
Geometric real-time modeling and
scanning using distributed depth
sensors

Anton Klarén, Valdemar Roxling

MASTER’S THESIS | LUND UNIVERSITY 2016

Department of Computer Science
Faculty of Engineering LTH

ISSN 1650-2884
LU-CS-EX 2016-16

Geometric real-time modeling and
scanning using distributed depth sensors

(Detection of deviations in the surroundings for robotic

applications)

Anton Klarén
anton@klaren.it

Valdemar Roxling
valdemar.roxling@gmail.com

June 5, 2016

Master’s thesis work carried out at Cognibotics AB.

Supervisors: Klas Nilsson, klas@cognibotics.com
Jacek Malec, jacek.malec@cs.lth.se

Examiner: Elin Anna Topp, elin_anna.topp@cs.lth.se

mailto:anton@klaren.it
mailto:valdemar.roxling@gmail.com
mailto:klas@cognibotics.com
mailto:jacek.malec@cs.lth.se
mailto:elin_anna.topp@cs.lth.se

Abstract

Technological breakthroughs have in recent years heavily increased the avail-
ability of different types of sensors and the amount of computational power,
allowing for much more advanced robotic applications. By mounting multiple
depth sensors on the robot and designing a fast and robust system with state-
of-the-art algorithms we have made the robot aware of its surroundings. First,
the surrounding is scanned into a static geometrical model. Then that model is
used to detect and extract deviations in new scannings, for further analysis, to
make suitable decisions on how the robot should act. We have demonstrated
the system in a safety-critical setup for industrial robots, slowing down and
stopping the robot when a human is too close. The system is designed for
modularity, allowing for many other completely different applications, such
as complex object tracking and motion planning.

Keywords: Robotics, Computer vision, SLAM, Depth sensors, System design, Safety

2

Acknowledgements

We would like to thank:

• Cognibotics AB and involved personnel for their help, guidance and providing us
with necessary tools while working with this thesis and especially CEO Klas Nilsson
as supervisor and mentor.

• Cognimatics AB for lending us an Intel RealSense sensor and for providing useful
knowledge in the area of computer vision.

• Department of automatic control, LTH, for providing access to the robotics lab, a
Kinect One sensor and practical robotics knowledge.

• Professor Jacek Malec as supervisor.

• Associate Professor Elin Anna Topp as examiner.

3

4

Contents

1 Introduction 9
1.1 Robotics & Computer Vision . 9
1.2 Problem Description . 10

1.2.1 Solution proposal . 10
1.2.2 Related Work . 10
1.2.3 Compatibility . 11

1.3 Contributions . 11

2 Depth sensors 13
2.1 Depth Image . 13
2.2 Acquisition . 13
2.3 Stereo Triangulation . 14

2.3.1 Passive Systems . 14
2.3.2 Active Systems . 15
2.3.3 Hybrid Systems . 16
2.3.4 Calibration . 16
2.3.5 Disparity Maps . 17

2.4 Time-of-Flight Sensors . 17
2.4.1 Laser Sensor . 17
2.4.2 Phase-shift sensors . 18

2.5 Comparison . 19
2.6 Conclusions . 20

3 Theoretical background 21
3.1 Uniform data capture and representation 21

3.1.1 Point Cloud . 22
3.1.2 Point density . 23
3.1.3 Sample Size . 23

3.2 Geometrical scanning . 24
3.2.1 Point cloud matching . 24

5

CONTENTS

3.3 Deviation detection . 25
3.3.1 Matching . 25
3.3.2 Region of interest . 26
3.3.3 Sensor positioning . 27
3.3.4 Response time & Reacting . 28

3.4 Parallelization . 28
3.5 Motivation . 28

4 System architecture 29
4.1 Introduction . 29
4.2 CloudCapturer . 32
4.3 CloudProcessor . 34

4.3.1 CloudBuilder . 34
4.3.2 CloudMatcher . 34

4.4 CriticalRegionHandler . 34
4.5 RobotConnection . 35
4.6 Visualizer . 35
4.7 Performance . 35

5 Evaluation 37
5.1 Demonstration . 37

5.1.1 Objective . 37
5.1.2 Setup . 37
5.1.3 Sensors . 38

5.2 Results . 38
5.2.1 Response time . 39
5.2.2 Accuracy . 40
5.2.3 Multiple sensors . 41

5.3 Discussion . 42
5.3.1 Demonstration . 42
5.3.2 Limitations . 42

6 Conclusions 45
6.1 Areas of usage . 45

6.1.1 Safety . 45
6.1.2 Object tracking & identification 45
6.1.3 Path planning . 46

6.2 Future work & Improvements . 46
6.2.1 Performance . 46
6.2.2 Non-static world . 47
6.2.3 Dynamic ROI-boxes . 47
6.2.4 Intelligent ROI violation detection 47

6.3 Final words . 48

Bibliography 49

6

CONTENTS

Appendix A Code 53
A.1 Capturer . 53
A.2 Builder . 54
A.3 Matcher . 55
A.4 CriticalRegionHandler . 56

Appendix B Demo 57
B.1 Images . 57

Appendix C Requirements 59

7

CONTENTS

8

Chapter 1
Introduction

In this chapter we will present relevant background information, state the problem and
motivate our solution. We will also mention related work and discuss how our work con-
tributes to current research.

1.1 Robotics & Computer Vision
Robot – “Any automated machine programmed to perform specific mechan-
ical functions in the manner of a man” [1].

Robots today come in all shapes and sizes with a large amount of different tasks and duties
ranging all the way from industrial manufacturing, transportation and medical assistance,
to simple entertainment. In the beginning of the robotic evolution most tasks were very
simple, and in most cases they still are. This is mainly because robots in general lack
any awareness of their surroundings and cognitive features, but with the massive amount
of computational power and the wide variety of sensors available today we see more and
more “aware” and smart robots.

For a robot to be aware of its surroundings it needs, just like a person who uses his
eyes and ears, to collect data and interpret it into something useful.

Robots are often large, heavy and strong which means that they can potentially harm
humans crossing their path. Because of this, many robots are under heavy safety restric-
tions while operating so no human can be harmed. To satisfy these restrictions industrial
robots are typically behind a fence which limits the possibility of human–robot interaction
(HRI). Another way to meet these restrictions is to use specially designed robots with lim-
itations on the maximum force they may output. Both of these approaches limit the range
of possible applications [2].

9

1. Introduction

1.2 Problem Description
Traditionally robots lack any kind of spatial awareness, i.e., they are not aware of objects
and humans in its surroundings. This prevents many applications that require this kind
of feature to become reality. Solving this problem by building a three-dimensional model
of the robot’s surrounding, many new areas, such as dynamic motion planning, object
tracking and safer HRI, become possible.

1.2.1 Solution proposal
To solve the problem described above we propose a system that is able to process and
merge data from multiple sensors that deliver depth images. The data provided by those
sensors will be used to build a geometric model of the nearby surroundings. This model
can be used to identify changes, i.e., unknown objects, in a later state. The sensors can
be arbitrarily positioned on the robot as long as the position is known and good visual
coverage is ensured. When changes are detected, the information will be analyzed further
to let the system act according to predefined actions, such as slowing or stopping operation
of an industrial robot, or plan the current path of movement for a mobile robot.

We think that it is very important for the proposed system to handle multiple different
sensors, with data integrated to a common internal representation, in an efficient way to
support short response time from the occurrence of an event to a reaction from the system.
The system should also be robust and resource-efficient. By designing the system to be a
modular platform many different types of applications, originating from different research
areas withing robotics, become possible.

We also propose that the sensors should be mounted on the robot, instead of having a
static position in the environment. This will make the sensors mobile as the robot moves
and increase the total coverage. It will also allow the sensors to be integrated and shipped
with the robot which leads to easier setup for the customers.

Is this solution even possible? Can the system be fast enough for real applications?
If so, can the system be built in a modular way that can be used as a platform for future
development and research? We will try to prove this by developing a platform with a
fully functional safety application for an industrial robot, that will slow down and stop the
robot’s movements when a person gets too close for safe operation.

1.2.2 Related Work
In recent years there has been a lot of research in the robotics and computer vision areas,
as the available computational power has reached a level where ideas from the early 90’s
and forward become reality, and many new robotic applications arrive with increasing
demands. Armin Hornung et al. created a framework for probabilistic 3D mapping [3],
with similar goal as ours, but using a different approach. Their focus was on minimizing
memory usage whereas ours will be on minimizing the response time and maximizing the
frame rate, for industrial usage. Their system has been used by Daniel Maier et al. to
create dynamic path planning for a mobile robot [4].

Andreas Nüchter explores 3D mapping using SLAM algorithms to build a static geo-
metric model, a similar approach as we use, but using LiDAR based sensors for detailed

10

1.3 Contributions

static models [5]. Javier Minguez and Luis Montano propose other possible solutions to
dynamic robot path planning [6]. Johann Prankl et al. [7] examines the possibility of track-
ing and identifying objects from point clouds, algorithms that can be used in an extension
of our system.

The demand for safe operator-robot interaction in an industrial environment together
with its challenges is discussed by Anna Kochan. She states many problems and the com-
mercial solutions available at the time, many of which are still relevant for our demon-
stration. Some are: the need for close integration of the system with the robot controller,
limited and safe robot-operation-speed, and vision based safety systems [8].

Esther Horbert et al. [9] use depth and color cameras to extract interesting parts of
images using saliency maps that could be used for object tracking, and Xavi Gratal et al.
[10] use point clouds to determine how to grasp objects. Both would be useful extensions
to our system.

1.2.3 Compatibility
Much of current robotics research software is developed on a platform called Robot Oper-
ating System (ROS). This is a collection of frameworks that allows different applications
to connect and communicate using a common interface to help design more advanced sys-
tems. Our solution does not implement this due to driver compatibility issues with the
Linux OS, but would only need minor changes when required drivers get supported.

1.3 Contributions
Our system can be used as a platform to build features and applications for robotics that
require spatial awareness. With minor changes it will be compatible with ROS and be
connected to other ongoing research in an easy way. The modularity allows specific parts
to be easily extracted from the system, e.g., the part that retrieve point clouds from depth
sensors or the geometrical model builder.

Development of the system has been done in an agile pair-programming setup with
Anton more focused on implementation and Valdemar on high level design. The work
presented in this thesis has been carried out by the authors together and no contribution
can be assigned to one person alone. The authors take shared responsibility for this thesis.

11

1. Introduction

12

Chapter 2
Depth sensors

This chapter will present some techniques on how to acquire depth images, suggest some
available products using these different techniques and give a comparison.

2.1 Depth Image
An image in computers can be seen as a table filled with values. This table is known as a
raster and the values are referred to as pixels. A pixel can then be interpreted in various
ways depending on the type of the values. A regular color camera will typically store Red-
Green-Blue (RGB) pixels in the table. A depth image is an image that instead of the color
of the objects stores the distance to them.

A depth image represents the distance to the visible surfaces from the sensor’s point of
view and is therefore sometimes called a 2.5D image. It can not be seen as a complete 3D
model since the image will contain a lot of occluded regions where the structures of the
objects are unknown. In order to get a full 3D view of the object some kind of prior shape
knowledge needs to be applied to the data, alternatively data from multiple viewpoints can
be merged to fill in the occluded areas. This is, however, not a part of the sensor hardware
and therefore not part of this chapter.

2.2 Acquisition
There are a couple of ways to acquire depth images, most notably are stereo triangula-
tion systems and time-of-flight systems. Both classes of depth sensors have a number of
branches that will be described in detail. This is not a complete collection of depth im-
age acquisition methods and the selection is based on currently commercially available
products.

13

2. Depth sensors

2.3 Stereo Triangulation
Stereo triangulation is a way to get an approximated depth reading by comparing two
images with known origin. The basic principle is that objects closer to the camera will
“move” more than objects far away, also known as motion parallax. Stereo triangulation
can be divided into two groups: passive and active. However, they all rely on the same
concept of determining the height of a completely defined triangle.

2.3.1 Passive Systems
A passive triangulation system uses two cameras to capture and compare two images from
different angles. It is called a passive system since it only observes the world. Figure 2.1
shows an example of this.

C1 C2

Only visible
for C1

Only visible
for C2

Visible for
both

x x’

d

h

Figure 2.1: Illustration of how triangulation can be done with
two cameras. Here camera C1 and camera C2 are assumed to be
aligned in a horizontal setup. The height, h, can be derived by
knowing the distance between the cameras, d, and the angles to
the circle from each camera. The angles can be derived from x
and x′. The triangle in the pictures represents a distant object with
no noticeable movement.

If the distance, d, is known between the cameras, the height, h, can be calculated with

α = ∠ C1
β = ∠ C2

h =
d sin(α) sin(β)

sin(α + β)
(2.1)

14

2.3 Stereo Triangulation

whereα is the angle between the line from camera C1 to the circle and the baseline denoted
by d. This angle can be derived from the x position in the picture and the camera’s field
of view. It is analogous to β and x′ for camera C2.

Passive stereo triangulation systems require solving of the correspondence problem,
i.e. determining that an object at x and x′ is actually the same, a task that is very complex
and error-prone. Solving this is computationally expensive, but there exist many different
algorithms that perform this matching with varying execution time and accuracy [11].
According to [12], Semi-Global Block Matching (SGBM) is currently the fastest algorithm
and is therefore a good candidate for real-time applications. However, SGBM typically
contains more error in the resulting depth image.

The camera type used will also affect the accuracy of the sensor. Using color cameras
with high level of detail may provide information useful in solving the correspondence
problem. This can also be a disadvantage since they are very susceptible to shadows and
changes in colors when perceived from different angles. Infrared cameras do not suffer
from this, but they usually have a shorter range and less details. A setup with color cameras
is shown in Figure 2.2.

Figure 2.2: A setup of a stereo vision system using regular color
cameras and a Raspberry Pi as computational unit

2.3.2 Active Systems
An active system replaces one camera with an emitter to project a known pattern onto the
world that can be used to derive the triangularization parameters. Active systems often
work in the infrared spectrum in order to appear invisible to the human eye. One major
drawback is that the emitted pattern might be “erased” by stronger light sources, e.g., the
sun, which often limits them to indoor environments.

15

2. Depth sensors

If the pattern is generated in a way that will allow unambiguous localization, the cor-
respondence problem does not need to be solved and such a system is thus less computa-
tionally expensive than passive systems. However, the range is more limited compared to
passive systems since the pattern will become blurred when projected at objects far away
due to attenuation. This can partly be reduced by using a laser as emitter, that has a tight
focus over long distances. It also emits a single wavelength that is easy to isolate. A draw-
back is that the rays emitted by the lasers can have high power output and could potentially
damage the human eye; this safety aspect needs to be considered as well. Active systems
that are used in human-computer interaction use infrared lasers to avoid blinding the users
of the systems.

Active systems can determine range on flat and uniform surfaces that passive systems
struggle with. Those contain very few points that can be used for correspondence point
selection and the passive system will calculate the surface to be very far away. This is
where the active systems excel since the surface will not destroy the emitted pattern. Ac-
tive systems, for the opposite reason, struggle with edges that passive systems excels at.
This is the reason that pure passive and pure active systems are rare and that most of the
commercial products use a hybrid solution combining the strengths of both approaches.

2.3.3 Hybrid Systems
A hybrid system can be constructed using any of the components from passive and active
systems. One example of this is the Intel®RealSense™Camera (show in Figure 2.3) that
successfully combines passive infrared cameras with an emitted infrared grid. This grid
is used to give details on surfaces that would otherwise be completely uniform, resulting
in more accurate corresponding point selection.

Figure 2.3: A commercial depth sensor with two IR cameras, one
color camera and an IR emitter.

Source: Intel®RealSense™Camera R200.

2.3.4 Calibration
The triangulation method described in the previous sections assumes a perfect world where
the cameras are perfectly aligned and capture correct images. Since this is impossible, we
need some form of calibration that will transform the received data into a perfect world
scenario. This calibration needs to know the camera intrinsic parameters, namely focal

16

2.4 Time-of-Flight Sensors

length, principal point and a scale factor from focal length to pixel size. It also needs the
extrinsic parameters of the camera which describe a relative position and rotation to some
fixed arbitrary point. There are a lot of ways to determine these parameters, one of which
is described by Andrea Fusiello et al. [13].

When all parameters are known a linear transformation can be created that will make
all epipolar lines parallel to the horizontal axis and make all corresponding points have
the same vertical coordinates; this transformation is called rectification. Since all corre-
sponding points will have the same vertical alignment the matching algorithm only needs
to search in one dimension to find the most probable corresponding point, speeding up the
algorithms immensely. Commercial products usually perform calibration during assem-
bling of the device, and no further calibration is needed.

2.3.5 Disparity Maps
It turns out that it is enough to save the difference in horizontal position of the correspond-
ing points. If this is done for all pixels in the images the resulting picture is referred to as
a disparity map. The depth image can then be calculated from the disparity map since the
values in the disparity map are inversely proportional to the depth images.

The calculations from Equation 2.1 can thus be simplified to

h =
c

x− x′

where c is a constant that can be derived from the camera intrinsic and extrinsic param-
eters. This observation saves enormous amount of calculations since c can be calculated
beforehand, allowing passive and active systems to run at very high framerate on limited
hardware.

2.4 Time-of-Flight Sensors
Time-of-flight (ToF) sensors utilize the fact that the speed of light is constant and that light
reflects off surfaces. By measuring the time it takes for the light to perform a full round
trip, from an emitter to a receiver, the distance, d, can be calculated with

d =
catm · t

2

where catm is the velocity of light in atmosphere and t is the time of a full round trip.

2.4.1 Laser Sensor
A laser based depth sensor works by sending out a laser pulse in a known direction and
measuring the time of the round trip. This process is then repeated in a grid pattern until a
complete depth image is filled. This yields very accurate and precise readings at the cost
of acquiring time since all pixels in a depth image need separate round trips. The time it
takes to capture a complete image therefore grows with image size and maximum range.

Since the image is captured during a longer time frame, moving objects will suffer from
discontinuities because they can move significantly between the first and last reading, this

17

2. Depth sensors

Figure 2.4: A commercial LiDAR system

Source: Sick™S3000 Professional.

is known as tearing. This makes them hard to use in dynamic environments but it still has
a market for the static counterpart where accuracy is favored over speed.

This technology is often refereed to as “Light Detection And Ranging” (LiDAR) and
Figure 2.4 shows a commercial product implementing this.

2.4.2 Phase-shift sensors
A phase-shift (PS) sensor acquires a complete depth image in a single shot and is therefor
very good for capturing dynamic environments. This is accomplished by using a radio
frequency-modulated (RF-modulated) light source together with a phase detector as pre-
sented by [14]. Such systems have an illumination unit that emits modulated light and an
image sensor that captures the phase shift of it. They usually work in the infrared spectrum,
same as with active stereo triangulation systems, to avoid disturbing humans.

The system works by sending out a signal

s(t) = sin(2πfmt)

where fm is the RF-modulated frequency. The signal will be reflected back from targets
and received as

r(t) = R sin(2πfmt− ϕ) = R sin

(
2πfm(t−

2d

catm
)

)
with a phase shift, ϕ, that will be proportional to the distance traveled, d, at the speed of
light in atmosphere, catm. The distance d can thus be calculated from

d =
catmϕ

4πfm

Since the emitted light is modulated we will get aliasing for all distances further away
than catm/2fm, the maximum unambiguous range is thus determined by the modulation

18

2.5 Comparison

frequency. However, since there are a finite number of detectable phase shifts, there will
always be a finite number of depth levels that can be detected. Lowering the frequency
will yield greater range but less details.

An implementation of this technology can be found in Kinect for Xbox One, Figure 2.5,
released by Microsoft in 2013. Although primarily intended for human skeleton tracking
this device offers an open API where the raw depth images can be obtained.

Figure 2.5

Source: Microsoft™Kinect®for Xbox One™.

2.5 Comparison
Figure 2.6 contains an illustration of how the different methods compare against each oth-
ers in terms of depth image resolution and capturing speed. As previously stated LiDAR
systems are very accurate but they suffer from slow acquisition speed since they can only
measure one pixel at a time. The figure also shows that depending on the algorithm used to
solve the correspondence problem passive stereo triangulation systems can be made either
accurate or fast.

PS systems and active stereo triangulation systems work fast and can thus deliver im-
ages with a high frame rate. However, they are weak in sunshine where active stereo
triangulation systems are close to useless.

Resolution

Acquisition Speed

LiDAR
PS

Passive Active

Figure 2.6: Comparison of resolution and acquisition speed be-
tween 4 different depth sensor techniques. Laser scanner (Li-
DAR), time-of-flight phase-shift (PS), passive stereo triangulation
(Passive) and active stereo triangulation (Active). Since the speed
of Passive is dependent on the chosen algorithm it is represented
as a line.

19

2. Depth sensors

A comparison of the final depth images can be seen in Figure 2.7. All images have the
same number of pixels and differences are very apparent. The passive stereo image (left)
is captured during perfect light conditions and gives a reasonable depth image. There are
a few regions where the algorithm has failed to find correspondence points, indicated by
black pixels. Another notable defect in the left image is the black border in the lower right
corner that is an artifact from the rectification process; that part of the image is not visible
by both cameras.

The center image is from the RealSense sensor and the limited range due to infrared
cameras makes the wall “invisible”, i.e., completely black. This image looks worse than
the left but this can be fixed with filters that smooth out the black regions.

The last image to the right is captured by Kinect One and has a resolution typical
for ToF systems. The main difference in quality stems from the fact that a ToF system
delivers actual measurements of the distance for all individual pixels, where the stereo
triangulation system mostly consists of interpolated values in between the estimated depth
at the correspondence points.

The major drawback with current PS systems is that the sensors are large and bulky
compared to the current stereo triangulation counterparts. This could be fixed with tech-
nological advancements but is not a reality yet, so if size is of concern PS systems may
not be viable.

Figure 2.7: Depth image comparison. Left: Passive stereo with
color cameras, Center: RealSense (Hybrid stereo with infrared
cameras), Right: Kinect One (time-of-flight, phase-shifting)

2.6 Conclusions
Given the problem described in the previous chapter, the solution will require a sensor that
is able to deliver images in a high frame rate. This is mostly due to the fact that it will be
used in a safety setup and short response time is critical. This will exclude LiDAR and
most passive triangulation systems from being viable options.

The best candidate for the proposed solution is a PS system, but the bulky size will
limit the possible mounting locations on the robot. A hybrid triangulation system could be
used, preferably running the SGBM algorithm, that has a smaller size and still reasonable
resolution. Although the center image in Figure 2.7 has many black regions, these will
eventually be filled with data as consecutive frames are merged over time, reducing this
shortcoming.

20

Chapter 3
Theoretical background

Here we will present necessary theory to understand our solution, discuss different aspects,
advantages and drawbacks to motivate our choices.

3.1 Uniform data capture and representa-
tion

As different sensors operate with different techniques they also provide various types of
data, and to integrate each sensor a uniform capture interface and data representation is
required. Geometrical models can be represented in a few different ways in computers,
where having a set of vertices and indices form triangles, which combine into a solid
mesh, is the most common way. The problem with this representation is that it requires
knowledge of the structure of the objects, which a sensor normally does not provide. An-
other way to represent the geometry is to just have points, and ignore the structure of the
objects. This is a more natural representation for the data provided by the sensors, to let
every individual pixel represent one point, and the entire image will create a point cloud.
A comparison between these two representations can be seen in Figure 3.1.

Figure 3.1: A model of a sphere can be represented in different
ways. Left: Point cloud, Center: Triangles, Right: Solid mesh

21

3. Theoretical background

3.1.1 Point Cloud
A point cloud can consist of millions of points, where each point is represented by its
coordinate, and, in our case, a color.

Euclidean space & Cartesian coordinates
Coordinates are expressed in a defined space, and the most common is the orthonormal
euclidean space, where each dimension provides one coordinate. We can represent a point
in a three dimensional euclidean space with cartesian coordinates, (X, Y, Z) , where each
coordinate is a distance along its corresponding axis, originating from a given base point,
or origin.

Depth projection
From a combined two dimensional depth and color image provided by a sensor, a three
dimensional point cloud can be acquired by multiplying each pixel and corresponding
depth with an inverse camera projection matrix P−1, as can be seen below, and illustrated
in Figure 3.2.

(Ix, Iy, depth) · P−1 = (Wx,Wy,Wz)

P is determined by the sensors horizontal and vertical field of view, the lens characteristics
and other properties, Ix, Iy is the pixel coordinate and Wx,Wy,Wz is the world coordinate.

P -1

Figure 3.2: A matching color and depth image captured by a sen-
sor can be projected to a three dimensional point cloud by applying
a transformation matrix to each pixel in the image.

22

3.1 Uniform data capture and representation

World space & Camera space
The coordinate of a point is determined by which base frame it is expressed in, as simply
illustrated in Figure 3.3, where the point is located at the same spot, but with different
coordinates, depending on the origin.

Y’

X’

Y

X

(2,1) or (0,3)

Figure 3.3: A point has different coordinates depending on which
base it is represented in.

A single depth image from a sensor only provides a height model, where all the points
have the same reference, called camera space. To get a more complete model many depth
images need to be combined, with a common reference base frame, called world space.
When a new data set is provided it has to be matched into the current model and all points
need to be transformed from its own camera space into the common world space.

3.1.2 Point density
A sensor provides a certain point density at a given distance, as can be viewed in the
formula below.

Pointdensity =
resolution

4 · distance2 · tan(hfov
2

) · tan(vfov
2

)
(3.1)

The numerator represents number of points in the depth image from a given sensor and the
denominator is the area of the captured surface at a given distance with defined horizontal
and vertical field of view.

3.1.3 Sample Size
A sensor with the resolution 500 × 500 pixels gives a point cloud consisting of 250, 000
points, and if operating at 30 Hz it generates 7.5 million points per second, which is much
even for a computer and has to be reduced.

Noise reduction with statistical outlier removal
Since no sensor is perfect with 100% correct values in every frame the first task is to reduce
the amount of noise in the cloud, by figuring out which values are incorrect, and remove
these from the data set. This is a very difficult task to achieve without spending too much
computational time and power.

23

3. Theoretical background

It can, however, be achieved by applying a statistical filter that calculates the mean
distance and its standard deviation between each point and its nearest neighbors, and then
compares this to the entire cloud’s global mean distance, and standard deviation. If it
exceeds a given threshold, the point can be removed, and the cloud will be cleaned of most
outliers.

Keeping features with voxel filter
When reducing the amount of points to a more manageable size it is very important that
the key features of the cloud are preserved. A big flat surface can be represented with
relatively few points, but a complex object might need a more dense representation. By
clever selection of which points to keep, a huge amount can be discarded without losing
almost any information.

A very efficient way to reduce the size is by using something called voxel filtering. This
filter divides the cloud into a grid of equally sized boxes, called voxels. By keeping only
the centroid of all points inside each box the filtered cloud size will depend on the size of
the voxels.

By aligning a voxel filter in camera space, and let the voxels have a much thinner depth
than width and height, the flat surfaces perpendicular to the camera, with much redundant
information will end up in the same voxel whereas steep and non flat surfaces with almost
no redundant information will end up in different voxels. This will efficiently reduce the
size of the original cloud while retaining most of its features.

3.2 Geometrical scanning
To build a complete geometrical model we need many partly overlapping point clouds
captured at different angles and locations and then figure out how to fit them together.
Every cloud is captured in its own camera space, and by finding corresponding parts in
other clouds they can be merged together, forming a more complete model, as illustrated
in Figure 3.4. This is a process called registration.

3.2.1 Point cloud matching
Merging a stream of incoming clouds to an ever growing model is a technique called match-
ing, and can be used when performing Simultaneous Localization And Mapping (SLAM).
Each new cloud has to be registered into a current model under a limited amount of time
before the next cloud can be processed.

Iterative closest point
A well known solution to the registration problem is the Iterative Closest Point (ICP)
algorithm [15]. Given an initial guess about how the new cloud fits the model it tries to
find nearby corresponding points and iteratively minimizes the root mean square distance
between the correspondences until it converges. If no, or very few corresponding points
are found, the algorithm can not converge and the cloud has to be discarded as it could not

24

3.3 Deviation detection

Figure 3.4: Correspondences found in two partly overlapping
point clouds.

be matched to the model. The sum of the root mean square distances is also known as the
fitness score.

False correspondences
If the incoming cloud is not a perfect reproduction of what it tried to capture, but contains
noise and other errors there is a risk that the ICP algorithm finds false correspondences,
points that look to be the same, but are not. In this case the registration will be a little
erroneous and the final model will not be perfect.

In most cases every registration will create this error as there does not exist any sensors
or filters good enough to fix the problem. In a big model consisting of many registrations
the error will add up resulting in a phenomenon called drift, as can be seen in Figure 3.5.

These problems can be corrected by post process loop-closing algorithms, like LUM [16]
and ELCH [17], which are not explained in detail here.

3.3 Deviation detection
Once a complete static model is obtained by thorough scanning of the surrounding envi-
ronment it can be used to detect changes by matching new incoming clouds to the model
and see where they differ.

3.3.1 Matching
A robot often has built in sensors to measure its current position and orientation. By
combining this data together with the relation to the attached depth sensor, new incoming
clouds can be matched to a big complete model in an efficient way.

25

3. Theoretical background

Figure 3.5: Accumulated error from around fifty registrations re-
sulting in heavy drift from a 360° scan of a rectangular room, with
drifted corners marked with circles.

Mobile Robots
A mobile robot is often equipped with many other types of sensors, like accelerometer, gy-
roscope and GPS that provide data for odometry algorithms, a way to estimate the robot’s
position and orientation. This estimation can be handed to the ICP algorithm to make the
final adjustments of the position.

Industrial Robots
An industrial robot often has a precision down to a few millimeters or less and has a
well known kinematic model. With this information, together with the position of the
mounted sensor and the robot’s current state, a very accurate value of the current position
can be obtained by a simple model of linear transformations as illustrated in Figure 3.6
and described below.

TSCP = T1 · T2 · . . . · Tn−1 · TSMP

TSCP is the sensor’s current world position and orientation, TSMP is the transformation of
the mounted sensor, T1 to Tn−1 is the robot kinematic transforms and n is the number of
the link where the sensor is mounted. This type of calculation is called a kinematic chain.

The positions of all the mounted sensors can be calculated in a fast and efficient way,
and the incoming clouds can be transformed accordingly to match the complete model,
and no further algorithm is needed.

3.3.2 Region of interest
When the cloud is successfully positioned we can extract each point that is at least at a
certain distance from the static model, and call this the Region Of Interest (ROI). These
interesting areas can then be examined in detail by advanced algorithms that would not
work on a full-sized cloud within reasonable computational time.

26

3.3 Deviation detection

SENSOR

T1

T2

T3

TSMP

Figure 3.6: Kinematic transformations describing the current po-
sition of a mounted sensor on an industrial robot.

From the region of interest we can also inverse-project each point back to the source
data and gain a full resolution color and depth image masked to contain only interesting
parts. Then it is possible to use well known image analysis algorithms, as for instance
object tracking and identification.

False positives & negatives
When we have a region of interest it is very important to determine whether it is an actual
physical change that has to be handled, or if it is caused by noise or errors and can be
ignored. Missing a physical change can be devastating in a safety application whereas
giving false alerts in a production environment is very undesirable, so this has to be handled
carefully.

3.3.3 Sensor positioning
A point cloud generated from a captured depth image will only contain information that
is visible from the sensor’s point of view. By mounting the sensors on the robot instead
of having fixed positions in close proximity to the robot cell, each sensor will not only
cover bigger areas as the robot moves, but is not either risking to be obstructed by poorly
positioned nearby objects.

Occlusion
With a limited amount of sensors there will always be areas where no sensor is currently
scanning, as illustrated in Figure 3.7, where the robot is causing self-occlusion on one
sensor. A consequence of this is the possibility for objects to move closer without the
system registering this which can cause trouble in some applications.

By increasing the amount of sensors and/or positioning them cleverly according to
the current robot program another sensor may cover most of the self occluded areas. By
having partly-overlapping fields of view the system becomes more redundant and reliable.

27

3. Theoretical background

S
E
N
S
O
R

S
E
N
S
O
R

SENSOR

SENSOR

Figure 3.7: A robot with only two mounted sensors may cover
all important areas (left), but may miss some due to self occlusion
(right). Smart positioning of the sensors can reduce this problem.

3.3.4 Response time & Reacting
For this kind of system to be useful in a real scenario the response time, i.e., the time from
when the change happened to the moment when the system has successfully identified it,
has to be very short, depending on the application. However, what happens after this point
is entirely up to individual applications.

3.4 Parallelization
Modern processors have the ability to execute multiple tasks simultaneously on separate
physical cores. This opens up for big performance improvements if the software can utilize
this feature. By extracting independent parts of the program in to separate threads these
can operate much faster as they do not need to be run in sequence.

Synchronization
Sometimes separate threads need access to the same data, called shared resources. This
can potentially cause disaster if not handled properly, as the program can crash or cause
undefined behavior. When a thread is accessing a shared resource no other thread can be
allowed access if either one, or both, intend to write data to it. This can be enforced by
using a mutual exclusion semaphore, often called mutex, as a lock, or to use atomic com-
pare exchange synchronization instructions. If a thread tries to access a shared resource
already occupied, or awaits the result of a computation from another thread, it can be put
to sleep and awakened when the resource no longer is occupied.

3.5 Motivation
The most convenient representation for geometrical models in the proposed solution is
point clouds. They can easily be retrieved from depth sensors using projection and reduced
to manageable size using statistical- and voxel-filters. There also exists algorithms to build
complete geometrical models from point clouds, which can be used as static and dynamic
models for deviation detection.

28

Chapter 4
System architecture

In this chapter we will describe our solution in more technical detail, present some major
design choices and discuss the importance of these.

4.1 Introduction
The system is designed to handle multiple connected sensors simultaneously. It will re-
trieve incoming depth images and create corresponding point clouds of manageable size
using depth projection and filtering. The point clouds are then processed in different ways
depending on the current mode; building or matching. In building mode, algorithms such
as ICP and LUM are used to generate a static world, as described in Section 3.2. In match-
ing mode, algorithms from Section 3.3 are used to detect and extract data that deviates
from the static world. The extracted data from each individual sensor is then merged and
evaluated by the system to make a decision on how to act, e.g., slow or stop the robot in a
safety application.

The system also has a graphical user interface that displays the static world along with
the current ROI and the robot’s position. It also handles user input during construction of
the static world, such as starting/stopping the current scan as well as evaluating the result
before storing it.

Since many of the ideas and algorithms we use have very high complexity and the big
amount of data generated by our sensors needs to be handled within a very short time we
chose to write the system in C++. This allows us to utilize the processing power with
minimal overhead while still allowing for advanced design choices and relatively high
developing speed. The system is currently bound to the Windows operating system due
to sensor and USB3.0 driver compatibility issues but uses almost no further Windows-
specific features and may be ported to other platforms featuring a full C++11 compiler
without much effort. A small part is written in C# due to available libraries and a few other
system related services are written in C that are compiled to a real-time environment.

29

4. System architecture

Figure
4.1:

U
M

L
diagram

show
ing

the
class

hierarchy
and

abstraction
levels

of
the

CloudCap-
turer/CloudProcessor

partofthe
system

.

30

4.1 Introduction

To speed up development we have made extensive use of the Point Cloud Library
(PCL) [18] as it offers efficient implementations of some of the algorithms we need, also
providing useful data types and tools for visualizing point clouds. Additionally, we have
used Boost, a C++ library for efficiently implemented data structures and thread synchro-
nization designs, as well as Eigen, a library for algebraic mathematics. The system has
also been analyzed with Visual Leak Detector for Visual C++ to detect bad memory
management and unwanted leaks.

Totally the system consists of around 3500 lines of code. The main class and inter-
face structure can be viewed in the UML diagram in Figure 4.1. The system consists of
CloudCapturer:s that are classes responsible for retrieving the clouds from the corre-
sponding depth sensor and CloudProcessor:s that are classes responsible for analyz-
ing the clouds. There is one CloudDrawer that provides the user with a user interface
and a visualization of the clouds currently processing.

There are a number of abstract helper classes that group together shared functionality.
They are:
IFrequencyTracker adds functions and methods for tracking the frames per seconds

in a thread-safe way. (Not shown in the figure)
IRunnable handles all thread functionality.
IDrawerControllable provides callbacks from the user interface so that classes im-

plementing this can react to user input.
IDrawBuffer contains functions to add draw-calls to the drawing buffer. This buffer is

needed since there are multiple threads that should be able to present data to the
user.

Apart from the classes shown in Figure 4.1 there exist classes that handle configurations
files and communication with an industrial robot, but since they are specific to the demon-
stration described in Section 5 they are not included as part of the base system that this
chapter focuses on.

The CloudCapturer is coupled with a CloudProcessor and those always exist
in a pair as illustrated by Figure 4.2. All CloudCapturer:s and CloudProcessor:s
run in separate threads to support an arbitrary number of these pairs, where the limit is
defined by the hardware ability to execute parallel threads. The CriticalRegion-
Handler merges signals from all the CloudProcessor:s to give a uniform response
from the complete system.

CriticalRegionHandler

Capturer

Processor

1..n

Figure 4.2: CloudCapturer and CloudProcessor pairs
signals CriticalRegionHandler that is responsible for out-
putting a uniform response, e.g. removing duplicate signals.

31

4. System architecture

4.2 CloudCapturer
The responsibility of the capturer interface is to convert incoming sensor data to the inter-
nal point cloud representation and make it available to the coupled CloudProcessor.

Data retrieval

Data is retrieved from a sensor by communicating with its hardware driver and extracting
the raw depth image once it is available. A depth projection with a transformation matrix
provided by the driver, as described in chapter 3.1.1, is then performed to create the cloud
in camera space.

Each implementation of a capturer is different and depending on the Application Pro-
gramming Interface (API) provided by the manufacturer. This abstraction layer will how-
ever make it easier to use various sensors since all sensor specific code is contained in one
class and no other modifications to the system is needed. We have successfully imple-
mented capturers for the Intel RealSense R200 and Microsoft Kinect One sensors.

Maximal throughput

Each sensor delivers new frames at a certain rate, often thirty, sixty or ninety per second. It
is therefore very important to complete the depth projection before the next frame arrives,
to avoid discarding of potentially important data from the sensor.

To avoid slowdowns introduced by thread-safety operations it is necessary to minimize
synchronization time. This is accomplished by pre-allocating three point clouds; one cloud
is used by the capturer for new data, one cloud used by the CloudProcessor during
processing and the last cloud holds the latest completely captured cloud.

This design makes the system more predictable in terms of response time since no
new memory allocations are needed during runtime. It also reduces the lock-time to fast
pointer swaps, but at the cost of memory since an extra cloud is needed. The added memory
overhead is negligible since the clouds are rather small compared to the whole system size.
Reduced lock-time will yield better thread utilization and reduce the overall response time.

A simple illustration can be seen in the overview in Figure 4.3, and a sample pseudo-
code implementation can be viewed in Appendix A.1.

If the CloudProcessor manages to complete its computations before the capturer
delivers a fresh cloud it should not work on an old frame. This problem is solved us-
ing a simple signaling semaphore, stalling the CloudProcessor until a new cloud has
arrived

If the CloudProcessor is working at a much slower pace, clouds will be over-
written by the capturer. This might be seen as a waste of computational power, however,
stalling the capturer would mean that the CloudProcessor will get an “older” cloud
that what could have been available. Since the system strives to minimize response time
this stall would introduce a source of delay not acceptable in this kind of system.

32

4.2 CloudCapturer

Cloud registration

Transformed Point
Cloud

Voxel

ICP

kd-tree

Matcher

ROI identification
Critical region matching

Config

Static
“Ground truth”

LatestState*

ActiveState*

+ GetLatestState()

RobotConnection

Cloud registration

Transformed Point
Cloud

Voxel

ICP
kd-tree

Matcher

ROI identification
Critical region matching

Config

Static
“Ground truth”

LatestState*

Update draw stateActiveState*

+ GetLatestState()

New
PointCloud

Kinect, Realsense, etc..

Capturer

CaptureCloud*

LatestCloud*

ICPCloud*

+GetICPCloud()

Visualizer (GUI)
Display:

● Ground Truth
● Latest states
● Region of interest
● Critical regions
● FPS
● Inputhandling

CriticalRegionHandler

Merge multiple signals

Count Violations

Alert world (slow, stop, etc...)

S
I
G
N
A
L

New
PointCloud

Kinect, RealSense, etc..

Capturer

CaptureCloud*

LatestCloud*

ICPCloud*

+GetICPCloud()

Robconnection

Kinematics
Joint Values
Start/Stop

S
I
G
N
A
L

Visualizer (GUI)

 Graphical
 Representation
 Input Handling

CriticalRegionHandler

Merge multiple signals

Count Violations

Alert world

slow, stopview

Kinematic Transform
Read Joint Values

Transform

Start/Stop
Slow/Fast

RobController

Figure 4.3: Overview of system design. A Capturer block handles
an individual sensor, and converts data to internal representation.
Each Matcher performs computations on incoming point clouds,
the CriticalRegionHandler keeps track of interesting regions and
deviations, and the Visualizer handles the graphical representation
of the current state. The RobotConnection is providing the trans-
form if the system is currently running with an industrial robot.

33

4. System architecture

4.3 CloudProcessor
The CloudProcessor’s duty is to grab the latest cloud from the capturer, perform cal-
culations depending on the state of the system, and make decisions on the outcome of
the calculations. It can be viewed as the brain of the system because it contains most of
the algorithms presented in Chapter 3. In the current state there exist two versions of the
CloudProcessor, one handling geometrical scanning and another handling geomet-
rical matching, as described in Section 3.2 and 3.3.1 respectively. They share much in
common and work in a similar way.

4.3.1 CloudBuilder
The CloudBuilder is used to create the static world used during ROI extraction. This
is done by estimating the location of the sensor and merging the cloud into a final cloud.
The estimations are performed by running the ICP algorithm on incoming clouds and
appending the new cloud to the final cloud only if the algorithm converges and the resulting
fitness score is below a given threshold. To reduce the size of the final cloud heavy filters
are applied during the whole process. Pseudo-code of this can be found in appendix A.2.
This is a simple version of SLAM and may result in errors discussed in Section 3.2.1.

4.3.2 CloudMatcher
The CloudMatcher, or just matcher, is the most important part of the system and all
data dependencies can be seen in Figure 4.3. The figure illustrates a complete running
system and how all the parts are interconnected.

The matcher also has critical regions that are geometrical shapes, and the matcher will
send alerts if any sensor registers data inside a shape. The matchers’ responsibility is thus
to take a new cloud from the capturer and match it against the static world. All sections
of the new cloud that does not conform to the static world are marked as ROIs. The ROIs
are then checked against a database of critical regions and potential violations are sent to
the CriticalRegionHandler.

Figure 4.3 also shows that the matching can be done with two different pipelines; one
that uses ICP to align the cloud and one that retrieves the transform based on a kinematic
chain.

4.4 CriticalRegionHandler
One problem that arises from having multiple CloudProcessor:s performing deviation
detection is to determine when an output signal should be active or not. If one sensor
registers a violation of a critical region and another one do not, the signal should still be
active.

This is solved by using a light switch pattern where the first sensor to register a vi-
olation activates the signal and the last sensor to unregister a violation deactivates the
signal. Appendix A.4 contains pseudo-code to illustrate this. This is implemented in the
CriticalRegionHandler.

34

4.5 RobotConnection

4.5 RobotConnection
RobotConnection provides an abstraction level for communicating with industrial
robots. It provides means of retrieving joint values, calculating kinematic transforms
and issuing commands to the robot system. This is used to calculate the positions of the
mounted sensors from the kinematic chain as well as controlling the operation speed of
the robot.

4.6 Visualizer
The visualizer is only responsible for the graphical representation of the system and han-
dling user input. It runs on a separate thread and collects point clouds and the other infor-
mation from each matcher in a similar way as the capturers triple-pointer implementation
and receives signals from the CriticalRegionHandler. This implementation allows us to
visually view the state of the system without hindering the execution speed of any other
part of the system.

4.7 Performance
To achieve the necessary responsiveness every part of the system needs to be designed with
performance in mind. The work needs to be evenly distributed among available processor
cores and no time can be wasted on synchronization or waiting. Most memory allocations
should be managed during start up and the point cloud sizes should be reduced with clever
filtering to avoid unnecessary computations and wasted capacity.

Threading & Processor utilization
By identifying and extracting parts to run in parallel and minimizing lock time, using lock-
free data structures and other smart design patterns the overall performance of the system
increased, and heavily reduced the response time to an acceptable level.

The total number of threads used by the system can be seen below.

2×NumberOfSensors+CriticalRegionHandler+V isualizer+RobotConnection

only one instance of the CriticalRegionHandler, the Visualizer and the RobotConnection
exits

Each sensor uses one capturer and one matcher, whereas only one instance of the Crit-
icalRegionHandler, the Visualizer and the RobotConnection exits. For optimal perfor-
mance the amount of available processor cores should exceed the number of threads used
by the system.

Framerate limitations
Since each part of the system is depending on data from another part, performance bot-
tlenecks may affect big parts of the system and increase response time. The entire system
can not work faster than the sensor can capture data, and the matcher is depending on new

35

4. System architecture

data to make new decisions, and the CriticalRegionHandler or Visualizer has to await new
states and decisions from the matcher. The entire chain can be viewed below.

V isualizer
CriticalRegionHandler

}
≤ Matcher ≤ Capturer ≤ SensorDeliverySpeed

Real-Time
A real-time application or system must be able to guarantee response within a specified
time constraint. This is very important especially in a safety-critical environment and
robotics, but also in many other industrial cases. To achieve this the system has to fulfill
two major requirements. First of all it has to run on a specific real-time operating system
with certain properties. Secondly it needs to have deterministic execution time. C++ is
a suitable choice for real-time systems, but the Windows platform is not, and our system
would need some modifications to gain this property as previously mentioned.

Deterministic algorithms
The entire system is deterministic, with a worst case execution of fixed length, except the
iterative closest point algorithm described in Section 3.2.1, as it is iterative and conver-
gence can not be determined. This algorithm is however only used by mobile robots to
calculate the position of incoming point clouds, as opposite from industrial robots where
the position is determined by the current kinematic transformation chain.

36

Chapter 5
Evaluation

In this chapter we will present a demonstration setup featuring the most important parts,
evaluate the system from a performance aspect and discuss the results.

5.1 Demonstration
To demonstrate our solution and see whether it fulfills the requirements we chose a safety
critical application on an industrial robot, designed to test different aspects of the system.

5.1.1 Objective
At first the robot cell will be scanned with the sensors. Then the system shall detect nearby
unknown objects and signal the robot to slow down or stop if an object gets close, and
resume operation when the object is moving away. The response time of the entire system
must be short enough to react on normal human behavior before any harm can be caused.
The system shall also give a consistent result as objects move around and the amount of
false positive signals should be low or negligible.

5.1.2 Setup
To achieve the objective we created a demonstration and captured the result with video
and images, as can be viewed in Appendix B.

Robot
The most commonly used industrial robots are serial robots. We chose a medium-sized
ABB IRB 2400 robot, as illustrated in Figure 5.1. It consists of six links enabling move-
ment in six degrees of freedom, allowing it to reach any point in space with arbitrary
rotation within its working range.

37

5. Evaluation

To connect the robot with our system we use both the provided API, called PC SDK for
IRC5, to communicate operations such as movement speed control and starting/stopping
the current robot program. In addition to this we use an external service to provide us with
the robots current position in real-time. This is used to obtain the kinematic transforms
used in calculation of the sensor’s current position.

A

B

Figure 5.1: Illstration of the IRB 2400 industrial serial robot with
measurements and vertical working range. The location of the
mounted Kinect One sensor marked with (A) and the Intel Re-
alSense sensor with (B).

Source: ABB IRB 2400 Industrial Robot

5.1.3 Sensors
We can only use two sensors due to a limitation in the hardware with only two available
USB3-buses, so we use two depth sensors of different type. A relatively big Microsoft
Kinect One yielding very good data to cover a big area with high precision, and a much
smaller, but also less accurate Intel RealSense to cover areas not seen by the first sensor.
The positions of the mounted sensors can be viewed in Figure 5.1. Both sensors are viable
candidates, as concluded in Section 2.6.

5.2 Results
The system’s overall performance is a combination of many factors. Some applications re-
quire short response time while millimeter accuracy is not important, such as our demon-
stration, while object tracking needs high accuracy but only moderate response time.
These requirements will affect the choice and amount of sensors as well as the parameters
of the system. The first working implementation of our system had sequential execution,
with very low framerate and response time far above acceptable levels. However, the fi-
nal parallel implementation together with other major optimizations reduced the response
time to levels acceptable for almost any “real-time” application.

38

5.2 Results

The demonstration successfully fulfilled the objective described in Section 5.1.1 and
the result can be viewed in detail in Appendix B. The system is yet only a proof of concept,
and leaves room for more improvements such as better response time and higher accuracy.

An image from the graphical visualizer, showing the state of the system running the
demonstration setup can be viewed in Figure 5.2.

Figure 5.2: Image of the visualizer while running. The static
world (sparse points) and the robot are present, along with the cur-
rent viewpoints of the mounted sensors, critical regions (boxes)
and region of interest (dense points).

5.2.1 Response time
The responsiveness of our system differs depending on the current sensors and operation
mode.

Demonstration
In the case of our demonstration the response time can be split into four parts; the sensor’s
delay and delivery speed, the time from incoming cloud to deviation detection, the delay
from robot API calls to robot acknowledgment and break time.

With a high-speed camera recording at 600 frames per second we captured five videos
of the robot operating at a speed of 1 m/s, when we caused a region of interest violation.
We measured the average total response time to be 509 ms with a standard deviation of
44 ms until the robot was completely still.

Our system can operate faster than new frames are delivered by the Microsoft Kinect
One sensor of 30 images per second, resulting in a worst case scenario of 34 ms. From

39

5. Evaluation

the same recordings we measured the response time from violation to system signal to be
an average of 150 ms with a standard deviation of 21 ms. The measurements include the
graphical visualizer and delay of displaying device. The complete numbers can be viewed
in Table 5.1.

Table 5.1: Response time measured by counting frames from
recordings by a Casio EX-F1 camera captured at 600 frames per
second. Each frame corresponds to 1.67 ms.

[ms] Measurements (n = 5) Average Standard deviation
Robot stop 550, 485, 490, 450, 570 509.0 44.3
System registration 160, 115, 165, 173, 135 149.6 21.4

This leaves 350 ms on the robot, from ABB PC SDK API call to robot acknowledgment
and complete stop. This response time is heavily dependent on the current operation speed,
size and payload of the robot. We estimate half of this time is spent on the non real-time
API call that can be almost eliminated by closer integration of the system and the robot
controller, or by developing an API with real-time support.

General
If the system is in a mode where the transformation is not provided by a robot’s kinematic
transforms the response time is increased as the ICP algorithm requires more computa-
tional time. We run on approximately 5-15 frames per second depending on the complex-
ity and size of the scene. The delay in the sensors and the responsiveness of the robot
also affects the performance and response time of the system in the general case. By us-
ing ICP instead of the kinematic transform in our safety application, at most add 200 ms
will be added to the total response time listed in Table 5.1. We have not tested ICP in our
demonstration due to safety concerns, as the ICP algorithm may not converge and cause
undesired behavior. Additional precautions are necessary before attempting this.

5.2.2 Accuracy
The accuracy of the system is highly dependent on the quality and technique of the sen-
sors, but is also affected by the filters in the system. A result of the system detection and
extraction of a region of interest can be seen in Figure 5.3.

False positives
Noise occurs in the clouds even after filtering, and a single violation from noise, i.e., a false
positive, could potentially stop the robot. By requiring that a certain amount of violating
points need to be within a cubic decimeter inside a violation box before taking action we
reduce the amount of false positives drastically, but risk missing small objects.

From Equation 3.1 the Kinect One sensor gives a point density of 100 points/dm2 at
a distance of approximately 3.7 m and in our demonstration we require 70 points inside
to cause a signal. This gives us a theoretical ability to detect a flat object with the size of
a square decimeter up to 4 meters away with a normal sensor. This is very close to the
accuracy of the Microsoft Kinect One used in the demonstration.

40

5.2 Results

Figure 5.3: A high density region of interest detected from data
captured by a Microsoft Kinect One.

Noise
The accuracy and amount of noise differs between different sensors and has to be taken
into account in every application. An accuracy comparison between the sensors used in
our demonstration can be seen in Figure 5.4. Additional filtering may improve the result
but will increase computational cost.

Figure 5.4: The thickness of a flat wall captured from 1.5 m over
30 s corresponds to inaccuracies in the sensor. Intel RealSense
R200 (left), Microsoft Kinect One (right).

5.2.3 Multiple sensors
The system is designed to use multiple sensors and is fully functional with two physical
cores as shown in the demonstration.

41

5. Evaluation

The evaluation is performed on a laptop with eight available physical threads and two
separate USB3-buses, so due to this limitation we were unable to evaluate more than two
sensors. Given more powerful hardware many more sensors can be used.

5.3 Discussion
Overall the system behaves as expected in terms of speed, flexibility and reliability. How-
ever, the high complexity together with the necessary choice of C++ make it likely to have
errors causing undesired behavior. We have used the full capability of the compiler and
other tools to detect most of these errors, such as memory leaks and semantic problems.

5.3.1 Demonstration
The demonstration only covers a minor part of the areas of usage for this application, so
the conclusions should not be seen as a general result, but only for that specific case.

Occlusion
A major problem of safety critical applications when mounting the sensors on the robot is
the guarantee of coverage, i.e., that the total view of the sensor always has clear sight on
critical areas. With only two available sensors in the demonstration we can not cover our
critical regions for arbitrary robot programs, as the sensors are mounted on moving parts
that can be programmed to “look away”. However, with a few more sensors, and the robot
programmed with their position in mind, very complex tasks can be performed while still
covering critical areas. In Figure 5.2 a self-occlusion is clearly visible where the person’s
legs are only visible by one sensor while the head and torso is visible from the other. The
arms are visible by both, slightly overlapping, and the waist is fully occluded from both.

Responsiveness
The ABB PC SDK is not developed for real-time applications and is the biggest source
of delay in our system. This is not the optimal way of controlling the robot, but no good
alternative exists that can be implemented within the scope of this thesis. We have put
much effort into minimizing the delay in the parts of the system that are within our control,
and achieved very good results, but the total response time might still be too large for being
viable in a safety setup.

Since the majority of the delay originates from external sources, there are apparent
improvements that can be gained by using faster sensors and a closer integration with the
robot system.

5.3.2 Limitations
The entire setup contains many sources of errors and limitations that affect the result. A
few important ones are:

42

5.3 Discussion

Sensor accuracy – We have not used safety-classified sensors, and therefore no guarantee
can be made on the sensors’ ability to create accurate images of the reality. No easily
available alternatives are currently available but may be in the future.

Failing hardware – The system does not currently analyze itself and connected devices
for errors such as broken hardware, cut cables or alike. This is important especially
for safety-critical application, but finding a solution is not solved within the scope
of this thesis.

Not real-time – The system is developed with real-time execution in mind but currently
contains incompatible parts, such as the ICP algorithm and Windows OS. This in-
troduces an uncertainty in the response time even within our system. However, real-
time operation can be achieved by further development and porting to a real-time
system.

Asynchronous sensor image and position – The system is currently not synchronizing
timestamps on incoming sensor images and current transformation provided by the
robot’s kinematic model. Since the transformation updates much more frequently
and is provided by a real-time system, the images may lag behind. This causes a
slight difference between reality and the systems perception that is very small but
still a source of error.

Sensor mounting imprecision – Mounting a sensor with duct tape is not the most opti-
mal solution as it is not accurate and it may move during operation. This causes the
exact mounting position to be unknown by the system. By integrating the sensors
with the robot during manufacturing this error can be reduced significantly.

43

5. Evaluation

44

Chapter 6
Conclusions

At last we will present some suitable applications for our solution and discuss reasonable
future work in the continued development of the system.

6.1 Areas of usage
Our solution is very flexible and dynamically built, so additional features can easily be
added. This opens for multiple different areas of application, some already possible whereas
some require additional extensions. A few will be mentioned but many more are possible.

6.1.1 Safety
Because of the nature of our system with multiple different sensors and services distributed
on different computers to provide necessary information, it is close to impossible to make
it safety-certified. It can however be used as a safety extension on top of a certified safety
system, reducing its complexity as our system can handle situations before they become
critical; avoiding unnecessary emergency stops.

It may also increase the general safety in areas where no certification is needed, such
as when a robot model is considered to be safe. Even if the robot is too weak to harm a
human by itself, it can be armed with a sharp object that could. In these scenarios our
system can make the robot slow down or stop if anything in close proximity is detected,
preventing potential accidents.

6.1.2 Object tracking & identification
The system has the potential to identify objects that are detected in the ROIs. This can be
done by matching the extracted clouds to a database of known geometrical models. The

45

6. Conclusions

ROIs could also be back-projected into the high resolution images so traditional image
analysis algorithms can be used.

The identified objects can be tracked while moving in space to provide information
about speed and direction. As each frame only contains a snapshot of the state, this infor-
mation has to be gathered over several frames back in time. There is currently no support
for this but it does not require any major design changes other than addition of appropriate
algorithms.

Having accurate object tracking and identification will not only allow for a whole new
set of applications, but will also increase the accuracy of others. Using this feature in the
safety application used in our demonstration could potentially reduce the number of false
positives by only taking action on humans or objects of a certain size, instead of anything
that appears within a critical region.

6.1.3 Path planning
Path planning determines how the robot should progress when moving from one point to
another. When a robot is aware of its surroundings, this knowledge can be exploited to
perform path planning dynamically. This can for example be used to make changes in the
robot cell without the need for reprogramming the robot.

Additional degrees of freedom
A few industrial robots have more than the standard of 6 degrees of freedom. These can
be used to move the position of some links without affecting the position or orientation
of the robots tool, just as a human can move an elbow without moving the hand. By
mounting sensors on these links they can be moved while working on other tasks. This
would allow the robot to scan bigger areas with a small number of sensors while still
maintaining productivity.

6.2 Future work & Improvements
The system is not without flaws or limitations and the following parts should be improved
before adding additional features.

6.2.1 Performance
The system is already optimized for performance, but there are still parts that can be im-
proved to reduce the response time in the system. The delay caused by using the ABB
PC SDK API can be removed with a proper real-time API for robot communication, or
by integrating the system with the robot controller. The depth projection used to create
the point clouds can also be parallelized to reduce the input delay on the sensors, and the
ICP algorithm should be investigated for either optimization or replacement with a faster
or more accurate alternative.

46

6.2 Future work & Improvements

6.2.2 Non-static world
The system currently operates in two phases. First the environment is scanned and then
that data is used to identify interesting regions that change. This is a good approach as
long as the environment remains static, but in the case of a big object getting moved, e.g
a table, a complete re-scan has to be performed to maintain optimal functionality of the
system.

A better solution would be to let the world slowly adapt to changes in the static world.
The world could be represented by various groups of clouds with different properties.
They could for example be divided into static, semi-static and dynamic where points can
be promoted or demoted between those. The problem that arises from this is to determine
which group the points should be placed in and this would require some form of artificial
intelligence.

The semi-static world could slowly “decay” by removing points after some time. When
an area is once again scanned by a sensor all corresponding points will be refreshed and
stay in the semi-static model. This will allow objects to be moved and the scanned model
will slowly be updated, as the old position will fade and the new will appear over time.
A slight problem with this is that stationary objects will enter the static model, which
applies to humans standing still a long enough time, determined by implementation and
parameters.

6.2.3 Dynamic ROI-boxes
The critical regions are represented as static boxes in our system, which is impractical for
some applications. By allowing regions of arbitrary shape and size that can move, expand
or subtract depending of the current position and operating speed of the robot, or other
external information, more advanced setups become possible.

This can be used to encapsulate the robot in non-critical areas that follow the robot’s
movement. This will allow the robot to work within critical sections without risking to
trigger a violation. It can also be used to move the regions based on the robot’s operating
speed, allowing people to be closer when the robot is moving slowly, but require them to
be further away if it is operating fast.

6.2.4 Intelligent ROI violation detection
A critical region should only be violated when a certain number of points are inside within
a small volume, to avoid false positives. Even with a relatively high threshold false pos-
itives can still happen due to noise or inaccuracies of the sensor if an object is close to
the region’s border, and can cause the region to get activated and deactivated frequently.
By requiring subsequent violations before taking action, noise or errors that are present
only in one frame will not trigger a false-positive. However, this solution will introduce
additional delay in the system as it requires more than one frame to take a decision.

47

6. Conclusions

6.3 Final words
We have successfully shown that this kind of system is not only possible to develop, but is
also responsive enough for real applications, such as the safety application in our demon-
stration. The system is also modular enough to work as a platform for future applications
and research in areas mentioned in this chapter. The system is yet only a prototype with
many possible improvements and extensions.

48

Bibliography

[1] Collins English Dictionary - Complete & Unabridged 10th Edition. ”robot.” 2010.
url: http://www.dictionary.com/browse/robot (visited on 2016-05-18).

[2] ISO/TS 15066:2016. Robots and robotic devices – Collaborative robots. Standard.
Geneva, CH: International Organization for Standardization, Feb. 2016.

[3] Armin Hornung et al. “OctoMap: An Efficient Probabilistic 3D Mapping Frame-
work Based on Octrees”. In: Autonomous Robots (2013). Software available at http:
//octomap.github.com. doi: 10.1007/s10514-012-9321-0. url:
http://octomap.github.com.

[4] D. Maier, A. Hornung, and M. Bennewitz. “Real-time navigation in 3D environ-
ments based on depth camera data”. In: 2012 12th IEEE-RAS International Con-
ference on Humanoid Robots (Humanoids 2012). Nov. 2012, pp. 692–697. doi:
10.1109/HUMANOIDS.2012.6651595.

[5] Andreas Nüchter. “3D robotic mapping: the simultaneous localization and mapping
problem with six degrees of freedom”. In: Springer Tracts in Advanced Robotics
(STAR), vol. 52. Springer, 2009.

[6] Javier Minguez and Luis Montano. “Sensor-based robot motion generation in un-
known, dynamic and troublesome scenarios”. In: Robotics and Autonomous Systems
52.4 (2005), pp. 290–311. issn: 0921-8890. doi: http://dx.doi.org/10.
1016/j.robot.2005.06.001. url: http://www.sciencedirect.
com/science/article/pii/S092188900500093X.

[7] J. Prankl et al. “RGB-D object modelling for object recognition and tracking”. In:
Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International Conference
on. Sept. 2015, pp. 96–103. doi: 10.1109/IROS.2015.7353360.

[8] Anna Kochan. “Robots and operators work hand in hand”. In: Industrial Robot: An
International Journal 33.6 (2006), pp. 422–424. doi: 10.1108/01439910610705572.
eprint: http://dx.doi.org/10.1108/01439910610705572. url:
http://dx.doi.org/10.1108/01439910610705572.

49

http://www.dictionary.com/browse/robot
http://octomap.github.com
http://octomap.github.com
http://dx.doi.org/10.1007/s10514-012-9321-0
http://octomap.github.com
http://dx.doi.org/10.1109/HUMANOIDS.2012.6651595
http://dx.doi.org/http://dx.doi.org/10.1016/j.robot.2005.06.001
http://dx.doi.org/http://dx.doi.org/10.1016/j.robot.2005.06.001
http://www.sciencedirect.com/science/article/pii/S092188900500093X
http://www.sciencedirect.com/science/article/pii/S092188900500093X
http://dx.doi.org/10.1109/IROS.2015.7353360
http://dx.doi.org/10.1108/01439910610705572
http://dx.doi.org/10.1108/01439910610705572
http://dx.doi.org/10.1108/01439910610705572

BIBLIOGRAPHY

[9] E. Horbert et al. “Sequence-level object candidates based on saliency for generic
object recognition on mobile systems”. In: 2015 IEEE International Conference on
Robotics and Automation (ICRA). May 2015, pp. 127–134. doi: 10.1109/ICRA.
2015.7138990.

[10] Xavi Gratal et al. “Scene Representation and Object Grasping Using Active Vision”.
In: IROS’10 Workshop on Defining and Solving Realistic Perception Problems in
Personal Robotics. Oct. 2010.

[11] Beau Tippetts et al. “Review of stereo vision algorithms and their suitability for
resource-limited systems”. In: Journal of Real-Time Image Processing 11.1 (2013),
pp. 5–25. issn: 1861-8219. doi: 10.1007/s11554-012-0313-2.

[12] Dept. of Math and Computer Science. Middlebury Stereo Evaluation. Middlebury
College. 2016. url: http://vision.middlebury.edu/stereo/eval3/
(visited on 2016-04-06).

[13] Andrea Fusiello, Emanuele Trucco, and Alessandro Verri. “A compact algorithm
for rectification of stereo pairs”. In: Machine Vision and Applications 12.1 (2000),
pp. 16–22. issn: 1432-1769. doi: 10.1007/s001380050120. url: http:
//dx.doi.org/10.1007/s001380050120.

[14] S. B. Gokturk, H. Yalcin, and C. Bamji. “A Time-Of-Flight Depth Sensor - System
Description, Issues and Solutions”. In: Computer Vision and Pattern Recognition
Workshop, 2004. CVPRW ’04. Conference on. June 2004, pp. 35–35. doi: 10 .
1109/CVPR.2004.17.

[15] P. J. Besl and H. D. McKay. “A method for registration of 3-D shapes”. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence 14.2 (Feb. 1992), pp. 239–
256. issn: 0162-8828. doi: 10.1109/34.121791.

[16] Feng Lu and Evangelos Milios. “Globally consistent range scan alignment for en-
vironment mapping”. In: Autonomous Robots 4.4 (1997), pp. 333–349. issn: 1573-
7527. doi: 10.1023/A:1008854305733. url: http://dx.doi.org/
10.1023/A:1008854305733.

[17] Jochen Sprickerhof et al. “An Explicit Loop Closing Technique for 6D SLAM.” In:
4th European Conference on Mobile Robots (ECMR). KoREMA, 2009, pp. 229–
234. isbn: 978-953-6037-54-4. url: http://dblp.uni-trier.de/db/
conf/ecmr/ecmr2009.html#SprickerhofNLH09.

[18] Radu Bogdan Rusu and Steve Cousins. “3D is here: Point Cloud Library (PCL)”.
In: IEEE International Conference on Robotics and Automation (ICRA). Shanghai,
China, May 2011.

50

http://dx.doi.org/10.1109/ICRA.2015.7138990
http://dx.doi.org/10.1109/ICRA.2015.7138990
http://dx.doi.org/10.1007/s11554-012-0313-2
http://vision.middlebury.edu/stereo/eval3/
http://dx.doi.org/10.1007/s001380050120
http://dx.doi.org/10.1007/s001380050120
http://dx.doi.org/10.1007/s001380050120
http://dx.doi.org/10.1109/CVPR.2004.17
http://dx.doi.org/10.1109/CVPR.2004.17
http://dx.doi.org/10.1109/34.121791
http://dx.doi.org/10.1023/A:1008854305733
http://dx.doi.org/10.1023/A:1008854305733
http://dx.doi.org/10.1023/A:1008854305733
http://dblp.uni-trier.de/db/conf/ecmr/ecmr2009.html#SprickerhofNLH09
http://dblp.uni-trier.de/db/conf/ecmr/ecmr2009.html#SprickerhofNLH09

Appendices

51

Appendix A
Code

The full source code for the system (codename NemoSwarm) can be obtained from
https://git.cs.lth.se/Nemo/NemoSwarm with an account authorized by the
department of computer science, LTH, Lund University.

A.1 Capturer
1 PointCloud* capture_working_cloud; //Initializations omitted
2 PointCloud* latest_cloud;
3 PointCloud* matcher_working_cloud
4 bool has_data;
5 Mutex mutex;
6

7 void thread_work_function() {
8 while (continue_capture) {
9 acquire_cloud(capture_working_cloud); //Retrieve cloud

10 mutex.take();
11

12 swap(capture_working_cloud, latest_cloud);//Swap pointers
13 has_data = true;
14

15 mutex.give();
16 mutex.notify();
17 }
18 }
19 PointCloud* get_latest_cloud() {
20 mutex.take();
21

22 while (!has_data)
23 mutex.wait();
24

25 swap(matcher_working_cloud, latest_cloud);//Swap pointers
26 has_data = false;
27

28 mutex.give();
29 return matcher_working_cloud;
30 }

53

https://git.cs.lth.se/Nemo/NemoSwarm

A. Code

A.2 Builder
1 Capturer capturer;
2 PointCloud* world_model;
3 VoxelFilter voxel_working, voxel_graphic;
4 StatisticalOutlierRemovalFilter sor;
5 IterativeClosestPointWithNormals icp;
6 Transform initial_guess;
7 double icp_threshold = ...
8

9 void CloudBuilder::RegisterOne()
10 {
11 PointCloud* new_cloud = capturer.get_latest_cloud();
12

13 PointCloud* working_cloud;
14 PointCloud* graphic_cloud;
15

16 working_cloud = voxel_working.filter(new_cloud);
17 graphic_cloud = voxel_graphic.filter(new_cloud);
18

19 sor.filter(working_cloud);
20 sor.filter(graphic_cloud);
21

22 working_cloud->calculate_normals();
23

24 icp.set_ground_cloud(world_model);
25 Transform matched_transform = icp.align(working_cloud,

initial_guess);
26

27 if (icp.converged() && icp.get_fitness_score() < icp_threshold){
28 initial_guess = matched_transform;
29 graphic_cloud->transform(matched_transform);
30 world_model += graphic_cloud;
31 }
32 }

54

A.3 Matcher

A.3 Matcher
1 RobotBase* robot;
2 PointCloud* static_world;
3 IterativeClosestPoint icp;
4 Transform previous_transform;
5 BoundingBoxContainer boxes;
6 CriticalRegionHandler cr_handler;
7

8 void CloudMatcher::RegisterOne()
9 {

10 PointCloud* new_cloud = capturer.get_latest_cloud();
11

12 Transform sensor_transform;
13 if (kinematic_available()) {
14 sensor_transform = robot->get_sensor_transform();
15 }
16 else { // Estimate transform with ICP
17 icp.set_ground_cloud(static_world);
18 sensor_transform = icp.align(working_cloud, previous_transform)

;
19 previous_transform = sensor_transform;
20 }
21

22 // Transform the captured cloud to world space
23 new_cloud->transform(sensor_transform);
24

25 // Remove points close to static world
26 PointCloud* roi_cloud = new_cloud->get_deviation_from(static_world)

;
27

28 // Check if any point is inside a bounding box
29 for (Point p in roi_cloud) {
30 if (boxes.point_is_inside(p)) {
31 cr_handler.signal(); //start/stop/slow etc...
32 }
33 }
34 }

55

A. Code

A.4 CriticalRegionHandler
1 int counter = 0;
2 bool out_signal = false;
3

4 void setOutSignal(bool new_state) {
5 if (new_state) {
6 if (++counter == 1) {
7 // first sensor to detect violation
8 out_signal = true;
9 }

10 }
11 else { // new_state == false
12 if (--counter == 0) {
13 // last sensor to undetect a violation
14 out_signal = false;
15 }
16 }
17 }

56

Appendix B
Demo

The captured video can be found at https://youtu.be/M7o6c2vTsoo (2016-04-28).

B.1 Images

Figure B.1: The ABB IRB 2400 robot with sensors mounted.

57

https://youtu.be/M7o6c2vTsoo

B. Demo

Figure B.2: The mounted Microsoft Kinect One on robot link 2.

Figure B.3: The mounted Intel RealSense on robot link 4.

58

Appendix C
Requirements

The external dependencies of the source code:

• Microsoft Windows 7 or above
• Microsoft Visual Studio 2015 (with administrator rights)
• Visual Leak Detector (for debug only)
• Kinect For Windows SDK 2.0
• Intel RealSense SDK
• Intel RealSense R200 Camera Driver
• PCL 1.8.0 or above
• OpenNI 2.2 (included in PCL installer)

Make sure the following PATH variables are set:

• KINECTSDK20_DIR
• RSSDK_DIR
• PCL_ROOT
• OPENNI2_REDIST64

Required hardware:

• One USB3-bus (not port) per sensor (if USB3 sensor).
• A Microsoft Kinect One and/or an Intel RealSense R200.

59

Institutionen för Datavetenskap | Lunds Tekniska Högskola | Redovisas 3 Juni 2016
Examensarbete: Geometric real-time modeling and scanning using distributed depth sensors
Studenter: Anton Klarén, Valdemar Roxling
Handledare: Jacek Malec (LTH), Klas Nilsson (Cognibotics AB)
Examinator: Elin Anna Topp

Att öka robotars medvetande
POPULÄRVETENSKAPLIG SAMMANFATTNING AV Anton Klarén & Valdemar Roxling

DAGENS INDUSTRIROBOTAR ÄR HELT OMEDVETNA OM SIN OMGIVNING OCH UTFÖR OFTAST ENKLA
FÖRPROGRAMMERADE UPPGIFTER. MED FLERA MODERNA KAMEROR SOM FÅNGAR TREDIMENSIONELLA BILDER
MONTERADE PÅ OLIKA DELAR AV ROBOTEN SÅ FÅR DEN ÖGON. DESSA KAN SEDAN ANVÄNDAS FÖR ATT HÅLLA
KOLL OCH FÖRSTÅ VAD SOM HÄNDER I DESS NÄRHET.

Allseende robotar

När roboten blir medveten om sin omgivning
öppnas dörrarna för många nya spännande
användningsomr̊aden. Med v̊art system kommer
människor kunna arbeta sida vid sida med robotar utan
att utsättas för onödiga risker. Med kameror som sitter
p̊a roboten istället för vid sidan av s̊a ser den alltid vad
som finns i närheten oavsett var den befinner sig utan
att sikten riskerar att bli helt skymd av till exempel
d̊aligt placerade objekt. Ett system som l̊ater oss koppla
ihop flera sensorer och skapa en representation av
omgivningen som roboten kan tolka möjliggör allt detta
och mycket mer.

Under huven

Flera kameror som f̊angar omvärlden p̊a bild i till exem-
pel 30 g̊anger per sekund resulterar i gigantiska mängder
information som även dagens datorer har sv̊art att hin-
na analysera. Precis som v̊ar hjärna s̊allar bort irrele-
vant information för att kunna fokusera p̊a det viktiga s̊a
måste roboten göra detsamma. Genom att först analyse-
ra omgivningen och identifiera fasta föremål, till exempel
väggar, golv och inredning, s̊a kan roboten lätt avfärda
de som irrelevanta. Vid ett senare tillfälle används infor-

mationen för att urskilja mer intressanta omr̊aden, dvs.
det som inte fanns där vid första analysen. Den värdefulla
datorkraften kan d̊a fokuseras p̊a de intressanta bitarna
för ytterligare analys s̊a att roboten kan ta ett intelligent
beslut beroende av situationen.

En industrirobot är ofta väldigt rörlig och kräver
därför flera kameror för att kunna h̊alla koll p̊a allt som
händer utan att riskera missa n̊agot. P̊a bilden har en ka-
mera monterats p̊a robotarmen och ser det bl̊aa omr̊adet
medan den andra är monterad p̊a magen och ser det röda
omr̊adet. Golv och inredning är gr̊a i bakgrunden. Som
tydligt syns s̊a ser roboten inte hela människan för ro-
botarmen skymmer delvis kameran p̊a magen samtidigt
som den p̊a armen har en d̊alig vinkel. Dock kommer ald-
rig människan att bli helt skymd d̊a hen är större än den
döda vinkeln.

En värld av möjligheter
V̊ar lösning kan till exempel användas inom följande
omr̊aden:

Säkerhet – Sakta ner eller stanna roboten om n̊agon
kommer för nära eller befinner sig i kollisionskurs.
Detta kan förhindra onödiga och kostsamma pro-
duktionsstopp.

Kognition – Identifiera och sp̊ara föremål som rör sig i
närheten eller kommer in p̊a löpande band som del
i en produktionsprocess. Med hjälp av denna infor-
mationen kan roboten lättare programmeras.

Rörelseplanering – Ändra rörelsebana som anpassar
sig efter hand som information blir tillgänglig. Ett
alternativ till att sakta ner eller stanna vid kolli-
sionsrisk.

V̊ar lösning är skapat för att lätt kunna vidareutveck-
las och användningsomr̊aden är enbart begränsade av
användares fantasi.

En demonstration av v̊art system ur säkerhetsperspektiv
kan ses p̊a https://youtu.be/M7o6c2vTsoo.

	Introduction
	Robotics & Computer Vision
	Problem Description
	Solution proposal
	Related Work
	Compatibility

	Contributions

	Depth sensors
	Depth Image
	Acquisition
	Stereo Triangulation
	Passive Systems
	Active Systems
	Hybrid Systems
	Calibration
	Disparity Maps

	Time-of-Flight Sensors
	Laser Sensor
	Phase-shift sensors

	Comparison
	Conclusions

	Theoretical background
	Uniform data capture and representation
	Point Cloud
	Point density
	Sample Size

	Geometrical scanning
	Point cloud matching

	Deviation detection
	Matching
	Region of interest
	Sensor positioning
	Response time & Reacting

	Parallelization
	Motivation

	System architecture
	Introduction
	CloudCapturer
	CloudProcessor
	CloudBuilder
	CloudMatcher

	CriticalRegionHandler
	RobotConnection
	Visualizer
	Performance

	Evaluation
	Demonstration
	Objective
	Setup
	Sensors

	Results
	Response time
	Accuracy
	Multiple sensors

	Discussion
	Demonstration
	Limitations

	Conclusions
	Areas of usage
	Safety
	Object tracking & identification
	Path planning

	Future work & Improvements
	Performance
	Non-static world
	Dynamic ROI-boxes
	Intelligent ROI violation detection

	Final words

	Bibliography
	Appendix Code
	Capturer
	Builder
	Matcher
	CriticalRegionHandler

	Appendix Demo
	Images

	Appendix Requirements

