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Abstract 

This paper deploys methodology typically utilized in financial econometrics, namely 

univariate and multivariate GARCH-M forecasting techniques, as inputs into the Black-

Litterman asset allocation process.  While previous works have examined the usefulness in 

deploying select GARCH specifications as a source for the required Black-Litterman views 

vector, to the best of our knowledge, this is the first such work comparing the effects of select 

GARCH specification on asset allocation volatility.  This paper draws parallels with Beach 

and Orlov (2007) and Duqi, Franci, and Torluccio (2014) in finding improved portfolio 

financial performance after the incorporation of GARCH-derived views relative to market 

equilibrium weighting.  Financial performance is further improved with the incorporation of 

the multivariate DCC models.  While this increase in performance is accompanied by an 

increase in asset allocation instability, the multivariate portfolios provide a better return-to-

risk relationship for the associated degree of allocation volatility. In both the univariate and 

multivariate specifications the more simple GARCH(1,1) provides superior performance 

relative to the asymmetric GJR model. 
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1 Introduction 

 

Previous research confirms many desirable benefits associated with portfolio 

rebalancing.  Financial markets are incredibly dynamic and a portfolio should be periodically 

adjusted to ensure its risk and return characteristics remain within desired limits as well as to 

ensure the portfolio has not become too concentrated.  In reality these adjustments are costly 

and can quickly reduce the returns of a portfolio.  As later included results will highlight, 

failing to include transaction costs in any allocation strategy, particularly with a volatile 

weight structure, can prove disastrous for the financial performance of the portfolio.   

Traditional portfolio allocation has often been described in a Markowitz framework, where an 

investor seeks to maximize the relationship between risk and return in the assembled 

portfolio.  While this approach is theoretically sound and provides the backbone for Modern 

Portfolio Theory, the model has been criticized outside academia.  Typically passed through a 

numerical optimizer, the Markowitz results often present extreme corner solutions and highly 

unstable weights.  In the context of the following investigation these properties may be 

responsible for large transaction costs, which when included in overall portfolio performance 

may heavily penalize the portfolio return. 

The Black-Litterman approach, later presented in section 3.2, helps mitigate these above 

mentioned negative attributes.  By relying heavily on an equilibrium reference model when 

blending information sets, the model mutes much of the heavy fluctuation in portfolio 

allocation.  As the included literature demonstrates, establishing an appropriate set of supplied 

views has been a primary challenge in Black-Litterman research.  Previous authors have 

investigated the use of volatility forecasting GARCH models for the formulation of investor 

supplied views.  The models selected have demonstrably better financial performance when 

compared with solitary reliance on the reference model, indicating their potential financial 

usefulness. This paper furthers research into the incorporation of GARCH derived views 

through the inclusion of GARCH specifications not previously investigated. The inclusion of 

the DCC multivariate and GJR univariate specifications further distinguish this work from 

previous inquiries and contributes to the growing body of Black-Litterman research. 
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This paper examines asset allocation volatility and financial performance during the 

incorporation of increasingly complex GARCH structures in the context of the Black-

Litterman asset allocation methodology.  Of primary interest is the intersection between 

financial performance and allocation stability.  While the simple GARCH(1,1) outperforms 

the asymmetric GJR specification in both the univariate and multivariate frameworks, there is 

a clear financial benefit associated with the inclusion of a full uncertainty matrix as observed 

in the Sharpe Ratio associated with the multivariate specifications.  However, following the 

incorporation of ex-post transaction costs the univariate GARCH(1,1) provides the best 

financial performance relative to allocation volatility.  The inability of the asymmetrical 

GARCH specification to outperform the simple GARCH(1,1) in either framework echoes 

previous research where forecasting benefits of incorporating asymmetry has been mixed; in 

some studies statistically insignificant or negligible. 

As previous research has largely focused on US equities, this paper examines a subset of UK 

FTSE 100 assets.  The portfolio assembled is designed so as to loosely represent the primary 

industry sectors within the index.  The inclusion of one of the world’s most commonly 

followed indices, valued in the fourth most traded currency, further broadens the available 

Black-Litterman literature. 

 

2 Traditional Portfolio Formulation 

 

The following segments in Section 2 introduce the foundations of modern portfolio allocation 

literature before presenting the more relevant associated drawbacks, spurring the search for 

alternative strategies. The influential Capital Asset Pricing Model is included for later use in 

the formation of the optimal Black-Litterman portfolios. Lastly, this section highlights the 

beneficial and negative effects associated with portfolio rebalancing, which will be influential 

in the results and analysis portion of this paper.  The following section provides a background 

for the introduction of the Black-Litterman methodology presented in Section 3. 

  



7 

 

2.1 Modern Portfolio Theory 

 

Introduced in 1952 by economist Harry Markowitz, Modern Portfolio Theory (or mean-

variance analysis) suggests investors should assemble portfolios designed to maximize return 

for a given level of risk or to minimize risk for a specified level of return.  In this context, risk 

is defined as the variance of returns.  The distinguishing feature in the original Markowitz 

approach was the linkage between asset return and risk; neither should be considered in 

solitude and should be examined as to how the individual asset’s risk-to-return characteristics 

match the assembled portfolio (Markowitz, 1952). 

The Markowitz model assumes investors are risk averse and must be compensated for holding 

risky assets.  Thus a rational agent would not hold an asset if another exists with an identical 

return and lower variance or equal variance and a higher return.  The final assembled portfolio 

return is then a weighted combination of individual asset returns, while portfolio volatility is 

influenced by asset correlations and overall portfolio volatility can be reduced through 

diversification (Markowitz, 1952). 

2.2 Markowitz Limitations 

 

The Markowitz mean-variance optimization methodology is associated with highly unstable 

portfolio weights, leading to large and frequent adjustments in portfolio asset allocation, as is 

observed in Figure 1 (Kourtis, 2015).  According to Kourtis, portfolio returns may be severely 

penalized by high allocation volatility stemming from the high transaction costs incurred by 

excessive rebalancing.  Additionally, the typical mean-variance allocation methods are found 

lacking in regard to portfolio rebalancing as they do not account for the original portfolio 

composition, changes in funding, nor most influential for the inquiry at hand: transaction costs 

(Glen, 2011). Additional methods employed to reduce the frequency and costs associated with 

rebalancing have been proposed, including: portfolio drift constrained within bounds, 

diversification at country or sector level and lastly weight selection representing a trade-off 

between capitalization weighting and equal weighting (Bouchey, Nemtchinov, Paulsen and 

Stein, 2012). 
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Figure 2.1. Evolution of portfolio allocation when no constraints are placed upon CAPM 

Historically popular in academia, The Markowitz model has encountered implementation 

difficulties in practice (Zhou, 2009).  He and Litterman (1999) highlight the previously 

introduced weaknesses associated with mean-variance portfolio allocation.  The traditional 

Markowitz approach is associated with extreme swings in portfolio weights based on slight 

adjustments in expected returns as well as asset weighting contrary to even the most strongly 

maintained views (Bevan and Winkelmann, 1998).  Fusai and Roncoroni (2008) highlight the 

tendency for mean-variance optimization to more heavily allocate towards assets which yield 

sizeable expected returns, a low degree of variance, and low correlation.  DeMiguel and 

Nogales (2009) find the traditional mean-variance allocation based on sample mean and 

covariances to perform poorly out of sample.  The Black-Litterman model helps alleviate 

these drawbacks, while the study presented will examine whether these benefits can be further 

strengthened through the inclusion of objective, computational return and volatility forecasts 

based on historical data.   

The formation of large long and short positions as well as many zero positions with the 

introduction of zero short selling are two additional pitfalls in the common mean-variance 

optimization (Idzorek, 2004; Zhou, 2009).  As a further drawback, portfolio managers in 

reality often specialize in a smaller subset of the overall market whereas the Markowitz 

approach requires expected returns for all assets in the market.  Traditional asset allocation 

methods also have greater difficulty incorporating specific, profitable investment 

strategies.  Lastly, portfolio managers tend to think of assets in terms of portfolio weightings 

as opposed to the explicit risk-return trade-off of mean-variance Markowitz optimization (He 

and Litterman, 1999).  In summary, He and Litterman provide the following explanation for 
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the lack of broad mean-variance optimization support in a practical setting; “In practice most 

managers find that the effort required to specify expected returns and constraints that lead to 

reasonable answers does not lead to a commensurate benefit.” (He and Litterman, 1999 p.3). 

2.3 Previous Research into Portfolio Allocation Stability 

 

DeMiguel and Nogales (2009) highlight research into minimum-variance portfolios, those that 

ignore the mean altogether. Merton (1980) documented the difficulty in estimating mean 

returns.  In general, this largely stems from the estimation error size of the sample mean being 

much larger than that of the sample covariance; Jagannathan and Ma (2003) argue the 

estimation error in the mean is so severe that the mean could be excluded in entirety.  Such a 

methodology has typically outperformed the mean-variance out of sample.  In their study, 

DeMiguel and Nogales suggest utilizing robust estimators in an attempt to alleviate this 

sensitivity in the mean-variance allocation.  The paper demonstrates a reduction in weight 

sensitivity to fluctuations in asset-return distributions relative to standard mean-variance 

portfolios.  The mean-variance however remains more volatile than the typical minimum-

variance portfolio. 

Further, DeMiguel and Nogales cite the efficiency lost in the maximum likelihood estimation, 

where the normality assumption is voided as the actual data distribution departs slightly from 

this assumption.  As return distributions are typically not normal, they denote the particular 

importance of distributional assumptions in managing portfolios.  The paper suggests robust 

estimators are able to provide useful information regarding return series when the sample 

distribution differs from the distribution assumed, typically a normal distribution.  

Zhang and Maringer (2009) suggest a clustering technique to improve portfolio performance 

and increase allocation stability.  The authors note the higher Sharpe Ratio
1
 of the cluster 

portfolio relative to the non-clustering process.  The procedure additionally reduces the issues 

associated with estimation errors on the assembled portfolios.  Michaud (1989) on the other 

hand advances resampling in an effort to reduce portfolio sensitivity to estimation errors and 

increase asset weight stability. Later research by master's student Kohli (2005) echoes 

                                                 
1
 The Sharpe Ratio is a measure of reward relative to volatility. For further information, see Sharpe (1966). 
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Michaud’s findings regarding weight stability but does not encounter a performance 

benefit.  In summary, the resampling technique eliminates extreme and poorly diversified 

portfolios by means of an averaging process, inducing stability (Fusai and Roncoroni, 2008). 

Perret-Gentil and Victoria-Feser (2003) advocate robust estimation in place of the standard 

sample mean and variance.  The stability benefits are particularly evident in the presence of 

model misspecification, whereby an ill-suited distribution is chosen for the return 

process.  The large deviation between robust and non-robust optimizer results often stem from 

a small number of outlier returns. 

2.4 The Capital Asset Pricing Model 

 

The well-known Capital Asset Pricing Model or CAPM, provides a theoretical model for 

determining the return on an asset.  The model accounts for asset specific, non-diversifiable 

risk, the expected return on the market, as well as a risk-free asset.  The included risk-free 

return compensates investors for the time-value of money while the risk measure 𝛽 

determines the degree of compensation considering the risk associated with the asset relative 

to that of the market portfolio.  The investor will only be compensated for this additional, 

unsystematic risk that cannot be diversified away through portfolio composition.  Provided 

one works with generally accepted concave utility functions, CAPM is theoretically sound in 

that investors must be compensated for holding additional risk.  

CAPM makes a number of assumptions of varying degrees of plausibility. For use in the 

reverse optimization of equilibrium excess returns performed in Section 3.2, the following 

CAPM assumption is introduced: complete agreement.  Given a vector of specified market 

clearing asset prices, agents must agree on the joint distribution of asset returns from this 

period to the next.  This assumption entails that any market portfolio must be on the 

minimum-variance frontier if the market is to clear all positions (Fama and French, 2004). 
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Additionally, CAPM assumes investors are only concerned with the asset returns and 

variances, the first two moments.  The model additionally assumes zero transaction costs, 

which in the context of this study will be of particular interest.  CAPM then presents the 

individual asset return as singularly determined by the asset 𝛽 or how the asset covaries with 

the variance of the market.  One of the most commonly encountered formulations is presented 

below, providing an asset’s appropriate required expected return. 

 

𝐸(𝑅𝑖) = 𝑅𝑓 + 𝛽𝑖(𝐸(𝑅𝑚) − 𝑅𝑓)               (2.1) 

 

The above equation represents the relation between expected return and risk which must hold 

if the market is in equilibrium.  While the above model is widely taught, it has been met with 

criticism in empirical studies.  One such criticism is the impossibility of finding an actual 

market portfolio, as theoretically this should encompass all available assets. Additionally, 

according to CAPM, the only meaningful measure of risk is the above 𝛽, which captures 

relaative asset volatility (Fama and French, 2004). 

CAPM is based on equilibrium properties.  In this study it has been assumed that the market is 

in equilibrium and the market portfolio is the sum of each weight in a stock divided by the 

total value of all stocks in the market portfolio.  Provided all participants agree, a previously 

mentioned CAPM assumption, the market portfolio is the optimal portfolio.  In Section 6.3 

this study relies on CAPM theory to reverse optimize a series of implied equilibrium excess 

returns.  In this instance, the risks and market capitalized weights are taken as given. From 

this information the excess return required for an investor to hold the market-capital weighted 

portfolio is determined. By doing this, it is assumed the portfolio lies on the SML (Shapiro, 

n.d.). 

More recent research has cast additional doubt on basic CAPM results.  Fama and French 

(1992) find the linear beta relationship may break down in short periods and during the period 

1963 - 1990 variations in 𝛽 do not fully explain divergences in asset performance.   The 

inclusion of additional price ratio variables has been found significant in explaining asset 

returns, indicating a 𝛽 which does not capture all risk effects.  This result alone has been 



12 

 

argued to nullify CAPM.  In general, CAPM’s many restrictive assumptions are not 

representative of reality.  However, few theoretically sound alternatives have been 

explored.  Additionally, previous tests have largely been tests of proxy efficiency rather than 

CAPM itself, often referred to as the joint hypothesis problem (Fama and French, 2004). 

2.5 Portfolio Rebalancing 

 

While portfolio rebalancing does incur different types of fees associated with each change in 

relative asset allocation, as assets are bought and sold according to bid-ask spreads and other 

transaction costs, maintaining the original portfolio without the aforementioned adjustments is 

likely less desirable.  These fees may be flat, fixed or proportional to the size of the trade 

(Holden and Holden, 2013).  As expected future growth rates remain a mystery and must be 

predicted, concentrations may accumulate in the portfolio leading to poor future performance 

(Bouchey, Nemtchinov, Paulsen and Stein, 2012). The authors further state the diversification 

benefits of rebalancing. Upon inception, a buy-and-hold strategy may be well diversified, 

though through time the portfolio may become more concentrated owing to drifting asset 

values.  The poor performance of capitalization weighted indices in comparison to other well-

known diversification strategies such as equal weighting, minimum variance, mean-variance 

fundamental weighting, and others could stem from a lack of rebalancing (Bouchey et al., 

2012).   

In the end, diversification and portfolio rebalancing is associated with a number of desirable 

outcomes: a reduction in concentration risk, volatility and downside risk; as well as an 

increase of the portfolio’s long-term growth rate (Bouchey et al., 2012).   The process of 

portfolio rebalancing, while beneficial, is not costless and investors should take into account 

these transaction cost when rebalancing their portfolio (Brodie, Daubechies, De Mol, 

Giannona and Loris, 2008). Bouchey et al. caution that in scenarios in which transaction costs 

are high, these benefits may be eroded away.  In Section 7, the negative effects of transaction 

costs associated with rebalancing will be examined in accordance with the proposed 

specification of the Black-Litterman methodology presented in Equation 3.1.  
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2.6 Portfolio Transaction Costs 

 

The above mentioned necessary portfolio adjustments may incur considerable transaction fees 

and their negative effects on portfolio returns may be significant (Feng, Medo, Zhang and 

Zhang, 2010).  While in the real world these transaction fees produce very real factors 

mitigating investor profits, they are largely ignored in the literature or simplified as a 

proportion of the asset value which is then subtracted from the portfolio return (Glen, 2011). 

The incorporation of transaction costs is crucial in any meaningful portfolio optimization 

(Mitchell and Braun, 2013).  Traditionally these costs have later been included in the mean-

variance framework by including proportional transaction costs (Kourtis, 2015).   

While neither of these methods is close to reality, the second is at best a poor approximation 

as in actuality, these incurred transaction costs lead to an attrition in portfolio value rather 

than limiting individual asset returns (Glen, 2011).  Mitchell and Braun suggest a similar 

procedure and rescale funds accessible for investment after transaction costs have been 

accounted for, representing the reduction in principle associated with the transaction. 

Barber and Odean (2000) specifically examines the effects of frequent trading on individual 

investor portfolio returns.  They determine a severe penalty for actively altering portfolio 

composition in individual investors.  The paper finds evidence supporting overconfidence to 

influence exaggerated trading.  Barber and Odean note an annualized return difference 

between those households that trade frequently and those that do not of 7.1 percent.  In the 

presence of transaction costs, the households studied significantly underperformed the 

included benchmark; as a result of frequent trading rather than portfolio 

composition.  Further, an average transaction cost of roughly 1.5 percent is proposed. 

While portfolio rebalancing in an effort to maintain a certain risk structure is advantageous 

according to Barber and Odean, the authors determine this not to be a primary reasoning for 

trading within the study.  The degree of turnover encountered does not support a rebalancing 

approach based upon desired risk characteristics (Barber and Odean, 2000). 
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The above results the authors note closely mimic research performed in mutual 

funds.  Compared with an index fund, the typical mutual fund tends to underperform in the 

same time period (Jensen, 1969; Malkiel, 1995).  The paper further highlights the greater 

consequences inflicted upon individual investors, facing higher proportional commission 

costs as a result of a smaller trade size. 

Alternative means of limiting transaction costs have been proposed.  Clark and Mulready 

(2007) propose a turnover constraint.  They describe turnover as the sum of the absolute value 

of position adjustments between time periods.  The authors note the difficulty in modeling 

transaction costs, as they may be influenced by the magnitude of the trade, the type of the 

asset involved and other considerations. Clark and Mulready further emphasize that, despite 

the difficulty of incorporation, transaction costs should be included in the asset allocation 

decision process. 

3 The Black-Litterman Model 

 

The following Black-Litterman section of the paper begins with the rationale and logic behind 

the development of the Black-Litterman methodology. The Black-Litterman model is then 

presented in detail along with two of the more challenging aspects of its implementation. A 

detailed description of the necessary variable calculations is included before transitioning into 

supporting literature. Finally, the inclusion of proposed GARCH based volatility forecasts 

into the Black-Litterman framework is described. 

3.1 Introduction & Rationale 

 

In response to the above discussed shortcomings associated with the implementation of 

Modern Portfolio Theory, Fischer Black and Robert Litterman introduced their Black-

Litterman model in 1990.   
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“The Black-Litterman asset allocation model, created by Fischer Black and Robert Litterman, 

is a sophisticated portfolio construction method that overcomes the problem of unintuitive, 

highly-concentrated portfolios, input-sensitivity, and estimation error maximization. These 

three related and well-documented problems with mean-variance optimization are the most 

likely reasons that more practitioners do not use the Markowitz paradigm, in which return is 

maximized for a given level of risk.” (Idzorek, 2004 p.1) 

Since its introduction, the Black-Litterman methodology has become widely used and remains 

very flexible, providing asset returns and optimal weights (He and Litterman, 1999). 

The Black-Litterman model incorporates a number of methods and theories from finance and 

asset allocation.  For instance, the previously discussed CAPM from Section 2.4 is utilized in 

establishing the equilibrium reference model.  The primary logic underlying the Black-

Litterman model is as follows: investors should take risks where they hold positive views and 

the scale of these positions should be proportional to the certainty surrounding the supplied 

views (Bevan and Winkelmann, 1998).  The Black-Litterman model is thus a model which 

merges a series of neutral reference returns and investor supplied views (Zhou, 2009).   

The original methodology presented relied on Theil’s mixed estimation technique
2
 rather than 

the Bayesian rule due to simplicity. Bayes methodology estimates parameters by mixing 

complete prior data and partial conditional data (Walters 2014).  A primary strength of the 

Black-Litterman model is evident in the presence of a benchmark, beta or risk constraint, or 

other forms of constraints.  In these situations the weights are less intuitive though the trade-

off between risk and return is still operating in the presence of these imposed constraints (He 

and Litterman, 1999). 

3.2 Black-Litterman Methodology Walkthrough 

 

According to Walters, the Black-Litterman methodology follows the subsequent process: 

selection of the assets to be included, computation of the historical covariance matrix, 

determination of the market-capitalization weights of each asset, reverse optimization of 

                                                 
2
 Theil’s mixed estimation technique blends prior and sample information together using a scalar measure. For more 

information, see Theil (1963) 
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implied equilibrium excess returns, calculation of the Black-Litterman expected return, 

provision of the previous expected return vector to a mean-variance optimization routine, and 

lastly selection of the efficient portfolio allocation according to the desired level of risk. The 

Black-Litterman model thus melds historical data and those views supplied by the user. This 

amalgamation of the two information sets is then used to derive an ideal asset allocation 

within the portfolio.  

The Black-Litterman expected returns are presented below according to Idzorek’s 

presentation in his 2004 work, “A Step-by-Step Guide to the Black-Litterman Model.” 

 

𝐸[𝑅] = [(τΣ)−1 + 𝑃′Ω−1𝑃]−1[(τΣ)−1Π + 𝑃′Ω−1𝑄]              (3.1) 

 

𝐸[𝑅] = Black-Litterman posterior combined return vector (𝑁 𝑥 1) 

τ = a scalar often referred to as the weight on views when combined with the Ω helps 

determine the relative weighting between the equilibrium implied excess returns and the 

views supplied 

Σ = covariance matrix of excess returns (𝑁 𝑥 𝑁) 

𝑃 = pick matrix identifying which asset for which views will be supplied (𝐾 𝑥 𝑁) 

Ω = matrix of uncertainties surrounding the views expressed as variances (𝑁 𝑥 𝑁) 

Π = implied equilibrium excess return vector (𝑁 𝑥 1) 

𝑄 = vector of supplied views (𝐾 𝑥 1) 

The above Black-Litterman expected return vector E[R] can be thought of as a weighted sum 

of the equilibrium implied excess return vector and the views vector (Idzorek, 2004).  The 

greater the return associated with the view vector, the greater the weighting shift towards the 

supplied view.  The use of reverse optimization for the implied equilibrium excess returns 
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from historical data provides for a more stable return series (Beach and Orlov, 2007).  This 

new return series, synthesized from investor supplied views and the reference model, is then 

provided to a mean-variance optimization procedure to determine the new asset allocation 

weights; incorporating the investor’s outlook and the assets held (Meucci, 2010). 

The model begins with a vector of implied equilibrium excess returns, typically represented as 

Π in most specifications of the Black-Litterman expected returns formula.  The user then 

supplies the views vector representing individual views regarding particular assets included in 

the portfolio.  Where views are held, the Black-Litterman portfolio allocation will deviate 

from the equilibrium reference weights (He and Litterman, 1999).  This utilization of implied 

excess returns from an equilibrium model helps reduce portfolio allocation fluctuations due to 

shifts in expected return forecast (Satchell and Scowcroft, 2000).  Chopra and Ziemba (1993) 

highlight the importance of mean returns, emphasizing the greater significance in mean 

estimation errors relative to those in covariance estimation.  The authors further suggest a 

model not heavily reliant in individual mean forecasts, for example an equilibrium 

model.  The equilibrium returns are formulated below through CAPM theory, representing all 

information available in the capital markets (Bevan and Winkelmann, 1998).  In the Black-

Litterman methodology, CAPM equilibrium will provide the prior distribution and the views 

the conditional distribution.  The reference model contains assumptions about which variables 

are random and begins with the assumption of normally distributed returns (Walters, 2014). 

 

Π = λΣ𝑤𝑚𝑘𝑡                (3.2) 

 

Π = implied equilibrium excess return vector (𝑁 𝑥 1) 

λ = a risk aversion parameter, according to He and Litterman (1999) a value of 2.5 

would correspond to average world-wide risk tolerance 

Σ = covariance matrix of excess returns (𝑁 𝑥 𝑁) 

𝑤𝑚𝑘𝑡 = market capitalization weights of the assets (𝑁 𝑥 1) 
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Reverse optimization on the market portfolio yields the implied excess equilibrium 

returns.  In order to work backwards towards these implied equilibrium returns one must 

make the following assumptions: markets are in equilibrium and a representative investor 

should hold some proportion of the global capitalization-weighted portfolio (Bevan and 

Winkelmann, 1998).  As mentioned above, with these assumptions it is possible to move 

recursively from observed market-capitalization weights. Da and Jagannathan (2005) suggest 

calculating market capitalization weights from the market values of the selected assets, which 

this study adheres to. 

The scalar 𝜏, along with the uncertainty matrix Ω, provide a greater degree of difficulty in 

their determination.  Adjustments to the value of 𝜏 can be used to calibrate the Black-

Litterman results.  Lower values indicate less confidence in the supplied views (Beach and 

Orlov, 2007).   

The vector of supplied views, usually denoted by Q or V in the Black-Litterman expected 

returns formula, is where investors are able to supply their own views regarding the assets 

held. Were the manager to supply no views, the Black-Litterman result would exactly mimic 

the reference model portfolio weights (He and Litterman, 1999).  The Black-Litterman 

methodology provides a new series of expected returns which are then used in the 

determination of an optimal portfolio allocation incorporating the investor’s individual views 

weighted by volatilities and correlations across the assets included.  These views may be 

subjective or determined from statistical data (Walters, 2014).  This paper additionally 

assumes a value in the application of statistically derived views. This study employs absolute 

views for all assets provided by select GARCH-M processes, further described in Section 4.2. 

Where views are held, the new Black-Litterman portfolio will deviate from the reference 

model with the magnitude of the deviations tempered based upon the confidence in the 

supplied views.  Through correlations in the included multivariate structures presented in 

Section 4.3, these views on asset returns will affect the returns of all assets in the 

portfolio.  The Black-Litterman methodology is capable of incorporating subjective, relative, 

and conflicting views on future expected asset returns. 
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The uncertainty matrix Ω measures the degree of confidence in the supplied view or a 

measure of variance in the views (Zhou, 2009).  Two primary assumptions in the original 

Black-Litterman methodology, independence and non-correlation in the supplied views, lead 

to the formation of a diagonal matrix.  However, according to Duqi, Franci and Torluccio 

(2014) these assumptions are not mandatory.  In this study. GARCH models used for 

forecasting one-step-ahead views and uncertainties are incorporated with increasing 

complexity.  While two specifications in this paper, the standard GARCH(1,1) and GJR, 

adhere to the original model’s assumption of diagonality. The last models included, those with 

dynamic conditional correlations, break this relationship.  While not diagonal, the full 

variance-covariance matrix more closely mimics reality in that views should not be expected 

to be entirely uncorrelated. 

This uncertainty matrix aids in the determination of the degree by which the Black-Litterman 

expected returns vector deviates from the equilibrium implied excess returns.  The uncertainty 

matrix should be inversely proportional to the manager's confidence in the supplied views.  A 

variety of methodologies for determining the uncertainty matrix have been employed: prior 

variance, confidence intervals, residual factor models, and the Idzorek methodology.  The 

uncertainty matrix has been one of the more difficult and theoretically challenging 

components of the Black-Litterman model utilization (Walters, 2014).  

Next, the covariance matrix of excess returns is discussed, estimated in order to determine the 

volatility of the capitalization-weighted portfolio.  The matrix is most often represented by Σ. 

Typically the matrix is estimated from the most frequently available data and scaled up, often 

with exponential weighting (Walters, 2014).  According to the methodology of Goldman-

Sachs, volatilities and correlations are calculated with the weighted average of daily squared 

returns (Bevan and Winkelmann, 2005).  The covariance matrix is combined with the market 

capitalization weights, determining the volatility of the capitalization-weighted 

portfolio.  According to Idzorek, users should incorporate the best available estimate for the 

formation of the matrix of excess returns.  As such, this paper selects an Exponentially 

Weighted Moving Average (EWMA) process for the estimation of the covariance matrix and 

market returns. 
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The so called pick matrix, denoted by P in the Idzorek depiction of the Black-Litterman 

expected returns formula and most others, is used to select those assets for which views will 

be supplied.  Depending on the manner of the view supplied, the row sum will vary.  A row 

sum of 1.0 indicates an asset for which an absolute view will be supplied while a sum of 0.0 

indicates a relative view. This occurs when one asset is expected to outperform another. In 

this case, the outperforming asset would receive a +1.0 while the underperforming asset 

receives -1.0. In summation the two cancel. There is no requirement that a view must be 

specified for each asset nor, as specified previously, that views are not in conflict (Idzorek, 

2004). 

3.3 Black-Litterman Methodology Limitations 

 

In the above described model found in Equation 3.1, the views vector (V or Q) and the 

uncertainty matrix Ω typically provide the most difficulty for researchers and practitioners.  A 

number of studies have been performed in an attempt to provide some degree of tractability to 

these variables.  

Beach and Orlov (2007) and Duqi et al. (2014) both investigate the applicability of statistical 

techniques in generating the utilized investor views.  Both works suggest utilization of 

statistical results may be superior to employing subjective views as GARCH models are able 

to incorporate many of the stylized aspects of asset returns, namely: volatility clustering, 

excess kurtosis, asymmetry, mean reversion, autocorrelation in risk, time-varying volatility, 

leverage effects, and others.  These stylistic attributes will be discussed in greater detail in 

Section 4.1.  Both of the above-mentioned works conclude the asymmetric EGARCH-M
3
 

specification to outperform models utilizing a symmetrical dynamic conditional variance 

process.    

  

                                                 
3
 The Exponential GARCH is an asymmetrical GARCH model. For further information, see Nelson (1991). 
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3.4 Black-Litterman Existing Literature  

 

As two primary sources of inspiration, Beach and Orlov and Duqi et al. investigate the 

benefits of incorporating a GARCH-M process in the formulation of the supplied views vector 

and uncertainty matrix in the Black-Litterman methodology.  Beach and Orlov deployed an 

EGARCH-M specification with additional regressors and encountered portfolio performance 

surpassing portfolios solely reliant on the implied equilibrium excess return and the 

Markowitz allocation.  The authors argue the potential advantage of relying on statistical 

models for the views supplied rather than subjective expectations.   

In further investigation, Beach and Orlov find an increase in financial performance as 

measured by the Sharpe Ratio as the value of 𝜏 is increased.  The adjustment in 𝜏 leads to a 

larger proportional weighting in the EGARCH-M derived inputs in the blending of the two 

information sets.  They suggest the parameter could be used as a risk-adjustment factor 

whereby by 𝜏 is altered until a portfolio with the desired risk characteristics is formed.  The 

authors argue this process is superior to optimization in the presence of constraints.  Their 

result finds impressive performance for this risk-reduced Black-Litterman allocation. 

Additionally, Duqi, et al. highlight their similar development of the Black-Litterman literature 

through the incorporation of similar EGARCH-M derived volatility forecasts with additional 

regressors as an input in determining investor views.  They find the included additional 

regressors useful in explaining asset volatility dynamics.  Duqi et al. concludes with findings 

supporting an increase in financial performance as the portfolio leans more heavily towards 

the EGARCH-M derived views vector.  The authors similarly extoll the benefits of employing 

computational views, citing a lack of any model capable of explaining investor views.  The 

research emphasizes the use of a diagonal structure on the uncertainty matrix though states the 

assumption is not mandatory. 

Duqi et al. (2014) additionally cite the subjectiveness of 𝜏.  The paper, as above mentioned, 

mirrors results from Beach and Orlov (2007), finding additional financial performance as 

weight is shifted towards the supplied views, through the inclusion of a larger 𝜏 value. More 

confidence in the implied equilibrium excess return, accomplished with a smaller value of 𝜏 is 

associated with a decrease in the Sharpe Ratio.  The authors argue for a 𝜏-value lower than 1.0 
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as the uncertainty around average returns is lower than that of a single stock.  The study calls 

attention to the large difference between the historical covariance matrix and the estimated. 

In additional Black-Litterman research, Fernandes, Ornelas, and Cusicanqui (2011), find 

strong support for the use of resampling techniques in improving standard Black-Litterman 

results. The authors cite two primary benefits stemming from the incorporation of resampling: 

greater diversification with smoother transitions and fewer sudden swings in allocations.  A 

result this paper concurrently finds.  The methodology they advise is capable of blending any 

views source.  Their investigation on three dimensions: financial performance, allocation 

stability, and diversification provided a foundation for the analysis in Section 7.  

Zhou (2009) in “Letting the Data Speak” further developed the Black-Litterman methodology 

by incorporating Bayesian learning; exploiting all available information.  The innovation 

provided lies in the linkage between the Black-Litterman model, quantitative asset return 

models and the wealth of Bayesian decision making findings.  The paper melds equilibrium 

literature with asset research to form a Bayesian prior which is then combined with a prior 

reflecting the future evolution of the market. 

Simonian and Davis (2011) and Giacometti, Bertochi, Rachel, and Fabozzi (2007) investigate 

robust methods for model misspecifications and more realistic asset return distributions 

respectively.  Simonian and Davis recommend a robust approach, deploying multiple priors 

around a selected mean excess return and covariance matrix.  The presented methodology 

incorporates the possibility of model misspecification and builds upon standard bootstrap
4
 

approaches.  Meanwhile, Giacometti et al. further develop the Black-Litterman methodology 

by incorporating more realistic asset return models: normal, t-student, and stable 

distributions.  In addition to these distribution inquiries the authors include additional risk 

measures.   

Additionally, Palomba (2008) follows a similar procedure involving a VAR process 

employing the multivariate FDCC
5
. The proposed procedure provides a model for tactical 

asset allocation utilizing multivariate GARCH estimates.  

                                                 
4 Bootstrapping is a method of resampling. For further information, see Efron (1979). 

5
 Flexible Dynamic Conditional Correlations model. For additional information, see Billio, Caporin and Gobbo (2006). 
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While investigating Markov-Regime-Switching GARCH
6
 (MRS-GARCH) models, Wang 

(2010) demonstrates the specification’s usefulness when supplied as the Black-Litterman 

model views vector.   During the study, the applied specification provides exceptional returns 

based on the data analyzed and the portfolio management techniques employed.  The paper 

finds support for the superiority of the MRS-GARCH derived views over the equilibrium 

implied excess returns and EGARCH-M supplied views. 

The above review is presented to highlight recent additional research into the Black-Litterman 

methodology.  As the model continues to increase in popularity, additional research is 

required to ensure optimal usage.  

3.5 Incorporating MGARCH-M Derived Views 

 

As highlighted in Section 3.2, investor supplied views are of critical importance in 

determining the benefits of the Black-Litterman asset allocation methodology.  Any 

examination of Black-Litterman results is also an examination of the supplied views (Beach 

and Orlov, 2007).  The authors determine the utilized EGARCH-M specification allows for 

significant advantages, with greater weight on the supplied views providing greater returns 

(Beach and Orlov, 2007).  These benefits, in the form of a higher Sharpe Ratio, are 

diminished as the value of 𝜏 is reduced; indicating a lower degree of confidence around the 

supplied views.  Duqi et al. also extol the expository benefits of deploying statistically derived 

investor views.  Schulmerich (2015) emphasizes the supplied views may stem from 

quantitative models, fundamental analysis or blind belief. 

This paper differs from previous research in its use of the GARCH specification in examining 

the relationship between the financial performance and allocation stability of the assembled 

portfolios.  Rather than a direct interest in accurate forecasting, this study examines the effects 

of GARCH supplied views and uncertainties on the risk-to-return relationship relative to the 

degree of asset weight stability.  As such, the accuracy of the GARCH forecast is not a central 

concern, as a very accurate forecast could lead to greater weight fluctuation which would not 

necessarily be offset by the increase in return.  These asset weight fluctuations must be 

                                                 
6
 MRS-GARCH, a multivariate model, allows for volatility shifts in discrete time. See Dueker (1997). 
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considered alongside the risk-to-return properties of the portfolio.  The reduction in portfolio 

allocation fluctuations must not come at the price of significantly lower returns. Figure 3.1 

presented below demonstrates the stabilizing effect provided by the Black-Litterman methodology 

where no views are provided. This constrasts sharply with the graph presented in Figure 2.1. 

Figure 3.1. Evolution of asset allocations where no views are supplied 

4 Econometric Volatility Models 

 

As described in Section 3.5, the presented study will meld the discussed Black-Litterman 

methodology with investor views and uncertainties supplied by univariate and multivariate 

GARCH-M specifications.  The following section presents the evolution of the necessary 

volatility forecasting techniques deployed in the study.  A summary of the stylized attributes 

associated with asset return volatility is first presented. 

4.1 Stylized Volatility Attributes 

 

In order to be suitable for forecasting, a desired model must be able to integrate a variety of 

stylistics patterns exhibited by financial data (Engle and Patton, 2000; Poon and Granger, 

2003).  These behaviors include: asymmetrical innovations, mean-reversion tendencies, 

persistence in volatility, and the ability of letting exogenous variables influence volatility.  As 

volatility models are largely utilized in the forecasting of future volatilities, the ability to 

incorporate these tendencies is paramount (Engle and Patton, 2000). 
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Traditional volatility models had previously assumed conditional volatility to be equally 

affected by positive and negative errors, that is; shocks impact the volatility forecast 

symmetrically.  However, a leverage effect originally examined by Black (1976), has been 

documented in subsequent research; Christie (1982), Nelson (1991), Glosten et al (1993) and 

Engle and Ng (1993) for example.   

This suggests evidence supporting the inclusion of asymmetric effects, it is however possible 

that no leverage effect exists and that positive and negative shocks equally affect the 

conditional forecast.  The popularity and support of the GARCH(1,1), which is incapable of 

incorporating a leverage effect, lends credence to this line of reasoning (Engle and Patton, 

2000).  The GARCH(1,1) is included in this study due to its simplicity and popularity. In 

1987, Bollerslev argued the GARCH(1,1) is often sufficient as it adequately fits time series 

data. 

Mean-reversion in the volatility process implies that volatility has some long-term mean from 

which the forecast may stray but will return to in time. This ensures that long-term volatility 

forecasts converge to some specific level (Engle and Patton, 2000). 

Volatility clustering in the return series, or persistence, was first posited by Mandelbrot 

(1963).  Such clustering implies that large swings in volatility are followed by additional large 

swings while smaller movements in volatility are succeeded by additional smaller 

movements (Engle and Patton, 2000).   

Additionally, the ability of a model deployed in forecasting volatility to incorporate 

exogenous variables is a desirable attribute, as these exogenous variables may influence time-

series volatility.  Engle and Patton emphasize that it would be most unusual for financial 

assets to be unaffected by movements in the markets. 

The existence of excess kurtosis, or heavy tails, is a well-known attribute of financial asset 

returns.  With empirical findings supporting a kurtosis from four to fifty, the normality 

assumption regarding the innovations process may be weak (Engle and Patton, 2000; Poon 

and Granger, 2003). 
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In their work, Poon and Granger hypothesize that a GARCH model will forecast well in some 

periods and in others perform poorly.  The determining component in the performance is the 

perturbations in the underlying variables. 

4.2 Univariate Volatility Models 

4.2.1 Autoregressive Conditional Heteroscedasticy 

 

The ARCH or “Autoregressive Conditional Heteroscedasticity” model was introduced in an 

attempt to address the dubious assumption of a constant one-period-ahead forecast of 

conditional variance, which had been employed in previous econometric work (Engle, 1982). 

An ARCH process is serially uncorrelated with dynamic conditional variance, constant 

unconditional variance, and an expected value of zero.  Information regarding the one-period 

forecast variance is provided in the recent past. 

 

𝜀𝑡 = 𝜎𝑡𝑧𝑡 

 

In the above formulation, 𝑧𝑡 is a white noise process. 

The ARCH(𝑞) specification is demonstrated subsequently: 

 

𝜎𝑡
2 = 𝛼0 + 𝑎1𝜀𝑡−1

2 + ⋯ + 𝑎𝑞𝜀𝑡−𝑞
2 = 𝛼0 = ∑ 𝑎𝑖𝜀𝑡−𝑖

2𝑞
𝑖=1               (4.1) 

 

Where 𝛼0 > 0 and 𝑎1 ≥ 0, 𝑖 > 0. 
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The ability of the ARCH process to provide accurate volatility forecasts does vary between 

periods, though for econometric use it does exhibit attractive features (Engle, 

1982).  According to Bollerslev (1986), one such feature is the model’s ability to permit the 

conditional variance to adjust through time as a function of past error terms.  Further 

advancements in the field of volatility forecasting such as GARCH are discussed below. 

4.2.2 ARCH-In-Mean 

 

Engle, Lilien, and Robins (1987) further developed the ARCH literature with the inclusion of 

the conditional variance as a determinant in the mean equation, introducing the ARCH-M.  In 

this specification, fluctuations in conditional variance directly affect the expected asset return. 

The ARCH-M model is given by: 

 

𝑦𝑡|Ψ𝑡−1~𝑁(𝑥𝑡
′𝛽 + 𝛿𝜎𝑡

2, 𝜎𝑡
2)               (4.2) 

 

Where 𝑦𝑡 represents the conditional return, Ψ denotes the information available up until time 

𝑡 − 1 and 𝑥𝑡
′ is a vector of explanatory variables. 

The above structure breaches the block-diagonality between the conditional variance 

parameters and the conditional mean, requiring the two sets to be estimated in unison to attain 

asymptotic efficiency.  In a similar manner, non-linear functions of the conditional variance 

may also be incorporated into the conditional mean equation (Bollerslev, 2008). 
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4.2.3 Generalized Autoregressive Conditional Heteroscedasticity 

 

Bollerslev (1986) extended the ARCH framework into a model of “Generalized 

Autoregressive Conditional Heteroscedasticity” (GARCH), where a more suitable lag 

structure is proposed. 

The GARCH(𝑝, 𝑞) is presented below. 

 

𝜀|Ψ𝑡−1~𝑁(0, 𝜎𝑡) 

 

𝜎𝑡
2 = 𝛼0 + ∑ 𝑎𝑖𝜀𝑡−𝑖

2𝑞
𝑖=1 + ∑ 𝛽𝑖𝜎𝑡−𝑖

2𝑝
𝑖=1                (4.3) 

 

Where 𝑝 ≥ 0, 𝑞 > 0, 𝛼0 > 0,  𝑎𝑖 ≥ 0, 𝑖 = 1, … , 𝑝 and 𝛽𝑖 ≥ 0, 𝑖 = 1, … , 𝑞. 

The innovation process 𝜀𝑡 is dependent on the information set Ψ which contains all 

information of volatility up to time 𝑡 − 1. 

The primary distinguishing feature moving from the ARCH to the GARCH specification is 

the ability of the GARCH model to assimilate lagged conditional variance into the model.  In 

contrast, the ARCH model assumes the conditional variance to be a linear function of past 

variances. 
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This study includes the GARCH(1,1) specification as one method for forecasting the diagonal 

elements in the correlation family of multivariate GARCH models which will be presented in 

Section 4.3.  The GARCH(1,1) is provided below. 

𝜎𝑡
2 = 𝛼0 + 𝑎1𝜀𝑡−1

2 + 𝛽1𝜎𝑡−1
2               (4.4) 

 

Where 𝛼0 > 0,  𝑎1 ≥ 0, 𝛽1 ≥ 0 (Bollerslev, 1986). 

4.2.4 GARCH-In-Mean 

 

Engle and Bollerslev (1986) further evolved the GARCH framework, developing a model 

similar to the ARCH-M. The introduced “GARCH-in-mean” (GARCH-M) includes a 

simultaneously estimated mean equation as was included in the ARCH-M presented in 4.2.2.  

 

𝑅𝑡 = 𝑎 + 𝑏𝜎𝑡
2 + 𝜀𝑡               (4.5) 

 

In the above equation the conditional variance 𝜎𝑡
2 is introduced into the formulation of the 

conditional mean, 𝑅𝑡 (Nelson, 1991).  The connection between the conditional variance and 

conditional mean is crucial for the selected methodology, as this equation will yield the 

expected returns supplied as investor held views to the Black-Litterman model.  A similar 

conditional mean specification will be included for each GARCH model deployed. 

The GARCH-M model has been used previously under varying conditions in an attempt to 

evaluate return volatility and its effect upon the expected return. Below a selection of 

GARCH-M research literature is presented.  

Brewer, Carson, Elyasiani, Mansur and Scott (2007) use the GARCH-M model on monthly 

stock returns of life insurers while investigating interest rate sensitivity. They apply the model 

in assessing how insurer stock returns depend on the feedback effect between returns and 
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volatility.  The paper suggests a negative parameter value for the variance is theoretically hard 

to justify, while a value of zero is often found in the banking sector as well as others. This 

finding reduces the GARCH-M to an ordinary GARCH(1,1), implying a lack of evidence 

supporting a feedback effect between asset return and volatility. 

Devaney (2001) applies the GARCH-M to real estate investment trusts data in an attempt to 

assess the return generating process. The study finds the conditional variance parameter may 

differ heavily between periods, dependent upon the period characteristics, be they tranquil or 

volatile. 

Elyasiani and Mansur (1998), like Brewer et al., investigate the relation between volatility of 

bank returns and the interest rate, employing the same GARCH-M model. Elyasiani and 

Mansur argue that the GARCH-M model satisfies important criteria and aids in the mitigation 

of important problems, including: estimation errors and bias, heteroscedasticity, as well as 

incorporating time variations in the volatility.  Furthermore, they stipulate the importance of 

incorporation of the mean equation. By doing so, the GARCH-M model portrays the vital 

connection between volatility and expected returns.  Neuberger (1994) highlights the appeal 

of the inclusion of volatility into the mean equation.  As investors are not indifferent towards 

volatility, fluctuations in the dispersion of stock returns should influence the risk premium 

required by investors (Elyasiani and Mansur, 1998).  As return volatility fluctuates more 

heavily today than previously, the rationale behind the inclusion of a volatility term in the 

mean equation is strengthened.  This argument is even more apparent in those sectors which 

are highly leveraged (Elyasiani and Mansur, 1998). 

Elyasiniani and Mansur argue the utilization of the GARCH-M over the standard GARCH 

specification provides two primary advantages. Firstly, the GARCH-M process nests both 

ARCH and GARCH and is thus able to test for both the ARCH and GARCH effects as well as 

the additional influence in the mean equation. Additionally, the GARCH-M allows for the 

feedback effect of volatility to be captured in the expected return equation. This is opposed to 

the standard GARCH in which it is implicitly held constant during the sample 

period.   Should the volatility parameter be significant, both the volatility and the mean 

equation may differ between calm and turbulent periods. This intuitive feature is essential in 

forecasting accuracy, as the arbitrary assumption that volatility does not influence the return 

series may be distortive.  The results of Elyasiani & Mansur (1998) lend support to suitability 
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of the GARCH-M, as they indicate the importance of the volatility process in determining the 

expected stock return in the bank sector. 

Deploying the GARCH(2,2)-M model, Galido and Khanser (2013) investigate how market 

returns are affected by natural disasters. While they fail to discover such a link, the authors 

argue that the GARCH(2,2)-M model does appear a good fit for similar research. 

In their 2000 work, Grier and Perry employ a GARCH-M specification in a nested hypothesis 

test.  The authors examine four hypotheses; estimating the conditional means, variances, and 

covariances in inflation and output growth, investigating effects of real and nominal 

uncertainty on average inflations and output growth. They conclude the GARCH-M to be a 

good fit for the included tests. 

Panait and Slavescu (2012) make use of the GARCH-M model on the Romanian stock 

market, comparing the volatility structure of different trading frequencies. In their research, 

the GARCH-M was unable to confirm a link between increasing volatility and higher returns. 

This lack of confirmation may lie in the statistical insignificance of the volatility parameter 

during the sample period. Additionally, their results show the GARCH-M to better fit the 

weekly and monthly data as opposed to the more frequent daily data. The authors argue that 

the use of the GARCH-M model is appropriate as expected return is correlated with market 

risk and thus variance should be incorporated in the mean equation. 

Lastly, while investigating the Istanbul stock market for evidence of a risk-return-volume 

relationship, Salman (2002) utilizes the now familiar GARCH-M. His findings indicate a 

tenacious daily return volatility, varying over time. 
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4.2.5 GJR 

 

Developed through the work of Glosten, Jagannathan and Runkle (1993), the GJR model was 

designed to incorporate seasonal volatility patterns and asymmetry.  While these aspects allow 

for a model similar to the also popular EGARCH, the GJR model does differ in its 

construction, with a GJR(1,1) given by 

 

𝜎𝑡
2 = 𝜔 + 𝛼𝜀𝑡−1

2 + 𝛾𝜀𝑡−1
2 𝐼(𝜀𝑡−1 < 0) + 𝛽𝜎𝑡−1

2               (4.6) 

 

With 𝜔 > 0, 𝛼 ≥ 0, 𝛽 ≥ 0 and 𝐼(. ) denoting the indicator function which equals one when 

𝜀𝑡−1 is negative and zero otherwise. 

The GJR model stresses the importance of the leverage effect by including a leverage 

parameter in its specification; implying in theory a suitability for forecasting (Ramasamy and 

Munisamy, 2012).  In the above specification, the parameter γ is the determinant of the 

leverage effect.  The time t conditional variance will be higher (lower) following a positive 

(negative) shock if the γ parameter is positive (negative) (Fornari and Mele, 1996).  In a 

typical study, γ is found to be positive when estimating the GJR model. This finding would 

indicate that volatility is increasing to a lower degree following positive innovations relative 

to negative, indicating the presence of a leverage effect (Bollerslev, 2008).   

While research into the model has provided mixed results, Engle and Ng (1993) find the GJR 

superior in explain asymmetries in stock returns.  Fornari and Mele find the performance of 

the GJR specification to vary greatly as a function of the specific country examined.  

In graduate studies work, Jiang (2012) also examines the performance of a selection of 

GARCH models: GARCH, EGARCH, and GJR.  While the results are mixed, the paper 

concludes that different varieties of the GJR specification outperform the others included the 

study.  While forecasting Value-At-Risk, Su, Huang and Lin (2011) find the GJR 
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specification to be well suited.  However, the GARCH-M was also included and performed 

well, suggesting an absence of a leverage effect in their study. 

Additional research has uncovered even weaker support for asymmetric GARCH 

models.  Ramasamy and Munisamy (2012) examine the performance of the GARCH, 

EGARCH, and GJR models, and were unable to determine the most effective model in 

estimating exchange rate dynamics.  The study concludes that the incorporation of the 

leverage effect, found in the EGARCH and GJR specifications, does not substantially 

improve the results. Although they do conclude the GJR does outperform the EGARCH 

specification.   

Villar (2010) also explores the GJR specification.  He argues the parameter restrictions, 

necessary to satisfy finite kurtosis, too heavily constrain the ability of the GJR to capture the 

leverage effects.  In this regard, the EGARCH provides more flexibility. Despite the 

popularity of the GJR model in empirical studies, the specification lacks the flexibility 

required to capture the financial return asymmetry. 

In forecasting volatility, Brownlees, Engle, and Kelly (2011) find one-step-ahead volatility 

forecasts to function accurately during the recent financial crisis.  The paper cited the 

strengths of a simple asymmetric GARCH specification, the TGARCH
7
, and suggested 

frequent re-estimation with long-sample sizes. 

4.3 Multivariate Volatility Models 

4.3.1 Multivariate Rationale 

 

The late 1980s ushered in the development of the multivariate GARCH (MGARCH) 

specifications, with significant progress made from the late 1990s onwards (Bauwens, Laurent 

and Rombouts, 2006). 

Bauwens et al. argue for the deployment of multivariate volatility models.  The authors cite 

the more or less established fact that financial asset volatility does not fluctuate independent 

                                                 
7
 Threshold GARCH. See Zakoian (1994). 
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of other assets.  This points to the usefulness of the multivariate approach of explicitly 

incorporating a multivariate framework when considering volatility rather than employing 

separate univariate volatility specifications for individual assets.  The integration of the 

multivariate structure should improve portfolio decision making and composition. 

The use of a multivariate volatility specification can provide the user with rich information 

sets when investigating the dynamics of multiple assets.  The multivariate model demonstrates 

how volatility in one asset or asset class moves in relation to the volatilities in the other assets 

and if the effect is direct (by conditional variances) or indirect (through conditional 

covariances).  The manner and magnitude by which shocks in one market affect other markets 

can be witnessed.  Additionally, the static or dynamic structure of the covariances can be 

captured.  The above benefits are gained through the utilization of a multivariate framework 

(Bauwens, Laurent and Rombouts, 2006). 

There are currently three primary approaches to the incorporation of a multivariate volatility 

framework: direct generalization of univariate models, such as Diagonal VEC and BEKK, 

linear combinations of univariate models, such as; Factor GARCH and Principal Component 

GARCH, and lastly; nonlinear combinations of univariate models, such as CCC (Constant 

Conditional Correlation)  and DCC (Dynamic Conditional Correlation)  (Lin, 2006). 

The primary drawback to the deployment of the multivariate GARCH framework lies in its 

complexity.  The models require the estimation of a large number of parameters which 

become increasingly difficult to estimate as the number of assets is increased.  While this is a 

common issue in handling multivariate time-series, the process becomes even more difficult 

when including GARCH models as the conditional variance matrix must be inverted in the 

Gaussian likelihood-based estimation procedures.  The primary means of circumventing this 

problem has been to constrain the model structure or other estimation criteria or to forcibly 

reduce the number of parameters required for estimation (Francq and Zakoian, 2014). 

In 1990, Bollerslev proposed the CCC model to help alleviate this estimation problem without 

constraining or hampering the model. This specification and its extension, the DCC model by 

Engle (2002), are estimated through a two-step procedure. The first stage consists of 

univariate GARCH estimation, obtaining the conditional variances for the diagonal, while the 
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second stage utilizes the standardized residuals from the first stage in the estimation of the 

off-diagonal correlations (Francq and Zakoian, 2014). 

Clements, Scott, and Silvennoinen (2015) find the properties of the CCC model well suited 

for periods of market tranquility, particularly when operating with large portfolios.  Although 

the CCC model is intuitively appealing, the restriction of the conditional correlations to a 

constant has been found empirically to be too restrictive (Silvennoinen and Teräsvirta, 2009), 

shifting this study’s focus towards the dynamic conditional correlations model  

4.3.2 Constant Conditional Correlation Model 

 

While this study employs the DCC framework developed by Engle (2002), itself an extension 

on the earlier work of Bollerslev (1990), the foundational CCC is presented below for 

completeness.  In this formulation of the MGARCH model the diagonal of the covariance 

matrix follows a univariate GARCH while the off-diagonal elements are obtained by 

multiplying the conditional standard deviations of the asset returns by a constant correlation 

coefficient (Bollerslev, 1990). 

The CCC model is given by: 

𝐻𝑡 = 𝐷𝑡𝑅𝐷𝑡 = (𝜌𝑖𝑗√𝜎𝑖𝑖𝑡
2 𝜎𝑗𝑗𝑡

2 )               (4.7) 

with  

𝐷𝑡 = 𝑑𝑖𝑎𝑔{𝜎11𝑡  … 𝜎𝑁𝑁𝑡} 

 

and 𝜎𝑖𝑖𝑡
2  is specified by any univariate GARCH process. And finally, 

 

𝑅 = (𝜌𝑖𝑗) 
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is a positive definite matrix with 𝜌𝑖𝑖 = 1, ∀𝑖. 

In the CCC model, 𝑅 is the matrix containing the constant conditional correlations, 𝜌𝑖𝑗 

(Bollerslev, 1990; Bauwens et al., 2006). 

4.3.3 Dynamic Conditional Correlation Model 

 

Engle (2002) further developed upon the CCC model by allowing the conditional covariances 

to be time-varying. The DCC is defined as follows: 

𝐻𝑡 = 𝐷𝑡𝑅𝑡𝐷𝑡                (4.8) 

where  

𝑅𝑡 = 𝑑𝑖𝑎𝑔(𝑞11,𝑡

−
1

2 … 𝑞𝑁𝑁,𝑡

−
1

2 )𝑄𝑡𝑑𝑖𝑎𝑔(𝑞11,𝑡

−
1

2 … 𝑞𝑁𝑁,𝑡

−
1

2 ) 

 

And the symmetric positive definite matrix 𝑄𝑡 = (𝑞𝑖𝑗,𝑡) process is: 

 

𝑄𝑡 = (1 − 𝛼 − 𝛽)𝑄̅ + 𝛼𝑢𝑡−1𝑢𝑡−1
′ + 𝛽𝑄𝑡−1              (4.9) 

 

with  𝑢𝑖𝑡 = 𝜀𝑖𝑡/𝜎𝑖𝑖𝑡 (Bauwens et al., 2006). 

The CCC of Bollerslev and the DCC of Engle differ only in the behavior of 𝑅𝑡. In the DCC, 

the matrix of conditional correlations is permitted to vary over time (Engle, 2002). 
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The matrix 𝑄𝑡 is converted to a matrix of correlations. An unfortunate necessity, in order to 

ensure the positive definiteness of 𝑅𝑡, is the restriction that all conditional correlations follow 

the same dynamics through the scalars 𝛼 and 𝛽 (Bauwens et al., 2006). 

The primary advantage of deploying the DCC stems from its estimation flexibility.  In 

contrast to other MGARCH models, correlations models, such as the DCC, can be estimated 

through a two-stage procedure. Bauwens et al. argue that the flexibility in the conditional 

correlation structure allows for the use of more advanced univariate GARCH models in the 

estimation of conditional volatility. This way, the number of parameters needed to be 

estimated is greatly reduced (Engle, 2002).  Engle shows that the DCC usually performs well 

despite its relative simplicity, beating the other models of interest in estimation precision.  

This method allows for the estimation and forecasting of very large covariance matrices. 

The two-step estimator is found to be both consistent and asymptotically normal. 

Additionally, ensuring the positive definiteness of the covariance matrix is trivial as it only 

requires the same restrictions as the univariate GARCH (Engle and Sheppard, 2001). 

Laurent, Rombouts and Violante (2009) rank selected multivariate models based on their 

prediction of out-of-sample conditional covariance matrices. The authors conclude the DCC-

GARCH(1,1) and DCC-GJR to outperform almost all other models, with the exception of the 

CCC counterparts which in their study yielded similar results. 
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5 Data 

 

In the following analysis, ten stocks from the FTSE 100 are selected based on industry sector 

and market capitalization.  Datastream was utilized to collect the price series beginning in 

January 2006 and ending December 2015.  Where the largest asset by market capitalization 

did not have a sufficiently large price series the next largest security based on market 

capitalization was selected.   Thus, ten years of price and market capitalization observations 

are obtained for the following securities: RDS, ULVR, HSBA, REL, GSK, BLT, CRH, VOD, 

NG, ARM.  These assets were then combined to form the market portfolio. 

  Name   RDS ULVR HSBA REL GSK 

  Sector   Oil & Gas Consumer 

Goods 

Financials Consumer 

Services 

Healthcare 

  Name   BLT CRH VOD NG ARM 

  Sector   Basic 

Materials 

Industrials Telecommunications Utilities Technology 

 

Table 5.1. Assets included in the portfolio sorted by industrial category 

 

Before starting the analysis, dates corresponding to UK banking holidays were first 

removed.  If included, these observations would indicate a higher number of zero returns than 

is actually observed as these zero returns indicate a lack of trading rather than an actual zero 

return.  Excess returns are then calculated from the price series where the short term UK 

three-month Treasury bill is used as a proxy for the risk-free rate. 

The included securities were chosen to approximately represent the primary industrial sectors 

of the FTSE 100. Originally this study intended to utilize these sectors in the formation of the 

market portfolio rather than the individual assets, however insufficient was available. In 
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response, the largest assets in each sector with sufficient data were selected as a 

representative. The inclusion of a larger number of assets should not have a significant effect 

as each asset would be included in one of the ten FTSE 100 industrial sectors. By including 

the largest security in each industry the work should capture the largest portion of asset 

dynamics. 

The investigation makes use of a rolling window forecast consisting of 756 days.  Thus the 

window used for estimation contains 1,771 observations.  This corresponds to a roughly seven 

year estimation period and three year forecast.  The relative proportion of estimation period 

and the one-step-ahead forecast length mirrors that of Clements, Scott, and Silvennoinen 

(2015) in their analysis of equicorrelations in portfolio allocation. While distant observation 

may influence and bias estimates, Brownlees et al. (2011) recommend using the longest 

estimation window possible. 

Figure 5.1. Evolution of asset price series during the sample period 
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6 Methodology 

6.1 Maximum Likelihood Estimation 

 

As maximum likelihood is the means by which the previously discussed GARCH models will 

be estimated, a brief introduction to maximum likelihood is necessary.  First introduced by R. 

A. Fisher in 1922, maximum likelihood has become one of the primary tools in statistical 

analysis and will be utilized in the estimation of the necessary GARCH parameters used in the 

rolling forecast (Aldrich, 1997). 

As the GARCH models in question are no longer in a traditional linear form, estimation is 

typically carried out by maximum likelihood.  Conceptually, maximum likelihood estimation 

is a means by which to establish those distributional parameters which maximize the 

likelihood of encountering the observed sample.  This amounts to finding those parameter 

values which are most likely considering the data at hand.  Maximum likelihood estimation is 

typically done by numerical methods rather than by maximization of the function analytically 

as the latter approach becomes more difficult when the model proposed is overparameterized 

or complex. 

The estimation procedure begins by specifying a likelihood function which represents the 

joint probability density of the sample under investigation.  This joint probability density 

function can typically be written as a product of the individual likelihood functions.  As the 

resulting maximization problem would be difficult to solve with respect to the included 

parameters, the logarithm typically is used to transform the previously multiplicative model 

into an additive formulation.  As the transformation is monotonic, the two functions will be 

optimized at the same values.  Below an example of the joint probability density or 

probability mass function of the independent observation sample 𝑦 conditional on 𝑋 is 

presented. 

𝑓(𝑦1, … 𝑦𝑁|𝑋; 𝜃) = ∏ 𝑓(𝑦𝑖|𝑥𝑖; 𝜃)

𝑁

𝑖=1
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With the corresponding likelihood function for the observations being the inverse of the above 

expression. 

𝐿(𝜃|𝑦, 𝑋) = ∏ 𝐿𝑖(𝜃|𝑦𝑖; 𝑥𝑖) = ∏ 𝑓(𝑦𝑖|𝑥𝑖; 𝜃)

𝑁

𝑖=1

𝑁

𝑖=1

 

 

The maximum likelihood estimator for the parameter vector is thus found by the solution to 

the expression below. 

𝑚𝑎𝑥𝜃 log 𝐿(𝜃) = 𝑚𝑎𝑥𝜃 ∑ log 𝐿𝑖(𝜃)

𝑁

𝑖=1

 

 

In theory, the new log-likelihood function is differentiated with respect to the model 

parameters.  In all but the most simple and known cases, this will be done numerically 

whereby an algorithm searches for an optimization.  In the estimation of GARCH models by 

maximum likelihood the possibility of local optima or a solution where the log-likelihood is 

flat around the optimum are known pitfalls. 

As an estimation technique, maximum likelihood is associated with a number of asymptotic 

properties.  Assuming the likelihood function is properly specified, the maximum likelihood 

estimator can be shown under weak regulatory conditions to be consistent, asymptotically 

normal, asymptotically efficient, and asymptotically unbiased. 

The primary drawback associated with maximum likelihood estimation is the necessary 

specification of the functional form of the distribution generating the sample observations. 

While it is conceivable to challenge the normality assumption regarding the errors terms, this 

study will nonetheless employ a normal distribution in the estimation procedure as is 

commonly done.  This decision is supported through Brownlees et al. (2011) who finds no 

additional benefit in utilizing more complex distributional assumptions in place of the typical 

Gaussian in forecasting volatility. 
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6.2 GARCH-M Forecasting 

 

The calculation of the user supplied views vector 𝑄 and the uncertainty matrix Ω is next 

examined.  In the univariate GARCH specifications these inputs are jointly estimated by 

maximum likelihood in R-Studio through the use of the “rugarch” package, while the 

estimation of the full covariance matrix supplied as the uncertainty matrix in the Black-

Litterman multivariate formulation is handled in the “rmgarch” package. Both packages were 

constructed by Alexios Ghalanos.  In each case, a GARCH specification is created and 

supplied to a wrapping function incorporating estimation and the one-step ahead rolling 

forecast.  The views vector in the MGARCH specification is taken from the corresponding 

univariate forecast. As mentioned in Section 5, Brownlees et al. suggest incorporating the 

longest estimation period possible to yields the best results. 

As specified previously, the univariate inquiry includes the standard bearer GARCH(1,1) as 

well as an asymmetric GJR, similar to Beach and Orlov (2007) and Duqi et al. (2014).  The 

variance forecasts are placed into the diagonal uncertainty matrix while the mean forecast is 

inserted into the views column vector. 

The above process is replicated in the multivariate investigation.  The primary difference 

between the univariate and multivariate implementations occurs in the uncertainty 

matrix.  While the aforementioned univariate models more closely mimic the original 

assumption of the Black-Litterman model; that views are independent of one another, this 

study aims to investigate the effects of the inclusion of greater information in the full 

variance-covariance uncertainty matrix.  

The multivariate analysis includes the DCC-GARCH(1,1) and the DCC-GJR.  These two 

specifications are calculated in a two-stage process whereby first a univariate GARCH 

process is estimated for the diagonal and subsequently correlations are modeled on the off-

diagonals.  As mentioned in Section 4.3, the resulting specification is much easier to estimate 

relative to earlier more complex multivariate models.  Though the variance-covariance matrix 

is estimated by a multivariate GARCH process, the supplied views vector remains identical to 

that of the univariate specification. 
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6.3 Black-Litterman Portfolio Allocation 

 

The following section walks through the calculation of the required elements in the Black-

Litterman expected return formula which will later be optimized in the presence of commonly 

imposed constraints.  The analysis begins with the calculation of the market capitalization 

weights.  In this example, each of the ten securities selected to represent the market is taken 

from the FTSE 100; as each asset is presented in a market capitalized form and equally scaled, 

the new market portfolio capitalization will be the sum of the individual asset market 

capitalizations.  With this information, the weighting of each asset can be calculated simply as 

the market capitalization of each individual asset divided by the sum of the individual market 

capitalization. 

The previously presented time series of returns is used to calculate the historical covariance 

matrix, as well as the expected market returns utilized by the CAPM formulation. The 

calculations are done by means of an EWMA model specification formulated in MATLAB
8
 in 

accordance with RiskMetrics, with the optimal decay factor for daily observations set to 

𝜆 =  0.94, as per extensive testing by RiskMetrics (Longerstaey and Spencer, 1996). 

 

𝜇𝑡 = 𝜆𝜇𝑡−1 + (1 − 𝜆)𝑅𝑡−1                (6.1) 

𝜎𝑡
2 = 𝜆𝜎𝑡−1

2 + (1 − 𝜆)𝜀𝑡−1
2                 (6.2) 

𝜎𝑥𝑦𝑡 = 𝜆𝜎𝑥𝑦𝑡−1 + (1 − 𝜆)𝑅𝑥𝑡−1𝑅𝑦𝑡−1               (6.3) 

 

In the above, Equation (6.1) is used to calculate the expected return on the market, (6.2) is 

used to calculate the historical variance, and (6.3) determines the covariances. 

                                                 
8
 All MATLAB code available upon request. 
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The EWMA process ensures that more recent observations hold the most influence in the 

estimation procedure.  This is an appealing property, as those variance-covariances and 

market returns occurring more recently are likely to have greater influence on short term 

projections. The EWMA formulation can also be thought of as a special case of the 

GARCH(1,1) with 𝜔 = 0, 𝛼 = 1 − 𝜆 and 𝛽 = 𝜆 (Bollerslev, 2008). Thus the model is not 

only in line with financial theory but also with the investigation of GARCH processes in the 

Black-Litterman methodology. 

The CAPM portfolio is then calculated using the previously obtained EWMA covariance 

matrix and market return, along with the risk-free rate.  This portfolio will provide the 

benchmark with which to compare the different Black-Litterman portfolios provided by the 

selected GARCH-M forecast models. The CAPM benchmark portfolio then undergoes a 

mean-variance optimization routine created in MATLAB along with the recommended 

constraints.  Additionally, the routine includes those restrictions most common in portfolio 

allocation methodologies: restricting short and leverage positions, and full investment.   

With the EWMA covariance matrix, the implied equilibrium excess returns can be 

ascertained.  This term is found as an analytical solution to the reverse optimization.  It is this 

return vector that provides the large stabilizing benefits associated with the Black-Litterman 

model.  The subsequent investigation will determine whether these benefits may be further 

increased in accordance with a number of GARCH specifications. 

With all required Black-Litterman variables determined, Equation 3.1 is utilized. The 

resulting synthesis, reliant on the two information sets, then yields a vector of Black-

Litterman expected returns. 

The resulting expected return vector is then placed into the above described mean-variance 

optimization routine, along with the recommended constraints, resulting in an optimal Black-

Litterman portfolio allocation.  The resulting portfolios are then analyzed and compared 

against one another and the CAPM benchmark portfolio.  In this body of research, special 

focus will remain on weight fluctuations across time in each GARCH specification; both the 

frequency and magnitude of the deviation will be examined.  Assumptions are made on the 

transaction cost structure which allows for consideration of the long-term financial effects of 
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portfolio rebalancing.  Additionally, these allocation fluctuations are compared with the 

financial performance of the portfolio in question. 

7 Results & Analysis 

7.1 Portfolio Allocation and Stability Analysis 

 

Figure 7.1. Evolution of CAPM asset allocation within the portfolio after imposing commonly utilized constraints 

The above figure demonstrates the evolution of the optimal portfolio allocation over the 756 

day rolling forecast period in accordance with CAPM.  Common limitations of Markowitz 

mean-variance optimization can be observed.  The recommended allocations are typically 

non-diversified, exhibiting large weights in a single asset; a corner solution.  In addition, as 

expected, asset weights are highly volatile. 

After visually demonstrating two of the more common drawbacks associated with mean-

variance optimization, the selected GARCH models are next presented.  The following 

section moves through each GARCH specification in increasing complexity. 
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Figure 7.2. Evolution of Black-Litterman allocation with GARCH(1,1)-derived views 

The GARCH-M is first presented.  As can be observed in the area graph above, the Black-

Litterman methodology with GARCH-M derived views provides a significant reduction in 

weight volatility relative to the previously presented CAPM allocation.  As can be seen in 

each of the following area graphs; when compared with the previously presented evolution of 

the portfolio allocation in the absence of views, presented in Figure 2.1. The great stabilizing 

effect stems from the inclusion of the equilibrium implied excess returns. 

Figure 7.3. Evolution of Black-Litterman allocation with GJR-derived views 

Next the asymmetric GJR-M is shown.  A slight increase in allocation volatility can be 

observed. While the GJR provides a more complex GARCH structure, these effects are 

largely muted by the heavy anchoring effects of the implied equilibrium excess return. 
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The following multivariate GARCH specifications exhibit drastically different 

evolutions.  While the weights do still maintain a similar proportion as those in the univariate 

specifications, the increase in allocation volatility is stark.  With the introduction of a 

multivariate framework, covariances are now influential in asset allocation.  The 

incorporation of these multivariate specifications deviates from much of previous research 

where views are assumed to be independent and the uncertainty matrix is diagonal.  This 

paper explores the multivariate framework as in reality views are not likely to be 

independent.  Previously discussed literature has highlighted the intuition that block-

diagonality in the uncertainty matrix is not a mandatory requirement but does simplify the 

implementation. 

Figure 7.4. Evolution of Black-Litterman allocation with DCC-GARCH-derived views 

The above graph of the DCC-GARCH exhibits notable divergences from those of the 

previous univariate models; a dramatic increase in weight volatility.  In accordance with 

previous discussions in Section 2.5, this increase in weight fluctuations would appear a 

drawback when compared with the univariate specifications, especially in the face of very real 

transaction costs.  Before any conclusion is to be made, the financial performance of the 

portfolios put forth must be considered.  The increase in weight volatility need be 

compensated for through increased financial performance. 
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Figure 7.5. Evolution of Black-Litterman allocation with DCC-GJR-derived views 

As anticipated, the DCC-GJR provides an even more volatile allocation evolution.  The 

increased proportion held in VOD is an interesting divergence from the DCC-GARCH. 

In accordance with previous research, the Black-Litterman model has been shown to provide 

a significant increase in weight stability when compared to the CAPM allocation.  The large 

portion of this stability, in accordance with theory, stems from the incorporation of the 

equilibrium implied excess returns as an anchor. 

This paper expands upon previous Black-Litterman research, through the incorporation of 

computational inputs into the Black-Litterman methodology.  While the ability to incorporate 

any information source into the Black-Litterman expected return is advantageous, a search for 

beneficial computation sources adds tractability to the methodology. 

While the findings presented do support previous research by Beach and Orlov (2007), where 

GARCH specified views offer an improvement upon sole reliance on the implied equilibrium 

excess returns, in the sample analyzed the more simple GARCH specification outperforms the 

asymmetric GJR; in both the univariate and multivariate framework. 
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7.2 Financial Performance Analysis 

 

The financial performance of each portfolio is next examined.  As can be seen in the table 

presented below, the daily Sharpe Ratio in the multivariate specifications exceeds those of the 

univariate.  If one assumes that the multivariate specification is more closely linked to reality, 

it would be expected that a better understanding of asset dynamics would lead to better 

financial performance.  While the assets themselves do appear much more volatile, the 

relative weighting between assets appears quite stable.  This trend likely stems from the 

anchoring of the equilibrium implied excess return binding the assets in relation to one 

another.  

Measure CAPM GARCH GJR DCC-GARCH DCC-GJR 

Sharpe 0.0319 0.0059 0.0027 0.0153 0.0140 

Total returns 25.85% 0.91% -1.35% 7.78% 6.76% 

Weight𝚫 168.6522 4.5264 6.4950 7.3126 8.7540 

(Sharpe/Weight𝚫)*100 0.0189 0.1303 0.0416 0.2092 0.1599 

Table 7.1. Comparison of financial performance; observe the increase in performance as the GARCH specifications move from the univariate to the 

multivariate 

Where in the above, WeightΔ is calculated as: 

 

𝑊𝑒𝑖𝑔ℎ𝑡Δ = ∑|(𝑤𝑡 − 𝑤𝑡−1) 𝑤𝑡−1⁄ |               (7.1) 

 

While the above results do not explicitly consider transaction costs, the following section 

hints at the effects of incorporating the loss associated with transaction costs.   
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In order to compare a portfolio's performance relative to the weight fluctuation required to 

achieve said performance, a measure was required.  This paper examines the sum of the 

absolute value of the percentage weight change in each asset per day.  This measure should 

capture how much the portfolio allocation adjusts from day to day.  The sum ensures the total 

fluctuation across the lifetime of the portfolio is captured.  This figure then serves as the 

denominator in a simple ratio with the Sharpe Ratio as the numerator.  The result is then 

multiplied by a factor of 100, solely to aid in relative comparison.  The measure proposed 

then allows for the investigation of the trade-off between financial performance and the 

degree of weight fluctuation required. By examining the portfolio evolution graphs in tandem 

with the portfolio composition evolution, a high weight fluctuation is required for the 

outperformance of the CAPM as indicated by the Sharpe Ratio.  The inclusion of the above 

proposed metric adds richness to the comparison.  The CAPM allocation requires a much 

more unstable weighting in return for its financial performance than each of the GARCH 

models included in the study. 

When transaction costs are considered, a reverse result is noted; whereby by the univariate 

volatility specifications outperform their multivariate counterparts.  These results are only 

displayed for demonstrative benefit.  In reality these costs should be specifically modeled and 

included in the optimization routine.  The following assumes that investors do not at all 

consider transaction costs in the formation and management of the included portfolios, an 

assumption not likely to hold in reality.  These transaction costs are only handled ex-

post.  Additionally, it is assumed these costs operate by reducing the total value of the 

portfolio.  As not a primary inquiry in this research, the actual, direct effects of including 

transaction costs into the optimization routine are left for future research. 

The evolution of portfolio value according to each specification is now presented. In each 

figure the blue line represents the value of the portfolio excluding transaction costs, the raw 

performance, while the red line includes the financial consequences of transaction costs 

associated with the portfolio allocation evolution.  It should again be emphasized that these 

transaction costs are ex-post, where each trade is made regardless of the transaction costs and 

are included merely to show the consequences of excessively fluctuating portfolio allocations. 
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Figure 7.6. CAPM portfolio value evolution; note the drastic decline in value as transaction costs are considered ex-post 

The CAPM portfolio value evolution is particularly telling.  While the CAPM portfolio value 

does exceed that of each GARCH specification at the end of the time period for a 𝜏 value of 

0.05, the difference when considering transaction costs is striking.  The CAPM portfolio 

returns are quickly eroded by excess trading costs; providing a terminal portfolio value close 

to zero. 
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Figure 7.7. GARCH(1,1) portfolio value evolution 

 

Figure 7.8. GJR portfolio value evolution 
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Figure 7.9. DCC-GARCH portfolio value evolution 

 

Figure 7.10. DCC-GJR portfolio value evolution 
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As can be seen in each GARCH specification, the portfolio values reliant on GARCH derived 

views perform poorly in the last third of the forecasted period, subduing overall financial 

performance.  A potential cause of this pattern may be considered upon inclusion of the asset 

price series located in Figure 5.1.  The implied equilibrium excess returns have each portfolio 

heavily weighted in HSBA, BLT, and VOD.  While HSBA performs reasonably well, VOD 

remains highly stable throughout the period and BLT performs poorly in the final third of the 

period.  Additionally, RDS, along with BLT, is also weighted relatively heavily.  The two 

assets, both commodity firms, move almost in tandem. 

In contrast, CRH and ULVR, both lightly weighted based upon the implied equilibrium 

perform well in the last third of the forecast time period.  During this study the implied 

equilibrium provides a strong stabilizing effect; not allowing the portfolios to alter the relative 

weighting to a large degree. 

In further investigation the dramatic effects of changing the value of the parameter 𝜏 is 

observed.  These effects will be further discussed in Section 8. 

The increase in rapidity by which the effects of transaction costs diminish total portfolio value 

moving from the univariate GARCH specifications to the multivariate is further observed. 

The above results and analysis lead to the following observation.  There is an obvious tradeoff 

between the financial performance of an asset allocation strategy and the degree of weight 

instability.  Neither specification for the standard included value of 𝜏 surpasses the financial 

performance of CAPM barring transaction costs. 

8 Discussion & Limitations 

 

This section of the paper will include a discussion of the variable 𝜏, suggestions for future 

research, as well as some limitations in the study presented.  While no specific conclusions 

will be drawn from this section of the paper, the inclusion of the following discussion 

increases the breadth of the study at hand. 
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As previously mentioned, the precise manner by which to specify the parameter 𝜏 has not 

been solidified.  Some specifications such as Meucci (2010) remove the parameter altogether, 

while He and Litterman (1999) recommend a value of 0.05.  Still others argue only for a value 

between 0.0 and 1.0 or a value proportional to the sample size employed.  Walters (2014) 

highlights this disagreement.  In the included specifications there appears to be a decreasing 

marginal benefit for the increase of 𝜏, with only a slight improvement in financial 

performance moving from a 𝜏-value of 7.0 to a 𝜏 of 48.0. 

By increasing the value of 𝜏, an improvement in the financial performance of the portfolios 

under evaluation is noted, as measured by an improved Sharpe Ratio relative to the 𝑊𝑒𝑖𝑔ℎ𝑡∆-

measure; though this increased performance comes at the cost of a decrease in weight 

stability.  Previously presented results are obtained by implementing a 𝜏 equal to 0.05 in line 

with previous research and in accordance with He and Litterman.   

In the Black-Litterman model, the parameter 𝜏 represents a scalar influencing the degree of 

certainty in the supplied views.  The lower the value of 𝜏, the lower the level of confidence in 

the user supplied views; in this study mean and variance forecasts from the selected GARCH 

specifications.  Therefore, a small value of 𝜏 indicates a lack of confidence in the GARCH 

supplied views and a greater reliance on the implied equilibrium excess returns, limiting the 

dynamic influence of the GARCH specifications.   

Future research may include additional regressors in the GARCH specifications.  As specified 

in Duqi et al., (2014) these regressors may include information on the performance of 

currency markets and commodity markets or interest rates.  Those variables which may be 

useful in determining the performance of the market as a whole, such as oil price, may also be 

useful.  Duqi et al., specifically includes the Euro/Dollar exchange rate, WTI (West Texas 

Intermediate) oil price, and the term spread on US Treasuries in their examination of the US 

blue chip assets on the Dow Jones Industrial Index. 

Beach and Orlov (2007) also include additional regressors in their EGARCH-M 

specification.  Their study includes macroeconomic factors that mimic previous multifactor 

inquiries.  These factors include: production growth, inflation, US Dollar index return, 

corporate bond yield premiums, Eurodollar and US T-bill spreads, bond yields, and 

percentage change in the price of oil.  While the inclusion of these variables may aid in the 
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accuracy of forecasted returns, this was never the expressed intent of this paper.  While one 

may expect the results to be largely similar, future research may seek to incorporate similar 

variables relevant to the UK stock market. 

As previously expressed, the accuracy of the specific GARCH forecast was never considered, 

merely their ability to provide a reasonable approximation for future values and to provide a 

financial benefit relative to the increase in asset allocation instability.  Prior research has 

highlighted the difficulty in accurately forecasting financial performance; one of the factors 

influencing the implementation of the Black-Litterman methodology.  For this reason, a 

search for the most accurate means of forecasting was not of specific interest. 

9 Conclusion 

 

This paper supports the notion that more complex volatility models, able to more closely 

mimic reality, may offer potential benefits in portfolio allocation as improvements in financial 

performance moving from the univariate to the multivariate GARCH specifications are 

observed. The results of this study also agree with previous research highlighting the 

persistent relevance of the simple GARCH(1,1). While the incorporation of asymmetries is 

theoretically attractive, in agreement with Ramasamy and Munisamy (2012) this paper finds 

no substantial improvement with the inclusion of the GJR model.  

However, the inclusion of ex-post transaction costs yields a reverse result, whereby the 

simpler univariate specifications outperform their multivariate counterparts. As previously 

extracted from Barber and Odean (2000); increased allocation instability, observed in the 

multivariate uncertainty matrix portfolios, yields a higher transaction cost penalty.  In both the 

univariate and the multivariate frameworks, portfolio performance with the inclusion of 

transaction costs in the manner described in Section 7.2 yields results exceeding the CAPM 

allocation.  These findings should further be tested in a method whereby some model of 

transaction costs is explicitly included in the optimization routine to present a more definitive 

conclusion. 

This study utilized daily rebalancing and parameter re-estimation. While this approach may 

more closely resemble the modern tactical portfolio allocation processes, Panait and Slavescu 
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(2012) show the GARCH-M process better suited to weekly or monthly financial data. The 

use of a less frequent interval would likely influence allocation volatility and portfolio 

performance. 

In the above research it has been shown that the use of the equilibrium implied excess return 

provides the major anchoring force in the stability of the Black-Litterman methodology; in 

line with theory.  As the largest increase in stability stems from the inclusion of the implied 

equilibrium excess return as a reference model, the incorporation of the multivariate 

specification and an explicit cost function may yield better performance compared with the 

univariate specifications. 

As significant previous research has pointed to the ability of various GARCH specifications to 

have some descriptive use in forecasting asset returns and volatilities, this study advocates for 

continued research investigating the GARCH framework and other forecasting techniques 

incorporated into the Black-Litterman methodology.  The strong mediating force of the 

implied equilibrium excess return may alleviate the concern for exact forecasting techniques. 

As previously mentioned, research has highlighted the extreme difficulty in formulating 

accurate forecasting models.  Future additional research should place particular emphasis on 

the value of 𝜏 and how the selection may interact with the forecasting techniques used to 

supply investor views. 
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