivation of the EM algorithm to create an upper
bound on the negative log-likelihood function, which is a convex function. The proof of
the theorem comes from [6, p. 3-4].

Theorem 1 (Jensen’s inequality). Let f be a convex function defined on an interval I.
If x1, x2, . . . , xn ∈ I and λ1, λ2, . . . , λn ≥ 0 with

∑n
i=1 λi = 1,

f

(
n∑
i=1

λixi

)
≤

n∑
i=1

λif(xi).

Proof. For n = 1, this is trivial. The case n = 2 corresponds to the definition of
convexity. To show that this is true for all natural numbers, we proceed by induction.
Assume the theorem is true for some n then,

f

(
n+1∑
i=1

λixi

)
= f

(
λn+1xn+1 +

n∑
i=1

λixi

)

= f

(
λn+1xn+1 + (1− λn+1)

1

1− λn+1

n∑
i=1

λixi

)

≤ λn+1f(xn+1) + (1− λn+1)f

(
1

1− λn+1

n∑
i=1

λixi

)

= λn+1f(xn+1) + (1− λn+1)f

(
n∑
i=1

λi
1− λn+1

xi

)

≤ λn+1f(xn+1) + (1− λn+1)
n∑
i=1

λi
1− λn+1

f(xi)

= λn+1f(xn+1) +

n∑
i=1

λif(xi)

=
n+1∑
i=1

λif(xi)
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Note that if f is a concave function, such as f = logx, and apply Jensen’s inequality
the following result is obtained

log

n∑
i=1

λixi ≥
n∑
i=1

λilog (xi). (A.1)

This allows to set a lower bound on the logarithm of a sum, which is used in the derivation
of the EM algorithm.

A.2 Derivation of Q∗(z;u, i, r; θ)

In Section 2.3.2 the optimal Q was stated in equation (2.14) to be

Q∗(z;u, i, r; θ̂) =
P (r|i, z)P (z|u)∑
z′ P (r|i, z′)P (z′|u)

.

Q∗ is obtained by minimizing the upper bound on the negative log-likelihood Equation
(2.11c) with respect to Q(z;u, i, r; θ̂), which is given by

Q∗(z;u, i, r; θ̂) = arg min
Q(z;u,i,r;θ̂)

−
∑
〈u,i,r〉

∑
z

Q(z;u, i, r; θ) log
P (r|i, z)P (z|u)

Q(z;u, i, r; θ)
. (A.2)

In order to ensure the normalization constraint
∑

z Q(z;u, i, r; θ) = 1, the Lagrange
multiplier λu,i,r is introduced in order to form the Lagrangian [1, p. 113]

L(Q, θ, λu,i,r) =−
∑
〈u,i,r〉

∑
z

Q(z;u, i, r; θ)[ logP (r|i, z)P (z|u)− logQ(z;u, i, r; θ) ]

+
∑
〈u,i,r〉

λu,i,r

(∑
z

Q(z;u, i, r; θ)− 1

)
,

(A.3)

where Q denotes Q(z;u, i, r; θ). Taking the derivative of L(Q, θ, λu,i,r) with respect to
Q(z;u, i, r; θ) for fixed u, i, r and z and setting the result to zero gives

∂L(Q, θ, λu,i,r)

∂Q(z;u, i, r; θ)
= −logP (r|i, z)P (z|u) + logQ(z;u, i, r; θ) + 1 + λu,i,r = 0 (A.4)

Note that the upper equation is when only state z and the observation triplet 〈u, i, r〉 are
considered in Q(z;u, i, r; θ) when L(Q, θ, λu,i,r) is derived. Equation (A.4) is equivalent
to
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logQ(z;u, i, r; θ) = logP (r|i, z)P (z|u)− 1− λu,i,r ⇐⇒
elogQ(z;u,i,r;θ) = elogP (r|i,z)P (z|u)−1−λu,i,r ⇐⇒

elogQ(z;u,i,r;θ) = elogP (r|i,z)P (z|u)e−(1+λu,i,r) ⇐⇒
Q(z;u, i, r; θ) = P (r|i, z)P (z|u) · e−(1+λu,i,r).

Thus, Q(z;u, i, r; θ) is given by

Q(z;u, i, r; θ) =
P (r|i, z)P (z|u)

e1+λu,i,r
. (A.5)

Finding an expression for λu,i,r is done by taking the derivative of the Lagrangian with
respect to λu,i,r for fixed u, i and r and setting it equal to zero

∂L(Q, θ, λu,i,r)

∂λu,i,r
= 1 ·

(∑
z

Q(z;u, i, r; θ)− 1

)
= 0. (A.6)

Inserting Equation (A.5) in (A.6) is equivalent to

∑
z

P (r|i, z)P (z|u)

e1+λu,i,r
− 1 = 0 ⇐⇒∑

z

P (r|i, z)P (z|u) = e1+λu,i,r ⇐⇒

log
∑
z

P (r|i, z)P (z|u) = 1 + λu,i,r ,

which leads to the solution

λu,i,r = log
∑
z

P (r|i, z)P (z|u)− 1. (A.7)

Inserting the upper expression for λu,i,r in Equation (A.5) results in the optimal solution
of Q that minimizes the upper bound of −l(θ)

Q∗(z;u, i, r; θ) =
P (r|i, z)P (z|u)

e1+log
∑
z′ P (r|i,z′)P (z′|u)−1 =

P (r|i, z)P (z|u)∑
z′ P (r|i, z′)P (z′|u)

, (A.8)

where the sum over z′ denotes summing over every possible z.

A.3 Derivation of P (z|u) and P (r|i, z)
The model parameters are obtained by minimizing the upper bound of negative log-
likelihood in Equation (2.15) with respect to the parameters P (z|u) and P (r|i, z) sepa-
rately. Start with deriving the expression for P (z|u), the optimal P (z|u) is denoted by
P ∗(z|u) and is given by
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P ∗(z|u) = arg min
P (z|u)

−
∑
〈u,i,r〉

∑
z

Q∗(z;u, i, r; θ) logP (r|i, z)P (z|u) (A.9a)

= arg min
P (z|u)

−
∑
〈u,i,r〉

∑
z

Q∗(z;u, i, r; θ) [logP (r|i, z) + logP (z|u)] (A.9b)

= arg min
P (z|u)

−
∑
〈u,i,r〉

∑
z

Q∗(z;u, i, r; θ) logP (z|u). (A.9c)

P (r|i, z) is omitted, since the above equation is minimized with respect to P (z|u)
only. By introducing the Lagrange multiplier λu to enforce the normalization constraint∑

z P (z|u) = 1 for all u, one forms the Lagrangian function

L1(Q∗, P (z|u), λu) =−
∑
〈u,i,r〉

∑
z

Q∗(z;u, i, r; θ) logP (z|u)

+
∑
u

λu

(∑
z

P (z|u)− 1

)
.

(A.10)

Taking the derivative of the Lagrangian with respect to P (z|u) for fixed u and z and
setting it equal to zero gives

∂L1(Q∗, P (z|u), λu)

∂P (z|u)
= −

∑
i

∑
r

Q∗(z;u, i, r; θ)
1

P (z|u)
+ λu = 0. (A.11)

Solving P (z|u) results in

P (z|u) =
1

λu

∑
i

∑
r

Q∗(z;u, i, r; θ). (A.12)

The Lagrange multiplier λu is obtained by taking the derivative of the Lagrangian with
respect to λu for a fixed u and setting it equal to zero

∂L1(Q∗, P (z|u), λu)

∂λu
= 1 ·

(∑
z

P (z|u)− 1

)
= 0. (A.13)

Inserting Equation (A.12) in (A.13) is equivalent to

∑
z

(
1

λu

∑
i

∑
r

Q∗(z;u, i, r; θ)

)
− 1 = 0

and gives the solution

λu =
∑
z

∑
i

∑
r

Q∗(z;u, i, r; θ). (A.14)

Inserting λu in Equation (A.12) results in the optimal parameter P ∗(z|u) given by
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P ∗(z|u) =

∑
i

∑
rQ
∗(z;u, i, r; θ)∑

z′
∑

i

∑
rQ
∗(z′;u, i, r; θ)

=

∑
〈u′,i,r〉:u′=uQ

∗(z;u, i, r; θ)∑
z′
∑
〈u′,i,r〉:u′=uQ

∗(z′;u, i, r; θ)
. (A.15)

Finding the expression for P (r|i, z) is done in the same manner as for P (z|u). The
derived function that is being minimized is given by

P ∗(r|i, z) = arg min
P (r|i,z)

−
∑
〈u,i,r〉

∑
z

Q∗(z;u, i, r; θ) logP (r|i, z). (A.16)

Introducing the Lagrange multiplier λi,z to enforce the normalization constraint
∑

r P (r|i, z) =
1 for all i and z results in the second Lagrangian function, which is given by

L2(Q∗, P (r|i, z), λi,z) =−
∑
〈u,i,r〉

∑
z

Q∗(z;u, i, r; θ) logP (r|i, z)

+
∑
i

∑
z

λi,z

(∑
r

P (r|i, z)− 1

)
.

(A.17)

Taking the derivative of the Lagrangian with respect to P (r|i, z) for fixed i, r and z and
setting it equal to zero results in

∂L2(Q∗, P (r|i, z), λi,z)
∂P (r|i, z)

= −
∑
u

Q∗(z;u, i, r; θ)
1

P (r|i, z)
+ λi,z = 0. (A.18)

Solving P (r|i, z) gives

P (r|i, z) =
1

λi,z

∑
u

Q∗(z;u, i, r; θ). (A.19)

Solving the Lagrange multiplier λi,z is done by taking the derivative of the Lagrangian
with respect to λi,z for fixed i and z and setting it equal to zero gives

∂L2(Q∗, P (r|i, z), λi,z)
∂λi,z

= 1 ·

(∑
r

P (r|i, z)− 1

)
= 0. (A.20)

Inserting Equation (A.19) in (A.20) is equivalent to

∑
r

(
1

λi,z

∑
u

Q∗(z;u, i, r; θ)− 1

)
= 0

and solving λi,z gives

λi,z =
∑
u

∑
r

Q∗(z;u, i, r; θ). (A.21)
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Now the optimal parameter P ∗(r|i, z) is obtained by inserting the upper expression for
λi,z in Equation (A.19), such that

P ∗(r|i, z) =

∑
uQ
∗(z;u, i, r; θ)∑

u

∑
rQ
∗(z;u, i, r; θ)

=

∑
〈u,i′,r′〉:i′=i, r′=rQ

∗(z;u, i, r; θ̂)∑
〈u,i′,r〉:i′=iQ

∗(z;u, i, r; θ̂)
. (A.22)

A.4 Derivation of the Conjugate Prior Distribution P (θ)

The prior distribution P (θ) is chosen to be the conjugate prior of the two multinomial
densities in θ = {P (r|i, z), P (z|u)}. Consequently, P (θ) is expressed by the product
of two Dirichlet distributions over all available observations 〈u, i, r〉 and possible latent
states z,

P (θ) =
∏
〈u,i,r〉

∏
z

Dir({P (r|i, z)}|{γi,r,z}) ·Dir({P (z|u)}|{γu,z})

=
∏
z

∏
i,r

Dir({P (r|i, z)}|{γi,r,z})
∏
u

Dir({P (z|u)}|{γu,z})

 , (A.23)

where the Dirichlet density is given by

Dir({w}|{γ}) =
Γ (
∑m

i=1 γi)∏m
i=1 Γ(γi)

m∏
i=1

wγi−1i .

Applying the probability parameters in θ to the Dirichlet distribution leads to the fol-
lowing expressions

Dir({P (z|u)}|{γu,z}) =
Γ (
∑

u

∑
z γu,z)∏

u

∏
z Γ(γu,z)

∏
u

∏
z

P (z|u)γu,z−1, (A.24a)

Dir({P (r|i, z)}|{γi,r,z}) =
Γ
(∑

i,r

∑
z γi,r,z

)
∏
i,r

∏
z Γ(γi,r,z)

∏
i,r

∏
z

P (r|i, z)γi,r,z−1. (A.24b)

The normalization constants with the Gamma functions Γ only depends on its own
hyperparameter γ. Therefore, these constants can be omitted when optimizing with
respect to the parameters in θ. The prior P (θ) is thus proportional to

P (θ) ∝
∏
z

∏
i,r

P (r|i, z)γi,r,z−1
∏
u

P (z|u)γu,z−1

 (A.25)

The logarithm of P (θ) is then given by
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logP (θ) ∝
∑
z

∑
i,r

log (r|i, z)γr,i,z−1 +
∑
u

logP (z|u)γu,z−1


=
∑
z

∑
i,r

(γr,i,z − 1)logP (r|i, z) +
∑
u

(γu,z − 1)logP (z|u)

 .
(A.26)

Hence, a simpler expression for the prior distribution P (θ) has been derived.

A.5 Derivation of the MAP Parameter Estimations

The MAP parameter estimates are obtained by minimizing Equation (2.33) with respect
to the parameters in θ

θ∗MAP = arg min
θ

−
∑
〈u,i,r〉

∑
z

Q∗(z;u, i, r; θ) log
P (r|i, z)P (z|u)

Q∗(z;u, i, r; θ)

−
∑
z

∑
i,r

(γr,i,z − 1)logP (r|i, z) +
∑
u

(γu,z − 1)logP (z|u)

 .
The derivations are similar to the ones in Appendix A.3 and the steps are almost the
same. The object function for P (z|u) is given by

P ∗(z|u) = arg min
P (z|u)

−
∑
〈u,i,r〉

∑
z

Q∗(z;u, i, r; θ) logP (z|u)

−
∑
z

∑
u

(γu,z − 1)logP (z|u)
(A.27)

Using the same normalization constraints
∑

z P (z|u) = 1, the Lagrange multiplier λu
is introduced to Equation (A.5), such that a Lagrange function can be formed which is
given by

L1(Q∗, P (z|u), λu) =−
∑
〈u,i,r〉

∑
z

Q∗(z;u, i, r; θ) logP (z|u)

−
∑
u

∑
z

(γu,z − 1) logP (z|u) +
∑
u

λu

(∑
z

P (z|u)− 1

)
.

(A.28)

Taking the derivative of L1 with respect to P (z|u) for fixed u and z and setting it equal
to zero results in
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∂L1(Q∗, P (z|u), λu)

∂P (z|u)
= −

∑
i

∑
r

Q∗(z;u, i, r; θ)
1

P (z|u)
− (γu,z − 1)

1

P (z|u)
+ λu = 0

(A.29)
and solving P (z|u) gives the expression

P (z|u) =
1

λu

[(∑
i

∑
r

Q∗(z;u, i, r; θ)

)
+ (γu,z − 1)

]
. (A.30)

The Lagrange multiplier λu is obtained by taking the derivative of L1 with respect to
λu for fixed u and setting it equal to zero

∂L1(Q∗, P (z|u), λu)

∂λu
= 1 ·

(∑
z

P (z|u)− 1

)
= 0 (A.31)

Inserting Equation (A.30) in (A.31) and solving λu gives

λu =
∑
z

[(∑
i

∑
r

Q∗(z;u, i, r; θ)

)
+ (γu,z − 1)

]
. (A.32)

Plugging λu into Equation (A.30) results in the optimal MAP estimate P ∗(z|u)

P ∗(z|u) =
(
∑

i

∑
rQ
∗(z;u, i, r; θ)) + (γu,z − 1)∑

z′
[
(
∑

i

∑
rQ
∗(z′;u, i, r; θ)) + (γu,z′ − 1)

] (A.33a)

=

∑
〈u′,i,r〉:u′=uQ

∗(z;u, i, r; θ) + (γu,z − 1)∑
z′
∑
〈u′,i,r〉:u′=uQ

∗(z′;u, i, r; θ) + (γu,z′ − 1)
, (A.33b)

where γu,z′ indicates that the component is added to the sums over i and r for every
possible z′.

The optimal solution for P (r|i, z) has the objective function

P ∗(r|i, z) = arg min
P (r|i,z)

−
∑
〈u,i,r〉

∑
z

Q∗(z;u, i, r; θ) logP (r|i, z)−
∑
i,r

∑
z

(γi,r,z−1) logP (r|i, z).

(A.34)
The Lagrangian constructed by introducing the Lagrange multiplier λi,z under the con-
straint

∑
r P (r|i, z) = 1 is given by

L2(Q∗, P (r|i, z), λi,z) =−
∑
〈u,i,r〉

∑
z

Q∗(z;u, i, r; θ) logP (r|i, z)−
∑
i,r

∑
z

(γi,r,z − 1) logP (r|i, z)

+
∑
i

∑
z

λi,z

(∑
r

P (r|i, z)− 1

)
.

(A.35)
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Taking the derivative of L2 with respect to P (r|i, z) with fixed r, i and z and setting it
equal to zero results in

∂L2(Q∗, P (r|i, z), λi,z)
∂P (r|i, z)

= −
∑
u

Q∗(z;u, i, r; θ)
1

P (r|i, z)
− (γi,r,z − 1)

1

P (r|i, z)
+λi,z = 0,

(A.36)
which is equivalent to the expression

P (r|i, z) =
1

λi,z

[(∑
u

Q∗(z;u, i, r; θ)

)
+ (γi,r,z − 1)

]
. (A.37)

Solving the Lagrange multiplier λi,z is performed by taking the derivative of L2 with
respect to λi,z with fixed i and z and setting it equal to zero, such that

∂L2(P (r|i, z), λi,z)
∂λi,z

= 1 ·

(∑
r

P (r|i, z)− 1

)
= 0. (A.38)

By inserting the expression in Equation (A.37) in (A.38), the solution for λi,z is derived
to

λi,z =
∑
r

[(∑
u

Q∗(z;u, i, r; θ)

)
+ (γi,r,z − 1)

]
. (A.39)

Plugging λi,z into Equation (A.37) results in the optimal MAP estimate P ∗(r|i, z)

P ∗(r|i, z) =
(
∑

uQ
∗(z;u, i, r; θ)) + (γi,r,z − 1)∑

r′
[
(
∑

uQ
∗(z;u, i, r′; θ)) + (γi,r′,z − 1)

] (A.40a)

=

∑
〈u,i′,r′〉:i′=i, r′=rQ

∗(z;u, i, r; θ) + (γi,r,z − 1)∑
〈u,i′,r〉:i′=iQ

∗(z;u, i, r; θ) + (γi,r,z − 1)
, (A.40b)

where γi,r′,z in Equation (A.40a) indicates that the component is added to the sum over
u for every possible r′.
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B Case Study

B.1 Introduction

Consumers tend to use a provided rating scale differently, e.g., everyone does not have
the same opinion on how to interpret the score 3 on a five-graded scale. This case study
proposes a quantization of the scale, such that higher and lower ratings are discretized
or thresholded into a group of ratings separately. Two quantized rating scales will be
tested and compared with a standard rating scale in order to see if the recommendation
performance can be improved by thresholding the scale and thereby reducing the model
complexity. The applied rating scales are:

• M1: 5 star-rating scale R = {1, 2, 3, 4, 5}, where 1 and 5 are the lowest and highest
given rating respectively.

• M2: Thresholding the 5 star-rating scale, such that the mapping of the scale is
R = {1, 2, 3, 4, 5} → {−1,+1} where 3 is considered as a non-observation.

• M3: Thresholding the 5 star-rating scale, but 3 is considered as a ”do not care”-
rating which is still available for the modeling. The rating scale is thus mapped to
R = {1, 2, 3, 4, 5} → {1, 2, 3}.

The modeling and learning procedure will be made by the Conjugate-Prior-Regularized
pLSA and a line search strategy will be introduced for finding optimal prior hyperpa-
rameters. The MovieLens 1M data set [18] will be used for the experiments and the
data is partitioned into training, validation and test data sets with two leave-one-out
procedures.

Comparing and evaluating the models on prediction error does not work in this setting.
Since the rating scales in M2 and M3 only have been reduced in range of possible values,
the prediction errors for these models will be smaller due to that the range of possible
predicted values have become smaller. Therefore, a ranking scenario will be used for
evaluating which model that has the best prediction and recommendation performance.

B.2 MovieLens 1M Data set

MovieLens rating data sets are collected and given out by GroupLens, a research lab at
the University of Minnesota. The 1M data set was released in February 2003 and the
ratings have been collected over various periods of time. It consists of 1, 000, 209 million
ratings entered by 6, 040 users for 3, 706 movies. The average amount of ratings per user
is 165.6. The rating scale is a discrete five-star scale with the highest rating 5. The
mean rating based on all observations is ≈ 3.58 and the overall rating variance is ≈ 1.25.
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B.3 Ranking Accuracy Metrics

A distinct way of showing the usefulness of a recommender system is to generate person-
alized recommendation lists by utilizing the model to predict the ratings for unobserved
items and ranking them for each user. By comparing the predicted ranking list with
the users true ordering, i.e., what recommendations the user actually wishes to receive,
yields a measure to the recommender system’s suitability in generating personalized item
orderings [2, p. 7]. For this purpose, the following ranking metrics was proposed in [13,
p. 5-6]; hit rate (HR), average reciprocal hit rate (ARHR) and area under curve (AUC).
Although the measurements are slightly different, the preparatory work with the data is
the same. When comparing algorithms independently of the application AUC is a useful
measure. But when selecting an algorithm to use for a particular task it is preferable to
use a measure that reflects the specific needs at hand, which HR and ARHR does [3,
p. 276].

The data sets are converted into a binary, positive-only data set, where high ratings
are interpreted as preferences and low ratings as dislikes. Ratings that are in the mid-
dle of the rating scale, such as a 3, are ignored and assumed to be unknowns. Both
unknowns and dislikes are represented as zeros in the training data, but are allowed
to be distinguished when evaluating the recommendations. Preferences are represented
as ones, thus the data set has been converted into a binary rating matrix. By using
the leave-one-out algorithm, one preference is picked randomly from every user with a
minimum of two preferences and put in a test set. Every user in the test set has a hit set
Hu, which contains all test preferences hu from user u. All users with a test preference
are contained in the set Ut ≡ {u ∈ U | |Hu| > 0}. When the model has been trained,
the possible ratings for all unobserved items in the training data set are predicted. The
predicted ratings for every user u ∈ Ut are then ranked in a list.
HR and ARHR measures the percentage of test users whose test preferences were

predicted to end up in the top N recommendations list, where N is a natural number less
than or equal to the total amount of available items. The difference between the measures
is that ARHR takes into account the test preference ranking in the top recommendations
list. The HR and ARHR are given by [13, p. 5]

HR@N =
1

|Ut|
∑
u∈Ut

|Hu ∩ topN(u)| (B.1)

ARHR@N =
1

|Ut|
∑
u∈Ut

|Hu ∩ topN(u)| · 1

rank{hu}
, (B.2)

where topN(u) is the top-N recommendations list and rank{hu} is the ranking for the
test preference hu in top10(u). The measure for AUC is the AMAN version, where
AMAN stands for ”All Missing As Negative” which means that a missing preference is
treated as a dislike. It is given by

AUCAMAN =
1

|Ut|
∑
u∈Ut

|I| − rank{hu}
|I| − 1

. (B.3)
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Like ARHR, AUC also takes into account the rank of the user’s test preference in
their recommendation list. However, AUCAMAN decreases slower than ARHR when
rank{hu} is found lower in the list [13, p. 6]. Note that if AUC = 0.5 then the pre-
diction performance is as good as random guessing which items that will end in the
recommendation lists, since all items are equally likely to get picked.

B.4 Line Search for Optimal Hyperparameters

The proposed line search method consists of running the EM algorithm with a given
latent state size k for different hyperparameter values and evaluating alternately on HR,
ARHR and AUCAMAN . Thus, there will be optimal hyperparameter combinations for
each of the three metrics for state size k in the end. The EM is terminated when the
log-likelihood condition in Equation (3.1) is reached and a training, validation and test
data set are picked by using two leave-one-out procedures on the complete data set.
Since the evaluations are made on the metrics in Section B.3, the validation and test
sets will only include ratings that are considered as preferences in the different models.

At first, the EM algorithm runs for the initial hyperparameter values {γu,z, γi,r,z} =
{1.0, 1.0} and then the evaluation metric value Mval on the validation set is computed for
the trained model. The next step is to increase γu,z with some predetermined value and
run the EM algorithm again. When the current model has been trained, its evaluation
metric value Mval is compared to the previous model’s value. If Mval has increased, then
γu,z is increased further and the EM runs for the next hyperparameter combination. But
if Mval has decreased, the line search switches direction to γi,r,z by increasing γi,r,z and
setting γu,z constant with the last value that gave rise to an increase of Mval for the next
EM training. The line search procedure continues until Mval decreases and then it is
assumed that the optimal γi,r,z, denoted by γ∗i,r,z, has been found. If γ∗i,r,z > 1, it may be
that Mval has a larger value for a smaller value of γu,z, thus γu,z is decreased until Mval

reduces again. When the optimal hyperparameters have been found, the procedure is
terminated and the evaluation metric Mtest on the test set is computed for evaluating the
recommendation performance. This line search procedure runs separately for the three
evaluation metrics HR, ARHR and AUCAMAN . The pseudocode of the line search is
shown in Algorithm 1 and an illustration of the procedure is shown in Figure B.1 .

Since γu,z had the greater influence in decreasing the prediction error in the previous
experiments on the EachMovie data set, it was decided to begin with increasing this
hyperparameter in the line search as well. It seems fair to conclude that by decreasing
the prediction error, then the model should do a better job in recommending items.
Therefore, the main task will be to find a good value for γu,z and then hopefully γi,r,z
can improve the recommendation measure a bit further.

B.5 Experimental Setup

The experiments included finding optimal hyperparameters for M1, M2 and M3 with
latent state sizes k = 10, 25 and 60 with only one run of the line search method for
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Algorithm 1 Line Search

1: Initiate γu,z = 1, γi,r,z = 1 and select evaluation metric M
2: while γ∗u,z and γ∗i,r,z are not found do
3: Run EM Algorithm with training data

4: Compute evaluation metric M
(i)
val at iteration i

5: if i > 1 then
6: if M

(i)
val ≤M

(i−1)
val then

7: if Searching for γu,z then
8: Search for γi,r,z
9: else if Searching for γi,r,z then

10: γ∗i,r,z is found
11: else if Searching for smaller γu,z then
12: return γ∗u,z and γ∗i,r,z
13: end if
14: if γ∗i,r,z is found and γu,z > 1 then
15: Search for smaller γu,z
16: else
17: γ∗u,z is found
18: return γ∗u,z and γ∗i,r,z
19: end if
20: end if
21: end if
22: if Searching for γu,z then
23: Increase γu,z
24: else if Searching for γi,r,z then
25: Increase γi,r,z
26: else if Searching for smaller γu,z then
27: Decrease γu,z
28: end if
29: end while
30: Compute evaluation metric Mtest

each model. If the evaluated metric on the validation set increases, then the varying
hyperparameter value is increased with 0.01, or decreased with the same value for γu,z
if γ∗i,r,z has been found. The training, validation and test sets were picked differently
whenever the state size is changed for all the models. This means that the same data
sets were used even though the line search switched cost function, i.e., HR, ARHR and
AUCAMAN , for a given k. The resulting evaluations and hyperparameter values are
only based on one test set for every model and corresponding state size. The predicted
ranking lists are made with N = 20 top ranked items.
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Figure B.1: Illustration of the line search procedure for M1 with k = 25 and HR as evaluation
metric.

B.6 Results and Discussion

The rating scale in M2 for k = 60 has the best recommendation performance between
the models, since it has the highest HR, ARHR and AUCAMAN . It is preferable to
use k > 10 for every model and the value for γ∗i,r,z usually grows for the two larger state
sizes. Also, combining both priors seems to be preferable in most cases. According to
these experiments, the quantization of the rating scale improves the recommendation
performance, especially when every given r = 3 is considered a missing rating. Reducing
the model complexity, i.e., less quantities of P (r|i, z) to estimate, thus results in better
predictions of the missing preferences.

Since the quantization procedure improved the recommendation metrics, there will
be some further investigations on how the reduction of parameters in P (r|i, z) can be
utilized. The suggested normalization strategies thus showed that they have a good
chance in overcoming the problems that comes from different rating behaviors among
the users. Also, it would be interesting to look more into which latent state size that is
preferred to use.

The next step would be to develop the line search, such that it is more flexible in
switching between which optimal hyperparameter that is to be found. Another proposal
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k

10 25 60

Model Measure Value γ∗u,z γ∗i,r,z Value γ∗u,z γ∗i,r,z Value γ∗u,z γ∗i,r,z

M1

HR@20 .044 1.02 1.03 .061 1.02 1.04 .058 1.05 1.02

ARHR@20 .007 1.02 1.02 .012 1.01 1.02 .009 1.02 1.01

AUCAMAN .773 1.00 1.01 .802 1.01 1.01 .802 1.01 1.10

M2

HR@20 .042 1.00 1.02 .091 1.00 1.08 .103 1.00 1.05

ARHR@20 .009 1.00 1.01 .017 1.00 1.01 .024 1.00 1.03

AUCAMAN .765 1.01 1.02 .797 1.04 1.08 .819 1.02 1.09

M3

HR@20 .041 1.02 1.03 .066 1.02 1.06 .073 1.02 1.05

ARHR@20 .007 1.01 1.03 .015 1.03 1.05 .018 1.01 1.04

AUCAMAN .776 1.00 1.02 .795 1.01 1.09 .809 1.03 1.09

Table B.1: Model evaluations with HR, ARHR and AUCAMAN and hyperparameters γu,z
and γi,r,z for the proposed models and different latent state sizes k. The largest evaluation
measurement for state size k is bold typed.

could be to replace the line search with a Nelder-Mead method for finding suitable
hyperparameters. Even though Nelder-Mead does not guarantee finding an optimal
solution, it might be worth using a more advanced optimization technique rather than
the line or grid search in order to reduce the computational time.
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