
Bypassing modern sandbox technologies

An experiment on sandbox evasion techniques

Gustav Lundsgård
Victor Nedström

Department of Electrical and Information Technology
Lund University

Advisor: Paul Stankovski

June 13, 2016

Printed in Sweden
E-huset, Lund, 2016

Abstract

Malware (malicious software) is becoming an increasing problem, as it continuously grows both
in numbers and complexity. Traditional, signature based anti-virus systems are often incapable of
detecting new, sophisticated malware, which calls for more advanced tools. So called sandboxes
are tools which automate the process of analyzing malware by actually running them in isolated
environments and observing their behavior. Although this approach works very well in theory,
some malware have recently begun deploying sandbox detection techniques. With the help of these
techniques, malware may detect when they are being analyzed and manage to evade the sandbox
by hiding their malicious behavior.

The authors of this Master’s Thesis have developed and compared different types of sandbox
detection techniques on five market leading products. It was shown that an average of roughly
43% of the detection techniques developed were capable of both detecting and bypassing the sand-
boxes, and that the best performing sandbox caught as much as 40% more of the techniques than
the worst. Patterns of weaknesses were noticed in the sandboxes, affecting primarily the limited
hardware and lack of user interaction - both of which are typical sandbox characteristics. Surpris-
ingly, the time for which the sandbox vendors had been developing their sandboxing technology
seemed to have no positive impact on the result of their product, but rather the other way around.
Furthermore, some detection techniques proved very efficient while being trivial to develop. The
test results have been communicated to the sandbox vendors, and the authors are of the belief that
the sandboxes could be quite significantly improved with these results as a guideline.

i

ii

Acknowledgements

This Master’s Thesis is a result not only of our own work but also of the efforts of people we have
had the privilege to work with. Without you, this Master’s Thesis would not be what it is today.

First and foremost, we would like to warmly thank our supervisor at the department of Elec-
trical and Information Technology, Paul Stankovski, for his commitment and care throughout the
entire process.

Secondly, we want to express our sincere gratitude towards Coresec Systems AB for giving us
the opportunity to write our Master’s Thesis on a topic close to our hearts. We would especially
like to thank our two supervisors, Stefan Lager and David Olander, for their continuous support,
technical advisory and encouragement. Furthermore, both Philip Jönsson and Holger Yström
deserve many thanks for their efforts in helping and sharing their technical expertise. We are very
grateful to all of you for everything we have learnt during the process and are looking forward to
working with you in the future.

Lastly, we would like to thank The Swedish National Board of Student Aid, Centrala Studi-
estödsnämnden (CSN), for their investment in our studies.

iii

iv

Acronyms

A
API - Application Programming Interface

C
C&C - Command and Control (server)
CPU - Central Processing Unit

D
DLL - Dynamic Link Library
DMZ - Demilitarized Zone
DNS - Domain Name Server

G
GPU - Graphics Processing Unit
GUI - Graphical User Interface

H
HTTP - Hypertext Transfer Protocol

I
IAT - Import Address Table
ICMP - Internet Control Message Protocol
IRC - Internet Relay Chat

M
MAC - Media Access Control

P
PE - Portable Executable

R
RDP - Remote Desktop Protocol

v

V
VLAN - Virtual Local Area Network
VM - Virtual Machine
VMM - Virtual Machine Monitor
VPN - Virtual Private Network

vi

Glossary

C
Command and Control (C&C) server: a server to which malware, after infecting a target host,
connects to download files or receive additional instructions.

D
Debugger: enables a program to be examined during execution. Most debuggers can run pro-
grams step by step.

F
False positive: a benign file causing a "false alarm" in an anti-malware system, commonly because
its behavior resembles that of malicious files.

G
Golden image: an operating system image configured according to best effort.

H
Hypervisor: software that enables virtualization by creating and running virtual machines.

M
Malware sample: a single copy of malware being subject to analysis.

R
Ransomware: a type of malware that encrypts files on a file system and demands a ransom to be
paid in exchange for the decryption key.

S
Snapshot: a preserved state in a virtual machine.

Z
Zero-day threat: a previously unseen threat.

vii

viii

Table of Contents

1 Introduction 1
1.1 Background . 1
1.2 Problem Description . 1
1.3 Purpose . 2
1.4 Method . 2
1.5 Scope . 3
1.6 Report Layout . 3

2 Theory 5
2.1 Malware . 5

2.1.1 Origin and purpose 5
2.1.2 Types of malware 6

2.2 Malware analysis . 7
2.2.1 Static Analysis 7
2.2.2 Dynamic Analysis 7

2.3 Malware analysis detection . 8
2.4 The Portable Executable file format . 9
2.5 Running executable files . 10
2.6 Virtual machines . 11
2.7 Sandboxes . 11

2.7.1 Detection of virtual machines and sandboxes 12
2.8 DLL injection and API hooking . 13
2.9 Sandbox analysis procedure . 14
2.10 Related work . 15

3 System Description 17
3.1 Introduction . 17
3.2 Vendors and sandboxes . 17

3.2.1 Vendor A 17
3.2.2 Vendor B 18
3.2.3 Vendor C 19
3.2.4 Vendor D 20
3.2.5 Vendor E 20

ix

3.2.6 Sandbox specification summary 20

4 Experiments 23
4.1 Introduction . 23
4.2 Test case design . 23
4.3 Test method, environment and configuration . 25

4.3.1 Inline deployment 27
4.3.2 Upload deployment 27

4.4 Test cases . 28
4.4.1 Timing 29
4.4.2 Process 31
4.4.3 File 31
4.4.4 Environment 32
4.4.5 Hardware 32
4.4.6 Network 33
4.4.7 Interactive 34

4.5 Test criteria . 34
4.6 Choice of malware . 34

5 Results 37
5.1 Introduction . 37
5.2 Results per category . 37

5.2.1 Timing 38
5.2.2 Process 40
5.2.3 File 42
5.2.4 Environment 44
5.2.5 Hardware 46
5.2.6 Network 48
5.2.7 Interactive 50

5.3 Result of golden image configuration . 52
5.4 Result summary . 53

6 Discussion 55
6.1 Sandbox technologies and result patterns . 55
6.2 Weakness patterns based on detection technique . 58
6.3 Simplicity contra efficiency in detection techniques . 58
6.4 System lifetime in relation to test results . 60
6.5 General discussion and sources of error . 60

7 Conclusions 65
7.1 Future work . 66

References 67

A Test case simplicity-efficiency score 71

x

List of Figures

2.1 Flow chart of an inline API hook. 13
2.2 Communication between user mode and kernel mode components. 14

3.1 Relative vendor size measured in number of employees 18
3.2 Relative vendor age . 19

4.1 Test case components overview . 24
4.2 Test case flow chart . 25
4.3 A simplified overview of the test environment. 26
4.4 Detailed view of the test environment including network interfaces. 28
4.5 A detailed view of how the malware is hidden as a resource in the test case [1]. 30

5.1 Timing - detected malware per vendor. 39
5.2 Process - detected malware per vendor. 41
5.3 Files - detected malware per vendor. 43
5.4 Environment - detected malware per vendor. 45
5.5 Hardware - detected malware per vendor. 47
5.6 Network - detected malware per vendor. 49
5.7 Interactive category - detected malware per vendor. 51
5.8 Malware detection rate per vendor. 53
5.9 Average malware detection rate per category and coefficient of variation. 54

6.1 Sandbox detection rate per vendor where the test cases detected the sandbox 57
6.2 Simplicity contra efficiency score per category. 59

xi

xii

List of Tables

3.1 Sandbox specifications and features . 21

5.1 Timing results statistics. 38
5.2 Timing category results per vendor. 38
5.3 Process results statistics. 40
5.4 Process category results per vendor. 40
5.5 Files results statistics. 42
5.6 File category results per vendor. 42
5.7 Environment results statistics. 44
5.8 Environment category result per vendor. 44
5.9 Hardware result statistics. 46
5.10 Hardware category result per vendor. 46
5.11 Network result statistics. 48
5.12 Network category results per vendor. 48
5.13 Interactive result statistics. 50
5.14 Interactive category results per vendor. 50
5.15 Result between golden and original images. 52
5.16 Overall result statistics . 53

A.1 Timing category . 71
A.2 Process category . 71
A.3 Files category . 72
A.4 Environment category . 72
A.5 Hardware category . 73
A.6 Network category . 73
A.7 Interactive category . 74

xiii

xiv

Chapter 1
Introduction

1.1 Background

Coresec Systems ("Coresec"), is a European cyber security and networking solutions company
represented in Sweden, Denmark, Norway and the Netherlands. The headquarters are located in
Malmö, where around 100 of Coresec’s 250 employees are stationed. Coresec consists of several
departments, the Security Operations Center being one of them. The Security Operations Center
provides 24/7 coverage and consists of security analysts who are primarily concerned with han-
dling security issues or potential issues of Coresec’s customers. On a daily basis, these analysts
face the task of dealing with and analyzing malware.

Malware is a general term used to describe malicious computer software. Both malware and
cyber security as a whole are rapidly growing and changing areas, and leading cyber security
companies publish annual reports indicating current trends [2]. According to statistics focusing on
"E-crime and malware" in particular, almost 320 million new malware variants were detected only
in 2014, which was a 25% increase compared to 2013 [3]. Furthermore, the number of ransomware
- a certain type of malware - more than doubled, and a total of 28% of all malware was virtual
machine aware according to the same source.

1.2 Problem Description

Due to the sheer amount of both new and existing malware that appear on the web and the fact
that analyzing malware is (very) time consuming, it is infeasible for malware analysts to manually
analyze all suspicious files to conclude whether they may or may not be malicious [4]. Instead,
analysts must rely on automatic anti-malware tools to take care of the majority of these suspicious
files, and carefully investigate only a fraction of these.

Fighting malware is a difficult task as malware continuously becomes more and more sophis-
ticated. The situation is an arms race between malware developers and malware analysts, where
malware developers keep developing methods to obstruct analysis techniques deployed by their
counterpart. Traditional automated anti-malware solutions, such as anti-virus software, used to
focus mainly on studying so called file signatures, which are "identifiable pieces of known mali-
cious code" [5] [6]. However, this type of analysis turned out less and less successful over time, as
the usage of different obfuscation techniques grew more popular among malware developers. For
instance, by encrypting pieces of malware or simply creating different variants, malware could

1

2 Introduction

stay under the radar. As a consequence, instead of only studying signatures, some anti-malware
software began to implement functionality to be able to execute the suspicious files in isolated
environments and study their behavior. By closely monitoring processes and changes to the file
system on the machine in the isolated environment, the tools could determine whether or not
the behavior of the suspicious files were indeed malicious. However, as malware developers be-
came aware of this, they started developing so called virtual machine or sandbox aware malware:
malware that deploy techniques to determine whether they are being executed in an isolated en-
vironment or on a real host. Detecting an isolated environment would result in the malware not
disclosing its malicious behavior, as it knows it is probably being closely monitored.

1.3 Purpose

Vendors of dynamic analysis systems claim to have good detection rates and low amounts of false
positives for obvious reasons. However, exactly how their systems work is rarely disclosed, as this
information could potentially be exploited by malware developers. On the contrary, this secrecy
also makes it hard for end-users of the systems to actually know how well the products manage
to identify and hinder threats. The purpose of this Master’s Thesis was to develop test cases to
examine top-of-the-line dynamic analysis systems and to evaluate how simple it is for malware to
avoid detection using different detection techniques.

The aims were to answer the following questions:

• Are there any patterns in the test results based on the type of technology used in the different
systems?

• Are there any patterns of weaknesses in the systems based on the type of detection tech-
nique?

• How is simplicity weighted against efficiency in the detection techniques?

• Is any type of technique significantly more efficient than the others?

• Does the lifetime of a system have a significant impact on its ability to withstand the detec-
tion techniques?

1.4 Method

As a first step, a comprehensive literature study and information research was performed to gain
necessary background knowledge on the area as a whole; the PE file format, sandboxes and virtual
machine theory and various malware aspects are three of the areas that were studied. Thereafter,
more in-depth research targeting existing sandbox detection techniques was made. These tech-
niques were divided into categories to form a base to develop test cases on.

A suitable malware to use in the tests was chosen based on recommendations from an expe-
rienced malware analyst on Coresec. Verification was made that this malware was indeed recog-
nized as malicious by all sandboxes to be tested. Furthermore, a decision on how to bundle the
malware with a detection technique, to form a test case, was made based on information research
and practical experiments.

Introduction 3

The next big step in the process was implementing the test cases, each based on one detec-
tion technique. New detection techniques were added to the already existing ones as new ideas
emerged during development. All test cases were tested, trimmed and tuned on local machines in
order to ensure their functionality prior to the actual test phase. Some of the test cases were also
run on an open source sandbox (not to be included in the tests) [7].

Prior to running the tests, the test environment was designed and set up. First, a number of
Virtual Local Area Networks (VLAN) were created, each with a certain "trust level" depending on
what type of traffic would pass through the network. Second, two ESXi hypervisor servers were
installed and a number of virtual machines on them in turn, including virtual sandboxes, a web
server and two Microsoft Windows ("Windows") clients to be used in the experiments. Thereafter
the physical sandbox appliances were installed in the lab, and finally all sandboxes both virtual
and physical were configured and prepared for testing.

The last step in the experiment process was running all test cases on each sandbox and care-
fully documenting the results. The results were analyzed and conclusions drawn to answer the
project aims.

1.5 Scope

Because of the limited time frame and resources dedicated to the project, some limitations had
to be made to the scope accordingly. This mainly affected the detection techniques developed,
which only focus on evading sandbox based solutions, i.e. automated tools performing dynamic
analysis. These tools typically reside in gateways and not in endpoints, i.e. on dedicated machines
in networks rather than hosts. In a real scenario, where an executable like the one used in project
was to be delivered to a target host, dynamic analysis tools would typically be complemented by
automated, static analysis tools such as firewalls and antivirus software. In such a scenario, the
malware would preferably have to contain some self modifying code or similar to avoid signature
detection. In this Master’s Thesis, only the effort required was made in order not to get considered
malicious in the static analysis.

Furthermore, in a real scenario, it would be of great interest what activities the actual malware
performed on the host after successful delivery. Malware would typically attempt to communi-
cate to a (C&C) server using the network of the infected host, to download additional files or
instructions. However, from the perspective of this project, this is completely ignored.

1.6 Report Layout

This report is organized as follows:

• Chapter 1 contains an introduction, briefly presenting some background information about
malware in general. The problem area is then presented, which is followed by the goals, the
selected method to satisfy these goals and the scope of the project.

• Chapter 2 presents relevant theory to the reader, which includes malware and malware
analysis, the PE file format, executable files in Windows, virtual machines and sandboxes,
sandbox detection, API hooking and lastly the sandbox analysis procedure. The related
work in the area is also presented.

4 Introduction

• in Chapter 3 a system description is given, where the sandbox vendors are individually (but
anonymously) presented together with their respective sandbox.

• Chapter 4 presents all practical details related to the experiments except for the outcome.
This includes information about e.g. the test environment, the malware used, the different
techniques for sandbox detection, the test cases and how the tests were executed.

• in Chapter 5 the test results of the tests are given as tables and diagrams.

• Chapter 6 contains a discussion about the results, both in the light of the project aims and
on a more general level. Furthermore, some potential sources of error are discussed.

• lastly, in Chapter 7, conclusions related to the previous discussion and project aims are
drawn based on the test results. Additionally, some suggestions for future work are given.

Chapter 2
Theory

2.1 Malware

Malware is an abbreviation for malicious software and there are numerous definitions of what ex-
actly malware is: some sources describe malware simply as software which "runs much like other
software" [8], while others include the effects of malware in the definition and describe it as "any
software that [...] causes harm to a user, computer or network" [5]. Some even include details
about the behavior in the definition [9]. Examples of such behavior could be "stealing user data,
replicating, disabling certain security features, serving as a backdoor, or executing commands not
intended by the user" [8]. Malware typically only satisfy one or a few of these "requirements", and
are commonly divided into categories based on their type of behavior.

2.1.1 Origin and purpose

There are different categories of people who develop malware, each having their own methods and
reasons for doing so. These categories include everything from people who do it out of curiosity
without evil intentions to those for whom developing malware is serious business and something
to make a living on [10]. While the former used to be the more commonly seen one, today the
situation is the opposite and the majority of malware developers have criminal purposes.

There are huge sums up for grabs for cybercriminals capable of developing potent malware.
For instance, they could target the systems of a specific organisation or company and develop
malware which aim to extract secret information, which could then be sold to competitors or
used for blackmailing [11]. Furthermore, malware developers could target random systems and
attempt to gain control over as many of them as possible, and from there on take a number of
various approaches depending on what type of malware they prefer. The number of infected
hosts are often critical to a malware developer: the more systems he or she is able to infect, the
more money he or she can make [12]. Since Windows is extremely dominant on the operating
system market today (having more than 90% of the market shares) an overwhelming majority
of all existing malware target Windows x86 operating systems (since x86 executables run on x64
systems but not vice versa) to maximize the probability of infecting a random system (where the
operating system is unknown to the malware developer) [13].

5

6 Theory

2.1.2 Types of malware

The facts that widely used malware categories partly overlap each other and that malware often
span multiple categories means that there exists no single, correct categorization of malware. The
following categorization will be used as a reference in this Master’s Thesis [5]:

• Backdoors allow attackers to easily get access to infected systems by opening up a way to
connect while avoiding authentication. Backdoors grant attackers potentially "full control
of a victim’s system without his/her consent" [14]. Once connected, the attacker can execute
commands on the system to e.g. install additional malware or attack other hosts on the
network.

• Botnets resemble backdoors, but the infected hosts are not controlled individually but col-
lectively using an Internet Relay Chat (IRC) channel or similar for instructions [15]. Instead
of a single system being of interest to the attacker, it is the amount of infected hosts that
is of value. Hosts that have become part of botnets - sometimes called zombies - are com-
monly used in Distributed Denial of Service (DDoS) attacks or cryptocurrency mining, where
an attacker relies on a big number of hosts to send big amounts of data or perform resource
consuming calculations.

• Downloaders are used to download additional malware, as indicated by the name. When
successfully infecting a system, a downloader fetches malware of other types to exploit the
infected system [16].

• Information-stealing malware, also referred to as spyware or simply stealers, come in a
number of different flavors. Their common feature is that they aim to steal user account
credentials for e.g. e-mail or bank accounts, which are sent to the attacker. Keyloggers and
sniffers are two examples of such malware which log keyboard input and network traffic
respectively.

• Launchers are simply used, as the name implies, to launch other malware. Although this
could seem pointless, something launchers could potentially achieve is stealth, which will
be utilized in this Master’s Thesis.

• Ransomware or lockers, which have increased in popularity lately, encrypt parts of a system
and demand a ransom to be paid in exchange for the decryption key [3]. Ransomware
is especially problematic since nothing but the decryption key will be able to recover the
encrypted data (assuming brute-force is infeasible).

• Rootkits are malware that focus on hiding not only their own existence and behavior but
also that of other, bundled malware such as backdoors. This is done using "stealth tech-
niques which [...] prevent itself from being discovered by system administrators" [17].

• Scareware disrupt the user of an infected system by continuously notifying him or her that
the system has been infected by malware. However, scareware also offers to remove them-
selves from the infected system in exchange for a fee.

• Spam-sending malware use infected machines to spread spam to others, typically via e-
mail.

• Worms or viruses are malware that focus on spreading and infecting other systems. Worms
or viruses could be spread using e.g. local networks or physical storage media.

Theory 7

2.2 Malware analysis

The ultimate goal of malware analysis is if to conclude whether or not a file is malicious. In
addition to this, it is often of interest to gain more information about the file and aim to answer
the following three questions [5]:

• How does the malware work, i.e. what does it do and how?

• How can the malware be identified to avoid future infections?

• How can the malware be eliminated?

Prior to these three steps of the analysis process, it is assumed to have been confirmed that the
malware being subject to analysis is indeed malware and not a false positive. False positives are
"normal data being falsely judged as alerts", which in this case means benign files whose behavior
might be similar to that of malicious files [18].

Two basic approaches exist for analyzing malware: static and dynamic analysis [5]. Both ap-
proaches apply not only to automatic but also to manual analysis. Typically, when analyzing mal-
ware, a quick static analysis is performed initially which is followed by a more thorough, dynamic
analysis [5].

2.2.1 Static Analysis

During static analysis, malware samples are examined without being executed. Essentially this
means that an analyst or a tool attempts to extract as much information as possible about a file to
conclude whether or not it is malicious. Automated static analysis, carried out by anti-malware
software, focus mainly on the signatures of files, i.e. on finding presence of malicious code that
is present in databases containing known malicious data [19]. Both automated and manual static
analysis could for instance also include studying strings in the source code (searching for e.g.
URL:s or suspicious names), exported and imported functions or resources used by the file to
draw conclusions about its behavior. Manual static analysis is significantly more time consuming
than automated analysis, but can be done more carefully with greater attention to details [5].

Whether or not a static analysis turns out successful depends to a large extent on if the mal-
ware is encrypted or not. Many malware developers nowadays obfuscate code by encrypting
("packing") it, which means that little information can be extracted from encrypted files compared
to those in plain text [1]. Encrypting the code also has the advantage - from a malware developer’s
perspective - that signatures for which there would be a match if the malware was not encrypted
may be avoided [20].

Static analysis is quick and straightforward, but unfortunately has some inevitable drawbacks
[5]. First of all, the instructions of the malicious file are ignored, since they are never loaded
into memory (this happens first when the file is executed, see section 2.5). Second, static analysis
struggles with packed files. Furthermore, since the malware is never executed, its actual effects on
the system cannot be observed. As a consequence, static analysis alone is insufficient most of the
time and has proven ineffective to fight sophisticated malware [21].

2.2.2 Dynamic Analysis

In a dynamic analysis the purpose is to execute the malware and observe its behavior and effects
on the system during runtime. Dynamic analysis, just like static analysis, can be performed both

8 Theory

automatically and manually. When done automatically, the file system, processes and registry of
the operating system are being closely monitored during the execution of the malware, and any
malicious operations that are detected may indicate that the file being executed is malicious [5].
Manual dynamic analysis typically involves debugging, which is "the process of identifying the root
cause of an error in a computer program" by systematically stepping through the program [22].

Dynamic analysis has the possibility of revealing lots of information that static analysis simply
simple is not capable of. First of all, dynamic analysis can observe the behavior of malware during
runtime, which static analysis can not. Furthermore, since malware that is encrypted or packed
decrypts itself when executed, the malware will be laying in plain text in the memory during most
of the execution [5]. This means that a malware analyst - by debugging the malware properly - will
be able to dump a plain text version of the malware to disk to e.g. make a static analysis. Perhaps
most importantly though, dynamic analysis is - in contrast to static analysis - capable of detecting
so called "zero-day threats", which are previously unseen malware for which no signatures exist
[23].

A dynamic analysis takes more time than a static analysis to perform, and a thorough, manual
dynamic analysis is also far more difficult than a manual static one. However, due to its obvious
advantages, dynamic analysis has grown more and more important over the years to cope with
the latest and most advanced malware threats.

2.3 Malware analysis detection

It has already been mentioned that malware is commonly packed to obstruct the task of malware
analysis. However, this obstructs mainly static analysis; dynamic analysis could still, with some
effort, get around packed malware. What countermeasure could malware use to obstruct dynamic
analysis as well?

A thorough, manual dynamic analysis is hard to counter; skilled malware analysts will likely
find ways around even the most ambitious obstruction attempts eventually. Normally though, a
manual analysis takes place first when an automated anti-malware solution has indicated a need
for this on a certain file that seems suspicious. Malware that manage to evade automated anti-
malware tools may stay under the radar for quite a long time, and may not be detected until a host
starts showing signs of infection. Furthermore, well thought-out obstruction techniques, such as
code obfuscation, might fool less experienced malware analysts, who fail to successfully debug
malware and mistakenly takes them for being harmless. At the very least, the process of analysing
malware will be slowed down if the malware developers have utilized obstruction techniques.

Since malware is never executed during static analysis, this type of analysis cannot be detected
by the malware themselves. On the contrary, since malware is being executed during dynamic
analysis, it has the opportunity to detect the ongoing analysis and take actions accordingly [24].
For instance, the malware could investigate the environment it is being executed in by looking at
hardware or running processes, and if it matches certain criteria, the malware could assume that
it is being analyzed and choose not to do anything malicious. If no signs of an ongoing analysis
are found, the malware will instead assume that it is being executed on an unsuspecting host and
execute as intended.

Theory 9

2.4 The Portable Executable file format

The Portable Executable (PE) file format is used in modern versions (x86 and x64) of Windows
operating systems. It defines the structure for a set of different file types, among which executa-
bles and Dynamic Link Libraries (DLL) are two of the most commonly seen. Files that follow this
structure can be loaded and executed by the Program loader (also called PE loader) in Windows.

Executable files can be dissected into two high-level components: a header part containing
meta-data, and a sections part containing the actual data [25]. In order to avoid confusion - since
naming conventions regarding the PE file format are somewhat inconsistent - these high-level
components will be referred to as executable’s header and executable’s sections respectively in this
Master’s Thesis.

The executable’s header, in turn, consists of the following five sections:

• the DOS header, which is static and informs the operating system that the file cannot be
run in DOS environments. The DOS header always begins with two bytes that are equal
to "MZ", which is followed by the DOS stub. The DOS stub contains bytes that translate to
"This program cannot be run in DOS mode". The fact that these two signatures are static makes
the DOS header very easy to identify when inspecting the binaries of an executable file.

• the PE header, sometimes referred to as NT Header or COFF Header, which also begins
with a static signature, "PE". Furthermore, it contains information about which processor
architecture the program will run on, the number of sections in the executable (see Sections
table below), a file creation timestamp and a few other fields indicating sizes and addresses
of other fields in the file. Inconsistencies between these fields and the actual values they
refer to are often detected and flagged as malicious by anti-malware software, since these
inconsistencies could typically by introduced by someone trying to tamper with the file.

• the Optional header, which contains general information about the file and states for in-
stance whether it is a 32 or 64-bit binary, which version of Windows is required to run the
file and the amount of memory required. More importantly, like the PE header, the Optional
header also contains lots of size and pointer fields related to data in the file, such as where
execution starts (called Address of Entry Point) and where different parts of the file should
be placed in memory when loaded by the Windows program loader. In other words, the
information in the Optional header is essential for Windows to be able to run the file, and
as with the PE header, there are numerous fields where an incorrect value will cause the
program to crash and/or raise flags in anti-malware software analyzing the file.

• the Data directories, which contain addresses to different parts of the data in the exe-
cutable’s sections that primarily concern imports of data from external libraries (typically
DLL:s) but also exported functions to be used by other executables. The Import Address Table
(IAT), which contains addresses of DLL:s to load, is important in this context and will be
further explained in section 2.8.

• the Sections table, which describes the executable’s sections and defines how they are
loaded into memory. For each section listed in the sections table, a pointer to the correspond-
ing data in the executable’s sections is defined together with the size of that data block, to
inform the Windows program loader where in the memory to load that section and exactly
how much memory needs to be allocated for it. The sections table is of special interest in
this Master’s Thesis, and therefore deserves to be described in slightly greater detail than

10 Theory

the other parts of the executable’s header. In general, the Windows program loader does not
bother about the contents of the different sections; it simply loads them into the specified
location in memory. However, there are 24 section names which are reserved for sections
with special purposes [26]. Out of these reserved names, a handful are common and exist
in most applications. Since the section names are decided by the compiler they may differ
slightly, but typically the following naming conventions are used:

– the .text section, sometimes referred to as .code, references the executable program
code.

– the .rdata section references read-only, compiler generated meta-data such as debug-
ging information.

– the .data section references static source code data such as strings.

– the .reloc section references data used by the Windows program loader to be able to
relocate executables in memory.

– the .rsrc section references resources used by the executable. Resources must be of
certain types; examples of commonly seen resources are icons and version information,
but it could also be components from other executables such as dialog boxes [27]. One
specific type allows for "application-defined resources", i.e. raw data [27]. As will
be demonstrated later in this Master’s Thesis, this resource type could be used for
instance to include an executable file as a resource within another executable file.

2.5 Running executable files

To build an executable file, the source code must be compiled by a compiler. Simply put, a compiler
transforms the source code into machine code that the operating system can understand. Dur-
ing compilation, the compiler is also responsible for linking the contents of other files, such as
functions available in external libraries, to the executable which it may be dependent of to be able
to run [28]. This linking can be either static or dynamic, which means that library functions will
be either directly put into the executable - i.e. as a part of the executable itself - or linked to the
executable via a DLL on the operating system respectively. DLL files are essentially libraries of
functions, which can be used by other programs [29]. One such example is the Windows Applica-
tion Programming Interface (API), which is made up of a set of DLL:s.

When running an executable file in Windows, initially the Windows program loader loads
the program into memory. When this process is finished, the operating system can start parsing
the PE header. When parsing the PE header, the operating system identifies all imported DLL:s
required by the program and loads them into memory, so that the executable can use them during
execution.

After the DLL:s are loaded into memory, the program loader finds the source code at the entry
point. The entry point is the relative address of the "starting point" of the source code, i.e. where
the execution of the program starts [26]. During executing, each line of code - which has been
translated to machine code - is executed and the system performs the instructions of the program.

Theory 11

2.6 Virtual machines

The concept of virtualization is to "map the interface and visible resources [of a system] onto the
interface and resources of an underlying, possibly different, real system" [30]. In other words, vir-
tualizing a system means to create a virtual version of it which does not run directly on hardware
but on the software of another system. This virtual version is called a Virtual Machine (VM) and
is commonly divided into two types: process virtual machines and system virtual machines [30].
The former is used to create an environment to run certain programs, e.g the Java Virtual Machine,
while the latter aims to imitate an entire operating system. The system that runs inside the virtual
machine is called a guest and the platform where the virtual machine runs is called a host. The
software on the host that enables the actual virtualization is called a hypervisor or Virtual Machine
Monitor (VMM).

There are several benefits of using virtual machines in different scenarios. One issue it solves is
that of having dependencies on defined interfaces of different operating systems, making it possi-
ble to have several different systems on the same hardware. This is used in e.g. cloud computing,
were one powerful server hosts several virtual servers which share hardware, ultimately reducing
both hardware and energy costs [31]. Virtual machines and their hypervisors also enable the use of
snapshots. A snapshot is used to "preserve the state and data of a virtual machine at the time you
take the snapshot", enabling the possibility of going back to an earlier state of the system [32]. This
functionality has many upsides and is fundamental for testing malware, as being able to revert
potential changes made to the system by the malware is necessary.

Virtual machines also provide the vital ability to control malware and their environment more
conveniently than a physical computer. A guest can be totally isolated from the host and also
runs with reduced privileges in comparison, allowing the hypervisor to monitor or even intercept
actions and events taking place on the guest. The guest system is also unaware of the fact that it
resides inside a virtual environment and not directly on hardware, since the hypervisor virtualizes
the hardware and fools the guest into believing that it has a machine for itself and direct access to
the hardware [30].

When speaking about virtual machines, a common term is image or system image. An image is
very similar to a snapshot and the terms are sometimes used interchangeably, but images do not
preserve the exact state of a (running) machine; instead, images have to be booted.

2.7 Sandboxes

In the context of computer security, the term sandbox or sandboxing is used to describe systems
which utilize virtualization technology to realize the isolation of a host. The purpose of a sandbox
is to provide an isolated and monitored environment for a program to be executed in, to be able to
distinguish whether or not the program is malicious.

Sandboxes may operate in slightly different manners and can be either system virtual ma-
chines (see section 2.6) or programs which enable other executables to be run in a sandboxed
mode, such as Sandboxie [33]. In the context of dynamic malware analysis, sandboxes utilize sys-
tem virtual machines since this gives the malware sample being executed the impression of being
on a "real" system although it is completely isolated. Running active malware can have severe con-
sequences if not controlled properly, as they could e.g. spread to other hosts on the same network.
Sandboxes are typically deployed somewhere in the network whose endpoints it aims to protect.

12 Theory

These endpoints could be clients, servers or other resources on a local network, which are referred
to as hosts hereinafter in this Master’s Thesis. The purpose of a sandbox is to analyze files bound
for hosts on the network, to conclude whether the files are malicious or not. Malicious files are
blocked, while benign file are passed on to the hosts.

System virtual machine sandboxes can use either images or snapshots when starting a virtual
machine. Both images and snapshots can be configured according to preferences, and furthermore,
snapshots can be in any desired state. Either way, it is desirable that the virtual machine in the
sandbox resembles the hosts on the network it protects to the greatest extent possible. For instance,
assume that malware bound for a host on a network first reaches the sandbox, which begins to
analyze the file. However, since the sandbox is poorly configured and does not resemble the hosts
on the network enough, the malware manages to distinguish the sandbox from the hosts and hides
its malicious behavior. The sandbox reports the file as benign in good faith, forwards the file to
the host on the network it was intended to, which gets infected since the malware detects that it
is no longer being executed on a sandbox. In a scenario like this, the more the virtual machine
image inside the sandbox resembles the systems on the network, the harder it is for malware to
distinguish between the two. Images that are "best effort configured" to protect an environment
are often referred to as golden images.

There are typically two ways to analyse whats happens to a system when a program is run,
which apply to sandboxes as well. In the first approach, a system snapshot is taken before and af-
ter a program is run, analysing what difference there is between them and what changes have been
made to the system. The second approach is to study the program during execution with hooking
and debugging, which generates a more detailed result than the snapshot approach [34]. Hooking
means intercepting function calls (to external libraries, such as DLL:s) and reroute them to cus-
tomized code called hooks. By utilizing hooks, sandboxes can control function calls commonly
made by malware, such as those to the Windows API.

As sandbox products gained popularity a couple of years back, malware developers started
implementing countermeasures in the form of anti-analysis techniques. For instance, many mal-
ware use anti-virtualization and anti-debugging techniques to detect if they are being analysed,
and although the sandboxing technology continuously evolves, so does the anti-analysis tech-
niques [24]. Since sandboxes make use of virtual machines and an average host does not, it is
crucial for the sandbox to be able to disguise itself as a "normal" host, i.e. hiding all signs of a
virtual machine to the malware being analyzed. As stated in section 1.1, 28 percent of all malware
in 2014 was virtual machine aware [3].

2.7.1 Detection of virtual machines and sandboxes

Machines that run hypervisors can dedicate only a limited part of their hardware resources to
each guest, since they need the majority of their resources for themselves or for other guests;
most times, machines that run hypervisors intend to have more than one guest, since there is
little point in having a machine hosting only one guest. Instead, multiple guests often reside on
a common host, which means that these guests must share the hardware resources of the host.
Since hardware resources are limited, each guest only gets its fair share of disk size, memory and
processing power [30]. As a consequence, the resources of guests are generally low - even in
comparison to mediocre desktop systems.

Limited hardware is not the only common characteristic among virtual machines; in the guest
operating system - which is installed by the hypervisor - there may be numerous traces left by the

Theory 13

hypervisor. For instance, the names of hardware or hardware interfaces are often set in such a
way that it indicates the presence of a hypervisor. Furthermore, there may be "helper" processes
running in the guest to facilitate e.g. user interaction, and if the guest is a Windows system there
is often an abundance of traces left in the Windows registry as well [35].

Sandboxes, just like virtual machines, have characteristics on their end as well. Since an anal-
ysis in a sandbox has to be finished within a reasonable amount of time, sandboxes have an upper
time limit defining how long a file should be analyzed at most. This time limit is typically only a
few minutes.

From a malware developer’s perspective, the time out means that simply making malware
wait or "sleep" for a duration during execution could possibly make the sandbox time out before
detecting any malicious behavior. Such waits or sleeps could easily be introduced in malware
by calling functions available in the Windows’ API, making it trivial for malware developers to
bypass sandboxes and because of this, many sandboxes contain hooking functionality.

2.8 DLL injection and API hooking

The technique of intercepting calls to an API is called API hooking. API calls can be used for many
different purposes, and practically every program that is intended to run on Windows interacts
with the Windows API; this is also true for malware. A hook intercepts such a function call, and
either monitors or manipulates the result of it. There are several ways to implement hooking, but a
common way is to use DLL injection. A DLL injection forces the target process to load a DLL which
overrides the original functions that the program uses with hooked versions of the functions [34].
In order to inject a DLL, the sandbox must manipulate the memory of the running program. This
can be done by altering the Import Address Table (IAT), which is a table of pointers to addresses of
imported functions. It could be functions in a loaded DLL, which makes it possible to implement
a hook by changing the pointers to addresses elsewhere. They could either point to a defined
code stub that logs the API call and then forwards the program to the original API, or simply
call another function. Another way of implementing hooks is called inline hooking, where the the
sandbox modifies the entry point of an API call by rewriting the first bytes in the API, making it
possible to go to a "detour function" or "trampoline function" as demonstrated in Figure 2.1 [36].

Figure 2.1: Flow chart of an inline API hook.

An essential feature of hooking is that the target process should never be aware that its function
calls are being hooked. Because of this, it is preferable to place hooks as close to the kernel of the
operating system as possible, as it becomes more concealed and harder to detect for the target
process. The kernel is the core of an operating systems, meaning it has control over everything

14 Theory

that happens in the system [37]. A Central Processing Unit (CPU) can operate in two modes: kernel
mode or user mode. The main difference between the two is that the code being run in kernel
mode shares the same address space, while the code run in user mode does not, see Figure 2.2.
This means that in kernel mode, a driver is not isolated and could be used and manipulated freely
- with the risk of crashing the entire operating system [37] [38].

Figure 2.2: Communication between user mode and kernel mode components.

2.9 Sandbox analysis procedure

Security by obscurity, i.e. providing security by keeping a design or an implementation secret, is
generally considered bad practice. Despite this fact, most sandbox vendors disclose very little de-
tails about their products in order to obstruct the task of performing sandbox detection. Although
much of this information could be extracted using test cases similar to the ones in this Master’s
Thesis, there is still some functionality which remains unknown. Furthermore, since this Master’s
Thesis neither focuses on confirming the exact functionality of the sandboxes nor aims to do the
sandbox vendors a disservice by disclosing details about their products, the exact functionality
of the sandboxes is not discussed in great detail. Besides, the behavior and functionality of the
different sandboxes differ, and digging into details about each and every one of them is out of the
scope of this Master’s Thesis. However, the core functionality of the sandboxes is based on the
same basic idea.

Sandboxes may get access to files to analyze in several ways: for instance, files could be man-
ually submitted to the sandbox by a user, or the sandbox could be configured to intercept network
traffic and analyze certain files according to defined policies. The procedure that takes place when
a sandbox is about to analyze a file may also differ between different sandboxes, but share a com-
mon concept [34]. The sandbox runs an operating system in the bottom which, in turn, runs

Theory 15

a number of services: a hypervisor to handle virtual machines, a "main" service controlling the
hypervisor and potentially monitoring services for networking or screen capturing. Furthermore,
there may be a set of additional services such as a web server handling file submissions, a database
for storing samples and analysis results etc.

When the sandbox gets access to a file to analyze, the main service delivers the file to the
hypervisor which starts a virtual machine either by booting an image or restoring a snapshot. If
the virtual machine has DLL:s containing hooked functions, these DLL:s are loaded into memory.
Furthermore, if there are monitoring services running inside the virtual machine, these are started.
Thereafter the file to be analyzed is executed, and lastly the virtual machine is closed either when
execution finishes or when the sandbox times out [34].

The monitoring services, i.e. the services that monitor the behavior of the analyzed file, may
run on the host operating system of the sandbox or inside the virtual machine or possibly both.
Their purpose is to observe the behavior of the file: what changes it makes to the file system, what
processes it creates, what network traffic it generates and so forth. As an example, changes made
to the file system could be checked either by the main service in the host operating system by com-
paring the virtual machine states before and after execution of the file has finished and the virtual
machine is shut down, or by a process running inside the virtual machine during execution. The
two approaches come with both advantages and disadvantages: although comparing the virtual
machines after execution has finished never could be detected by the analyzed file, assuming it
uses some sandbox detection technique(s), it lacks the possibility to e.g. detect created files which
are deleted before execution finishes [34].

After the monitoring services have finished, their results are put together to form a common
score based on a set of criteria. This score is the final result of the analysis, and its value determines
the judgement of the sandbox regarding whether or not the analyzed file is malicious. The criteria
on which the score is based is not disclosed by different sandboxes and likely differs a bit between
them. However the score of each action taken by the analyzed file, is based on how malicious the
sandbox deem the action. Typically there are some actions that are a very clear sign of malicious
behavior, e.g. changing a Windows Registry, modifying the Windows Firewall or connecting to
a known malicious domain. If similar actions are taken, the sandbox can with good confidence
verdict the file as malicious. On the other hand there are actions that are not as malicious but a
series of less malicious actions could still be combined to do something evil. This combination
should the sandbox be able to track and verdict the file as malicious. Many sandboxes typically
have the functionality to drop all the files created and isolate them. They can also monitor newly
created processes and keep track of them as well. If a spawned process or file is malicious the
original file should of course also be considered malicious.

2.10 Related work

This Master’s Thesis is not the first experiment in the area, as there were a few papers that lead
Coresec to the idea of this project. In 2014, Swinnen et al. suggested different, innovative ways of
packing code, one of which were adopted by the authors of this Master’s Thesis and very much in-
spired them in the design of their launcher malware [1]. They also presented a handful of detection
techniques, some of which were utilized in the experiments of this Master’s Thesis .

Singh. et al. showed that as early as three years ago, sandbox evasion started becoming a
threat (although sandboxing was quite a new technology by the time) [39]. The authors present a

16 Theory

number of test categories with test cases, which are similar to the ones developed in this Master’s
Thesis.

In 2015, Balazs developed a tool that mines sandboxes for information [40]. His findings served
as a source of inspiration to some of the test cases in this Master’s Thesis.

Lastly, there a few more papers, such as those by Gao et al. and Vasilescu et al., which are
similar to this Master’s Thesis but less comprehensive [41] [42].

Chapter 3
System Description

3.1 Introduction

The vendors that participate in this Master’s Thesis have in common that they provide a dynamic
anti-malware system, i.e. a sandbox. Furthermore, they are all considered to be the top-of-the-line
vendors within the sandboxing industry. All vendors were guaranteed absolute anonymity in this
Master’s Thesis, due to the fact that publishing details on how to bypass their sandboxes could
harm both the vendor directly and Coresec indirectly, who is a partner to many of the vendors.
Therefore, the vendors are denoted from A - E.

Two different options exist for setting up the sandboxes in the network and giving them access
to the files to be analyzed. The first option is to configure the sandbox to listen to network traffic,
and automatically detect, fetch and analyze files according to certain criteria such as file type. The
other option is to simply upload files to be analyzed manually using a graphical user interface
(GUI). In this Master’s Thesis, these two setups are referred to as inline and upload respectively,
and details on how each sandbox was configured can be found in section 4.3.

3.2 Vendors and sandboxes

3.2.1 Vendor A

Vendor A has a strong background within the firewall industry, and although it now provides
several different systems - a sandbox being one of them - forming a full platform, the firewall(s)
are still regarded as the foundation of the security platform. Vendor A is one of the three medium-
sized vendors in this Master’s Thesis, see Figure 3.1, and has been in the business for roughly a
decade, see Figure 3.2.

Vendor A’s sandbox

Vendor A has been involved with sandboxing since 2011, which was also the year when Vendor A
released the first version of its current sandbox. The sandbox is available both as a virtual machine
and as a physical appliance and it supports images running either Windows XP or Windows 7.
However, it does not support the use of golden images, but Adobe Reader, Adobe Flash and the
Microsoft Office suite are installed by default. The actual sandbox is located on Vendor A’s servers

17

18 System Description

Figure 3.1: Relative vendor size measured in number of employees

in the cloud, and the physical appliance or virtual machine that is installed in the network of a
customer is responsible simply for fetching files to analyze - either in inline mode or by upload
- and delivering them to the cloud servers. Therefore, an Internet connection is required by the
appliance in order for the analysis to take place. When malicious files are detected, signatures are
generated and shared with the threat cloud network of Vendor A within minutes.

3.2.2 Vendor B

Vendor B was founded in the mid 1990s and has therefore been in the business for twice as long as
Vendor A. Despite this, Vendor B is the only small-sized vendor of this Master’s Thesis with half
as many employees as Vendor A. The primary focus of Vendor B is web security.

Vendor B’s sandbox

Vendor B has been doing sandboxing since the mid 2000s but the current sandbox of Vendor B
was released as late as in 2013. The sandbox is only available as a physical appliance, and it
supports images running Windows XP, 7 or 8. These images come in a number of variants which
differ regarding installed software. The sandbox should be Internet connected for the purpose of
threat intelligence sharing with Vendor B’s cloud, but the analysis environment - i.e. the virtual
machine(s) within the sandbox - does not get Internet access during the analysis.

System Description 19

Figure 3.2: Relative vendor age

3.2.3 Vendor C

With its roughly 5000 employees and three decades within the business, Vendor C is both the old-
est and the biggest of the vendors. Vendor C has historically focused primarily on endpoint protec-
tion systems (such as traditional antivirus) targeting both business and private users. Therefore,
Vendor C is different from the other vendors in the sense that it has a less corporate dominated
customer base. However, Vendor C today has a wide spectrum of products, a sandbox being one
of them.

Vendor C’s sandbox

Vendor C’s sandbox was released in 2012 when Vendor C got into the sandbox business. It can be
purchased as a physical appliance or as a virtual image just like Vendor A’s. In terms of specifi-
cation and features, the sandbox of Vendor C resembles Vendor B’s but stands out in the crowd
a bit more. Just like Vendor B’s sandbox, it supports images running Windows XP, 7 or 8. How-
ever, in addition to these desktop operating systems, it also supports the server operating systems
Windows Server 2003 and 2008. Adobe Reader, Adobe Flash and the Microsoft Office suite are
installed by default on all images. In addition to this, the sandbox supports the usage of golden
images, being the only one except Vendor B’s sandbox to include this feature. The sandbox has
the option of choosing whether or not to allow its virtual machines to have Internet access during
the analysis, but the sandbox itself lacks any kind of cloud intelligence sharing which exists for all
other sandboxes.

20 System Description

3.2.4 Vendor D

Vendor D is the youngest vendor together with Vendor A, having about the same number of em-
ployees as well. Sandboxing is one of the main focus areas of Vendor D, and their sandbox there-
fore serves as a core component on which many of their other products rely.

Vendor D’s sandbox

Although Vendor D is young in comparison to the others, it has been doing sandboxing since the
start in the mid 2000s. What makes Vendor D’s sandbox different compared to the others is its rel-
atively limited set of features. First of all, Vendor D’s sandbox only comes as a physical appliance
and is not available virtually, in contrast to all other sandboxes but Vendor B’s. Furthermore, it
only supports images running Windows XP or 7, and it does not support golden images. On top
of this, Vendor D discloses no details about which software is installed on their images, and the
virtual machines inside the sandbox do not get Internet access when analyzing samples. However,
Vendor D’s sandbox supports cloud synchronization to share threat intelligence data frequently.

3.2.5 Vendor E

Just like Vendor A, Vendor E started out within the firewall business during the mid 1990s. To-
day, Vendor E has evolved from being only a firewall vendor into providing a full set of security
systems, including a sandbox which is considered a key component.

Vendor E’s sandbox

Vendor E got into the sandbox business as late as in 2013. The features of the sandbox of Vendor E is
very similar to those of Vendor A and lie close to what could be seen as the "common denominator"
of the tested sandboxes. It comes both as an appliance and as a virtual image, it supports Windows
XP and 7 and have Adobe Reader and Microsoft Office installed. It does not give sample files
Internet access during analysis, but shares threat data in the cloud like most other products do.
What differs the most compared to other sandboxes is probably its age: it was released as late as
2015.

3.2.6 Sandbox specification summary

Table 3.1 shows a specification of all sandboxes used in the experiment.

System Description 21

Table 3.1: Sandbox specifications and features

Vendor A Vendor B Vendor C Vendor D Vendor E
Physical
or virtual

Both Physical Both Physical Both

Supported
Windows
images

XP
7

XP
7
8

XP
7
8
Server 2003
Server 2008

XP
7

XP
7

Golden image
support

No Yes Yes No No

Internet
access

- No Yes No No

Cloud
synchronization

Yes Yes No Yes Yes

22 System Description

Chapter 4
Experiments

4.1 Introduction

The term sandbox detection is a generic name used in this Master’s Thesis to describe both sand-
box detection and virtual machine detection. Although in reality these are two separate areas with
their own characteristics, they are treated as one in this Master’s Thesis due to the following facts:

• All sandboxes are running on virtual machines.

• Few users run virtual machines.

Effectively, this means that no matter if a sandbox or a virtual machine is detected, the test
case assumes that it is being executed on a sandbox and exits. In other words, no distinction is
made in this Master’s Thesis between sandbox detection and virtual machine detection; they both
go under the name "sandbox detection".

All of the vendors stress the fact that their sandboxes should not be deployed as stand-alone
systems but as part of a full security suite or platform in order to reach their full potential. This
is due to the fact that sandboxes alone are less powerful than sandboxes in combination with
other tools or systems performing other types of analyses. Despite this, since this Master’s Thesis
focuses on detection and evasion of sandboxes only and not full security suites, no complementary
security systems are deployed.

4.2 Test case design

The experiment consists of 77 test cases which are made up of two main components: a launcher
(see section 2.1.2) written by the authors of this Master’s Thesis, and a well-known malware which
has been around since 2013. The launcher in turn consists of a few components, the most essential
ones being a sandbox detection function, a resource loader and a decryption function, see Fig-
ure 4.1. The sandbox detection function utilizes a sandbox detection technique, and the malware
component is executed only if the sandbox detection concludes that the file is not being executed
in a sandbox, see Figure 4.2. All test cases use the same malware, but the sandbox detection
function is unique to each test case. The purpose of the test cases is to determine which of the
sandbox detection techniques that manage to successfully identify sandboxes while avoiding to
reveal themselves and being classified as malicious by the sandbox.

23

24 Experiments

Figure 4.1: Test case components overview

For the experiment to be as realistic as possible, it was required that the test cases developed
would actually execute on the majority of average hosts, otherwise the result would be of little
value. To clarify, test cases that detect and bypass sandboxes are rather meaningless if they do not
execute on the systems of "normal" users; the major challenge in developing good test cases lies
in distinguishing sandboxes from hosts. An obvious issue related to this is that hosts may be set
up in an infinite number of ways, and it is safe to assume that more or less every host that exists
will have a unique configuration. Therefore, in order for the test cases to be capable of making
this distinction, some assumptions had to be made regarding a typical host configuration. Since
most sandboxes are used to protect corporate networks, the assumed environment was a typical,
average workstation in a corporate network. The following is a selection of the hardware criteria
assumed to be met by hosts:

• CPU: > 2 (logical) cores, 4-16 MB cache

• Memory: >= 4 GB

• Hard disk: >= 100 GB

• Domain connected with Internet access

• (Network) printer(s) installed

In addition to the hardware specifications, a number of assumptions regarding the software
were made as well; these details can be found in section 4.4. While some of the assumptions are
just educated guesses, others are based on brief studies and random samples from e.g. computers
available to the authors via Coresec.

The amount of information that was possible to extract about the specifications and features of
the sandboxes differed between the vendors. Therefore, in order to make the tests as fair as possi-
ble, the sandboxes were treated as "black boxes" and the test cases were designed and developed

Experiments 25

Figure 4.2: Test case flow chart

without consideration to product specific information. Furthermore, to be able to make a direct
comparison of the test results of the different sandboxes, it was required that identical test cases
were ran on all sandboxes.

A critical aspect of the performance of the sandboxes that may greatly affect the test results
is how they are configured. Since the configuration possibilities differ between the sandboxes,
configuration could be a major source of error if not done properly.

4.3 Test method, environment and configuration

Four (virtual) machines were installed in the test environment in addition to the sandboxes:

• the Malware jumpstation, which ran Windows 7 and was accessed via Remote Desktop
Protocol (RDP) sessions. The jumpstation was, as the name implies, only used to be able to
access other machines in the test environment.

• the Malware client - also a Windows 7 machine - was accessed via the Malware jumpstation

26 Experiments

and used to deliver the test cases to the sandboxes, either via inline download or direct
upload. The Malware client had a separate networking interface for each sandbox, which
facilitated testing of different sandboxes by simply enabling and disabling interfaces.

• the Malware server ran the Linux distribution CentOS and a web server, which hosted all
test cases and made them available for download to the Malware client.

• the VPN Gateway was a Linux machine running the Remnux distribution. Its purpose was
to provide a VPN connection out from the test environment to the Internet.

Figure 4.3: A simplified overview of the test environment.

Figure 4.3 shows a simplified overview of the test environment (note that the Malware jumpsta-
tion is not included in this overview). When running the tests, the user controls the Malware client
which downloads the test cases from the Malware server. Since all systems could not be deployed
in the exact same way, their actual locations in the test environment differ. However, this does not
affect their capability of detecting or analyzing malware; it merely affects how each sandbox gets
access to the files to analyze.

Experiments 27

Due to the facts that potent malware were to be used in the experiments and that the test
environment is located in-house in the headquarters of Coresec, the requirements on the design
of the test environment, and especially its networks, were very high; malware ending up in the
wrong network and infecting hosts could have very severe consequences. As a precaution, the test
environment network was strictly separated into multiple virtual local area networks (VLAN) by a
firewall, and access rules between the different VLANs were set explicitly. Each VLAN represented
a "zone" with a certain purpose and security level as follows:

• in the Management zone, all management interfaces of the sandboxes were placed. The
Malware jumpstation was also placed here which was accessible via VPN and RDP. This en-
abled the establishment of a connection to the test environment without physical access to
it, which facilitated configuration of the sandboxes.

• in the Trust zone, the Malware client was located and connected to the sandboxes deployed
inline.

• the Mistrust zone was set up to allow connections out from the test environment to the
Internet and direct this outbound traffic via the VPN gateway.

• in the Demilitarized zone (DMZ), the Malware server was placed, which hosted all test cases
to be downloaded by the Malware client.

Figure 4.4 shows the test environment with all zones in greater detail.
To control the Malware client, users first connect to the Management zone via VPN. Thereafter,

the user establishes a remote desktop connection to the Malware jumpstation in the management
zone, and then further on to the Malware client in the Trust zone.

4.3.1 Inline deployment

The sandboxes of Vendor A, Vendor D and Vendor E were all placed inline, since they had the
ability to monitor traffic. Additionally, Vendor A’s and Vendor E’s sandboxes had routing func-
tionality and were set up with one interface in each zone, meaning that the Malware client could
connect to the Malware server through them and enabling the systems to intercept the transmitted
files. The sandbox of Vendor D had no routing functionality, which forced the Malware client to
have an interface physically connected to it which in turn was directly connected to the DMZ to
reach the Malware server.

The sandboxes of Vendor A and Vendor E perform no local analysis; instead, they forward all
suspicious files to a global, cloud based analysis center. Due to this, the configuration possibilities
of these sandboxes were very limited. In the case of Vendor D, the actual analysis took place
locally on the sandbox itself, which had three different images all. Despite this, there were not
possibilities for the authors to configure of customize these images.

4.3.2 Upload deployment

Vendor B’s and Vendor C’s sandboxes required files to be manually submitted for analysis, hence
they were placed in the Mistrust zone. The Malware client had an interface in that zone as well,
and could thus access the GUI of the sandboxes of Vendor B and Vendor C to upload test cases.
Both of these sandboxes had more customization possibilities than the others, as they were the

28 Experiments

Figure 4.4: Detailed view of the test environment including network interfaces.

only ones who supported golden images. Furthermore, both of them had two images: one with
the default settings forced by the vendor and one golden image. The golden images were config-
ured to have higher screen resolution, several non-default programs installed, browsing history,
Swedish keyboard layout, additional hard drive partitions and a custom background image.

On the sandboxes of Vendor B and Vendor C, test cases were run both on the original image
and golden image to be able to study the potential impact on the results caused by the golden
image. However, the result which was considered the official one of these sandboxes was that of
the golden image.

4.4 Test cases

All test cases were written in C++ and/or x86 assembly in Microsoft Visual Studio 2015 and com-
piled into separate, executable files for each test case. A vast majority of the test cases interact with
the Windows API or "WinAPI". In some cases there are multiple test cases covering the same area

Experiments 29

using different techniques, in order to potentially detect if different ways of performing the same
task may generate different results due to some functions being hooked by the sandbox and others
not.

Since the test cases were developed and compiled on the desktop systems of the authors, the
malware could not be included in the test case before or during compilation as this would have
required the malware to be placed on these machines. Besides, since the test cases were repeatedly
test run on these desktop systems, having included the malware at this stage would have resulted
in it being executed and infecting the systems thousands of times during the development, causing
loads of wasted time. Additionally, Coresec expressed a wish of developing a service for testing
purposes in the future where users could dynamically combine any of the test cases with a set of
different malware, which meant that the test cases would have to be separated from the malware.
Because of this, a small application was developed which took two files as parameters and added
one of them as a resource in the other. How this is done is demonstrated in Figure 4.5, where the
"inner" PE file (the malware) is placed in the resource (.rsrc) section of the "outer" PE file (the test
case) (see section 2.4 for more details on resources). There is also a "stub" in the .code section of the
outer PE file, which is the piece of code responsible for loading the malware resource if a sandbox
is not detected.

Once all test cases were compiled, they were moved to an isolated, virtual machine and with
the help of the other application they were "loaded" with the XOR encrypted malware as a resource
according to Figure 4.5.

All test cases were loaded with the same malware, which was simply an executable file with
confirmed malicious behavior. The reason for XOR encrypting the malware was the fact that all
sandboxes recognized it as malicious, and since some sandboxes also included tools performing
static analysis of the file (which was impossible to deactivate), there was a risk of the test case
getting caught in the static analysis. Because of this, the XOR encryption was used to give the
malware a new signature that did not already exist in any of the vendors’ signature databases.

The test cases consist of a main function, which calls a sandbox detection function representing
a test case. If the detection function returns true - indicating the code is being executed in a sandbox
- the main function simply exits. However, if the sandbox detection function does not find any
signs of a sandbox, it continues. First, it loads the resource containing the XOR encrypted malware.
Thereafter, the loaded resource is XOR encrypted again and the original, plain text malware is
retrieved. Lastly, the malware is executed and the main function exits. An overview of this process
is shown in Figure 4.2.

Some of the test cases are based on techniques that are reoccurring in many articles and have
been seen many times before, while others are innovative and completely based on own ideas and
inspiration gained during the working process. However, since there is no way for the authors to
guarantee that they are actually utilizing a "new" technique for the purpose of sandbox detection,
no distinction is made between which test cases are "new" ones and which are not. Instead, the
test cases are divided into categories based on what part of the system they focus on as follows:

4.4.1 Timing

The timing based test cases aim mainly to exploit the fact that sandboxes only run the file a limited
time, and may have to speed up the program execution in order to finish the analysis before the
time-out. In order to achieve this, the test cases take one of two approaches: they either try to stall
or slow the execution down, or try to detect that time is being tampered with.

30 Experiments

Figure 4.5: A detailed view of how the malware is hidden as a resource in the test
case [1].

Slowing down the execution is done in two different ways: by sleeping (or waiting) and by
using stalling code. Sleeping is achieved simply by calling the Windows API function Sleep().
There are test cases trying both one long, continuous sleep, as well as multiple, shorter sleeps to
determine if they generate different results. There is also a test case utilizing threads in combi-
nation with Sleep() in an attempt to deceive the operating system. Waiting is accomplished by
for instance using the Windows API function SetTimer(). Both sleeping and waiting are passive
approaches that consume minimal system resources. The other approach of slowing down execu-
tion, stalling code, is all but passive: it performs resource-intensive, time consuming calculations
until the sandbox hopefully times out. There are multiple ways of creating stalling code; the test
cases in this Master’s Thesis do so by for instance calculating prime numbers or calling API func-
tions that are expected to be hooked (which takes extra time compared to non-hooked functions
for the operating system to handle) such as Sleep() and GetTickCount().

Detecting time manipulation is simply a matter of measuring time between two events sepa-
rated by a Sleep() call and comparing the result to the expected value: if they differ, the system is

Experiments 31

most likely a sandbox attempting to speed execution up.

4.4.2 Process

The test cases in this category focus on processes running on the target operating system and DLL:s
loaded by these processes, as they may both disclose a sandbox. Since there may be monitoring
processes running in the sandbox with names disclosing their behavior, there are test cases to
check the names of all processes and compare each one to lists of predefined, suspicious names.
Similarly there are test cases to check the names of the DLL:s as well, since potentially hooked
functions will reside in DLL:s loaded by the processes.

Windows processes have a "parent process", which will normally be "explorer.exe" if the pro-
cess is started in the graphical user interface. However, the parent process may differ in sandboxes
and could be for instance a monitoring process; whether this is the case or not is investigated by a
test case. Some sandboxes have also been reported to change the name of the file being analyzed,
e.g. to "sample.exe", which is checked by another test case.

The operating systems ran in sandboxes are often clean installations of Windows, which means
that the number of installed programs and running processes will be less compared to regular
clients; therefore, there is also a test case in the process category checking the number of running
processes on the system.

Finally, there are a number of test cases examining studying what happens when DLL:s are
loaded. For instance, a sandbox may try to prevent malware samples from loading DLL:s while
still giving the sample the impression that the load succeeded. Therefore, there are test cases both
to load valid DLL:s to see if they fail unexpectedly and to load invalid DLL:s to see if they succeed
although they should not.

4.4.3 File

These test cases use the file system to determine whether the system is a sandbox or a host. This is
done using two different approaches: by looking for the existence of certain files or by attempting
to create files and check for unexpected behavior.

Since the sandboxes were treated as black boxes during the tests, no research could be done
before or during the test development phase regarding which specific files potentially existed in
the different sandboxes. Instead, the tests had to take the opposite approach and look for files
that, with high probability, only would exist on a system that had been used by an actual user,
meaning that they would not be present on a sandbox. This could be files related to e.g. commonly
installed programs or Internet browsing. The number of installed programs are examined by a test
case utilizing the Windows registry, as well as the number of recently modified files - which are
expected to be none at a sandbox. As some sandboxes had been reported to run the malware
sample from quite untypical directories, the execution path of the sample was also covered by a
test case.

Lastly, as there were reasons to suspect that the sandboxes somehow tamper with the file
system, a simple test cases exists that creates files in the execution directory, writes content to it
and then closes it, and then verifies this content by opening and reading the file afterwards.

32 Experiments

4.4.4 Environment

The environment category is more general than the others in the sense that it contains test cases
related to the system as a whole rather than specific parts of it. The majority of the test cases
are based on spontaneous ideas that emerged either during the background research or during
development.

For instance, there are two test cases which examine the names of the machine and the cur-
rently logged in user. If any of the names contain certain strings such as "sandbox" or "sample",
the likelihood of being on a sandbox is considered to be high. There is another test case checking
if there is a password set for the currently logged in user account, as corporate users are expected
to have password protected their accounts while sandboxes most likely have not. Furthermore,
real users are expected to change the background image and increase the screen resolution from
the default value; these parameters are also investigated by one test case each.

The other environment test cases check e.g.:

• The length of the execution path, as execution paths that contain only one or two slashes
(such as "C:/" or "C:/temp/") are not very likely to be used by "normal" users,

• Suspicious names in the execution path like "C:/Windows/malwaresample/",

• The number of hard disk drive partitions,

• If any well-known hypervisor is present using different entries of the Windows registry,

• If a debugger is present using the IsDebuggerPresent() API function,

• If the system has a battery, since sandboxes will seldom or never be ran on laptops, and

• If the reported system time is somewhat correct (checking against a hard coded date).

4.4.5 Hardware

The hardware test cases inspect various hardware components available to the sandbox. Since the
hardware is given to the sandbox by a hypervisor, the hardware test cases are essentially about
virtual machine detection rather than sandbox detection. However, since all sandboxes are run-
ning on virtual machines and very few users use it in comparison, the number of false positives
was expected to be low.

The CPU is very much a limited resource which cannot be extended as easily as hard disk size
or amount of memory. The type of CPU, its amount of internal memory (cache) and number of
cores are all properties examined by test cases. The amount of memory available to the system
and to the graphics adapter (GPU memory), as well as the size of the hard disk drive(s), are other
artifacts being tested. All of these are resources expected to be higher on a user client than on a
sandbox running inside a virtual machine.

Traces of a hypervisor may not only be found in the hardware alone but in the software closest
to the hardware as well. As an example, the name of the graphics adapter interface is assigned
by the hypervisor and therefore often contains clues about the presence of a hypervisor. The same
is true also for hardware drivers; they may disclose either a hypervisor or the sandbox, if named
inappropriately.

Another group of hardware that is not located physically inside the machine is printers. In
corporate environments, it is safe to assume that a vast majority will have at least one printer

Experiments 33

installed and selected as default, while the average sandbox can be expected not to have printers
configured. Two test cases are based on this fact.

Finally, there is also a test case to test the presence of a three-button (at least) mouse.

4.4.6 Network

The network category contains test cases checking either properties of network related hardware
or actual connectivity status and communication possibilities.

The number of network adapters, the names of the adapters and their (physical) addresses are
properties all covered by network test cases. These are based on the following facts or assump-
tions:

• Clean Windows installations will most likely only have one network adapter, while a user -
using for instance a VPN (Virtual Private Network) connection or a wireless network - will
have multiple adapters. In other words, one network adapter would indicate a sandbox.

• As with the graphics adapters, the hypervisor assigns names to the network adapters and
may disclose itself.

• Hypervisors assign certain ranges of MAC addresses to network adapters by default, which
are well-known. Comparing the MAC addresses of the adapters to these ranges is trivial.

The remaining network related test cases check the actual network connectivity. The theory
behind this is that some sandboxes may want to prevent malware samples from communicating
with e.g. C&C-servers, while still giving the sample the impression of having an Internet con-
nection. Other sandboxes may choose to completely isolate the malware by disable networking.
Furthermore, assumptions can be made regarding how the network is configured on an average
sandbox compared to how it is done on a typical, corporate user client. Therefore, there are a
number of test cases examining what types of connections can be made and which responses are
received, to determine if a sandbox is tampering with the network connection. The following is a
selection of what is covered by test cases:

• Check if the system is connected to a domain. Most corporate systems will be so, while
sandboxes probably will not.

• Check if ICMP echo requests (PING) to known hosts receive replies to verify layer 3 connec-
tivity.

• Check if HTTP GET requests can be made, and if they receive the expected response.

• Check if DNS queries can be made and verify that the responses are as expected.

• Check if a proxy is enabled, which it is assumed to be on considerably more sandboxes than
hosts.

• Check how much recent network traffic has been sent and received, which is expected to be
far less on sandboxes than clients.

• Check if a socket can be established on port 445, a port used for Windows Active Directory
and file shares.

34 Experiments

• Check the number of established connections to other hosts, which is also expected to be far
higher on user clients than sandboxes.

• Check the presence of other hosts on the same subnet (expected to be none in a sandbox).

4.4.7 Interactive

These test cases have in common that they try to distinguish human interaction from simulated
or no interaction. This is done mainly by monitoring input devices - mouse and keyboard - and
waiting for certain actions or detecting simulated interaction. The complexity of these test cases
varies: the simple ones wait for e.g. a mouse click, mouse movement or a mouse scroll to occur,
while the more advanced ones check things such as the speed of mouse cursor (since sandboxes
may "teleport" the cursor to click a button or similar), keyboard keystrokes and certain keystroke
patterns.

4.5 Test criteria

In order for a test case to be considered successful, two criteria need to be met:

1. the test case must detect the sandbox (and hence not execute the malware), and

2. the sandbox must not classify the test case as malicious.

Although these criteria might give the impression of implying one another, i.e. "if one then
two" and vice versa, there is the possibility that the sandbox detection itself function may be clas-
sified as malicious. In other words, although a certain test case might be able to detect the sandbox
and prevent the malware from being executed, it could still be deemed malicious due to the de-
tection technique used. First of all, the level of discretion of the detection techniques differ: it is
reasonable to assume that checking Windows registry keys or executing commands in the Win-
dows shell is considered more "noisy" and raise more flags than checking the screen resolution or
disk size. Second, some detection techniques which commonly occur both in articles and in actual
malware are likely to have been seen by sandbox developers before (and may therefore be flagged
as malicious) while others can be assumed to have been seen less frequently or even not at all.
Therefore, a distinction will be made in the result between test cases that fail due to their inability
of detecting sandboxes and test cases that fail despite being able to detect the sandbox.

4.6 Choice of malware

The only unconditional requirement on the malware that was used as resource in the test cases
was that it was classified as malicious by all sandboxes; otherwise, unsuccessful test cases that
failed to detect that they were being run on a sandbox and executed the malware would risk not
being detected despite this. Therefore, in order to achieve reliable test results, it had to be assured
- before performing the tests - that the chosen malware was indeed identified by all sandboxes.
This was done simply by making the malware available to the sandboxes for analysis, either by
direct upload or by downloading it through the sandbox depending on the setup.

Experiments 35

To maximize the probability of the malware being recognized by all sandboxes, a well-known
malware was chosen based on the recommendation of a malware specialist on Coresec Systems.
The choice fell on "Beta bot", due to it being both well-known and well-documented. Beta bot
is a Trojan - a type of malware which disguises itself as other software [43]. The name Trojan
emphasizes the appearance rather than the behavior of the malware, and Trojans may therefore be
classified as more or less any of the types defined in section 2.1.2.

When executed, Beta bot attempts to gain administrator-level privileges on the target system
by presenting a fake Windows "User Account Control" prompt [44]. If the user is fooled and
approves the prompt, Beta Bot is able to perform a number of evil actions: it prevents access to
numerous security websites, disables local anti-virus software and steals user data. Beta Bot was
reported by Symantec early in 2013, and the severity of Beta bot turned out such that both the
Department of Homeland Security (DHS) and the Federal Bureau of Investigation (FBI) to issue
warnings regarding Beta Bot [45] [46]. The magnitude of Beta Bot in combination with the fact that
it had been around for three years by the time of writing this Master’s Thesis made it highly likely
that all sandbox vendors would be able to identify it.

36 Experiments

Chapter 5
Results

5.1 Introduction

Due to the sheer amount of data, the test results are first grouped by category under section 5.2
for better readability. Thereafter, some test data from the golden image sandboxes is presented in
section 5.3. A summary of the complete test results is given in section 5.4 at the end of this chapter.

5.2 Results per category

Initially, for each category, statistics are given regarding the average, maximum and minimum
malware detection rate (i.e. the rate of unsuccessful test cases). The coefficient of variation (or
relative standard deviation) is given, which is a measure of dispersion of the results between the
different vendors within each category.

The statistics table of each category is followed by a detailed result table. The cells of the result
table contain one of the three values pass, fail and no exec. Pass means that the test case succeeded in
detecting the sandbox while staying undetected, i.e. it succeeded from an "attacker’s" perspective.
Passed test cases are highlighted with a green background color in the tables. Cells that contain
either fail or no exec are unsuccessful test cases, which either failed to detect the sandbox (fail) or
were considered malicious by the sandbox despite not executing the malware (no exec). The reason
for distinguishing these two from one another is that the no exec test cases are closer to succeeding
than the fail ones, since they managed to detect the presence of the sandbox.

Finally for each category comes a bar chart, displaying the number of detected (i.e. the sum of
fail and no exec) test cases per vendor.

37

38 Results

5.2.1 Timing

Table 5.1: Timing results statistics.

Average malware detection rate 46%
Maximum malware detection rate 70%
Minimum malware detection rate 30%
Coefficient of variation 33%

Table 5.2: Timing category results per vendor.

Description A B C D E

1
one long
sleep

fail fail fail fail no exec.

2
multiple short
sleeps

fail pass pass fail no exec.

3
delay using
timer

pass pass pass fail no exec.

4
use two threads to
detect sleep emulation

fail pass fail pass fail

5
create files, verify
time stamps

fail pass pass pass fail

6
open files, verify
time interval

fail fail fail fail fail

7
check emulated sleep
with tickcounts

pass fail pass fail no exec.

8
stalling loop, prime
calculations

pass pass pass pass pass

9
stalling loop,
WinAPI calls

pass pass pass pass pass

10
combine multiple
timing techniques

pass pass pass pass pass

Results 39

Figure 5.1: Timing - detected malware per vendor.

40 Results

5.2.2 Process

Table 5.3: Process results statistics.

Average malware detection rate 74%
Maximum malware detection rate 80%
Minimum malware detection rate 60%
Coefficient of variation 11%

Table 5.4: Process category results per vendor.

Description A B C D E

1
check sandbox
processes

fail fail fail fail fail

2
check client
processes

pass pass fail fail no exec

3
number of
processes

pass pass fail pass no exec

4
name of parent
processes

fail fail pass fail no exec

5
file name for
current file

pass fail fail fail pass

6
load fake
DLL

fail fail fail fail fail

7
load real
DLL

fail fail fail fail fail

8
DLL load
directory

pass pass pass pass pass

9
names of
loaded DLLs

fail fail fail fail fail

10
known sandbox
DLL:s

fail fail fail fail fail

Results 41

Figure 5.2: Process - detected malware per vendor.

42 Results

5.2.3 File

Table 5.5: Files results statistics.

Average malware detection rate 73%
Maximum malware detection rate 100%
Minimum malware detection rate 50%
Coefficient of variation 23%

Table 5.6: File category results per vendor.

Description A B C D E

1
if browsers
exist

fail fail fail fail fail

2
traces left by
browsing

pass fail fail pass fail

3
number of other files
in execution directory

fail fail pass fail fail

4
create files locally
and check their content

fail fail fail fail fail

5
number of installed
programs

fail pass pass fail fail

6
number of recently
created/modified files

pass fail pass pass fail

Results 43

Figure 5.3: Files - detected malware per vendor.

44 Results

5.2.4 Environment

Table 5.7: Environment results statistics.

Average malware detection rate 64%
Maximum malware detection rate 81%
Minimum malware detection rate 56%
Coefficient of variation 16%

Table 5.8: Environment category result per vendor.

Description A B C D E

1
machine
names

fail pass fail fail fail

2
user
name(s)

pass pass pass pass pass

3
screen
resolution

pass pass fail pass pass

4
hard disk / partition
name(s)

pass pass fail pass fail

5
color of background
pixel

fail fail fail fail fail

6
keyboard
layout

pass fail fail pass pass

7
execution
path

pass pass fail fail pass

8
sandbox indications
in path name

fail fail pass pass fail

9
command line
parameters

fail fail fail fail fail

10
if computer is a
laptop

pass pass pass pass no exec

11
VMWare
version

fail fail fail fail fail

12
correct system
time

fail fail fail fail pass

13
if current user has
password set

pass pass fail pass no exec

14
is debugger
present?

fail fail fail fail fail

15
typical sandbox
registry keys

fail fail fail fail fail

16
specific key values,
if they contain sandbox info

fail fail fail fail no exec

Results 45

Figure 5.4: Environment - detected malware per vendor.

46 Results

5.2.5 Hardware

Table 5.9: Hardware result statistics.

Average malware detection rate 49%
Maximum malware detection rate 54%
Minimum malware detection rate 46%
Coefficient of variation 8%

Table 5.10: Hardware category result per vendor.

Description A B C D E

1
number of CPU
cores, assembly

pass pass pass pass no exec

2
number of CPU
cores, WinAPI

fail fail pass pass no exec

3
number of CPU
cores, C++11

pass fail pass pass no exec

4
CPU
type

fail pass pass fail fail

5
CPU
cache size

fail pass pass fail pass

6
amount
of RAM

pass fail fail pass pass

7
size of
disk(s)

fail fail fail fail pass

8
amount of
GPU Memory

fail fail fail fail fail

9
name(s) of GPU
adapter(s)

pass pass pass pass pass

10
names of loaded
drivers

fail fail fail fail fail

11
number of (local)
printers

pass pass fail pass pass

12
name of default
printer

fail pass fail fail fail

13
prescence of
3-button mouse

pass pass pass pass pass

Results 47

Figure 5.5: Hardware - detected malware per vendor.

48 Results

5.2.6 Network

Table 5.11: Network result statistics.

Average malware detection rate 46%
Maximum malware detection rate 62%
Minimum malware detection rate 23%
Coefficient of variation 35%

Table 5.12: Network category results per vendor.

Description A B C D E

1
number of network
interfaces

pass pass pass pass pass

2
name(s) of network
interface(s)

fail fail fail fail fail

3
mac
address(es)

fail pass fail fail fail

4
ICMP
(ping)

fail pass fail pass pass

5
HTTP
(GET)

pass pass fail pass fail

6
correct response from
HTTP request

pass pass fail pass pass

7
DNS
query

fail pass fail pass pass

8
proxy
enabled

fail fail fail fail fail

9
domain
connected

pass pass pass pass no exec

10
open
ports

fail fail fail fail fail

11
network
traffic

pass pass pass pass pass

12
established
connections

no exec pass pass pass pass

13
other hosts in
network

fail pass pass pass fail

Results 49

Figure 5.6: Network - detected malware per vendor.

50 Results

5.2.7 Interactive

Table 5.13: Interactive result statistics.

Average malware detection rate 51%
Maximum malware detection rate 67%
Minimum malware detection rate 33%
Coefficient of variation 22%

Table 5.14: Interactive category results per vendor.

Description A B C D E

1
mouse
clicks

fail fail fail fail fail

2
mouse cursor
position

pass fail fail fail fail

3
mouse
movements

fail fail fail fail no exec

4
high mouse
movement speeds

pass pass pass fail no exec

5
wait for
scroll

pass pass no exec pass pass

6
multi-choice
prompt

pass pass pass pass pass

7
keyboard interaction
(key presses)

pass pass pass pass no exec

8
keyboard typing
patterns

pass pass pass pass pass

9
no open
windows

fail fail fail fail fail

Results 51

Figure 5.7: Interactive category - detected malware per vendor.

52 Results

5.3 Result of golden image configuration

In a total of eight test cases, there are differences between golden images and original images. Per
vendor there are five test cases but only two common test cases where the golden image has the
same outcome, see table 5.15.

Table 5.15: Result between golden and original images.

B Original B Golden C Original C Golden
size of
disk(s)

fail fail pass fail

number of
(local) printers

pass pass pass fail

if browsers
exist

pass fail fail fail

traces left by
browsing

pass fail pass fail

number of
recently created/modified files

pass fail pass pass

screen
resolution

pass pass pass fail

keyboard
layout

pass fail pass fail

no open
windows

pass fail fail fail

Results 53

5.4 Result summary

Figure 5.8: Malware detection rate per vendor.

Table 5.16: Overall result statistics

Average malware detection rate 56.6%
Number of silver bullets 11

54 Results

Figure 5.9: Average malware detection rate per category and coefficient of varia-
tion.

Chapter 6
Discussion

6.1 Sandbox technologies and result patterns

Drawing conclusions from the results based on the technologies used in the different sandboxes
proved to be harder than expected, as the amount of information that was available about the
sandboxes was very limited compared to the expectations at the start of the project. The publicly
available information in datasheets and similar documentation was consistently of very general
nature, and the somewhat detailed information that reached the authors was via people at Coresec
who either "heard from someone" or had their own theories or educated guesses - both of which
unfortunately are of little value in a scientific article. Consequently, the opposite approach had
to be taken to answer this question: instead of drawing conclusions about the result based on the
technologies used in the sandboxes, reasonable assumptions were made about the technologies
based on the test results.

Looking at the overall result, the top achiever is Vendor E. Vendor E has the best result in five
of the seven test case categories, and places second in the remaining two. It detects more than two
thirds of all test cases, and is 13% (or 8 percentage points) better than the next best vendor, Vendor
C. Except from the impressive test results, another thing distinguished Vendor E from all other
vendors: in 17 of the 77 test cases, the sandbox of Vendor E classified the test case as malicious
although the test case detected the sandbox and neither decrypted nor ran the malware resource.
This only happened very occasionally for the other sandboxes - once for Vendor A and Vendor
C- which suggested that something was different with the sandbox of Vendor E compared to the
others.

The first theory that emerged as a result of Vendor E’s somewhat odd test results was that
its sandbox simply had stricter rules regarding malicious behavior and that the amount of false
positives consequently would be higher on their sandbox compared to the others. To confirm
this theory, the authors tried to generate false positives by uploading various modified samples
(e.g. with an encrypted, benign executable file as resource instead of malware) to the sandbox of
Vendor E, but surprisingly, every single attempt of doing so failed although quite some effort was
put into this. The false positives theory was dismissed, and instead some additional research was
made regarding the sandbox of Vendor E and its results. The authors soon came up with another
theory, namely that the sandbox of Vendor E was supported by another tool, containing both
static analysis and something called code emulation, as some parts of the detailed result reports
indicated this. More specifically, there were certain text strings in the reports from the sandbox
which resembled static signatures originating from a certain vendor (not included in the Master’s

55

56 Discussion

Thesis) well known for its anti-virus products. When digging deeper into this, it appeared that
there was indeed a collaboration between this vendor and Vendor E. Unfortunately, presenting
these signatures in this Master’s Thesis would disclose enough information for the reader to be
able to figure out the identities of both of these vendors, but they suggested that a static analysis
had indeed taken place. However, it seemed highly unlikely to the authors that a static analysis
tool alone would be capable of distinguishing the false positives samples from actual positives
with such high success rate (with respect to the strong encryption of the malware resource), which
suggested that there could be other tools involved as well. When doing more research about the
anti-virus vendor and its products, it appeared that their anti-virus contained something called
code emulation as well, a feature that actually analyzes samples dynamically by executing them
but in an emulated environment instead of a full scale virtual operating system like a sandbox.
This could explain why this additional tool was capable of detecting test cases while being able to
distinguish false positives from actual positives.

Except for this, Vendor E also claims to have a feature in their sandbox which monitors activi-
ties on a low system level. More specifically, the sandbox monitors CPU instructions and patterns
of instructions, which - if they match certain rules - are classified as malicious. As a consequence, it
is possible that test cases which manage to detect the sandbox could still be classified as malicious,
if they do it in a way that triggers a certain behavior on an instruction level. Therefore, the theories
that the authors find most likely regarding the mysterious result of Vendor E are that there is low
level monitoring in combination with a powerful anti-virus software installed on the images that
run in the sandbox.

If one would consider test cases successful only on the premise that they detect the sandbox,
i.e. independently of whether or not they are classified as malicious by the sandbox, the test
result would look significantly different. Figure 6.1 shows this result, where the no exec results are
considered successful instead of unsuccessful, and as previously stated there is a clear difference
primarily in the result of Vendor E compared to the official test result in Figure 5.8. Since the
authors defined the criteria for successful and unsuccessful test cases themselves, it is possible
that others - doing the same experiment - would consider test cases successful on different criteria,
e.g. those which detected the sandbox independently of whether or not they were classified as
malicious by the sandbox. Comparing the two figures raises an awareness regarding the impact of
choosing a certain test success criteria, as well as the impact of the anti-virus of Vendor E (which
was the reason behind the majority of the no exec cases).

What is surprising in the case of Vendor E is that the code emulation tool works so well in
comparison to the sandbox, considering its limited resources. After all, the code emulation tool
does not boot an entire operating system like the sandbox does, and thus imitates a "real" environ-
ment much worse than the sandbox does. On the other hand, all test cases are designed to detect
and bypass sandboxes and not code emulation tools; it is possible that the authors, if aware of the
fact that code emulation tools were used, could have taken (potentially simple) measures to detect
and avoid emulation tools as well.

Except for the results of Vendor E, there were some other interesting findings as well. In the
environment test category, Vendor C had the best result thanks to their sandbox supporting the use
of golden images. By increasing the screen resolution and changing the keyboard layout, Vendor
C detected two more test cases than Vendor E in this category; without golden images, the result
would have been a draw between the two.

Speaking of golden images, they were a bit of a disappointment and not as "golden" as one
could hope for. First of all, when configuring the golden image of Vendor C, many settings turned

Discussion 57

Figure 6.1: Sandbox detection rate per vendor where the test cases detected the
sandbox

out not to be configurable since the sandbox forced a certain value. For instance, in the environ-
ment category, the user name was forced to be one which there was already a test case looking
for, meaning that although a golden image could easily have detected this test case by setting a
"normal" user name, the test case still passed undetected. Furthermore, when studying the results
of Vendor B, it turned out that some test cases had passed undetected although they should have
been detected with respect to how the golden image was configured. In this case, the sandbox
must have forced some of the settings to certain values after the golden image configuration was
deployed without giving the person doing the configuration any notification about this. Hence,
the way golden images were configured and deployed left quite much to be desired.

Another interesting aspect is networking and how it is configured on the sandboxes. While
some of the sandboxes are allowed to, at least partially, communicate over Internet and send e.g.
DNS queries, others are completely isolated and get no Internet access what so ever. The test cases
in the network category are designed such that they assume to be on a sandbox if communication
fails, if they for instance do not get responses to DNS queries or HTTP requests. This means that
isolated sandboxes will do worse in comparison to sandboxes that allow external communication.
This fact is the reason for the high coefficient of variation in the network category (35%), and by
studying the test results it is easy to tell which sandboxes are most probably isolated (Vendor B,
Vendor D) and which ones are not (Vendor A, Vendor C and Vendor E).

58 Discussion

6.2 Weakness patterns based on detection technique

Studying the overall result and the malware detection rate per category specifically, it appears that
four categories lie slightly below or just around 50% detection rate while the three others are a bit
higher and span from 64 to 74%, see Figure 5.9. The four categories with the lower result all lie
within a 5% range, and due to the somewhat limited statistical data the number of test cases that
actually differ between these categories are very few. Therefore, since the result of these four are
almost the same, it is interesting to look at the coefficient of variation as this demonstrates how
much the results of the different sandboxes differ from one another.

Where the coefficient of variation is low, there is little variation in the results. In other words,
the categories with low detection rate and low coefficient of variation are categories where most
sandboxes have low results, meaning that these categories should be seen as the most distinct
weakness patterns. Among the four categories with the lowest result, the hardware category has
the lowest coefficient of variation, being only 8%, followed by the interactive category with 22%.

It also deserves to be mentioned that the categories with low detection rate and high coefficient
of variation will include the real low-water marks. In the timing and network categories, where
the coefficient of variation is between 33 and 35%, the minimum detection rates are 30 and 23%
respectively. Although these results are very low, they do not constitute a pattern in the same way
as the categories with low coefficient of variation.

It might be a bit surprising that the hardware category is where the most distinct weakness
pattern is found, since the hypervisor has full control of what hardware its guests believe they
have access to. For instance, a hypervisor could easily trick its guests to believe that they have
access to more disk than they actually have, and this would not become an issue until the guests
fills the entire disk space. In the case of sandboxes - which time out after a few minutes - this disk
space would never become a problem in practice, which goes for most other hardware as well:
the guests will rarely be able to detect that the reported hardware is not authentic. Therefore, the
authors find it remarkable that the sandboxes have not been more successful fooling the virtual
machines that they have other hardware than they actually do, since they have every possibility of
doing so. Presumably, doing so would not require too much of an effort, and could dramatically
improve the result of the hardware category.

The weakness patterns obviously correlate to the efficiency of detection techniques: the most
efficient detection techniques are those where the sandboxes have lowest detection rates according
to above. However, when switching focus from sandbox weaknesses to test case efficiency, there
is another interesting aspect to look at as well, namely the test cases that passed all sandboxes:
the silver bullets. There are a total of eleven silver bullet test cases which are distributed more or
less equally between all but the files category, which has none. Again, due to the limited statistical
data, no conclusions will be drawn regarding which categories contain more or less silver bullets
than the others. Furthermore, there seems to be no clear pattern among the silver bullets since the
they are so spread across the different categories.

6.3 Simplicity contra efficiency in detection techniques

Analyzing all test cases on the same premise might be misleading, since some may be more sophis-
ticated than others. Because of this, the authors found it necessary to assess all test cases and rate
them based not only on their sandbox detection rate but on their (relative) complexity to imple-

Discussion 59

ment as well. All test cases were given a simplicity score between one and three, one being harder
to implement (time consumption up to one work day) and three being easier (time consumption
no more than two hours).

Except for the simplicity to implement, the efficiency of the test case (i.e. its result) was consid-
ered as well. The test cases were given two points for each sandbox evaded, resulting in anything
between 0 - 10 points, and the total score for each test case was given by multiplying the imple-
mentation simplicity score with the efficiency score as follows:

Score = (2 × α)× β, α = Number of sandboxes evaded, β = Implementation simplicity (6.1)

Using this formula, test cases were given a score ranging from 0 to 30, see Appendix A. A high
score means an efficient test case (in terms of detection rate) with low implementation difficulty.

Lastly, for each test case category, the average value of the simplicity-efficiency score was cal-
culated. The scores are shown in Figure 6.2.

Figure 6.2: Simplicity contra efficiency score per category.

The results are surprisingly even across the categories, as it appears that all but one category
score between 10-12.1 On a scale from 0 - 30, the differences between 10 and 12 are negligible which
means that all but the files category have very similar relations between simplicity to implement
and sandbox detection efficiency. In other words, no specific category is preferable to someone
who aims to develop sandbox detection techniques as efficiently as possible.

1The files category - which scores just below four - barely contains six test cases, which is roughly half
as many test cases as the other categories. This partly undermines its result, as six test cases is somewhat
statistically insignificant.

60 Discussion

What might be worth emphasizing in this context is that all test cases consist of only one
detection technique each, for the purpose of being able to comparing them to each other. In other
words, there is no combination of detection techniques, in contrast to what is common in real
malware. Combining techniques gives malware greater confidence in concluding whether or not
it is executed on a sandbox. If this approach was to be applied on a set of test cases developed in
this Master’s Thesis, malware with very strong sandbox evasion potential could be developed.

6.4 System lifetime in relation to test results

When attempting to answer the question regarding whether or not the lifetime of the systems
(sandboxes) had an impact on the test results, it became obvious that the question was too vaguely
defined. First of all, finding the exact age of the products turned out to be significantly harder than
expected; although press releases, articles and documentation from all vendors were carefully ex-
amined, only indications of the products’ lifetimes were found. Second, many of the vendors had
bought other vendors over the years, some of which had already been involved in sandboxing for
various amounts of time; what would then be the most fair measure of the lifetime of a sandbox?
Would it refer to the current product, which was tested in this Master’s Thesis, or their very first
sandbox? It was decided that the most disambiguous meaning would be the lifetime of the sand-
boxing technology for that vendor or any other vendor acquired by that vendor, since this would
indicate how much time the vendor had have to develop their sandboxing technology to what it
is today. This definition also made it easier to determine an approximate lifetime for each vendor.
These lifetimes are stated in sections 3.2.1 - 3.2.5.

Three of the vendors - Vendor A, Vendor C and Vendor E- are quite new within the sandboxing
business compared to the two others - Vendor B and Vendor D- who have been doing sandboxing
for roughly three times as long or more. However, when studying this data in connection to the
overall test results, there seems to be no correlation between a long lifetime within sandboxing
and good test results, but rather the other way around: Vendor B and Vendor D, both having long
experience of sandboxing, are the vendors with the lowest overall test results. Due to the limited
statistical data, which includes only five vendors, the authors will not attempt to judge whether
this is simply a coincidence or an actual pattern. However, regarding the question of this Master’s
Thesis concerning whether or not the lifetime of a system has a significant impact on its ability to
withstand test cases, the answer is "no".

6.5 General discussion and sources of error

As the results have shown, there are categories where there are small differences in the results of
the different vendors while there are others where the differences are more significant. The average
detection rate of all sandboxes is 56.6%, but only 14% of all test cases are silver bullets. In other
words, 86% of all test cases were detected by at least one of the sandboxes - a quite remarkable
difference in comparison to the average result of the vendors. This means that by combining
several sandboxes, one could achieve a considerably better result than by having only one.

One of the main purposes of this Master’s Thesis was to provide Coresec with a decision basis
for choosing the most appropriate sandbox on behalf of their customers. While this still holds true,
there turned out to be several other aspects to take into consideration as work progressed, which

Discussion 61

may be considered just as important as the ability of withstanding sandbox detection techniques.
This includes:

• the rate of false positives among analyzed files. High amounts of false positives will cause
frustration as it requires interaction with the configuration of the sandbox, which requires
both time and the adequate competence.

• the ease of setup, which ranges from minutes to days between the different vendors and
might be a priority to less technically oriented customers.

• the ease of configuration and maintenance, similar to above.

• the pricing, which differs substantially between the different sandboxes but despite this
does not necessarily seem to be directly related to the detection rate.

The importance of complementing the test results with an investigation of the aspects above
could be illustrated with an over explicit example regarding false positives. In the experiment
carried out in this Master’s Thesis, a sandbox which classified every file as malicious would be
the top achiever since it would "detect" all malware. Although this was not the case (since all
sandboxes failed on a number of test cases), it illustrates the importance of complementing the
sandbox detection rate results with experiments concerning other aspects, such as those above.

During the process, Coresec expressed their interest in knowing what rate of "normal" hosts
that each test case would execute on in average. Similar to the simplicity score, e.g. an impact
score could be given each test case based on how many hosts the test case would actually execute
on. This impact score would be very interesting, since test cases that manage to detect and bypass
sandboxes are of practically no value if they do not also execute on a vast majority of the average
hosts; creating test cases that executes on neither of them is trivial. Although the impact score
would be highly relevant, a major issue with this approach - which was also the reason why it
was never taken - is that it becomes either purely speculative or very time consuming. Making
educated guesses regarding how many hosts the test case would execute on and make a scoring
accordingly would be of little scientific value. The alternative, quantitative approach of distribut-
ing the test cases (without the malware resource, obviously) and analyze the results would be far
too time consuming. Consequently, no impact score was given. However, as mentioned in sec-
tion 1.4, all test cases were tested thoroughly on numerous computers and virtual machines with
different configurations.

The detection techniques could be further improved if they were to target the sandbox of a spe-
cific vendor. In this case, information about the sandbox could be utilized to customize test cases,
something that was never done in this Master’s Thesis for the purpose of treating all vendors
equally. In reality, it is plausible that a malware developer may focus on just one of the vendors,
and may therefore know what defense mechanisms that the target has. Furthermore, some sand-
box vendors list their customers publicly on their web pages, and malware developers attacking
these customers would have a good idea about the security systems protecting them.

The single biggest source of error in the experiment was, for several reasons, the configura-
tion of the sandboxes. The configuration is critical as it has direct effect on the test result. For
instance, some sandboxes had the opportunity of either enabling or disabling Internet access for
the virtual machines, while others had support for golden images. Basically, it all came down to a
trade-off between equity and utilizing the full potential of the sandboxes: since only some of the
sandboxes supported different features, disabling a certain feature for all sandboxes would make

62 Discussion

the sandboxes as similar to each other as possible. On the other hand, this would also mean that
the sandboxes would not reach their full potential, and the test result would become somewhat
misleading as the configurations would differ significantly from how the sandboxes were used in
practice, where all features can be assumed to be activated. The authors decided to stick to the
latter as the guiding principle when configuring the sandboxes, i.e. allowing all sandboxes to be
configured according to best effort to utilize their full potential, although this meant that their con-
figurations were quite different from one another. The only exception to this principle was how
additional tools were handled: more or less all sandboxes are normally part of a "tool suite" where
e.g. firewalls and other tools are also present, and if the sandbox could be configured to "forward"
its samples to other tools in the suite this feature was, if possible, disabled in order to isolate the
sandbox and not analyze any other tools.

What is noteworthy, from a user perspective, is that sandbox detection - at least the techniques
used in this Master’s Thesis - partly is based on virtual machine detection. The hardware cat-
egory is more or less entirely targeted at detecting virtual machines, and both the process and
environment categories include virtual machine detection as well. This means that users running
virtual machines would be immune to a substantial amount of the detection techniques used in
this Master’s Thesis, which very well could be used in real malware as well.

The systems from which the test cases should distinguish sandboxes, referred to as "hosts", are
user clients, i.e. the workstations of regular users. Although less common, malware exists which
target servers instead of clients. Since servers typically have different configurations compared to
clients, regarding both hardware and software, the result of some test cases might be misleading
since they have not taken this fact into consideration. For instance, sandboxes may choose not to
disguise their server-like hardware, as they aim to resemble both a client and a server at the same
time. When running a test case which e.g. looks for server hardware on such a sandbox, the test
case will "detect" the sandbox based on something that was actually intended by the vendor of the
sandbox and not a misconfiguration. This was pointed out by one of the vendors, whose result
was partly affected by this. Although the approach of solving two problems at once by creating
a "hybrid" sandbox image might be somewhat problematic, it explains the result of at least one of
the vendors. However, one could argue that a better way of solving the problem would be running
the analyses in the sandboxes on multiple images with different configurations, e.g. one client and
one server image, which was also suggested to the vendor by the authors. The essence of all this
is basically that sandboxes should be configured to resemble the environment they protect to the
greatest extent possible; if there are a substantial amount of servers in the network protected by
the sandbox, having a server-like sandbox image is recommended.

Another interesting aspect, mainly from a vendor perspective, is the level of difficulty of im-
proving the result of the different test case categories. While some categories are difficult and
require actions to be taken by the sandbox during the execution of the malware, others are very
simple in comparison and could be significantly improved in a matter of minutes. The timing and
interactive categories belong to the former of these two, where the sandbox must either somehow
speed up execution or simulate user interaction in a realistic way without disclosing this behav-
ior to the file being analyzed, something that is everything but trivial and would require quite an
effort both to figure out a solution to and then to implement. In the file and environment cate-
gories on the other hand, several of the sandboxes could improve their results significantly simply
by configuring the image used. For instance, by doing a couple of minutes of Internet browsing,
installing a couple of programs, changing the user name, increasing the screen resolution, adding
a hard disk partition and setting a password for the user account, the majority of the sandboxes

Discussion 63

could raise their detection rate by several per cent without too much effort.

64 Discussion

Chapter 7
Conclusions

Although extracting information about the sandboxes was difficult, some patterns could be ob-
served in the results based on the technologies used in the tested systems. The sandbox of Vendor
E, which has an advanced low level monitoring technique and possibly also a potent anti-virus
software installed on its virtual machine images, achieved the best overall results thanks to this.
Furthermore, the systems that supported the use of so called golden images could prevent detec-
tion techniques that otherwise would have been successful. Lastly, whether the sandboxes allowed
its virtual machines Internet access or not had a significant impact on the outcome of the test cases
related to this.

The hardware and interactive test case categories were particularly weak in comparison the the
others, in the sense that their detection rates were consistently low. In other words, test cases
utilizing detection techniques bases on either of these two categories had a high rate of success
on most sandboxes. Although the real low-water marks were found in the network and timing
categories, some of the sandboxes also did well in these categories, why they are not to be regarded
as patterns in the same way as hardware and interactive.

By grading all test cases on a scale from one to three and correlating this score to the test results,
there turned out to exist test cases that were both simple to develop and very efficient at detecting
sandboxes.

The most efficient sandbox detection techniques are directly related to the patterns of weak-
nesses in the sandboxes, which means that the hardware and interactive based test cases are to
be seen as most efficient. Whether this efficiency is significantly higher than that of the other cate-
gories is left to the reader to judge, see Figure 5.9. The "silver bullet" test cases, i.e. the test cases
that succeeded and passed undetected on all sandboxes, were somewhat evenly distributed across
all categories and did not constitute a clear pattern.

The lifetime of a system, which was defined as the amount of time for which the vendor of
each system had been involved in the sandboxing industry, did not have a significant impact on
the systems’ ability to withstand attacks. Surprisingly, it was rather the other way around: the
test results suggested that vendors who got into the sandboxing business more recently actually
achieved better results in general.

The authors find it surprising that sandbox detection proved not to be harder than it turned
out, as many of the test cases which were trivial to develop actually succeeded on several of the
sandboxes. They are therefore convinced that all vendors could improve their test results signifi-
cantly without too much effort, simply by configuring the image(s) of the sandboxes properly. The
authors have provided all vendors with the test results and the test cases, in order to help them
fighting malware which deploy sandbox detection techniques.

65

66 Conclusions

This Master’s Thesis has proven that bypassing sandboxes can be done in a number of ways.
However, it should be mentioned that the sandbox is normally only one component in a suite of
other security tools, and that these must be bypassed as well for a successful infection.

7.1 Future work

This Master’s Thesis has focused solely on sandbox detection techniques using executable files.
Since malware also appear in for example PDF files and Microsoft Office documents, it would be
interesting to do a similar research using these file types instead; this could possibly open up for
new detection techniques.

The sandbox detection techniques developed in this Thesis do not form an exhaustive list of
techniques for this purpose; they are merely a result of the information gathering and ideas of the
authors. An area of techniques that the authors believe to be very efficient, which unfortunately
fell out of scope due to time constraints, are test cases written in assembly. Because of the way
hooking is implemented in the sandboxes, the authors suspect that assembly test cases could be
considerably more effective.

An interesting aspect is the way the sandboxes get access to files to analyze when the traf-
fic reaching them is encrypted. Today an increasing amount of traffic is encrypted using HTTPS,
and the sandboxes are completely blind to this traffic unless they are bundled with another tool
(a proxy of some kind) which is capable of performing HTTPS decryption [47]. In other words,
for inline sandboxes to work well in practice, they depend heavily on a good HTTPS decryption
tool, which is another aspect not taken into consideration in this Master’s Thesis. Apparently, the
different vendors have proxies of very varying quality - some of them even lack this completely -
which would very much affect the result of the sandboxes when used in practice in a real environ-
ment. Again, although this would be highly interesting to dig deeper into, comparing proxies of
the different vendors unfortunately fell out of scope of this Master’s Thesis, but could be subject
to future work.

Finally, an area which has gotten a lot of attention recently and continuously evolves is ma-
chine learning. Machine learning is relevant within many IT related fields, and within the com-
puter security field it has created a new way of analysing malware. By making machines capable
of learning themselves the difference between benign and malicious files, there is a chance of see-
ing a dramatic improvement in malware detection capabilities [48]. The method is still on the rise
and needs further exploration, why experiments on the topic would be highly interesting.

References

[1] A. Mesbahi and A. Swinnen, “One packer to rule them all: Empirical identification, compar-
ison and circumvention of current antivirus detection techniques,” in Black Hat, USA, 2014.

[2] AV-TEST Institute, “Malware statistics.” available at: https://www.av-test.org/en/

statistics/malware/. Last accessed: 2015-04-12.

[3] Symantec, “Internet security threat report 20.” https:

//www4.symantec.com/mktginfo/whitepaper/ISTR/21347932_

GA-internet-security-threat-report-volume-20-2015-social_v2.pdf. Last accessed:
2015-02-01.

[4] S. S. Hansen, T. M. T. Larsen, M. Stevanovic, and J. M. Pedersen, “An approach for detec-
tion and family classification of malware based on behavioral analysis,” in 2016 International
Conference on Computing, Networking and Communications (ICNC), pp. 1–5, Feb 2016.

[5] M. Sikorski and A. Honig, Practical Malware Analysis: The Hands-On Guide to Dissecting Mali-
cious Software. San Francisco, CA: No Starch Press, fifth printing ed., 2012.

[6] S. Das, Y. Liu, W. Zhang, and M. Chandramohan, “Semantics-based online malware detec-
tion: Towards efficient real-time protection against malware,” Information Forensics and Secu-
rity, IEEE Transactions on, vol. 11, pp. 289–302, Feb 2016.

[7] Cuckoo Foundation, “Cuckoo sandbox v. 2.0 rc1.” https://www.cuckoosandbox.org/.

[8] S. Mohd Shaid and M. Maarof, “Malware behavior image for malware variant identification,”
in Biometrics and Security Technologies (ISBAST), 2014 International Symposium on, pp. 238–243,
Aug 2014.

[9] H. Dornhackl, K. Kadletz, R. Luh, and P. Tavolato, “Defining malicious behavior,” in Avail-
ability, Reliability and Security (ARES), 2014 Ninth International Conference on, pp. 273–278, Sept
2014.

[10] Kaspersky Lab, “Who creates malware?.” available at: https://usa.kaspersky.com/

internet-security-center/threats/who-creates-malware. Last accessed: 2015-04-15.

[11] S. Cobb and A. Lee, “Malware is called malicious for a reason: The risks of weaponizing
code,” in Cyber Conflict (CyCon 2014), 2014 6th International Conference On, pp. 71–84, June
2014.

67

68 References

[12] C. Czosseck, G. Klein, and F. Leder, “On the arms race around botnets - setting up and taking
down botnets,” in 2011 3rd International Conference on Cyber Conflict, pp. 1–14, June 2011.

[13] Netmarketshare, “Desktop operating system market share.” available at: https://www.

netmarketshare.com/operating-system-market-share.aspx. Last accessed: 2015-04-15.

[14] A. Javed and M. Akhlaq, “Patterns in malware designed for data espionage and backdoor cre-
ation,” in Applied Sciences and Technology (IBCAST), 2015 12th International Bhurban Conference
on, pp. 338–342, Jan 2015.

[15] E. Alomari, S. Manickam, B. B. Gupta, P. Singh, and M. Anbar, “Design, deployment and use
of http-based botnet (hbb) testbed,” in 16th International Conference on Advanced Communica-
tion Technology, pp. 1265–1269, Feb 2014.

[16] W. Peng, G. Qingping, S. Huijuan, and T. Xiaoyi, “A guess to detect the downloader-
like programs,” in Distributed Computing and Applications to Business Engineering and Science
(DCABES), 2010 Ninth International Symposium on, pp. 458–461, Aug 2010.

[17] W. Tsaur, “Strengthening digital rights management using a new driver-hidden rootkit,” Con-
sumer Electronics, IEEE Transactions on, vol. 58, pp. 479–483, May 2012.

[18] L. Hu, T. Li, N. Xie, and J. Hu, “False positive elimination in intrusion detection based on
clustering,” in Fuzzy Systems and Knowledge Discovery (FSKD), 2015 12th International Confer-
ence on, pp. 519–523, Aug 2015.

[19] M. Ramilli and M. Prandini, “Always the same, never the same,” IEEE Security Privacy, vol. 8,
pp. 73–75, March 2010.

[20] S. Ravi, N. Balakrishnan, and B. Venkatesh, “Behavior-based malware analysis using profile
hidden markov models,” in Security and Cryptography (SECRYPT), 2013 International Confer-
ence on, pp. 1–12, July 2013.

[21] A. Moser, C. Kruegel, and E. Kirda, “Limits of static analysis for malware detection,” in Com-
puter Security Applications Conference, 2007. ACSAC 2007. Twenty-Third Annual, pp. 421–430,
Dec 2007.

[22] B.-D. Yoon and O. N. Garcia, “Cognitive activities and support in debugging,” in Human
Interaction with Complex Systems, 1998. Proceedings., Fourth Annual Symposium on, pp. 160–169,
Mar 1998.

[23] M. Zolotukhin and T. Hamalainen, “Detection of zero-day malware based on the analysis
of opcode sequences,” in Consumer Communications and Networking Conference (CCNC), 2014
IEEE 11th, pp. 386–391, Jan 2014.

[24] K. Yoshioka, Y. Hosobuchi, T. Orii, and T. Matsumoto, “Vulnerability in public malware sand-
box analysis systems,” in Applications and the Internet (SAINT), 2010 10th IEEE/IPSJ Interna-
tional Symposium on, pp. 265–268, July 2010.

[25] A. Albertini, “Portable executable 101, version 1.” http://corkami.googlecode.com/files/
PE101-v1.pdf. Last accessed: 2015-01-28.

[26] Microsoft, “Microsoft portable executable and common object file format specifica-
tion, revision 8.3. 2013.” available at: http://download.microsoft.com/download/9/c/5/

9c5b2167-8017-4bae-9fde-d599bac8184a/pecoff_v83.docx. Last accessed: 2015-02-15.

References 69

[27] Microsoft, “Resource types.” available at: msdn.microsoft.com/en-us/library/windows/

desktop/ms648009(v=vs.85).aspx. Last accessed: 2015-02-15.

[28] M. Franz, “Dynamic linking of software components,” Computer, vol. 30, pp. 74–81, Mar 1997.

[29] Microsoft, “Dynamic-link libraries.” available at: https://msdn.microsoft.com/en-us/

library/windows/desktop/ms682589(v=vs.85).aspx. Last accessed: 2015-03-31.

[30] J. Smith and R. Nair, “The architecture of virtual machines,” Computer, vol. 38, pp. 32–38, May
2005.

[31] Z. Xiao, W. Song, and Q. Chen, “Dynamic resource allocation using virtual machines for
cloud computing environment,” Parallel and Distributed Systems, IEEE Transactions on, vol. 24,
pp. 1107–1117, June 2013.

[32] WMware, “Using snapshots to manage virtual machines.” available at: http:

//pubs.vmware.com/vsphere-60/topic/com.vmware.vsphere.vm_admin.doc/

GUID-CA948C69-7F58-4519-AEB1-739545EA94E5.html. Last accessed: 2015-02-16.

[33] Sandboxie Holdings, “How it works.” available at: http://www.sandboxie.com/index.php?
HowItWorks. Last accessed: 2015-02-16.

[34] C. Willems, T. Holz, and F. Freiling, “Toward automated dynamic malware analysis using
cwsandbox,” Security Privacy, IEEE, vol. 5, pp. 32–39, March 2007.

[35] WMware, “Vmware tools components.” available at: https://pubs.vmware.com/

vsphere-4-esx-vcenter/index.jsp?topic=/com.vmware.vsphere.vmadmin.doc_41/vsp_

vm_guide/installing_and_upgrading_vmware_tools/c_vmware_tools_components.html.
Last accessed: 2015-05-17.

[36] B. Mariani, “Inline hooking in windows.” available at: https://www.htbridge.com/blog/

inline_hooking_in_windows.html. Last accessed: 2015-03-29.

[37] B. Bill, The Rootkit Arsenal. Burlington, VT: Jones & Bartlett learning, 2 ed., 2013.

[38] Microsoft, “User mode and kernel mode.” available at: https://msdn.microsoft.com/

en-us/library/windows/hardware/ff554836(v=vs.85).aspx. Last accessed: 2015-03-29.

[39] A. Singh and Z. Bu, “Hot knives through butter: Evading file-based sandboxes,” in Black Hat,
USA, 2013.

[40] Z. Balazs, “Malware analysis sandbox testing methodology,” in Botconf, France, 2015.

[41] Y. Gao, Z. Lu, and Y. Luo, “Survey on malware anti-analysis,” in Intelligent Control and Infor-
mation Processing (ICICIP), 2014 Fifth International Conference on, pp. 270–275, Aug 2014.

[42] M. Vasilescu, L. Gheorghe, and N. Tapus, “Practical malware analysis based on sandboxing,”
in 2014 RoEduNet Conference 13th Edition: Networking in Education and Research Joint Event
RENAM 8th Conference, pp. 1–6, Sept 2014.

[43] Kaspersky Lab, “What is a trojan virus? - definition.” available at: https://usa.kaspersky.
com/internet-security-center/threats/trojans. Last accessed: 2015-04-19.

[44] Kaspersky Lab, “What is beta bot? - definition.” available at: http://usa.kaspersky.com/
internet-security-center/definitions/beta-bot. Last accessed: 2015-02-23.

70 References

[45] Symantec, “Trojan.betabot.” available at: https://www.symantec.com/security_response/
writeup.jsp?docid=2013-022516-2352-99. Last accessed: 2015-02-23.

[46] Department of Homeland Security, “Daily open source infrastructure report 23 septem-
ber 2013.” https://www.dhs.gov/sites/default/files/publications/nppd/ip/

daily-report/dhs-daily-report-2013-09-23.pdf. Last accessed: 2015-02-23.

[47] J. M. Butler, “Finding hidden threats by decrypting ssl,” in SANS Analyst Whitepaper, 2013.

[48] I. Firdausi, C. lim, A. Erwin, and A. S. Nugroho, “Analysis of machine learning techniques
used in behavior-based malware detection,” in Advances in Computing, Control and Telecom-
munication Technologies (ACT), 2010 Second International Conference on, pp. 201–203, Dec 2010.

Appendix A
Test case simplicity-efficiency score

Table A.1: Timing category

Simplicity Efficiency Total score
1 3 0 0
2 3 4 12
3 2 6 12
4 2 4 8
5 2 6 12
6 2 0 0
7 3 4 12
8 2 10 20
9 3 10 30
10 2 10 20

Table A.2: Process category

Simplicity Efficiency Total score
1 2 0 0
2 2 4 8
3 2 6 12
4 1 2 2
5 3 4 12
6 3 0 0
7 3 0 0
8 2 10 20
9 2 0 0
10 3 0 0

71

72 Test case simplicity-efficiency score

Table A.3: Files category

Simplicity Efficiency Total score
1 2 0 0
2 1 4 4
3 2 2 4
4 3 0 0
5 2 4 8
6 1 6 6

Table A.4: Environment category

Simplicity Efficiency Total score
1 3 2 6
2 3 10 30
3 3 8 24
4 3 6 18
5 3 0 0
6 2 6 12
7 2 6 12
8 2 4 8
9 3 0 0
10 3 8 24
11 1 0 0
12 3 2 6
13 2 6 12
14 2 0 0
15 2 0 0
16 2 0 0

Test case simplicity-efficiency score 73

Table A.5: Hardware category

Simplicity Efficiency Total score
1 2 8 16
2 3 4 12
3 3 6 18
4 1 4 4
5 1 6 6
6 3 6 18
7 2 2 4
8 2 0 0
9 2 10 20
10 2 0 0
11 3 8 24
12 3 2 6
13 3 10 30

Table A.6: Network category

Simplicity Efficiency Total score
1 2 10 20
2 2 0 0
3 1 2 2
4 2 6 12
5 1 6 6
6 1 8 8
7 2 6 12
8 3 0 0
9 3 8 24
10 1 0 0
11 2 10 20
12 2 8 16
13 1 6 6

74 Test case simplicity-efficiency score

Table A.7: Interactive category

Simplicity Efficiency Total score
1 3 0 0
2 3 2 6
3 2 0 0
4 2 6 12
5 1 8 8
6 3 10 30
7 3 8 24
8 1 10 10
9 3 0 0

