
Secu
re D

o
m

ain
 Tran

sitio
n

 o
f C

alvin
 A

cto
rs

Department of Electrical and Information Technology,
Faculty of Engineering, LTH, Lund University, 2016.

Secure Domain Transition of
Calvin Actors

José María Roldán Gil

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2016-513

http://www.eit.lth.se

Jo
sé M

a
ría R

o
ld

á
n

 G
il

Master’s Thesis

Secure Domain Transition of Calvin Actors

José María Roldán Gil
jose_maria.roldan_gil.551@student.lu.se

Department of Electrical and Information Technology
Lund University

Advisor: Ben Smeets
ben.smeets@eit.lth.se

June 13, 2016

Printed in Sweden
E-huset, Lund, 2016

Abstract

Calvin, an Ericsson application framework for Internet of Things (IoT), simplifies
the development and deployment of applications for IoT systems where many
heterogeneous devices are deployed and connected through the Internet. The
application engineer just needs to design and codify the application applying
Calvin syntax. The Calvin environment is formed by runtimes and applications.
The runtime provides the engine to execute applications abstracting the device
to the application itself. These applications follow the actor pattern such that
actors and the connections among them complete an application design. When an
application is deployed in a runtime, the actors are instantiated and subsequently
they can be migrated to another runtime that will host the actors and give them
its resources.

Calvin is still being developed and several parts are lacking or are immature.
One of these issues has been analysed in the case that many application domains
form the environment. Currently the assumption is, from a given domain point
of view, that the runtimes, applications and users are trusted. However, this sim-
ple view changes when one starts to consider interactions with others domains
which are expected to be untrusted. As long as actor migrations are possible, do-
main crossing is feasible and actors can move among different domain runtimes.
This exposes the domain to risks and non authorized access to resources of actors
working on behalf of untrusted users.

This thesis considers a solution and its implementation in Calvin code that
tries to enhance security and reduce risks with respect to domain crossing. Roughly,
by identifying every actor in the domain and applying a policy, we realize a man-
aged access to the domain resources. In addition, a translation policy is intro-
duced that will allow identities from another domain to be translated into iden-
tities in a receiving domain. Hence all actors have identities that are valid in the
domain’s namespace. The translated identities are still considered untrusted, but
their actions are limited in the domain due to the policy applied. The transla-
tion is stateless and involves only the target receiver domain. We also discuss the
limitations of this approach and discuss ways to extend this work.

i

Popular Science Summary

The Internet of Things technology (IoT) will become a reality in the following
years. IoT refers to the connection of many devices via the Internet. For instance,
a lamp, a fridge, a temperature sensor, a car, etc. Applications such as alarm re-
ception because the fridge is open, or traffic control thanks to car sensors will be
usual. What is characteristic here is that devices will be heterogeneous: different
type of hardware and software characterize them. This makes application de-
velopment a tricky task. Fortunately, application frameworks are available and
they abstract the device and other issues for the application developer, i.e.,the
framework hides the complexity so the developer just can focus on designing the
application functionality. Calvin, developed by Ericsson, is one of such frame-
works. Calvin manages connections, operative systems, resources, etc. such that
an application can be executed.

Applications in Calvin are formed by actors, that are small programs that can
be connected to form the whole application function. For instance, one actor can
be a calculator and another a display, such that the result of the calculator can be
printed in the display actor. The applications (and thereby actors) are executed
on runtimes, a software installed in the device, which, as said, abstracts the de-
vice to the application and executes it. Actors can be migrated and executed in
other runtimes beyond the first runtime on which the actor was created. Hence
the device that executes the actor may change and the actor is not fixed to a spe-
cific device or runtime. This is another reason why the framework is important.
The conditions change but the application needs to be executed in the same way
irrespective of the actual device or runtime. Of course, all what is said about
migration supposes that the rutime one migrates to is able to host the actor.

It is expected that different domains can be established. A domain will be a
defined group of runtimes, users, and a namespace for identities. For instance,
a domain could be a company which has some hardware and some employees
running applications. As mentioned before, it is assumed that these elements are
trusted within the domain and others domain are untrusted since one can not
control them. Foreign domains could have malicious users, malicious software,
etc. Hence, migrations out of or in to the domain are risky operations. Currently,
Calvin lacks any useful countermeasure beyond disabling migration among dif-
ferent domains. This thesis has accomplished a solution to handle domain cross-
ing and enhance the security. All users in a domain will have an identity and
actors executed by these users will handle the respective identifier. A policy will
authorized to use the resources requested by the actor. But the problem of migra-
tions is still there. If an actor identified from other domain arrives to the domain,
the identifier is not valid and a translation will be performed to adapt it to the
new domain. One can imagine that each domain speaks a different language, or
gives names to its users independently of each other. Hence it may well be that
different domains cannot "understand" each other in the sense that names used
in one domain are either not understood or could actually map to other users.
The use of a translation table will give an incoming actor a new identifier and
through a correct combination with the runtime policy the migrated actor will
not be deployed if it attempts to use resources that are not possible for it.

ii

The work performed goes from the study of Calvin and the study of the do-
main crossing problem, to the design of a solution and the implementation in
Calvin. Several discussions related to the solution conclude this work.

iii

iv

Acknowledgements

It has been a really nice time here in Lund, where, apart from other things, I have
carried out this Master Thesis. First, I want to thank my professor and thesis
supervisor Ben Smeets for his guidance and help, and also some of his colleagues
in Ericsson for their opinions about the work. Finally, I thank my family and
people from Spain, of which I have been separate and with I could not enjoy this
year, although I have made many new friends here which deserve the thanks and
some of them have shared with me the study time every week.

v

vi

Table of Contents

1 Introduction 1
1.1 Background: Internet Of Things . 1
1.2 Background: Calvin . 3
1.3 Goals . 5
1.4 Outline of the report . 6

2 Calvin: an application environment for IoT 7
2.1 Significant concepts about Calvin 7
2.2 The concept of domain . 16

3 Towards a solution 19
3.1 Definitions . 19
3.2 Defining the domain through the TLS protocol 22
3.3 The translation process . 24
3.4 Benefits of the solution . 25
3.5 New issues and considerations . 26

4 Implementation in Calvin code 29
4.1 Already being implemented in Calvin 29
4.2 Translation policy . 30
4.3 Translation . 31
4.4 Modifications committed in Calvin 32
4.5 Tests . 35

5 Discussion 41
5.1 Discussion of some topics . 41
5.2 Future work . 42

6 Conclusion 43

References 45

A Basics of needed security concepts 47
A.1 Secure Socket Layer . 47

vii

A.2 Public Key Infrastructure . 48

B Modifications to Calvin 51

viii

List of Figures

1.1 Connected devices predictions. Source: Ericsson Mobility Report
June 2016. Compound Annual Growth Rate (CAGR) indicates the
mean anual growth rate of each device type. 1

1.2 Calvin use case example. 4

2.1 Actor description. 8
2.2 Layer model for Calvin. 9
2.3 Example of attributes and requirements and migration. 11
2.4 Runtimes and actors connections. 12
2.5 Calvin’s web interface. 15
2.6 Example of interdomain migration (red) or interdomain (blue). . . . 17

3.1 Link category example . 23
3.2 Example of a translated migration. 25
3.3 Issue: migration back after translation. 26

4.1 Cheating example when migrating. 32
4.2 Accessibility to link category value. 34
4.3 Activity diagram regarding the translation code. 35
4.4 First scenario scheme. 36
4.5 First scenario, runtimes deployment. 36
4.6 First scenario, no migration. 37
4.7 Second scenario scheme. 37
4.8 2nd scenario, first case result. Test (left) and Ericsson (right). . . . 38
4.9 2nd scenario, second case result. Test (left) and LTH (right). 38
4.10 2nd scenario, third case A result. Test (left) and Ericsson (right). . 39
4.11 2nd scenario, third case B result. Test (left) and Ericsson (right). . 39

ix

x

List of Tables

3.1 Translation Table example . 25

xi

xii

Chapter1
Introduction

1.1 Background: Internet Of Things
Companies like Cisco and Ericsson have published estimates that by 2020 there
will be over 25 billion connected devices, e.g., [1], [2]. Although these estimates
are likely optimistic as we are only four years from 2020 we see a steady increase
not only for traditional devices but also a real growth for newer type of devices
such as machine-to-machine (M2M) products. These connected devices make
up for and are seen as the forerunner of the devices that form what is called
the Internet of Things (IoT). The notion of IoT is attributed to Kevin Ashton [3]
who mentioned it in 1999. As an area IoT has really developed during the last
years and is becoming a field of new technologies, products, and services. As is
described in [4], ongoing developments and trends like the deployment of Cloud
technology, mobile networks driving ubiquitous connectivity, the smart phones
as a powerful tool for managing our things, and the Internet as an accessibility
enabler have been supporting IoT’s strong development.

Figure 1.1: Connected devices predictions. Source: Ericsson
Mobility Report June 2016. Compound Annual Growth Rate
(CAGR) indicates the mean anual growth rate of each de-
vice type.

Some devices like smart phones are not considered to be IoT devices. What
is IoT then and which devices are IoT devices? There is no clear answer to this

1

2 Introduction

question. One can find many definitions of IoT. In [5] one has been to gather some
of the definitions in the the absence of a single definition. For instance:

• "A network of items -each embedded with sensors- which are connected to
the Internet", by IEEE.

• "Machine-to-machine communications (M2M) is the communication be-
tween two or more entities that not necessarily need any direct human in-
tervention. M2M services intend to automate decision and communication
processes", by ETSI (note that M2M is another term used to refer to device
communications).

• "A global infrastructure for the information society, enabling advanced ser-
vices by interconnecting (physical and virtual) things based on existing
and evolving interoperable information and communication technologies",
ITU-T study group 13.

• "The basic idea is that IoT will connect objects around us to provide seam-
less communication and contextual services provided by them. Develop-
ment of RFID tags, sensors, actuators, mobile phones make it possible to
materialize IoT which interact an co-operate each other to make the service
better and accessible any time, from anywhere", by IETF.

Thinking about what IoT can bring us, we see that IoT includes a new com-
munication paradigm. While for many years the aim of communication tech-
nologies have been to connect humans to humans, or even humans to machines,
nowadays we can talk about machine to machine communications where humans
do not interact, as is expressed in [6].

The data and information that is created by and around the IoT devices is
a key factor for the interest in the IoT technology. IoT devices can be viewed
as a link between the physical and the virtual world. Data gathering and data
analysis allow the creation of information that not only is interesting for its im-
mediate purpose, e.g. temperature sensors to control the heating in a building,
but through processing and correlation with other data one can create informa-
tion that can be utilized to act more intelligent, e.g. detecting malfunctioning in
the heating system or energy planning. Through collecting and interacting with
heterogeneous devices we can create novel services and ways to control our en-
vironment. Huge quantities of data will be created, processed and shared to be
offered as service or function that packages the data and ability to interact with
devices in a smart manner. Here engineers will find work to deliver the applica-
tions and algorithms that can get the most out of the data. Since the application
area of IoT technology is so diverse the application scope for the engineering
skills is quite broad too and there will be ample opportunities for specializing
solutions for specific use cases and also for reuse of solutions. A few important
applications scenarios have been described in [7], for instance sensor networks,
smart grid, urban planning, optimization, time saving, navigation...

According to [8], IoT can be classified in the following categories: Service,
Computation, Communication and Sensors. Many challenges have been identi-
fied in each category. For instance, easy deployment of sensors and low power

Introduction 3

consumption in Sensors; connection and management of growing number of de-
vices, high volume of data management or security related to Communication;
real time, reliable computation and distributed computation (server and devices)
to reduce the load (Computation); standardization and more independent ma-
chines in Service. Security challenges and power management challenges are
studied more in depth in [9]. In addition, [10] or [11] focus only on security chal-
lenges. Finally, in [12], the authors discuss some requirements that IoT should
fulfil. Apart from these requirements of security and energy efficiency, scalabil-
ity, quality of service, mobility and heterogeneity are discussed. Since IoT devices
are geographically spread and networked and become often useful only when at-
tached to a processing facility, the use of networks and that of computing will
increase as IoT devices will be deployed. In order to keep up with the growth in
the deployment of devices, the supporting technologies need to be scalable. Fur-
thermore, the data could be treated through many heterogeneous types of devices
that request different levels of quality of service as well.

The IoT area has attracted a lot of interest leading not only to commercial
products but also leading to or inspiring research and reflections on how IoT will
affect our lives. Since we are still at the beginning of the IoT area it is useful to
reflect on future directions of IoT. This is, for example, done in [13] which enumer-
ates some questions about the future focusing on the use of Big Data technology
and its impact on individuals, organizations, industry and society. Remember
that the collective of IoT devices will generate a huge data stream where Big Data
technologies can be utilized to process it. Questions on privacy and data own-
ership, that is who is the legal owner of the data, and how we can secure that
ownership can be maintained are important questions. Furthermore, it is inter-
esting to understand how other promising technologies such as 5G networks can
cooperate with IoT, this is for example, studied in [14].

1.2 Background: Calvin
The development and deployment of applications for IoT will be a substantial
cost factor when creating products and services based on IoT devices. Beside the
legal and social aspects there are many requirements to be met and use cases may
pose specific challenges to the developer. Today the task to build an IoT based
service would be a tricky assignment due to the expected requirements e.g. of
mobility, heterogeneity or security. We will in this study focus on one specific
aspect of such an assignment which is the technical development, deployment,
and operation of IoT applications using a specific application framework.

There exists software like frameworks or middlewares which offer a basis to
develop applications (apps) and which simplify greatly the development task.
One novel framework for apps that also includes a concept for deploying is the
Calvin [15] framework from Ericsson. Calvin is defined as "an application envi-
ronment that lets things talk to things, including a development framework for
application developers and a runtime environment for handling the running ap-
plication". It can be said that Calvin takes care of many aspects of steps needed to
field an app and just lets the developer to build its application using the provided

4 Introduction

syntax. It provides interoperability and scalability. The current implementation
is written in Python and can be downloaded from [16].

In Calvin, the applications follow the Actor Pattern and one uses Dataflow
Oriented Programming. The Actor model has been around since the middle
eighties [17] and has been used in other others areas. In Calvin an application
will be a group of actors and their inputs and outputs that can be connected so
they are ready to share the information generated. Runtimes are the engines of
the system. An application will be deployed on a runtime and consequently the
actors described by the application will be deployed as well in the runtime. One
of the outstanding points of Calvin is the migration of actors. An application, and
therefore its actors, are not tied to a runtime. They can be hosted by other run-
times that fulfil the requirements the actor/application has on the runtime. For
example, the actor requires to have access to a temperature sensor. Because actors
can move around among several runtimes one can consider the set of runtimes
that can be used as a Cloud scheme [18], since the hardware is decoupled from
the software. Figure 1.2 shows an example. There are three runtimes deployed
and accessible by Internet. Two of them have installed a temperature sensor,
meanwhile the third one has an alarm light. An application has been deployed,
consisting of two actors: a sensor actor, which takes samples from the tempera-
ture sensor; and an alarm actor, which checks the value of the sample and turns
on the alarm light in case it is above a given threshold. The sensor actor can be
migrated to the runtime3 to check that temperature as well.

Figure 1.2: Calvin use case example.

Calvin is still under development, mainly driven from Ericsson Research in
Lund. Besides the fact that many planned features are still in line to be imple-
mented and that functional issues have been identified it is in the security field
where Calvin needs many improvements. Although there are some rudimentary
security features implemented Calvin is lacking a comprehensive security frame-
work that covers the intended use space. Recently Calvin has been augmented
with concepts around identities and domains which allow better access control
and trustworthy communication between applications or actors.

In this context, we are interested in the case of an environment composed of
several domains. Users being member of a domain trust the actors and runtimes

Introduction 5

of the domain they belong to. But what happens when a deployed actor is mi-
grated outside its starting domain? Or on the other hand, another domain’s actor
is received in my domain? These questions, at its outset simple, will as it turns
out and described in this report lead to many security aspects and some of them
are hard to find good solutions for. This explains also, in part, why the current
Calvin framework has no solution for such domain transitions.

1.2.1 Other Application Frameworks for IoT

Calvin will be the framework for this study. What other frameworks exist that
could be of interest? Below we give a short list of other available software:

• NoFlo [19]. Follows as well the Dataflow Oriented Programming pattern.
The application architecture is like Calvin, changing the nomenclature with
nodes instead of actors and edges for the connections. The language used
is Javascript. As one can see, it is a similar software compared to Calvin.

• Orleans [20], a Microsoft open project. The Actor Pattern is key here again.
With this software applications are easy to be established and abstract the
developer from some common issues in distributed systems. Moreover
there is a runtime designed to achieve high performance, reliability and
scalability.

• Netbeast [21]. This software allows to easily develop and deploy IoT ap-
plications, written in Javascript. The app developer is abstracted from
the communications issues and heterogeneous hardware. The software is
formed by an operating system for embedded devices, a digital dashboard
for hosting and running IoT applications and an API to abstracts underly-
ing technology.

1.3 Goals

We already mentioned that the security aspects of the domain crossing by actors
is the main topic of this project. Specifically our goal is to:

• Identify the problem of domain crossing when a migration is performed,
and provide a security solution to that issue. The actual security architec-
ture of Calvin is simple and there is no solution to handle the security is-
sues that appear when the crossing is done. A security analysis of different
approaches to solve this must be carried out with respect to the achievable
security and the required complexity in the actors and the runtime envi-
ronment. As a result of this objective, a solution should be proposed.

• Implementation of a solution: the project should study the impact on actors
and their runtime by a reference implementation, implementing a solution
that covers the problems obtained above.

6 Introduction

1.4 Outline of the report
• Chapter 2 describes the Calvin software and the most important features

relevant to this project. The chapter concludes with the issues that should
be the focus of the work.

• Chapter 3 presents an examination of solutions to the issues discovered in
the previous Chapter.

• Chapter 4 contains the implementation realized following the concepts of
the solution designed in the previous chapter.

• Chapter 5 discuss some topics and possible future work.

• Chapter 6 concludes the work realized.

• Apendix A summarizes some basic security concepts that are referred in
this thesis.

• Appendix B presents the modifications implemented in Calvin code.

Chapter2
Calvin: an application environment

for IoT

2.1 Significant concepts about Calvin
As said before, the Calvin framework simplifies the development of IoT applica-
tions, abstracting the distributed, heterogeneous, scalable and concurrent system
to the engineer. In this section we discuss the main concepts of Calvin that we
make use of or that are relevant for our work. We briefly explain the concept of
applications, runtime, and attributes as well as policies. Other information about
how to install Calvin, configuration, applications, etc. can be found in [22].

2.1.1 The Calvin Application
We start to explain some basics of Calvin applications by using the simple exam-
ple shown below.

File 1st.calvin
A small calvin example
source : std.Counter()
output : io.Print()

source.integer > output.token

The purpose of this program is to provide a counter and display the sequence
of its count values. Applications are formed by actors, in this case we have two of
them: the source and output actor, which correspond to std.Counter (a counter)
and io.Print (displays the inputs) type of actors, respectively. The actors are in-
stantiated as a result of the syntax written down in the first two lines, one per
each actor. After the required actors have been created one has to specify their
connections. Actors can have inports and/or outports. Looking in the actor’s
documentation, it is revealed that the actor std.Counter has an outport integer
and that io.Print has an inport token. Source.integer > output.token just
connects the outport of the counter with the inport of the io.Print such that the

7

8 Calvin: an application environment for IoT

counter sends the data, called "token" in Calvin (in general, not only the io.Print
actor uses this nomenclature), to the printer. By looking more closely (even) at
this small example, we can conclude the following facts. An actor executes a pro-
grammed function that can consume values from the inports and submits results
on the outports which can be connected to others actors. We also see that an actor
can have a state. In our example the state of the counter. Calvin offers some built-
in actors for common operations (the actors used in the example are two such
actors that are given by Calvin) and of course new actors can be developed and
added to the system (inheriting from the Actor class of Calvin). Also it is impor-
tant to understand that we make sometimes a distinction between the actor and
the actor instance. The same actor can be instantiated multiple times.

Furthermore, the state of an actor is the variable part of it and when migrat-
ing an actor the state has to be migrated. Inputs can trigger new actions in the
actor’s program which in turn may change the state. The state will be important
for actor migrations when they move to another execution environment to run
there. In fact in Calvin, the actor itself program is not migrated, instead data that
is related to the actor instance, its state and attributes, are migrated. We come
back to the migration later. Furthermore, attributes can be attached to the actor
instance, describing properties and requirements in terms of resources to be able
to function correctly. However, they are not part of the application design and
will be explained later. Figure 2.1 shows an actor description.

Figure 2.1: Actor description.

Instantiating and connecting different actors is the way to complete the de-
velopment of an application. But how are applications deployed? A support
environment is needed that interprets the code. In Calvin, it is called a runtime,
and it is another important component of Calvin.

2.1.2 The Runtime
After an application has been developed we want to run it. To make this happen
the application needs an execution environment, and Calvin calls this as a run-
time. The runtime is the engine that manages and executes the deployed actors
and provides services related to things like communication or access to resources,
e.g. a button, a temperature sensor, a microfon, or video camera. The runtimes

Calvin: an application environment for IoT 9

Figure 2.2: Layer model for Calvin.

can form a network of runtimes and therefore facilitate for the possible migration
of actors. A migration of an actor is typically the process where an actor instance
is relocated from a source to a target runtime (sort of Cloud pattern where code
is not linked to a fixed platform and hardware can change during its lifecycle).
As shown in Figure 2.2, the runtime is installed above the operative system of a
platform. Please note that an application can be executed on one runtime, or that
its actors execute on different runtimes.

In [23] it is explained that a runtime has a platform dependent sublayer and
a platform independent one. The platform dependent sublayer handles the com-
munication among runtimes and uses a plug-in for the transport protocol. In ad-
dition it abstracts other platform functionalities (for instance I/O). The platform
independent sublayer provides "the interface towards the actors" and provide
some basic services. Runtimes can be of very different nature. Some runtimes
may be very limited, e.g. supporting only very simple resources like a button
or temperature sensor, while other runtimes may be very powerful with ample
memory and computational resources. Since runtimes have different resources
it is may well be the case that an actor requires resources which a runtime does
not provide. Beside the fact that this means that we cannot instantiate the actor
on such a runtime it indicates the need to have a system to easily declare what
a runtime supports. How this is addressed in Calvin is the subject of the next
section.

Finally, let us return to the initial question in this section. Our ready devel-
oped application is deployed on a starting runtime. The actors described by the
application will be instantiated there, and maybe they will be migrated to other
runtime if this is required or better in some sense, e.g. using some rules the run-
time(s) are equipped with.

2.1.3 Attributes and requirements

An important feature of Calvin is the possibility (it is an optional feature) to at-
tach requirements to actors and deploy runtimes with attributes that provide in-

10 Calvin: an application environment for IoT

formation about the runtime, e.g. its capabilities. The attributes or requirements
are provided by the user when deploying a runtime or an application, issuing the
commands csruntime or cscontrol, respectively.

Definition: We say that the requirements of an actor meet the runtime at-
tributes when the actor’s attributes are such that the runtime has the required
resources or attributes, e.g. location, a camera, etc.

Please note that this definition means that when the requirements are met it
does not imply that the actor is allowed by the runtime to execute. This aspect,
the permission to use the runtime and its resources, is a separate issue. Parallel
with this thesis work there was a thesis work which had the access control as its
subject, we refer the interested reader to the report of that work [24]. Summa-
rizing an actor is able to be instantiated or to migrate to another runtime if its
requirements are met by the target runtime and that the target runtime grants the
use of the requested resources.

If the attribute and requirements scheme is used, a runtime should be started
with a given set of attributes, specified in a JSON format. The current specifica-
tion supports three data types that are available for the attributes, the so called
public, private and indexed_public. The types public and private are still
under development, so we will only study the indexed_public. This attribute
type allows one to tag the runtime with the owner, address and node_name. In
addition, it is possible for the owner of the runtime to write his own attributes
(user_extra field). The data is indexed, i.e., it will have a key field for search-
ing the attribute item and the respective value. For instance, a valid attribute
declaration could be

{"indexed_public":
{"owner": {"organization": "com.ericsson"},

"address": {"country": "SE"},
"node_name": {"organization": "com.ericsson",

"name": "testNode"}
}

}

Those attributes that are attached to a runtime at the moment it is launched
are important for an application. As mentioned before, the application may have
some deployment requirements that must be matched by the runtime attributes.
Each actor that is part of an application identifies which requirements it needs. If
the match between the attributes provided by the runtime and the actor’s require-
ments is successful, the actor can be deployed on the runtime. The requirements
matching allow automatic migrations, since an application will be started in a
runtime, and then the actors will be moved to the node where the requirements
are met.

An example of a requirement declaration could be like below. It shows a re-
quirement for a concrete node, called testNode2
{
"requirements": {
"actor1": [{"op": "node_attr_match",

"kwargs": {"index": ["node_name", {"organization": "org.testexample",

Calvin: an application environment for IoT 11

"name": "testNode2"}]},
"type": "+" }]}

}

Figure 2.3: Example of attributes and requirements and migra-
tion.

Consider Figure 2.3. It is an example where both actors fulfil the require-
ments so they are migrated. In case one of them does not fulfil it, the actor would
stay in the starting runtime until there is a match.

The approach taken by the Calvin designers is similar to that of Attribute
Based Access Control (ABAC) policy [25], although the main different here is
that while in ABAC the actors have attributes and the runtimes apply the policy
to allow them or not, in Calvin these roles are the opposite.

2.1.4 Linking runtimes
Runtimes are expected to build a network to communicate. By network it is un-
derstood that a runtime establishes individual links with other peer runtimes, the
so called runtime links. The communication makes it possible actors to commu-
nicate but supports also the actor migration. In the case we would have migrated
an actor α that was connected to another actor β, the connection remains but the
communication has now to be moved to a runtime link on the target runtime. In
Figure 2.4, one can see the arrangement in a layer model of the communication
between two actors in separate runtimes. On the right side, it is shown the logical
link between two actors and the runtime link. It is important to understand that
the logical actor link is implemented on top of the link(s) of the runtime.

In the Calvin implementation we have two classes that play an important role
in the communication: CalvinLink and CalvinNetwork. While CalvinLink man-

12 Calvin: an application environment for IoT

Figure 2.4: Runtimes and actors connections.

ages one specific link between two runtimes, CalvinNetwork manages all estab-
lished links from a runtime, register the transport plugins and start the listeners
of incoming join request (from other runtimes).

The protocol that supports the token shipment is handled by a transport plug-
in. If we seek what is the default plug-in implemented in Calvin, the answer is
Twisted. Twisted implements the network protocol for TCP servers that send
messages in an asynchronous way. It is expected that the communication be-
tween two runtimes, both play the TCP server role and client role. In reality there
are two channels, one for each communication direction. The Twisted documen-
tation can be checked in [26]. The transport uses the so-called calvinip address.
This address (IP and port) is specified in the runtime deployment and is different
from the control port that manages the node. The connection made is just a TCP
link. Currently TLS is not supported yet.

2.1.5 The migration
We have already discussed migration to some extend but we need to look into
it in some more detail as migration is an important ingredient in the problem
we address in this thesis work. Therefore this section contains a more detailed
analysis of the actor’s migration process. Remember that migrations is one of
the features for which Calvin is considered a Cloud system: the software can be
executed on different hardware during its execution life cycle when actors are
migrated from a source to a target runtime.

The migrations can be manually ordered by the user or the runtime does it
itself, e.g. when the requirements are fulfilled. Although Calvin allows migration
to happen in a smart way that would optimize some desired parameters such
response time it has still not the control mechanisms and heuristics to have smart
migration. In our examples we migrate actors manually using command and
web interfaces.

Thus, the migration process itself consists in short by the destruction of the
actor instance in the source runtime and the creation of a new one in the target
runtime. The code is not sent anywhere, and is located in the runtime’s actor store
(explained later). What is sent over the network is the state, type and ongoing
connections of the actor. All this data is sent by first serializing (marshalling) all

Calvin: an application environment for IoT 13

items and then sending the serialized version. The target runtime will deserialize
the data and with this information, the target runtime can create the new instance
and recreate the running actor.

We can say that three requirements need to be fulfilled to perform a migra-
tion:

1. First of all, the source runtime and target runtime must have established
a communication channel, otherwise communication is not possible, i.e.
they have to know how to reach each other previously.

2. Then, if the actor has requirements, the target runtime must match all of
them to become a host runtime.

3. The target runtime must have the implementation of the actor type being
requested by the source runtime. It should be pointed out that both run-
times do not need to have exactly the same implementation as long as the
interfaces of the actor type are the same (for instance, the state received can
be used to instantiate the actor).

2.1.6 The Security Module
A security module, security.py, was included to Calvin while this project was
in progress. The security module will simplify the final Calvin implementation
since it encapsulates new features to be implemented downstream. Basically this
module is responsible for the authentication and authorization mechanisms. The
Calvin configuration file indicates which security procedures will be used (they
are optional, maybe they are not activated) and some parameters, like the users
allowed or the path for the policy files.

With respect to the authentication procedure, a user needs to provide its cre-
dential(s) for deploying an application. By credentials it is understood a user
identifier and a password. Actually it is possible to use a local authentication
procedure or a Radius server. We have tested the local procedure, which consist
in a list of feasible actors and their passwords that are allowed in the system. If
the user introduces the correct credentials pair, the authentication succeeds. The
credentials are stored in the actor instances so it can be known on behalf of what
user the actor works. Moreover they are part of the actor state and sent in the
migration (will be important for the project implementation).

After the authentication, the authorization policies, in case they are available,
will be checked through an authorization request. In this thesis when referring
to policies, it is understood a group of rules that determine the decision result-
ing of a process that can have different outcomes. In this case, the authorization
policy gives or not the deployment authorization to a user according to the rules
established in the policy. As it happened with authentication, in authorization
the procedure can be local or external (where another runtime can act as autho-
rization server). Again we have tested the local procedure. The policies can be
applied to application and actors. They will allow actors deployment in the case
the authorization request succeeds. A policy is formed by three important fields:
rule_combining, target and rules. A policy example is shown below.
{

14 Calvin: an application environment for IoT

"id": "policy1",
"description": "Policy for actor signers. All possible signers (or
unsigned) permitted for user1",
"rule_combining": "permit_overrides",
"target": {

"subject": {
"user":["user1@test",".*@test"],
"actor_signer": ".*"},

"action": {
"requires": ["runtime", "calvinsys.*"]},

"resource": {
"owner.organization": "com.ericsson"}

},
"rules": [

{
"id": "policy1_rule1",
"description": "Permit if policy target matches",
"effect": "permit"}
]

}

The rule_combining value sets whether the rules can be combined to allow or
deny an authorization decision if just one of them is accomplished. This happens
when many policies stored in the policy path indicated in the configuration file
match the target of the authorization request. The target field describes to whom
the policy will be applied. If the target is empty, it signify the policy is applied to
everyone. The target can be formed by the subject (users and actor or application
signers), the resource attributes, i.e., the runtime attributes and, just for actors,
the action field which indicates the resources required by the actor. For instance,
runtime value means runtime execution access, or can calvinsys to request a
resource.

When a policy matches with the target, there is a rule part that gives the re-
sult or effect: deny or permit. Many rules can be implemented and make poli-
cies more or less complex regarding the system needs. The rules can have con-
ditions to limit the effect of the rule and if they are accomplished the rule will
take effect. The conditions can be formed with attributes and functions (for ex-
ample, equal, less_than_or_equal, greater_than_or_equal...). Many con-
ditions can be combined as well, regarding the requirements and complexity that
one wants to achieve.

Furthermore, the file certificate.py complements the previously explained se-
curity module security.py. Some of the functions available in this module are
generation and signature of certificates, file signature, certificate verification or
cryptography key procurement. These functions are related to Public Key Infras-
tructure [27] and this is important for the future of Calvin. In Appendix A.2 we
give a brief description of PKIs.

Finally, we comment that the actor and applications can be signed with csmanage
tool provided by Calvin, it is not needed to use external tools. Signatures can be

Calvin: an application environment for IoT 15

used in policies as one of the conditions.

2.1.7 Other components of Calvin

Figure 2.5: Calvin’s web interface.

In this section a few other components like the web interface, the actor store
and the storage will be described. This just to know a little bit more about Calvin
and because we sometimes mention them in the descriptions. They have no spe-
cial security meaning in our work but, like storage, may have their own security
issues.

A web interface is available to manage runtimes after they are deployed. A
Calvin server must be executed and it is ready to use the web through a web
browser, as shown in Figure 2.5. The interface is built around the HTTP protocol.
Basically with this interface a user can deploy applications on an specific runtime,
destroy it, migrate an actor to the runtimes available in the network or get the
port’s FIFO.

Another component is the storage. The runtimes can search in the storage
to obtain information about other runtimes, actors, ports, etc. By default it is
implemented using a Distributed Hash Table plug-in called Kademlia. The stor-
age information is obtained by an API. There is a recent master thesis where the
interested read can find out more details about how it works, [28].

Finally we will mention what is called in Calvin the Actor Store. In the Actor
Store one can find the actors available in a node (many runtimes can use the same
actor store) and is where the code is stored. In the current Calvin implementa-
tion, two classes are relevant in this context: the ActorStore and GlobalStore.
However there is still not too much information about these two classes. It is rea-
sonable to think that the first one is the local store associated with a runtime and
the other is a distributed global actor store shared by many runtimes. But as of
today the last one is not used.

16 Calvin: an application environment for IoT

2.2 The concept of domain

When reasoning about actors and their deployment one arrives fairly quickly to
a point that one realizes that actors perform tasks on behalf of someone. But this
someone is in most cases not a single entity. Now different entities may trust
each other or may not. The same type of reasoning can be applied to runtimes
and the links through which runtimes communicate. Using the trust relation
one basically can partition the runtimes in groups and we call these groups for
domains.

A domain can be characterized as a group of users, runtimes and a names-
pace. The domain is closed in the sense that its boundaries, that is who belongs
to the domain and who not, is well-defined. In practice we also assume that there
exists a proper authority by which we can verify if a runtime is indeed a member
of the domain or not. Towards that end, the authority must have a means to per-
form the verification. In Calvin one goes a step further and not only checks if a
runtime belongs to the domain but one assigns a unique name (identifier) taken
from the namespace to each runtime. The implementation of all this is based on
public-key cryptography and the namespace is realized by having a Certificate
Authority (CA), who can issue certificates for the public keys. We see that the
PKI of the CA and the domain are in essence the same.

A certificate provides information about the subject it has been issued to, e.g.
the domain it belongs to, and binds the subject identifier to a public key. Anyone
can with knowledge of the CA root public key verify a certificate and can use the
information in the certificate to identify, for example, a runtime. The information
in the certificate is interpreted on the basis of the namespace that has been de-
fined. Hence, another domain with possibly a different namespace, and maybe
another Certificate Authority, cannot use certificates from another domain. As
a consequence any inference by using certificates such as identifications of run-
times performed in a domain, is just valid in the domain the certificates are issued
for.

The runtimes of a domain and the actors running on them are trusted, e.g.
the users that receive an identity are known or the runtimes have correctly es-
tablished their identity. Users are supposed to execute applications and use the
resources in the best way satisfying the policies of that domain. On the other
hand, the components of another domain are considered untrusted, mainly be-
cause the initiating users are not known and not identifiable. The runtimes’ soft-
ware will not be verified nor will the applications. As long as runtimes are reach-
able through a network, migrations are available and domain crossing migrations
can be realized. This implies risk on both sides. Actors would leave their trusted
environments (the domain) to be deployed in a untrusted one.

In the remainder we assume that Calvin is using the aforementioned domain
concept using a PKI for each domain. However, the current Calvin implementa-
tion is not fully supporting the concept.

When an actors migrates from one domain to another one the receiving do-
main cannot trust an incoming actor right away. This observation lies at the heart
of the problem of this thesis work, the domain crossing of actors.

Calvin: an application environment for IoT 17

2.2.1 A first take on the domain crossing problem
After discovering the problem of domain crossing in the last section, it would be
interesting to get an initial understanding of the problem.

Figure 2.6: Example of interdomain migration (red) or interdo-
main (blue).

A runtime R could receive and host actors being migrated from a runtime S in
another domain. Such actors, working on behalf of unknown users, will use the
available resources in R, that could be memory or computation or even cameras
or sensors. Moreover these actors may gather information in R and communicate
to other actors hosted in S. R does not know the actor’s functions in S, and this
added to the fact that the actor’s initiators are untrusted, implies security risks to
the domain where R belongs to.

The users that migrate actors to R are unknown because their certificate is not
available in R’s domain, where another Certificate Authority is governing.

If R migrates actors to S, it should be aware that, since S is an untrusted
runtime, which could establish a compromised communication and will deploy
actors, which could have different features than expected (for instance, the oper-
ativing system is not updated and have security bugs).

This example explains why from a security point of view, the Calvin domain
concept is immature as it does not provide a scheme to handle domain crossing.
As we see later there are many problems associated with the domain crossing and
it turns out to be a real tricky step to handle when considering all its aspects. We
come back to this later.

18 Calvin: an application environment for IoT

Chapter3
Towards a solution

To address the security issues that were identified when an actor crosses from
one domain to another we have to develop a methodology to describe Calvin
in a more precise manner. Part of this section is devoted to the development
of such a methodology. It turns out that one important notion that we need is
that of an identity for the actors and runtimes. Basically this implies an identi-
fication scheme for actors and runtimes such that the actor’s behaviour can be
managed with the use of policies, and other measures necessary to handle the
domain crossing.

3.1 Definitions
First we define a way to denote domains and actors. Consider

D 4= the set of all domains

We will use the first capital letters A, B, C, D, to denote specific domains. Each
domain has a number of runtimes and we define

R(A)
4
= the set of all runtimes of the domainA (3.1)
= {Ri; Ri is a runtime of domain A} (3.2)

We adopt the convention that capital letters R, S, and T denote runtimes unless
explicitly stated otherwise. Sometimes we want to explicitly indicate that a run-
time R belongs to a specific domain. In such a case we write

RD 4= runtime belongs to domain D.

Actors are denoted by Greek lowercase symbols e.g. α, β (denotes actor type)
and actor instances are denoted by α̂ and β̂. In case we have two instances of
the same actor, α say, we use sub-indices or other attributes to α̂ to denote the
different instances; e.g. α̂1 and α̂2. It may be necessary to identify the runtime
R or the specific domain D where an actor instance is being executed. Then we
adopt the notation

α̂R, and α̂D and α̂RD

19

20 Towards a solution

where RD is a runtime of domain D.

Each runtime has attributes and policies associated with it. The runtime it-
self has intrinsic resources (e.g. memory, execution capabilities) and can beside
these have other resources associated with it, e.g., a temperature sensor, a but-
ton, a camera, etc. The policies and attributes characterize the properties of the
resources of the runtime and the conditions for use of these resources. The at-
tributes are used to describe which resources or properties of resources apply to
a runtime. In Calvin there are a set of predefined attributes, as it was explained
before, that can be used but in principle runtimes can add additional attribute
types. Note that the attributes are not necessarily static but we adopt here the
convention that they are.

Policies express how actors can or may utilize the resources available in a
runtime of the domain. We will use small letters u, v, w to denote resources
of a runtime and use p, q to denote policies. Hence p(u) denotes the policy of
resource u. Together these policies can be called deployment policy since the
actor deployment will be allowed or denied after the policy has been applied.

It is convenient to use the notation

R→a
4
= (. . . , a, b, c, . . .)

to denote the attributes of the runtime. Also, let

R→r
4
= (∅, . . . , u, v, w, . . .)

denote the resources of the runtime, where ∅ denotes the runtime itself and

R→p
4
= (. . . , p(u), p(v), p(w), . . .)

the policies of the runtime R.
A runtime can be connected with other runtimes using links. The collection

of links of the runtimes in a domain characterizes the network available in the
domain.

L(R)
4
= the set of all links of the runtime R (3.3)
= {Li; Li is a link of runtime R} (3.4)

Every link is going to be categorized as interdomain or intradomain by a respective
method. The purpose of this measure is to know if that link leaves the domain
or not and apply the appropriate translation for incoming actors to guarantee the
system integrity in case there is domain crossing.

Now let
Li ← c

denote the assigned of category c to link Li. Note that we do not indicate which
method is used for the assignment, nor do we describe the conditions that influ-
ence this assignment.

An actor instance is part of (or is) an application that is being executed. Each
actor instance has also requirements associated with it which are a combination of

Towards a solution 21

the actor attributes and application attributes that are attached to the actor when
it is instantiated. We will not formalize this process and satisfy ourselves with the
notation

α̂→r
4
= (. . . , a, b, c, . . .)

where a, b, c are requirements of the actor instance α̂ and ignore the details of the
requirements and how they are linked to the actor instance.

An actor instance can exist in a runtime R if and only if

1. The runtime meets the demands of the actor instance (in case attributes and
requirements are being used).

2. The actor instance meets the (policy) conditions for using the resources on
the runtime.

If one of these conditions is not met the runtime will refuse to create or host the
actor instance. Note that α̃(µ) may, but not necessarily denotes a running actor.
We use it here to denote the actor instance recovered from deserializing a (re-
ceived) state of the actor instance. It should be remembered that if the actor is
created by migration, the conditions expressed in the section 2.1.5 must be sat-
isfied as well so the actor instantiation is accomplished. But the previous stated
two conditions are always applicable regardless if there is a migration or not. We
use the notation

α̃(µ) ⊂a R

to denote that the actor α with actor state µ CAN BE HOSTED by runtime R and
let

α̂ ⊂ R

denote that the actor instance α̂ IS HOSTED by runtime R.

3.1.1 Namespaces and identities
There is one attribute of an actor instance that deserves special considerations
namely the attribute that characterizes for whom the actor instance is providing
its actions. We will call this the owner of the actor and the corresponding attribute
links the actor instance to an owner identity which in fact is a user in a domain.

Towards this end we have for each domain the set of the identities that are
defined

I(D)
4
= the set of defined identities of domain D.

Here an identity is an abstract notion that allows us to identify members of set.
Each member is associated with an identifier taken from a namespace that, for
example, is used in the domain D, and for each identifier there is an identification
scheme by which a runtime in domain D can assign an identifier value to an actor
instance. For example, during the actor instance creation the runtime requires a
PIN or password entry from the user that initiates the creation. We see that strictly
speaking an identity is a tuple consisting of an identifier and a protocol used for
identification. For convenience we often will refer to identities by the identifier.

22 Towards a solution

The identifiers link to users that initiate and have applications running for them.
But beside the identifiers for such users there are a number of other identities,
let’s say "special cases". We introduce the following two identities

Λ
4
= the null identifier in a domain with no relation to any user(3.5)

G(uest)
4
= identifier of a foreign user. (3.6)

Λ can be seen as something similar to the notion of this in object oriented pro-
gramming syntax and represents the domain itself.

It is hereafter understood that the identifier attribute of an actor instance is
only set through the runtime and that the runtimes in a domain trust the identifier
of an actor instance to be correct. However, a runtime or an actor may trigger
a runtime to perform the identification scheme to confirm the link between the
identifier and ownership of the actor instance inside the domain. Of course, it
should not be applied to the Λ and G(uest) identifiers due to the lack of final
user in the domain.

Now, we let

α̂→I
4
= identifier of the actor instance

and let
α̂←I I

denote the operation by which we set the attribute of the instance to the identifier
value I.

Finally, since the identifiers indicate the real user the actor is working on be-
half of, these identifiers may be used by policies, to be discussed later. By doing
so one can see to it that an actor will be given the proper permissions. This is one
of the reasons why identifiers are important. The mechanism by which we link
users to identifiers can be considered as the gate between the real and the virtual
(software) world.

3.2 Defining the domain through the TLS protocol
We mentioned earlier that a domain is characterized by private keys and public-
key certificates issued by a CA that is associated with the domain. How the keys
and certificates are provisioned is something that we consider to happen out-of-
band, that is we rely on procedures we do not specify or develop in this thesis
work. As such the PKI provides the namespace, identifiers and identification
scheme for runtimes in the domain. Yet, although we can directly use these tools
to define and identify domains, we will use an indirect approach that identifies a
domain by the link one makes to it.

One observation that we already made is that the transport layer among run-
times need to be improved over the present plain TCP protocol. By harnessing
Transport Layer Security [29] features and implementing this protocol, the secu-
rity of the channel is enhanced and will provide secure communications protect-
ing the data sent and authenticating the two runtimes. Some brief information
about TLS is available in A.1.

Towards a solution 23

But we are not only interested in enhancing the security level in communica-
tions. If we perform TLS in a mutual authentication mode and let the certificates
used in the protocol to be tied to (or the same as) the runtime certificate, we can
realize an indirect way to assess the domain one is connecting to. Because the two
connecting runtimes have performed the TLS handshake they have a proof that
the link is established to a runtime of a given domain. The runtime can be one
that belong to the same domain or one that belongs to a foreign domain. Hence,
we see that TLS helps to define the domain since the collection of TLS links with
certificates of the domain’s PKI establishes the contours of the domain, i.e. which
runtimes are inside the domain and which are outside and which runtimes are
connected to foreign runtimes.

In the reasoning above the runtimes and the TLS protocol for the links use
identities that belong to the same domain PKI. Maybe for security reasons we
want to use two identification schemes to be used here, one for TLS and one for
identifying the runtimes. However, for the sake for simplicity of our exposition
we say that the keys and certificates for TLS are also those used for the runtime.
Thus through the authentication method of TLS we identify the runtime and the
domain it belongs to. In the same way as the actor instances we can thus define:

R→I
4
= identifier of the runtime

and
R←I I

The authentication provided by TLS is really important. With the proper im-
plementation, the runtimes can know if the link goes to another domain or not,
and apply the translation procedure described in the next section. This TLS hand-
shake process can set the value of the link category, Li ← c, to the expected inter-
domain or intradomain, as showed in Figure 3.1.

Figure 3.1: Link category example

For accomplishing this in practice, the runtimes need to handle an identity in
the form of certificate and associated private key, and we have to specify how the
notion of namespace and identifiers map on the specifics of the certificate profile.
The certificate profile defines the fields, extensions, and attributes that are used
in the given Public Key Infrastructure. In Appendix A.2 we give a suggestion for
a possible certificate profile for our purpose. We only mention here that identi-
fiers for runtimes can be the subject names given in the certificate, and that the

24 Towards a solution

subject name of the root certificate is the same as the issuer that appears in all the
certificates, identifying the domain.

3.3 The translation process
With the definitions provided above, at least the behaviour of an actor instance
in the runtime can be limited regarding the proper policies inside the now well
defined domains. However we have a problem when dealing with migrations
that perform domain crossing, that is when an actor identified by I(C) arrives in
D that uses the namespace I(D). The core of the problem is that the identifier
from domain C will no have meaning in D. In fact, even if the identifier of an
arriving actor can syntactically be interpreted in domain D there is no sound
argument why the interpretation is correct. It is easy to imagine that in domain C
and D we have two different entities that syntactically have the same identifier.
Thus any identifier information that an incoming actor carries cannot be trusted
and needs special treatment.

A translation process would be thus a natural solution. Through a translation
the identifier of the incoming actor from C is translated into an identifier that is
valid in the namespace of D. In that way every actor is identified and the policies
will manage the resource consumption regarding the identities requesting them.
The trust of runtime D in the translation is a result that D trusts, at least to some
degree, to connect (i.e. have a TLS link) to C and implicitly trusts the runtimes
in C to assign meaningful owner/user identifiers to the actors. In practice such
trust can be substantiated by legal agreements or other non-technical arguments
for D to have a certain amount of trust the runtimes in C.

Let’s considered the instance α̂ to be migrated from RC to SD, such that

Ld ← (c = interdomain)

Let I = α̂ →I be the identifier of the actor instance. The runtime S will execute
the translation function described below for domain D.

φD(I) =

 T(I) if I occurs as index in the table T
and translation policy met,

fails otherwise
(3.7)

where the translation table T(I) is defined in the target domain D and consists
entries of (foreign) identifiers, the defined corresponding identifier in domain D,
and an optional policy that describes additional conditions for the translation to
take place. The translation table T(I) is, itself, a translation policy.

RULE: a migration fails if the identifier translation in target runtime SD fails.
We can define now that a domain D must have at least one translation table

T(I) to be implemented in R(D) (maybe it can be considered to have the same
T(I) in every runtime in the domain D or it can be configured specifically for the
runtime)

D →t
4
= (. . . , T1(I), T2(I), . . .)

Towards a solution 25

Translation Table T(A)
Input ID Output ID
.*@B guestB@A
.*@C guestC@A
(any) guest@A

Table 3.1: Translation Table example

After the new identifier is provided, the runtime will check its policies whether
to deploy or not the new instance, now that the identifier is meaningful. Figure
3.2 shows an example.

Figure 3.2: Example of a translated migration.

Since all runtimes in D trust each other it does not matter if runtime S did
the translation or any other runtime in D. It could be the case that D has one
or several runtimes that are specially assigned for carrying out a translation. We
regard this as in implementation and deployment consideration which we regard
as not being a topic for this thesis work.

We close this section by giving a high level description of an example of how
a translation table may look like, Table 3.1. This table is used in domain A to
translate identifiers used in domain B and C. The table is created in A after these
domains have established a relationship with A. For the rest of domains, they
will be granted with a general guest identifier. The deployment policies should
be devised to make sense for these translated identifiers.

3.4 Benefits of the solution
We can summary up some benefits that support the solution we designed.

• The identification of actors combined with the use of deployment policies
restrict the actor deployment and use of the runtime’s capabilities, such
that only the granted resources will be available for an user.

• The domain is well defined with the use of TLS for runtime’s communica-
tion channels. Therefore a domain crossing migration can be detected. In

26 Towards a solution

addition, this communication is more protected with respect to just imple-
menting TCP protocol.

• Foreign identifiers will be valid in a domain after the translation is per-
formed. With a proper translation (fitting the deployment policy in the de-
sired way) the performance of external actors is limited. The translation is
supported by a translation table on the target side, hence the source side is
not involved if there is no intention to it, regarding how the policy is imple-
mented. We make each domain independent and the migration is stateless
since it can be considered a black box whose entry is the old identifier and
the output the new one.

• The implementation is feasible and can be merged with Calvin code.

3.5 New issues and considerations
The translation scheme is however not solving all problems that exist around
the domain crossing. There are aspects that are not covered and which deserve
mentioning.

Once an actor has been migrated from domain C to domain D it is supposed
to receive an new identifier. Hence from domain C’s perspective the actor in-
stance lost its identity and it is not obvious that when returning to C it could
have the original back again, i.e., the identifier of the user that deployed this ac-
tor in the first place. Let’s consider an example, Figure 3.3, that shows this use
case.

Figure 3.3: Issue: migration back after translation.

The runtimes SC and TD have been deployed and the channel has been es-
tablished. Both of them have its proper translation policies, TC(I) and TD(I), that
migrates any foreign identifier to a G(uest) user. Imagine as well that both are
implementing a policy such that

p(camera) =
{

allow→ user
deny→ guest, other (3.8)

Towards a solution 27

p(guestcamera) =
{

allow→ user, guest
deny→ other (3.9)

In addition, imagine that a user whose identifier is ID="lth@domainD", ini-
tiates in TD an application that involves an actor α, and α̂ is instantiated. This
instance is allowed by the runtime’s policy to use the resources "guest camera"
and "camera", by the policies in the table. Then this instance is migrated to SC,
and regarding TC(I) we have

ˆ̂α← IC, IC = φE(ID) = guest@domainC

because this is the policy implemented for actors coming from D. This new iden-
tifier in C has access just to the "guest camera". After a time in C, the instance is
migrated back and translated regarding the policy for actors in domain D.

ˆ̂̂α← ID, ID = φE(IC) = guest@domainD

Note that with this new identifier, ˆ̂̂α can just use the resource "guest camera" and
the consequence is a privilege loss.

This approach is just handled by the translation table in the target domain,
which can be described as simple to maintain, stateless and one side migration
(since just one domain is involved).

One approach is that we only want a simple solution with low complexity
and accept the limitations. This leads to a conclusion that we cannot let crucial
actors do domain crossing, a fact one may specify in the policy of the application
the actor is part of. Alternatively we could only send clones of these actors to the
other domain, but that raises questions about the state of the original actor if that
should go dormant or should remain active and what implications those choices
have on the application as such.

Another alternative would be if the two implicated domains can synchronize
their migrations such that the identifier is not translated, just given an equivalent
in the other domain (user1@domainD and user1@domainC, for instance) and set
the deployment policy to adjust the resource access properly so the same purpose
can be achieved. But such an approach will cause an increase in the complexity
of the effort to implement domain crossing.

On the other hand, there could be another translation solution that does not
have this "coming back" problem. A few meetings were spent on this problem. It
is a tricky problem because the actor instance is created an destroyed a few times
in its life cycle and it is not possible to carry a permanent identifier. The possible
path refers to involve the source domain in the translation. On this source side,
the invariable part of the state, actual connections and actor type are signed by a
Hash function and the value is kept associated to the identifier until some actor
being migrated claims to have an old identifier there. We have this as a direc-
tions for future work. It is clear that more resources are required to handle the
complexity such as that the source runtime has to keep track of all own actors
migrated. This topic is later discussed in Chapter 5.2.

Finally, there is one aspect we assumed that can be questioned. Migrations
are feasible if two runtimes establish a communication network. Actually the

28 Towards a solution

procedure is to issue the following command in one of the runtimes cscontrol
IP:port nodes add calvinip:address. This could be easier done within a do-
main than when being outside of it, because users that are part of the domain
might known the address of the runtimes, or at least have access to this infor-
mation. On the other hand, if a user of another domain wants to migrate to this
domain, it has to manually set the network. Hence, to guarantee the system feasi-
bility a runtime’s address should be made public. Of course just in case network
is required and the disclosure level of address should depends on the purpose of
the application.

Chapter4
Implementation in Calvin code

In this chapter we detail an implementation of the domain crossing solution de-
scribed in Chapter 3. The implementation is realized within the Calvin Code,
using the developer’s code version released on March 2016. The implementa-
tion we describe here is actually the second implementation we made. A concept
implementation was done earlier to explore only some characteristics of the so-
lution. This first implementation helped us also to get better acquainted with
the existing code for the later work. In the second implementation features like
the translation have been completely re-factored. The subsequent sections of this
chapter will describe separate parts of the implementation one by one.

Please note that our transport category design is implemented using a fake
transport procedure because the TLS transport has not been implemented yet in
the Calvin code, and the development of such an implementation has not been
part of the thesis objective. Due to its complexity we refrained from even trying to
integrate TLS into Calvin. The fake transport procedure will be explained later.
This transport realization is also the only thing that not has been implemented
with respect to the previous chapter 3.

The implementation code is available in Appendix B.

4.1 Already being implemented in Calvin
The development of the Security module in Calvin has simplified the implemen-
tation of the domain crossing solution described in the previous chapter. The
Security Module provides us with credentials for the identities and with support
for runtime policies.

The actor’s identity that is a key point of the domain crossing solution will be
provided by the credentials used to authenticate an user in the system, formed
by an identifier and a password. Since these credentials are part of an actor in-
stance with the provided Calvin implementation, it fits the solution designed in
the previous chapter. The credentials have been implemented as an attribute of
the Actor class, and will be also part of the actor’s state when migrating. In this
way they can be received and accessed in the target runtime and make the proper
translation if it is needed.

Building on the existing work, the runtime authorization policies have been

29

30 Implementation in Calvin code

incorporated into the Calvin stable version and fulfil the needs of our solution re-
quirement for this type of policies. Applications and actors will be deployed and
instantiated respectively only if the policies are met, otherwise a deployment will
not be possible. Users will have associated some resources and their performance
is limited by these policies, as expected by the approach. So we could include this
in the implementation and not build a new one.

Finally, although TLS has not been still implemented, the certificates needed
to identify a runtime can be created with the command csmanage ca create
�domain domain �name nameCA . This uses the already commented functions in
certificate module.

4.2 Translation policy
Before detailing the code that implements the domain translation, the method for
describing a translation policy should be presented. An example of such policy
is shown below:
{
"id": "translation_policy",
"description": "Policy managing the translation done to cross a domain.",
"rules": [
{

"id": "policy4_rule1",
"description": "Permit if policy target matches",
"translation_category":"domain",
"source":["ericsson", "google"],
"result": "friendguest@test"

}, {
"id": "policy4_rule2",
"description": "Permit if policy target matches",
"translation_category":"identifier",
"source":["ben@lth"],
"result": "ben@test"

}, {
"id": "policy4_rule3",
"description": "Permit if policy target matches",
"translation_category":"default",
"result": "guest@test"

}] }

Basically the policy consists of a group of rules grouped within the field rules.
The most important data field in the translation rules is the translation_category.
There are three defined categories for this first version: domain, identifier and
default.

• Domain: translates an identifier from one of the domains indicated to a spe-
cific new identifier. This can be used when we know a determined domain
and we want to allow the users of this domain to do something.

Implementation in Calvin code 31

• Identifier: translates a concrete identifier to another new identifier. For
instance, it can be expected to have a specific user from a foreign domain
that needs to use some resources in our domain, so it is given a new iden-
tifier to use the resources meeting the actual deployment policy.

• Default: translates any identifier to a default identifier value. For example,
it is supposed a default value that gives a identifier with low rights, so ev-
ery identifier not matter its origin domain can be deployed in the runtime
and not compromise the worth resources.

The order in which rules are written is important: the implementation will
stop with the first matching rule and the identifier that is the result is then com-
mitted. Hence it is expected that the default rule should be the last one after the
specific rules, otherwise rules located below the default will never be checked.

Finally, the field source in domain and identifier categories refer to the in-
coming value that the policy will be applied to. Of course in default, since this
category does not care about the incoming value, does not have this field. Then
the result field sets the new value.

How the policy is actually created is something we have not addressed. Please
note that we have considered in this implementation that an identifier should
have the format name@domain. This syntax is understood in the domains. The use
of the default rule in the translation policy makes this approach rather worthless
because it will translate any (format) identifier to the result one. But it is indeed
so that if we want to make rules for a specific domain, it is easier if the identifier’s
domain is incorporated in it. So the conclusion is that there are some cases that
lead to risks if the identifier does not follow a standardized format. The receiv-
ing domain that has to implement the policy types domain and identifier needs
to interact with the source domain to a) understand the syntax of the identifiers
found in the serialized actor instance and b) specify the translation rules so the
actor can be deployed in a useful manner.

4.3 Translation
A new Calvin module, realized in the file translation.py, has been implemented
in the utilities source code directory. It contains the implementation of the class
TranslationPolicy that is the skeleton for the translation. A short description of
this class follows now.

TranslationPolicy

• __init__(policy_file). This is the constructor. The argument policy_file
is the JSON file which contains the translation policy (last section). The
constructor opens the policy field and extracts the data.

• get_policy_id(). Returns the policy id, a policy’s data field.

• get_policy_description(). Returns the policy description, another data
field.

• translate(identifier). Returns the translated identifier regarding the
policy loaded. Could be a new identifier or the same in case no translation

32 Implementation in Calvin code

is performed. Identifier: the incoming identifier. The value is obtained
reading each translation policy rule, and if there is a match between the
identifier and the rule, the

• no_cheating(identifier_domain, domain, link_category). Checks the
incoming identifier to find cheating. It is based in the statement that if the
channel link is interdomain, the runtime can not receive an identifier from
its own domain (example in Fig 4.1). Returns True if there is no cheating
or False if there is. Identifier_domain: the domain to whom the identi-
fier belongs. Domain: the host runtime domain. Link_category: the link
category set up between the two runtimes. The method just check that if
the link_category is interdomain, the coming identifier’s domain can not
be the same as the hosting runtime domain.

Figure 4.1: Cheating example when migrating.

4.4 Modifications committed in Calvin
After implementing the translation module, it was merged together with other
modifications with the Calvin code to reach the complete desired functionality.

4.4.1 The configuration file
The configuration file, calvin.conf, was used to provision some fundamental val-
ues. Due to the requirement by the Calvin design team not to add more param-
eters to the Calvin commands, any data that parametrizes a running instance
should be described in the config file.

Like in the Translation Policy section, let’s consider an example:
{
"security": {
"security_conf": {

"comment": "Security settings with access control enabled",
"authentication": {
"procedure": "local",
"local_users": {"user1@test": "pass1", "user2@test": "pass2",

"user3@test": "pass3"}
},

Implementation in Calvin code 33

"authorization": {
"procedure": "local",
"policy_storage_path": "/home/pepe/.calvin/security/policies" },
"translation": {
"procedure": "local",
"policy_storage_file": "/home/pepe/calvinExjobb/calvin-base/calvin/

translation_policy.json"
} },
"certificate_conf": "/home/pepe/.calvin/security/test/openssl.conf",
"certificate_domain": "test",
"peers_in_domain": [],
"fake_transport":"interdomain",
"domain":"ericsson"
} }
Here we added translation to security_conf, to indicate the path to the trans-
lation policy file. Peers_in_domain and fake_transport are used to the above re-
ferred fake transport category. Peers_in_domain should contain a list of calvinip
addresses that constitute a domain. For instance, ["calvinip://10.10.10.10",
"calvinip://10.10.10.20, "calvinip:"10.10.10.30"]. For the sake of testing and sim-
plicity, the runtimes were deployed on the same machine so this approach was
not worthy. Fake_transport can be used instead to force the value but one must
be aware that peers_in_domain value needs to be empty. Finally, domain is used
to specify to which domain the runtime belongs to.

The other data fields were already defined by the existing Calvin functions.

4.4.2 The link category
The value of the link category is determined in
calvin/runtime/south/plugins/transports/lib/twisted/twisted_transport.py. This class cre-
ates a transport from a source runtime to a target runtime (one direction chan-
nel). This should be the class that receives the category value from TLS trans-
port. Meanwhile TLS is implemented, fake transport will be simulated. Access to
the configuration file is provided (added _conf = calvinconf.get()) such than
the configuration fields peers_in_domain and fake_transport can be accessed.
Moreover a new function is created, called check_list(peer). This function
gives the value of the link category. It finds peer in a peers list, that is obtained
from the configuration file as explained above, and if it is in the list it means that
is part of the domain (intradomain), otherwise is a interdomain link. If the list is
empty, it will take the value of fake_transport directly from that file as well.

The existing class CalvinTransport is modified to have an attribute
_transport_category set up with the function check_list when the constructor
is called. And two more set_transport_category(category) and get_transport_category()
to access the category variable.

After the value is obtained in this transport class, it will be passed to higher
layer classes and the next modifications were performed. Figure 4.2 shows
how the link category value is accessible for upper classes in the communica-
tion scheme. The goal is to provide this value to the actor manager that is the

34 Implementation in Calvin code

module in charge of creating actors, and this value should be checked when a
migration is received.

Figure 4.2: Accessibility to link category value.

Thus, in the file calvin/runtime/north/calvin_network.py, first the class CalvinLink
incorporates the attribute transport_category. In addition,
set_transport_category(category) and get_transport_category() have been
created to modify and access this attribute.

The other class that was modified is CalvinNetwork. In the method join_finished
after a CalvinLink object is created, and there is access to the transport CalvinTranport,
the link category is passed from the transport to the link by
link.set_transport_category(transport.get_transport_category()). This
approach has been adopted to not modify the constructor interface.

At that moment the CalvinLink has the value permanently stored. We con-
tinue with calvin/runtime/north/calvin_proto.py. The class CalvinProto serves as
the interface between runtimes. When a migration is issued, the method actor_new_handler
is executed on the target side (when receives a message from the source runtime).
It takes the transport category from the link object that participates in the commu-
nication and give it as parameter to the actor manager. This is possible because
CalvinProto has one intance of CalvinNetwork as attribute variable and with
this class the CalvinLink is accessible.

So, the next file is calvin/runtime/north/actormanager.py. The method "new"
has a new parameter called link_category. It will be passed to the method
_new_from_state as a parameter that has been added to the method definition.
The method, _new_from_state, is really important because the translation is per-
formed here and it will be explained in the next section.

4.4.3 The translation
The translation is realized in the ActorManager class. This class is the one that
can create actor instances in a runtime. Concretely in _new_from_state, uti-
lizing the translation module created for this case. This method is the correct
place to translate because this function is designed to create an actor that owns
an already created state, which is the case of a migration. The other available
method _new for actors creation does not use state, it is for the first instantia-

Implementation in Calvin code 35

Figure 4.3: Activity diagram regarding the translation code.

tion. Thus, one needs to change the identifier before the Actor object is instan-
tiated. A small piece of code has been added following the algorithm in Fig-
ure 4.3. Thus if the link category is interdomain (which means domain crossing)
and credentials are available (the actor is identified), possible cheating will be
checked (no_cheating function) and the translation of the identifier executed
(migration_policy.translate(identifier)). Please note that a TranslationPolicy
object is created and stored when an ActorManager object is created, and takes
the necessary parameters from the configuration file. Access to the configura-
tion file has been added as well (applying _conf = calvinconfig.get()) More-
over, the user’s identifier can be obtained from the credentials which at the same
time can be obtained from the actor’s state, one of the parameters of the method
_new_from_state and that is given.

Note that the credentials are part of the actor’s state, and the state is re-
ceived in CalvinProto by the method actor_new_handler whose argument is
the payload sent by the source runtime and the state is included there. When
CalvinProto receives the order to create a new actor, it calls the actor man-
ager and gives the actor, so the actor manager knows it is a translation and
_new_from_state is issued.

4.5 Tests
Two scenarios have been used to test the domain crossing solution and test the
code to make sure that everything behaves as we want. We used two runtimes
and both runtimes were on the same machine so we set up the configuration
file with the value of peers_in_domain empty and forced the transport with
fake_transport value. With respect to the deployment policy, we have kept
opened the policy so everything can be deploy, we are not interested in that part
at all. Neither the attributes and requirements scheme is used.

The following counter application will be used in each scenario:
source : std.Counter()

36 Implementation in Calvin code

delay : std.ClassicDelay(delay=0.5)
output : io.Print()

source.integer > delay.token
delay.token > output.token
It is a counter starting in 1. The samples are delayed so it counts slowly. The
output actor prints the result on the screen. This actor will be the target for migra-
tion considering that we could see how different terminals (runtimes) produced
numbers.

First scenario: intradomain

Figure 4.4: First scenario scheme.

This scenario tests that the identifier is not translated among runtimes that
belong to the same domain. The scenario is described by Figure 4.4. In this
scenario, fake_transport is intradomain and domain is test. Both runtimes
were deployed, see Figure 4.5

Figure 4.5: First scenario, runtimes deployment.

The application was deployed issuing cscontrol http://localhost:7003
deploy test/counterapp.calvin �credentials ’{"user":"user1@test", "password":
"pass1"}’. Then the printer actor was migrated and the result is in Figure 4.6.
Nothing happens apparently and that is the expected result.

Implementation in Calvin code 37

Figure 4.6: First scenario, no migration.

Second scenario: interdomain

We simulated an interdomain transport between two runtimes installed in the
same machine but separate virtual environments (see how to install Calvin in
the documentation using virtual environments). Both configuration files were set
correctly regarding the value of domain and setting fake_transport to interdomain
in both configurations. The cases displayed in Figure 4.7 were tested and are ex-
plained below.

Figure 4.7: Second scenario scheme.

The first case tests a migration from test domain to ericsson domain. The ap-
plication was deployed, for all the cases, issuing again cscontrol http://localhost:PORT

38 Implementation in Calvin code

application deploy PATH/counter.calvin �credentials ’{"user":"user1@DOMAIN",
"password":"pass1"}’ which authenticated the user in each domain. Due to the
policy implemented in ericsson domain,
...
"translation_category":"domain",
"source":["google", "test"],
"result": "friendguest@ericsson"
...
the result obtained in Figure 4.8 is friendguest@ericsson since the identifier
was coming from test.

Figure 4.8: 2nd scenario, first case result. Test (left) and Erics-
son (right).

During the second test, the result in Figure 4.9 was obtained. The domains
involved were test and lth, who migrated the actor. The identifier policy category
matched the migrated identifier:
...
translation_category":"identifier",
"source":["user1@lth"],
"result": "user4@test"
...
Thus user4@test was the new identifier in test domain.

Figure 4.9: 2nd scenario, second case result. Test (left) and LTH
(right).

Finally the third test, where the problem related to the solution was simu-
lated. Again test and ericsson were the domains defined. Ericsson runtime mi-
grated the actor to test where the default policy matched:
...

Implementation in Calvin code 39

"translation_category":"default",
"result": "guest@test"
...
Thus, guest@test was the new identifier, see Figure 4.10. Then ericsson runtime

Figure 4.10: 2nd scenario, third case A result. Test (left) and
Ericsson (right).

ordered the migration back and the following policy was applied:
...
"source":["google", "test"],
"result": "friendguest@ericsson"
...
to give friendguest@ericsson, Figure 4.11. Please note that the so mentioned
identity loss appears here.

Figure 4.11: 2nd scenario, third case B result. Test (left) and
Ericsson (right).

40 Implementation in Calvin code

Chapter5
Discussion

5.1 Discussion of some topics
First in the approach and later in the implementation, the identifier has been a key
word. Let us return to the designed translation policies. It could be interesting to
reconsider how the new translated identifier is created and if the chosen approach
is appropriate. In a domain there will be identified users that deploy their appli-
cations. Their actors can be tracked using the identifier that is associated with
the application/actor. Now consider actors being migrated to this domain. Also
let us assume that there is a policy that translates any identifier to guest@domain,
as it has been done in the example policy we discussed before. In this situation,
many actors called ’guest’ land up in the domain even if many different users
have deployed them on their respective domain. Indeed, we are mapping many
real users to one identifier. This seems not a real attractive situation. Maybe this
situation can be avoided.

One approach is to make the translations more unique, by, for instance, as-
signing different guest identifiers such as guest1@domain, guest2@domain,... All
of them are still "guests" in the domain, yet the new identifier is sort of individual,
a kind of pseudonym and we can identify different external users in the domain.
Such an approach may have its use. Indeed it is natural to think about identifiers
that refer to one user and not a group. However, we finally adopted the described
policy in Chapter 3 since we are not interested in the user once it has been trans-
lated. We only care about what kind of resources the actor can access, and the
policies that achieve this. Note that our approach still allows a named user to be
translated to a single user in the target domain but such a mapping requires that
there is trust between the domains and a previous knowledge of the incoming
identifier value.

Finally, it is also worth to mention that there is an idea of translation as a
wider scope solution, not only for Calvin and the domain crossing. It is thought
to be a procedure whose function is to link heterogeneous systems and provide
interoperability and systems integration. Maybe two organizations that works
with the same feature but each one implement it in different way, both of them
could understand each other if the translation is performed. For example it could
be used to link policies for different uses. Just mention that solution pattern to
provide interoperability.

41

42 Discussion

5.2 Future work
Regarding the future work that would build upon this project, we note that the
translation policy implemented in this thesis work is an example and the policy
could be modified to fulfil the final user’s requirements. For example, adding
more rules or other fields. Of course the class translation policy needs to be up-
dated to process correctly the new JSON policy file. Furthermore, the procedure
can be uploaded to be external, like the deployment policy, where other runtimes
can be act as translation server. For example if unification of translation are re-
quired.

The transport category procedure is temporary since TLS transport is not im-
plemented. The actual Calvin transport, based on Twisted, can use the SSL li-
braries provided by Twisted to get an improved version. Moreover, the transport
category value must be generated after the TLS channel has been established.
This requires functionality to be added to the implementation. With the authenti-
cation , the runtimes can known if the other party belongs to the same domain or
not and set the category. This should be the procedure taken to decide intradomain
or interdomain transport category.

Another future path could be, as mentioned in Section 3.5, to attend the prob-
lem that appears when an actor returns to its source domain. It would be in-
teresting to continue the investigation within that subject, describe in depth the
problem, figure out possible solutions and describe advantages and shortcomes.
At least, the goal should be to find a solution that maintains the status of an actor
in a domain independently of the number of migrations that the actor instance
has made. For status it is understood the resource access that the actor used to
have.

Finally, perform a true distributed deployment, since in the tests executed the
runtimes where in the same machine.

Chapter6
Conclusion

The Calvin system is still in its initial development stage and much new func-
tionality is being added. Our study did not concern exactly the functionality of
the Calvin system as defined by the Calvin code but assumed that the concept of
domain is present. Assumptions have been made how the Calvin system will im-
plement this and we checked our assumptions with the Calvin team at Ericsson.
Where as the domain concept itself has been considered by the Calvin team there
is no security solution, designed or even sketched, that guarantees trusted op-
erations when domain crossing migrations are performed. The risk is to receive
untrusted actors from another domain that could use our resources on behalf of
untrusted users.

To enhance the security in Calvin and to cope with actors that can cross do-
mains, solutions have been studied and we formulated on proposal and made a
proof-of-concept for testing if the approach indeed can be realized in the Calvin
framework. The solution has its fundament in an identification scheme for ac-
tors deployed in the runtime. Applications, and implicitly actors, will handle
identifiers of the user that executes them. A policy will control the actor deploy-
ment regarding its identifier and the resources it is requesting. Identifiers will
be part of the namespace valid in the domain. For actors identified by other do-
main, a translation will be completed such that the new identifier can be valid for
the domain’s namespace and therefore, for the runtime’s policies. Moreover TLS
transport will enhance communications channels features and give us a means to
determine if actors come from a trusted domain, e.g. the same as I belong to, or
that the incoming actors come from a runtime in a foreign domain.

The proposed solution has been implemented in Calvin, where a number of
Calvin modules have been modified to adopt the new modules that were added.
Runtime deployment policies and actor credentials were already implemented by
Calvin engineers while carrying this project and our final implementation makes
use of this.

The result demonstrates that actors migrated to a runtime in another domain
can be meaningfully handled in the receiving domain. Through a translation pro-
cess one can assign an identity to the incoming actor that is then used to perform
the access control like any other actor in the receiving domain. However this
approach has as a consequence that the actor that crosses the domain looses its
original identifier which creates problems when, for example, coming back to its

43

44 Conclusion

origin domain. Currently we do not see a simple way out here but we suggested
approaches that could partly give a better solution, albeit at the price of higher
complexity. The advantage of the translation scheme proposed in the thesis is its
intuitive simplicity and that it does not require the origin or receiving domain
to keep track of the actor. Therefore we believe that even if the solution has its
limitations it can be use to handle many simpler use cases. For example where
one does not have to handle that the actor returns to its origin domain or moves
further.

Our work shows that the domain transition is in a general setting a very dif-
ficult use case to handle and more research is needed to find a solution that can
handle complex use cases with actors moving back and forth or migrating over
several domains. Besides the question how to handle such dynamic migration be-
haviour we also see here many challenges in how to specify what policies should
followed by the runtimes when dealing with migrating actors. Especially if the
domains belong to different organisation it is not clear how to easily define the
policies without having some kind of common or standardised approach to to
use the access control mechanisms in the Calvin system. Also here more research
is needed.

Finally, we want to note that our observations on Calvin actors can, after
proper reformulation, be applied to virtual machines or containers that are mi-
grating. To pursue this line of thinking could be an interesting study item as
well.

References

[1] Cisco. Internet of things. http://www-cs-faculty.stanford.edu/~{}uno/
abcde.html, 2014.

[2] Ericsson. Ericsson mobility report. http://www.ericsson.com/res/docs/
2016/ericsson-mobility-report-2016.pdf, June 2016.

[3] Alex Wood. The internet of things is revolutionizing our lives, but standards
are a must. The Guardian (theguardian.com), March 2015.

[4] P. Corcoran. The internet of things: Why now, and what?s next? IEEE
Consumer Electronics Magazine, 5(1):63–68, Jan 2016.

[5] R. Minerva, A. Biru, and D. Rotondi. Towards a definition of the internet of
things(iot). Master’s thesis, Politecnico di Torino, 2015.

[6] L. Tan and N. Wang. Future internet: The internet of things. In 3rd Interna-
tional Conference in Advanced Computer Theory and Engineering (ICACTE).

[7] M Presser et al. Inspiring the Internet of Things: The Internet of Things Comic
Book. Internet Of Things International Forum, 2012.

[8] Y. K. Chen. Challenges and opportunities of internet of things. In 17th Asia
and South Pacific Design Automation Conference, pages 383–388, Jan 2012.

[9] S. Ray, Y. Jin, and A. Raychowdhury. The changing computing paradigm
with internet of things: A tutorial introduction. IEEE Design Test, 33(2):76–
96, April 2016.

[10] G. S. Matharu, P. Upadhyay, and L. Chaudhary. The internet of things: Chal-
lenges amp; security issues. In Emerging Technologies (ICET), 2014 Interna-
tional Conference on, pages 54–59, Dec 2014.

[11] S. A. Kumar, T. Vealey, and H. Srivastava. Security in internet of things:
Challenges, solutions and future directions. In 2016 49th Hawaii International
Conference on System Sciences (HICSS), pages 5772–5781, Jan 2016.

[12] M. Amadeo et al. Information-centric networking for the internet of things:
challenges and opportunities. IEEE Network, 30(2):92–100, March 2016.

45

http://www-cs-faculty.stanford.edu/~{}uno/abcde.html
http://www-cs-faculty.stanford.edu/~{}uno/abcde.html
http://www.ericsson.com/res/docs/2016/ericsson-mobility-report-2016.pdf
http://www.ericsson.com/res/docs/2016/ericsson-mobility-report-2016.pdf

46 References

[13] F. J. Riggins and S. F. Wamba. Research directions on the adoption, usage,
and impact of the internet of things through the use of big data analytics. In
System Sciences (HICSS), 2015 48th Hawaii International Conference on, pages
1531–1540, Jan 2015.

[14] M. R. Palattella et al. Internet of things in the 5g era: Enablers, architec-
ture, and business models. IEEE Journal on Selected Areas in Communications,
34(3):510–527, March 2016.

[15] Calvin web site. http://www.ericsson.com/research-blog/cloud/
open-source-calvin/.

[16] Calvin gthub repository. https://github.com/EricssonResearch/
calvin-base.

[17] G. Agha. Actors: A model of concurrent computation in distributed systems.
Cambridge, MA, USA: MIT Press, 2016.

[18] Michael Armbrust et al. A view of cloud computing. Commun. ACM,
53(4):50–58, April 2010.

[19] Noflo web site. http://noflojs.org/.

[20] Orleans web site. http://dotnet.github.io/orleans/.

[21] Netbeast web site. https://netbeast.co/.

[22] Wiki of calvin in github. https://github.com/EricssonResearch/
calvin-base/wiki.

[23] P. Persson and O. Angelsmark. Calvin - mergin cloud and iot. Procedia
Computer Science, 2015.

[24] T. Nilsson. Authorization aspects of the distributed dataflow-oriented iot
framework calvin, 2016. Student Paper.

[25] E. Yuan and J. Tong. Attributed based access control (abac) for web services.
In IEEE International Conference on Web Services (ICWS’05), page 569, July
2005.

[26] Twisted web site. https://twistedmatrix.com/trac/wiki/
Documentation.

[27] D. Gollmann. Computer Security. Wiley, 3 edition, 2011. Chapter 15.5 Public-
Key Infraestructures.

[28] N. Lindskog. Consistent authentication in distributed networks, 2016. Stu-
dent Paper.

[29] D.R. Stinson. Cryptography, Theory and Practice. Chapman Hall, 2006. Chap-
ter 12.

[30] Rfc 5246 the transport layer security (tls) protocol version 1.2. https://
tools.ietf.org/html/rfc5246.

http://www.ericsson.com/research-blog/cloud/open-source-calvin/
http://www.ericsson.com/research-blog/cloud/open-source-calvin/
https://github.com/EricssonResearch/calvin-base
https://github.com/EricssonResearch/calvin-base
http://noflojs.org/
http://dotnet.github.io/orleans/
https://netbeast.co/
https://github.com/EricssonResearch/calvin-base/wiki
https://github.com/EricssonResearch/calvin-base/wiki
https://twistedmatrix.com/trac/wiki/Documentation
https://twistedmatrix.com/trac/wiki/Documentation
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc5246

AppendixA
Basics of needed security concepts

A.1 Secure Socket Layer

Secure Socket Layer is the name used to refer to the SSL as well as to the TLS
protocol each designed to provide secure communications over a network. Today
actually only TLS (Transport Layer Security) should be used. TLS is an improved
version of the SSL family of protocols and is specified in the IETF RFC 5246, see
reference [30]. Still SSL is used and it then refers to both SSL and TLS.

During the set-up, or handshake, of the TLS session, first the two parties will
introduce themselves and perform an authentication and then agree on the cryp-
tographic algorithms that will be used in the next step. During the authentication
two things can happen. Either the server side will only be authenticated by the
client side, or both client and server side authenticate each other. TLS supports
different ways to perform the authentication during the handshake. For Calvin
we consider the case that the two sides send each other their PKI certificate con-
taining a copy of the public key, signed by a trusted certification authority of
the given PKI. At the receiving side of the handshake, the certification authority
signature can be verified using the authority’s public (root) key that somehow
should be available in a secure way. As subsequent part of the handshake both
parties proceed to determine two common secret session keys. This is done by
generating a random master key that is send to the other end using the other
end’s public key so that side can decrypt it. When the two parties have the mas-
ter key, they independently generates the same two keys (K1 and K2) from the
master key using a hash based key derivation function. The keys will be used to
integrity protect and authenticate data using a message authentication code and
to encrypt and decrypt data using a secret key crypto system, respectively.

The usefulness of the TLS comes from the fact that the certificate that is used
in the handshake can be linked to a certificate of the runtime which per definition
is linked to the domain. The linking of certificates can be done using a Public Key
Infrastructure (PKI). In the next section we briefly summarize some important
properties of such a PKI:

47

48 Basics of needed security concepts

A.2 Public Key Infrastructure

Public Key Infrastructure is a term used to describe a system for issuing and man-
aging certificates. The Certificate Authority (CA) has an important role in a PKI
because it issues the certificates that make the binding between a subject and a
cryptography key. The certificate contains a public key, mandatory and optional
attributes and the CA digital signature. The said binding will couple an identi-
fier to the subject. Before issuing the certificate the Certificate Authority should
check that the subject is who it claims to be and that the certificate’s attributes are
correct. Furthermore, the certificate can be defined for a specific use as a signed
instrument that empowers the subject, and containing at least an issuer and a
subject attribute, validity conditions, as well as authorization and delegation in-
formation. In its simplest form it binds the subject name to a public key and to
owner of the private can use this to prove he/she is indeed the subject named by
the subject name. It is this binding that makes to certificate so useful in the Calvin
domain concept.

Below an example of certificate is shown. Among the different information
fields, some of the stand out. The domain and CA is indicated in the field is-
suer, where the values are testdomain and testdomainCA. The time for which
the certificate is valid is indicated in Validity. The runtime owning this certificate
is referred in the subject field, O=testdomain/dnQualifier=9b8627dc-bf7c-4034-
b31b-0719f7b85014,
CN=org.testexample++++testNode1, where the first value is identifier in the do-
main the runtime belongs to, and the second one the name given by the runtime
attributes. The public key of the subject is given by the Public Key field, where
some aspects about the key are indicated as well. Finally, the certificate can be
decrypted used the public key of the CA to check its truthfulness. Certificate:

Data:
Version: 3 (0x2)
Serial Number: 4097 (0x1001)

Signature Algorithm: sha256WithRSAEncryption
Issuer: O=testdomain, CN=testdomainCA
Validity

Not Before: May 26 08:33:30 2016 GMT
Not After : May 26 08:33:30 2017 GMT

Subject: O=testdomain/dnQualifier=9b8627dc-bf7c-4034-b31b-0719f7b85014,
CN=org.testexample++++testNode1

Subject Public Key Info:
Public Key Algorithm: id-ecPublicKey

Public-Key: (256 bit)
pub:

04:58:8d:f8:47:9a:0b:9f:5b:7a:5e:6d:5e:8b:12:
a9:91:b2:63:b9:71:cf:09:0b:25:0e:8f:46:b8:6f:
1d:50:f6:3c:e2:cf:a6:ed:e3:03:60:e2:fd:b2:74:
65:77:fe:1d:6e:62:cf:d3:2b:05:52:7a:df:3b:df:
c8:75:bb:26:72

ASN1 OID: prime256v1

Basics of needed security concepts 49

X509v3 extensions:
X509v3 Subject Key Identifier:

E3:28:8B:B4:53:14:9A:A6:7F:C7:49:35:17:45:52:7E:13:A3:2C:7F
X509v3 Authority Key Identifier:

DirName:/O=testdomain/CN=testdomainCA
serial:C8:CE:77:33:6E:4C:3C:08

X509v3 Basic Constraints:
CA:FALSE

Signature Algorithm: sha256WithRSAEncryption
36:62:35:53:16:b3:ae:b7:ef:06:17:01:12:3b:fe:67:cd:37:
16:ea:0d:2b:1f:b9:98:78:c4:78:94:bc:76:60:ad:9f:cf:18:
1f:a4:8b:d1:4e:0a:64:96:d9:9d:b0:7f:2c:ea:a0:c6:9c:a5:
12:74:a2:14:59:ad:d2:a7:04:46:39:f1:b7:4f:55:c9:18:87:
f5:0b:24:e4:0f:d4:ac:22:05:ef:9f:86:ca:2c:17:cb:dc:f5:
eb:47:a6:51:91:fe:f0:6c:f8:9e:a8:5d:d4:f2:20:71:f7:c4:
38:a5:b5:0d:61:ec:7d:fa:57:92:d3:fd:22:d5:32:67:4b:35:
3d:f7:a1:6c:2a:f0:59:81:9c:b0:58:6c:a5:35:f8:d1:c4:23:
8f:6e:6f:11:b5:c6:1e:ca:45:b2:82:2f:93:95:10:68:8c:f7:
bd:af:2e:b4:fb:4a:37:ee:2f:ea:b1:a2:b8:6d:6e:02:33:ef:
6d:fd:c5:4c:6c:48:57:08:88:06:a2:59:72:ab:d2:2f:d5:c2:
ea:50:7a:36:a9:54:01:98:92:8b:e0:7c:2f:ac:a1:6e:bb:db:
c9:57:42:da:bf:0c:47:00:49:01:1a:c0:6c:32:21:7f:54:2e:
d0:1d:3a:b1:1d:2a:e3:6b:d7:79:45:5e:93:b4:d9:34:11:a6:
16:2c:d3:80
��BEGIN CERTIFICATE��
MIICvDCCAaSgAwIBAgICEAEwDQYJKoZIhvcNAQELBQAwLDETMBEGA1UEChMKdGVz
dGRvbWFpbjEVMBMGA1UEAxMMdGVzdGRvbWFpbkNBMB4XDTE2MDUyNjA4MzMzMFoX
DTE3MDUyNjA4MzMzMFowazETMBEGA1UECgwKdGVzdGRvbWFpbjEtMCsGA1UELhMk
OWI4NjI3ZGMtYmY3Yy00MDM0LWIzMWItMDcxOWY3Yjg1MDE0MSUwIwYDVQQDDBxv
cmcudGVzdGV4YW1wbGUrKysrdGVzdE5vZGUxMFkwEwYHKoZIzj0CAQYIKoZIzj0D
AQcDQgAEWI34R5oLn1t6Xm1eixKpkbJjuXHPCQslDo9GuG8dUPY84s+m7eMDYOL9
snRld/4dbmLP0ysFUnrfO9/IdbsmcqN0MHIwHQYDVR0OBBYEFOMoi7RTFJqmf8dJ
NRdFUn4Toyx/MEYGA1UdIwQ/MD2hMKQuMCwxEzARBgNVBAoTCnRlc3Rkb21haW4x
FTATBgNVBAMTDHRlc3Rkb21haW5DQYIJAMjOdzNuTDwIMAkGA1UdEwQCMAAwDQYJ
KoZIhvcNAQELBQADggEBADZiNVMWs6637wYXARI7/mfNNxbqDSsfuZh4xHiUvHZg
rZ/PGB+ki9FOCmSW2Z2wfyzqoMacpRJ0ohRZrdKnBEY58bdPVckYh/ULJOQP1Kwi
Be+fhsosF8vc9etHplGR/vBs+J6oXdTyIHH3xDiltQ1h7H36V5LT/SLVMmdLNT33
oWwq8FmBnLBYbKU1+NHEI49ubxG1xh7KRbKCL5OVEGiM972vLrT7SjfuL+qxorht
bgIz7239xUxsSFcIiAaiWXKr0i/VwupQejapVAGYkovgfC+soW6728lXQtq/DEcA
SQEawGwyIX9ULtAdOrEdKuNr13lFXpO02TQRphYs04A=
��END CERTIFICATE��

50 Basics of needed security concepts

AppendixB
Modifications to Calvin

translation.py

import j son
from c a l v i n . u t i l i t i e s import c a l v i n c o n f i g
from c a l v i n . u t i l i t i e s import c a l v i n l o g g e r
log = c a l v i n l o g g e r . ge t logger (__name__)

c l a s s T r a n s l a t i o n P o l i c y :
" " " This c l a s s reads a t r a n s l a t i o n pol i cy f i l e ,
and provides a t r a n s l a t i o n funct ion to a i d e n t i f i e r .
" " "

def _ _ i n i t _ _ (s e l f , p o l i c y _ f i l e) :
t r y :

j s o n _ p o l i c y =open (p o l i c y _ f i l e , ’ r ’)
s e l f . j son_data= j son . load (

j s o n _ p o l i c y)
j s o n _ p o l i c y . c l o s e ()
s e l f . id= s e l f . j son_data [" id "]
s e l f . d e s c r i p t i o n = s e l f . j son_data ["

d e s c r i p t i o n "]
s e l f . r u l e s = s e l f . j son_data [’ r u l e s ’]

except :
_ log . except ion (" Fa i l ed opening/

loading JSON pol i cy f i l e .\n")

def g e t _ p o l i c y _ i d (s e l f) :
return s e l f . id

def g e t _ p o l i c y _ d e s c r i p t i o n (s e l f) :
return s e l f . d e s c r i p t i o n

def t r a n s l a t e (s e l f , i d e n t i f i e r) :

51

52 Modifications to Calvin

" " " T r a n s l a t e s i d e n t i f i e r to a new value regarding the
pol i cy loaded .

" " "
#TODO: c h e c k t h e i d f o r m a t i s ok .
domain= i d e n t i f i e r [i d e n t i f i e r . f ind ("@") +1:

len (i d e n t i f i e r)]
f l a g =Fa l se
new_id= i d e n t i f i e r
for r u l e in s e l f . r u l e s :

i f r u l e [" t r a n s l a t i o n _ c a t e g o r y "]== "
domain " and not f l a g :

for domains in r u l e [" source
"] :

i f domains ==
domain :

new_id=r u l e
["
r e s u l t "
]

f l a g =True
break

e l i f r u l e [" t r a n s l a t i o n _ c a t e g o r y "]==
" i d e n t i f i e r " and not f l a g :

for ids in r u l e [’ source ’] :
i f ids== i d e n t i f i e r :

new_id=r u l e
["
r e s u l t "
]

f l a g =True
break

e l i f r u l e [" t r a n s l a t i o n _ c a t e g o r y "]==
" d e f a u l t " and not f l a g :

new_id=r u l e [" r e s u l t "]
f l a g =True

return new_id

def no_cheating (s e l f , ident i f ier_domain , domain ,
l i n k _ c a t e g o r y) :

" " " Returns t rue i f there i s no cheat ing : the coming
i d e n t i f i e r ’ s domain i s d i f f e r e n t from the host domain

" " "
i f l i n k _ c a t e g o r y == " interdomain " :

i f ident i f i e r_domain == domain :
r a i s e Exception (’\nTried to

cheat during the

Modifications to Calvin 53

t r a n s l a t i o n . ’)
return Fa lse

return True

twisted_transport.py
This file is allocated in calvin/runtime/south/plugins/transports/lib/twisted/.

The function check_list hast been added to the file.

_conf = c a l v i n c o n f i g . get ()
def c h e c k _ l i s t (peer) :

" " " This funct ion f i n d s a peer in the l i s t . I f i t i s
found , re turns True otherwise Fa l se .

I t i s used f o r f ind an address in a peers domain ,
such t h a t i f i t i s found i t s i g n i f y i t belongs
to the same domain . " " "

#The p o r t i s e l i m i n a t e d from t h e c a l v i n i p : c a l v i n i p
: / / 1 . 1 . 1 . 1 : 8 0 t o c a l v i n i p : / / 1 . 1 . 1 . 1

peer=peer [0 : peer . r f i n d (" : ")]
For s e c u r i t y r e a s o n s , d e f a u l t i s i n t e r d o m a i n .
p e e r s _ i n _ l i s t =_conf . get (" s e c u r i t y " , " peers_in_domain ")
found=" interdomain "
i f not p e e r s _ i n _ l i s t :

found=_conf . get (" s e c u r i t y " , " f a k e _ t r a n s p o r t ")
e lse :

for elements in p e e r s _ i n _ l i s t :
i f peer in p e e r s _ i n _ l i s t :

found=" intradomain "
return found

The class CalvinTransport incorporates the following new coded functions:

def _ _ i n i t _ _ (s e l f , r t_ id , remote_uri , c a l l b a c k s , t ransport
, proto=None) :

" " " docs t r ing f o r _ _ i n i t _ _ " " "
super (CalvinTransport , s e l f) . _ _ i n i t _ _ (r t _ id ,

remote_uri , c a l l b a c k s = c a l l b a c k s)

s e l f . _ r t _ i d = r t _ i d
s e l f . _remote_rt_ id = None
s e l f . _coder = None
s e l f . _ t r a n s p o r t = t r a n s p o r t (s e l f . _ur i . hostname ,

s e l f . _ur i . port , c a l l b a c k s , proto=proto)
s e l f . _ r t t = 2000 # I n i t r t in ms
#FAKE TLS ~ TRANSPORT
s e l f . _ t rans por t_ca tegory= c h e c k _ l i s t (remote_uri)
TODO: Th i s s h o u l d be incoming param
s e l f . _ v e r i f y _ c l i e n t = lambda x : True

54 Modifications to Calvin

s e l f . _incoming = proto i s not None
i f s e l f . _incoming :

TODO: S e t t i m e o u t
Incomming c o n n e c t i o n t i m e o u t i f no j o i n
s e l f . _ t r a n s p o r t . c a l l b a c k _ r e g i s t e r (" disconnected

" , CalvinCB (s e l f . _disconnected))
s e l f . _ t r a n s p o r t . c a l l b a c k _ r e g i s t e r (" data " ,

CalvinCB (s e l f . _data_rece ived))

def s e t _ t r a n s p o r t _ c a t e g o r y (s e l f , category) :
s e l f . _ t rans por t_ca tegory=category

def g e t _ t r a n s p o r t _ c a t e g o r y (s e l f) :
return s e l f . _ t rans por t_c a tegory

calvin_network.py
In class CalvinLink, it has been modified:

def _\ _ i n i t __ (s e l f , r t _id , peer_id , t ransport , old\
_ l i n k =None) :

super (CalvinLink , s e l f) .\ _\ _ i n i t __ ()
s e l f . r t _id = r t _id
s e l f . peer_id = peer_id
s e l f . t r a n s p o r t = t r a n s p o r t
FIXME r e p l i e s s h o u l d a l s o be made i n d e p e n d e n t on

t h e l i n k o b j e c t ,
t o h a n d l e dying t r a n s p o r t s l o s i n g r e p l y c a l l b a c k s
s e l f . r e p l i e s = old\ _ l i n k . r e p l i e s i f old\ _ l i n k e lse

{ }
s e l f . r e p l i e s _timeout = old\ _ l i n k . r e p l i e s _timeout

i f old\ _ l i n k e lse { }
i f old\ _ l i n k :

c l o s e o l d l i n k a f t e r a p e r i o d , s i n c e might
s t i l l r e c e i v e m e s s a g e s on t h e t r a n s p o r t
l a y e r

TODO c h o s e t h e d e l a y b a s e d on RTT i n s t e a d o f
a r b i t r a r y 3 s e c o n d s

_log . analyze (s e l f . r t _id , "+ DELAYED LINK
CLOSE" , { })

async . DelayedCall (3 . 0 , old\ _ l i n k . c l o s e)
s e l f . t r a n s p o r t _category=None

def s e t _ t r a n s p o r t_category (s e l f , category) :
s e l f . t r a n s p o r t _category=category

Modifications to Calvin 55

def get_ t r a n s p o r t_category (s e l f) :
return s e l f . t r a n s p o r t _category

In class CalvinNetwork, it has been modified:

def j o i n _ f i n i s h e d (s e l f , tp_ l ink , peer_id , uri , i s _ o r g i n a t o r
) :

" " " Peer j o i n i s (not) accepted , c a l l e d by
t r a n s p o r t plugin .
This may be i n i t i a t e d by us (i s _ o r g i n a t o r =True)

or by the peer ,
i . e . both nodes get c a l l e d .
When i n i t i t a t e d by us pending_joins l i k e l y have

a c a l l b a c k

t p _ l i n k : the t r a n s p o r t plugins o b j e c t f o r the
l i n k (have send e t c)

peer_id : the node id we jo ined
u r i : the u r i used f o r the j o i n
i s _ o r g i n a t o r : did t h i s node request the j o i n

True/Fa lse
" " "
w h i l e a l i n k i s pending i t i s t h e r e s p o n s i b i l i t y

o f t h e t r a n s p o r t l a y e r , s i n c e
h i g h e r l a y e r s don ’ t have any use f o r i t anyway
_log . analyze (s e l f . node . id , "+" , { ’ u r i ’ : uri , ’

peer_id ’ : peer_id ,
’ pending_joins ’ :

s e l f .
pending_joins ,

’
pending_joins_by_id
’ : s e l f .
pending_joins_by_id
} ,

peer_node_id=
peer_id , tb=
True)

i f t p _ l i n k i s None :
Th i s i s a f a i l e d j o i n l e t s send i t upwards
i f u r i in s e l f . pending_joins :

cbs = s e l f . pending_joins . pop (u r i)
i f cbs :

for cb in cbs :
cb (s t a t u s =response . CalvinResponse (

response . SERVICE_UNAVAILABLE) ,
u r i=uri , peer_node_id=peer_id)

56 Modifications to Calvin

return
Only s u p p o r t f o r one RT t o RT communicat ion l i n k

p e r p e e r
i f peer_id in s e l f . l i n k s :

L i k e l y s i m u l t a n e o u s j o i n r e q u e s t s , use t h e
one r e q u e s t e d by t h e node with h i g h e s t i d

i f i s _ o r g i n a t o r and s e l f . node . id > peer_id :
We r e q u e s t e d i t and we have h i g h e s t node

id , h e n c e t h e one in l i n k s i s t h e p e e r ’
s and we r e p l a c e i t

_log . analyze (s e l f . node . id , "+ REPLACE
ORGINATOR" , { ’ u r i ’ : uri , ’ peer_id ’ :
peer_id } , peer_node_id=peer_id)

s e l f . l i n k s [peer_id] = CalvinLink (s e l f . node .
id , peer_id , tp_ l ink , s e l f . l i n k s [
peer_id])

s e l f . l i n k s [peer_id] . s e t _ t r a n s p o r t _ c a t e g o r y (
t p _ l i n k . g e t _ t r a n s p o r t _ c a t e g o r y ())

e l i f i s _ o r g i n a t o r and s e l f . node . id < peer_id :
We r e q u e s t e d i t and p e e r have h i g h e s t

node id , h e n c e t h e one in l i n k s i s p e e r
’ s and we c l o s e t h i s new

_log . analyze (s e l f . node . id , "+ DROP
ORGINATOR" , { ’ u r i ’ : uri , ’ peer_id ’ :
peer_id } , peer_node_id=peer_id)

t p _ l i n k . disconnect ()
e l i f not i s _ o r g i n a t o r and s e l f . node . id >

peer_id :
Pee r r e q u e s t e d i t and we have h i g h e s t

node id , h e n c e t h e one in l i n k s i s our s
and we c l o s e t h i s new

_log . analyze (s e l f . node . id , "+ DROP" , { ’ u r i ’
: uri , ’ peer_id ’ : peer_id } ,
peer_node_id=peer_id)

t p _ l i n k . disconnect ()
e l i f not i s _ o r g i n a t o r and s e l f . node . id <

peer_id :
Pee r r e q u e s t e d i t and p e e r have h i g h e s t

node id , h e n c e t h e one in l i n k s i s our s
and we r e p l a c e i t

_log . analyze (s e l f . node . id , "+ REPLACE" , { ’
u r i ’ : uri , ’ peer_id ’ : peer_id } ,
peer_node_id=peer_id)

s e l f . l i n k s [peer_id] = CalvinLink (s e l f . node .
id , peer_id , tp_ l ink , s e l f . f [peer_id])

s e l f . l i n k s [peer_id] . s e t _ t r a n s p o r t _ c a t e g o r y (
t p _ l i n k . g e t _ t r a n s p o r t _ c a t e g o r y ())

Modifications to Calvin 57

e lse :
No s i m u l t a n e o u s j o i n d e t e c t e d , j u s t add t h e

l i n k
_log . analyze (s e l f . node . id , "+ INSERT" , { ’ u r i ’ :

uri , ’ peer_id ’ : peer_id } , peer_node_id=
peer_id , tb=True)

s e l f . l i n k s [peer_id] = CalvinLink (s e l f . node . id ,
peer_id , t p _ l i n k)

s e l f . l i n k s [peer_id] . s e t _ t r a n s p o r t _ c a t e g o r y (
t p _ l i n k . g e t _ t r a n s p o r t _ c a t e g o r y ())

Find and c a l l any c a l l b a c k s r e g i s t e r e d f o r t h e
u r i o r p e e r i d

_log . debug ("%s : peer_id : %s , u r i : %s\
npending_joins_by_id : %s\npending_joins : %s " %
(s e l f . node . id , peer_id , uri , s e l f .
pending_joins_by_id , s e l f . pending_joins))

i f peer_id in s e l f . pending_joins_by_id :
peer_ur i = s e l f . pending_joins_by_id . pop (peer_id

)
i f peer_ur i in s e l f . pending_joins :

cbs = s e l f . pending_joins . pop (peer_ur i)
i f cbs :

for cb in cbs :
cb (s t a t u s =response . CalvinResponse (

True) , u r i=peer_uri ,
peer_node_id=peer_id)

i f u r i in s e l f . pending_joins :
cbs = s e l f . pending_joins . pop (u r i)
i f cbs :

for cb in cbs :
cb (s t a t u s =response . CalvinResponse (True)

, u r i=uri , peer_node_id=peer_id)

return

calvin_proto.py
In class CalvinProto, it has been modified:

def actor_new_handler (s e l f , payload) :
" " " Peer request new a c t o r with s t a t e and

connect ions " " "
_log . analyze (s e l f . r t _ id , "+" , payload , tb=True)
#PASSES UP THE CATEGORY

58 Modifications to Calvin

kwargs = { }
kwargs [’ l i n k _ c a t e g o r y ’] = s e l f . network . l i n k s [

payload [’ from_rt_uuid ’]] . g e t _ t r a n s p o r t _ c a t e g o r y
()

s e l f . node .am. new(payload [’ s t a t e ’] [’ ac tor_ type ’] ,
None , payload [’ s t a t e ’] [’ a c t o r _ s t a t e ’] , payload [
’ s t a t e ’] [’ prev_connect ions ’] , c a l l b a c k =
CalvinCB (s e l f . _actor_new_handler , payload) , ∗∗
kwargs)

actormanager.py
In class ActorManager, it has been modified:

def _ _ i n i t _ _ (s e l f , node) :
super (ActorManager , s e l f) . _ _ i n i t _ _ ()
s e l f . a c t o r s = { }
s e l f . node = node
i f _conf :

s e l f . migrat ion_pol icy = t r a n s l a t i o n .
T r a n s l a t i o n P o l i c y (_conf . get (" s e c u r i t y " , "
s e c u r i t y _ c o n f ") [’ t r a n s l a t i o n ’] [’
p o l i c y _ s t o r a g e _ f i l e ’])

def new(s e l f , actor_type , args , s t a t e =None ,
prev_connect ions=None , c o n n e c t i o n _ l i s t =None , c a l l b a c k =
None ,

s ignature=None , c r e d e n t i a l s =None , l i n k _ c a t e g o r y
=None) :

" " "
I n s t a n t i a t e an a c t o r of type ’ ac tor_ type ’ .

Parameters are passed in ’ args ’ ,
’name ’ i s an opt iona l parameter in ’ args ’ ,

s p e c i f y i n g a human readable name .
Returns a c t o r id on success and r a i s e s an except ion

i f anything goes wrong .
Optional ly a p p l i e s a s e r i a l i z e d s t a t e to the actor ,

the supplied args are ignored and args from
s t a t e

i s used ins tead .
Optional ly reconnect ing the ports , using e i t h e r

1) an unmodified connect ions s t r u c t u r e obtained
by the connect ions command supplied as
prev_connect ions or ,

2) a mangled l i s t of tup l es with (in_node_id ,
in_port_ id , out_node_id , out_port_ id)
supplied as

Modifications to Calvin 59

c o n n e c t i o n _ l i s t
" " "
_log . debug (" c l a s s : %s args : %s s t a t e : %s , s ignature

: %s " % (actor_type , args , s t a t e , s igna ture))
log . analyze (s e l f . node . id , "+" , { ’ ac tor type ’ :

actor_type , ’ s t a t e ’ : s t a t e })
t r y :

i f s t a t e :
a = s e l f . _new_from_state (actor_type , s t a t e ,

l i n k _ c a t e g o r y)
e lse :

a = s e l f . _new (actor_type , args , c r e d e n t i a l s
)

except Exception as e :
_log . except ion (" Actor c r e a t i o n f a i l e d ")
r a i s e (e)

S t o r e t h e a c t o r s i g n a t u r e t o e n a b l e G l o b a l S t o r e
l o o k u p

a . s i g n a t u r e _ s e t (s ignature)

s e l f . a c t o r s [a . id] = a

s e l f . node . s torage . add_actor (a , s e l f . node . id)

i f prev_connect ions :
Conver t p r e v _ c o n n e c t i o n s t o c o n n e c t i o n _ l i s t

f o r m a t
c o n n e c t i o n _ l i s t = s e l f .

_ p r e v _ c o n n e c t i o n s _ t o _ c o n n e c t i o n _ l i s t (
prev_connect ions)

s e l f . node . c o n t r o l . log_actor_new (a . id , a . name ,
actor_type , i s i n s t a n c e (a , ShadowActor))

i f c o n n e c t i o n _ l i s t :
Migrated a c t o r
s e l f . connect (a . id , c o n n e c t i o n _ l i s t , c a l l b a c k =

c a l l b a c k)
e lse :

Nothing t o c o n n e c t th en we a r e OK
i f c a l l b a c k :

c a l l b a c k (s t a t u s =response . CalvinResponse (
True) , a c t o r _ i d =a . id)

e lse :
return a . id

60 Modifications to Calvin

def _new_from_state (s e l f , actor_type , s t a t e , l i n k _ c a t e g o r y)
:

" " " Return a r e s t o r e d a c t o r in PENDING s t a t e , r a i s e s
an except ion on f a i l u r e . " " "

t r y :
_ log . analyze (s e l f . node . id , "+" , s t a t e)
c r e d e n t i a l s = s t a t e . pop (’ c r e d e n t i a l s ’ , None)
t r y :

s t a t e [’ _managed ’] . remove (’ c r e d e n t i a l s ’)
except :

pass
i f l i n k _ c a t e g o r y==" interdomain " and c r e d e n t i a l s

:
user= c r e d e n t i a l s [’ user ’]
i f s e l f . migrat ion_pol icy . no_cheating (user [

user . f ind ("@") +1: len (user)] , _conf . get (
" s e c u r i t y " , " domain ") , l i n k _ c a t e g o r y) :
c r e d e n t i a l s [’ user ’] = s e l f .

migrat ion_pol icy . t r a n s l a t e (user)
_log . i n f o (" T r a n s l a t i o n committed : %s to

%s " % (user , c r e d e n t i a l s [’ user ’])
)

a = s e l f . _new_actor (actor_type , a c t o r _ i d = s t a t e [
’ id ’] , c r e d e n t i a l s = c r e d e n t i a l s)

i f ’ _shadow_args ’ in s t a t e :
We were a shadow , do a f u l l i n i t
args = s t a t e . pop (’ _shadow_args ’)
s t a t e [’ _managed ’] . remove (’ _shadow_args ’)
a . i n i t (∗∗ args)
I f s t i l l shadow don ’ t c a l l d i d _ m i g r a t e
did_migrate = i s i n s t a n c e (a , ShadowActor)

e lse :
did_migrate = True

Always do a s e t _ s t a t e f o r t h e p o r t ’ s s t a t e
a . _ s e t _ s t a t e (s t a t e)
s e l f . node .pm. add_ports_of_actor (a)
i f did_migrate :

a . did_migrate ()
a . setup_complete ()

except Exception as e :
_log . except ion (" Catched new from s t a t e %s %s " %

(a , dir (a)))
r a i s e (e)

return a

Secu
re D

o
m

ain
 Tran

sitio
n

 o
f C

alvin
 A

cto
rs

Department of Electrical and Information Technology,
Faculty of Engineering, LTH, Lund University, 2016.

Secure Domain Transition of
Calvin Actors

José María Roldán Gil

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2016-513

http://www.eit.lth.se

Jo
sé M

a
ría R

o
ld

á
n

 G
il

Master’s Thesis

	thesis_jose_m_roldan.pdf
	Introduction
	Background: Internet Of Things
	Background: Calvin
	Goals
	Outline of the report

	Calvin: an application environment for IoT
	Significant concepts about Calvin
	The concept of domain

	Towards a solution
	Definitions
	Defining the domain through the TLS protocol
	The translation process
	Benefits of the solution
	New issues and considerations

	Implementation in Calvin code
	Already being implemented in Calvin
	Translation policy
	Translation
	Modifications committed in Calvin
	Tests

	Discussion
	Discussion of some topics
	Future work

	Conclusion
	References
	Basics of needed security concepts
	Secure Socket Layer
	Public Key Infrastructure

	Modifications to Calvin

