
Face Recognition Based on
Embedded Systems

Hanna Björgvinsdottir, Robin Seibold

Master’s thesis
2016:E17

Faculty of Engineering
Centre for Mathematical Sciences
Mathematics

C
E

N
T

R
U

M
S
C

IE
N

T
IA

R
U

M
M

A
T

H
E

M
A

T
IC

A
R

U
M

Face Recognition Based on Embedded Systems

Robin Seibold
dat11rse@student.lu.se

Robinbobseibold@gmail.com

Hanna Björgvinsdóttir
dat11hbj@student.lu.se

hanna.bjorgvinsdottir@gmail.com

Centre for Mathematical Sciences, Lund University
Sölvegatan 18, P.O. Box 118, 221 00 Lund

Master’s thesis work carried out at Axis Communications AB

Supervised by

Kalle Åström, kalle@maths.lth.se
Jiandan Chen, jiandan.chen@axis.com

Martin Ljungqvist, martin.ljungqvist@axis.com

Examiner

Niels Christian Overgaard, Niels Christian.Overgaard@math.lth.se

June 1, 2016

mailto:dat11rse@student.lu.se
mailto:Robinbobseibold@gmail.com
mailto:dat11hbj@student.lu.se
mailto:hanna.bjorgvinsdottir@gmail.com
mailto:kalle@maths.lth.se
mailto:jiandan.chen@axis.com
mailto:martin.ljungqvist@axis.com
mailto:Niels_Christian.Overgaard@math.lth.se

Abstract

Machine learning in general, and artificial neural networks in particular, have gained a lot of atten-
tion in recent years. Using deep neural networks for classification tasks, such as face recognition,
has proven more and more successful over time. The performance increase is partly due to more
complex network architectures, and partly due to the use of larger datasets.

The increased complexity of networks has lead to an increase in parameters, which in turn results
in slower training and inference, making it hard to deploy such models on limited hardware.

The main objective of this master’s thesis is to train a convolutional neural network for face
recognition, and deploy it on an embedded system, with the aim of real-time performance.

By using transfer-learning as a means to adjust a pre-trained model to fit new data, the time
needed for the training phase is reduced. The resulting model achieves an accuracy of 91.66%,
while distinguishing between 2,904 identities.

The model is then compressed by a method referred to as pruning, reducing the amount of
parameters in the fully connected layers by a factor of 20, greatly reducing the memory footprint
while remaining within „ 1% of the original accuracy.

Finally, by combining the resulting neural network model with a custom built framework and a
live video stream, real-time face recognition is achieved on an embedded device.

Acknowledgement

We would like to thank Axis Communications AB, for giving us the opportunity to do this master’s
thesis at Axis, and for providing all necessary utilities.

We would also like to thank our supervisors at Axis, Martin Ljungqvist and Jiandan Chen, for
excellent guidance and support.

Big thanks to our supervisor Kalle Åström as well, for valuable comments and creative ideas.
Last, but not least, we would like to thank the brave souls who contributed to our dataset with

images of themselves; Martin Ljungqvist, Jiandan Chen, Kalle Åström, Joakim Roubert, Jakob
Beckerot, and Åke Söderg̊ard.

Contents

1 Introduction 1
1.1 Main Objective . 1
1.2 Problem Description . 1
1.3 Related Work . 1

1.3.1 Face Recognition and Verification . 1
1.3.2 Transfer Learning . 2
1.3.3 Compression of Neural Networks . 2
1.3.4 Data Augmentation . 3

1.4 Utilities . 4
1.4.1 Hardware . 4

1.4.1.1 AXIS A8004-VE Network Video Door Station 4
1.4.2 CUDA . 4
1.4.3 Caffe . 5

1.4.3.1 Caffe Model Zoo . 5

2 Methodology 6
2.1 Neural Networks . 6

2.1.1 Forward Propagation . 6
2.1.1.1 Activation Functions . 6

2.1.2 Back Propagation . 7
2.1.2.1 Softmax Loss . 7
2.1.2.2 Stochastic Gradient Descent . 7

2.1.3 Layer Types . 7
2.1.3.1 Fully Connected Layer . 7
2.1.3.2 Convolutional Layer . 8

2.1.4 Max-Pooling . 9
2.1.5 Overfitting . 9

2.1.5.1 Dropout . 9
2.1.5.2 L2 Regularization . 9

2.2 VGG16 . 10
2.2.1 VGG Face . 10

2.3 Transfer Learning . 11
2.4 Preprocessing . 12
2.5 Compressing Neural Networks . 12

2.5.1 Floating Point Precision Reduction . 13
2.5.2 Pruning . 14

2.5.2.1 Selection of Weights to Prune . 14
2.5.2.2 Weight Representation After Pruning . 15

2.6 Datasets . 16
2.6.1 Labeled Faces In The Wild . 17
2.6.2 Oxford VGG Face Dataset . 17
2.6.3 FaceScrub . 17
2.6.4 Additional Dataset . 17

2.7 Dataset Collection . 18
2.8 Data Analysis . 18

2.8.1 Data Quantity and Augmentation . 18
2.8.2 Input Image Size . 19

2.9 Prototype . 19
2.9.1 Video Capture . 19
2.9.2 Detection . 19

2.9.2.1 Feature-based Cascade Classifier . 20
2.9.2.2 Deformable Part Models . 20

2.9.3 Recognition . 20

3 Results and Discussion 21
3.1 Transfer Learning . 21
3.2 Neural Network Compression . 23

3.2.1 Floating Point Precision Reduction . 23
3.2.2 Pruning . 24
3.2.3 Inference Time Comparison . 25

3.3 Data Analysis . 26
3.3.1 Data Quantity and Augmentation . 26
3.3.2 Image Size . 26

3.4 Impostors . 27
3.5 Prototype . 28

4 Conclusions 29
4.1 Future Work . 29

1 Introduction

Deep learning is a concept which has been, and still
is, on the rise in many scientific fields, showing re-
markable results in multiple areas, including object
recognition. It is an approach to machine learning
that to this day is being explored and improved con-
tinuously.

In recent years, improvement to neural net-
works used for object recognition and verifica-
tion have largely been due to network expan-
sions and an increase in training data. How-
ever, complex network architectures, such as
AlexNet [Krizhevsky et al., 2012] and VGG-16
[Parkhi et al., 2015], although producing good ac-
curacy, contain tens and hundreds of millions of
parameters respectively, which can make deployment
on embedded systems with limited compute power
infeasible.

1.1 Main Objective

The aim of this master’s thesis is to investigate the
possibility of deploying a neural network for face
recognition on an embedded platform, achieving good
accuracy while simultaneously maintaining accept-
able inference speed.

Different techniques for reducing the memory and
time spent on both the inference and training part of
neural networks are explored.

The objective is not to design a new neural network
architecture, but rather to train an existing one on
new datasets, and to find ways of compressing the
resulting model.

The aim is also to develop a prototype, which uses
the trained model to classify faces detected in a live
camera feed.

1.2 Problem Description

As stated above, the main objective of this thesis is
to deploy a neural network for face recognition on an
embedded platform. The difference between face ver-
ification and face recognition is that verification is a
1 : 1 comparison, while recognition is a 1 : N compari-
son. In other words, verification answers the question
”Does image A depict the same identity as image B?”,
and recognition answers the question ”Which identity
in database D belongs to image A?”.

In face recognition, finding an identity in the
database can involve either closed-set or open-set
identification. In the former, all identities are guar-
anteed to be in the database, and the mission is sim-
ply to decide which identity it is. In the latter, the
identities are not guaranteed to be in the database.
This introduces the problem of not only classifying

the identities in the database, but also detecting im-
postors excluded from it. The face recognition per-
formed in this thesis is of the kind that uses open-set
identification.

Making a neural network perform well requires a
lot of training, often involving tweaking of different
parameters, and can therefor be extremely time con-
suming. Seeing as the time frame of this thesis is
limited, the time spent on training the network is as
well.

Another challenge concerning training is acquiring
the amount of high quality training data needed to
produce a good model.

When considering deployment of the trained model
on an embedded system, three major factors must be
taken into account; limited compute power, limited
memory, and limited bandwidth. These factors place
restrictions on the number of parameters in the net-
work, as well as the size of the input.

Reducing the size of a model not only involves the
problem of how to compress it, but also of how to
preserve the accuracy. Both the size of the model
stored on the hard drive, and the memory needed to
perform a forward pass are of concern.

In addition to compression, ways to optimize the
inference would be highly beneficial due to the limited
compute power of the embedded system.

1.3 Related Work

Both face verification and recognition are problems
that have been popular in computer vision and image
analysis research for a long time. The realization that
neural networks can be used for the task has made the
subject even more popular.

The training phase of neural networks generally re-
quire a lot of time, compute power, and training data.
Because of this, a fair amount of research has been
conducted on the subject of reducing these factors.

1.3.1 Face Recognition and Verification

Two years ago, a now well known article called Deep-
Face: Closing the Gap to Human-Level Performance
in Face Verification [Taigman et al., 2014] was re-
leased. The authors had successfully developed a
face verification system that reached 97.35 % ac-
curacy on the Labeled Faces in the Wild (LFW)
[Huang et al., 2007] bench marking data set, follow-
ing the unrestricted protocol. The (at the time) state
of the art error rate was reduced by 27 %, almost
reaching human-level performance. Their method
consists of a set of preprocessing algorithms for face
alignment, and a deep neural network for the verifi-
cation. The preprocessing steps include both 2D and

1

3D alignments, based on a great amount of reference
points.

A year later, researchers from Google published the
paper FaceNet: A Unified Embedding for Face Recog-
nition and Clustering [Schroff et al., 2015], introduc-
ing feature vectors of only 128 bytes per face. In
addition to a convolutional neural network (CNN),
embedded triplet loss was used to calculate these fea-
tures, resulting in an accuracy of 99.63 % on the unre-
stricted LFW set. Besides the superior accuracy com-
pared to DeepFace, FaceNet benefits from not requir-
ing heavy preprocessing steps. Using only cropping of
the faces, an accuracy of 98.87 % was achieved. The
best reported accuracy was achieved using similarity
transform alignment in addition to the cropping.

Shortly after the FaceNet publication, the Visual
Geometry Group (VGG) at the University of Ox-
ford published a paper called Deep Face Recognition,
where a convolutional neural network was trained
for face recognition [Parkhi et al., 2015]. After train-
ing the classifier, the last feature vector (next-to-last
layer) was tuned for face verification, using embedded
triplet loss. The final model achieved an accuracy of
98.95 % under the unrestricted setting of LFW, using
less training data than both DeepFace and FaceNet.
The authors explored the impact of using similarity
transform alignment (like the one in FaceNet) dur-
ing both the training and test phase, and found that
the network only benefited from alignment during the
test phase.

1.3.2 Transfer Learning

Convolutional neural networks are comprised of sev-
eral layers, which can be seen as different feature ex-
tractors, trained to find the differentiating features of
a given dataset. The generality of these features de-
pend both on the type of data used, and the objective
of the training. Studies have shown that the features
get more and more specific the further into the net-
work the layers are [Bengio, 2012]. The first layers
normally react to general low-level features (such as
edges, in the case of CNNs trained on images) while
the later layers detect features of more and more com-
plexity.

Because of the generality of the initial features, the
first part of a CNN trained for one type of images can
produce features that are of interest for other types
of images as well.

Training large CNNs from scratch is time-
consuming, and requires a lot of compute power, as
well as large amounts of training data. One way of
overcoming these obstacles is by taking advantage of
the generality of features, and transferring them from
a trained model (base model) to the target model
[Azizpour et al., 2014].

There are two common methods of transferring fea-
tures. One way is to simply copy the weights of the
N layers which are thought to be of interest, ’freeze’
them, and only train the later layers of the target
model, which are initialized either randomly or from
some known distribution. The other method is simi-
lar, only the copied weights are also trained, but with
a lower learning rate. This process is often referred
to as fine-tuning [Grundström et al., 2016].

The first method is usually preferred when the
dataset of the target model is much smaller than that
of the base model. In this case, the model will risk
being overfitted if fine-tuning is performed. However,
when the dataset of the target model is large, fine-
tuning can improve the performance of the target
model [Yosinski et al., 2014].

By transferring features, one can get the advan-
tages of long training with large datasets, without
having to perform it all oneself. Furthermore, when
the first N layers of the target model are frozen, the
number of parameters that require training are de-
creased, which leads to faster learning.

How many layers should be transferred depends on
the architecture of the CNN, and the similarity of
tasks for the base and target models. For example,
if the base CNN is trained for classifying dog breeds,
more layers could probably be transferred if the target
CNN is to be trained for classifying cat breeds, than
if its purpose is to recognize art styles.

1.3.3 Compression of Neural Networks

In recent years the architectures of neural networks
have been getting more and more complex, and with
the complexity the total number of parameters in-
creases. Studying the more recent neural networks
shows an almost exponential growth of both the pa-
rameters and the number of computations needed for
forward and backward propagation.

The introduction of using parallel algorithms and
using the supreme parallel computing powers of the
graphical processing units (GPUs) has made neural
networks feasible despite their size. Training a very
deep neural network can still take days, even with the
use of multiple GPUs, and the mere size can make it
impossible to deploy the trained network on systems
with limited hardware.

The interest for the topic of compressing neural
networks both in size and computational time for
both the training, storing, and deployment phase, has
been growing alongside the neural network size. How-
ever, most of the focus has been on the training phase,
while the focus in this master’s thesis will mostly be
on the deployment phase.

The authors of the paper Compressing Deep
Convolutional Networks using Vector Quantization

2

[Gong et al., 2014], have developed successful meth-
ods that according to them can compress a deep neu-
ral network up to 24ˆ, while only reducing the net-
work accuracy with 1%. In the paper they describe
different approaches for compression, including ma-
trix factorization and different vector quantization
approaches.

Another paper, mostly concerning offline com-
pression of neural networks, is Deep Compres-
sion: Compressing Deep Neural Network with Prun-
ing, Trained Quantization and Huffman Coding
[Han et al., 2015a]. This paper introduces three dif-
ferent approaches, which can be combined, resulting
in a 35ˆ and 49ˆ offline compression for AlexNet and
VGG-16 respectively.

While the previous paper is mostly focusing on
the offline compression of a neural network, another
article was also published [Han et al., 2015b], where
the focus is on the compression approach referred to
as pruning, which also can be used when the neu-
ral network is deployed. Optimal Brain Surgeon and
General Network Pruning [Hassibi et al., 1993] is an-
other, older, paper about pruning. In this paper the
authors explored the result of pruning weights based
on the second-order derivatives of the error function.

Another approach to neural network compression
is to not focus on the neural network structure, or
how the computations inside are handled, but instead
to target the data types that represent the neural
network. The usual data type that is used in neural
networks today is the single precision floating point
data type. This data type is represented by 32 bits,
or 4 bytes, in computer memory, and has a precision
of approximately 7 decimal digits.

The interesting thing with using a data type rep-
resented by less bits and with a lower precision for
neural networks is that it can affect the speed and
memory footprint for both phases of a neural network,
that is, both the training phase and the deployment
phase. In addition to this it also compresses the of-
fline storage needed.

In the article Improving the speed of neural net-
works on CPUs [Vanhoucke et al., 2011] a neural net-
work is implemented using fixed point data types, in-
stead of floating point. For instance a solution is pre-
sented where the author uses the data type unsigned
char for neuron activation values, and signed char for
weights.

There also exists other approaches where a much
more aggressive data type reduction has been made,
one example is the paper XNOR-Net: ImageNet Clas-
sification Using Binary Convolutional Neural Net-
works [Rastegari et al., 2016]. In this paper the au-
thors present two different types of neural networks,
one where the weights are represented as binary val-

ues, that is 0 or 1, and another solution where both
the weights and the inputs to layers are represented
in binary form.

In the article they structure the training phase ac-
cording to the binary format, and by doing so they
can keep a good accuracy, despite the low resolution
of the weights and inputs.

1.3.4 Data Augmentation

Neural networks require a large quantity of data when
training, in order to produce good results. Collecting
such large datasets is not always feasible, due to lack
of time or resources.

One way of getting around this issue is by ex-
panding smaller datasets, using different transfor-
mations or other kinds of processing. In ImageNet
Classification with Deep Convolutional Neural Net-
works [Krizhevsky et al., 2012], data augmentation is
described as a way of preventing overfitting. After
down-sampling all images, making the shortest side
256 pixels long, and cropping the center 256 ˆ 256
patch, two augmentation techniques were used to ex-
pand the training data. First, random crops of size
224 ˆ 224 were extracted from the 256 ˆ 256 center
crops of the original images. Both the crops and their
horizontally flipped counterparts were used for train-
ing, in total expanding the training set by a factor of
2048. When testing, five crops and their horizontal
reflections were fed through the network, and the av-
erage prediction used as final result. The crops were
extracted from the four corners of the image, and the
center.

The second approach used was principal compo-
nent analysis (PCA). Multiples of the principal com-
ponents were added to each image, changing the color
and intensity of images each time they where used for
training. This approach resulted in a top-1 error de-
crease of over 1% [Krizhevsky et al., 2012].

A similar method as the cropping above is de-
scribed in Return of the Devil in the Details: Delving
Deep into Convolutional Nets [Chatfield et al., 2014].
Five crops, and their horizontal reflections, were ex-
tracted from the corners and center of the training
images, expanding the training set 10ˆ. As opposed
to the above, Chatfield et al. only downsampled the
images before performing the augmentation, and so
used the entire image as a basis, instead of the center
crop. As a comparison, experiments were performed
with augmenting the training set solely by reflection,
expanding the set only 2ˆ. The first method resulted
in a mean average precision increase of around 3%,
while the second showed less improvement.

The recently published paper Do We Really Need
to Collect Millions of Faces for Effective Face Recog-
nition? [Masi et al., 2016], describes a way of synthe-

3

Embedded

Jetson TK1 Jetson TX1 High End

CPU
Name ARM R©Cortex-A15 ARM R©Cortex-A57 Intel R©Core i7-5820K

Architecture 32-bit 64-bit 64-bit

GPU

Architecture Kepler Maxwell Maxwell

CUDA Cores 192 256 3072

Memory Bandwidth 14.9 GB/s 25.6 GB/s 336.5 GB/s

GFLOPs (FP32) Peak 365 512 6144

GFLOPs (FP16) Peak 365 1024 -

Compute Capability* 3.2 5.3 5.2

Memory
RAM

2 GB (shared) 4 GB (shared)
32 GB

Graphics Memory 12 GB

Table 1.1: Hardware specifications. *measurement used by CUDA to divide hardware into groups based on
different performance metrics.

sizing training data for face recognition, by manipu-
lating the original dataset using different 3D models.
The goal was to increase the appearance variability,
by changing the pose, shape, and expression of the
faces. Training a model with the augmented set of
2,400,000 images increased the accuracy from 95.31%
to 98.06%, compared to a model trained on the orig-
inal 495,000 images.

1.4 Utilities

The interest in neural networks has in recent times led
to an increase in software and tools for studying and
working with these. Below the most relevant software
used in this master’s thesis will be described, as well
as the hardware used during development, and later
the neural network deployment.

1.4.1 Hardware

The different phases of the neural network algorithm,
and the different constraints these phases put on the
hardware, leads to a big variety in hardware require-
ments.

The four main hardware setups used in this mas-
ter’s thesis can be split into three different cate-
gories; embedded hardware, mid range, and high end.
Two of the four hardware setups are embedded sys-
tems with limited compute power, since the goal of
this master’s thesis was to deploy a neural network,
trained for facial recognition, on such systems.

The two embedded systems used are the NVIDIA
Tegra K1 and the NVIDIA Tegra X1. The Tegra
series is a system on chip solution from NVIDIA, de-
veloped to be used for smartphones and the like. The

deployment phase was always tested and evaluated
on these devices.

All development and corresponding testing was
done on mid range hardware, corresponding to a
workstation PC, with an NVIDIA GeForce GTX 950
graphics card. Since the training phase of neural
networks are the most time-, memory- and data-
consuming, a special high end computer was used for
the training phase.

The specifications for the embedded systems and
the high end setup can be seen in Table 1.1. Most of
the focus is on the different GPU’s of these systems,
and the corresponding graphical memory, since the
GPU does most of the calculations, while the CPU
acts more like a host. Since no performance evalua-
tion was carried out for the mid range hardware, it is
omitted from the table.

1.4.1.1 AXIS A8004-VE Network Video Door
Station

In the prototype developed for this master’s thesis,
described in Section 2.9, an AXIS A8004-VE Network
Video Door Station [Axis, 2015] is used to capture
video. The specifications of the camera can be found
in the referenced datasheet.

1.4.2 CUDA

Much of the software developed, and worked with,
during this master’s thesis included heavy computa-
tions. For that reason many of these computations
were executed on the GPU using CUDA, which is
a parallel computing platform and application pro-
gramming interface (API) developed by NVIDIA.

CUDA also includes libraries such as cuBLAS,
which is a CUDA implementation of the specification

4

Basic Linear Algebra Subprograms (BLAS), and cuS-
PARSE which is the counterpart of cuBLAS, but for
sparse matrices. These libraries are optimized, and
useful when working with neural networks, mostly be-
cause of the General Matrix Multiplication (GEMM)
sub routine which calculates

C “ α ¨ op1(A) ¨ op2(B)` β ¨C, (1.1)

where α and β are scalars, and opx(X) can be a non-
transpose operation, a transpose operation, or a con-
jugate transpose operation.

1.4.3 Caffe

Caffe is an open source framework for deep learning,
developed by the Berkeley Vision and Learning Cen-
ter (BVLC) [Jia et al., 2014]. The framework mainly
contains C++ code, but it includes bindings for both
Python and Matlab.

All the GPU acceleration code is written using
NVIDIA CUDA, and the corresponding CUDA li-
braries. There also exists an option to compile Caffe
in symbiosis with NVIDIAs deep neural network li-
brary called cuDNN. cuDNN is essentially a library
that has very optimized implementations for specific
parts of neural networks, and using cuDNN makes
some calculations included in the neural network ex-
tremely fast. The cuDNN version used in this mas-
ter’s thesis was 4.0.

1.4.3.1 Caffe Model Zoo

The BVLC provides what is called the Caffe Model
Zoo, where organizations and individuals can share
their trained neural network models. The Model Zoo
contains a variety of network architectures, trained
on a wide range of data.

5

2 Methodology

The neural network architecture chosen as a basis of
this thesis is the VGG-16 architecture, referred to
as architecture D in [Simonyan and Zisserman, 2014].
The reasons behind choosing VGG-16 are:

1. The network has been trained successfully for face
classification.

2. VGG-16 is a deep architecture, containing both
convolutional and fully connected layers, opening
up for different compression approaches.

3. An architecture specification compatible with
Caffe is publicly available.

4. A pre-trained version of the network is publicly
available.

In the following sections general information regard-
ing neural networks will be presented, along with
VGG-16 specifics. This theory will be the basis for
later sections where methods for neural network com-
pression and training a neural network for new data
are presented.

2.1 Neural Networks

In machine learning, an artificial neural network
refers to a model designed after an abstraction of bi-
ological neural networks. As a consequence of this,
the artificial neural network is capable of learning.

The smallest building block of an artificial neural
network is the neuron. The specific implementation
of the neuron varies between network architectures,
but the essentials are that a neuron takes some input,
and produces a corresponding output. A graphical
representation of a neuron can be seen in Figure 2.1.

Figure 2.1: A neuron, the smallest building block of
a neural network.

Neurons grouped together form a layer, and essen-
tially an artificial neural network is the composition
of multiple such layers. The actual application of the
layers depends on many parameters, such as inter-
mediate connections between the current layer and
the next. Assigned to each connection is a parameter
called weight, w, and each neuron is associated with
a bias, b. These are the parameters that are trained
to improve the behavior of the network.

A neural network has two main phases. The first
one is called the training phase, and the second is
called the test, or deployment, phase. Both of these
phases are mentioned in Section 1. First the training
phase is executed, where training data and the correct
labels for that data, are given as input to the neural
network. The neural network then produces an out-
put based on the input data, which is compared to
the label.

The error of the output is used as a basis for how
the parameters in the neural network should change,
such that the next time that same data is sent to the
neural network the error will be less, or preferably
non-existent. This procedure is often performed for
large sets of data, and is very time consuming.

The deployment phase includes taking a trained
neural network and using it on real data. In this
phase, no parameters of the neural network are
changed. An input is simply given to the network,
and the produced output is presented.

In connection to both these phases, something
called batch size is often mentioned. This simply
refers to the multitude of data with separate labels
that are given to the neural network. For instance, a
batch size of N for a neural network with images as
input, means that N images and N labels are passed
to the network at once.

The following sections will describe the above the-
ory more thoroughly.

2.1.1 Forward Propagation

Forward propagation is the process of sending input
from the first layer to the second, from the second to
the third, and so on, until the final output is given. A
neuron in one layer may be connected to all neurons
in the previous layer, or to a smaller section. The
output from neuron i in layer l can be written as

oli “ fapfpo
l´1qq, (2.1)

where ol´1 is a vector of all outputs from the previ-
ous layer connected to neuron i, f is a layer-specific
function, and fa is the so-called activation function.

The layer-specific function, f , is what specifies a
layer’s behavior. For example, in a convolutional
layer f includes convolutions of ol´1, where the
weights act as convolution kernels, and the biases are
added to the result.

The activation function, fa, introduces non-
linearity to the network, and thereby allows for more
complex models.

2.1.1.1 Activation Functions

There are three major activation functions mentioned
widely in the literature. The first one is the sigmoid

6

function. Historically, it has been used to a great
extent, but it has lost its appeal in recent years, par-
tially due to its output not being centered around
zero.

One of the functions replacing the sigmoid function
is tanh, which essentially is a rescaled version of the
sigmoid function, producing an output in the range
r´1, 1s instead of r0, 1s.

The second widely used function is called ReLU
(Rectified Linear Unit). The ReLU function only out-
puts values ě 0, as

fapxq “ maxp0, xq. (2.2)

One of the advantages of using the ReLU function is
that it can be implemented by simple thresholding,
making the calculations much simpler than those of
sigmoid and tanh.

Compared to sigmoid and tanh, the use of ReLU as
activation function also tends to result in faster learn-
ing [Krizhevsky et al., 2012]. The ReLU function is
used in both VGG-16 and AlexNet.

2.1.2 Back Propagation

The back propagation is the part of training where
the actual learning happens. After the forward prop-
agation is done, a loss function (sometimes referred
to as cost function) is applied to the output from the
last layer in the network. The loss function depends
on the weights and biases of the network, and mea-
sures how bad the network performs, by comparing
the expected output to the actual output.

The goal of the training is to minimize this metric.
An example of a loss function is the softmax loss.

2.1.2.1 Softmax Loss

In VGG-16, and many other CNNs, the loss function
used is softmax. Given an input matrix X of dimen-
sion N ˆK, N being the batch size and K the num-
ber of identities (class labels, outputs), the softmax
function is first applied to each sample in the batch.
The softmax function transforms its input values to
real values in the range p0, 1q, such that the sum is
equal to 1. For element Xn,k, the softmax function is
defined as

σpXn,kq “
eXn,k

řK
j“1 e

xn,j

. (2.3)

Next, the loss is calculated as

L “ ´
1

N

N
ÿ

n“1

log

˜

eXn,l

řK
j“1 e

Xn,j

¸

, (2.4)

where Xn,l is the output corresponding to the correct
identity.

2.1.2.2 Stochastic Gradient Descent

Stochastic gradient descent (SGD) is an approach to
minimizing the loss function. Normal gradient de-
scent works by updating the weights and the biases
by a linear combination of the previous update and
the negative average gradient of the weights or biases.
The updating rule for weights at iteration t ` 1 can
be written as

vt`1 “ αvt ` η∇Lpwtq,

wt`1 “ wt ` vt`1

(2.5)

and similarly for biases. vt`1 is the update value for
weights wt`1, and ∇Lpwtq is the negative average
gradient. α is a parameter called momentum, which
controls how much the previous update value should
affect the current. The learning rate, η, in turn con-
trols the effect of the gradient.

The idea behind SGD is the same as for gradient
descent, except that the gradient is calculated only
for a random sub-sample (a batch), and the average
is used as an approximation of the total average. By
doing so, lots of costly calculations are saved, thereby
speeding up the learning. However, a drawback of
this method is that if the sub-sample is too small,
the sub-sample average will not be a good enough
estimate, causing fluctuation in the algorithm.

2.1.3 Layer Types

The two major layer types used when constructing
CNNs are convolutional layers and fully connected
layers. In Caffe, and other deep learning frameworks,
other types of building blocks, such as pooling, are
also referred to as layers. The difference between
those and the two mentioned above is in essence two
properties.

The first is that out of all the used layers, only the
convolutional and fully connected layer have neurons,
and therefor parameters like weights and biases. The
second property, closely related to the previous prop-
erty, is that only the parameters of the convolutional
layers and the fully connected layers change during
training – those are the layers that actually learn.

Since the deployed network in this master thesis is
VGG-16, only layers relevant to that architecture will
be presented and described below.

2.1.3.1 Fully Connected Layer

A fully connected layer connects all its neurons with
every neuron in the previous layer. Both input and
output are regarded as one-dimensional vectors. Fig-
ure 2.2 depicts a fully connected layer with three in-
put neurons, and two output neurons.

7

The output, o1, for a neuron in a fully connected
layer is calculated as

o1 “ fa

´

n
ÿ

j“1

pwjojq ` b
¯

, (2.6)

where oi is the output from the output neuron i, wi

is the weight between input neuron i and the output
neuron, b is the bias for the output neuron, n is the
number of input neurons, and fa is the activation
function for the output neuron.

Figure 2.2: A fully connected layer, where every input
neuron is connected to every output neuron.

Equation 2.6 can be rewritten as

o1i “ fa

´

n
ÿ

j“1

pwi,jojq ` bi

¯

1 ď i ď m, (2.7)

to include the calculations for all m output neurons.
This form of the equation enables the output calcula-
tions for a fully connected layer to be represented as
the following matrix multiplication

»

—

—

—

—

–

o11
o12
...

o1m

fi

ffi

ffi

ffi

ffi

fl

“ fa

¨

˚

˚

˚

˚

˝

»

—

—

—

—

–

w1,1 ¨ ¨ ¨ w1,n

w2,1 ¨ ¨ ¨ w2,n

...
. . .

...

wm,1 ¨ ¨ ¨ wm,n

fi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

–

o1

o2
...

on

fi

ffi

ffi

ffi

ffi

fl

`

»

—

—

—

—

–

b1

b2
...

bm

fi

ffi

ffi

ffi

ffi

fl

˛

‹

‹

‹

‹

‚

.

(2.8)
Implementing the fully connected layers as in Equa-
tion 2.8 makes it possible to implement the forward
propagation for such a layer with cuBLAS, and more
specifically the GEMM function seen in Equation 1.1.

2.1.3.2 Convolutional Layer

For those neural networks whose training data con-
sists of images, convolutional layers are very impor-
tant building blocks. The structure of a convolutional

layer differs a lot from the simple structure of a fully
connected layer.

The first thing that differs is that both the input
and output of a fully connected layer is often referred
to as m ˆ 1 vectors. In convolutional layers both
the input and output are of higher dimension, and
are often referred to as three dimensional matrices,
m ˆ n ˆ c, where c is the number of channels, m is
the rows, and n is the columns.

Convolutional layers are built around something re-
ferred to as local connectivity. As opposed to fully
connected layers, where every input neuron is con-
nected to every output neuron, the output neurons
of a convolutional layer are only connected to some
of the input neurons. One purpose of having local
connectivity is to make the neural network robust to
the spatial structure of images.

The weights are defined as K three dimensional
matrices, mf ˆ nf ˆ c, often called filters. Each out-
put neuron has a group of input neurons associated
with it, which are referred to as that output neu-
ron’s receptive field. The neurons in the receptive
field are convolved with all filters, producing the pre-
activation function output of the neuron. This pro-
cedure is done for all output neurons, finally creating
the full pre-activation output of the layer.

The number of output neurons of a convolutional
layer depends on four hyper parameters. The first
one is called depth. This parameter essentially de-
fines how many output neurons that are connected
to the same receptive field, and is the same as the
number of filters. The next two parameters are hor-
izontal stride, sw, and vertical stride, sh. These
parameters define how close intermediate receptive
fields are, horizontally and vertically. The last param-
eter is called zero-padding, and defines how many
zeros should be added to the borders of the input.
An illustration of a convolutional layer can be seen in
Figure 2.3.

Figure 2.3: An illustration of a convolutional layer.

8

Just like the fully connected layers, the convolu-
tional layers can be reshaped so that they are ex-
pressed as matrix multiplications, implemented with
GEMM. The procedure is not as straight forward as
for the fully connected layers, and is often used in
order to optimize the speed of convolutional layers.
This approach is not implemented in all deep learn-
ing frameworks, and is in this case specific for Caffe,
without utilizing the cuDNN library, although a simi-
lar approach is used in cuDNN [Chetlur et al., 2014].

Given an input of size mˆ nˆ c that is to be con-
volved with K filters of size mf ˆnf ˆ c with a stride
of sw and sh, the first step is to represent the three
dimensional input in two dimensions. This is done by
splitting the input into M three-dimensional blocks,
which are of the same size as the filters. Each block is
then stretched out into a vector of size 1ˆmfnfc, us-
ing a technique often referred to as image to column
(im2col). The resulting input is now a M ˆ mfnfc
matrix.

The number of so called blocks, or M , depends on
the previously mentioned parameters vertical stride,
sh, horizontal stride, sw, and zero padding, p, and
can be calculated as

M “Mw ¨Mh “ (2.9)

“

´

pn` 2 ¨ pq ´ nf
sw

` 1
¯

¨

´

pm` 2 ¨ pq ´mf

sh
` 1

¯

.

If the stride in any direction is less than the corre-
sponding filter size, this will lead to input data being
duplicated, which eventually makes this technique a
trade off, where speed is won at the cost of memory,
thanks to the optimized implementations of matrix
multiplication.

The filters are represented in a similar fashion. Ev-
ery filter is streched out into a vector of size mfnfcˆ1
with im2col. These vectors combined form a matrix
of size mfnfcˆK, which is the resulting weight ten-
sor of the layer. The forward propagation can then
be expressed as

O “ B ¨ F “ (2.10)
»

—

—

—

—

–

b11 ¨ ¨ ¨ b1mfnf c

b21 ¨ ¨ ¨ b2mfnf c

...
. . .

...

bM1 ¨ ¨ ¨ bMmfnf c

fi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

–

f11 ¨ ¨ ¨ fK1
f12 ¨ ¨ ¨ fK2
...

. . .
...

f1mfnf c
¨ ¨ ¨ fKmfnf c

fi

ffi

ffi

ffi

ffi

fl

(2.11)
where bij is element j in the im2col reshaped block i,

and fkl is element l in the im2col reshaped filter k.
The resulting matrix O is reshaped back to the

dimension MhˆMwˆK, before the biases are added.
The activation function is then applied, producing the
final layer output.

2.1.4 Max-Pooling

Max-pooling is a form of down-sampling, and is often
used between a set of convolutional layers to reduce
the amount of parameters.

The max-pooling is performed separately for each
channel. Each output value corresponds to the max-
imum value of a kw ˆ kh grid of input values. The
size of the output depends both on the grid size, kw
and kh, and the stride, sw and sh. The stride is a
measure of the distance between adjacent grids.

Figure 2.4: Illustration of input (left) and output
(right) of the max-pooling function, with kw “ kh “ 2
and sw “ sh “ 2.

2.1.5 Overfitting

A risk when training neural networks is that they
might get overfitted. Overfitting (or overtraining) is
the term used when the network no longer learns gen-
eral features, but instead focuses more and more on
features specific to the training set. This means that
although the model fits the training data very well, it
does not generalize to other data. There are several
methods of preventing this from happening, two of
which are described below.

2.1.5.1 Dropout

One technique for reducing overfitting of a network
is called dropout. Neurons are randomly – but with
a pre-defined probability, called dropout rate – tem-
porarily deleted. This forces the remaining neurons
not to rely too much on the missing ones, and thus
making the network more robust. In each batch, a
different set of neurons are deleted.

2.1.5.2 L2 Regularization

Another method of reducing overfitting is L2 regu-
larization (also called weight decay), which adds a
regularization term to the loss function

L “ L0 `
λ

2N

ÿ

w

w2, (2.12)

where L0 is the original loss function, and the regular-
ization term is the sum of the squared weights, scaled
by a regularization parameter, λ, over two times the
batch size, N .

9

Adding the regularization term to the loss function
leads to smaller weights being preferred over larger
ones. This in turn reduces overfitting of the model.

2.2 VGG16

The base neural network architecture used in this the-
sis is VGG-16, as described in [Parkhi et al., 2015].
The network contains 13 convolutional layers and
three fully connected layers. An illustration of the
architecture is shown in Figure 2.5. Different col-
ors correspond to different layer types, and for each
layer in the network the layer name and output size
is listed.

In both dropout layers, a dropout rate of 0.5 is
used.

All convolutional layers in VGG-16 share the same
kernel height and width, mf “ nf “ 3, the same
stride, sw “ sh “ 1, and the same zero padding,
pw “ ph “ 1.

The pooling layers also share the same format, with
a grid size of 2ˆ 2, and a stride of sw “ sh “ 2.

The activation function used in VGG-16 is the
ReLU function shown in Equation 2.2, and the loss
function used is the softmax loss, as shown in Equa-
tion 2.4.

2.2.1 VGG Face

The Oxford Visual Geometry Group (VGG) provides,
via the Caffe Model Zoo, a trained model of the VGG-
16 network, called VGG Face [Parkhi et al., 2016].
VGG Face is trained to classify 2,622 identities, and
has been trained on 2,6 million face images. The
dataset used for training is described in more detail
in Section 2.6.2.

η α λ rd batch size

0.01 0.9 0.0005 0.5 64

Table 2.1: Values of the learning rate (η), momentum
(α), regularization parameter (λ), dropout rate (rd),
and batch size in VGG Face.

During the training of VGG Face, the risk of over-
fitting was reduced by using both dropout and L2 reg-
ularization. Dropout was performed before the last
two fully connected layers, using a dropout rate of
0.5. For the L2 regularization, λ “ 5 ¨ 10´4 was used
as regularization parameter.

Table 2.1 shows all hyper-parameter values used.
Twice during the training, when the accuracy stopped
increasing, the learning rate shown in Table 2.1 was
decreased by a factor of 10 [Parkhi et al., 2016].

Figure 2.5: Illustration of the VGG-16 architecture.
In the two bottom-most layers, K refers to the number
of labels.

10

2.3 Transfer Learning

Having limited time and hardware, training a CNN
from scratch was not an option for this Master’s The-
sis. Instead, features were transferred from the pre-
trained VGG Face model, and only the last layers of
the target model were trained.

In order to decide which layers to transfer, the dif-
ferent layers of VGG Face were analyzed. As dis-
cussed in Section 1.3.2, the first layers of CNNs con-
tain the more simple, general features. Looking at
Figure 2.6, visualizing the weights of the first convo-
lutional layer in VGG Face, one can reach the con-
clusion that these filters react to simple corners and
edges, supporting the previous claim.

Figure 2.6: Illustration of the weights in the first con-
volutional layer of VGG Face.

In Figure 2.7, illustrating some of the outputs from
the convolutional layers, it can be seen that the out-
put gets more and more abstract the further into the
network the layer is placed.

Intuitively, the majority of layers in VGG Face can
be kept as-is, since the model has been trained with
the purpose of classifying identities (and that ambi-
tion remains). However, since the last fully connected
layer of VGG Face contains 2,622 outputs, each corre-
sponding to one identity, that layer has to be adjusted
in size and retrained to fit the new identities. A de-
cision was made to use the weights from all convolu-
tional layers of VGG Face as is. Three main training
setups were explored:

Freezing the first two fully connected layers, fc6 and
fc7, as well, training only the last layer, fc8, ini-
tialized with a Gaussian distribution with mean
µ “ 0 and standard deviation σ “ 0.01.

Fine-tuning the first two fully connected layers, fc6
and fc7, with a low learning rate, and training
fc8 from scratch, initialized with a Gaussian dis-
tribution with µ “ 0 and σ “ 0.01.

Figure 2.7: A visualization for (some of) the output
from the convolutional layers of VGG Face. Each row
of images corresponds to one layer.

11

Training all fully connected layers from scratch, ini-
tialized with a Gaussian distribution with µ “ 0
and σ “ 0.01.

The models trained using the above configurations
will be referred to as the frozen model, the fine-tuned
model, and the fc trained model, respectively.

2.4 Preprocessing

Before feeding input to neural networks, some pro-
cessing is often performed on the data. When it comes
to images, the preprocessing generally involves resiz-
ing and mean-subtraction.

The layers in neural networks are designed to re-
ceive data of a certain size, which is why image resiz-
ing is often required. VGG-16 accepts RGB images of
size 224ˆ224, so when creating the datasets used for
training and testing, resizing is performed on images
whose sizes differ from 224ˆ 224.

The reason for performing mean-subtraction is to
(on average) center the pixel values around zero, by
subtracting the mean of all training images.

There are two ways of generating the image mean;
channel-wise, and pixel-wise. For the channel-wise
mean, the mean of each channel across all images is
calculated. In this case, the mean consists of (in the
case of three-channel images) only three values, lead-
ing to the same value being subtracted from all pixels
in a channel. The pixel-wise mean however is calcu-
lated separately for each pixel and channel. Figure
2.8 shows examples of both channel-wise mean and
pixel-wise mean.

Figure 2.8: Channel-wise mean (left) used in VGG
Face, and pixel-wise mean (right) of the curated com-
binatory dataset described in Section 2.6.

During transfer learning, it is not apparent whether
the mean of the original training data or the new
training data should be used. Since the original
dataset is often larger, it can be argued that it is ad-
vantageous to use its mean. On the other hand, since
the network is trained to fit new data, it seems reason-
able that the mean being subtracted should originate
from the new data. Since no evidence was found that
one approach is better than the other, it was decided

that a pixel-wise mean would be calculated from the
dataset currently used for training.

2.5 Compressing Neural Networks

When it comes to deep learning, and neural networks,
the term compression can refer to different variables.
Below some of these are specified and described.

Number of parameters for the network. This in-
cludes all the weights and biases, and is closely
related to both the offline storage, and the mem-
ory footprint.

Offline storage refers to the actual storage needed
to represent the parameters of the neural net-
work when saved on the hard drive. For this
master’s thesis all trained neural networks are
stored in a binary file format.

Memory footprint is the memory needed when the
neural network is deployed, and running. Both
the main memory (RAM) and the graphics mem-
ory are included in this variable.

Floating point operations is the number of oper-
ations concerning floating point numbers that
are executed during different phases of the neural
network. For this master’s thesis all additions,
subtractions and multiplications involving float-
ing point numbers are counted as one floating
point operation each.

Time complexity refers to the run time of different
phases of the neural network. The time complex-
ity is related to both the memory footprint and
the number of floating point operations. In this
master’s thesis the time complexity will be pre-
sented as real time, as opposed to using the big
O notation (O).

All these variables are of concern when working
with neural networks, especially on embedded sys-
tems. The different ways that the layers are struc-
tured makes them susceptible to different compres-
sion algorithms.

An analysis of the VGG-16 network during infer-
ence shows that the different layers are very differ-
ent when it comes to affecting the different variables.
As can be seen in Figure 2.9a and 2.9b most of the
parameters, around 90%, of the VGG-16 architecture
are located in the fully connected layers, while around
99% of the floating point operations are executed in
the convolutional layers.

This is a pattern that can be seen in many of the
popular deep neural network architectures. From this
a conclusion can be drawn that for compressing the

12

(a) Parameter, both weights and bi-
ases, distribution between the lay-
ers.

(b) Floating point operation distri-
bution between the layers.

(c) Inference time distribution be-
tween the layers.

Figure 2.9: Illustration of how the 148 million parameters (a), 30.9 billion floating point operations (b), and the
time (c), are distributed among the different layers of the fine tuned VGG-16 architecture. Both the number of
floating point operations and the time are for one inference, using a batch size of one. (Best viewed in color)

number of floating point operations of a neural net-
work, one should focus on the convolutional layers.
On the other hand, for compressing the number of
parameters, and eventually the memory needed for
both storing and deploying the model, one should fo-
cus on the fully connected layers.

The time distribution between the layers for one
inference, which can be seen in Figure 2.9c, is more
evenly spread, and is a combination of both parame-
ters, because of the overhead of memory transfer, and
floating point operations.

2.5.1 Floating Point Precision Reduction

Section 1.3.3 mentions previous attempts to increase
the speed, and decrease the memory, of a neural net-
work by representing the parameters in the network
with small data types, instead of the common 32 bit
floating point data type.

Instead of using integers, or single bits, to represent
the parameters in the neural network, another data
type is used in this master’s thesis, namely the data
type called half.

The floating point data type used for the exper-
iments conducted in this thesis are defined by the
IEEE Standard for Floating-Point Arithmetic (IEEE
754). This standard specifies a float as one bit defin-
ing the sign, 8 bits defining the exponent, and 24 bits
(23 explicitly stored) defining the significand preci-
sion. The format is illustrated in Figure 2.10a.

In general, calculating the decimal value given a

float in bits is done as per the following equation

value10 “ p´1qb31 ¨2e´127 ¨

´

1`
23
ÿ

i“1

b23´i2
´i
¯

, (2.13)

where e is the decimal value of the bits b23 - b30.
The data type called half, also using the IEEE 754

definition, is represented by one bit defining the sign,
5 bits defining the exponent, and 11 bits (10 explicitly
stored) defining the significand precision. The equiv-
alent of Equation 2.13, but for the data type half is

value10 “ p´1qb15 ¨ 2e´15 ¨

´

1`
10
ÿ

i“1

b10´i2
´i
¯

. (2.14)

From the previous equations and Figure 2.10 it can
be concluded that some precision will be lost using
the half data type instead of float.

In theory, changing to a data type represented by
half as many bits as the original data type, might im-
ply double the computation speed, and half the mem-
ory consumption. In practice however, when working
with such basic arithmetic types, the improvements
depend on the hardware support and data type im-
plementation.

Out of the different hardware setups featured in
Section 1.4.1, only the GPU architecture used in the
Tegra X1 can fully utilize the power of using the half
data type for computations [NVIDIA, 2015].

It is still possible to work with the half type on
the other hardware setups, the data will be stored
as half precision floating points numbers, and even

13

(a) 32bit single-precision data format.

(b) 16bit half-precision data format.

(c) 32bit half2 vector representation.

Figure 2.10: Images illustrating the different floating
point data formats, where Figure (a) is the original
float format, (b) is the half format, and (c) is the
vector format for two halfs, also referred to as half2.

transferred to the GPU as such, which will of course
impact the bottleneck of the bandwidth, but when
the computations are executed the halfs will be trans-
formed into 32 bits and operated on as such.

The difference for the Tegra X1 system is that it
supports computations with the half type by storing
two halfs in a half2 vector as seen in Figure 2.10c, and
sending that vector to a dedicated 32 bit CUDA core
for calculations. This does however only work when
the operations are the same for both the halfs.

For the experiments in this master’s thesis concern-
ing FP16, all training, and the following offline stor-
ing was done using 32 bit floats. Later during the
deployment phase, specifically for the Tegra X1, the
floats were converted into halfs.

2.5.2 Pruning

In Section 1.3.3 two published papers, with different
approaches to pruning were presented. The actual
idea of neural network pruning is related to biologi-
cal neural networks, much like the whole concept of
neural networks, where the number of synapses in the
human brain increases at an early age, and later de-
creases to finally converge [Walsh, 2013].

The first thing done when exploring the actual im-
plementation of pruning, was to split the problem
into two separate sub problems; the first being to
find which weights should be pruned, and the second
being how to represent the weight tensor after the
pruning had been performed.

2.5.2.1 Selection of Weights to Prune

The basic idea is that the output of a neuron in the
previous layer, multiplied with a weight that has a
value of zero, will not have any impact on the corre-
sponding neuron in the current layer, and the weight
can therefor be seen as a dead weight, and can be
safely removed. However, it is very unlikely that a
trained neural network will have any dead weights.

Instead dead weights are defined depending on
other premises, and can vary for different pruning
approaches. For instance, a weight and neuron prod-
uct will have less of an impact on the neuron in the
next layer the closer the weight is to zero. The same
pattern can be applied to weights in relation to the
other weights in that layer. The weights might not
be distributed around zero, but around an arbitrary
number.

In accordance with the previous statements, three
different pruning approaches are explored. The first
one takes no regards to different weight distributions
in the layer, the second one prunes weights relative
to the full layer weight distribution, and the last one
prunes weights in regard to weight distribution for
individual neurons.

In the definition of all these approaches a pruning
parameter, γ, is introduced, and the weight matrix
will be denoted as W. Following this notation and
Equation 2.8 for fully connected layers, means that
Wij is the weight from neuron j in the previous layer,
to neuron i in the current.

For convolutional layers W represents the matrix
F in Equation 2.10. This means that Wij will be
element i in the im2col reshaped filter j.

The first approach simply follows the theory that
the closer to zero a weight value is, the less of an
impact it has, and can therefor be removed. This can
be written as

Wij “

#

0, if |Wij | ď γ

Wij , otherwise
, (2.15)

which will in fact remove the weights that affect the
next layer, and in theory the end accuracy, the least.

The second approach involves pruning the weights
that affect the next layer the least, in relation to the
distribution of the weights, as follows

Wij “

#

0, if |Wij | ď γ ¨ σpWq ` µpWq

Wij , otherwise
,

(2.16)
where σpWq is the standard deviation of the weight
matrix W, and µpWq is the mean of W.

The last approach differs between the fully con-
nected layer and the convolutional layers. In the case
of fully connected layers it is similar to the previous

14

0.04 0.03 0.02 0.01 0.00 0.01 0.02 0.03 0.04
Weight value

0

500000

1000000

1500000

2000000

Nu
m

be
r o

f o
cc

ur
en

ce
s Weight Distribution

fc6
fc7
fc8

Figure 2.11: Weight distribution for the different layers in the VGG Face.

approach, and can be written as

Wij “

#

0, if |Wij | ď γ ¨ σpWiq ` µpWiq

Wij , otherwise
.

(2.17)
In this equation σpWiq is the standard deviation of
row i in W, which essentially means the standard
deviation of all the weights from the previous layer to
neuron i in the current, and the same applies to µ.

For convolutional layers the threshold is based on
the standard deviation and mean of each output neu-
ron’s receptive field. Using the matrix representation
in Equation 2.10 then results in the following equa-
tion

Wij “

#

0, if |Wij | ď γ ¨ σpWjq ` µpWjq

Wij , otherwise
.

(2.18)
Figure 2.11 illustrates the weight distribution for

the fully connected layers in the original VGG Face
model. As can be seen the weights for both fc6 and
fc7 are distributed around zero. For fc8 however, the
weight distribution has a slight offset, and is instead
centered around 0.003.

After a neural network has been pruned, it can be
retrained. This is often done to tune the parameters
that are left, making them compensate for the weights
that were removed. There are mainly two approaches
to training a pruned network.

The first one is to simply prune the network once,
quite aggressively, and then retrain it. The other way
is referred to as iterative pruning. As the name im-
plies, a second training phase is added. The pruning
is then executed iteratively during the second training
phase, using a smaller pruning parameter.

For this master’s thesis only the first approach of
retraining was explored. The retraining for layers was
implemented by representing the pruned weight ten-
sor, W, as a dense matrix were all the pruned weights
had a value of 0.0. When updating the weights during

back propagation, only the un-pruned weights were
updated.

Implementing the training of pruned layers in this
way does not lead to any compression during the
training phase, but rather the opposite. In the next
section a weight representation after pruning will be
presented, that does compress the neural network
during deployment.

2.5.2.2 Weight Representation After Pruning

Recall from Equations 2.8 and 2.10 that the forward
propagation of a fully connected layer, as well as a
convolutional layer, can be written as a matrix mul-
tiplication. This is also the case for when the layers
have been pruned, the only difference being that the
previously dense matrix W now contains multiple ze-
ros, also referred to as dead weights.

As with pruning, there exists different approaches
for representing the weight matrix post-pruning. Sec-
tion 1.3.3 mentions articles concerning this topic. Im-
plementing pruning featuring a weight matrix mask
has been briefly explored for this master’s thesis.
However, since the main objective of the pruning was
reducing the memory footprint of the neural network,
both offline and when deployed, and secondly improv-
ing computation speed, masking was not a suitable
alternative.

The chosen implementation instead features the
use of sparse matrices, and more specifically the com-
pressed sparse row (CSR) formatted sparse matrix. A
sparse matrix, A, in this format is represented by one
vector, Aval, containing the non-zero values, another
vector, Arow, where the first element is zero and the
exceeding elements are the accumulated number of
non zero values per row, and a third vector, Acol,
containing the column indices of the non-zero matrix
elements.

15

The following mˆn sparse matrix in dense format

A “

»

—

—

—

–

a 0.0 0.0 b 0.0

c 0.0 d 0.0 0.0

0.0 e f 0.0 g

h 0.0 0.0 i 0.0

fi

ffi

ffi

ffi

fl

, (2.19)

where m “ 4 and n “ 5, will therefor in CSR format,
using zero-based indexing, be represented as the three
vectors

Aval “

”

a b c d e f g h i
ı

, (2.20)

Arow “

”

0 2 4 7 9
ı

, (2.21)

Acol “

”

0 3 0 2 1 2 4 0 3
ı

. (2.22)

Both the vectors Aval and Acol will always have a size
equal to the number of non-zero elements in matrix
A, while Arow will have m` 1 elements.

The overhead, both time and memory related, of
using sparse matrices is quite noticeable, especially
when working with unstructured sparse matrices, as
in the case of pruning.

A constraint on the pruning is added as a conse-
quence of the sparse matrix overhead. A minimum
number, α, of weights need to be pruned in order for
the pruning to actually have a positive effect on the
memory footprint and execution speed of the neural
network.

The experiments in this Master’s thesis were con-
ducted using 32 bit integers for the values in Arow and
Acol, and all floating point numbers are represented
in single precision for pruned layers. This means that

α ą
m ¨ n

2
´ pm` 1q, (2.23)

where α is the number of weights pruned, m and n
are the number of weight matrix rows and columns
correspondingly, needs to be true for the pruning to
decrease the memory footprint.

Calculating the least number of weights that need
to be pruned for a speed increase is a little more com-
plicated, since it depends on more parameters. The
speed increase does however correlate to the memory
decrease, since it is very time consuming in GPU pro-
gramming to read data from global memory. Figure
2.12 illustrates the overhead for both memory and
speed.

The data for Figure 2.12 was collected by doing
multiple sparse matrix and vector multiplications,
with a varying number of elements zeroed, and com-
paring the time and memory footprint with a dense
matrix and vector multiplication. As can be seen in
the figure, the time correlates to the memory, and the

0 10 20 30 40 50 60 70 80 90
Zeroed Elements (%)

0

50

100

150

200

250

%
 C

om
pa

re
d

to
 D

en
se

 M
at

rix

Sparse Matrix Overhead
Time
Memory

Figure 2.12: Illustration of the CSR overhead. The
graph shows the computation time and memory foot-
print of a sparse matrix and vector multiplication in
relation to a dense matrix and vector multiplication.

overhead makes anything above 50 % zeroes infeasi-
ble.

The pruned weight matrix can also be represented
in CSR format when storing the model offline, and
this approach can therefor also lower the offline mem-
ory needed for the model.

To conclude, using the sparse matrix approach and
one of the pruning approaches mentioned in Equa-
tions 2.15, 2.16, and 2.17, given that a little more
than 50 % of the weights in a layer can be pruned, a
decrease in both time and memory for the deployed
neural network can be achieved.

2.6 Datasets

The quality of neural networks greatly depends on
the data they are trained on. One of the easiest (and
in some ways also the hardest) ways of improving the
performance of a neural network is to train it on large
quantities of data, with large amounts of samples per
class.

The reason for it being mentioned as an easy way
of improving the performance is that no parameters
need to be manually tweaked, the only thing that is
done is adding more data. However, collecting this
data can be extremely time-consuming.

As collection of large datasets is out of the scope
for this thesis, pre-existing sources of data were relied
upon. All datasets used consisted of images in so
called uncontrolled settings.

During the transfer learning described in Section
2.3, and the other experiments, different combina-
tions of the following datasets where used. Infor-

16

Name Datasets Identities Images

combinatory VGG, FaceScrub*, Additional 2,968 2,287,022

curated combinatory VGG curated, FaceScrub*, Additional 2904 908,041

extended FaceScrub FaceScrub, Additional 346 77,523

Table 2.2: Different dataset combinations used during training. *only identities that do not overlap those of
VGG Face.

mation regarding the different combinations can be
found in Table 2.2.

2.6.1 Labeled Faces In The Wild

Labeled Faces in the Wild (LFW) is a dataset widely
used for training and testing face verification algo-
rithms. It contains images of people in so-called un-
controlled settings, meaning that variables such as
light, pose, and expression differ among the images
[Huang et al., 2007]. In the dataset 1,680 identities
have two or more images associated with them, but
only 12 identities contain more than 50 images. In
this sense, the dataset is not optimal when training a
neural network for face recognition.

2.6.2 Oxford VGG Face Dataset

The dataset used for training the VGG Face model
described in Section 2.2.1 was collected from the in-
ternet, using a face detector, and filtered both auto-
matically and manually. The dataset contains 2,622
identities, with 1,000 images per identity, making a
total of 2,622,000 images.

The images are collected from multiple sources, and
vary in both quality and content. The dataset can
therefor, like LFW, be viewed as a collection of images
captured in uncontrolled settings.

Wishing to perform transfer learning of VGG Face
on this dataset, in addition to others, the dataset
needed to be obtained. A file containing links to all
images, along with coordinates from a face detector,
were used to download and crop the images. However,
a large amount of the links were broken, resulting
in less images than the original dataset. In total,
2,209,218 images were downloaded, belonging to the
2,622 identities, with an average of 843 images per
identity.

In addition to the problem with the broken links,
it appears that the coordinates from the face detec-
tor were not always correct. Also, in some cases an
image supposed to depict one person clearly depicts
someone else. It is not known whether the last two
issues are due to the images having been replaced on
the web since downloaded by the Visual Geometry

Group, or if all these ’faulty’ images were actually
used in training.

A subset of the links were marked as ’curated’ by
the Visual Geometry Group. For this curated subset,
additional effort was put into manual filtering, mak-
ing it approximately 95% pure. The downloaded part
of the curated set contained 651,423 images, depicting
2,558 identities.

When the VGG Face model was originally trained,
both the curated and the non-curated datasets
were used. Surprisingly, the non-curated training
set produced better results than the curated one
[Parkhi et al., 2015]. The authors claim two reasons
for this; that a larger dataset is preferable over a
smaller one, even if it contains more noise, and that
good images are removed along with the bad during
curation, reducing the number of pure training im-
ages.

2.6.3 FaceScrub

The FaceScrub dataset has over time been adjusted,
and in its current form it comprises of 106,863 images
for a total of 530 identities. 265 of those identities
are men, with a total of 55,306 images, while 265 are
women with a total of 51,557 images.

The dataset was collected through crawling the
internet, and using a data-driven approach to
clean the enormous amount of downloaded images
[Ng and Winkler, 2014].

For this thesis, only part of the FaceScrub dataset
was acquired, with a total of 77,323 images and 529
identities. Out of these identities, 343 overlap the
identities in the VGG Face dataset. When the two
sets were combined for use in training, only the non-
overlapping identities from FaceScrub were used.

2.6.4 Additional Dataset

Following the procedures in Section 2.7, a dataset of
Axis employees was collected. When conducting the
experiments described in this thesis, the dataset con-
tained only three identities, and a total of 481 face
images.

Later, when the final model was trained, solely for
the purpose of the demo, five more identities, and 316

17

images, had been added to the set.

2.7 Dataset Collection

In the interest of fully showcasing the demo described
in Section 2.9, a dataset of Axis employee faces was
collected. As a first step, the authors collected 100
preexisting photos of themselves. Next, the employ-
ees of the department, and all thesis workers at Axis,
were asked to contribute with 50 images each.

The images were cropped according to the bound-
ing boxes found by the face detector described in Sec-
tion 2.9.2.2, and added to the dataset used for fine-
tuning VGG Face.

2.8 Data Analysis

Collecting training data is often a long and tedious
process, and it can be challenging to get a hold of the
data. For this reason, it is of interest to learn how
much data is required to train a neural network, so
that it results in a well performing model. However,
there is no gold standard for how much data is needed.
Not only is it affected by the quality of the data, but
it varies from one network to another.

2.8.1 Data Quantity and Augmentation

With the purpose of investigating how many images
per identity are needed in order to fine-tune the VGG
Face model such that it produces an acceptable accu-
racy, experiments were performed.

The dataset used consisted of 454 identities, from
both FaceScrub and the additional dataset, which all
contained 100 images per identity or more. The test
set consisted of 20 images from each identity, all se-
lected randomly. The size of the training sets varied,
from 5 images per identity to 80. First, 80 images
from each identity were selected randomly for train-
ing, and the smaller training sets were all subsets of
these.

As discussed in Section 1.3.4, data augmentation
can be used to improve the performance of neural
networks, by artificially expanding the training data,
as well as to reduce overfitting.

As a way of extending the experiment, all image
sets were augmented, expanding each set by 500%.
Each image was augmented using five different tech-
niques:

Adding Gaussian noise to the image. The noise
consists of random values from a Gaussian dis-
tribution, with mean µ “ 0 and standard devi-
ation σ “ 80, constrained to the value range of
the original image.

no
i na

i iter./image iter. total

5 0 60 13620

5 25 10 13620

10 0 60 27240

10 50 10 27240

20 0 60 54480

20 100 10 54480

40 0 60 108960

40 200 10 108960

80 0 60 217920

80 400 10 217920

Table 2.4: Training setups used for the data quantity
experiments in Section 2.8.1. noi refers to the num-
ber of original images per identity, and nai refers to
the number of additional images used per identity,
produced by augmentation. Iter. refers to training
iterations.

Adding Gaussian blur to the image, with a kernel
size of kw “ kh “ 3, and standard deviation
σ “ 0.8.

Adding salt and pepper noise to the image. A
matrix of the same size as the input image, con-
taining uniformly distributed random numbers
in the range r0, 255q is generated. At the posi-
tions where the random matrix has values ă 20,
the corresponding values of the image are set to
0, and at the positions where the random matrix
contains value ą 235, the corresponding pixels of
the image are set to 255.

Mirroring the image – simply flipping the image
horizontally.

Applying adaptive histogram equalization to
the L channel of the image, after converting it
to the Lab color space.

The channel is divided into a grid of 8ˆ 8 tiles,
after which histogram equalization is applied to
each block. If a histogram bin is above the con-
trast limit, in this case 4, the pixels above the
limit are redistributed to other bins, uniformly,
before applying the equalization. This is done in
order to prevent noise amplification.

Lastly, bilinear interpolation is applied to re-
move artifacts between tiles, and the image is
converted back into RGB color space.

Figures 2.13b to 2.13f show the results of the different
augmentation techniques, given the image in Figure
2.13a as input.

18

η η˚conv1 1 ´ η
˚
conv5 3 η˚fc6 η˚fc7 η˚fc8 α λ rd Batch size

0.001 0.0 0.1 0.1 1.0 0.9 0.0005 0.5 10

Table 2.3: Values of base learning rate (η), layer-specific learning rate multipliers (η˚layer), momentum (α), regu-
larization parameter (λ), dropout rate (rd), and batch size, used in the experiments of Section 2.8. Multiplying
the base learning rate with a layer-specific learning rate multiplier results in that layer’s learning rate.

(a) (b) (c)

(d) (e) (f)

Figure 2.13: Resulting images from the different
augmentation techniques; (a) original, (b) Gaussian
noise, (c) Gaussian blur, (d) salt and pepper noise, (e)
mirroring, and (f) adaptive histogram equalization.

The motive behind adding Gaussian blur to the
images was to force the network to focus on more
high level features. Opposite to this, the purpose of
the adaptive histogram equalization was to enhance
the fine-grained features.

Both the Gaussian noise and the salt and pepper
noise can be compared to dropout in neural network
training. Random pixel values are altered, forcing
network weights not to rely too much on the neigh-
boring weights.

The training data setups used for this experiment
are listed in Table 2.4, and the parameter settings
common for all setups can be found in Table 2.3.

2.8.2 Input Image Size

As mentioned in Section 2.4, images are re-sized be-
fore being passed as input to VGG-16. The net-
work accepts RGB images of size 224 ˆ 224, which
means that all images smaller than that have to be
expanded, and all that are larger have to be reduced
in size.

An interest was taken in how the size of test images
affects the accuracy of a trained model, and in pur-
suance of the answer an experiment was conducted.

The VGG Face model, transfer learned on the ex-

tended FaceScrub dataset, listed in Table 2.2, with all
convolutional layers frozen, and all fully connected
layers trained from scratch, was used together with
the 622 images larger than 224ˆ224 from the valida-
tion set as a baseline. The accuracy for the original
version of these test images was 99.1961%.

The 622 validation images were downsampled to
various fixed sizes, the largest being 224 ˆ 224, and
used for testing the model. The resulting accuracy
was then noted, and compared to that of the original
images.

2.9 Prototype

The prototype built for this thesis is a camera demo
written in C++. It consists of three major parts; video
capture, detection, and recognition. The user spec-
ifies models to use for both detection and classifica-
tion, which means that the demo can perform other
tasks than face recognition.

2.9.1 Video Capture

The camera demo can be run in either camera mode,
or test mode. In the former, images are fetched from
a video camera specified by the user. The camera
used during the development of the system is an AXIS
A8004-VE Network Video Door Station.

A threaded approach was used to implement the
frame fetching from the camera. One thread contin-
uously fetches images from the camera, only storing
the latest one. In this way, when images are to be
processed for detection and recognition on the main
thread, the latest image is already stored locally, and
can be processed instantly.

When running the camera demo in test mode, all
images placed in a test image folder are loaded and
processed, one at a time.

2.9.2 Detection

Whether in camera mode or test mode, the user spec-
ifies whether to perform detection on the images or
not. There are currently two (face) detection algo-
rithms to choose from. If one or more detections are
made in an image, the crops containing the detections
are forwarded to the recognition part of the program.

19

2.9.2.1 Feature-based Cascade Classifier

One of the detection algorithms available is the
OpenCV implementation of Viola-Jones detection.
The Viola-Jones detection uses three simple types
of features, often referred to as Haar features, il-
lustrated in Figure 2.14. The features are obtained
by subtracting the sum of pixel values under the
white rectangles from the sum of pixel values un-
der the black rectangles, resulting in a single value
[Viola and Jones, 2001].

Figure 2.14: Examples of two-rectangle (A and B),
three-rectange (C), and four-rectangle (D) Haar fea-
tures.

Before calculating the features, Viola and Jones used
so-called integral images as intermediate representa-
tions of the images, resulting in substantially faster
feature calculations.

Instead of calculating all possible features for an
image, a subset of them are chosen to form the classi-
fier, using a version of AdaBoost, making the classi-
fication even faster [Viola and Jones, 2001]. Another
method used to speed up the detection is using a cas-
cade of classifiers. The early classifiers, which are sim-
ple and fast, are used to quickly filter out the image
regions which do not contain the object of interest,
while the more complex classifiers are only applied to
regions which have a higher probability of containing
the class object. Only regions which pass all classi-
fiers are then considered positive regions.

2.9.2.2 Deformable Part Models

The other available detection algorithm is an im-
plementation of the paper Exact Acceleration of
Linear Object Detectors [Dubout and Fleuret, 2012],
taking deformable part models (DPM) as input.
The code is freely available at [Idiap, 2012] un-
der the GNU General Public License Version 3
[Free Software Foundation, 2007].

DPM takes into account intra-class variability, by
using class models made up of different components.
The components are made from HOG features (His-
togram of Oriented Gradients descriptors). When
calculating HOG features, an image is divided into
small cells. In each cell, the histogram of gradient di-
rections are accumulated over the pixels. The gradi-
ents of an image region I are computed by performing

convolution with the vertical and horizontal discrete
derivative filters, as

∇I “ pIx, Iyq “ pI ˙Dx, I ˙Dyq, (2.24)

where

Dx “ r´1, 0, 1s and Dy “ r´1, 0, 1s
T
. (2.25)

The magnitude of the gradient is computed as

‖∇I‖“
b

I2x ` I
2
y (2.26)

and its orientation is

Θ “ arctan
Iy
Ix
. (2.27)

In the implementation used, these calculations are
sped up by the use of Fourier transforms. Then,
after contrast normalizing all cells, the result-
ing histograms together form the final descriptor
[Dalal and Triggs, 2005].

2.9.3 Recognition

The recognition part of the camera demo is coupled
with Caffe. The user specifies which network to use,
which model to load weights from, and which file to
read labels from. When the demo is first started, all
parameters are loaded into memory, and remain there
throughout the entire execution. It is up to the user
whether Caffe should run in GPU or CPU mode.

The user has two options when it comes to the
batch size used in the forward propagation. Either
one detected object is forward propagated at a time
(batch size=1), or all detected objects in an image
are forwarded in one batch (batch size=number of
detected objects).

When the classification is done, the five labels with
the highest scores are printed to the standard output,
along with their scores, and the image is displayed
using OpenCV. In case detection is used, a frame is
placed around each detection, and the top prediction
label is printed below it, along with the output score.
Additional information printed on each frame is the
number of frames per second (fps), classification time,
and detection time.

20

3 Results and Discussion

All the results presented in this section are from ex-
periments using the retrained VGG-16 architecture,
unless stated otherwise. The validation set used for
tests concerning the total accuracy of the network
consists of 34,925 images of 2,904 identities, from the
curated combinatory dataset listed in Table 2.2.

For all training setups, the learning rates (shown in
Table 2.3 and Table 3.2) were lowered with a factor
of 10 after a third of the training was complete, and
again after two thirds.

3.1 Transfer Learning

Wanting to use as much training data as possible,
the VGG Face dataset and Facescrub were merged,
along with the additional dataset, using only the non-
overlapping identities from FaceScrub. The VGG
Face dataset was used both in its original form, and
the curated. These datasets are referred to as the
combinatory dataset, and the curated combinatory
dataset (see Table 2.2).

As mentioned in Section 2.6.2, the curated VGG
Face dataset did not produce as good results as
the non-curated, when the VGG Face model was
originally trained by the Oxford Visual Geometry
Group [Parkhi et al., 2015]. In order to quickly de-
cide whether the combinatory dataset, or the curated
combinatory, should be used for training the final
model, a comparison was made.

The datasets were used one at a time to transfer
learn the VGG Face model. The hyper-parameters
listed in Table 3.1 were used in both cases. To make
a fair comparison, both models were trained the same
amount of iterations per image, as opposed to the
same total amount of iterations.

α λ rd Batch size

0.9 0.0005 0.5 32

Table 3.1: Values of momentum (α), regularization
parameter (λ), dropout rate (rd), and batch size, used
while transfer learning.

The final and best accuracy of the curated combi-
natory model was 90.34%, while the model trained
with the combinatory dataset achieved only 78.05%
accuracy. The models were trained for a total of
238,770 and 600,000 iterations respectively.

These results differ somewhat from
[Parkhi et al., 2015]. A possible explanation for
this could be that while the un-curated VGG Face
dataset worked well for training the original VGG

Face model, it contains too much noise to transfer
learn a well performing classifier.

Another reason could be that the downloaded VGG
Face dataset actually contained more noise than the
original, due to displaced links. Since the un-curated
dataset contained more noise than the curated set to
begin with, the added noise from displaced links could
have made the proportion of noisy images too large
to outperform the smaller – but cleaner – dataset.

Due to the results of this experiment, the dataset
used for comparing the different transfer learning se-
tups was the curated combinatory dataset.

The curated combinatory dataset was randomly
split into three parts; training, test, and validation.
The training set contained 80% of all images, the test
set was made up of 16% of the images, and the val-
idation contained 4% of the total number of images.
Care was taken to make sure all sets contained images
of all identities.

The test set was used during training. At prede-
fined intervals, tests were performed using all images
in the test set, to see how the accuracy of the models
progressed. The division of the curated combinatory
dataset into training, test, and validation sets was
performed in order to double check that the hyper-
parameters and training setups were not tailored for
the test set, by testing the models with the valida-
tion set, after completed training. As shown in Fig-
ure 3.1, the validation accuracy and the test accuracy
are analogous.

100000 200000 300000 400000
Training Iteration

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

 (%
)

Accuracy Progress of Fine-Tuned Model
Test Accuracy Validation Accuracy

Figure 3.1: Test and validation accuracy of the fine-
tuned model, during different stages of training.

As mentioned in Section 2.3, the transfer learning
was performed using three different setups. The pa-
rameters common for all setups are shown in Table
3.1.

Common for all setups was also that the weights
from all convolutional layers were transferred from
VGG Face, and kept as is. Table 3.2 shows the learn-
ing rates of the remaining layers for the different se-
tups.

When discussing the resulting models, the frozen
model will refer to the result from the first setup, that
is transferring and freezing fc6 and fc7, and train-

21

100000 200000 300000 400000
Training Iteration

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

 (%
)

Fc trained accuracy Fine-tuned accuracy Frozen accuracy

0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

Lo
ss

Model Comparison

Fc trained loss Fine-tuned loss Frozen loss

Figure 3.2: Accuracy and loss of the fc trained model, fine-tuned model, and the frozen model, shown at different
training iterations. The two black dotted vertical lines mark a 90% decrease of the learning rate, starting at
η “ 0.001.

η η˚fc6 η˚fc7 η˚fc8
frozen 0.001 0.0 0.0 1.0

fine-tuned 0.001 0.1 0.1 1.0

fc trained 0.001 0.1 0.1 1.0

Table 3.2: Values of base learning rate (η) and
layer-specific learning rate multipliers (η˚layer) for the
frozen, fine-tuned, and fc trained setups. Multiplying
the base learning rate with a layer-specific learning
rate multiplier results in that layer’s learning rate.

ing fc8 from scratch. The model resulting from the
second setup, where fc6 and fc7 are transferred and
fine-tuned, will be called the fine-tuned model. Fi-
nally, the model for which all fully connected layers
are trained from scratch, will be referred to as the fc
trained model.

In order to compare the different models, the vali-
dation set was used to test the performance of models
saved during different stages of the training. Figure
3.2 includes plots of the accuracy and loss of all three
models.

Throughout the entire training, the best accuracy
is achieved by the fine-tuned model, with a peak ac-
curacy of 91,66%. The loss is also the lowest for the
fine-tuned model, at all times.

The frozen model starts out with a better accuracy
and loss than the fc trained model, but gets outper-
formed by the fc trained model after about 90,000
iterations, when it comes to both accuracy and loss.

In the frozen model, both fc6 and fc7 were initial-
ized with weights from the VGG Face model, while

in the fc trained model they were initialized from a
Gaussian distribution.

The results make it clear that the best option is
to initialize fc6 and fc7 with weights from the VGG
Face model, and that they should not be frozen, but
instead allowed further training.

After approximately a third of the total training
time, the base learning rate, shown in Table 3.2, is
multiplied by 0.1. The learning rate is again de-
creased after a sixth of the training time. Starting
at η “ 0.001, this means that the final learning rate
is only 10´5. As seen in Figure 3.2, the accuracies
of all models saturate somewhat after 300,000 iter-
ations, which is around the time when the learning
rate is decreased for the second time.

The reason for decreasing the learning rate is to al-
low for smaller and smaller adjustments of the weights
and biases. Generally, the learning rate is lowered
at times when the accuracy stops increasing, hoping
to be able to increase it by making smaller modifica-
tions. Judging from the saturating accuracy in Figure
3.2, the models could have benefited from having the
first learning rate decrease occur at a later time. Not
knowing beforehand when the accuracy would stop
increasing, a choice was made to lower the learning
rate after one and two thirds of the total number of
training iterations.

Having said that, no optimization of the hyper-
parameters was attempted in this thesis. Instead,
they were kept fixed for all set-ups, allowing for com-
parison of transfer-learning approaches. With some
effort put into tweaking the hyper-parameters, it is
likely that better accuracy could be achieved.

Figure 3.3 shows the per-batch loss of the fine-

22

tuned model during training, along with the aver-
age loss. The initial loss is 9.98956, but it decreases
rapidly. From the average loss it is clear that the loss
keeps decreasing throughout the training.

0 100000 200000 300000 400000
Training Iteration

0

2

4

6

8

10

Lo
ss

Training Loss of Fine-Tuned Model
Per-Batch Loss
Average Batch Loss

Figure 3.3: Per-batch loss, and average loss over 80
batches, of the fine-tuned model training.

The large fluctuation of the loss, as seen in Figure
3.3, could indicate that the batch size is too small.
If a larger batch size had been used, more samples
would be averaged over in the SGD, producing a bet-
ter estimate of the full training set average. Since all
models shared the same hyper-parameters, it is fair
to assume that the same reasoning holds for the fc
trained model as well as the frozen model. The rea-
son for using a batch size of 32, and not a larger one,
was limited graphics memory in the high end com-
puter used for training.

100000 200000 300000 400000
Training Iteration

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Lo
ss

Training Loss vs. Validation Loss
training loss validation loss

Figure 3.4: Loss of the fine-tuned model, at different
stages of training, for both the validation set and a
subset of the training set.

To get an idea about the amount of overfitting in
the models, a subset of the training images were used
for testing the fine-tuned model. The subset con-
tained 37,631 images, roughly 13 images per identity.
Figure 3.4 shows the loss of both the training subset

and the validation set, throughout different stages of
training.

The loss of the training subset is lower than that
of the validation set, which is to be expected since
the training set was used to optimize the weights and
biases of the network. The loss of both sets decreases
until the very end, which is a positive result. Had the
validation loss started to increase while the training
loss kept on decreasing, it would have been an indi-
cation that the model suffered from overfitting after
that point in time.

3.2 Neural Network Compression

A static approach was taken for the experiments con-
cerning the half data type. This means that no addi-
tional training phase was executed, instead a model
trained with float was used as the basis.

Concerning pruning, experiments for both a static
approach, as well as a one time retraining were car-
ried out. Unfortunately, pruning of the convolutional
layers was not explored. The reasons for this are
time, and the assumption that the amount of weights
that can be pruned with only a one time retraining,
[Han et al., 2015b], will not be enough to outperform
the cuDNN implementation of convolutional layers.
Instead all focus concerning pruning is on the fully
connected layers.

3.2.1 Floating Point Precision Reduction

The first experiment carried out was concerning using
the 16 bit half, also referred to as FP16, instead of
the 32 bit single, for the floating point representation
of the neural network. This was done by converting
the 32 bit model into 16 bit for the testing phase.
An initial loss of accuracy for the testing set was to
be expected, since the conversion implies a loss of
decimal precision.

The first experiment was conducted using the high
end setup, listed in Table 1.1. As mentioned in Sec-
tion 2.5.1, the hardware, or more specifically the GPU
architecture, of that setup does not natively support
computations with the half type. This means that
additional conversions, between half and float, were
performed during the inference.

First the model and its parameters are converted
from float to half for the whole network. For each
individual layer-specific computation the parameters
are read in the GPU as half, then converted to float
for the computations, and after the computations the
floats are converted back to halfs. Although memory
is saved by representing the parameters as halfs, and
the memory reads are made cheaper, no time is won
in the computations.

23

0 20 40 60 80 100
Weigts pruned (%)

2.5

2.0

1.5

1.0

0.5

0.0

Ac
cu

ra
cy

 c
ha

ng
e

(%
)

Pruning Result

fc6 fc7 fc8
Naive Layer wise Neuron wise

Figure 3.5: Pruning result for the fully connected layers of the fine-tuned model.

The experiment resulted in an accuracy loss of
47.15 percentage. The reduced memory footprint of
the application does not make up for the accuracy
loss, and deploying models trained with floats, on
GPUs that do not support the half data type, is there-
for unfeasible.

The second experiment concerning the half was ex-
ecuted on the Tegra X1, which has a GPU that does
support half computations. This means that all pa-
rameters in the neural network are only converted
once. Performing the same test as above only re-
sulted in a 11.25 percentage accuracy loss, down to
79.36% accuracy, while both the memory footprint
and the inference time got reduced by around half
when compared to not using any optimization.

To further analyze the loss of converting the float
to half, an error e was calculated as

e “ ec` efp “
M
ÿ

i“1

|w32
i ´w

16
i | `

N
ÿ

i“1

|b32i ´ b
16
i |, (3.1)

where M and N are the total number of weights and
biases correspondingly, in the neural network, w32

x

and w16
x are weight x represented in 32 bit and 16

bit correspondingly, and the same for the biases b.
The variable efp is the accumulated rounding error
from representing the numbers in the floating point
format, and ec is the accumulated error of converting
float numbers to halfs.

Using Equation 3.1 resulted in an error of

e “ 185.85013236.

3.2.2 Pruning

The goal of the first experiment concerning pruning
was to find out which of the different pruning ap-

proaches has the least negative impact on the total
accuracy of the net, and how robust the different fully
connected layers are to pruning.

To explore this, every fully connected layer was
pruned individually, using the three different pruning
approaches separately, iteratively tuning the pruning
parameter, γ. This experiment was also done to find
out how many parameters to prune for the best pos-
sible time and memory decrease, while keeping the
accuracy on an acceptable level.

The pruning parameter was tweaked such that a
fixed percentage of the weights were left for every it-
eration. The first measurement was taken when 80%
of the weights remained, and the last measurement
was taken when 1% of the weights were left. The per-
centage of weights left was decreased each iteration,
by a delta which also decreased over time, so that
more measurements were performed the less weights
there were left in the network.

The result of this experiment for all the fully con-
nected layers can be seen in Figure 3.5. The y-axis
of the graph was cut to better visualize the difference
between the independent layers, and the three differ-
ent pruning approaches per layer. The accuracy de-
creases rapidly after 90% of the weights are removed
for each layer, and when around 2.5% of the weights
are left the accuracy for all layers and methods has
dropped 10%.

A lot of interesting things can be derived from this
experiment. The first thing to notice is that all fully
connected layers are robust to pruning, and almost
90% of the weights in every layer can be removed, by
any pruning approach, only reducing the accuracy by
at most „2.5% per layer.

Out of these three layers, fc7 is the one most robust

24

0.04 0.03 0.02 0.01 0.00 0.01 0.02 0.03 0.04
Weight value

0

50000

100000

150000

200000

250000

300000

350000

Nu
m

be
r o

f o
cc

ur
en

ce
s

Weight Distribution After Pruning
fc6
fc7
fc8

(a) Weight distribution after pruning.

0.04 0.03 0.02 0.01 0.00 0.01 0.02 0.03 0.04
Weight value

0

50000

100000

150000

200000

250000

300000

350000

Nu
m

be
r o

f o
cc

ur
en

ce
s

Weight Distribution After Pruning And Retraining
fc6
fc7
fc8

(b) Weight distribution after pruning and retraining.

Figure 3.6: Illustration of how retraining after pruning the fine-tuned model affects the distribution of the
weights in the fully connected layers.

to pruning. Opposite to this is layer fc6, where the
accuracy starts decreasing quite early in comparison.
In practice fc6 is the layer which one would like to
prune the most, as seen in the parameter distribution
in Figure 2.9a. The last layer in the VGG-16 archi-
tecture, fc8, is more robust than fc6, but less robust
than fc7, which is quite surprising since those weights
are directly effecting the – pre-activation function and
pre-softmax loss – output of the full neural network.

The different pruning approaches explored produce
similar results, except for the neuron-wise approach
for layer fc8, which diverges quite heavily from the
result for both the naive and the layer-wise approach
for the same layer.

Another thing to notice is that removing 50% of the
weights in layer fc7 actually improves the accuracy
for the test set used, independently of the pruning
approach.

Pruning quite aggressively results in a substantial
drop in accuracy. To account for this an experiment
was made where 95% of the weights in the three fully
connected layers were layer-wise pruned for the fine-
tuned model, which had the best validation accuracy.
This made the accuracy on the validation set drop
to 83.38%. The pruned model was then retrained, so
that the loss could be minimized for the weights that
were left. Figure 3.6 shows the weight distribution for
the three fully connected layers both after pruning,
and after the additional training phase.

As can be seen in Figure 3.6a the removed weights
for all layers are around zero. This is because the
mean, µ, for the weights in these layers were

µfc6 “ ´0.000039,

µfc7 “ ´0.000588,

µfc8 “ ´0.000006.

Figure 3.6b shows how the weights are more evenly
distributed after retraining. The retraining was run
for around 70, 000 iterations and the accuracy once
again reached 91%.

The resulting model was then deployed on the
Tegra X1, and the different metrics in Section 2.5
were measured for both the unpruned model and the
pruned one. The result can be seen in Table 3.3.

Original Pruned

Number of parameters 146 M 21 M

Offline storage 584.6 MB 100 MB

Memory footprint 1309 MB 402 MB

FLOPs 30.9 B 30.7 B

Inference time 143 ms 115 ms

Table 3.3: Values of the different metrics presented
in Section 2.5, before and after pruning, as described
in Section 3.2.2.

3.2.3 Inference Time Comparison

As a last experiment all the different compression al-
gorithms were compared for the different hardware se-
tups. The result can be seen in Figure 3.7. It should
be noted that for Tegra K1 only the pruned model
result is presented. This is because the memory of
the Tegra K1 would not allow for one inference us-
ing the original model, and that cuDNN v4.0 was not
compatible with the Tegra K1 at the time of testing.
It should also be noted that all results are for the
fine-tuned model, using a batch size of one, and that
the pruned model used is the one described in Sec-
tion 3.2.2, with only 5% of the weights left in all fully
connected layers.

25

Tegra K1 Tegra X1 High End0

50

100

150

200

250

300

350

Av
er

ag
e

In
fe

re
nc

e
Ti

m
e

(m
s)

Inference Comparison
original
cuDNN
pruned
cuDNN + pruned
fp16

Figure 3.7: Inference time for the different compres-
sion algorithms, on the different hardware setups.

3.3 Data Analysis

In the experiments concerning data analysis, the ex-
panded FaceScrub dataset, described in Table 2.2,
was used for training and validation.

3.3.1 Data Quantity and Augmentation

Figure 3.8 shows the results of the experiment de-
scribed in Section 2.8.1. The models which have
been trained on the same amount of original images
(those that are horizontally aligned in the graph) have
trained for the same total amount of iterations. In
other words, the models which contain augmented im-
ages have trained for 10 iterations per image, and the
models trained on only original images have trained
for 60 iterations per image.

According to Figure 3.8 augmentation clearly has
a positive effect on the accuracy. Another interest-
ing observation is that the gain in accuracy for the
augmented datasets decreases the more original im-
ages are used. It seems reasonable to assume that
the same trend would hold for superior augmentation
techniques, although the initial gain would be greater.

The reason for using the simple augmentation tech-
niques described in Section 2.8.1 was mainly lack of
time. As discussed in [Krizhevsky et al., 2012], sim-
ple mirroring does little to affect the accuracy, and
had more time been set aside for this experiment,
then the other augmentation techniques described in
the paper could have been tested as well.

3.3.2 Image Size

In order to explore how robust the network is to dif-
ferent image resolutions, the experiment in Section
2.8.2 was performed. Figure 3.10 shows the accuracy

0 10 20 30 40 50 60 70 80
Number of original images per identity

60

70

80

90

Ac
cu

ra
cy

 (%
)

Evaluation of Augmented Data
Original data Augmented data

Figure 3.8: Results from the data quantity and aug-
mentation experiments described in Section 2.8.1.
The models trained on the same amount of original
images have trained for the same amount of itera-
tions.

drop for the different image sizes. The input size of
the network is 224ˆ 224.

A hypothesis was made that the accuracy would
decrease as soon as the test images were smaller than
the input size of the network, and that the decrease
would be somewhat linear. However, the accuracy
drop shown in Figure 3.10 is not linear, and the accu-
racy is steady until the test images contain less than
70ˆ 70 pixels. After that, the accuracy starts to de-
crease, and it drops dramatically when the number of
pixels in the test images is below 5% of the number
of input pixels, i.e. when the images are smaller than
49ˆ 49 pixels.

Seeing as the results differed greatly from the hy-
pothesis, this lead to an investigation of image size
distribution in the different datasets used for train-
ing.

Figure 3.9 shows the distribution of image sizes for
the downloaded part of the VGG Face dataset, which
the model was originally trained on, and the distri-
bution of the FaceScrub dataset, used in the transfer
learning.

A great share of the VGG Face images are smaller
than 224 ˆ 224, especially compared to FaceScrub.
Only 9.4% of the images in the VGG Face dataset
are larger than or equal to 224ˆ 224, while 34.7% of
the FaceScrub images are. In addition, no images in
FaceScrub are smaller than 100ˆ 100 pixels.

The late drop in accuracy in the input size ex-
periment could be due to the fact that all convolu-
tional layers in the model have been trained on the

26

0 50 100 150 200
Size of largest dimension

0

50000

100000

150000

200000

250000
Nu

m
be

r o
f o

cc
ur

en
ce

s
VGG Face Size Distribution

0 50 100 150 200
Size of largest dimension

0

5000

10000

15000

20000

25000

30000

Nu
m

be
r o

f o
cc

ur
en

ce
s

FaceScrub Size Distribution

Figure 3.9: Image size distribution of the downloaded part of the VGG Face dataset, and the FaceScrub dataset.
Images larger than 224ˆ 224 are included in the right-most bar.

10-310-210-1100101102

Number of pixels (%)

100

90

80

70

60

50

40

30

20

10

0

Ac
cu

ra
cy

 d
ro

p
(%

)

70x70
49x49

28x28

15x15

Accuracy Impact Of Image Size

Figure 3.10: Illustration of the impact of image size
relative the input size of VGG-16, using 622 test im-
ages on a model fine-tuned on FaceScrub. The origi-
nal images resulted in an accuracy of 99.1961%.

VGG Face dataset, including the many small images,
so that the network has learned the coarser features
needed to classify them.

The model trained for this experiment shared the
same training setup as the fc trained model, dis-
cussed in Section 3.1, except that the number of itera-
tions per training image was almost 50% higher. The
model achieved an accuracy of 95.66% (for the full
validation set), while the fc trained model achieved
only 90.61% accuracy. The reason for this gap is likely
due to the difference in training iterations, as well as
the difference in number of labels; the extended Face-
Scrub dataset contains only 346 identities, while the
curated combinatory set contains 2904 identities.

3.4 Impostors

A difference was noticed between the fc trained model
and the model trained on the extended FaceScrub
dataset, described in Section 3.3.2, when testing them
both in the camera demo. The model trained on
the extended FaceScrub dataset seemed to produce
higher probabilities for identities not in the database
(impostors).

To investigate this further, an experiment was per-
formed on the two models. The subset of LFW images
with identities overlapping neither the extended Face-
Scrub dataset nor the curated combinatory dataset
was used to analyze the probabilities of impostors.

The LFW subset contained 5,604 identities, and a
total of 12,728 images. These images were all passed
to both the fc trained model, and the model trained
on the extended FaceScrub dataset, and the proba-
bility of the highest scoring label was saved. Figure
3.11 shows the distribution of probabilities for the
different models.

As seen in the figure, the fc trained model gen-
erally generates lower classification probabilities for
the impostors. This supports the observation made
when comparing the two models in the camera demo,
and indicates that the fc trained model is more fit to
handle impostors.

Furthermore, Figure 3.12 shows a comparison of
the highest impostor classification probabilities for
the two models. In the fc trained model, only 0.62%
of the images get classified with a probability greater
or equal to 80%, and only 0.19% of the images get a
probability greater than or equal to 90%. For the
model trained on the extended FaceScrub dataset,
the same measurements gave 7.76% and 3.87% re-
spectively.

Using these results, one can place a threshold on
the classification probability, excluding impostors by
only accepting classifications above a certain value.

27

0 10 20 30 40 50 60 70 80 90
Probability (%)

0

200

400

600

800

Nu
m

be
r o

f o
cc

ur
en

ce
s

Impostor Prob. of FC Trained Model

0 10 20 30 40 50 60 70 80 90
Probability (%)

0

200

400

600

800

Nu
m

be
r o

f o
cc

ur
en

ce
s

Impostor Prob. of Extended FaceScrub Model

Figure 3.11: Distribution of the probability of the highest scoring label for all impostor images.

10 20 30 40 50 60 70 80
Highest label probability (%)

10
20
30
40
50
60
70
80
90

Im
po

st
or

s
(%

)

Classification Probability of Impostors
Extended FaceScrub model
FC trained model

Figure 3.12: Comparison of the highest probability
of assigned labels for impostor images, using the fc
trained model and the model trained on the extended
FaceScrub dataset.

More extensive testing could be performed to get a
more reliable threshold, using a larger dataset, and
making sure that all ethnicities are represented in the
set.

3.5 Prototype

Overall, the prototype works very well. The total
time needed for one classification is however higher
than the inference time presented in Figure 3.7, since
there is additional overhead in the camera demo. The
overhead includes sending the images over the net-
work, detecting and cropping faces, scaling the face
images to match the input size of the network, and fi-
nally, after classification, drawing and displaying the
result on the screen.

The most time-consuming of the steps above is the
detection. Since face detection is out of scope for this
master’s thesis, no attempt was made to speed it up.

28

4 Conclusions

The aim of this master’s thesis was to explore the pos-
sibility of deploying an algorithm for face recognition
on an embedded system, while aiming for real-time
performance and good accuracy.

In order to speed up the training phase, the pa-
rameters from a pre-trained model of VGG-16, called
VGG Face, were transferred and re-trained using
three different approaches:

Freezing the first two fully connected layers, fc6 and
fc7, and training only the last layer, fc8, from
scratch.

Fine-tuning the first two fully connected layers, fc6
and fc7, and training fc8 from scratch.

Training all fully connected layers from scratch.

Common for all approaches was that the weights of all
convolutional layers were transferred and kept as-is.

The approach reaching the best accuracy was the
fine-tuned model, in which parameters from all layers
except the last were transferred from the VGG Face
model, and the first two fully connected layers were
fine-tuned while the third was trained from scratch.

Differentiating between 3,904 identities, the fine-
tuned model achieved an accuracy of 91.66%. An-
other model, trained on a smaller dataset, containing
only 346 identities, was able to achieve an accuracy
of 96.66%. This model did however not perform as
well when it came to detecting impostors – that is,
the model assigned labels with high probabilities to
the impostors.

As for compression algorithms both the precision
reduction and the pruning approach yielded a speed
increase and memory footprint decrease. Although
precision reduction lead to a 11.25 percentage drop
in accuracy, both the speed increase and memory de-
crease were enormous, around 38% and 50% corre-
spondingly, while using cuDNN.

When it comes to pruning, only the fully connected
layers – where most of the parameters are – were
targeted. This gave a good result when it came to
offline and online memory use, not as good of a com-
pression as [Han et al., 2015b] presented, but on the
other hand they targeted all the layers in the net-
work, together with iterative pruning embedded in
the training phase. However, the approach presented
in this thesis, utilizing sparse matrices, resulted in a
speed increase. It can also be noted that at first the
pruning showed an accuracy drop, but this drop was
minimized with retraining.

4.1 Future Work

In order to improve the accuracy of the trained
CNN models, the hyper-parameters should be tuned,
which was not done in this thesis. The only hyper-
parameter varied between compared training setups
was the learning rate of the different layers in the
fine-tuned model, the frozen model, and the fc trained
model. The majority of hyper-parameters used in this
thesis were based on those of the VGG Face model,
and are most likely not optimal.

As for the data augmentation, more complex aug-
mentation techniques could be attempted, as men-
tioned in Section 3.3.1. Besides trying the augmen-
tation techniques in [Krizhevsky et al., 2012] other
than mirroring, it would be of interest to try even
more advanced augmentation techniques, for exam-
ple the one described in [Masi et al., 2016], using 3D
models to change pose, shape, and expression of faces.

Another possibility, if constructing a dataset from
scratch, would be to create 3D models of all subjects,
and use those to synthesize images taken from differ-
ent angles, in different light conditions. Manipulating
the shape of the model would then also be a possi-
bility, not only changing the expression of the face,
but adding facial hair and other attributes which may
vary over time, resulting in a synthesized dataset with
high intra-class variability.

Besides trying out different types of augmentation
techniques, it would be interesting to compare the
effect of the different techniques, applying them one
by one.

The biggest improvement when it comes to the
compression algorithms explored would be to use the
half floating point data type not only in the inference
phase, but also in the training phase. This would
make the parameters of the neural network mini-
mize the cost function, using less precision, and when
deployed the rounding error would be non-existent,
since no conversion would be made.

The pruning can be further developed by also tar-
geting the convolutional layers, perhaps with another
approach than sparse matrices. The use of iterative
pruning in the training phase can also be used to ex-
tend the number of pruned weights, and at the same
time minimize the accuracy loss.

29

References

[Axis, 2015] Axis (2015). AXIS A8004-VE Network
Video Door Station. Axis Communications AB.

[Azizpour et al., 2014] Azizpour, H., Razavian,
A. S., Sullivan, J., Maki, A., and Carlsson, S.
(2014). From generic to specific deep representa-
tions for visual recognition. CoRR, abs/1406.5774.

[Bengio, 2012] Bengio, Y. (2012). Deep learning
of representations for unsupervised and transfer
learning.

[Chatfield et al., 2014] Chatfield, K., Simonyan, K.,
Vedaldi, A., and Zisserman, A. (2014). Return of
the devil in the details: Delving deep into convolu-
tional nets. CoRR, abs/1405.3531.

[Chetlur et al., 2014] Chetlur, S., Woolley, C., Van-
dermersch, P., Cohen, J., Tran, J., Catanzaro, B.,
and Shelhamer, E. (2014). cudnn: Efficient primi-
tives for deep learning. CoRR, abs/1410.0759.

[Dalal and Triggs, 2005] Dalal, N. and Triggs, B.
(2005). Histograms of oriented gradients for hu-
man detection. In International Conference on
Computer Vision & Pattern Recognition, volume 2,
pages 886–893. IEEE Computer Society.

[Dubout and Fleuret, 2012] Dubout, C. and Fleuret,
F. (2012). Exact acceleration of linear object detec-
tors. In Fitzgibbon, A. W., Lazebnik, S., Perona,
P., Sato, Y., and Schmid, C., editors, ECCV (3),
volume 7574 of Lecture Notes in Computer Science,
pages 301–311. Springer.

[Free Software Foundation, 2007] Free Soft-
ware Foundation, I. (2007). Gnu general public
license.

[Gong et al., 2014] Gong, Y., Liu, L., Yang, M., and
Bourdev, L. D. (2014). Compressing deep convolu-
tional networks using vector quantization. CoRR,
abs/1412.6115.

[Grundström et al., 2016] Grundström, J., Chen, J.,
Ljungqvist, M., and Åström, K. (2016). Trans-
ferring and compressing convolutional neural net-
works for face representations. International Con-
ference on Image Analysis and Recognition.

[Han et al., 2015a] Han, S., Mao, H., and Dally,
W. J. (2015a). Deep compression: Compress-
ing deep neural network with pruning, trained
quantization and huffman coding. CoRR,
abs/1510.00149.

[Han et al., 2015b] Han, S., Pool, J., Tran, J., and
Dally, W. J. (2015b). Learning both weights and
connections for efficient neural networks. CoRR,
abs/1506.02626.

[Hassibi et al., 1993] Hassibi, B., Stork, D. G., and
Wolff, G. J. (1993). Optimal brain surgeon and
general network pruning. Neural Networks, IEEE
International Conference on, 1:293–299.

[Huang et al., 2007] Huang, G. B., Ramesh, M.,
Berg, T., and Learned-Miller, E. (2007). Labeled
faces in the wild: A database for studying face
recognition in unconstrained environments. Tech-
nical Report 07-49, University of Massachusetts,
Amherst.

[Idiap, 2012] Idiap (2012). Exact acceleration of lin-
ear object detectors.

[Jia et al., 2014] Jia, Y., Shelhamer, E., Donahue,
J., Karayev, S., Long, J., Girshick, R., Guadar-
rama, S., and Darrell, T. (2014). Caffe: Convo-
lutional architecture for fast feature embedding.
arXiv preprint arXiv:1408.5093.

[Krizhevsky et al., 2012] Krizhevsky, A., Sutskever,
I., and Hinton, G. E. (2012). Imagenet classifi-
cation with deep convolutional neural networks. In
Advances in Neural Information Processing Sys-
tems.

[Masi et al., 2016] Masi, I., Tran, A. T., Leksut,
J. T., Hassner, T., and Medioni, G. G. (2016). Do
we really need to collect millions of faces for effec-
tive face recognition? CoRR, abs/1603.07057.

[Ng and Winkler, 2014] Ng, H.-W. and Winkler, S.
(2014). A data-driven approach to cleaning large
face datasets. In IEEE International Conference
on Image Processing (ICIP).

[NVIDIA, 2015] NVIDIA (2015). Gpu-based deep
learning inference: A performance and power anal-
ysis. Technical report.

[Parkhi et al., 2015] Parkhi, O. M., Vedaldi, A., and
Zisserman, A. (2015). Deep face recognition. In
British Machine Vision Conference.

[Parkhi et al., 2016] Parkhi, O. M., Vedaldi, A., and
Zisserman, A. (2015 (accessed March 23, 2016)).
VGG Face Descriptor.

[Rastegari et al., 2016] Rastegari, M., Ordonez, V.,
Redmon, J., and Farhadi, A. (2016). Xnor-net:
Imagenet classification using binary convolutional
neural networks. ArXiv e-prints.

30

[Schroff et al., 2015] Schroff, F., Kalenichenko, D.,
and Philbin, J. (2015). Facenet: A unified embed-
ding for face recognition and clustering. CoRR,
abs/1503.03832.

[Simonyan and Zisserman, 2014] Simonyan, K. and
Zisserman, A. (2014). Very deep convolutional net-
works for large-scale image recognition. CoRR,
abs/1409.1556.

[Taigman et al., 2014] Taigman, Y., Yang, M., Ran-
zato, M., and Wolf, L. (2014). Deepface: Closing
the gap to human-level performance in face veri-
fication. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).

[Vanhoucke et al., 2011] Vanhoucke, V., Senior, A.,
and Mao, M. Z. (2011). Improving the speed of neu-
ral networks on cpus. In Deep Learning and Unsu-
pervised Feature Learning Workshop, NIPS 2011.

[Viola and Jones, 2001] Viola, P. and Jones, M.
(2001). Rapid object detection using a boosted
cascade of simple features. pages 511–518.

[Walsh, 2013] Walsh, C. A. (2013). Peter Hutten-
locher (1931-2013). Nature, 502:172–172.

[Yosinski et al., 2014] Yosinski, J., Clune, J., Ben-
gio, Y., and Lipson, H. (2014). How transferable
are features in deep neural networks? CoRR,
abs/1411.1792.

31

Master’s Theses in Mathematical Sciences 2016:E17
ISSN 1404-6342

LUTFMA-3293-2016

Mathematics
Centre for Mathematical Sciences

Lund University
Box 118, SE-221 00 Lund, Sweden

http://www.maths.lth.se/

	Introduction
	Main Objective
	Problem Description
	Related Work
	Face Recognition and Verification
	Transfer Learning
	Compression of Neural Networks
	Data Augmentation

	Utilities
	Hardware
	AXIS A8004-VE Network Video Door Station

	CUDA
	Caffe
	Caffe Model Zoo

	Methodology
	Neural Networks
	Forward Propagation
	Activation Functions

	Back Propagation
	Softmax Loss
	Stochastic Gradient Descent

	Layer Types
	Fully Connected Layer
	Convolutional Layer

	Max-Pooling
	Overfitting
	Dropout
	L2 Regularization

	VGG16
	VGG Face

	Transfer Learning
	Preprocessing
	Compressing Neural Networks
	Floating Point Precision Reduction
	Pruning
	Selection of Weights to Prune
	Weight Representation After Pruning

	Datasets
	Labeled Faces In The Wild
	Oxford VGG Face Dataset
	FaceScrub
	Additional Dataset

	Dataset Collection
	Data Analysis
	Data Quantity and Augmentation
	Input Image Size

	Prototype
	Video Capture
	Detection
	Feature-based Cascade Classifier
	Deformable Part Models

	Recognition

	Results and Discussion
	Transfer Learning
	Neural Network Compression
	Floating Point Precision Reduction
	Pruning
	Inference Time Comparison

	Data Analysis
	Data Quantity and Augmentation
	Image Size

	Impostors
	Prototype

	Conclusions
	Future Work

