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Abstract

In this thesis, we provide a synthesizable model for supporting design
space exploration of application-specific instruction-set processors. The model
is written in a high-level of abstraction hardware description language Blue-
spec System Verilog and is parametrized to support different configurations
for use in the design space exploration. To test the model, different applica-
tions from the media domain was selected to run on some of the configurations
from the design space exploration. The applications were also run on a stan-
dard general processor for comparison.

The results show that there is a performance gain compared to the stan-
dard processor, but with a higher cost of resources. With the utilization of the
resources the scheduling of the applications turned out to be critical for this
performance gain. The synthesizable model also shows that there is a con-
sideration of the maximum clock frequency and memory constraints that the
theoretical design space exploration model does not take into account.
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Chapter 1
Introduction

Today’s streaming applications (e.g. multimedia, networking) benefit from increased data
and instruction parallelism in hardware architectures. Vector processing units (SIMD)
are often employed to boost performance in standard processors. VLIW architectures and
multi-core processors are commonplace today, offering support for instruction parallelism.
Nevertheless, these solutions are often designed to support a wide variety of applications,
resulting in compromises that may reduce performance for particular domains. Custom
architectures (application-set specific) are usually the alternative adopted to obtain the
right performance with the least amount of resources. Often design space exploration
(DSE) is used to examine different designs before implementation. This makes it easier
to do rapid prototyping, optimization and system integration. Implementing all of those
designs in hardware can be a long and costly process to do by hand. Therefore it would be
beneficial to have a model that could be synthesized for the different parameters explored
in the DSE process.

1.1 Problem Definition
This project’s focus is on supporting DSE for custom processor architectures introduced in
[2]. In paper [2] there is a DSE model that uses Pareto points to identify how many scalar
and SIMD units the processor should have and the width of the SIMD unit. This provides
different architecture candidates that would meet the different requirements that are set and
minimize the resources used. Using the model in [2], those candidates can be synthesized
to hardware and run the different applications for evaluation. To support this design space
exploration, we implement a synthesizable parametric model. This model has support
for different vector and/or scalar units of different widths and parameterizable word size.
It is written in Bluespec System Verilog (BSV) and is able to run applications written
in machine code. A few architecture designs are compared to a Xilinx Microblaze [17]
processor with applications chosen from the multimedia and signal processing domain.
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1. Introduction

1.2 Method
To be able to implement this synthesizable model, first the high level hardware language
Bluespec System Verilog was chosen because of its high level of abstraction which gen-
erates a synthesizable Verilog model. Some time in the beginning of the project was ded-
icated to study the language. After that the first step was to implement a simple single
instruction single data (SISD) processor. The idea was to first implement a simple scalar
processor and expand upon the design later. The processor has a four stage pipeline, where
the stages are instruction fetch, register fetch, execute and write-back. This model was then
extended to support vector unit (SIMD). This vector unit is parameterizable with different
width, word size, and an added stage for vector permutations. The simple processor was
also expanded to support several scalar units in parallel, making it a very long instruction
word (VLIW) processor. After this, both the SIMD and VLIW models are combined into
a single model to support several scalar and SIMD units.

To test the architectures, programs were chosen from the multimedia domain and hard-
coded for the processor. To maximize the resources and utilization, different types of
schedule techniques were studied. The parameters that were examined was the number of
SIMD units, the SIMD length and the number of scalar units. The measurements were,
the execution time in clock cycles, the resources used in a FPGA, and the maximum clock
frequency were examined. These measurements were compared to the Xilinx Microblaze
processor.

1.3 Related Work
The reason Bluespec System Verilog (BSV) was chosen for this project was because it has
been successfully used before in large complex designs. One is a 2-way out-of-order pro-
cess or with the MIPS I integer instruction set architecture [7]. With that design the author
concluded that designing in Bluespec was relatively simple if the design does not have
to worry about performance, and that debugging the design was simplified in Bluespec
compared to standard hardware description languages.

Another one is a native Java embedded processor, BlueJEP [8], where the authors had
a design written in VHDL. The VHDL design was redesigned in Bluespec and features
where added including a longer pipeline and speculative execution. The design was con-
cluded to be more flexible, partly due to BSV, but also had an increase of device area with
the about the same performance of the VHDL design. It was also concluded in paper [9],
that compared the design process of the VHDL and BSV versions of BlueJEP, that BSV
was better for fast prototyping and architectural exploration.

With the increasing capacity of FPGAs, soft-processors becoming more common. Pro-
cessors such as the Nios II from Altera and the Microblaze from Xilinx are examples of
soft-processors for FPGAs. Soft-processors can be customized to meet the needed re-
quirements, but they lack of features such as VLIW or SIMD. A co-processor that adds
the feature of parameterized vector processor design is the VESPA processor [18]. That
processor is designed as a co-processor to a MIPS scalar processor, where the parameters
are the number of vector units and the width of those units. That design has since been
iterated on and support for 2D/3D vectors have been added. The memory was changed
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from a vector address register file to a scratchpad memory and programming support was
added in form of a compiler that could compile C code with vector extension for the ar-
chitecture. It was also changed to be a co-processor to the Altera Nios II/f, the changes
and optimization made it so that it could run 1.5-2x the previous clock rate [15]. Even
later versions of the soft-processor add fixed-point support, 2D DMA and scatter/gather
operations [16]. These processors, unlike our project, only look at SIMD style data paral-
lelization as an extension to a scalar processor and not instruction level parallelization like
a VLIW architecture.

A processor that adopts a VLIW parametrized architecture is the ρ-VEX processor
[14]. It uses parametric 5 stage pipelined VLIW architecture with operand forward logic.
The parameters for the processor is the issue-width, the type and number of functional
units, the size of the multi-ported register files and if there should be operand forward
logic or not. That design, unlike this project, does not explore data parallelism in form of
vectorization of data.

The FabScalar project at NCSU is also related in terms of it developed a tool-set Fab-
Scalar, that is able to generate superscalar cores with various superscalar width, pipeline
depth, and stage specific structure sizes [6]. Example of stage specific structures include
L1 data cache in execute stage and fetch queue in decode stage. That project’s main focus
is too explore the instruction level parallelism with different types of superscalar cores,
but does not look at vectorization of data.

The paper [13] explores both vectorization of data and instruction level parallelism
in a VLIW-SIMD processor. The processor consists of two VLIW-SIMD cores that each
take 4-slot VLIW instructions. These VLIW instructions have two four way SIMD ALU
instructions and two load/store instructions. The processor was developed to accelerate
object detection algorithm in embedded applications. It does not have scalar instructions
like in this project and is not parameterizable.

In our project, the design flow we used was introduced in paper [2]. That design flow is
proposed for speeding up the design space exploration (DSE) for custom processors. The
DSE model uses a set of applications and identifies the processor configuration in terms
of SIMD width, number of SIMD units and number of scalar units that is optimal for
the application set. This provides different architecture candidates that meets the different
requirements that are set and minimize the resources used. The work in [2] looks mainly at
throughput to determine what kind of performance the design should have. In our project,
we make a parameterizable processor model that can be used with the configurations as
parameters.

1.4 Contribution
The major contribution from this thesis is a parametric SIMD processor model in Blue-
spec System Verilog, that was made to fit into the design space exploration model in paper
[2]. This model includes parameters for different SIMD width, number of SIMD and scalar
units like the DSE model, and is explained in more detail in the background chapter. Hope-
fully this will help supporting design space exploration of custom processor architectures
and speed up the process of implementing custom processor architectures.

9



1. Introduction

10



Chapter 2
Background

In order to get a better understanding of the work done in this project, this chapter will pro-
vide a brief description on the subject of processor design. We will go through the subject
of pipelining and a couple of ways to achieve parallelization with data and instructions.
These subjects are covered more in detail in books [12][10]. We also give a brief intro-
duction to the hardware description language (BSV) used in this project and the different
schedule techniques used when programming the architectures.

2.1 Design Space Exploration
Before a design gets implemented into hardware, it is useful to explore different designs al-
ternatives in order to get the optimal design . In this project we are looking at applications-
set specific processors, meaning the design space that is explored is for a group of applica-
tions, that in the end will determine how the processor will be designed. The reason to use
this exploration process is so that the design does not have to be redesigned if the detailed
implementation turns out not to have the necessary performance or if the implementation
is using too much resources. This could be a waste of time and money or produce a design
that waste resources like power and chip area.

The paper [2] introduces the design space exploration for application specific processor
that is being supported and in some ways extended by this project. It aims at reducing the
design time in the start of the design process by taking a set of applications and identify
the processor configuration in terms of SIMD width, number of SIMD units and number
of scalar units that is optimal for the application set. The work in [2] focus mainly on
throughput to determine what kind of performance the design should have.

The design space exploration flow introduced in [2] is shown in figure 2.1. The appli-
cations chosen usually has a part that is repeated a lot and use a lot of computation time,
this part is called a kernel. As input for the first automated part, the throughput require-
ments for these kernels and estimate clock cycles are assumed. After that the problem is
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Figure 2.1: Design space exploration flow proposed in [2]

solved with constraint model resulting in Pareto points that will give the optimal solution
depending on the throughput requirements. These Pareto points are the non-dominated
solutions for a multi-objective function, where non-dominated mean the solution cannot
be better in one objective function without making another objective function worse. Ex-
actly how this is done can be read in the paper [2]. After that the designer can manually
merge these points into one candidate. When the candidate is chosen, detailed modeling
is done of the chosen architecture. This is where this project automates the process by
making the detailed model out of the candidate specifications. For this some inputs have
to made by the designer, because the memory sizes and programming of the applications
are not a part of this design flow yet.

This model can then be evaluated by the designer to make sure that it meets the expected
performance requirements. If the design does not meet the requirements, the designer can
go back and reiterate the process by choosing another merge or the Pareto points and re-
run the detailed modeling. When an architecture has met the desired performance it can

12



2.2 RISC Pipeline

then be implemented in more detail, which is a time consuming effort.
This project therefore assumes the work is done in the first part of figure 2.1 and is

doing the work in the second automated gray box.

2.2 RISC Pipeline
When describing processor architectures, the reduced instruction set computer RISC ar-
chitecture is often used as the example because of its simplicity and how commonly used
it is today in ARM, MIPS, SPARC processors. The DLX processor introduced in the first
edition of [10] used for teaching is also using this architecture. The architecture could be
simplified to the following 5 steps.

1. Instruction fetch
Fetches the instruction from the instruction memory at the program counter (PC)
location. Increments the PC.

2. Instruction decode/register fetch
Decodes the instruction and reads register

3. Execution/effective address
Performs the specified ALU operation or compute load/store address or compute
branch/jump address.

4. Memory access/ branch completion
Only active with branch/jump or load/store instructions. Accesses the memory if
needed. Loads data or stores data to memory.

5. Write-back
Writes the result to register files.

Fe De Ex Me Wb
Fe De Ex Me Wb

Fe De Ex Me Wb

Fe De Ex Me Wb
Fe De Ex Me Wb

Fe De Ex Me Wb

clock cycles

instructions

Figure 2.2: Comparison between a sequential processor and a
pipelined processor. Shows a 5-stage pipeline with Fetch, Decode,
Execute, Memory Access and Write-back.

When executing these steps it would be inefficient in most cases to wait for the instruc-
tion to go through all the steps before the next instruction would start executing. Therefore
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pipelining exists which partially executes several instructions at the same time. Figure 2.2
shows the difference between a 5-stage pipeline and a sequential processor when executing
three instructions. The sequential processor in this case goes through the fetch, decode,
execution, memory access and then write-back stage before starting to use the fetch stage
again for the next instruction. With having the pipelined stages, the processor starts the
fetch stage for the second instruction right when the first instruction is processed in the
decode stage and so on.

2.3 VLIW
In order to achieve more parallelism, instructions can be group together and executed at
the same time. When dependencies are determined at a software level and instructions are
grouped together to form a very long instruction, the type of processor is called a very long
instruction word (VLIW) processor. Because all the dependencies are checked at compile
time, the hardware does not need logic to check for dependencies, making the hardware
design of VLIW processor more simple.

Figure 2.3 shows a 5 stage pipeline of a VLIW processor with 3 execution units. The
instruction has three instructions turned into one very long word instruction. The execute
units can then use those three instructions at the same time. The assumption is that the
compiler made sure there is no dependencies of the instructions and that there will not be
any memory issues, like cache misses. Compared to the RISC pipeline the instructions
per clock cycles is higher.

Difficulties with the VLIW design lies in the compiler that has to check for the depen-
dencies between instructions and schedule many instructions simultaneously, because of
potentially complex branches in the application. If there is such dependencies the compiler
could insert NOP (no operation) instructions until the dependency is resolved or reschedule
the instructions. Also, the code generated depends on the design of the processor where if
for example a processor with 3 execution units need different code than a processor with
4 execution units.

Fe De Ex Me Wb
Ex Me Wb
Ex Me Wb

Fe De Ex Me Wb
Ex Me Wb
Ex Me Wb

Fe De Ex Me Wb
Ex Me Wb
Ex Me Wb

clock cycles

instructions

Figure 2.3: VLIW 5-stage pipeline with Fetch, Decode, Execute,
Memory Access and Write-back.
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2.4 SIMD
In many multimedia applications there exists an array or group of data that the same in-
struction is gonna be used on. Single instruction multiple data (SIMD) will take advantage
of this and execute the same instruction on all of the parallel data. Figure 2.4 compares the
four scalar operations it would take to execute a single 4 width SIMD operation. In this
example it only takes one SIMD instruction to execute what would have been four scalar
instructions. If the scalar instructions would had different types of operations, for example
addition and subtraction then the SIMD instruction would have had to been divided to one
instruction with the addition operation and one instruction with the subtraction operation.
In a VLIW processor with 4 execution units the operations could be of different types
and executed at the same time. For example two addition and two subtraction operations
executed at the same time.

a0 b0 c0+ =

a1 b1 c1+ =

a2 b2 c2+ =

a3 b3 c3+ =

(a) Scalar

a0

a1

a2

a3

b0

b1

b2

b3

c0

c1

c2

c3

+ =

(b) SIMD

Figure 2.4: Comparison of four scalar operations and a single 4
width SIMD operation

2.5 Scheduling Techniques
When programming custom architectures, different techniques are used to take advantage
of the parallelism of the architecture and therefore increase the utilization of the hardware
resources. This section will go through some techniques used for this project, but for a
more detailed description the paper [1] is a comparative study that describes the techniques
in more detail.

2.5.1 Single Iteration
When scheduling a single iteration of a loop/kernel, the iterations are executed in sequen-
tial order. Every iteration is scheduled as efficiently as possible in terms of using as few
NOP (no operation) instructions as possible.

As an example, a part of the FDCT application that will be used in evaluating the design
in this thesis, will be scheduled for single iteration. The data flow graph for the part of
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FDCT that is scheduled is shown in appendix B.1. The data flow graph, scheduled for a
SIMD pipeline is shown in figure 2.5. The graph is scheduled for a single iteration where
the latency of the pipeline determines when the next operation, that has a data dependency
can be executed. In this example, the latency is four clock cycles and the vector length is
four. This makes it so that four of the same operation can be scheduled at the same time.
The critical path will give the length of the schedule. A VLIW pipeline would be similar
to the SIMD pipeline, but with the different types of operations scheduled at the same time
as shown in figure 2.6, with the multiplication and subtraction operations scheduled at the
same time as the addition operation. The latency is lower and the throughput is higher for
the VLIW single iteration as shown in table 2.1.

+1

+2

+3

+4

+5

+6

-1

-2

-3

+7

+8

∗1

∗2

clock cycles0 1 4 5 8 9 10 11 12

Figure 2.5: Example of a single iteration schedule for a SIMD
pipeline

2.5.2 Overlapped Execution
As shown in the single iteration example, there is a delay because of the data dependen-
cies. In order to fill the pipeline, multiple iterations could be executed instead of waiting,
assuming the iterations always have the same operations. Figure 2.7 shows the same ex-
ample as in the single iteration section, where the iterations are alphabetically ordered,
A,B,C ... and so on. The single iteration has had its NOP instructions minimized. To fill
the pipeline at all times three iterations (A,B,C) was overlapped because of the latency
of the pipeline. This will fill the pipeline and increase the throughput but still does not
utilize all of the vector elements in a SIMD pipeline. The overlapping comes at the price
of having to store all the active data in registers from the overlapping iterations and the
latency of the input to output data is increased compared to a single iteration schedule as
seen in figure 2.1.

16



2.5 Scheduling Techniques

+1

+2

+3

+4

+5

+6

-1

-2

-3

+7

+8

∗1 ∗2

clock cycles0 1 4 8 9 12

Figure 2.6: Example of a single iteration schedule for a VLIW
pipeline
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B+6

B-1

B-2
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C-3 C-4
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C∗2 D∗2

clock cycles0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure 2.7: Example of a overlapped schedule for a SIMD
pipeline, where A,B,C is the iterations

2.5.3 Loop Vectorization

Another technique to utilize the vector more would be to unroll a number of iterations
(unroll factor) and fill the vector with unrolled operations. In figure 2.8 the single iteration
example is used with the unroll factor four and the vector length four. Operations from
Iterations A to D are scheduled in one vector. Although there is still a delay between
data dependencies, this makes it so that every operation utilize all of the width of the
vector. Dependencies could exist between iterations that would make loop vectorization
impossible. In this project the applications chosen did not have such dependencies.
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Figure 2.8: Example of loop vectorization for a SIMD pipeline

2.5.4 Loop Vectorized then Overlapped Execution
In order to increase the pipeline utilization of the previous case, the overlapped tech-
nique can be used after the loop vectorization, but only if there is enough iterations left
to schedule. Figure 2.9 shows loop vectorization example overlapped with the the next
iteration. The light gray operations in the figure are the overlapped operations. This way,
the throughput of this example is the best of these techniques, but the latency is also the
highest as seen in table 2.1.
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Figure 2.9: Example of loop vectorized then overlapped schedule
for a SIMD pipeline
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Table 2.1: Throughput and latency for a part of FDCT.

Schedule technique Throughput Latency
(iter./cc) (cc)

Single SIMD 0.083 12
Single VLIW 0.100 10
Overlapped 0.200 17
Loop vectorized 0.250 16
Loop vectorized & overlapped 0.308 21

2.6 Bluespec System Verilog
In this project, the hardware specification language used is a high level synthesis lan-
guage called Bluespec System Verilog. BSV is based on a synthesizable subset of System
Verilog[5]. To be able to fit into the design exploration loop in figure 2.1, the language
had to be chosen with the aspect of parametrization in mind. BSV with its general type
parameterization (polymorphism) makes it so that parts of the design can be reused.

In BSV, hardware is made out of modules. A module consists of a state, rules, inter-
faces and there can be submodules inside a module. Figure 2.10 shows an overview over
an module.

Module
state

ruleIn
te

rfa
ce

Figure 2.10: Overview of a module in Bluespec

Rules are what determines the behavior in BSV. These rules are made of a condition
that determines when the rule will fire and a body with a set of actions which describe
the state change. Interfaces are made of methods that describe the transactions between
a module and outside circuitry. Methods contain implicit ready and enable signals that
determine if the method will cause a state change or if values will be return to the caller.

Listing 2.1: FIFO interface from BSV library[4]
i n t e r f a c e FIFO#( type any_ t ) ;

method any_ t f i r s t ( ) ;
method Act ion c l e a r ( ) ;
method Act ion enq ( any_ t d a t a _ i n ) ;
method ActionValue #( any_ t ) deq ( ) ;

e n d i n t e r f a c e : FIFO
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Listing 2.1 shows an interface of a FIFO module in. The FIFO can be initiated with
any type (any_t). The interface has four methods: first to get the first element in the
FIFO, clear to clear the fifo, enq to enqueue data of type any_t and deq to dequeue the
first element. These methods create both the in/out ports and the control signals. There
is an overview of these ports and signals in appendix C, figure C.1. The variable passed
into the Action method enq creates the input port. The width of the port depends on the
width of the type any_t. For example the type Bit#(32) has a width of 32-bit. The enable
signals are automatically implemented and trigger each method. The rdy signals indicates
when the methods are ready can be called.

Listing 2.2 shows an example of the FIFO module initiated and used in the mkTest
module. There is two FIFOs created, fifo1 and fifo2. Both with integers 32bit types.
In rule r1, the first element in fifo1 is compared and if it is less than 2, the rule will fire.
When the rule fires the first element in fifo1 is enqeued into fifo2. The first element in
fifo1 is also dequeued.

Listing 2.2: FIFO instantiation with Int32 type
module mkFIFOExample

FIFO#( In t # ( 3 2 ) ) f i f o 1 <− mkFIFO ;
FIFO#( In t # ( 3 2 ) ) f i f o 2 <− mkFIFO ;
. . .
ru l e r1 ( f i f o 1 . f i r s t ( ) < 2 ) ;

f i f o 2 . enq ( f i f o 1 . f i r s t ( ) ) ;
f i f o 1 . deq ( ) ;

endrule
. . .

endmodule

With this high level description the model can be compiled to a Verilog and then syn-
thesized.
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Chapter 3
Implementation

This chapter describes the architecture and implementation of our processor. The first
section explains the early versions of the architecture and the process of getting to the
finalized version. The last section describes the final version.

3.1 Early Versions
When starting out, the first version of the implementation was an single instruction single
data processor. The processor had a 3-stage pipeline and the register file only consisted of
one BSV register file module. Figure 3.1 shows the overview of the first version. Instruc-
tions where generated in a finite state machine that would take some test inputs for example
address R0 and address R2 of the register file and operation code for add instruction and
enqueue in the FIFO before the register fetch stage. The FIFO has one element making the
stages stall until an item is enqueued into the FIFO. One instruction was queued in each
state of the FSM. The register fetch would then get the scalar operands from the register file
addresses specified and enqueue in the next FIFO before the execute stage. The execute
stage had some simple operations implemented such as the add and subtract operations.
The add operation would add the scalar operands together and enqueue the result to the
FIFO before the write-back stage. The write-back stage would then write to the register
file. There is also a function supplied in the BSV simulation environment called $dis-
play, that could print the result and the result address to the terminal. The output where
examined to verify that the model worked as intended.

Starting out with the first version that had a scalar pipeline, the second version was
to implement a VLIW pipeline. In order to do this, the register file had to be changed
to something that could scale up with the number of added pipelines. The register file
module, in BSV, only has support for 5 read ports and 1 write port. A register file module
was designed to have register files with 2 read ports for each pipeline in the architecture.
The register file module is described in more detail in the final version. Similar to the first
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FSM RFetch Execute Writeback

$display

Register
file

Figure 3.1: Overview of the first architecture

version, this VLIW processor was tested with a FSM, that models the instruction memory.
The FSM would send four instructions to the FIFOs before the register fetch modules. The
results where printed with $display statements to the terminal during simulation. Figure
3.2 shows an overview of this VLIW architecture with four scalar pipelines.

FSM

RFetch Execute Writeback

RFetch Execute Writeback

RFetch Execute Writeback

RFetch Execute Writeback

$display

Register
file

Figure 3.2: Overview of the VLIW architecture

The third version was to implement a SIMD pipeline. In this version, data is packed
in an abstract data type called Vector in Bluespec (the vector type is shown in Listing
3.1). The vsize defines the length of the vector, and the element_type defines the type of
the elements in the vector. The element type does not have to be bits or integers but can
also be FIFOs or registers. It can also be abstract types like Rules, that will be evaluated
during the static elaboration and contain no hardware implementation, which is useful
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when implementing the parameters for the models. Vectors start with the first element in
the least significant bit to the most significant bit.

Listing 3.1: Vector type definition
t ypede f s t r u c t Vector #( type numer ic v s i z e , type e l emen t _ t yp e ) ;

Using this vector type, the SIMD version of the processor has a FSM similar to the
scalar version but with the vectors instead of scalars. Since the vector has integers stored
in them, it is no problem to store them in FIFOs compared to trying to store some abstract
type, that cannot be evaluated into bits. The way the register file is read to the register
fetch stage, with vectors in mind, is explained in more detail in the register file section.
For the SIMD version of the processor another stage was added in order to be able to
permute the operand vectors. This was done in order to simplify any operations where the
order of the elements in the operand vectors was different than needed. The order of the
operand vectors elements is specified by vectors stored in a memory in the permutation
module. Figure 3.3 shows an overview of this SIMD architecture. As with the previous
architectures, $display statements are used to print the output to the console for testing and
debugging purposes.

RFetch Permutation Execute Writeback

Register
file

FSM $display

Figure 3.3: Overview of the SIMD architecture
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3.2 Final Version
Figure 3.4 shows the pipeline overview for the final architecture. The number of scalar
and SIMD pipelines is parameterized. The configurations are reffered to as (SIMD units,
SIMD width, Scalar Units). For example a single SIMD pipeline, with a vector width of
four, is referred to as a (1, 4, 0) configuration.

The scalar pipeline path and the vector pipeline path both can be added in multiples
or removed. The stages are separated by one width FIFOs to achieve pipelining. Reading
from empty FIFOs and writing to full FIFOs is not possible due to the implicit signals that
Bluespec automatically implements. Both the scalar and SIMD pipelines are connected
to a shared register file. Each stage of the scalar pipeline and SIMD pipeline is described
first and then the register file module of the architecture.

IFetch

IMemory

RFetch Execute Writeback

RFetch Permutation Execute Writeback

Register
file

scalar pipeline

vector pipeline

Figure 3.4: Overview of the architecture

3.3 The Pipeline
This section describes each stage of the scalar and SIMD pipelines. The stages are the
instruction fetch stage, the register fetch stage, the permutation stage for the SIMD pipeline,
the execution stage, and the write-back stage.

3.3.1 Instruction Fetch
The first stage fetches instructions from the instruction memory and puts each instruction
into the FIFO for each stage. If there are multiple pipelines, the first set of instructions is
going to the SIMD stages and the second set of instructions is going to the scalar pipelines.
For example, with a single scalar pipeline and a single SIMD pipeline, the first SIMD
instruction will be in the first slot and the first scalar instruction will be in the second
slot and so on. If there are more stages than read ports for the register file holding the
instructions, additional register files will be created to hold the instructions.

Figure 3.5 and figure 3.6 show the scalar and SIMD instruction format respectively.
The length of the operation field depends on the number of operations supported. The
number of operations implemented is 8 (multiplication, addition, subtraction, and, or,
bitwise invert, right shift, left shift), so that makes the field 4 bits wide. The width of the
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address1, address2 and result address depends on the memory size, as shown later in more
detail in the register file module section. The permutation addresses width depends on the
memory size of the permutation memory in the permutation stage.

op address1 address2 result address

Figure 3.5: Scalar instruction format

op address1 permutation address1 address2 permutation address2 result address

Figure 3.6: SIMD instruction format

3.3.2 Register Fetch Stage
In the scalar pipeline, the register fetch stage takes the specified operand addresses, reads
them from the register file module, puts them together with the operation and resulting
address and then enqueue them to the next FIFO. The input FIFO is dequeued after the
addresses have been read from the input FIFO. The data format enqueued to the output
FIFO is shown in Figure 3.7. The operand1 and operand2 width depends on the width of
the data stored in the register file. For testing the design the data width was 32bit. The
resulting address depend on the depth and width of the register file.

op operand1 operand2 result address

Figure 3.7: Scalar data format to execute stage.

In the SIMD pipeline, the input FIFO before the register fetch stage is read and then
dequeued. Then, using the starting address for both the operand vectors, the operand
vectors are read from the register file module. It then enqueues both the operand vectors
from the register file to the output FIFO. The data format enqueued to the output FIFO is
shown in Figure 3.8. The vector sizes depends on the data width of each element and the
number of elements in the vector.

op vector1 permutation address1 vector2 permutation address2 result address

Figure 3.8: SIMD data format to permutation stage.

3.3.3 Permutation Stage
Different permutation options for the vector are stored in a small memory in this module.
This memory content is preloaded from a hex file with the different options for permuta-
tion. The size of the memory is determined by the width of the vector and by a parameter
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for the depth. The vector data is read from the FIFO and the permutation addresses. The
addresses then fetch the permutation specification from the memory and rearrange the vec-
tor elements accordingly. The rearranged vector data is then put into the output FIFO. For
example if the permutation memory has the order 2,3,1,0 stored in memory for a length 4
vector, the resulting vector would be v[0] = v[2], v[1] = v[3], v[2] = v[1], v[3] = v[0].

The format of the data from the permutation stage is shown in Figure 3.9. The format
is the same as from the register fetch stage, but without the permutation addresses which
are no longer needed.

op vector operand1 vector operand2 result address

Figure 3.9: SIMD data format to execution stage.

3.3.4 Execute Stage
In the scalar pipeline the execution stage takes the values acquired from the register file in
the previous stage and performs the operation specified. The result and its register address
are then passed out to the next stage.The format of this data is shown in 3.10. The result has
the same width as the operands have. The instructions we implemented are multiplication,
addition, subtraction, and, or, bitwise invert, right shift, left shift. These are all integer
operations and there is no support for floating point or fixed point values.

result result address

Figure 3.10: Scalar data format to write-back stage.

For the SIMD execute stage, the operations implemented are the same as for the scalar
pipeline, but here the operations on the vectors are carried out element-wise. For example,
two vectors a and b of length 4, the result after multiplication is (a0b0, a1b1, a2b2, a3b3)
and the result after addition is (a0+ b0, a1+ b1, a2+ b2, a3+ b3). The format written to the
output FIFO is the resulting vector and the result address as shown in figure 3.11, where
the resulting vector is of the same length and format as the operands.

vector result result address

Figure 3.11: SIMD data format to write-back stage.

3.3.5 Write-back Stage
In the scalar pipelines, the scalar result and its register address are sent to the register file
modules write interface.

Similarly, in the vector write-back stage, the result vector and its address are sent to
the register file modules write interface.
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3.4 Register File Module

3.4 Register File Module
The register file is made from several standard Bluespec library register files. They all
have one write and up to five read ports. They are put into modules with two read ports
and one write port. These modules are reused depending on how many scalar and SIMD
pipelines are specified in the design and the length of the SIMD. For example if there is
one SIMD pipeline with a vector length 4 and one scalar pipeline, the number of register
file modules created would be 5. Figure 3.12 shows how the register files are connected to
the interface of the register file module. SW1 and SW2 switches are made through rules
in the BSV module, so that there is only one write method and two read methods used at
any given moment for each register file module. If there is a read and write at the same
clock cycle in the same address, the read value will be the value in the beginning of the
clock cycle instead of the value being written. This way there will not be a conflict when
reading and writing values to the same address.

write interface SW1

RF0

RFN

SW2 read interface

Figure 3.12: Overview of the register file module

The address for the register file module is organized in register file index and slot index.
Figure 3.14 shows the register file layout and figure 3.13 shows the register file address
format. The size of RF index is given by equation 3.1. It is a unsigned integer with size N
depending on the ceiling function of the log2, where VectorSize is the size of the vectors
in the SIMD pipeline, nbrOfSIMD is the number of SIMD pipelines and nbrOfScalar is
the number of scalar pipelines. The slot index is chosen by a parameter.

RF index = UInt#(N),where N is the number of bits
N = ⌈log2 ((VectorSize · nbrOfSIMD) + nbrOfScalar)⌉

(3.1)

Some examples would be, (1, 4, 0) in equation 3.1, givesN = ⌈log2 ((4 · 1) + 0)⌉ = 2,
so that RF index becomes an unsigned integer of size 2 with a range of [0, 3]. The (0, 0, 4)
configuration gives the same result. The (1, 4, 1) configuration has N = 3, where RF
index is an unsigned integer of size 3 with a range of [0, 7]. This range is larger than the
needed one, because the configuration only has 5 register file modules.

The register file module layout enables parallel access for vector or multiple scalars.
If the address to be written is to the first register file and it is a vector that is to be written
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Slot index RF index

Figure 3.13: Register file address format

or read, then the vector elements will be in the same slot across all the register files. This
is shown with the A vector in the figure 3.14. If the vector address points to the second
register file, the next vector elements will be in the same slot except for the last element,
which will move down one slot in the first register file. This is shown with the B vector
in the figure 3.14. In this way there is only a need for two reads in each register file and
when writing the result, only one write port is needed in each register file.

A0

B3

RF0

A1

B0

RF1

A2

B1

RF2

A3

B2

RF3

slot0

slot1
...

Figure 3.14: Overview of the register file module layout

3.5 Parameterization
The processor has several parameters that can be changed in order to meet the application
specific requirements. The following parameters can be changed:

1. Width of the data (Int#(N))

2. Issue-width of the SIMD pipeline (number of SIMD units)

3. Issue-width of the VLIW pipeline (number of scalar units)

4. SIMD width (for all the SIMD units)

5. Register file depth (number of memory locations)

6. Permutation memory depth (number of memory locations)

7. Instruction memory depth (number of memory locations)
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The parameters are set in the design before BSV compiles the design to Verilog. The width
of the data will affect the range of the numbers that the processors can use. For example,
an Int width of 8 has the range of –128 to 127. With the larger range, the memory needed is
increased. The FIFOs after the register fetch stage also has to be larger to fit the increase of
data. In the execute stage, the operation complexity when turned into hardware is increased
with a larger width of the data. For the applications used in this project a width of 32bit is
used, since the C applications use 32bit integers.

The issue-width is the number of SIMD or VLIW pipelines the processor is configured
for. An increase of the issue-width for both leads to an increase in instructions and in-
struction memory needed. The instruction fetch stage also has to fanout to more pipelines.
Since all of the pipelines are repeated it produces an increasing complexity. The benefit is
that the theoretical throughput is higher because of all the instructions that can be executed
at the same time. The register file module is increased with a register file for each pipeline
and the input and output fanout from the register file module is also increased.

The SIMD width potentially increases the throughput if the full width is utilized. The
register file module is increased with a register file for the width of the SIMD as explained
in the register file module section. The FIFOs after the register fetch stage also have to be
larger, due to the increased width vector. In the permutation stage, the memory for storing
permutations will be larger. The execute stage has to increase in complexity with more
functional units like add and multiply.

The memory depths of each memory, increases the memory locations that stores the
instructions, permutations or data values. The memories will be larger and with FPGAs
there often is not a lot of block rams or logic to fit large memories, when you synthesize
the design.
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Chapter 4
Evaluation

In this chapter, we evaluate three different architecture configurations . The architectures
are compared in terms of resource usage on an FPGA, maximum clock speed and speed
up compared to a Microblaze processor. The applications and configurations are chosen
so they can be compared to the design space exploration in [2].

4.1 Setup
For compiling the Bluespec code to Verilog and for simulation, the 2014.07.A version
of the Bluespec complier was used. The Bluespec compiler was run in CentOS 6.7 in
VMware 12.0.0 on a Windows 7 Professional 64-bit operative system. To synthesize the
design and the Microblaze processor, the Xilinx ISE Design Suite 14.7 was used. The
Microblaze was running on a Xilinx Spartan-6 XC6SLX16 FGPA with speed grade -2.
The machine running Windows had a Intel(R) Core i7-3820 @ 3.6 GHz processor and
64GB of RAM.

The hardware designs were tested by using three programs hard coded in machine
code except with the Microblaze which is using the C code. Two of the programs are from
Mediabench suite [11] and are provided by ExPRESS research group in the Electrical &
Computer Engineering Department at the UCSB [3]. These programs are the forward dis-
crete cosine transformation (FDCT) used in with JPEG compression and inverse discrete
cosine transformation (IDCT) used in decoding MPEG. The FDCT and IDCT programs
both operate on a 8x8 matrix. Both the programs traverse the eight rows of the matrix
and then the eigth columns. Both of these programs are also used in the design space
exploration paper [2]. The third program is a naive matrix multiplication referred to as
MATMULT. The source of the C-program matmult may be seen in listing A.1 (appendix
A). The matrix multiplication is for two 4x4 matrices. In this program both are the same
matrix. Every matrix row element Aik, i = 1, 2, 3, 4, is multiplied with the other matrix
column element Akj , j = 1, 2, 3, 4 and the result is summed over k = 1, 2, 3, 4.
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The output of the hard coded programs was compared to the C code to verify that
they worked correctly. The output was produced running in simulation using $display
statements to print out the results.

4.2 Experimental Results
The three configurations evaluated are a single SIMD pipeline of width 4, a 4 VLIW
pipeline and a 1 SIMD of width 4 with 4 VLIW pipeline design. All of them using 32-bit
data, register file depth of 128, permutation memory depth of 16 and instruction memory
depth of 4096. The configurations will be referred to as (SIMD units, SIMD width, Scalar
Units). The (1, 4, 0) configuration was the configuration chosen from the evaluation in
paper [2]. The (0, 0, 4) configuration was not a pareto point in the paper for the IDCT or
FDCT but for another application. The (1, 4, 1) configuration was not a pareto point in
any of the applications in the paper but was chosen to see if the extra scalar unit would
increase the performance.

The configurations were synthesized for a Xilinx Spartan-6. Table 4.1 shows the re-
source requirements of the different configurations and the Microblaze processor including
a 32kB memory, for storing instructions and data. The total usage of the resources of the
FPGA is also reported in percentage.

Table 4.1: Resources used with various configurations (SIMD
units, SIMD width, Scalar Units) and a MicroBlaze processor

Config Slice Reg Slice LUT LUT RAM DSP48A1 BUFG BRAM
(1,4,0) 738 (4%) 5904 (64%) 1680 (77%) 12 (38%) 1 (6%) 0
(0,0,4) 522 (2%) 4509 (49%) 704 (32%) 12 (38%) 1 (6%) 27 (62%)
(1,4,1) 848 (4%) 7806 (85%) 880 (40%) 15 (46 %) 1 (6%) 12 (37%)
MB 1512 (8%) 2017 (22%) 140 (6%) 3 (9%) 2 (12%) 16 (50%)

To measure the performance of the different configurations the number of clock cycles
were recorded for each applications in the simulation. With the Microblaze processor, it
was synthesized with a standard IP called xpstimer to count the clock cycles for each ap-
plication. The timer was initialized and stopped for the relevant C code in the applications.
The C code was optimized in the GCC compiler at level O3 or O2 depending on which
was the fastest.

The hard-coded applications were scheduled in three different ways. The single it-
eration case compared in table 4.2 with optimized C code in the Microblaze. The four
iterations overlapped execution shown in 4.3 and the loop vectorized and then two times
overlapped case are shown in table 4.4.

The maximum frequency for the different synthesized configurations are shown in table
4.5. The Microblaze is clocked at the frequency of 100Mhz and the default options for
speed optimization were chosen when synthesized.

The speedup for the various configurations compared to the Microblaze running at
100Mhz are depicted in figure 4.1 for jpeg FDCT, 4.2 for mpeg IDCT and 4.3 for the
matrix multiplier. These figures also show the speedup with the different scheduling tech-
niques applied to the applications. The configurations are assumed to be clocked at their
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Table 4.2: Single iteration execution time (clock cycles) for var-
ious configurations (SIMD units, SIMD width, Scalar Units) and
applications.

Configuration matmult jpeg_fdct mpeg_idct
(cc) (cc) (cc)

(1,4,0) 52 1073 1437
(0,0,4) 34 769 841
(1,4,1) 50 997 1289

MicroBlaze 336 1341 1521

Table 4.3: Overlapped x4 execution time (clock cycles) for var-
ious configurations (SIMD units, SIMD width, Scalar Units) and
applications.

Configuration matmult jpeg_fdct mpeg_idct
(cc) (cc) (cc)

(1,4,0) 48 644 1009
(0,0,4) 32 393 553
(1,4,1) 48 545 873

MicroBlaze 336 1341 1521

Table 4.4: Loop vectorized and overlapped x2 execution time
(clock cycles) for various configurations (SIMD units, SIMD
width, Scalar Units) and applications.

Configuration matmult jpeg_fdct mpeg_idct
(cc) (cc) (cc)

(1,4,0) 28 349 391
(0,0,4) 28 238 265
(1,4,1) 28 333 361

MicroBlaze 336 1341 1521

Table 4.5: Maximum clock frequency for various configurations
(SIMD units, SIMD width, Scalar Units)

1,4,0 0,0,4 1,4,1
(Mhz) (Mhz) (Mhz)
55.9 52.2 48.9

maximum frequency. The calculated speedup is relative to the speed of the Microblaze ac-
cording to equation 4.1. Where MB stands for Microblaze, cf stands for clock frequency,
cc stands for clock cycles, and config the configuration.

Figure 4.4 shows the FDCT with added vector load and vector store instructions. The
dimension for the matrix in FDCT is 8x8, so the added instructions are 16 vector load and
16 vector store, when the vector is of width 4. The dashed line in figure 4.4 is the theo-
retical maximum speedup, assuming the Microblaze has no stalling in the pipeline. The
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maximum speedup is 4 for a vector of length 4 and running at the same clock frequency.

MBcc(
MBcf

Configcf

)
· Configcc

= speedup (4.1)
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Figure 4.1: Speedup FDCT application compared to MicroBlaze

(1,4,0) (0,0,4) (1,4,1)

1

2

3

0.59

0.94

0.58
0.84

1.44

0.85

2.17

2.99

2.06

sp
ee

du
p

single overlapped vectorized

Figure 4.2: Speedup IDCT application compared to MicroBlaze
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Figure 4.3: Speedup of the matrix multiplier compared to Mi-
croBlaze
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Figure 4.4: Speedup FDCT application compared to MicroBlaze,
with added load/store instructions and dashed line for the theoret-
ical limit
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Chapter 5
Discussion

In this chapter we discuss the result, in terms of clock cycles, speedup and resources used
compared to the Microblaze processor. We also discuss the design decisions in terms of
the configurations that were chosen and the different schedule techniques that were used.
We also discuss the hardware description language that was used and improvements that
can be made in the future.

5.1 Performance
When looking at the performance of the configurations compared to the Microblaze, there
are cases when it reaches over the theoretical maximum speedup. For a SIMD unit with
width 4, the maximum theoretical speedup is 4, when the systems are at the same clock
speed. One of the reasons behind this is that the processor in this project lacks the load
and write to memory instructions that the Microblaze has. Instead, here the registers are
preloaded with the data that is going to processed. The speedup for the FDCT with added
vector load/store still is higher with the (0, 0, 4) configuration, than the theoretical limit.
The reason for this could be that the Microblaze has stalling when there is risk for a data
dependency hazard in the pipeline, which would decrease the performance of the Microb-
laze.

Another reason is the branch instructions, that are lacking in our processor. This seems
to be one of the reasons for why the matrix multiplier has such a big speedup over the C
program. In the hard-coded matrix multiplier application, the three “for loops” are fully
unrolled and therefore there is no branch instructions. In theory, the matrix multiplier has
64 multiplications and 48 additions, making it a total of 112 operations. The theoretical
best operation for a vector of width 4 would then be 28 operations which is what has been
achieved.

When counting the operations in the C files for the FDCT and IDCT the total amount
of operations would be 944 and 1048 respectively. Again divided by four, the theoretical
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best speed for a vector of width 4 would be 236 and 262 which is close to what is achieved
with the loop vectorization and overlapping.

Some performance in the SIMD only configuration (1, 4, 0) was lost due to the vector
operations assuming the elements to be packed in consecutive addresses. The elements of
the vector have to be aligned, whereas in the VLIW, each pipeline can read two data values
from each register file. This was mostly a problem in the single iteration scheduling and
overlapped execution, when traversing the columns of the matrices for FDCT and IDCT,
since the matrices were stored in row major order. With VLIW (0, 0, 4) it was easier to
schedule and utilize all the resources for those cases, since the addresses does not have to
be consecutive. This is why the (0, 0, 4) configuration take fewer clock cycles to complete
the applications.

There was a small improvement when a scalar pipeline was added to the SIMD only
pipeline (1, 4, 1) in terms of clock cycles. This was because of writing data in instances
where there were other active data that could be overwritten by the SIMD operation. In
some cases this could be avoided in the SIMD pipeline by leaving extra space between
rows of data. But when overwriting the columns for the matrices for example, there had
to be an extra copy in the (1, 4, 0) configuration, where in the (1, 4, 1) case it could be
overwritten directly. Otherwise this configuration did not improve much in speed over
the (1, 4, 0) configuration. The 4+1 size makes it for these applications hard to schedule
because of the matrices being even and the number of loops also even. Perhaps a 3+1
configuration (1, 3, 1) would be more beneficial. The scalar unit could then be used while
data is unaligned for the vector unit and then act as a 4 width vector unit when the data has
been aligned. Another case would be for the scalar unit to be used at the same time for an
application where the SIMD structure is harder to utilized for example when there is loop
dependencies.

The VLIW scalar only case (0, 0, 4) is the overall fastest in terms of speedup except
for in the matrix multiplier application. This is because the 4 width SIMD gets a slightly
higher maximum clock frequency and they both take the same amount of clock cycles to
complete that application.

Because of the lower frequency of the configurations compared to the Microblaze,
the single iteration case only managed to get a speedup above 1 in the matrix multiplier
application. The loop vectorized technique was the only case when it always outperformed
the Microblaze even with lower clock frequency, doubling the performance or more in most
applications.

5.2 Resource Usage
The resources used with the different configurations seems to be half or less of the slice
registers compared to the Microblaze. This might be because of the logic in the memory
access stage, that only the Microblaze has. The Microblaze uses at least half of slice lookup
tables that the configurations use. One of the reasons seems to be because some memory
is synthesized to LUT RAM instead of BRAM. The DSP48A1 usage is higher because of
the extra multipliers in the different configurations. The usage is 4 and 5 times higher so
that seems to correspond to the number of multipliers. The BRAM usage is zero on the
SIMD only version because the instruction memory in that configurations was synthesized
into LUT RAM. Otherwise it would have been similar to the VLIW usage.
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5.3 Schedule Techniques
Scheduling more than a single iteration increases the utilization of pipelines and the re-
sources. This is shown in the speedup of the different applications with the overlapping
technique. The downside of scheduling more iterations is the increased number of regis-
ters needed for the variables in every iteration that is scheduled at the same time. Also
when more iterations are scheduled, the input to output time (latency) can potentially in-
crease. If the target application is a streaming application, then the scheduling should take
the latency into account so that the buffer holding the streaming data will not be empty or
full due to short or long latency of consuming the data.

The loop vectorization proved to be useful in the chosen applications by increasing the
utilization of the vector in the SIMD pipeline and the scalars in the VLIW pipeline. This
technique would have been harder to use if there was any dependencies between data in
the loops.

5.4 Bluespec System Verilog
As a higher level language Bluespec SystemVerilog simplifies a lot by using a higher ab-
straction layer. For example, the modules have methods that contain all the input and
output ports. The methods also automatically implements the handshaking signals and
logic for those ports, for example the enqueue for a FIFO module is implicit controlled
so that it cannot enqueue when full or dequeue when empty. These implicit signals, that
control methods and rules, can make it hard to debug the verilog output after compilation.
The critical path for example, is harder to follow when the signals are not named by the
designer.

Each stage of the pipeline was also tested separately with test modules that finite state
machines to verify that the stage worked properly before attaching to the other stages.
A FSM is easy to make because of the StmtFSM module that comes with the BSV
library. In appendix D listing D.1 is an example of a FSM with the SmtFSM package. The
package is imported from the standard BSV library. Then the FSM is specified within the
seq..endseq keyword. Within the seq keyword every line is executed in sequence. The
actions between action..endaction only takes one clock cycle. The if statement contains
a sequence that will be executed in sequence if the condition is true. There can be if
statements inside one action that will take one clock cycle to execute. The FSM is done
at the $finish statement.

The FSM is instantiated in the mkFSM constructor, that has the FSM interface with
the start method used in rule fsmstart. The start method has an implicit condition that
the FSM cannot already be running.

Writing the FSM in Bluespec compared to VHDL (appendix D.2), there is no clock
or reset signal specified by the designer. It is handled by the Bluespec compiler. If the
combinatorial block in VHDL is incomplete, there could be unwanted inferred latches.
In Bluespec, registers are always instantiated by the designer. This is one of the reasons
debugging in Bluespec was also a lot easier than in VHDL. In Bluespec you can overload
the print function with your own defined types, instead of having to look at wave form
signals. For example, if there is user defined instructions like add, subtract. They can be
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printed out in the console as “+”, “-” instead of the bit value.
The amount of readily available modules in the Bluespec library also makes it faster

to design hardware than in other languages. The fact that they are generic and can be used
with different types, as with the FIFO module, makes it easy to use.

5.5 Design Space Exploration
The configuration (1, 4, 1) was not one of the pareto points in the DSE paper [2]. Consid-
ering it did not perform better than the (1, 4, 0) when it came to the speedup, it is under-
standable that it was not one of the optimal points.

The configuration (0, 0, 4) was also not one of the pareto points in the paper, even
though it overall performed the best in this project. This could be explained by the model
not having any storage constraints. For example the (1, 4, 0) configuration had to align the
vector data where the (0, 0, 4) configuration was more flexible.

The applications in the paper was scheduled with modulo scheduling and with a dif-
ferent latency on the pipelines. Therefore, it is hard to compare the evaluated results with
that paper, but they have one thing in common, that with the (1, 4, 0) configuration has
a higher throughput in the FDCT compared to IDCT application, when scheduled with
single iteration or overlapping execution.

5.6 Future Work and Improvements
A lot of time in the project was spend manually programming the different configurations
for the architecture. One big improvement would be to make a compiler for this model,
that can try out different kinds of schedule techniques and configurations. With the SIMD
pipeline there were also a lot of time spend on packing data elements of interleaved data
in the vector. This was because the vector operations assume the elements of the vector
to appear in consecutive order in the register file module. Loop vectorization made this
easier and it would good if the compiler would have support for auto-vectorization, since
the applications in this project benefited greatly from it.

Since the configurations where only tested through simulation of Verilog files, there
should be some verification done on actual hardware. Since this could be time consuming
there was not enough time left on the project to do this.

This design lacks a memory access stage in the pipelines that would take the load and
store instructions that were discussed earlier. This stage should be added so that different
data can be loaded to the register file and so that the speed measurements would be more
accurate compared to a general-purpose CPU like the Microblaze.

Since the design has around half the clock frequency of the Microblaze, some work
could be done to minimize the critical path of the design. The critical path seems to be
the highest around either the instruction memory or the register file module. Some more
work into critical path analyzing could be done in future work.
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Chapter 6
Conclusion

A synthesizable model has been made that could support the design space exploration for
custom processor architectures. The model was evaluated with three potential architec-
tures and applications. The scheduling techniques of the applications turned out to be
crucial in terms of speedup compared to the Microblaze processor. Even with a lower
clock frequency, the loop vectorized overlapped schedule had speedup of at least 1.79
times the Microblaze. The single iteration schedule did provide a speedup with the lower
clock frequency compared to Microblaze. The execution time in clock cycles for the sin-
gle iteration schedule was still lower than on the Microblaze. The performance of the
custom architectures comes at the cost of an increase in resource usage overall. With the
overlapped schedule techniques there is a need for more registers to hold the active data.

The configuration (0, 0, 4) was overall the configuration that performed the best in
this project. The configuration (1, 4, 0) had a longer execution time, because the vector
elements have to be aligned in memory. The (1, 4, 1) configuration was the worst con-
figuration, because of the lower maximum clock frequency and because of how hard to
schedule because of its odd size.

The use of Bluespec SystemVerilog made the process of designing the model much
easier due to the higher abstraction layer. The user defined types, overloading of functions
and extensive standard library helped when debugging the model and sped up the design
process. The explicit register instantiation also helped by not having to find inferred latches
when debugging.

This model lacks a few features such as a memory access stage that would provide load
and store instructions and the software support in terms of a compiler. Adding the load
store instructions would make the comparison to the Microblaze processor more accurate
and the addition of a compiler would make the programming of the custom architectures
less time consuming. A compiler would also increase the speed of the design space explo-
ration that this model fits into. The need to explore different scheduling techniques and
different type of architecture candidates is slowed down by manually writing code.
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Appendix A
Matrix Multiplier Application in C

Listing A.1: Matrix multiplier application in C
1 # inc lude < s t d i o . h>
2
3 # d e f i n e LEN 4
4
5 i n t main ( i n t argc , char * a rgv [ ] )
6 {
7
8 i n t a [LEN ] [ LEN] = { { 1 , 2 , 3 , 4 } , { 2 , 3 , 4 , 5 } , { 3 , 4 , 5 , 6 } , { 4 , 5 , 6 , 7 } } ;
9 i n t r e s [LEN ] [ LEN] = { { 0 , 0 , 0 , 0 } , { 0 , 0 , 0 , 0 } , { 0 , 0 , 0 , 0 } , { 0 , 0 , 0 , 0 } } ;

10
11 f o r ( i n t i = 0 ; i <LEN; ++ i ) {
12 f o r ( i n t j = 0 ; j <LEN; ++ j ) {
13 f o r ( i n t k = 0 ; k<LEN; ++k ) {
14 r e s [ i ] [ j ] += a [ i ] [ k ] * a [ k ] [ j ] ;
15 }
16 }
17 }
18
19 / / p r i n t ou t t h e r e s u l t i n g m a t r i x
20 f o r ( i n t i = 0 ; i <LEN; ++ i ) {
21 f o r ( i n t j = 0 ; j <LEN; ++ j ) {
22 p r i n t f ( ”%d ” , r e s [ i ] [ j ] ) ;
23 i f ( j ==LEN−1)
24 p r i n t f ( ” \ n” ) ;
25 }
26 }
27 re turn 0 ;
28 }
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Appendix B
DFG for a part of FDCT

+1 +2 +3 +4

+5 −1 +6 −2

+7 −3 ∗1 +8 ∗2

Figure B.1: Dataflow Graph for a Part of FDCT
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Appendix C
Bluespec FIFO interface

Module with FIFO interface

enq
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deq
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\

not full

n
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rdy
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not empty

n

rdy

not empty

enable

rdy

always true

enable

rdy

methods

Figure C.1: Overview of a module with a FIFO interface, in Blue-
spec
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Appendix D
Finite State Machine Example

Listing D.1: Stmt FSM in BSV
1 import StmtFSM : : * ;
2 . . .
3 module mkStmtExample
4 . . .
5 Stmt t e s t =
6 seq
7 $d i sp l ay ( ” S t a t e 1” ) ;
8 $d i sp l ay ( ” S t a t e 2” ) ;
9 $d i sp l ay ( ” S t a t e 3” ) ;

10 a c t i o n
11 $d i sp l ay ( ” S t a t e 4 , p a r a l l e l a c t i o n s ” ) ;
12 $d i sp l ay ( ” S t a t e 4 , p a r a l l e l a c t i o n s ” ) ;
13 endac t ion
14 i f ( c o n d i t i o n ) seq
15 $d i sp l ay ( ” I f−s t a t e 1” ) ;
16 $d i sp l ay ( ” I f−s t a t e 2” ) ;
17 $d i sp l ay ( ” I f−s t a t e 3” ) ;
18 endseq
19 $ f i n i s h ;
20 endseq ;
21
22 FSM fsm1 <− mkFSM( t e s t ) ;
23
24 ru l e f s m s t a r t ;
25 fsm1 . s t a r t ;
26 endrule
27
28 endmodule
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Listing D.2: FSM in VHDL
1 a r c h i t e c t u r e s t r u c t u r a l of fsm_example i s
2 type s t a t e _ t y p e i s ( s t 1 , s t 2 , s t 3 , s t 4 , s t 5 ,
3 i f s t 1 , i f s t 2 , i f s t 3 ) ;
4 s i g n a l s t a t e , n e x t _ s t a t e : s t a t e _ t y p e ;
5
6 begin
7
8 c o m b i n a t o r i a l : proce s s ( s t a t e , cond )
9 begin

10 case s t a t e i s
11 when s t 1 => repor t ” s t 1 ” ;
12 n e x t _ s t a t e <= s t 2 ;
13 when s t 2 => repor t ” s t 2 ” ;
14 n e x t _ s t a t e <= s t 3 ;
15 when s t 3 => repor t ” s t 3 ” ;
16 n e x t _ s t a t e <= s t 4 ;
17 when s t 4 => repor t ” s t 4 ” ;
18 i f c o n d i t i o n = ’1 ’ then
19 n e x t _ s t a t e <= i f s t 1 ;
20 e l s e
21 n e x t _ s t a t e <= s t 5 ;
22 end i f ;
23 when i f s t 1 => repor t ” i f s t 1 ” ;
24 n e x t _ s t a t e <= i f s t 2 ;
25 when i f s t 2 => repor t ” i f s t 2 ” ;
26 n e x t _ s t a t e <= i f s t 3 ;
27 when i f s t 3 => repor t ” i f s t 3 ” ;
28 n e x t _ s t a t e <= s t 5 ;
29 when s t 5 => f i n i s h ( 0 ) ;
30 when o ther s => n u l l ;
31 end case ;
32 end proce s s ;
33
34 s e q u e n t i a l : proce s s ( c lk , r s t )
35 begin
36 i f r s t = ’1 ’ then
37 s t a t e <= s t 1 ;
38 e l s i f ( c lk ’ e v en t and c l k = ’1 ’ ) then
39 s t a t e <= n e x t _ s t a t e ;
40 end i f ;
41 end proce s s ;
42
43 end s t r u c t u r a l ;
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Parametrisk processor modell för
design utforskning

POPULÄRVETENSKAPLIG SAMMANFATTNING Magnus Hultin

Applikations-specifika processorer är allt mer vanligt för få ut rätt prestanda med
så lite resurser som möjligt. Detta arbete har en parametrisk modell för att kunna
testa hur mycket resurser som behövs för en specifik applikation.

För att öka prestandan i dagens processorer finns det
vektorenheter och flera kärnor i processorer. Vekto-
renheten finns till för att kunna utföra en operation
på en mängd data samtidigt och flera kärnor gör
att man kan utföra fler instruktioner samtidigt. Ofta
är processorerna designade för att kunna stödja en
mängd olika datorprogram. Detta resulterar i att det
blir kompromisser som kan påverka prestandan för
vissa program och vara överflödigt för andra. I t.ex.
videokameror, mobiltelefoner, medicinsk utrustning,
digital kameror och annan inbyggd elektronik, kan
man istället använda en processor som saknar vis-
sa funktioner men som istället är mer energieffektiv.
Man kan jämföra det med att frakta ett paket med
en stor lastbil istället för att använda en mindre bil
där samma paketet också skulle få plats.

I mitt examensarbete har jag skrivit en modell som
kan användas för att snabbt designa en processor en-
ligt vissa parametrar. Dessa parametrar väljs utifrån
vilket eller vilka program man tänkta köra på den.
Vissa program kan t.ex. lättare använda flera kär-
nor och vissa program kan använda korta eller längre
vektorenheter för dess data.

För att kunna välja vilken typ av processor som
är rätt för den specifika applikationen krävs det ofta
att man snabbt kan testa olika prototyper. Att im-

plementera dessa till hårdvara kan ofta vara tidskrä-
vande och ifall det visar sig att implementationen inte
klarar dem kraven man ställt för prestanda och ener-
gieffektivitet, måste man designa för nya parametrar
och mer tid har blivit slösat. Om den här processen
istället kan göras automatiskt utifrån dessa design-
parametrar kan man teoretiskt spara en massa tid.
Modellen testades med olika multimedia program.
Den mest beräkningsintensiva och mest upprepan-
de delen av programmen användes. Dessa kallas för
kärnor av programmen. Kärnorna som användes var
ifrån MPEG och JPEG, som används för bildkompri-
mering och videokomprimering.

Resultatet visar att det finns en prestanda vinst
jämfört med generella processorer men att detta ock-
så ökar resurserna som behövs. Detta trots att den
generella processorn har nästan dubbelt så hög klock-
frekvens än dem applikations-specifika processorer-
na. Resultatet visar också att schemaläggning av in-
struktionerna i programmen spelar en stor roll för att
kunna utnyttja resurserna som finns tillgängliga och
därmed öka prestandan. Med den schemaläggningen
som utnyttjade resurserna bäst var prestandan minst
79% bättre än den generella processorn.
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