
EVALUATION OF MODELS

FOR ESTIMATION OF

HANDBALL GAME FLOW

WILLIAM ROSENGREN

Master’s thesis
2016:E16

Faculty of Engineering
Centre for Mathematical Sciences
Mathematics

C
E
N

T
R

U
M

S
C

IE
N

T
IA

R
U

M
M

A
T
H

E
M

A
T
IC

A
R

U
M

ii

Foreword

This project has been carried out at Spiideo in Malmö in the spring of 2016. I would like to thank my
two supervisors Klas Josephson from Spiideo and H̊akan Ardö from the department of mathematics at
Lunds Tekniska Högskola for their guidance thorughout this project. I would also like to thank Spiideo
for giving me an opportunity to work with one of my biggest passions, sports, as well as including me as
one of their own during my time at the office.

iii

Abstract

This thesis presents and evaluates different models aimed at tracking the play in handball matches.
The tracking is designed to be used with automatic broadcasting of handball matches without any
camera operator present. To solve this problem the Kanade-Lucas-Tomasi tracker is used to generate
data of player movements on the handball court. From the tracker data, features are extracted and
used as input to the models being evaluated. Three different types of models are evaluated. One of
the models are an artificial neural network (ANN) model, created from machine learning algorithms.
The result shows that using an ANN model is the best approach of the models tested. They also show
that the features chosen to describe the game flow used for making estimations are more important
than the structure of the ANN. When using ANN, the model estimates the game play in almost all
situations but some key events may still be missed.

iv

Contents

1 Introduction 1
1.1 Computer Vision in Sports . 1
1.2 Problem formulation . 2
1.3 Aim of Master’s Thesis . 2

2 Theory 3
2.1 Motion analysis in images . 3

2.1.1 Optical flow . 3
2.1.2 Kanade-Lucas-Tomasi Tracker . 3

2.2 Machine Learning . 4
2.2.1 Supervised Learning . 5
2.2.2 Gradient Descent . 5
2.2.3 Stochastic Gradient Descent . 5
2.2.4 Momentum Optimiser . 6
2.2.5 Learning Rate . 6
2.2.6 Loss Function . 6
2.2.7 Squared Loss Function . 7
2.2.8 Tukey’s Biweight Function . 7
2.2.9 Huber Loss Function . 8

2.3 Linear regression . 8
2.4 Artificial Neural Networks . 8

2.4.1 Inspiration for Artificial Neural Networks . 9
2.4.2 Structure of Neural Networks . 9
2.4.3 Types of Neural Networks . 10
2.4.4 Activation Function . 10
2.4.5 Backpropagation . 10
2.4.6 Design of Artifical Neural Networks . 12

2.5 Overfitting . 12
2.5.1 Cross-validation . 12
2.5.2 Dropout . 13
2.5.3 Weight Decay . 13

3 Data 15
3.1 Data Collection Scene . 15
3.2 Ground Truth . 15
3.3 Assumptions for the Data . 15
3.4 Features . 15

3.4.1 Observations of handball game flow . 16
3.4.2 Frame Shift . 17
3.4.3 Making Non-Causal Broadcasting . 17
3.4.4 Types of Features . 17
3.4.5 Center of Mass . 18
3.4.6 Distribution of Tracks . 18
3.4.7 Velocity of Tracks . 18

4 Software and Hardware 19
4.1 Software . 19

4.1.1 Python . 19
4.2 Hardware . 19

4.2.1 Cameras for Data Collection . 19

5 Method 21
5.1 Pre-Processing . 21

5.1.1 Scaling Down Images . 21
5.1.2 Converting Images to Gray Scale . 21
5.1.3 Introducing a Mask . 21

5.2 Collection of Data . 22
5.2.1 Collection of Ground Truth . 22
5.2.2 Collection of Track Data . 23

5.3 Handling Disturbances and Unwanted Data from the Tracker 23
5.3.1 Handling Static Background Points . 23

5.4 Untrained Estimation . 23

v

5.4.1 Center of Mass as Estimator . 23
5.5 Trained Models for Estimation . 23

5.5.1 Dividing Data for Training, Testing and Validation 23
5.5.2 Initiation of Weights . 25
5.5.3 Linear Regression Model . 25

5.6 Neural Networks . 26
5.6.1 Neural Network with Two Layers . 26
5.6.2 Neural Network with three layers . 26

5.7 Post Processing of Result . 26
5.8 Validation Methods . 27

5.8.1 Evaluation of Position estimation . 27
5.9 Evaluation of Training . 27

6 Results 29
6.1 Results for the center of mass . 29
6.2 Results for Linear Regression . 29
6.3 Results for the Two Layer Neural Network . 29
6.4 Results for the Three Layer Neural Network . 30
6.5 Post Processing . 31
6.6 Plotting Results for Different Models . 31
6.7 Evaluation of Training . 31

7 Discussion 37
7.1 Discussing the Methods . 37
7.2 Discussing the Results . 37
7.3 Analysis of Misestimations . 38
7.4 Improvements for Modelling . 39
7.5 Challenges in the Project . 40
7.6 Future Development . 40

8 Conclusion 41

9 Sustainability 43

vi

1 Introduction

The demand for more complex and in depth analysis of sports have increased in recent years. In
individual sports like track and field as well as swimming and team sports like ice hockey, football
and handball, video analysis could improve the performance of individual athletes as well as entire
teams. Handball is a popular sport in northern Europe and is played at many different levels. In
Sweden, there are two elite leagues, one for women and one for men. The matches from these two
leagues are usually televised.

Even though matches are televised, the content available for coaches to use for analysis is limited.
The focus of the production is not necessarily to help coaches to analyse the game, but rather to
make the production as good as possible for the viewers. The production of handball games includes
filming the audience, filming the goalkeeper after a save and other content unrelated to the game
itself. While this might be enjoyable for the TV audience, it is not the best possible data to use for
evaluating team performance.

A big part of a club’s activity is not playing acctual matches, but rather to practice. By installing
a camera system in the sports arena, which records matches automatically, it would be possible for
the coaches to review practice sessions as well. This system could also be used to broadcast matches
that otherwise would not have been shown. Broadcasting via the internet has become a popular
way to distribute sports. This medium makes it simpler to watch sports and it makes sports more
available to the public. Junior team matches, in for example tournaments, could be broadcast and
shown to relatives of the competing teams.

One other advantage with an automatic system is that cameras can be installed in places where it
is not possible to have a camera operator filming with the cameras. The cameras can for example
be installed in the ceiling of a sports arena to provide a view of the court not used normally. An
automatic system would also reduce the human factor when filming. If the camera operator is not
experienced or if long sessions are filmed, the focus level of the person filming will decrease. This
could potentially affect the quality of the recorded content. An automatic system will not be affected
by the duration of the content being filmed.

In this thesis, different models for performing automatic tracking of handball games are evaluated.
The models will be developed offline. This means that during the development of the models, all
possible data are available at all times and the suggested model could be non-causal. This is generally
not a problem since broadcasted content today has a delay even when they are manually recorded.
Using data from future frames would in all likeliness not affect the viewer experience. To describe
how a handball match is played and how the game changes over time, the term game flow will be
used. Different methods for estimating the game flow will be tested and evaluated. Video content of
handball matches is used as input data in the development of the automatic system. To get content,
cameras were installed in a arena where matches were recorded. This was performed before this
project started. To generate input data to the models, information about the player positions on the
court must be acquired. To get information about players positions and movements on the court,
motion detectors are used.

1.1 Computer Vision in Sports

Computer vision is a field within image analysis which aims at analysing images and higher dimen-
sional data [38]. Computer vision has previously been used in a variety of applications related to
sports. Some systems are intended for decision making.

One of the most famous computer vision application in sports is the Hawk-Eye system [16]. It is
used in tennis as well as a few other sports. For the tennis application, the Hawk-Eye system is used
to compute a trajectory of the ball. It is used by the umpire as a tool to help making better calls.
This is an example of a system making computations of its own.

There have been several attempts to make systems to track individual players in team sports. Parti-
cle filters, have for example, been suggested to find players in both football and ice hockey [4]. GPS
systems have been tested in football to track how many kilometres a players has moved during a
game. There are a number of companies in the world who provide GPS tracking services. Seo et al
[32] used a colour based tracking method to find players on a football field. In 2000 Pers and Kovacic
[27] proposed a system to track individual players in handball matches . All of these methods have
been able to provide data of multiple individual athletes moving on a playing field. Trackers that

1

follow team sports game flow has however not been researched to the same extent.

Spiideo [36] has implemented methods to follow track and field athletes running in indoor arenas.
A similar method has implemented to follow skiers. These systems makes real time estimations of
athlete position and movements. The real time estimation is needed because the cameras, used for
tracking, are moving.

1.2 Problem formulation

There are suggestions of how to track multiple individual players in different team sports. This
information might not sufficient to make estimations of how the game is being played. Team sports
are complex and it is non-trivial to obtain information about individual players and transform it to
game flow. The available information is the positions of objects on the court obtained by a tracking
algorithm. From this information, important game properties, known as features, can be extracted
to create a model. The task in this master’s thesis is to find the best set of features and the best
model to describe the game flow. This will be done by evaluating a number of different models. The
implementation of the models will be made offline which makes a non-causal solution possible.

1.3 Aim of Master’s Thesis

The aim of this master’s thesis will be to investigate if and how automatic tracking models for
handball game flow can be developed. The evaluation will take into account how well the models
are suited for broadcasting. Aspects of the model creation process and data needed for creating the
models, will be analysed. The aim is also to find where the models fail to make good estimations.

2

2 Theory

In this sectionthe theory behind estimation model construction will be presented. To build a model,
data from handball games needs to be generated. This is discussed in section 2.1. After this theory
regarding statistical models and machine learning will be presented.

2.1 Motion analysis in images

Motion analysis, also known as tracking, is a part of computer vision and image analysis, which
aims at finding moving objects in images. Objects in this context is defined as a patch of neighbour-
ing pixels which have the same pixel intensity. The applications of tracking are many and it can
be used in a wide variety of areas. To describe how objects moves in images, optical flow can be used.

2.1.1 Optical flow

Optical flow describes how pixel intensities in images change over time. The assumption made by
in optical flow is that an object has the same intensity regardless of time, but that the position of
the object changes in the image. In figure 2.1, a black circle can be seen on a grey background. It
is possible to find the black circle by comparing the pixel intensities of the black area and the grey
area. In figure 2.2, the circle has moved to a new position. The movement between the two figures
can be expressed by optical flow.

The intensity at pixel position (x0, y0) at time t0 in image I will change position to (x0 +dx, y0 +dy)
at time t0 + dt. The optical flow model for the intensity can be written as:

I(x0, y0, t0) = I(x0 + dx, y0 + dy, t0 + dt). (2.1)

By performing a Taylor expansion of the expression in equation (2.1) a new equation is obtained.
The taylor expansion becomes:

I(x0 + dx, y0 + dy, t0 + dt) = I(x0, y0, t0) +
∂I

∂x
dx +

∂I

∂y
dy +

∂I

∂t
dt (2.2)

The left side of equation (2.2) is equal to the right side in equation (2.1). By subtracting the term
I(x0, y0, t0) from both the left and the right side, the equation for optical flow becomes:

∂I

∂x
dx +

∂I

∂y
dy +

∂I

∂t
dt = 0. (2.3)

When the optical flow equation in (2.3) is solved, the change in the x- and y-positions are obtained.
It can be used for tracking [9].

Figure 2.1: The black circle has a different pixel
intensity compared to its neighbours. It is there-
fore possible to identify it from its neighbours and
it makes the circle possible to track.

Figure 2.2: The filled circle is the same as in figure
2.1. The dashed circle is the original position of the
circle. The white arrow represents the movement
of the circle. Optical flow describes this movement.

2.1.2 Kanade-Lucas-Tomasi Tracker

In 1981 Lucas and Kanade introduced the first version of the Kanade-Lucas-Tomasi Tracker (KLT-
Tracker) [21]. Properties or features have been added to the tracker and in 1994 Shi and Tomasi [34]
wrote a paper on how to find interesting patterns in images for tracking .

By finding objects, which contains large intensity gradients, the tracker can find the same object in
successive frames. This is illustrated in figures 2.1 and 2.2. There is an intensity gradient between
the black circle and grey background. Once an object has been found, the tracker aims at finding
the best match between the position of the object in the current frame compared to the position of
the object in a previous frame. The difference in position is known as the disparity vector h. The

3

disparity is represented by the white arrow in figure 2.2 and it is defined in (2.4), where dx and dy
are changes in x- and y-positions respectively of the object,

h = (dx, dy). (2.4)

If the disparity vector can be found, it would be possible to say how an object has moved. The
KLT algorithm uses intensity gradients to iteratively find a disparity vector that best matches the
displacement of an object. One way of doing this is to use a gradient descent algorithm (see section
2.2.2).

The intensity gradients are used to find corners in the image. A corner is defined as a pixel, which
has large intensity gradients in more than one direction. If the pixel has large intensity gradient in
exactly one direction, it is called an edge. An example of how the KLT-tracker could work is found
in figures 2.3 and 2.4. The figures represents a handball court with one player. The black and red
rectangles represents a player’s shirt and shorts respectively, and the white rectangle represents the
playing court. The point on the court where these three rectangles meets forms a corner, which is
called p1. By first identifying the corner in figure 2.3 and then finding the same corner in figure 2.4,
one can tell how the player has moved.

This fairly intuitive concept is the basis of how the KLT tracker operates. The tracker finds corners
and then tracks them through successive frames. The position history of a corner is called a track.
The assumption the algorithm makes, is that a corner found in image I at time t0 is going to have
a similar position at time t0 + dt.

One important concept of the KLT tracker is that it does not follow single pixels. One reason for
this is that it is in general quite hard to follow a single pixel. The value of the pixel can change due
to measurement noise or be mistaken for an adjacent pixel. The algorithm uses windows of pixels
instead to improve the tracking. [34]

To simplify the tracking, the input images are transformed to grey scale images. Colour images
typically have three colour channels, one for red colour, one for green colour and one for blue
colour. These images are often referred to as RGB-images. All colours are build up by combining
different levels of the three channels. If the KLT-tracker would use RGB images it would need to
compute intensity gradients for all three channels for all pixels to find intensity gradients. To reduce
the number of computations needed for doing gradient computations, the images could instead be
transformed to a grey-scale image. A grey scale image is one dimensional in its colour channels.
Each pixel is represented by a value between 0 and 255 where 0 is black and 255 is white.

2.2 Machine Learning

Machine learning is a technique to build models to cluster unknown objects (Unsupervised Learning)
or to train a model to make estimations based on previous observations (Supervised Learning) [11].
There is one more type of machine learning, which is called Reinforcement Learning. Reinforcement
learning is implemented for decision making problems. Machine learning has proved itself to be
quite powerful when classifying and estimating data. The focus of this degree project will be to use
supervised learning, which is presented in section 2.2.1.

p1

Background

Player

Figure 2.3: The red and black rectangles repre-
sents a player on a handball court. Between the
red and black rectangles and the background an
edges is created as point p1.

p1

Background

Player

Figure 2.4: The same scenario as in figure 2.3 taken
at a different time point. The point p1 has changed
positions. By finding p1 in this figure, is it possible
to say how the player has moved.

4

2.2.1 Supervised Learning

In supervised learning, a model is trained by feeding data to the model as well as a desired output,
which here is referred to as Ground Truth. The model generates an output, which is compared to the
ground truth. The model variables are updated so that the difference between the output and the
ground truth becomes smaller [19]. The Learning Rate introduced in section 2.2.5, the Optimisation
Algorithm introduced in section 2.2.2 and the Loss Function introduced in section 2.2.6 are used for
updating the model variables.

A simple version of supervised learning can be found in figure 2.5. The model variables, w, are
initialised as random numbers. This can for example be a set of samples from some distribution. An
input, x, generates a model estimation f(x). This is compared to the desired value y to create the
error, e = y − f(x). The error is to be minimised by updating the model variables w. The optimi-
sation is described in section 2.2.2. If there is no correlation in the error, it will not be possible to
find a better set of model variables given the current setting.

x w
f(x)

-

y

e=y-f(x)

Figure 2.5: Chart of a simple a supervised learning algorithm. The data vector, x, is fed into the
system. The error, e, is the difference between the desired value, y, and the estimated value, f(x).
By minimising e, the model variables, w, are updated.

2.2.2 Gradient Descent

To find a model suited for estimation, some optimisation of the model variables, w, must be per-
formed. One quite common method to find a good model is to use Gradient Descent (GD). Like
the name suggests, gradient descent uses the gradient of a function to update model variables. The
optimisation aims at minimising the sum of errors (see section 2.2.6). If wt−1 is the old set of weights,
γ is learning rate (see section 2.2.5), ∇wt−1 is the gradient with respect to the previous weights and
L(wt−1) is the error given the previous weights, the new set of weights, wt, can be computed as,

wt = wt−1 − γ∇wt−1L(wt−1). (2.5)

When computing the updated model variables, their new value depends on the learning rate, γ. The
higher the learning rate, the more the variables are allowed to change between iterations[15].

It is important that the loss function is differentiable for all weights. If it is not differentiable for
some weights, it will not be possible to compute ∇wt−1 .

2.2.3 Stochastic Gradient Descent

There are some problems with using gradient descent. If the data set is large it will be computation-
ally costly to use the entire data set before updating the weights. This leads to slow convergence.
To speed up computations, a Stochastic Gradient Descent Method (SGDM), could be used. The
SGDM divides the entire data set into equally large batches of data. This is done by doing a random
permutation of the entire data set.

Once the data has been sufficiently shuffled, it is partitioned into batches. After assigning data into
batches, the training s commenced. In each new iteration of the training loop, a new batch is used
as input data. Once all available batches have been used in the training, new batches are generated
by repeating the shuffeling. These new batches are then used in the next iterations until all batches
have been used in the training. This continues until the model has converged.[3]

Given that the batch size is large enough to represent the entire data set, the SGDM provides faster
convergence than the GD. This is because the SGDM update the model variables more often than
what the GD method does. Problems can occur if the batch size is chosen to be so small that it
no longer represents the entire data set. If this occurs, the updating of the model variables might

5

change drastically between each iteration. This is not good for the convergence of the system When
choosing batch size, it is important to choose it large enough to represent the entire data set, but
small enough to assure fast convergence of the system variables. [3]

2.2.4 Momentum Optimiser

An extension of the gradient descent algorithm, is the Momentum Optimiser (MO). The idea behind
MO is to capture the general trend of how the model variables have been updated. In the standard
case of using gradient descent optimisation, the model variables are updated such that the total
loss is reduced the most. This might however not be the best strategy for finding the best model
variables. Instead, a moving exponentially weighted average of previous weights is used [24]. This
leads to a smoother change of model weights and sometimes faster convergence. [22]

2.2.5 Learning Rate

The learning rate is very important for the convergence of a machine learning algorithm. The learn-
ing rate is used to say how much the system variables are allowed to change in each iteration, when
updating the system variables. If the learning rate is too small, it will take long time for the variables
to converge. If it is set too high, the system might become unstable and the model estimations will
diverge. The learning rate is adjusted for each new model training situation and there is no consensus
on how high it should be chosen.

The system variables are usually initiated randomly. It is therefore preferable to have a large learning
rate at the beginning to quickly find better model variables. After having trained a model for several
iterations, the model variables should be closer to a good solution. When this happens, it is desired
to fine tune the model variables. This can be done by lowering the learning rate.

One way to implement a smaller and smaller learning rate is to use a exponentially decaying learning
rate [33] expressed in equation (2.6). The variable on the left hand side, γ(t), is the current learning
rate, γ(0) is the initial learning rate, r is the decay rate and i is the current number of training
iterations. The current learning rate can be computed as:

γ(t) = γ(0)10
−i
r . (2.6)

When using a decaying learning rate, it can implemented as a staircase function, see figure 2.6.

Figure 2.6: Learning rate as a straircase function from equation (2.6). The initial learning rate as
9.910−1 and r = 0.95.

2.2.6 Loss Function

The loss function is used to describe the difference between the ground truth and the model output.
This is known as the error or the loss. The error depends on the type of function used and the

6

model variables. When optimising the model variables using gradient descent, the derivative of the
loss function decides how the variables should be updated. In one training iteration, all data in one
batch is run through the model and the error for each data point is computed. Due to stochasticity
in the data, the error will be different for each data point in the data set. Since the goal for updating
the weights, is to make the error smaller, it is needed to use a method to take all errors and transform
it to one value. There are mainly two methods to see if the error becomes smaller. Both the sum or
all errors and the mean of all errors can be used. The latter is often implemented to make scaling
easier.

Once the training algorithm has been run for some iterations, a series of errors has been acquired.
This series says something about how much information that is left in the model. If there is some
correlation in the series, there is still information to be gained by running more training iterations.
If the error behaves like a white noise process, there is no more model structure to be gained from
further training with the current settings.

2.2.7 Squared Loss Function

There are several well documented loss functions, each with their benefits and disadvantages. The
squared error function is one of the more commonly used functions. It is defined in equation 2.7. If
the variables to be optimised are w, y is the ground truth value and f(w) is the model output, the
squared loss function, L(w), can be computed as

L(w) = (y − f(w))2. (2.7)

2.2.8 Tukey’s Biweight Function

Data points which differs too much from all other data points are called outliers. These measurements
are considered to be corrupted in some way. One potential problem with the squared loss function
is that it adjusts too heavily for outliers when updating the model variables. One way to handle
outliers is to use another loss function. One alternative is Tukey’s Biweight function. If the difference
between the ground truth and the model is defined as e = y − f(w) and c is a constant, the loss
function dependent on the difference, L(e), can be computed as:

L(e) =

c2

6
(1− [1− (

e

c
)2]3), for |e| < c (2.8)

c2

6
, otherwise (2.9)

The function is shown in figure 2.7.

Figure 2.7: Tukey’s Biweight loss function with c = 0.25

7

As one can see in figure 2.7, Tukey’s Biweight function is similar to a squared function. The difference
being that for values larger than some constant, c, the function output becomes constant. There is
a maximum output value, c2/6, which the function can generate.

2.2.9 Huber Loss Function

The constant output of the function could cause a problem. In the constant ”zone” of the function,
the gradient with respect to model variables, is zero. This will make it hard for the optimising
algorithm to find a better set of weights. To handle this potential problem, a loss function which is
linear instead of constant, could be used. If L(e) is the loss function with respect to the difference
e = y − f(w), where w is the model variables, y is the ground truth and f(w) is the model output
and δ is a constant, the Huber Loss Function can be written as,

L(e) =

1

2
(e)2, if |e| < δ (2.10)

δ|e| − 1

2
δ2, otherwise. (2.11)

Figure 2.8: Huber loss function with δ = 1.

This is also shown in figure 2.8. The function is a quadratic function until it reaches some threshold.
When the threshold is reached, the function instead becomes linear. Unlike the Tukey’s Biweight
function, the Huber loss function will increase its output with increasing difference between the de-
sired value and the model output. It will however not penalise outliers as much as a strictly squared
function.

2.3 Linear regression

A common statistical model is the linear regression model. Linear regression is used to model and
estimate linear relationships. The model variables, w, are multiplied with the data input vector
x. To the multiplication a bias, b, is added to generate an output f(x). The equation for a linear
regression model is defined by,

f(x) = wx + b. (2.12)

2.4 Artificial Neural Networks

Another type of model, which can be used for estimation, is an artificial neural network (ANN).
The main difference between a linear regression model and an artificial neural networks is that the
artificial neural network uses non-linear functions for estimation. This makes ANN models able to

8

model more complex problems than what the linear regression model is able to do.

2.4.1 Inspiration for Artificial Neural Networks

The construction of artificial neural networks are inspired by the neurones found in the human
brain. The function of the neurone is to lead electro-physical signals, called action potentials, gen-
erated somewhere in the body and transmit the signals to or from the brain. The way they work
is that each neurone has one end, which receives signals produced by other neurones. The signal-
receiving part of a neurone is called dendrite. If enough input is generated to the dendrites of a
neurone, the neurone will transmit a signal of its own. Each neurone has a threshold, for whether
a signal will be transmitted or not. The signal is transmitted through a cell ”wire”, called axon, to
the transmitting part of the cell, called the axon terminal. The axon terminal is in turn connected
to the dendrites of one or more neurones. Once the signal reaches the axon terminal, it will transmit
signals to the connected dendrites. In this fashion, a signal is transmitted throughout the body. One
very important feature of the neurone is the refractory period. Once an action potential has been
fired from the neurone it is impossible for the neurone to fire again until the ion balance in the cell
has been partially or fully restored. This makes it impossible for the signal to go in two directions
in the neurone and all of the energy will be used in one direction. [15]

2.4.2 Structure of Neural Networks

Neural networks are built with a similar structure as the human neurone network. The network
consists of layers of nodes which are connected to each other (see figure 2.9). A node can be seen
as a mathematical function, which generates an output dependant on the input it has gotten. The
first layer, also known as the input layer, is where the data enters the node network. Once data has
entered the input layer, an output is generated from each node in the layer. Let’s call the output
vector from all nodes in the first layer O1 which becomes the input to the second layer which then
generates an output O2. The output from a node is computed in the following way. The k : th node
in the input layer, n1

k, receives an input, Ik. The node has a set of weight, w1
k and a bias, b1k, which

are multiplied and added to the input, creating an intermediate input, s1k. This is shown in equation
(2.13).

s1k = w1
kIk + b1k (2.13)

Once s1k has been computed, an activation function is used (see section 2.4.4). It is the activation
function that decides the output from the node. If the activation function is called A1

k, the output,
O1
k, from node n1

k becomes:

O1
k = A1

n(s1k). (2.14)

The procedure of layers generating output to the next layer in the network repeats itself until the
last layer is reached. This layer is called the output layer. All layers, which are not the input or the
output layer, are called hidden layers. A figure showing a simple neural network with one hidden
layer in shown in figure 2.9. If all nodes in one layer are connected to all nodes in the next layer, the
network is said to be fully connected. [15]

Input layer

I1

I2 O1
2

O1
1

Hidden layer

O2
3

O2
2

O2
1

Output layer

O3
1 Output

Figure 2.9: Chart over a simple neural network. Two different inputs enters one input node each.
The network generates one output. The network is fully connected.

The ANN could be used for estimation in a similar manners as a regression model would be used
for estimation. The big difference is that the output from the ANN is a non-linear transformation of

9

the input data whereas the output from a linear regression model is a linear transformation of the
input data.

2.4.3 Types of Neural Networks

Feed Forward Neural Networks The simpelest type of neural networks are called Feed For-
ward Neural Networks. In this type of structure signals are only allowed to travel from the input
layer towards the output layer. When training feed forward neural networks, the weights are updated
after one entire data set has been fed in the model. [12]

Recurrent Neural Networks One other type of neural network that is fairly common is
the Recurrent Neural Network (RNN). In this type of structure, signals are allowed to propagate
backwards in the structure towards the input layer. To avoid signals looping through the same node
several times before updating the network variables, a refractory period is introduced. The refractory
period works in a similar way as in the human neurone. After the node has produced an output,
it will become inactive for some time before it can produce a new output. The structure of the
recurrent neural network makes it possible for the network to have a ”memory” and to use previous
inputs. RNN has applications in for example handwriting recognition and speech recognition. [30]
[13]

2.4.4 Activation Function

Just as the threshold of the biological neurone, the output of a node in the neural network depends
on the activation function. There are several types of activation functions and some functions are
discussed by Hagan et al [15]. Three popular activation functions are the sigmoid function (figure
2.10), the hyperbolic tangent sigmoid (figure 2.11) and the rectified linear function (figure 2.12).
The equation for each of these activation functions are defined below in equations (2.15), (2.16) and
(2.17) respectively.

F (x) =
1

1 + e−x
(2.15)

F (x) =
ex − e−x
ex + e−x

(2.16)

F (x) = max(0, x) (2.17)

Figure 2.10: The sigmoid function.

2.4.5 Backpropagation

Backpropagation is a way of determining the weights, w, in the neural network during training and
it is central to the performance of the neural network. The problem with updating weights in neural
networks is that there is not a linear relationship between the output and all the weights in the

10

Figure 2.11: The hyperbolic tangent function.

Figure 2.12: The rectifier function.

network. A neural network can be viewed as a series of functions, where the function output from
one layer becomes the input to the next function in the series. A neural network with 4 layers can
be described by equation (2.18). O is the output of the network, F l(x,W , b), W l and bl are the
activation function, the weight matrix and the bias vector at layer l respectively and x is the input
vector containing data. The series of functions can be written as:

O = F 3(W 3F 2(W 2F 1(W 1x + b1) + b2) + b3) + b4. (2.18)

To optimise the weights for each function, an optimisation algorithm like the gradient descent could
be used. Since each function is dependent on previous functions, the system is not straight forward
to optimise. It is possible however to use the chain rule for functions, found in calculus. If a function,
F (w), is dependant on a function G(w) and where w is an independent variable, the chain rule can
be written as:

∂F (G(w))

∂w
=
∂F (G(w))

∂G(w)

∂G(w)

∂w
. (2.19)

This relationship can be used to compute the derivatives of the loss function with respect to different
weights in the network. The reason why the algorithm is called backpropagation is because the
derivates are computed starting with the output layer and they are then computed all the way back
to the input layer.

11

2.4.6 Design of Artifical Neural Networks

Figure 2.9 shows a simple form of a neural network. Neural networks can in practice have a large
number of layers with a large number of nodes in each layer. The more layers and nodes a network
has, the more complex the model becomes and the more complex problems it can solve. [15]

When designing neural networks, one must take into consideration the complexity of the problem
at hand. Like with most other problems, it is preferable to keep the model complexity as low as
possible. Three issues related to overly complex networks are: Overfitting, adressed in section 2.5,
the training time of the network and the data needed to train the network.

The initiation of variables and the architecture of the network has an impact on the performance of
a neural network. According to Nugyen and Widrow [23], the variables in a 2-layer neural network
should be initialised with random values in range [-1,1]. The authors used a uniform distribution.
The architecture of the network is harder to generalise. Hagan et al [15] suggest that the number
of nodes should increase with the square root of the data. To find the best set of nodes in different
layers is dependent on the problem and must be evaluated after each training.

In reality the design of neural networks becomes a trial and error mission. It is quite hard to know
beforehand how the system should be initialised to give the best results. The design of a neural
network with multiple layers can be performed in the following way. Initiate the first layer with the
same number of nodes as the size of the input data. Initiate all other layers with a large number
of nodes. Initiate the model variables randomly by sampling from some distribution. Evaluate the
model after some number of iterations. If the results are not satisfactory, increase or decrease the
number of nodes in the second layer. Repeat. If repetition does not yield satisfactory results, con-
sider using one more layer of nodes. [15]

Other considerations, which are decided before the network can be used are: the loss function, the
learning rate, optimiser, the activation functions of each layer, the type of network (feed forward or
recurrent).

2.5 Overfitting

One common situation, which occurs when using machine learning is overfitting. Overfitting is a
phenomenon where the error for the training set decreases but error for the validation and test sets
increases (see section 2.5.1 for reference). The phenomenon occurs because the model variables have
been too specialised on the training data. The model output for the training data will have a small
error but the error for the validation data will increase. This is a critical problem to solve, since
estimations are made on unknown data sets in supervised machine learning. In this section, some
methods that are used to avoid overfitting are presented. Methods to prevent overfitting are gener-
ally referred to as regularisation methods.

2.5.1 Cross-validation

When training models, data is usually limited. To get maximum training out of the data available,
cross-validation can be used. In cross validation the entire data set is divided into subsets. One
subset is used for testing, one subset is used for validation and the remaining subsets are used to
train the model. These are referred to as validation set, test set and training set. The training set
contains most of the data and it is used to build a model. After training a model for some time, the
test set is used to evaluate the model. The error of the current test estimation is compared to the
error of the previous test estimation. If the error has decreased compared to last time, the training
continues. If the error of the test set has increased, the training is terminated. This is known as
early stopping [28]. Once the training has been stopped, the validation set is used to make a final
model estimation. It is the estimation made by the validation set which is considered to be the result.

By doing several permutations of validation and testing, multiple data configurations are used to
build and test models. The final result of the training is the average result from all validations. The
results from cross validation will be more general than what a result from a single model training
would have been.

12

2.5.2 Dropout

One way to address overfitting is to use dropout [37] . Dropout is implemented so that there is a
certain probability that the output from each node in the dropout layer becomes zero. Dropout is
implemented for one entire layer and it is usually implemented in hidden layers close to the output
layer. What this does is that it forces the neural network to be more general, since the neural network
cannot rely on the output from all nodes at all times. When using the dropout layers, one can see it
as creating a new model in each new training iteration.

In a neural network which uses the dropout method, each node is assign a probability p to be used
in the training, and subsequently a probability 1− p to not be a part of the training. One does not
know beforehand which nodes that will or will not be used in the training. Dropout is illustrated in
figure 2.13.

Input layer

I1

I2 O1
1

O1
2

Hidden layer

O2
3

O2
2

O2
1

Output layer

O3
1 Output

Figure 2.13: The network illustrates how dropout works. This is the same neural network structure
as in figure 2.9. The difference is that the middle node in the hidden layer has been excluded.
The output from this node will not be used and its weight will not be updated during this specific
iteration.

After training, the entire model is used, without using dropout. The expected value of each node is
affected by the dropout probability, so adjustments to account for the dropout are needed. Let us
assume that the expected value of node nlk in layer l is Olk. If the node has the probability p to be
kept, the new expected value of the output from node nlk becomes pOlk. When doing estimation, one
can scale the output from each node by multiplying it with the probability, p, that the output from
the node will be zero. If the model makes estimations equally well for the validation data set as for
the training data set, the model is said to be robust. [37]

2.5.3 Weight Decay

Weight decay is a technique, which can be helpful when generalising a neural network [20]. If w is a
vector of weights for a neural network, L0(w) is the loss from the loss function and λ is a constant
deciding how much the weights should be penalised, a new loss, L(w), can be written as:

L(w) = L0(w) +
1

2
λ
∑

i

w2
i . (2.20)

Larger weights will results in greater loss. The optimising algorithm has an incentive to keep the
weights as small as possible, which helps the generelisation.

13

14

3 Data

In this section the data used in the models is discussed. There are several important things to keep
in mind when handling the data. If the data is of poor quality, it will be quite hard to achieve good
results. This is true for both the ground truth as well as the data generated by the motion detector.

To make assumptions easier, the court was parametrised using an x-axis and a y-axis (see figure 3.1).
The long side of the handball court corresponds the x-axis and the short side of the handball court
corresponds to the y-axis. When x- and y-values are referred, they corresponds to a position on the
long and short side of the court respectively. The penalty lines are marked out as well. They are 7
meters from the goal on their respective sides.

3.1 Data Collection Scene

The scene in which the analysis took place is quite important for the result of the tracking algorithm.
External conditions like lighting are important to keep in mind when working with image analysis.
Since the scene was indoors, the lighting was assumed to be constant.

Penalty line

Goal area

x-axis

y-axis Court

Figure 3.1: An image of the handball court. The x-axis corresponds to the long side and the y-axis
corresponds to the short side. The two arcs on the short sides represents the goal area. The penalty
line is marked out as well as the goal area. The penalty lines are 7 meters from the goal on each side.

There were in total two camera views as well as an artificially stitched view. The three views are
referred to as left, right and wide. The wide view was artificially made by stitching the left and right
views together. These are shown in figures 3.2a, 3.2b and 3.2c respectively.

3.2 Ground Truth

As discussed in section 2.2, it is of utter importance that the ground truth has high quality when
using a supervised learning approach. In this case, the ground truth should represent how a camera
operator would film a handball game. Or even better; how coaches viewing the content would like
to watch it. The collection of ground truth data is presented in section 5.2.1.

3.3 Assumptions for the Data

When collecting data some assumptions were made. The handball court was not equally distributed
in the image. As seen in figure 3.2c, the long side of the court, which is closest to the cameras appears
longer compared to the long side on the other side of the court. It was however assumed that the
long court side had the same length in pixels, regardless of position. The court was assumed to have
come from a view like in figure 3.1.

3.4 Features

To build a model, data of how players move and interact with each other was used. This data will
be referred to as features. The tracking of a handball might require a wide variety of features. The
features could either be used directly as estimations themselves or used as input to a mathematical
model. Since the model was developed offline, the could be non-causal. Given the same resulting es-
timation, the fewer number of features, the better. Each feature should contribute something unique
to the estimation for it to be used in the model.

What is important to keep in mind when reading about the features, is that the KLT-tracker can
generate more than one track per player. As stated in section 2.1.2, the KLT-tracker finds corners

15

(a) Left court side

(b) Right court side

(c) The wide view. The view is a stiched version of
the left and the right sides. The closest x-side appears
longer than the x-side on the other side of the court.
This is an illusion due to the camera position and pos-
sibly the stiching.

Figure 3.2: Both court sides which were used to stitch together the wide view.

in the images and one player can create more than one track.

The features presented in this section are not the same as the features which the KLT-tracker used
to create and follow tracks. The KLT features were based on intensities in the image. The game
features were based on data generated by the KLT-tracker.

3.4.1 Observations of handball game flow

Before selecting features one needs to think about how a handball game is played. There is usually
not much play in the middle of the court. The game flow in a handball game usually goes from one
side to the other and then back again. One team is on the offensive and the other team is playing
defence. When a goal is scored, if there is a foul, or the offensive team loses the ball in some way,
the game will change over to the other side of the court.

To model this it is necessary to use information on player positions. One also needs to know how
the players moves during the course of a game.

16

3.4.2 Frame Shift

The implementation of the models is non-causal. Features from previous and future frames are used
in the position estimation. The method of using features from frames in the past and in the future
will be referred to as frame shift. An example of frame shift is presented below.

Let’s assume that the features at frame It0 , frame It0−25 and frame It0+25 were Vt0 , Vt0−25 and
Vt0+25 respectively. A new feature vector Wt0 was created by combining the features from the three
images. The new resulting feature vector was written as Wt0 = [Vt0−25, Vt0 , Vt0+25]. The features
were sampled every 25 frames (one second apart).

The reason why features from multiple frames were used, was to see how the features changed over
time. This in itself could be an interesting property to use for the estimation of game flow.

3.4.3 Making Non-Causal Broadcasting

In this project non-causal models, which could potentially be used for estimation of game flow in
a live broadcast, were created. The reason why a non-causal model from broadcast could be used,
was because of the camera set up. The camera system used for capturing images in this project
were configured such that the cameras, between themselves, covered the entire playing court. Both
cameras were used to record content at all time. The goal of the models was to find which content
that was relevant for the game flow.

The following example will show how it would be possible to use a non-causal model for broadcasting.
Given that all possible match content had been recorded at time trec from both cameras, the non-
causal models could be implemented by using a delay in the broadcast. The broadcast time, tbroad,
was delayed by some time tdelay of trec. The broadcasting time can be written as: tbroad = trec −
tdelay. When broadcasting content at time tbroad, information at time trec is available. Basically,
by broadcasting past events, data from the present can be used in the game flow estimation. The
concept of how this works is shown in figure 3.3.

trectbroad

Time line of the match

Figure 3.3: The red rectangle shows how much data that has been recorded compared to the entire
length of the match. trec shows how much of a match that has been recorded and tbroad shows how
much that has been broadcasted. By broadcasting content that has happened some time in the past,
data from the present image can be used for estimation.

3.4.4 Types of Features

There are some requirements for the features that are important to consider before choosing the fea-
tures. In this project two different classes of features were defined: positional and changing features.
The positional features said something about where the players were on the court. The changing
features were related to how the player positions changed between frames.

The features should preferably be fast to compute and be general so that it is possible to use the
same features in matches in other similar arenas. This is achieved by normalisation of the features.
It is also important that the number of features in each frame is constant. This is to ensure that the
same model can be used for all different situations. Some features uses distributions. Let us assume
that the number of players on each court side is a feature. The feature from this could be the number
of player on each side divided by the number of players in total on the court. This ensures that the
features all are decimal numbers between 0 and 1. Averaging could also be a way to map a lot of
observations to one value.

Below follows suggestions for possible features to be used in the estimation of the game. These
features are based on the data obtained by the KLT-tracker and it might not be possible to use the
exact same features for other motion detectors.

17

3.4.5 Center of Mass

The KLT algorithm generates quite a lot of tracks. One way to create a feature of the positions of
all tracks, is to compute an average, here referred to as the center of mass. The center of mass is
computed by taking the average of coordinates for all tracks in each frame. Tracks considered to be
part of the background are removed before computing the center of mass. If r is a vector with all
tracks in image Iτ , xi is the x-position of track i in r and there are n elements in r, the center of
mass, C, can be written as:

C =
1

n

∑

i

xi. (3.1)

3.4.6 Distribution of Tracks

One interesting feature is how the tracks are distributed on the court. This can be computed using
a histogram. By dividing the court into equally large intervals, also known as bins, one can compute
how many tracks there are in each of the bins. The distribution of tracks could potentially be infor-
mative for two reasons, the first being to find where most players are at the moment and the second
is to say what type of situation the game currently is in. If most players are located at one court
side, it is most likely because the play is at that side. If the players are spread out on the court, it
is most likely due to changes in the game.

The number of bins chosen carries different information. If a smaller number of bins is used, there
will be more tracks inside each bin and it will take longer time for tracks to switch between bins. If
a larger number of bins is used, there will be less tracks in each bin and changes will happen faster.
Both of these properties could be interesting for estimating the gameplay and both can be used at
the same time.

3.4.7 Velocity of Tracks

Instead of using the positions of the tracks, the change in position for each track can be computed.
The change of position is also known as velocity. The velocity carries information about how the
player positions changes between frames. There are different alternatives for computing the change
of position. The first alternative is to take the difference between the center of mass of the current
frame and the center of mass for a frame in the past. If using this as a feature, it is important that
the time between two frames is not too long nor too short. If the time is too long, the game situation
might have changed too much for the feature to be of any use. If the time is too short, the center of
mass might not have changed enough for the feature to be of any use.

Another alternative is to compute the velocity of each track. If this is computed, there are a few
considerations which have to be addressed. Fundamentally the computation is the same as it is for
the change of center of mass. The big difference is that some tracks are being generated and some
vanishes in each new frame. If there is no previous track position, it is not possible to compute the
velocity.

Much like the problem with using a track on its own as a feature, it is not preferable to use a single
velocity of a track as a feature. Instead the distribution of velocities can be used. If there are a
lot of tracks, which all have high velocity in the same direction, it is most likely because the play is
switching court sides. Just like with the distribution of positions, a histogram for the velocities can
be used to get a fixed length feature.

18

4 Software and Hardware

4.1 Software

4.1.1 Python

All of the code generated was implemented in the python programming language[29]. The version of
python, which was used for the most part was python 2.7. The open source library numpy [25] and
scipy [31] has been used to make numerical computations.

Open CV There is an open source library for image analysis implemented in python, as well as
in C++, called Open CV [26]. It contains several of the tracking algorithms and imaging processing
tools used and discussed in this project. The library uses a function called goodFeaturesToTrack [34].
The goodFeatureToTrack function generates tracks. Once the tracks have been generated, there is a
function called calcOpticalFlowPyrLK which follows the tracks. These two functions have been used
to generate data for this project.

Tensor Flow In November 2015, Google released a framework for machine learning called Tensor
Flow [39]. Tensor Flow has been used to do the machine learning and artificial neural networks in
this project . The theory for how Tensor Flow works was published by google [40].

4.2 Hardware

4.2.1 Cameras for Data Collection

The cameras used for collecting the data collection were Axis cameras model P1428. The cameras
collected images at a rate of 25 Hz and with a resolution of 3840 x 1080 pixels. All images were
stored in a private film library owned by Spiideo.

19

20

5 Method

5.1 Pre-Processing

5.1.1 Scaling Down Images

The images from the cameras had a resolution of 3840 x 1080 pixels. This resolution was too large
to be used when making fast generation of KLT-tracks. To solve this problem, images were scaled
down to a resolution of 640 x 180 pixels instead.

5.1.2 Converting Images to Gray Scale

The original camera images were RGB images (see figure 5.1a). The images were converted to grey
-scale, using the open CV function cv2.cvtColor(), images before the optical flow was performed,
(see figure 5.1b).

(a) Original color image with three colour channels ob-
tained from one of the cameras.

(b) A grey scale version of figure 5.1a

Figure 5.1: The two figures shows the same situation as an RGB-image and as a grey-scale image.

5.1.3 Introducing a Mask

The KLT-tracking algorithm generated unwanted data. The unwanted data was generated mainly
by two sources. The first source was the viewing audience. To remove the influence of the audience
a mathematical mask was used. The role of the mask in the algorithm was to reduce the number of
tracks generated. The mask was an image, which had black or white areas within itself, see figure
5.2a. The black areas of the mask acted as a blocker for the generation of new tracks. The only area
where new tracks could be generated was in the white area. The mask applied on the court is found
in figure 5.2b. It was still possible for tracks to move into the black areas.

(a) The black and white mask.

(b) Shows the mask applied on the court.

Figure 5.2: The mask implemented to reduce the number of tracks generated

As seen in figure 5.2, the mask is quite small compared to the entire court size. A few different mask
sizes were tried. The reasons for using a small mask was to reduce the influence of players on the

21

Figure 5.3: Black circles representing the tracks already in use were added to the mask in figure 5.2
to reduce the generation of new tracks.

court switching with players on the bench as well as not generating any tracks from the coaches on
the bench.

The second problem which needed to be addressed was to not generate too many tracks inside the
allowed white area (the playing court). The KLT tracker generated new tracks where it found corner
points in the image and it caused a large number of tracks to be generated, most of which where
unrelated to the players. This information was not desired to use for building the models, since it
did not represent the players. To handle this problem, a minimum distance of how close two tracks
were allowed to be generated from each other was implemented. This was implemented by drawing
black circles inside the first mask at the positions of the tracks currently in use. The circles had a
radius of 10 pixels. This is shown in figure 5.3.

In figure 5.4 the difference between using a mask and not using a mask is shown. In the top image
(figure 5.4a) a mask has been applied. In the bottom image (figure 5.4b), the mask has been disabled.
The tracks are represented by the coloured circles drawn in both figrues.

(a) Generated tracks when applying a mask.

(b) Generated tracks without the use of a mask.

Figure 5.4: The two images illustrates the difference when defining a mask and when a mask is not
defined for track generation. The coloured circles represents the tracks currently in use.

5.2 Collection of Data

There were in total eight different data sets used in this project. For all data sets, the ground truth
and tracks data were collected. Each data set was assigned a three letter code, for example ”DAH”.
These types of data set codes will be referred to later in the text.

5.2.1 Collection of Ground Truth

The ground truth was collected by moving a mouse cursor in a window showing the matches. Data
was collected once per frame and both the x- and y-positions were saved. To make the model more
general, the ground truth values were normalised with the length (in pixels) of the the entire frame.
The court length was 640 pixels, meaning that all ground truth values were divided by 640. A record-
ing of the x-coordinate for a ground truth is found in figure 5.5a. The ground truth represented the
game flow.

The recording of the ground truth had noise-like behaviour. This could for example be a result of
quick involuntary movements of the mouse cursor. To adjust for this, the ground truth was low-pass

22

filtered. The lowpass filter used was a sixth order Butterworth Filter, with cutoff frequency 0.15 [5].
To keep the phase the same as the original ground truth signal had, the lowpass data was forward-
backward filtered with a padding length of 150 [14]. The resulting filtered ground truth is shown in
figure 5.5b.

The low passed ground truth was finally thresholded. The thresholding made all ground truth values
to lie between 7 meter penalty lines (see figure 3.1). A sample of how the ground truth looks is found
in figure 5.5.

5.2.2 Collection of Track Data

The KLT-tracker was used to generate tracks from 8 different handball halves. Both the x- and
y-positions of all tracks in all frames were saved and stored to be used later. The track data was
used to extract different features. The mask mentioned in section 5.1.3 was applied for the data
collection.

5.3 Handling Disturbances and Unwanted Data from the Tracker

5.3.1 Handling Static Background Points

The mask helped to reduce unwanted data. But there was one disturbance, which could not be
removed by introducing a mask. As mentioned in theory section 2.1.2, the KLT-tracker found corners
to track. This included finding corners in the background. To not let the background corners affect
the center of mass, they had to be remove from the track data. This was done by using the velocity
feature. If the track point did not move in either the x- or the y-direction after some frames had
passed, it was considered to be background and it was not used for the center of mass computation.

5.4 Untrained Estimation

5.4.1 Center of Mass as Estimator

The first estimator tried was the center of mass. This estimator did not use any machine learning to
find model variables and it could be used directly for estimation. The center of mass was computed
for all data sets and the difference between the center of mass and the ground truth was computed
and evaluated. The center of mass was computed with a moving weighted average [24] when used as
an estimator. If t is the current frame, α is a constant, xc(t) is the center of mass and xwc(t − 1)is
the weighted center of mass at frame t− 1, the center of mass was computed accordingly to

xwc(t) = xc(t)α+ (1− α)xwc(t− 1). (5.1)

The α variable was chosen to be 0.05.

5.5 Trained Models for Estimation

All of the methods in this section used some form of training to find the best possible model variables
given the input data. They used the stochastic gradient descent as optimising method and the
Huber loss function as loss function. The momentum optimiser was also applied. The methods were
presented in sections 2.2.3, 2.2.9 and 2.2.4 respectively.

5.5.1 Dividing Data for Training, Testing and Validation

Cross validation was used to divide feature data into training, testing and validation sets. To make
things easier, each of the recorded game halves, for example DFH, became one subset. This lead to
the sizes of subsets to vary. This was because the game halves had different lengths. The feature
data in the training set was divided into batches and a stochastic gradient descent method was im-
plemented. The batch size for the stochastic gradient descent was 1000 samples large.

When using cross validation, there are many permutations of how the data sets can be divided. Let
us assume that there are four data sets in total, A, B, C and D. Two are used for training, one for
validation and one for testing. When A is the validation set, there are three different ways the model
can be trained. All three remaining data sets can be used as test sets. This is shown in table 1. The
same can be said for B and so on, creating in total 12 different possible ways to train a model.
In this project, there were 8 data sets in total for the training, which would generate 56 different
combinations of testing and validation. To simplify the model evaluations, one model per test set

23

(a) Raw ground truth from data collection.

(b) Low pass filtered version of figure 5.5a. Quick movements were removed in this signal.

(c) The two signals on top of each other. The phase of the filtered signal is the same as the original signal but
the sharp edges and fast changes have been changed to be more smooth signal after filtering.

Figure 5.5: The images shows an unfiltered and a filtered version a ground truth recording repre-
senting the game flow. The two signals over put on top of each other in figure 5.5c.

24

Table 1: Possible permutations for 4 data sets used for validation, testing and validation.

Set Permutation 1 Permutation 2 Permutation 3
Validation A A A
Testing B C D
Training C,D B, D B,C

was trained. Each data set was used as test set and validation set once each. This is shown in 2.
This resulted in creating 8 models in total. The results from all models were averaged and became
the final result of the model.

Table 2: Permutations for validation, testing and training used for the eights data sets

Set Subset in model 1 Subsets in model 2 ... Subsets in model 8
Validation A B ... H
Testing B C ... A
Training C-H A + D-H ... B-G

5.5.2 Initiation of Weights

The variables of the different models were initiated by sampling from a Gaussian Distribution. The
mean of the distribution was set to be µ = 0. The number of features, n, and the length of the court
in pixels, lx = 640, on the long side were used to set the standard deviation. The standard deviation

was set to be σ =
√

2
n∗lx . This was used for all models. Different scalings of σ were tried and the

one chosen was thought to give the best results.

5.5.3 Linear Regression Model

The first model created with training was a linear regression model. The model had one feature, the
center of mass. If w0 was the variable to be optimised and xc(t0) was the center of mass at frame
t0, the model was

f(xc, t0) = w0xc(t0). (5.2)

The second model created with linear regression was a model using the center of mass from three
different time points. The input data to the model was the current center of mass as well as the
center of mass 25 frames in the past and 25 frames in the future. w0, w1 and w2 were the variables
to be optimised. The model was

f(xc, t0) = w0xc(t0) + w1xc(t0 − 25) + w2xc(t0 + 25). (5.3)

Bias was first tried in the models like described in equation (2.12), but it was not used due to results
becoming less satisfactory compared to the models without having bias. The settings for training
the linear regression model is found in table 3.

Table 3: Settings for the linear regression model

Setting Value
Batch size 1000
Learning Rate 10−6

Momentum 0.9
Decay Rate 0.95
Loss Function Huber Loss Function
Huber Constant 0.25

To compute the loss of the model, the difference, e, between the ground truth, y, and the models in
equations (5.2) and (5.3) was computed accordingly to:

e = y − f(w). (5.4)

25

The loss with respect to the model weights, L(w), were computed for both linear regression models
using the error found in (5.3) and huber loss function (see section 2.2.6). This is found in equation
(5.5)

L(w) =

1

2
(e)2, if |e| < 0.25 (5.5)

0.25|e| − 1

2
0.252, otherwise. (5.6)

(5.7)

5.6 Neural Networks

The neural networks were implemented with four different frame shifts, creating four models per net-
work structure. The frame shifts implemented were 0 frames, 25 frames, 50 frames and 125 frames.
The features in each frame were the same. None of the models had any bias, just weights.

The features used for modelling were an exponentially moving weighted average [24] of the center
of mass, the velocity distribution and the track distribution. The velocity of a track was computed
by taking the difference in x-positions for a track 10 frames apart. The intervals for the velocity
used were the following (-25 to -3, -3 to -0.25, -0.25 to 0.25, 0.25 to 3, 3 to 25). The intervals were
expressed in pixels. The intervals were chosen such that they should represent large negative, small
negative, small positive and large positive velocities. The interval between -0.25 and 0.25 represented
velocities close to zero. The intervals for the track distribution were divided into four equally large
sizes of the court. Different features were tested and the set of features used were thought to best
represent the gameplay. The change in center of mass was indirectly introduced for models using
frame shifts larger than 0.

If the output from a neural network was O(w) and the corresponding ground truth was y, an error
was computed for each data point. The error, e, is found in (5.8)

e = y −O(w) (5.8)

The loss with respect to the network weights, L(w), was computed using the error in equation (5.8)
and the huber loss function accordingly to:

L(w) =

1

2
(e)2, if |e| < 0.25 (5.9)

0.25|e| − 1

2
0.252, otherwise. (5.10)

(5.11)

The loss computation in (5.9) was used for all neural networks together with a stochastic gradient
descent and a momentum optimiser.

5.6.1 Neural Network with Two Layers

A neural network with one input layer and one output layer was implemented. This model did not
have any hidden layers. The properties of the network is shown in table 4. The network used the
rectified linear as activation function.

Table 4: Settings for the two layer neural network

Setting Value
Number of Nodes L1 2000
Batch size 1000
Learning Rate 0.99
Momentum 0.9
Decay Rate 0.95
Loss Function Huber Loss Function
Huber Constant 0.25

26

xestxgt
D

lx

Figure 5.6: The norm distance, D, between the model estimation, xest, and the ground truth, xgt, was
computed for all estimations. This was then divided by the court length, lx, to create a normalised
result Dn.

5.6.2 Neural Network with three layers

A neural network with one input layer, one hidden layer and one output layer was implemented.
The properties of the neural network is found in table 5. The network used the rectified linear as
activation function.

Table 5: Settings for the three layer neural network

Variable Value
Number of Nodes L1 2000
Numer of Nodes L2 1000
Batch size 1000
Learning Rate 0.99
Momentum 0.9
Decay Rate 0.95
Loss Function Huber Loss Function
Huber Constant 0.25

5.7 Post Processing of Result

The estimations, especially from the the neural networks, were noisy. To make the estimations more
smooth, they were low-pass filtered using a sixth order Butterworth filter with cutoff frequency 0.15
[5]. To avoid altering the phase, the signals were forward-backward filtered with a padding length of
150 samples [14]. The estimations were finally thresholded to be between the two 7 meter penalty
lines (see figure 3.1).

5.8 Validation Methods

5.8.1 Evaluation of Position estimation

The different models estimated a x-position on the handball court. This was normalised to be
between 0 and 1 where the estimations corresponded to the left and right goals respectively. The
estimated position reflected where an automatic recording system should film. The estimations were
compared to the corresponding ground truth values. By computing the norm between the estimation
and the ground truth, a measure of how close the estimation was to the ground truth was obtained.
If xest was the estimated value and xgt was the ground truth and lx was the long court side length,
the normalised norm, Dn, was computed as:

Dn =
||xest − xgt||

lx
. (5.12)

The interpretation of difference can be seen in figure 5.6. If the difference from a computation in
equation (5.12) was 0.2, it can be interpreted as the estimation being 20 % of the court length away
from the ground truth value.

27

5.9 Evaluation of Training

To study the effect of the loss of the validation set dependant on the number of data subsets in the
training set, a model was trained with between 1 and 6 data sets in the training set. The model used
was the two layer neural network with a frame shift of 50 frames. The loss of the validation set and
the loss of the training set are plotted vs the number of data sets in the training set. This done for
the two data sets AFH and DAH and it is shown in figures 6.10 and 6.9.

28

6 Results

The results are presented as the distribution of the normalised norm difference, Dn between the
ground truth value and the model estimation (see section 5.8.1). The results in the columns shows
the normalised frequency of the differences that are within a certain percentage of the entire court
length. For example, the second column shows a percentage of how many of the differences that are
smaller than or up to 20 % of the entire court length. In total, 8 game halves were evaluated.

6.1 Results for the center of mass

The results for the center of mass can be found in table 6. The results are plotted in figure 6.1.

Table 6: Average results from cross validation of 8 center of mass estimations.

Estimator 10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90% 100%
COM 0.3691 0.6449 0.8005 0.8899 0.9429 0.9744 0.9896 0.9964 0.9988 1.0

Figure 6.1: The results for the center of mass.

6.2 Results for Linear Regression

The results for the linear regression model using the center of mass from the current frame (Linreg
1) and one model using the center of mass with a frame shift of 25 frames (Linreg 3) can be found
in table 7. The results are the average of the 8 cross validation models generated. The model with
a frame shift of 25 frames had 3 covariates. The results are plotted in figure 6.2.

Table 7: Average results from cross validation of 8 center linear regression models.

Estimator 10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90% 100%
Linreg 1 0.3235 0.5796 0.7614 0.8716 0.9329 0.9694 0.9892 0.9971 0.9993 1.0
Linreg 3 0.3209 0.5732 0.7607 0.8746 0.9344 0.9714 0.9901 0.9975 0.9996 1.0

6.3 Results for the Two Layer Neural Network

In figure 6.3, the results for the two layer neural network is shown. The average from the cross
validation for the four frame shifts 0, 25, 50 and 125 are shown. For example, the frame shift 0
model has about 40 % of its estimations within 10% of the entire length of the court. The the data
is also shown in table 8

29

Figure 6.2: The results for the linear regression model using the center of mass from the current
frame (Linreg 1) and the center of mass using a time shift of 25 frames (Linreg 3) as covariates.

Figure 6.3: The results for two layer neural network with frame shifts 0, 25, 50 and 125 frames are
plotted.

Table 8: Average results from cross validation of 8 two layer neural network models using frame shift
0, 25, 50 and 125 frames.

Frame Shift 10 % 20 % 30 % 40% 50 % 60 % 70 % 80 % 90 % 100 %
0 0.4085 0.6706 0.8178 0.9034 0.9457 0.9724 0.9867 0.9942 0.9981 1.0
25 0.4078 0.6801 0.825 0.9097 0.9536 0.9754 0.9897 0.9949 0.9983 1.0
50 0.4298 0.7147 0.8559 0.9291 0.9669 0.9844 0.9923 0.9961 0.9989 1.0
125 0.4424 0.7203 0.8626 0.9297 0.9661 0.9844 0.9927 0.9971 0.9997 1.0

6.4 Results for the Three Layer Neural Network

In figure 6.4, the results for the three layer neural network is shown. The average from the cross
validation for the four frame shifts 0, 25, 50 and 125 are shown. For example, the frame shift 0 model
has 37.9 % of its estimations within 10% of the entire length of the court. The data is also shown in
table 9

30

Figure 6.4: The results for three layer neural network with frame shifts 0, 25, 50 and 125 frames are
plotted.

Table 9: Average results from cross validation of 8 three layer neural network models using frame
shifts 0, 25, 50 and 125 frames.

Frame Shift 10 % 20 % 30 % 40% 50 % 60 % 70 % 80 % 90% 100%
0 0.379 0.6718 0.8242 0.9099 0.9559 0.9777 0.9897 0.9957 0.9989 1.0
25 0.3845 0.678 0.8354 0.9127 0.956 0.9795 0.9902 0.9958 0.9988 1.0
50 0.4201 0.7193 0.8654 0.9318 0.9674 0.9853 0.9933 0.9969 0.9993 1.0
125 0.4454 0.7356 0.8776 0.9414 0.9701 0.9878 0.9945 0.9979 0.9996 1.0

6.5 Post Processing

In figure 6.5, three estimations of the same match sequence is shown. In the top figure, a neural
network estimation is shown. In the middle a thresholded estimation from the same neural network
is shown. In the bottom figure a thresholded and low-pass filtered estimation from the same neural
network is shown.

6.6 Plotting Results for Different Models

To analyse how well the neural network models performs with different features, estimations of a
situation where the game is changing sides has been plotted. In figure 6.6, the estimations for frames
shifts of 0, 25, 50 and 125 frames for the two layer neural network is plotted. In figure 6.7, the same
situation for the three layer neural network is plotted.

In figure 6.8 a time out situation modelled by a three layer neural network with a frame shift of 50
frames is shown.

6.7 Evaluation of Training

The results of how the validation loss changes with the size of the training set is shown in figure 6.9.
The data set DAH was used as validation data set and the data set DFH was used as testing set.

The same figure was plotted for another evaluation set, AFH, as well. This is shown in figure 6.10.
The loss of the validation set decreases and the loss of the training set increases with increasing data
in the training. The loss of the validation set is larger than the loss of the training set.

31

(a) Estimation without any post processing

(b) Thresholded estimation of the same signal as in 6.5a.

(c) Thresholded estimation and filtered version of 6.5a.

Figure 6.5: The three signals shows the same estimation with different post-rocessing. The first
signal has no post-processing, the middle signal has been truncated and the bottom signal has been
truncated and filtered.

32

Figure 6.6: The plot shows a situation where the game switches sides back and forth. The results
are plotted for the two layer neural network model and frame shift of 0 25, 50 and 125 frames.

Figure 6.7: The plot shows the same situation as in figure 6.6 . The results are plotted for the three
layer neural network model and frame shift of 0 25, 50 and 125 frames.

33

Figure 6.8: A time out situation. The model used for estimation was a three layer neural network
model with a frame shift of 50 frames.

Figure 6.9: The loss for the training set and the loss for the validation set, DAH, are plotted. The
loss of the validation set is smaller than the loss of the training set if more data is used in the training.

34

Figure 6.10: The loss for the training set and the loss for the validation set, AFH, are plotted. The
loss for the validation set decreases over time and the loss of the training set increases with increasing
training data. The training loss is still however smaller than what the validation loss is.

35

36

7 Discussion

7.1 Discussing the Methods

The center of mass was easy to implement. The linear regression took more time, but it was still
quite fast to implement. The neural network models demanded more training before they could be
used. From an implementation point of view, the center of mass estimator would be preferable to use.

The stochastic gradient descent method improved computational time significantly compared to the
gradient descent method and, it was quite helpful when training the models. Given large enough
batch sizes, each batch should theoretically represent the entire data set. Different batch sizes were
tested and a batch size of 1000 samples was found to be large enough to give good results. One
potential problem however, was that the different data sets differed from each other. This could have
made the stochastic gradient descent approach a worse option than the gradient descent method.

The difference in the data sets becomes apparent when studying how the loss of a validation set
changes with increasing number of data in the training set. Figure 6.9 shows that for one validation
set, the validation loss is smaller compared to the loss of the training data set given enough training
data. However in figure 6.10, the loss of the validation data set is larger than the loss of the training
set. It appears that the loss of the validation set is declining and the loss of the training set is
increasing, with increasing size of the training data. If more data would be added to the training,
the loss of the validation set would most likely decrease to the level of the training data set loss.

This shows that there are large differences between data sets, which in turn would lead to differences
in data batches used in stochastic gradient descent. Even if the data batches used in the stochastic
gradient descent were not equal, the method is still preferred for this project compared to a normal
gradient descent. This is because of the decrease in training time.

The KLT-tracker was able to produce data of how players were moving in the video content, but
it did also produce unwanted track data. The filters used for handling this problem caused some
information loss, though its hard to say how much. A more efficient way of removing these points
are needed to make their negative influence on the methods as small as possible. One alternative to
using the KLT-tracker, could be to model the background instead. This may make it easier to remove
static background on the playing court. The methods could potentially be used complementary. It
would probably have been better to use a more customised mask, which would have allowed tracks
to be generated in the corners closest to the camera. Some of the wing-players data was lost with
the mask used.

The post-processing improved the modelling results, especially the thresholding of the neural network
estimations. These estimations had a tendency to ”overestimate” the position, sometimes making
estimations outside of the playing court. By defining a lower and an upper bound for the estimations,
it was possible to get results closer to the ground truth. The forward/backward filtering produced a
more smooth estimation. Some similar method would be preferable to implement if the models were
to be used for broadcasting purposes.

Some measures for generalising the neural networks were studied. Both weight decay and dropout
were implemented. The dropout did not improve the model, it did rather the opposite. Figures 6.9
and 6.10 shows that dropout would most likely have improved the estimations for the AFH data set
but not for the DAH data set. Since dropout is only used in the hidden layers, it was not possible
to implement in the two layer model. When implemented in the three layer model, the estimations
became considerably worse for the validation data set. Dropout is generally implemented in layers
towards the end of the network. If implemented when using only one hidden layer, too much infor-
mation might be lost. The weight decay did not significantly change the estimations. A few different
learning rates were tried, but it did not improve the results. The results of the network implementing
weight decay were similar to the same network without weight decay. The only real difference was
that it took longer for the model using weight decay to converge to a good solution. To implement
weight decay more efficiently, a more detailed study of how learning rate affected the results would
be needed.

7.2 Discussing the Results

The results for the center of mass shows that close to 36 % of the estimations are within 10 % of the
entire playing court and 95 % are within 50 % of the playing court compared to the ground truth.

37

The center of mass produces reasonably good results, but the estimator would probably be hard
to use for an broadcasting application. The main issue with using the center of mass as a camera
estimator is, that it takes too long time for the estimator to react on quick game changes like fast
breaks. This is a limitation of the estimator.

The linear regression model produced poor predictions when not using the center of mass as feature.
That is the reason why only center of mass was used as covariate in the model. It did not make any
difference to add two center of mass features to a linear regression model for the results. It is possible
that the model could have been implemented to work better than what it did, but the model was
thought to be too simple to track the game. One explanation why the linear regression model did
not work as well as the center of mass could be that not enough measures for regularisation were used.

The neural network approach did improve the estimations quite considerably compared to the three
previous models. The number of observations close to the ground truth increased. The model using
just one input and one output layer improved the estimations for all feature sets used compared to
both previous models. Using features from multiple frames increased estimation precision compared
to the model using only features from one frame. There was not a lot of difference between the
0 and 25 frame shift results when studying the position evaluation. The big improvement came
when introducing the 50 and 125 frame shifts. The main difference was that it was possible for the
50 and 125 frame shift models to capture game changes better. The 125 frame shift model seems
to have improved the estimations slightly compared to the 50 frame shift models when studying
the distance to the ground truth. This is reflected in figure 6.6. It is an important property of a
model to capture fast breaks. In most other situations the different models made similar estimations.

The last model used was the three layer model. There is a bigger difference between the different
frame shifts for this model compared to the two layer model. This could also have been caused by
to little regularisation. The results for the 10 % court length evaluation are worse for the 0 and 25
frame shift compared to the same results of the two layer model. The three layer model is slightly
better when studying the results for 125 frame shift.

The results for the training suggest that a model with one input layer and one output layer is suf-
ficient to make estimation within 30% of the court length in around 85 % of the time. A model
with one hidden layer did not improve the estimations significantly. The results also shows that
the number of features is more important to the performance of the model than the depth of the
neural network. If a model would be used for performing estimations, the two layer model would
be prefered, since the model is faster to train and to make estimations compared to the three layer
model. This could change if more data was added to the training.

A model using two hidden layers was also studied. It was however not possible to get this network
to make good estimations. There are a number of potential reasons why it was not possible to do
this. Different learning rates and different number of nodes of the network were studied. Due to lack
of time, it was not possible to make a thorough investigation of the model architecture. The model
was therefore disregarded.

7.3 Analysis of Misestimations

With the results of the estimations available, an interesting question becomes: ”What can be changed
to improve the model?”. To answer this questions, it is needed to know which types of situations
that are misestimated. After analysing the situations where the estimations differed the most from
the ground truth, some types of situations were indentified.

The first situation, which the estimators had a hard time capturing, is when the goalkeeper has
made a save and waits for a teammate to pass to. The ground truth shows the goalkeeper, but
the estimator shows the players running towards the other goal. This situation is similar to a fast
break. In fast breaks, players switches court sides after having been on one side for some time. It
might be hard to find an estimator, which can discriminate between these two situations. And in
reality, this might not be a big problem after all. In this situation the game can be seen as suspended.

Another common situation, where the estimator is often far from the ground truth, is at time outs.
At time outs, the ground truth was positioned at the center of the court. This is shown in figure
6.8. The estimator however often showed one of the court sides. The side the estimator showed at
time out could be dependant on how the players moved on their respective court sides. This is also
a situation where it does not really matter where the camera is. There is not any match content

38

being missed by the estimator.

A situation on the same theme is when there has been a goal scored and the team who scored the
goal is running towards its court side (Lets call it court side A). In this situation the game is sus-
pended until the team with the ball makes a pass from the middle of the court. The ground truth
will show the middle of the court but the estimator will show court side A. This is once again not a
big issue. Once the game becomes active again the team with the ball will go on the offence where
the estimator already is. There is not any interesting match content being missed.

It is common for some players to switch with a player on the bench between defence and offence.
This is sometimes done when a team goes from offence to defence or vice versa, but it is also common
for defensive players to be part of the offence for 15 - 20 seconds and then switch with a player on
the bench. If a late switch happens and there has been a pause in the game, the switching of players
sometimes makes the estimator believe that there is a change in the game. The estimator usually
finds the play again once the game has been unpaused.

The last categories of misestimations are however more of a concern for the modelling. The first
situation, which has been misestimated is when one team has been awarded with a penalty throw.
Usually in this situation, one or two players of the team who recieved the penalty throw as well as
the defending team, will be located at the defending team’s court side (court A). The rest of the
team who received the penalty throw will be on their own court side (court B) waiting to defend
after the penalty has been thrown. The players on court B might move around a lot more than what
the players on court A will. This could lead the system to think that the action is at court B when it
really is at court A. To capture this situation better, it would be needed for the system to recognise
that there has been a penalty throw awarded, and point the camera to the goal where the penalty
is.

The last type of situation misestimated is fast breaks. It is more likely that the estimator does not
capture fast breaks if the game has been switching sides rapidly prior to the fast break. In some
situations the estimators were not able to track fast breaks due to certain players ”staying at home”
when their team was making a fast break play.

7.4 Improvements for Modelling

There are a number of improvements, that can be used for the models. The most critical improve-
ment would most likely be to gather more data, to make the training more general. It would also
be preferable to use more permutations for testing and validating the models. With more data in
general, it would be easier to create test sets and validation sets which represents the entire data set
better than what the validation sets and testing sets did in this project. Removing the situations
not related to the game would most likely improve the results. As seen in figure 6.8, a time out
takes almost two thousand frames. Because the network is trying to reduce the difference as much as
possible, it might adjust to heavily for the time out. By removing the time outs and the other game
unrelated situations from the training, these types of situations would no longer affect the training.

The network architecture such as number of nodes in each layer, activation function, loss function,
learning rate and so forth were tested to a certain degree. The settings used in the modelling were
the ones considered to be the best. But there was not too much effort put in to find the best settings.
By finding more ”optimal” settings for this, it might be possible to improve the training even further.

When performing analysis on the results from the different models, the number of features were the
most important characteristic for how well the estimations went. By making a deeper analysis of
how well the current features are working, the model could potentially be further improved. The
analysis could consist of which of the current features than are contributing to the estimations, how
the features should be sampled in past and future frames and what features that should be used
from what frame.

The last analysis made was to study the situations where there was a big difference between the
model estimation and the ground truth. When making a new model, these situations should be
carefully studied and used to find new features to add to the existing features.

One other idea would be to change the optimisation. The optimisation implemented in this project
has been focused on minimising the distance between the ground truth and the estimations. If the
estimators would be used for broadcasting, it might be more important to capture all important

39

events in the broadcasted data, rather than having all events in the center of the image, which the
current optimisation is aiming at. One idea is to have a threshold, where all estimations within this
threshold would have an error of zero, and then have an increasing error for estimations further away
from the ground truth. The threshold would be related to how much zoom that would be prefered.
If the broadcasted content would have a zoom of 40 % of the court length, all estimations within 20
% of the court would have an error of 0, and all other errors would increase the further away the
estimations would be from the ground truth.

7.5 Challenges in the Project

There have been different challenges and issues in this project. Some of these have been solved and
some of them are possible to improve in future projects.

The collection of the ground truth was potentially an obstacle for the performance of the models.
There is a potential problem with the precision of the mouse cursor. The consistency of the person
who collected of ground truth is hard determine. Similar situations might have different ground
truth. An explanation for this could be the focus level of the collector at the time. Preferably the
ground truth would have been discussed with a handball coach before collection. Ground truth data
is normally not filtered, but because of the circumstances of the collection of ground truth data, it
was considered a good option to smooth the ground truth. The idea behind filtering the ground
truth data was that it would represent camera movement better.

One problem with the ground truth, which was discovered after having trained a few models, was
that there had been some error when collecting the ground truth for some matches. When the ground
truth was reviewed it turned out that the ground truth did not represent the game at all in some
cases. This data set was then discarded from the training. There might still have been ground truth
which did not represent the actual gameplay. If this was the case, this would affect the training of
the models.

The optimisation of the models has been hard to evaluate. The loss has been used to evaluate model
performance. While this gives and indication, the viewer experience would be a better measure to
find the best model. There are however two concerns, that makes the viewer experience hard use as
evaluation method for the models. First of all, the viewer experience is impractical to use. It would
require one or more persons to review each estimation and when that had been done, see if there
was any consensus on what the estimations were missing and update the model accordingly. The
second concern is that the viewer experience is quite subjective. It might not be possible to reach a
consensus at all, which would make the viewer input impossible to use as evaluation method.

7.6 Future Development

Most of the models evaluated have had non-causal properties. Since the idea of a system, using
one of the models for estimation, is to use it to record match content, the system must be able to
operate at near real time speed. The next step in developing this system would be to decide which
model and which features that should be used for estimation in ”real time”. The specification of
how fast the system should be working would decide how many features that would be possible to use.

This algorithm proved itself to work fairly well in handball. The center of mass estimator was also
tried on a football match and it showed great potential to be able to follow football matches as well.
There are some differences between football and handball which could make it harder to use the
same estimators for football. But given the promising results, it should be possible to develop a
model which could follow and record football as well. If a system for football was to be developed,
the market for the developed technology would increase.

40

8 Conclusion

The artificial neural networks proved to estimate the game flow well overall. There are some situations
which are missed by the estimators. These are generally situations where the game changes fast from
one side to the other. To produce an estimator better suited for the task, the optimisation process
could be altered. Adding more data to the model training would most likely improve the models.
The features are more important for the results of the neural networks model then what the number
of layers in the network are. The neural network models could most likely be used for broadcasting
purposes.

41

42

9 Sustainability

There are several aspects to consider when developing technology like the technology developed in
this thesis. Like most technologies, the intension is to do good and to find a solution for a problem
or a need, which is currently not satisfied. In this specific case it is about developing a tool which
can help sports teams to improve their performance. It is also about broadcasting games, which
otherwise would not be broadcasted. The automatic tracking system enables both of these possi-
bilities. These features could be quite inspirational for both professionals and amateurs alike. But
with all technological advancements, there is always a possibility that the intended use is not followed.

Lets start to focus on the positive effects of developing this system. The first thing to consider is
how this technology could generate work opportunities and economic growth. Since there has been
little literature on the subject, it is reasonable to think that the technology could generate work
opportunities. If the demand for the technology would increase from what it is today, this research
would improve the economic growth even more. The tracking itself could be used in other sports as
well, so the potential market is quite big. Once the market grows, there will be work opportunities
available which is beneficial to both society as well as for individuals.

There are many things which can be discussed when talking of video surveillance and tracking, re-
gardless of the setting. There have been massive discussions in recent year of personal integrity and
how much authority a government, for example, should have over its citizens. This is hopefully not
a very big issue in the developed world, but there have been cases where governments have gathered
information about its citizens without the knowledge of the people being surveilled. There are most
likely more cases which have not been discovered yet either.

The system being develop in this project has a quite specified target use and it would probably not
be very effective in other settings. But all development in an area drives the development further
and it is hard to know what technologies might become one day. But even disregarding what future
technologies might or might not do, this system is still used to film at locations where there is a
possibility for the system to surveillance a large variation of people. Both potential spectators and
athletes might not expect to be filmed, especially if cameras are installed in the celling and are not
visible. That is important to keep in mind when using a system like this, especially at junior level
matches.

One other aspect of this, which has been recently discussed in Sweden, is how young athletes are
influenced by competitive sports. The Swedish Football Association (SvFF) has recently adopted a
policy to not declare league winners for teams with players younger than thirteen years old[10] [7].
If there is an increase of information of the performance of junior teams there is a risk that both
coaches and parents of young athletes might try to push the athletes harder to make them perform
better. This could lead to increased pressure with severe consequences for the young athletes. The
athletes themselves might also become to much involved in their sports.

To summarise the sustainability of an automatic tracking system: There is a demand for this type
of technology. This can generate economic growth. There are however potential drawbacks both in
personal integrity as well as social and psychological aspects for children and young adults.

43

44

References

[1] Baker S, Matthews I, Lucas-Kanade 20 Years On: A Unifying Framework, International Journal
of Computer Vision 56(3), pp.221-255, 2004

[2] Beachemin S.S, Barron, J.L, The computation of Optical Flow, Dept of Computer Science,
University of Western Ontario, Canada, 1995

[3] Bottou L, Large-Scale Machine Learning with Stochastic Gradient Descent, NEC Labs America,
Princeton NJ 08542, USA

[4] Breitenstein M D, Reichlin F, Leibe B, Koller-Meier E, Van Gool L, Robust Tracking-by-
Detection using a Detector Confidence Particle Filter ,2009 IEEE 12th International Conference
on Computer Vision (ICCV)

[5] Butterworth S, Theory of filter amplifiers, Experimental wireless & the wireless engineer, 1930,
pp. 536-541

[6] Cheung S-C S, Kamath C, Robust techniques for background subtraction in urban traffic video,
Lawrence Livermore National Labratory 2007

[7] Dagens Nyheter, Beslut: Inga segrare ska utses i barnfotboll,
url:http://www.dn.se/sport/fotboll/beslut-inga-segrare-ska-utses-i-barnfotboll/, visited 24-
05-2016

[8] Dehghan A, Idrees H, Rishan Zamir A, Shah Mubarak, Automatic Detection and Tracking of
Pedestrians in Videos with Various Crowd Densities, Pedestrian and Evacuation Dynamics 2012,
Springer International Publishing Switzerland, 2014

[9] Fleet D J, Weiss Y, Mathematical Models in Computer Vision: The Handbook, Chapter 15,
Springer, 2005, pp. 239-258

[10] Fotbolls Kanalen, SvFF:s beslut - Inga segrare i ungdomsserierna
,url:http://www.fotbollskanalen.se/allsvenskan/svffs-beslut—inga-segrare-i-ungdomsserierna/,
visited 24-05-2016

[11] Ghahramani Z, Unsupervised Learning, Gatsby Computational Neuroscience Unit University
College London, UK, 2004

[12] Goodfellow I, Bengio Y, Courville A, Deep Learning, 2016,
url:http://www.deeplearningbook.org, visited: 26-05-2016

[13] Graves A, Liwicki M, Fernandez S, Bertolami R, Bunke H, Schmidhuber J, A Novel Connec-
tionist System for Unconstrained Handwriting Recongnition

[14] Gustaffson F, Determining the initial states in forward-backward filtering, Transactions on Signal
Processing, Vol. 46, pp. 988-992, 1996.

[15] Hagan M T, Demuth H B, Beale M H, De Jesus O , Neural Network Design,
url:http://hagan.okstate.edu/NNDesign.pdf, visited: 26-05-2016

[16] Hawk Eye Home Page, url: http://www.hawkeyeinnovations.co.uk/sports/tennis, visited 07-06-
2016

[17] Hinton G E, Osindera, Simon, Teh Y.W, A fast learning algorithm for deep belief nets, Neural
Computation, Neural Computation 18, 1527?1554 (2006)

[18] Kim K, Chalidabhongse T H, Harwood D, Davis L, Real-time foreground/background segmen-
tation using codebook model, 05

[19] Kotsiantis S.B, Supervised Machine Learning: A Review of Classification Techniques, Emerging
Artificial Intelligence Applications in Computer Engineering, IOS Press, 2007

[20] Krogh A, Hertz J A, A Simple Weight Decay Can Improve Generalization, ADVANCES IN
NEURAL INFORMATION PROCESSING SYSTEMS 4, 1992

[21] Lucas B, Kanade T. 1981. An iterative image registration technique with an application to stereo
vision, In Proceedings of the International Joint Conference on Artificial Intelligence, pp. pp.674-
679.

[22] Läthen G, Andersson T, Lenz R, Borga M, Momentum Based Optimization Methods for Level
Set Segmentation, 2009, Lecture Notes in Computer Science 5567: Scale Space and Variational
Methods in Computer Vision, pp.124-136

[23] Nuygen D, Widrow B, Improving the Learning Speed of 2-Layer Neural Networks by Choosing
Initial Values of the Adaptive Weights, 1990 IJCNN International Joint Conference on Neural
Networks, 1990

[24] NIST/SEMATECH, e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,
25-05-2016

[25] NumPy, url: http://www.numpy.org, visited 26-05-2016

[26] Open CV,http://opencv.org, accessed 25-05-2016

[27] Pers J, Kovacic S, Computer Vision System for Tracking Players in Sports Games, First Int
Workshop on Image and Signal Processing and Analysis, June 14-15, 2000, Pula, Croatia

[28] Prechelt L, Earlt Stopping – But When?, Volume 7700, Lecture Notes in Computer Science pp.
53-67, 2012

45

[29] Python Homepage, url: https://www.python.org, visited June 7, 2016
[30] Sak H, Senior A, Beaufays F, Long Short-Term Memory Based Recurrent Neural Network Ar-

chitectures for Large Vocbavulary Speech Recognition
[31] SciPy, url:http://docs.scipy.org/doc/scipy/reference/index.html, visited: 26-05-2016
[32] Seo Y, Choi S, Kim H, Hong K-S, Where are the ball and players? Soccer game analysis with

color-based tracking and image mosaick, Image Analysis and Processing, Volume 1311 pp. 196-
203

[33] Senior A, Heigold G, Aurelio Ranzato M, Yang K, An Empirical Study of Learning Rates in
Deep Neural Networks for Speech Recognition, Google

[34] Shi J, Tomasi C, Good Features To Track, IEEE Conference on Computer Vision and Pattern
Recognition, Seattle June 1994

[35] Shirazi H M, Vasconcelos N, On the Design of Loss Functions for Classification: theory, robust-
ness to outliers, and SavageBoost,

[36] Spiideo Home Page, url: http://spiideo.com/index.html, visited 07-06-2016
[37] Srivastava N, Hinton G, Krizhevsky A, Sustskever I, Salakhutdinov R, Dropout: A Simple Way

to Prevent Neural Networks from Overfitting, Journal of Machine Learning Research 15 pp.
1929-1958, 2014

[38] Szeliski R, Computer Vision: Algorithms and Applications, Springer 2010,
url:http://szeliski.org/Book/, visited: 26-05-2016

[39] Tensor Flowhttp://tensorflow.org, accessed June 7, 2016
[40] TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems,

url:http://tensorflow.org/, 2015, visited: 26-05-2016
[41] Witten I H, Frank E, Hall M A, Data Mining: Practical Machine Learning Tools and Techniques,

Third edition, Morgan Kaufmann Publishers - Elsevier 2011
[42] Zeiler M D, ADADELTA: An Adaptive Learning Rate Method
[43] Zeiler M.D, Ranzato M, Monga R, Mao M, Yang K, Le Q V, Nguyen P, Senior A, Vanhoucke

V, Dean J, Hinton G E, On Rectufued Linear Units for Speech Processing

46

Master’s Theses in Mathematical Sciences 2016:E16

ISSN 1404-6342

LUTFMA-3292-2016

Mathematics

Centre for Mathematical Sciences

Lund University

Box 118, SE-221 00 Lund, Sweden

http://www.maths.lth.se/

