LUND UNIVERSITY

School of Economics and Management

Inflation and Inflation Uncertainty in Sweden:
a GARCH Modelling Approach

Anna Akesson
June 3, 2016

Bachelor essay in Statistics (15 ECTS)
Lund University - Department of Statistics

Supervisor: Krzysztof Podgorski



Abstract

This essay investigates inflation and inflation uncertainty in Sweden from
1970:Q1 to 2014:Q4. GARCH models are used to generate a measure of infla-
tion uncertainty estimated under the distributional assumption of Student’s
t-distribution and GED. The preferable model found for Swedish inflation
was a EGARCH(1,1) estimated with Student’s t-distribution. The coeffi-
cient of the asymmetry in the conditional variance of the Swedish inflation
series was found to be negative, thereby implying that a positive shock to the
Swedish inflation leads to less uncertainty about inflation. Relating these re-
sults to the two competing hypotheses about the causal relationship between
inflation and its uncertainty, the results in this essay does not support the
Friedman-Ball hypothesis. With regards to the Cukierman-Meltzer hypoth-
esis, the results seem to support a version of this hypothesis put forward by
Holland (1995), referred to as the ”stabilisation hypothesis”.

Key words: Inflation; Inflation uncertainty; GARCH models; leverage
effects.
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1 Introduction

Inflation brings about higher costs for both the economy and for society as
a whole, one of the most important cost of inflation is that of uncertainty
of future inflation rates, i.e inflation uncertainty. As an example one can
look upon inflation uncertainty as a cause for uncertainty about contractual
payments in the future. For instance, due to inflation uncertainty both em-
ployers and employees will be insecure about the real future value of wages.
Thus uncertainty about future interest rates and other economic variables
may have a negative effect on the economic activity.

From the above reasoning two competing hypotheses on the causal relation-
ship between inflation and inflation uncertainty have emerged. The first hy-
pothesis postulates that inflation causes inflation uncertainty, this was first
suggested by Friedman (1977). Ball (1992) proposed a model in which higher
inflation leads to increasing uncertainty over the monetary policy stance. The
possibility of a negative effect of inflation on inflation uncertainty have been
discussed by Pourgerami and Maskus (1987), who pointed out that in a world
of accelerating inflation agents (e.g. firms and households) may invest more
resources in inflation forecasting, and thereby reducing uncertainty (see also
Ungar and Zilberfarb, 1993). This first hypothesis is usually denoted the
Friedman-Ball hypothesis.

The second hypothesis on the causal relation between inflation and inflation
uncertainty conversely postulates that inflation uncertainty causes inflation.
This hypothesis has been examined by Cukierman and Meltzer (1986) who
claim that when inflation uncertainty increases, it causes high rates of in-
flation. The authors proved that increased uncertainty about money supply
and inflation raises the optimal inflation rate set by policymakers. That is, in
the world of Cukierman and Meltzer (1986) the policymakers exhibits an op-
portunistic behaviour, meaning that they generate surprise inflation for eco-
nomic agents, in order to obtain output gains. The same causality, but with
a negative relationship between variables, was proposed by Holland (1995)
suggesting that in the case of increased inflation uncertainty, the policymaker
has a stabilising behaviour, meaning that they reduce money supply growth
to reduce the negative welfare effects, this is sometimes denoted the ”stabil-
isation hypothesis”. It has been suggested that the stabilising behaviour of
the monetary authorities is related to the level of central bank independence,



in particular the higher the level of central bank independence, the lesser the
rate of inflation (Grier and Perry 1998). The second hypothesis is usually
referred to as the Cukierman-Meltzer hypothesis.

Based on the argument presented above the purpose of this essay is to in-
vestigate inflation and its uncertainty in Sweden using a GARCH-modelling
approach. In particular, the primary purpose is to find an appropriate model
for the inflation series in a GARCH modelling setting allowing for non-normal
errors. The secondary purpose is to relate the results to the two competing
hypotheses of the causal relationship between inflation and inflation uncer-
tainty, the Friedman-Ball and the Cukierman-Meltzer hypotheses, and thus
see in which camp the Swedish inflation series falls. The limitation made in
the empirical study is to solely consider one country, which was in part made
due to data availability and in part due to a desire to delve a bit deeper into
the distributional assumption of the errors without overflowing the reader
with results and tables and it was therefore preferable to focus the study to
one country.

This essay contributes to the empirical literature on inflation and its uncer-
tainty by allowing for non-normal error, which is in contrast to the existing
literature that assumes normal errors for the GARCH model, and the empir-
ical study in this essay did indeed find that the residuals does not follow a
normal distribution but instead more appropriate distributional assumptions
seemed to be the Student’s t-distribution and the Generalised error distribu-
tion (GED). Under these two distributional assumptions three models emerge
as contenders as the model of Swedish inflation, namely the EGARCH(1,1)
and TGARCH(1,1) that is models that take asymmetry into account. After
evaluating the assumptions underlying the model and on the basis of fore-
cast evaluation statistics, the preferable model for Swedish inflation and its
uncertainty that emerged was a EGARCH(1,1) estimated with Student’s t-
distribution.



The coefficient of the asymmetry in the conditional variance of the Swedish
inflation series was found to be negative, thus implying that a positive shock
to the Swedish inflation leads to less uncertainty about inflation. Relating
these results to the two competing hypotheses, the results in this essay does
not support the Friedman-Ball hypothesis. With regards to the Cukierman-
Meltzer hypothesis, the results seem to support a version of this hypothesis
put forward by Holland (1995).

The rest of this essay is structured as follows. In Section 2 presents a litera-
ture review of previous studies on inflation and inflation uncertainty. Section
3 presents the data and methodology used in this essay. In Section 4 the
empirical study is presented and results are discussed. Finally, Section 5
concludes.



2 Literature Review

The first empirical papers that investigated inflation and inflation uncertainty
assumed that differences in the standard deviation of inflation across coun-
tries were a valid estimate of the differences in inflation uncertainty across
countries. When the literature turned to time-series tests, two uncertainty
measures were typically used to estimate the uncertainty, namely the cross-
sectional dispersion of individual forecasts from surveys or a moving standard
deviation of the variable under consideration (Holland 1993, Golob 1993).

However, none of the techniques described above will be able to capture the
uncertainty structure derived in the theoretical models of Ball (1992) and
Cukierman and Meltzer (1986). This is because in these models the uncer-
tainty is the variance of a stochastic process. A method that can incorporate
this type of uncertainty is ARCH/GARCH-type of models which is why most
empirical studies conducted on inflation and inflation uncertainty use these
types of models.

Engle (1983) and Bollerslev (1986) were the first authors to employ ARCH/
GARCH models to estimate the inflation rate for the UK and US, respec-
tively. They then compare a graph of the conditional variance of inflation to
the average inflation rate. Inflation uncertainty is highest in the late 1940s
and early 1950s when inflation is not particularly high and inflation uncer-
tainty is lower in the late 1970s and early 1980s when inflation is quite high.
Given this, both authors independently conclude that high inflation levels
are not correlated with unpredictable inflation. Such a conclusion is unsat-
isfactory in that it is not based on any kind of statistical test.

Baillie et al. (1996) tested the direction of causality between inflation and
inflation uncertainty by including lagged inflation in the conditional vari-
ance equation and standard deviation in inflation equation. The authors
demonstrated that there was an interrelation between inflation and inflation
uncertainty in the US and some other countries with high inflation rates (Ar-
gentina, Brazil and Israel).



Caporale and McKiernan (1997) employed a GARCH model to monthly US
inflation data. The authors established that there was a significant positive
connection between inflation rate and conditional variance of inflation, that
is a positive connection between inflation and its uncertainty. The authors
further argued that the obtained results were also robust for alternative infla-
tion models, and unlikely to depend on whether the data of US high inflation
observed in the 1970s were included in or excluded from estimations.

Grier and Perry (1998) used the estimated conditional variance from a GARCH
model and Granger causality test to determine the causality direction of in-
flation and inflation uncertainty. The authors found that inflation had a
positive substantial impact on inflation uncertainty (hypothesis by Fried-
man-Ball) in all G7 countries; this impact, however, was not unambiguous.
In three countries, including the US, increased inflation uncertainty lowered
inflation, which contradicts the Cukierman—Meltzer theory. At the same
time, with inflation uncertainty growing, inflation rose in Japan and France.

Studies that take leverage effects into account are for example Nazar et al.
(2010) which use a time series of inflation uncertainty in Iran from 1959-2009
to estimate an EGARCH model. The authors confirm that positive shocks
to inflation had a greater effect on inflation uncertainty as compared with
negative effects. Granger causality test also verified that inflation Granger-
caused inflation uncertainty.



Fountas et al. (2004) also employed EGARCH models to estimate infla-
tion uncertainty and the authors find strong evidence for the Friedman-Ball
hypothesis and mixed evidence for the second hypothesis (the Cukierman-
Meltzer hypothesis) for a sample of six EU countries.

Using a TARCH model for the US inflation rate Caporale and Caporale
(2002) find that negative inflationary shocks result in greater inflation un-
certainty than positive shocks. That is, the authors find support for the
Friedman-Ball hypothesis that inflation uncertainty leads to lower output
growth.

Karanasos and Schurer (2008) modelled the conditional variance of inflation
in Germany, the Netherlands and Sweden using APARCH models for the
period 1962-2004 using monthly data. The authors find that for Germany
and the Netherlands there is support for the Cukierman-Meltzer hypothesis.
In Sweden, on the other hand, they find that uncertainty about the future
inflation appears to have a negative impact on inflation.



3 Data and Methodology

3.1 Inflation

Before any further discussions are made a reasonable starting point is to
begin with a brief discussion of the main variables of interest; inflation and
inflation uncertainty. Inflation is usually defined as a continued increase in
the general price level of goods and services in the economy over a period of
time (month, quarter or year). As the price level rises each unit of currency
buys fewer goods and services, therefore inflation reflects a reduction in the
purchasing power per unit of money (Walgenbach et al. 1973). The measure
for (price) inflation is the inflation rate which is defined as the percentage
rate of change of a price index over time. Using the conventional notation
for inflation rate from economic theory, 7, we can write the inflation rate as:

7 = log(P;) — log(P;_1) (1)

where P is a price index. The most commonly used price index in the cal-
culation of the inflation rate is the consumer price index (CPI) (Blanchard
2000). What CPI measures is changes over time in the general level of prices
of goods and services that a reference population obtains, uses or pays for its
consumption (OECD 2013). However there are other commonly used indices
for the calculation of the inflation rate, such as producer price index (PPI),
commodity price index, and core price index.

PPI measures the average changes in prices received by domestic producers
for their output. The difference from the CPI is that price subsidisation,
profits, and taxes may cause the amount the producer receives to differ from
what is paid by the consumer (OECD 2005). Generally, there is also a de-
lay between an increase in the PPI and any subsequent increase in the CPL.
Another way to define PPI is as a measure of the pressure being put on
producers by the costs of their raw materials, this pressure can end up being
passed on to consumers (i.e. increased prices paid by the consumer), or it
could be absorbed by profits, or possibly offset by increasing the productivity
of the producers.

Commodity price index is a fixed-weight index that measures the price of a

selection of commodities. A commodity price index can be defined for all
commodities or for particular subsets such as energy. Lastly, there is core

7



price indices, in which the most volatile components of CPI are removed in
order to easier detect the long run trend in the price levels (Gordon 1975).
The most volatile parts of CPI are usually considered to be food and oil
prices, since these two prices can change quickly due to changes in supply
and demand conditions in food and oil markets.

Inflation uncertainty is uncertainty of future inflation rates. This uncertainty
can lead to a reduction in economic output since it can adversely impact
interest rates, consumer spending and saving as well as investment made by
firms. Since inflation is seen as a stochastic process (when modelled over
time) then inflation uncertainty is defined as the variance of this stochastic
process. The variance is not expected to be constant over time, that is
volatility clusters are expected to be present.

3.2 Stationarity

In order to be able to estimate any kind of time series model the stationarity
of the series must be evaluated. If the stationarity hypothesis is not con-
firmed for the series, then the series must be transformed into a stationary
series through one of the known traditional procedures, such as the first order
difference of the series. Whether or not the inflation series is stationarity can
be tested using the Augmented Dickey-Fuller (ADF) test, the Phillips-Perron
test and the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test.

The Dickey-Fuller test is performed for first order autoregressive process and
is based on the following general equation (Enders 2010):

T = ¢ﬂt_1 + Et (2)
Ay =g+ St +ym_1 + & (3)
where Ay =m —m_ 1 and y=¢ — 1

Equation (3) can be used to test whether or not a unit root is present, using
the following hypotheses:

HO:")/:O
Hy:v#0



The procedure for an Augmented Dickey-Fuller (ADF) test is similar as for
a Dickey-Fuller test but is performed for the following model

A’/Tt = o+ ﬂt + YT—1 -+ (SlA’/Tt,l + ...+ 6p,1A’/Tt,p+1 + & (4)

where « is a constant, [ is a time trend coefficient and p is the number of
lags in the autoregressive process. The presence of a unit root is tested using
the same hypotheses as above and with the following test statistic

A
" SER) (5)

If the test statistic is less than the (more negative) Dickey-Fuller critical
value, then the null hypothesis of v = 0 is rejected and no unit root is present.

In a similar vein as the ADF test, the Philips-Perron (PP) test addresses
the issue that the process generating data for m; might have a higher order
of autocorrelation than is admitted in the test equation and thus making
;1 endogenous and invalidating the Dickey—Fuller 7-test. Whilst the ADF
test addresses this issue by introducing lags of Am; as regressors in the test
equation, the Phillips—Perron test makes a non-parametric correction to the
T-test statistic. The test is robust with respect to unspecified autocorrelation
and heteroskedasticity in the error process of the test equation (Phillips and
Perron 1988). However, as Davidson and MacKinnon (2004) report the PP
test performs worse in finite samples than the augmented Dickey—Fuller test.

The third and final test for stationarity that is presented is the Kwiatkowski-
Phillips-Schmidt-Shin (KPSS) test. This test analyses the properties of the
residuals from the regression equation of m; depending on the previous values.
In the KPSS test the null hypothesis is stationarity, i.e. the opposite of the
other two tests described above (Ruppert 2010).



3.3 Distributions for Financial Time Series

Time series of financial data are in general not consider to be normally dis-
tributed (Ruppert 2010), and since inflation is a financial time series it can
therefore possibly not either be considered to be normally distributed. This
clearly has consequences for estimation of model parameters, since if the
wrong distributional assumption is made one will not obtain efficient estima-
tors and less accurate predictions (Zivot 2009). Instead financial time series
are usually better characterised by heavy-tailed distributions. This section
will discuss a two commonly used heavy-tailed distributions used for financial
time series, namely Student’s t-distribution and the generalised error distri-

bution (GED).

The Student’s t distribution, denoted %,, is used in order to better describe
the conditional heteroskedasticity (Bollerslev 1987). Student’s t has the fol-
lowing density (Ruppert 2010):

1

(v +1)/2]
T W o

where I'(+) is the gamma function defined by:
I'(u) :/ 2" e dx, u>0
0

If v > 2 then the variance of t, is finite and equals v/(v — 2). On the other
hand if 0 < v < 1 then the expected value of £, does not exist and its variance
is not defined. If 1 < v < 2 then ¢, has expected value equal to 0 and infinite
variance. It should also be noted that ¢, is a symmetric distribution, i.e has
skewness equal to 0, and has the desired heavy tails since it has kurtosis
equal to 3 + -5, for v > 4, which is larger than three (kurtosis of a normal
distribution).

Another heavy-tailed distribution commonly used for financial time series is
the generalised error distribution (GED), which belongs to a family of sym-
metric exponential distributions (Nelson 1991). These type of distributions
have the particular property, that depending on the value of a shape param-
eter v, they can be described as both leptokurtic and platykurtic. Where a
leptokurtic distribution is one where extreme values have a relatively high
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probability of occurring as compared to a normal distribution. This results
in density with heavy tails and a spiky peak. The opposite is a platykurtic
distribution, whose density has a flatter peak and wider middle part. The
standardised generalised error distribution (GED) has the following density
(Ruppert 2010):

(yly) = w(v)e 2N, —c0 <y < 00 (7)
2—2/1/1"(]/—1) 1/2
where \, = | ——~
[(3/v)
and k() v

- A, 20/ (1)

The constants x(v) and A, are chosen so that the function integrates to 1 EI
and so the variance equals 1. The weight of the tails is determined by the
shape parameter v > 0, where smaller values of v will generate greater weight
to the tails. Note that when v = 2 the GED is a normal distribution and
when v = 1 GED is a double-exponential distribution. Thus the generalised
error distribution can produce tail weights that are between those of a normal
and double-exponential distribution if 1 < v < 2. However, more extreme
tails weights than that of a double-exponential is also possible if v < 1.

3.4 Modelling Conditional Heteroskedasticity

Conditional heteroskedasticity was first modelled by Engle (1983) and Boller-
slev (1986) using just inflation data for the UK and US | respectively. This
section will discuss the ARCH and GARCH model proposed by the authors
above.

The Autoregressive Conditional Heteroskedasticity (ARCH) model was in-
troduce by Engle (1982) and is of the following form

T = FEi 4 [Wt} + &t (8)
Et = Zt0¢ (9>
of =ap+aig;_ +--+ep, (10)

where E;_;[-] is the notation for the conditional expectation for information
known up to time ¢t — 1. The sequence z; is a sequence of independent

L Otherwise it would not be a density
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identically distributed (i.i.d) variables with zero mean and unit variance. In
order to have o > 0 some restrictions has to be imposed on the coefficients,
namely o > 0 and a; > 0 for i = 1,...,p. Note that equation (10) for o?
can be written as an AR(p)-process for &7 in the following way

€ =g+ o]+ T e, tw (11)

where u; = €2 — o2, Furthermore note that u; will be a so-called martingale
difference sequence since it will have a finite expectation and its expectation
with respect to the past will be zero, i.e F [5?] < oo and [ut} = 0 (Zivot
2009). In order for ; to be covariance stationary we must require a; + - - - +
a, < 1, this sum of coefficients is also used to measure the persistence of &7
and o2, and the unconditional variance will be

¢° =Var[e)| = Ele]] = o

1_a1_..._ap

One drawback of the ARCH model is that in order to fully capture the dy-
namic of the conditional heteroskedasticity one needs a model of high order.
If the model is to be used for forecasting for a longer time period then this

can lead to over-parametrisation (Enders 2010). That led to the generalisa-
tion of the ARCH model.

The generalised ARCH model, or GARCH, was introduced by Bollershev
(1986), this model generalises the AR(p)-process in equation (10) with an
ARMA (p,q)-process instead. That is o can be represented by:

P q
ol =g+ Z vue? + Z Bio7_; (12)

i=1 j=1

where a; >0Viand 5, >0V j

The coefficients are assumed to be positive in order to guarantee that the
conditional variance, o7, is always positive. For the most part a GARCH(1,1)
with three parameters in the conditional variance equation is an adequate
representation for time series of financial data. Telling evidence by Hansen
and Lunde (2004) says that it is hard to find a model that performs better
than a GARCH(1,1).

12



A GARCH model can be expressed as an ARMA-process for the squared
residuals, in a similar vein as the ARCH model was written an AR-process.
For simplicity, consider a GARCH(1,1) of the following form

O't2 = Q) + 0418?71 + 610}271 (13)

Next utilise that E;_; [¢7] = o7 and then (13) can be rewritten as
ef = g+ (o + Br)ef g + up — Bruey (14)

which is an ARMA(1,1) where u; = €?. This means that the properties of a
GARCH(1,1) can be derived using the ARMA(1,1) representation. The pro-
cess for the conditional variance will be covariance stationary if o + 57 < 1.
The persistence of o2 is also measured by the sum of the coefficients. Fur-
thermore the covariance stationary GARCH(1,1) has unconditional variance
equal to

R R
l—aq =B

If instead a general GARCH(p,q) process, like the one in equation (12), is con-

sider then the squared residuals will behave like an ARMA (max(p,q),q) pro-

cess. For the general GARCH covariance stationarity requires that > > a;+
;1.:1 B; < 1 and have the following unconditional variance

_ O
52

1—- <Z?:1 Q; + Zgzl 5])

The order of the GARCH model is usually determined by using a informa-
tion criteria, such as the Akaike information criterion (AIC), the Bayesian
information criterion (BIC) and the Hannan-Quinn information criterion. In
particular, for GARCH models with p, ¢ < 2 the order is usually determined
by the means of a information criteria (Zivot 2009). The possibility to use
information criterion comes from the fact that GARCH models can be ex-
pressed as an ARMA-process as was mentioned above.
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3.5 Asymmetric Leverage Effects

In financial time series leverage effects are often present, i.e. the fact that
shocks (or news) have asymmetric effects on the volatility. In particular, neg-
ative shocks tend to have a greater impact on volatility than positive shocks.
The GARCH(p,q) model described above cannot capture these type of lever-
age effects (Ruppert 2010), and this section will discuss three extensions of
the GARCH model that can.

The first model that can be used to incorporate leverage effects is the Ex-
ponential GARCH (EGARCH) model proposed by Nelson (1991). Following
Nazar et al. (2010) and Fountas et al. (2004) the conditional variance in an
EGARCH model has the following expression:

h: = log (af) =ap+ Zaim + Zﬂjhtfj (15)

i=1 Ot—i j=1

If £;_; is positive then the total effect of ;_; will be (1 + v;)|e;—:|, on the
other hand if €;,_; is negative then the total effect of e,_; will be (1 —~;)|e¢—q|.
Note that in this specification negative shocks can have a greater impact on
volatility and one would then expect v; to be negative. The conditional vari-
ance, o2, will be positive regardless of the value on the coefficients in (15),
this because the logarithm of o7 is modelled instead of o7 itself. This is an
advantage of the EGARCH model over the GARCH model. The EGARCH
model is covariance stationary if Z?=1 B < 1.

The second model to incorporate leverage effect is the threshold GARCH
(TGARCH) proposed by Zakoian (1994) and Glosten et al. (1993). In a

similar vein as in Caporale and Caporale (2002) the conditional variance has
the following expression:

p p q
O't2 = o+ Z ozief,i + Z %Spﬁf,i =+ Z ﬁjo-?—j (16>
i=1 i=1 j=1

where
SZ- _ 1 lf E—i < 0
0 ife; >0
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The effect of €2, on the conditional variance will depend on whether or not
£,_; is above or below the threshold. If ;_; is positive then the effect of ¢;,_;
will be ci;e? ,, and if £;_; is negative then the effect of g;_; will be (a; +7;)e2_;.
These shocks have an asymmetric effect on inflation uncertainty if the ;s are
statistically different from zero. Consider a TGARCH(1,1) model, this model
is covariance stationary if

%2 <l—aj— B} —2abin (17)

where 14 is\/g if ¢; follows a normal distribution and (”;2) W if ; fol-

lows a Student’s t-distribution with v degrees of freedom (He and Terésvirta
1999).

The third model that incorporates leverage effects is the Asymmetric Power
ARCH (APARCH) model proposed by Ding et al. (1993). Following Karana-
sos and Schurer (2008) the conditional standard deviation has the following
expression:

D q
5
af =qp + Z Oéi(|At—i| - %‘At—i) + Z Bjaf—j (18)
i=1 Jj=1
where
At = 00

where 6 > 0 and —1 < v < 1,7 = 1,...,p. Note that when 6 = 2 and
7 = ...= 1, =0 the standard GARCH(p,q) model is obtained.

3.6 Testing for ARCH/GARCH Effects

If the data has volatility clusters, or that is ARCH/GARCH effects are
present, it will manifest itself as autocorrelation in the squared time series. A
test for the significance of the autocorrelation is the modified Ljung-Box test,
what is usually referred to as the McLeod-Li test which has the following test
statistic (Zivot 2009)

p

MQ(p) =T(T+2)Y =

i=1

P
~J

(19)
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where p; is the jth lag of the sample autocorrelation. Under the null the time
series is a white noise process, so the MQ(p)-statistic asymptotically follows
a x%(p)-distribution. If a significant value of MQ(p)-statistic is found, then
the test provides evidence of time varying conditional variance.

Engle (1982) showed that if an ARCH model is employed with an AR-process
for the squared residuals, then a Lagrange Multiplier (LM) test can be used
to test for ARCH effects. The LM test for ARCH effects is based on equation
(10). The null hypothesis is that there are no ARCH effect, i.e. oy =--- =
o, = 0, test statistic is the following

LM =TR? (20)

where T is the sample size and R? is computed from the regression of (10)
based on estimated residuals. Under the null the test asymptotically follows
a x?(p)-distribution. Lee and King (1993) showed that this LM test also can
be used as a test for GARCH effects.

3.7 Parameter Estimation

The most common method used for estimation of the parameters in a GARCH
model is maximum likelihood (ML) estimation. Before proceeding with ML
estimation of the parameters the distributional assumption must be con-
sidered. As an example, consider a financial time series that cannot be
considered to be characterised by a normal distribution, then if the param-
eters are estimated under the assumption of normal distribution they may
be less effective. If the distributional assumption is changed to the Stu-
dent’s t-distribution, then the following conditional log-likelihood function is
obtained

log(L) = Z llog (F(V ;_ 1)) - %log(ﬂu)

t=1

() - ()] @
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For the case when the distributional assumption is GED, the following con-
ditional log-likelihood function is obtained

€t

» (22)

log(L) = Zlog (k(v)) — %

3.8 Evaluation of the Estimated GARCH Model

If the estimated GARCH model is correctly specified then the behaviour of
the standardised residuals should be the same as in classical linear regression.
That is, the standardised residuals should exhibit neither serial correlation,
conditional heteroskedasticity nor any non-linear dependence. Moreover, the
distribution of the standardised residuals should reflect the distributional as-
sumption made in the estimation of the model (Zivot 2009).

The serial correlation, or ARCH/GARCH effects, of the standardised residu-
als can be evaluated by the same test that are used to test for ARCH/GARCH
effects (the McLeod test and the LM test), and if the model is correctly spec-
ified then no such effects should be found. The distributional assumption for
the standardised residuals can be evaluated by using QQ-plots.

3.9 Forecasting Using the Estimated GARCH Model

The estimated GARCH model can be used for forecasting both the future
value of the time series itself and the conditional volatility. In order to make
forecast of m from a GARCH model, with the assumption that Er[mry1] = c.
Then for this model, the h-step-ahead forecast of w7 will be ¢, which clearly
does not depend on the parameters in the GARCH model, this forecast will
have the following forecast error (Enders 2010)

erin = Trin — Er[mrin) (23)
The forecast error in (23) will have the following conditional variance
Varrlerin] = Brlot.,) (24)

Note that the conditional variance in (24) does not depend on the parameters
from the GARCH model. So the h-step-ahead volatility forecast is needed in
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order to provide confidence bands for the h-step-ahead forecast.

Computing Er[o7.,,] can be done using recursion. Consider a GARCH(1,1)
model with ¢; = 2,0, and z; are i.i.d. with zero mean and unit variance from
a symmetric distribution. Then for h =1

Erloty,] = ag + a1 Erle7] + pi1Ero7]
= Qg+ 0618% + ﬁla% (25)

Note that in (25) it is assumed that 2. and % are known. However, in
practice none of the true parameters are known and instead the estimated
parameters from the model is used (Zivot 2009). In the case when h = 2

Erlo}.5] = ao + a1 Erlet ] + Bi1Er[o},]
= ag + (a1 + B1) Erfo7,] (26)
since

ET[5%+1] = ET[U%+1Z:2F+1] = ET[U%—H]
Thus, h-step-ahead volatility forecast for h > 2 will be

Erlo},h) = oo + (a1 + B1) Er[o ]

h—1
=g (a1 +B) + (ar+B)" Mgt + Bro7)  (27)
=0

The forecast obtained from (27) is for the conditional variance, and the fore-
cast for the conditional variance is usually defined as the square root of
the conditional variance forecast. The volatility forecast will approach the
unconditional variance, 52, as h — oo if the process is covariance station-
ary (Enders 2010). How fast the forecast approaches 52 is determined by
(ag + f1). A similar argument can be made for forecasting models that take
asymmetry in to account.
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The volatility forecasts from competing models can be evaluated by fore-
cast evaluation statistics in order to find the most appropriate model, the
two defined here are the mean square error (MSE) and mean absolute error
(MAE). Assume that for a GARCH model i the h-step ahead forecast of
0%, at time T is E;r[o7,,] with corresponding forecast error defined as
eir+nr = Eir [U%+h] — U%Jrh. So for model ¢ the forecast statistics are based
on N out-of-sample forecasts from T'=T+1,...,T + N are

T+N

1
MSE; = D €y (28)
j=T+1
T+N

1
MAE; = & > leiginl (29)

j=T+1

The model that produces the smallest value of the two measures above is
considered to be the preferable model (Zivot 2009).
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4 Empirical Study - Swedish Inflation

The empirical study in this essay consists of finding an appropriate GARCH
model for Swedish inflation. In Sweden, inflation is measured by Consumer
Price Index (CPI), and the inflation rate between period ¢ and period ¢ — 1,
using the definition in (1), is then:

™ = log (CPI;) —log (CPI,_;) (30)

This essay will use inflation measured a quarterly frequency and a sample pe-
riod of 1970:Q1-2014:Q4 and the data is taken from Statistics Sweden. Some
summary statistics of the series is found in Table [I| below. In Table [I| the
Jarque-Bera statistic and corresponding p-value are reported, and recalling
that the null hypothesis the Jarque-Bera test is that the inflation series is
normally distributed. On the basis of the p-value reported in Table [I], the
null is rejected and other distribution will be considered in section 4.1. Based
on Table [l it is also worth to note that the kurtosis of the inflation series is
much lower than three (kurtosis of a normal distribution). Distributions with
kurtosis less than three are said to be platykurtic, meaning that the distri-
bution produces fewer and less extreme outliers than the normal distribution.

Table 1: Descriptive statistics

Mean Std.Dev Skewness Kurtosis JB-statistic p-value
0.0115  0.0120 0.8620 0.7306 26.2930 1.952¢-06
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Figure 1: Time series plot over inflation
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The series of inflation is depicted in Figure [1] above. In panel (a), the raw
inflation series is depicted and a downward trend appear to be present, which
is to be expected as the Riksbank (the Swedish central bank) adopted a infla-
tion targeting regime in 1991 in order to bring inflation down. The trend is,
however, not of interest for an analysis of inflation uncertainty (i.e. volatility
analysis) and therefore the differenced series is used. The differenced series is
depicted in panel (b) of Figure|l|and the series appears to be centered around
its long-run mean (indicated by the red line). What is also present in panel
(b) are volatility clusters, which indicates that the variance is not constant
over time. The presence of volatility clusters means that ARMA (p,q) models
cannot be employed, and thus indicating that a GARCH(p,q) model may be
a better fit for the inflation series since such a model would take volatility
clusters into account.
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The presence of ARCH/GARCH effects in the inflation series is tested using
the two formal tests described in section 3.6, namely the LM test proposed by
Engle (1982) and the McLeod-Li test. In the LM test the null hypothesis is
that there are no ARCH effects and for the inflation series the observed test
statistic is LM = 31.647 with a corresponding p-value equal to 0.0016, so the
null is rejected. In the second test, the McLeod-Li test the null hypothesis is
again that there are no ARCH effects and for all 20 lag the null is rejected,
the results are illustrated graphically in Appendix A.1 Figure[7] Thus based
on the results from the these two tests we can conclude that GARCH effects
are present.

Thus, a GARCH(p,q) model would appear to be appropriate for the inflation
series. However, before any further analysis can be conducted the stationary
of the series must be investigated. The three stationarity tests described in
section 3.2 are conducted and the results are found in Table[2l For both the
ADF test and the PP test the null hypothesis of a unit root can be rejected
and one can conclude that the series is stationary. Note that in the KPSS
test the null hypothesis is that the series is stationarity and at the conven-
tional significance levels (0.05 or 0.01), the null cannot be rejected and once
again the conclusion is that the series is stationary.

Table 2: Stationarity results

ADF  p-value PP p-value KPSS p-value
-6.5022  0.01  -221.61  0.01  0.02004 0.1
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4.1 The Distribution of the Swedish Inflation Series

Previous sections mentioned that financial time series, such as our consid-
ered inflation series are in general not consider to be normally distributed
(Ruppert 2010). Which has consequences for estimation of model parame-
ters, since if the wrong distributional assumption is made one will not obtain
efficient estimators and less accurate predictions (Zivot 2009). Thus, one
important part in the GARCH modelling process is to find the distribution
of the residuals, because it is this distribution that is used in the maximum
likelihood estimation of the parameters.

In case the standardised residuals can be assumed to follow a normal distri-
bution then the log-likelihood function that estimates the parameters in the
GARCH-model based on the assumption of normality. Thus initially it is
investigated if the Swedish inflation series follows a normal distribution. In
Table [1| above, the results for the Jarque-Bera normality test are found and
the null hypothesis of a normal distribution is rejected. The distributional
assumption can also be graphically analysed, below in Figure [2| a histogram
and QQ-plot for the inflation series is depicted. In panel (a) the red curve
is the density curve from a normal distribution and as can be seen the his-
togram from the inflation series does not fit the curve very well. In panel (b)
of Figure [2| the QQ-plot is depicted and as can be seen the inflation series
seem to fit the line in the center of the distribution, while the tails deviates
quite a bit from the line. Which is also mirrored in panel (a), thus on the
whole the graphical analysis further strengthen the argument that the infla-
tion series is not normally distributed.
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Figure 2: Histogram and QQ-plot - Normal distribution
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Since the normality assumption has been rejected, the next step is to consider
the two distributions presented in section 3.3, i.e the Student’s t-distribution
and GED for the inflation series. The degrees of freedom (/) for both of these
distributions can be estimated using maximum likelihood which is done in
order to find a theoretical counterpart that can be used to compare the em-
pirical distribution with. The results from the ML-estimation is found in
Table [3] and graphically analysed in Figure [3| below.

Table 3: Maximum likelihood estimated based on distributional assumption

Student’s t GED

finr oML VML far OML VML
0.01077 0.01074 48.00149 0.01120 0.01192 2.79927
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Figure 3: QQ-plots for the two distributional assumption for m,
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As can be seen in Figure [3] the fit of a Student’s t-distribution does not sig-
nificantly improve as compared to the normal fit, while the fit of a GED
seems to ever so slightly improve the fit for the inflation series. It is, however
important to stress that the unconditional distribution for the inflation series
(i.e. the one obtained from ML estimation) is not necessarily the distribution
that the residual belong to, since the estimates will be affected by the het-
eroskedasticity. But, on the other hand the unconditional distribution of the
inflation series can indicate which distribution the conditional series and the
residuals belong to (Ruppert 2010), the distribution of the errors is further
discussed in the next section.
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4.2 Estimating the GARCH Models

The first step of the GARCH-modelling procedure is to determine the ade-
quate autoregressive model for the inflation series, i.e. to determine the mean
equation. In earlier studies the specification for the mean equation has been
found to be an AR-model of quite high order (three or more significant lags),
the AR model found to fit our Swedish inflation series is an AR(4) model.
The estimated model is presented below with standard errors in parenthesis
below:

m, = —0.0001 —0.7994 7,1 —0.6035 7;_5 —0.3090 ;3 +0.0669 7,4,  (31)
(0.0003)  (0.0747) (0.0928) (0.0929) (0.0754)

Once the specification for the mean equation is found one can move on to the
specification for the variance equation, or in other words the GARCH model
is estimated. As there exist no consensus based on neither previous studies
nor economic theory over which GARCH model is to be used for modelling
inflation all models described in section 3.4 and 3.5 are estimated. However
before this can be executed the distribution of the errors will be investigated
further.

The results of the previous section was somewhat inconclusive on which dis-
tributional assumption to make for the errors. That is since the errors are
effected by the heteroskedasticity the reasoning in the previous section does
not definitely indicate that the error terms are non-normal. Therefore a
GARCH model is estimated with the normal distribution and the distribu-
tion of the residuals from this model are investigated in Figure 4] and Table
below. As can be seen in Figure [ the residuals deviate from the line in
the tails of their distribution and thereby does not seem to fit the normal
distribution very well. In Table |4 the normality of the residuals are tested
with a Jarque-Bera test and the null hypothesis of the residuals belonging
to the normal distribution is rejected. The kurtosis of the residuals is also
presented in Table [4] and as can be seen the kurtosis is greater than three,
and distributions with kurtosis greater than three are said to be leptokur-
tic. The same analysis was made for the residuals from GARCH models
described in section 3.5 and for none of the models can the residuals be con-
sidered to be normally distributed, see Table[§|and Figure[8in Appendix A.2.
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Figure 4: QQ-plot of the residual from a GARCH(1,1)
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Table 4: Kurtosis and Jarque-Bera test for the residuals

Kurtosis JB-statistic  p-value
4.0252 33.931 4.285e-08

Based on these results the GARCH models presented in section 3.4 and 3.5
will be estimated with distributions that have heaver tails, namely Student’s
t-distribution and GED. Therefore, and in contrast to the studies presented
in the literature reviewf? all four model specifications are estimated under
both distributional assumptions. In Table [, on the next page, all estimated
coefficients are found for the four different types of GARCH models.

2 Except Karanasos and Schurer (2008), who estimate a APARCH model using both the
normal distribution and the Student’s t-distribution.
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Table 5: Estimated parameters from GARCH-models

Distribution Student’s t GED
Coefficients GARCH(1,1) EGARCH(1,1) TGARCH(1,1) APARCH(1,1) GARCH(1,1) EGARCH(1,1) TGARCH(1,1) APARCH(1,1)
Mean Equation

n -0.0001 0.0003*** 0.0001 0.0000 0.0000** 0.0003*** 0.0000*** 0.0000***
(0.0002) (0.0000) (0.0002) (0.0002) (0.0000) (0.0000) (0.0000) (0.0000)

p1 -0.8239*** -0.7571*** -0.7552%** -0.7960*** -0.7531*** -0.7164*** -0.7452%** -0.7449***
(0.0792) (0.0024) (0.0723) (0.0681) (0.0039) (0.0272) (0.0086) (0.0071)

w2 -0.5185%** -0.3861*** -0.4563*** -0.4769*** -0.4494*** -0.4172%** -0.4440*** -0.4433***
(0.0951) (0.0079) (0.0785) (0.0837) (0.0034) (0.0181) (0.0138) (0.0156)

©3 -0.3645%** -0.2647*** -0.3312%** -0.3431*** -0.3033*** -0.2954*** -0.3040*** -0.3031***
(0.0678) (0.0021) (0.0514) (0.0823) (0.0030) (0.0032) (0.0129) (0.0157)

©pa 0.1102* 0.1047*** 0.1008* 0.1050 0.1661*** 0.1270*** 0.1615%** 0.1624***
(0.0651) (0.0094) (0.0559) (0.0665) (0.0016) (0.0323) (0.0064) (0.0055)

Variance Equation

ag 0.0000 -0.1965*** 0.0000*** 0.0001 0.0000 -0.2260*** 0.0000 0.0001
(0.0000) (0.0010) (0.0000) (0.0000) (0.0000) (0.0004) (0.0000) (0.0003)
[o%1 0.1431 0.4392*** 0.2592%** 0.1228* 0.1284 0.4395%** 0.2364 0.1136
(0.2180) (0.0032) (0.0525) (0.0651) (0.1445) (0.0110) (0.2987) (0.0707)

51 0.8416*** 0.9784*** 0.8947*** 0.8894*** 0.8427*** 0.9757*** 0.8723*** 0.8815%**
(0.2096) (0.0248) (0.0199) (0.0462) (0.2341) (0.0572) (0.1820) (0.0522)

Y1 -0.1961*** -0.3430*** -1.0000*** -0.2104*** -0.2576 -1.0000***
(0.0013) (0.0599) (0.0014) (0.0002) (0.3762) (0.0014)
do 1.1233 1.2237
(0.6059) (0.6750)

v* 3.4981** 4.6500*** 3.3061*** 3.4964*** 0.9322%** 1.1373*** 0.9267*** 0.9396***
1.6248 0.0807 0.5486 0.9416 0.1634 0.0308 0.2544 0.1386

Information criteria

AlIC -6.7925 -6.9168 -6.8113 -6.8011 -6.8203 -6.9256 -6.8300 -6.8227
BIC -6.6322 -6.7387 -6.6333 -6.6052 -6.6601 -6.7475 -6.6519 -6.6269
Hannan-Quinn -6.7275 -6.8446 -6.7391 -6.7216 -6.7554 -6.8534 -6.7578 -6.7433

Robust standard errors in parentheses. Significance levels: *** p < 0.01, ** p < 0.05, * p < 0.1.

*

are the maximum likelihood estimate of the degrees of freedom for the conditional distribution.



When reading Table |5/ and looking for a preferable model for the Swedish in-
flation, a crude start is to look at the information criteria in the bottom panel
of the table as an indicator of which models are preferable. The models that
have the lowest value (i.e. most negative) of the information criteria are the
models indicated to be preferable. Based on the criteria four preferable mod-
els emerge, namely the EGARCH and TGARCH under both distributional
assumptions. For a definition of the information criteria and brief discussion
see Appendix A.3. Narrowing the model selection further from these four,
the next step is to look at significant parameters.

Out of the four relevant models, three pass through based on having signifi-
cant parameters. That is the candidates to be a reasonable model for Swedish
inflation are EGARCH(1,1) and TGARCH(1,1) under the assumption of Stu-
dent’s t-distribution and the EGARCH(1,1) model under the assumption of
GED. Models of higher order was considered but none was found to have
significant parameters (see Table |§] in Appendix A.4). Before any further
model evaluation is performed, the parameters of the models are discussed
further.

Recall that in a GARCH modelling setting the parameter a; reflects the
influence of random deviations in the previous period on the conditional
variance, whereas (3; in turn measures the part of the realized variance in the
previous period that is carried over into the current period. Thus the size of
the parameters a; and 1 determine the short-run dynamics of the resulting
volatility time series. In particular large GARCH error coefficients, o, mean
that volatility reacts intensely to movements in the economy. While large
GARCH lag coefficients, 1, indicate that shocks to conditional variance take
a long time die out, or in other words the volatility is persistent. So referring
back to Table |5 we see that all our three preferable models have coefficients
in similar size and sign. It is also worth to note that across all three models
we find quite high values for all the 3¢’ meaning that the volatility in our
inflation series is very persistent. Since volatility is our measure for inflation
uncertainty, this means that if there is a shock to the Swedish inflation pro-
cess it will take a long time for this uncertainty to die out. When comparing

3 Recall from section 3.5 that the condition for covariance stationary for a EGARCH(1,1)
model is 3; < 1 and for a TARCH(1,1) model is y; < 1 — a2 — 8% — 2afv;, conditions
that are satisfied for the preferable models.
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the results from this study to that of other studies that have also looked at
small open economies, like Sweden, they have also found highly significant
and persistent lag coefficients, see for example Fountas et al. (2004).

Next let’s turn our attention to the leverage effects, that is the s in Table
[l where we see that all estimated coefficients are statistically significant and
negative thus indicating that there is asymmetry in the conditional variance.
This implies that negative and positive shocks have different effects on infla-
tion and inflation uncertainty. In particular, since ~; is negative this implies
that a positive shock to the Swedish inflation leads to less uncertainty about
inflation. It has been proposed that a negative asymmetry coefficient can
be explained by the strong commitment of anti-inflationary policies by the
central bank (Rogoff 1985), which was also empirically verified by Alesina
and Summers (1993) who found that more independent central banks are
linked to both lower inflation and inflation uncertainty. During the 1990s the
central bank in Sweden, the Riksbank, gained more independence and its in-
dependence was written into law in 1999 (the Riksbank 2011). At this point
it would be interesting refer back to the two competing hypotheses of the
causal relationship between inflation and its uncertainty that were presented
in the introduction. The first one denoted the Friedman-Ball hypothesis pos-
tulates that inflation causes inflation uncertainty. Whereas the second hy-
pothesis is denoted the Cukierman-Meltzer hypothesis which postulates that
inflation uncertainty causes inflation. Before any further discussion is made
some caveats should be stated, first in the other studies mention throughout
this study Granger-causality tests are employed to detangle the direction of
causality[] however such tests are not employed in this essay. Thus the re-
sults found in this study will only indicate the direction of causality between
inflation and its uncertainty, keeping in mind that there could be reverse
causality. Now let’s consider the Swedish inflation series. The results found
in Table |5|does not support the Friedman-Ball hypothesis, this becomes clear
by using the argument of Ball (1992). That is, an increase in the Swedish
inflation would not lead to an increase in inflation uncertainty as the Riks-
bank has a strong commitment to anti-inflationary policies and would thus
be willing to bear the cost of a decrease in the rate of inflation. With regards

4 Note that the Granger-causality test tests for the presence of Granger causality which
is not necessarily true causality. That is the Granger test finds only what is referred to
as predictive causality (Diebold 2001).
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to the Cukierman-Meltzer hypothesis, the results seem to support a version
of this hypothesis put forward by Holland (1995). This version, sometimes
called the "stabilisation hypothesis”, assumes the same causality but with a
negative relationship, suggesting that in an economy where inflation uncer-
tainty leads to inflation one would expect the central bank to try to stabilise
inflation and thus have a negative effect of inflation uncertainty on inflation.

In order to validate the analysis made above the next step is to evaluate our
preferable models using the methods described in section 3.8. Thus, if one has
estimated a correct model then the standardised residuals should behave in
the same way as in classical linear regression. So the standardised residuals
should exhibit neither serial correlation, conditional heteroskedasticity nor
any non-linear dependence. Moreover, the distribution of the standardised
residuals should reflect the distributional assumption made in the estimation
of the model. The results from the model evaluation are found in Table [G]
and Figure 5] The first panel of Table [0] tests whether or not there are serial
correlation in the standardised residuals, and recall that in the Ljung-Box
test the null hypothesis is that there is no serial correlation. As can be seen
there are significant lags (the 11th and 19th lag) however since the significant
lags are quite far away they are deemed to not carry that much weight and
thus allow our models to pass this requirement. The second panel of Table [§]
tests whether or not the squares of the standardised residuals exhibits serial
correlation or conditional heteroskedasticity. Again the Ljung-Box test is
employed, and here the null cannot be rejected for all lags. Thus we can
conclude that there is no conditional heteroskedasticity in the standardised
residuals, indicating that the models fit the data. The third and final panel
of Table [6] shows the results from the ARCH LM test, recall that the null
hypothesis in this test is that there are no ARCH effects. As can be seen the
null cannot be rejected for all but one lag, the 7th lag for the EGARCH(1,1)
estimated with GED. Thus based on these three tests our preferable models
seem to fit the data quite well. The next step is to investigate the distribution
of the standardised residuals.
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Table 6: Model evaluation

p-values
Distribution Student’s t GED
Lag EGARCH(1,1) TGARCH(1,1) EGARCH(1,1)
Weighted Ljung-Box Test on Standardised Residuals
1 0.9280 0.7439 0.6447
11 0.0000 0.0015 0.0000
19 0.0166 0.0703 0.0028
Weighted Ljung-Box Test on Standardised Squared Residuals
1 0.4645 0.6310 0.3616
5 0.5398 0.6365 0.2378
9 0.6095 0.6824 0.2557
Weighted ARCH LM Tests
3 0.6546 0.7476 0.7622
7 0.2589 0.3852 0.0644
7 0.3968 0.5139 0.1150

Null hypothesis in the ARCH LM test is "No ARCH effects” and the null hypothesis

in the Ljung-Box test is ”No serial correlation”.

Degrees of freedom for the tests on the standardized residuals and their squares are, respectively 4 and 2.
Lag for * is calculated as Lag[2*(p+q)+(p+q)-1] and lag for ** is calculated

as Lag[4*(p+q)+(p+q)-1] where p=1 and q=1
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Figure 5: QQ-plots of the standardised residuals
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The distribution of the standardised residuals is investigated by the means of
QQ-plots which are depicted in Figure [f] Note that in Figure [5] the panel to
left depicts the QQ-plots of residuals from the EGARCH(1,1) estimated with
the Student’s t distribution, under the same distributional assumption the
middle panel depicts the QQ-plots of residuals from the TARCH(1,1) model,
and final the panel to the right depicts the QQ-plots of residuals from the
EGARCH(1,1) model estimated with GED. Based on the figure above we can
conclude that the residuals seem to fit the distributional assumption made
for each of the three models. Thus on the whole the conclusion that can
be drawn based on Table [6] and Figure [j] is that none the preferable models
for the Swedish inflation series yield any evidence of misspecification. In the
next section we move on to forecasting the volatility of the inflation series in
another way to evaluate the models.
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4.3 Forecasting Volatility

Another approach to evaluation, and thus to find the preferred model, is to
look at the forecasted volatility of our competing three models and then look
at the forecast evaluation statistics presented in section 3.9. Figure [0 shows
the h-step ahead volatility forecasts (h = 1,...,250) from our three models,
the horizontal line in the figure is the unconditional standard deviation (also
presented in the first column in Table [7)). As is expected from models that
take asymmetry into account, we find very steep curves depicted in Figure [0]
especially in the beginning of the forecast horizon but as the horizon moves
further and further away the volatility forecasts approach the unconditional
standard deviation.

Figure 6: Volatility Forecasts
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Table 7: Unconditional standard deviation and forecast evaluation statistics

Model Elo] MSE MAE
EGARCH(1,1)-t 0.0105 3.515e-05 0.0046
TGARCH(1,1)-t 0.0123  4.798e-05 0.0056

EGARCH(1,1)-GED 0.0096 4.512e-05 0.0054

As previously mention the forecasted volatility from our three preferable
models can be evaluated with forecasts evaluation statistics defined in sec-
tion 3.9, these are presented in the last two column of Table [7] Recall that
the model that produces the smallest value of the two measures is considered
to be the preferable model. Therefore the model that the forecast evaluation
statistics advocates is the EGARCH(1,1) estimated with Student’s t distri-
bution.

Summarising the results found from all the model evaluation techniques used
in both this section and the previous one, in the previous section we found
no evidence of misspecification for either of the models, so not much aide in
selection of a preferable model. However, based on the forecast evaluation
statistics the most appropriate model for the Swedish inflation series is the
EGARCH(1,1) estimated with Student’s t distribution.
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5 Summary and Concluding Remarks

Inflation and its uncertainty for Sweden during the period 1970:Q1-2014:Q4
have been investigated in this essay. The primary goal of this essay was to
find an appropriate model for the inflation series in a GARCH modelling
setting allowing for non-normal errors. The secondary goal was to relate
the results of the model estimation to the two competing hypotheses of the
causal relationship between inflation and inflation uncertainty, the Friedman-
Ball and the Cukierman-Meltzer hypotheses, and thus see in which camp the
Swedish inflation series falls.

In contrast to other studies that have looked at this relationship this es-
say investigated the distribution of the errors, and did indeed find that the
residuals did not follow a normal distribution but instead more appropri-
ate distributional assumptions seemed to be the Student’s t-distribution and
the Generalised error distribution (GED). Under these two distributional as-
sumptions three models emerge as contenders for the model for the Swedish
inflation, namely the EGARCH(1,1) and TGARCH(1,1) that is models that
take asymmetry into account. After evaluating the assumptions underly-
ing the model and on the basis of forecast evaluation statistics, the prefer-
able model for Swedish inflation and its uncertainty that emerged was an
EGARCH(1,1) estimated with a Student’s t-distribution.

For the estimated model highly significant and persistent lag coefficient was
found, meaning that the volatility in the Swedish inflation series takes a long
time to die out. Furthermore a significant leverage effect was found, or in
other words the results found that there is asymmetry in the conditional vari-
ance, thus implying that negative and positive shocks have different effects
on inflation and inflation uncertainty. In particular, since v is negative this
implies that a positive shock to the Swedish inflation leads to less uncertainty
about inflation. Relating these results to the two competing hypotheses, the
results in this essay does not support the Friedman-Ball hypothesis, i.e. an
increase in the Swedish inflation would not lead to an increase in inflation
uncertainty as the Riksbank has a strong commitment to anti-inflationary
policies and would thus be willing to bear the cost of a decrease in the rate
of inflation. With regards to the Cukierman-Meltzer hypothesis, the results
seem to support a version of this hypothesis put forward by Holland (1995).
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This version, is sometimes called the ”stabilisation hypothesis” and assumes
the same causality but with a negative relationship, suggesting that in an
economy where inflation uncertainty leads to inflation one would expect the
central bank to try to stabilise inflation and thus have a negative effect of
inflation uncertainty on inflation.

An interesting question for further research would be to further delve into
the distributional assumptions made for the errors, perhaps considering other
heavy-tailed distribution used for financial time series. Another interesting
approach is to consider other long memory GARCH-models.
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7 Appendix

A.1 The McLeond-Li test

Figure 7: McLeod-Li test
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In the McLeod-Li test the null hypothesis is that there are no ARCH effects
and the result is illustrated graphically in Figure [7| above. The red barred
line in Figure [7| indicate the significance level and as can be seen for all 20
lags the p-values are less than the significance and the null is rejected.
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A.2 Residuals from Models Estimated with the Normal

Distribution

Figure 8: QQ-plots for the residuals from models estimated with the normal

distribution
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Table 8: Kurtosis and Jarque-Bera test for the residuals

Model

EGARCH(1,1)
TGARCH(1,1)
APARCH(1,1)

JB

42.565 5.718e-10
36.812  1.015e-08
32.528 8.643e-08

Kurtosis p-value

5.2566
4.0767
3.9898
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A.3 Information Criteria
A.3.1 The Akaike Information Criterion (AIC)

Define L as the maximum value of the likelihood function for the estimated
model, furthermore let £ be the number of estimated parameters in the
model. Then the AIC value of the model is the following:

AIC =2k —2log(L) (32)

Thus, given a set of possible model specifications, the preferred model will be
the one with the minimum AIC value. That is the AIC rewards goodness of
fit which is assessed by the likelihood function, but it also includes a penalty
that is an increasing function of the number of estimated parameters. The
penalty thereby discourages overfitting (Burnham and Anderson 2002).

A.3.2 The Bayesian Information Criterion (BIC)

Define L as the maximum value of the likelihood function for the estimated
model, furthermore let & be the number of estimated parameters in the
model, and n is the number of observations. Then the BIC value of the
model is the following:

BIC = —2log(L) + 2k - log(n) (33)

Note that both BIC and AIC resolve the problem of overfitting by intro-
ducing a penalty term for the number of parameters in the model, and the
penalty term is larger in BIC than in AIC (Burnham and Anderson 2002).

A.3.3 The Hannan—Quinn Information Criterion

Define ¢ as the log-likelihood function for the estimated model, furthermore
let £ be the number of estimated parameters in the model, and n is the
number of observations. Then the Hannan—Quinn value of the model is the
following (Burnham and Anderson 2002):

Hannan—Quinn = —20 4 2klog log n (34)
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A.4 GARCH Models of Higher Orders

Table 9: GARCH models of higher order

Distribution: Student’s t-distribution

Model Significant parameters * AIC BIC Hannan-Quinn
GARCH(1,2) No -6.7820 -6.6039 -6.7098
GARCH(2,1) No -6.7813  -6.6033 -6.7091
GARCH(2,2) No -6.7708 -6.5749 -6.6914
EGARCH(1,2) No -6.8888 -6.6751 -6.8021
EGARCH(2,1) No -6.8888 -6.6751 -6.8021
EGARCH(2,2) No -6.8790 -6.6475 -6.7851
TGARCH(1,2) No -6.8348 -6.6389 -6.7553
TGARCH(2,1) **

TGARCH(2,2) No -6.7832 -6.5517 -6.6893
APARCH(1,2) No -6.7899 -6.5762 -6.7032
APARCH(2,1) No -6.7781  -6.5466 -6.6842
APARCH(2,2) No -6.7646 -6.5153 -6.6635
Distribution: GED

Model Significant parameters * AIC BIC Hannan-Quinn
GARCH(1,2) No -6.8096 -6.6316 -6.7374
GARCH(2,1) No -6.8092 -6.6311 -6.7370
GARCH(2,2) No -6.7985 -6.6026 -6.7190
EGARCH(1,2) No -6.9147 -6.7189 -6.8353
EGARCH(2,1) No -6.9085  -6.6948 -6.8218
EGARCH(2,2) No -6.8945 -6.6630 -6.8007
TGARCH(1,2) **

TGARCH(2,1) No -6.8716 -6.6580 -6.7850
TGARCH(2,2) **

APARCH(1,2) No -6.8116 -6.5979 -6.7249
APARCH(2,1) No -6.7894 -6.5579 -6.6955
APARCH(2,2) No -6.7837 -6.5344 -6.6826

* Not significant is defined as at least one parameter not significant

** Covariance stationary requirement not fulfilled.
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