Model-Based Conductivity Control
of Fluid Composition

Mans Fallman

UNIVERSITY

Department of Automatic Control



MSc Thesis
ISRN LUTFD2/TFRT--5992--SE
ISSN 0280-5316

Department of Automatic Control
Lund University

Box 118

SE-221 00 LUND

Sweden

© 2016 by Mans Fallman. All rights reserved.
Printed in Sweden by Tryckeriet i E-huset
Lund 2016



Abstract

The purpose of this thesis was to reduce the start-up and restart time of a hemodial-
ysis machine by targeting time consuming control loops. This was done by investi-
gating different techniques of modelling to find the best combination of versatility
and conformity to the process. Finding the best controller was done by evaluat-
ing different controllers in simulations with the model in MATLAB/Simulink by
comparing closed loop performance and robustness. The results were verified by
implementing the controller on a LabView realtime hardware setup.
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1

Introduction

Dialysis refers to the procedure of removing waste products and excess fluid from
the blood stream. This is the main form of treatment for both acute and chronic renal
failure. The most common [Jain et al., dialysis procedure is called hemodial-
ysis where blood is withdrawn from the body and filtered externally which can be

seen in Figure[I]

/‘uﬁanous pressure monitor
// Air trap and air detector

Clean bibod

Inflow pressure-
maonitor

Heparin pump f"f Arterial pressu're
(to prevent clotting) monitor for cleaning

Figure 1.1 Schematic of a hemodialysis treatment

The filter is called a dialyzer and can be described as two chambers separated by
a semi-permeable membrane that allows for smaller particles, such as electrolytes,
urea and water to pass, but stops larger ones such as proteins and blood cells. With
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Chapter 1. Introduction

blood in one of the chambers the other side of the filter is filled with a dialysate.
Depending of the fluid compositions in the dialysate, some of the smaller particles
will diffuse from the blood to the dialysate. This filters out certain waste products
by not adding them to the dialysate. The most basic hemodialysis machines usu-
ally include two types of concentrates. A-concentrate is a mixure of electrolytes to
match the content of the patients blood. Their effect on the conductivity when mixed
with water is well known and their solubility in water is not temperature dependent.
The other component i called B-concentrate and usually only includes bicarbonate,
(HCO5) which works as a pH buffer. Unlike the A-concentrate, the solubility of
the B-concentrates is temperature dependent which complicates the modelling. The
A-and B-concentrates can not be added at the same point in the fluid path due to
the risk of bicarbonate precipitation. This could be avoided by premixing the con-
centrates, although this introduces a major risk as it provides a good environment
for bacterial growth. Both A and B concentrates are available as solution or a dry
product where the machine adds water.

The quality of hemodialysis treatments varies a lot around the world, some
countries prefer a simpler and cheaper procedure whereas some prefer a more com-
plex treatment. This could be a more specific concentrate control or HDF treatment.
The hemodialysis machines seen in Figure [I.2] differ in hardware due to their tar-
geted market.

Figure 1.2 A low-end and a high-end dialysis machine from Gambro
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Chapter 1. Introduction

A typical dialysis treatment usually takes around 4 hours. At three treatments per
week this turns into a very time consuming activity, that is why a lot of time is spent
on trying to decrease the time for overhead activities such as starting and restarting.
One of the most time consuming steps during start-up is to reach an acceptable fluid
composition where the concentrate control is included. The start-up or restart time
is referred to as TTT (Time To Treatment) and the goal is to minimize TTT.

Project goal

The goal of this master thesis project was to reduce the TTT for a hemodialysis
machine by developing a better conductivity controller. To reach the goal, a model
of the process was first derived. Three controllers were then designed and compared
using Matlab/Simulink. The three controllers were PID, LQG, and MPC. The LQG
controller was found most suitable, and this controller was implemented in LabView
and tested on a dialysis machine test setup.

12



2
Modelling

When working with model based control, the first thing needed is of course a model
of the process. This was obtained by investigating physical properties and collecting
data from the process. Some prior knowledge of the process was present due to
earlier work at Baxter.

2.1 Physical setup

The fluid preparation of a dialysis machine seen in Figure 2.T| works similar to an
assembly line. RO-watelﬂis heated, degassed and concentrates are mixed in.

RO-Water

A-Concentrate

B-Concentrate

Conductivity Measurement
(Optional)

Conductivity Measurement

Figure 2.1 A simplistic schematic of the setup

! Reverse osmosis water. Desalinated water by overcoming the osmotic pressure
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Chapter 2. Modelling

Before treatment can begin all of these steps have to pass a function check to
ensure a safe treatment. This is referred to as getting a "green fluid path" which
is indicated by the dialysis machine. If any of the controlled values deflect for a
specified time, the machine will automatically pause the treatment until it achieves
an acceptable fluid decomposition.

The concentrate pumps are piston type pumps powered by stepper motors. This
entails an almost constant volumetric flow for each revolution. This adds a distur-
bance in the output as the pump only extracts concentrate for less than half of the pe-
riod. In order to combat these disturbances a mixing chamber is added as a low pass
filter after each infusion point. The mixing chamber is separated into two smaller
chambers by a divider in order to achieve a greater attenuation for high frequency
disturbances. After the last mixing chamber a conductivity measurement cell is used
to measure the feedback signal. The conductivity measurement cell provides some
internal filter but only for anti-aliasing.

2.2 Model

Each subchamber acts as a first order low pass filter for the concentrate added into
the main flow. The conductivity in each subchamber could therefore be interpreted
as a state. As the chambers are always filled up and the main flow set constant
during the start up sequence, this turns into a simple and linear mixing problem
seen in Figure[2.2]

Diluent + Concentrate

ml/min

Mixture

Figure 2.2 A simple illustration of a mixing problem

In a mixing problem [Olsson and Rosen, |2005} p. 53], a mixture of diluent and
concentrate is added to a chamber initially filled with the diluent. The mixture is
extracted at the same speed as the intake resulting in a constant volume. The rate
of change for the concentration inside can be described as the difference between
injected and extracted concentration. By assuming a homogeneous mixture and the
conservation of mass, Equation can be used to describe the change of concen-
tration

14



2.2 Model

V.é= Qin'cin_Qout'C: Qm(c,-n—c) (21)

where V is the chamber volume, c;, is the injected concentration, ¢ is the concen-
tration inside the chamber, Q;), is the injected flow rate and Q,,, is in extracted flow
rate. Equation [2.1)is only valid for a constant volume which is achieved when Qj,
equals Q.. As the four tanks are connected in series, the unified system would
be the convolution of the dynamics of each chamber. The state space form is more
intuitive for systems of higher degree, each subchamber accounts for one row in the
state space equation. The state space representation can be seen in Equation [2.2]

x(t) = Ax(t) + Bu(r)

¥(t) = Cx(r) + Du(t) (22)

where A is the system matrix, B is the input matrix, C is the output matrix, D is the
feedtrough matrix, x is the state vector, which is the respective volumes conductivity
measured in mS/cm and y is the same as the last state in x and is the measured output
in mS/cm. The output y, is sometimes referred to as C2 as this is the name of the
Sensor.

-2 0 0 0
& % o 0
A=1h 9 _e
V3 53 0
o0 0 v -
ZKki 0
0 0
B:
0 &Ks
0 0

2.3)
c=[0 0 0 1]

D=[0 0]

| Pua
U= [Pu3:|

Q is the main fluid flow, V|_4 are the volumes of each subchamber, K4 and Kp are
the steady state gains of A- and B-concentrate, respectively. Pus and Pup are the
volumetric flow of concentrates in ml/min. Although the state space form is the
most useful the transfer function is also sometimes needed. The transfer function
for each input is calculated as

H(s)=C(sI—A)"'B+D (2.4)
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Chapter 2. Modelling

which results in the two transfer functions.

o'k, 0%k,
H(s) = (& V2V§V4) (V3Vf) {PMA} (2.5)
(HP)HE)s+E)s+E) s+ E)s+§) Pug

w
—

To obtain the dynamics of the system, the flow and chamber volumes have to be
estimated. During start up the main flow is set to 500m!l/min. The volumes of the
sub-chamber in the mixing chambers are harder to find. The total chamber volume
can be estimated by weighing the chamber before and after it has been filled and
then visually inspect or measure the relative distance to the divider. Another way is
checking CAD-files of the chambers. It is also important to verify the volumes both
by measuring them physically and the dynamics that they impose. Both chambers
have a volume of 60m! and their dividers are identically placed. Table[2.2]shows the
volumes estimated by measuring the offset of the divider.

Chamber | Volume [I]

Vi 0.0399
V2 0.0219
V3 0.0384
V4 0.0216

Table 2.1 Estimated volumes in each subchamber

Without having an estimate of the stationary gain we can still use Mat-
lab/Simulink to simulate the step response.

Q = 0.5/60; %Main flow
V1l = 0.0399; S%$Subchamber volumes
V2 = 0.0295;

V3 = 0.0384;
V4 = 0.0216;
Ka = 1;
Kb = 1;
A = [-Q/V1 0 O O;
Q/v2 -Q/v2 0 0;
0 Q/V3 -Q/V3 0;
0 0 Q/V4 —-Q/V4];
B = [Q/V1xKa 0;
0 0;
0 Q/V3*Kb;
0 0];
cC=1[00017];

step(ss(A,B,C, [0 0]))
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2.3 Delays

The step responses are shown in Figure 2.3]

Step Response

A-concentrate B-concentrate

v /

8.5
£ f
<€ |

RV

U., 10 20 30 0 50 60 0 10 20 30 0 50 60

Time {seconds)
Figure 2.3  Step response from each input
2.3 Delays

Due to the physical distance between the concentrate injection points and conduc-
tivity measurements a time delay is present. This time delay is due to the flow of
water and thereby also inversely proportional to the flow. The time delay is present
due to both the tubing and the fact that the mixing chambers do not have a stirrer.
Excluding the fact that the concentration in each chamber is non homogeneous, the
time delays could be estimated by measuring the length L and area of the tubing A

L-A

T=—o (2.6)
Q

where Q is the main flow rate and 7 is the time delay from the injection point to the

measuring point.
The best way to estimate the time delay is by looking at the delayed step re-

sponse on the actual system in Figure[2.4]
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Chapter 2. Modelling

Time delay

15 . . . ; . . 15
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Figure 2.4 Time delay for A-concentrate seen as the difference between the input
step and output change

The time delays are shown in Table 2.2 but the controller still needs to be robust
enough to handle deviations. Deviations can originate from different tubing lengths
inside, machine configurations or replacement components. The actual delay was
only interesting in order to verify the controllers stability. Testing the controller by
altering the time delay around the actual delay showed that the controller could
maintain stability for a changed time delay. This is interesting as the total length
of tubing is subject to change and this means that the controller would not need
returning.

Delay [s]
4.51
2.04

Ta
Tp

Table 2.2 Time delays for each input

There is no way to incorporate a time delay in state space representation so the
transfer function is instead used.

< o ) i 2KB> Puy
H(s)= ViVaVaVy e V3V eS8 [ } 2.7
(&) s+ &) s+ &) s+ ) G ) Pup
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2.4 \Verification

2.4 Verification

Disabling the PID controller and setting a fixed pump speed on the real process,
produces a step response. This was done for both A- and B-concentrates, one at a
time. By simulating the model with the same fixed input it can be compared with the
process output. The Matlab system identification toolbox is a great tool for compar-
ing processes and models. The following Matlab script compares the real process
output y_data to the model output when subjected to u_data as input.

Q = 0.5/60; %Main flow
V1l = 0.0399; V2 = 0.0295;

V3 = 0.0384; V4 = 0.0216; %$Subchamber volumes

Ka = 0.8431; Kb = 0.1328; %$SS Gain

A = [-Q/V1 0 0 0;
Q/V2 -Q/V2 0 0;
0 Q/V3 -Q/V3 0;
0 0 Q/V4 -Q/V4];

B = [Q/V1xKa 0;
0 0;
0 Q/V3xKb;
0 01;
cC=1[0001];

compare (y_data, sim(ss (A,B,C,0) ,u_data))

Figure 2.5]and Figure 2.6 show step responses for the two models.

Measured and simulated model

output

(=]
T

Conductivity [mS/cm]

|
|
R
3
|
il

— — — Sim
Meassured

. \

0 . . . . L . |

0 200 400 600 800 1000 1200 1400

Time

1600 1800 2000

Figure 2.5 First comparison of process and model for A-concentrate
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Chapter 2. Modelling

Measured and simulated model output

25T

3]

Conductivity [mS/cm]
- n

05
— — — Sim

Meassured

450 500 550 600 650 700 750 800
Time

Figure 2.6 First comparison of process and model for B-Concentrate

By varying the model volumes to fit the step response to the process step re-
sponse, the effective volume of the chambers can be estimated. Due to disadvanta-
geous shapes of the chambers, the volumes might behave as smaller than they were
previously measured to be. This would be an indication that the mixing chambers
might need to be redesigned.

With a fixed pump speed the steady state gain can be calculated as the mean
output divided by the mean pump rate seen in Equation [2.]

ymean

= Gaingg 2.8)

Umean

Table 2.3 shows the steady state gains calculated using this method.

ml /min ml/min

0.8431 0.1328

Ka [mS/cm] ‘ Kb [mS/cm]

Table 2.3 Steady state gain calculated by the empirical method

It is also important to verify the empirical gains with the calculations based on
the molar conductivity of the electrolytes. For A concentrate this is dependent on
the different electrolytes included and for B concentrate this is dependent on the
temperature. The exact calculations are a bit outside the scope for this thesis work.
In testing values were taken from an existing conductivity calculation script.
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2.4 Verification

Offline estimations

The Matlab system identification toolbox provides a number of tools for offline
estimation. Although the models produced by the different identification methods
usually have a high conformity with the real process they do not offer the true
states. Whereas each state in the physical model is related to a physical variable,
the pseudo-states of the estimated model are there to achieve a process of the same
degree but not related to any physical variable. Even though they performed better
than physical modelling, the improvement was only around 1% which can be seen
in Figure2.7)and[2.8] These models often included complex conjugated poles which
of course are not present in this system.

Measured and simulated model output

w
T

Conductivity [mSicm]

@
g
T

— — — Empirical - 99.05%
————— Physical - 98.14%
B[ Measured

7.5 L L L L L L
1300 1400 1500 1600 1700 1800 1900

Time

Figure 2.7 Comparison of process, physical model and empirical model for A-

Measured and simulated model output
.

R e Y e i g

25

Conductivity [mS/cm]
o

1 T I B Empirical - 96.74%
0.5 — — — Physical - 96.42%
Measured
0 . . . . . . .
450 500 550 600 650 700 750 8OO
Time

Figure 2.8 Comparison of process, physical model and empirical model for B-
Concentrate
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3

Simulation

Once the model was deemed fitting, work on a controller simulation started. Each
concentrate was tested one at a time by altering the B matrix. When testing A-
concentrates the second column of B was removed and vice versa.

3.1 Simulink

The process was made as an individual block in Simulink to simplify comparison
between controllers. Running different controller set-ups using a so called "model
reference"” is a convenient way to quickly compare results. The model in Figure
[B.1]includes a saturation to not exceed the maximum allowed pump speed, and a
transport delay.

ul o| ¥ = Ax+Bu ul -
D1 v 7|£ "l y=Cx+Du v v ©1
In - Out
Saturation State Space Transport
Delay

Figure 3.1 Simulink model of the process

The process still relied on values from the Matlab workspace for all of the state
space matrices, saturation levels and transport delay. While the goal was to reduce
the start-up time, the controller still had to be able to handle changes in the main
flow during treatment. The time variant state space representation can be seen in

22



3.1  Simulink

Equation[3.1]
(1) = AQ)x(1) + B(Q)u(r) o
y(t) = Cx(t) + Du(r) ’
where A, B and C matrices are defined in Equation [2.3] The state space block of
Simulink does not support variable system matrices so instead it was designed by
implementing the matrix element calculations with simple Simulink blocks as seen

in Figure[3.2]

- .
Ub' = regs
®

Inte-grator?

Constant4 ! Subract Integrator3

Products

Figure 3.2 Simulink model of the time variable process

The time variable model was used to test model deviations accounted from a
changed main flow. The model uses the three inputs PuA, PuB and Q to define the
time variable model.
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Chapter 3. Simulation

3.2 Controller

Three different controller set-ups were evaluated in this phase. As the goal was a
controller that is feasible for implementation in a dialysis machine the computation
complexity was somewhat important. The different controllers were of various com-
plexities which had to be included in the decision-making as the target hardware is
shared by other time consuming events. The three controller algorithms tested were
PID, LQG and MPC.

PID

The PID parameters were computed by the AMIGO method found in [Astrém and
Higglund, |2006] which uses the transfer function obtained in Equation The
PID parameters used can be seen in Table

Parameter A B
K 0.848 9.18
T 11.22 5.328
T, 3.756 1.302

Table 3.1 PID parameters generated from the transfer function in[2.7]

The original PID parameters served as a baseline when comparing the other con-
trollers, although the more optimized PID parameters was tested to get an indication
how much improvements can be achieved by optimization. The PID algorithm can
be seen in Equation [3.2]

1 dy
=K(—y+ = [edt—T;— 32
u=K(oy+ o [ed =T, 62

The Simulink model for the PID controller can be seen in Figure[3.3|

Sensor noise

E—» FIDis) —»@—» —»@——»E

Step PID Controller Process Scope

-

Figure 3.3 Simulink model of the PID setup
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3.2  Controller

Figure [3.4] shows the PID closed loop step response for A- and B-concentrate
respectively. Their respective setpoints are the default concentrate levels to verify

that the pumps are not over excited.

PID controller for A- and B-concentrates

=
n
1
1

on

= — =
: — £
%] e 1 E
E 1o __,f' 110 =
= L S
= cu
E = / = =
5 5 @
£ e c2 5
g /./ FPuA g
(5] e | | | .2
0 0 o

0 10 20 30 40 50 60
— 4 . . . . ; 20 €
E / [ £
5 - E
£/ :
Lot/ - 10 <
B I
3 c2 5
s 5]
E PuB o
y - (=]
D‘ = 1 1 1 1 1 : U

0 10 20 30 40 50 60

Time [s]

Figure 3.4 Simulated closed loop performance of a PID

LQG

The linear quadratic gaussian controller tested can be seen in Figure [3.3] It uses
two key components to operate, a linear quadratic integral controller to generate
the control signals and a Kalman filter to estimate the both the non-measured and

measured states.
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Chapter 3. Simulation

Kalman Fitter

yEd gt
hat
Saturation -y —‘

Contral signal nose

Figure 3.5 Simulink model of the LQG setup

Kalman filter:  This is based on the Matlab/Simulink source which is in turn based
on the principles of [Franklin et al., |[1997]. The state of the system represented in
the state space form is shown in Equation [3.3]

x(t) = Ax(t) + Bu(t) + Gw(r)

y(t) = Cx(t) + Du(t) + Hw(t) + v(¢) -3

where A, B, C and D, defined in Equation can be estimated by the Kalman filter
in Equation u(t) is the input, w(z) is the process white noise and v(¢) is the
measurement white noise with both zero mean.

(3.4)

Q(¢) is the process covariance, R(r) the measurement covariance and N(¢) the pro-
cess and measurement noise cross covariance. The goal is to estimate X which min-
imises the state estimation error covariance P(t) seen in the Equation[3.3]

P=E[x—%)(x—%)7] (3.5)

The Kalman filter is then the optimal solution described by the following equations
which minimizes P.

L(t) = P(t)CT (1) + N(z)
P(t) = AP(T) +P(t)AT + O(r) — L(t)R(¢)LT (1) (3.6)
#(1) = Ax(r) + Bu(t) + L) (1) —

26



3.2 Controller
R(t), O(t) and N(¢) are defined as

0(t) = GO(1G"
R(t)=R(t)+HN(t)+N" (t)H" + HQ(t)H" (3.7)
N(t) = GOt)HT +N(r)

When G equals the identity matrix /, Q(t) turns into the process covariance ma-
trix. H specifies the feedtrough of process noise to the measurement noise. As no
feedtrough is present, H equals zero and the measurement noise covariance R(z) is
only dependant on R(z). N(¢) is process and measurement noise cross covariance
matrix.

Linear quadratic integral controller: The LQG is based on the principles of
[Young and Willems, [1972].
For the continuous time state space system seen in Equation |3.8|with input u(z),

x(t) = Ax(t) + Bu(r)

¥(t) = Cx(t) 69

the linear quadratic integral controller minimizes the cost function J(u) defined in
Equation [3.9]but also rejects constant offset error by integrating the feedback error.

J(u) = /0 " (0)02(t) + u” () Ru(t) + 227 (£)Nu(t) dt (3.9)

Q is the state weight matrix, R the control signal weight and N is state and control
cross term weight. z is the augmented state vector which includes the integrated
error. Including the reference value r into the equation adds an integral action to the
controller.

(1) = {_AC 8} 7+ [g] u+ [ﬂ r=A.z+B.u
¥y =[C 0] =Cuzlt)

The state feedback gain vector K is the infinite horizon optimal gain for the system
in Equation[3.8] The control signal u is generated by state feedback control and can
be seen in Figure[3.2]

(3.10)

u=-K {x
X

} =Kz (3.11)

By solving the continuous time algebraic Riccati equation below, the solution can
then used to calculate the optimal state feedback K for the augmented system.

ATX + XAy — (XB,+N)R'BIX+N)+0=0

(3.12)
K=R '(BIx +NT)
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Chapter 3. Simulation

Here A, and B, is defined in Equation[3.10] Q, R and N are the state, control signal
and cross term weight matrices. X is the solution to the continuous time algebraic
Riccati equation.

Y

r Integrator | -K - S5 -

Figure 3.6 Schematic of the state feedback controller

The following Matlab code calculates the optimal feedback gain used in the
simulations below.

Q = 0.5/60; %Main flow

V1l = 0.0399; %Subchamber volumes
v2 = 0.0295;
V3 = 0.0384;
V4 = 0.0216;
Ka = 0.8431; %$SS Gain
Kb = 0.1328;
A = [-Q/V1 0 0 0O;
Q/V2 -Q/V2 0 0;
0 Q/V3 -Q/V3 0;
0 0 Q/V4d —-Q/V4];
B = [Q/V1«Ka 0;
0 0;
0 Q/V3xKb;
0 01;
Q= 1[1000 05
0100 0;
0 0 300 0 O;
0001 0;
0000 41;
R = 0.5;
N = 0;
[K,S,e] = lqi(A,B,Q,R,N)

Figure [3.7) shows the LQG closed loop step response for A- and B-concentrate re-
spectively and also their respective control signals to verify that the pumps are not
over excited. The set-points in the simulations are the default concentrate levels for
a standard treatment.
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3.2  Controller

LQG controller for A- and B-concentrates
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Figure 3.7 Simulated closed loop performance of a LQG

In Figure 3.5] the estimated output § is used instead of the real feedback y to
integrate the error. This was done to reduce overshoot on reference step change. The
Kalman filter does not include the time delay so it is effectively used as a predictor
to counteract the effect of the time delay. This solution bears some resemblance to
an Otto Smith predictor.

MPC

The MPC controller was evaluated to see how much the performance could increase
with a more advanced algorithm. Simulink MPC toolbox was used to speed up
evaluation, with the accompanying MPC tuner which made the tuning quick. Figure
[3.8] shows the Simulink model for MPC setup with the extra constraints for input
and output.
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Chapter 3. Simulation
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Figure 3.8 Simulink model of the MPC setup

The largest advantage in the MPC scenario is the ability to set the prediction
horizon longer than the time delay. Here it is also important that the model is accu-
rate.

For the discrete time state space

xn+ 1) =Ax|n| +Buln|+wn

in-+1) = Axln] + Buln] + i -
¥[n] = Cxln] +vin]

with the white noise disturbances w(n] and v[n] with zero mean and variance Q and

R respectively, the internal state estimator is on the form

&[n|n] = x[n|n — 1]+ K (y[n] = 9[n]) (3.14)
with the filter gain K. The corresponding one step ahead predictor is

X[n+ 1|n] = A%[n|n] 4+ Buln] + win] 315
$la] = CSln] + v e
By using the results for the one step predictor, the second step can be predicted
and so on. The depth of the predictions is called the prediction horizon. With the
state predictions calculated the optimal control signal can then be calculated using a
finite horizon optimal control procedure. The depth of the predicted control signals
is called the control horizon and is always less than the prediction horizon. Only the
first value is used and the rest are discarded as the next iteration generates new. With
these predictions the MPC algorithm allows for constraint violations to be predicted
and avoided.

There are different versions of MPC algorithms and Simulink does not state
which they have used so this is more of a general explanation of an MPC[Johansson,
2008]]. An informative way to describe the MPC algorithm is shown in Figure[3.9]
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Figure 3.9 A graphic explanation of a single MPC iteration

Figure[3.10|shows the MPC closed loop step response for A- and B-concentrate
respectively and also their respective control signals. The control signal is saturated
by the controller when it goes higher than 60ml /min.
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Figure 3.10 Simulated closed loop performance of an MPC
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Simulation results

By comparing the closed loop step responses of the simulated systems it is apparent
that the PID controlled performed a lot worse than the two other alternatives for the
A-concentrate which is easily seen in Figure[3.11]

Simulation results for A-concentrate
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Figure 3.11 Simulated closed loop performance for A-concentrate

Figure [3.12] shows the closed loop performance of the three different controller
for the B-concentrate. The difference in performance between the controllers are not
as great as in the previous case. This might be an indication that the performance
increase available of a more advanced algorithm is dependent on the time constant
and time delay of the process. If this assumption is correct it might be better to
reduce the size of the first mixing chambers and place the infusion point closer to
measurement cell and instead use a PID controller.
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Simulation results for B-concentrate
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Figure 3.12 Simulated closed loop performance for B-concentrate

Due to the little difference in performance between MPC and LQG, the latter
was implemented because of the simpler algorithm.
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Implementation

The real time target is a National Instruments PXI system [NI, seen in Figure
[B-1] These systems do not support either Matlab script or Simulink in a native en-
vironment which means that the controller had to be rewritten in Labview. Labview
is a graphic programming language from National Instruments similar to Simulink
but lacks functions for advanced automatic control. Another possibility would be to
code generate from Simulink and include the controller as DLL in Labview, but this
approach would impede the possibility to probe the controller while running.

T HATIONAL

s

Figure 4.1 A National Instruments PXIe, similar to the one used in the project

4.1 Discretization

In order to run on a physical system the model in Equation[2.3]had to be discretized.
The conductivity measurement cell in Figure[2.1]is connected to the PXI chassis by
an I2C bus and due to communication bus congestion the sample rate 4 is limited
to 0.5 s. This rather slow sampling speed does not lead to any implications as the
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smallest time constants of the system are at least a factor 4 larger.
The discrete time state representation of the continuous time state space in Equa-
tion[2.2]is shown in the Equation @1}

x[n+ 1] = Px[n] + Tuln]

y[n] = Cxln] + Dlu] (CRY

where ® is of the same size as A and I' is the same size as B. The ® and I" matrices

are functions of the sample time /4 instead of continuous time. Equation shows

the procedure of producing both @ and I'.

(hA)?
2!

h
F:/ A'Bdx=A"Y(®-1)B
0

=eM=1+hA+

4.2)

The discretization seen in Equation [4.2] is based on the principles of [Glad and
Ljung, 2003]]. The resulting matrices are shown in Equation

0.9008 0 0 0
0.1642 0.8267 0 0
0.0090 0.0935 0.8972 0
0.0006 0.0089 0.1660 0.8246

0.0836 0
0.0076 0 (4.3)
0.003 0.0137

4.2 Controller

From the results in the simulations, the LQG and MPC performed equally well in
terms of closed loop response. The computational complexity for the MPC con-
troller is higher so the LQG controller was deemed most fitting for the application.
As in the simulations the LQG controller is comprised of a Kalman filter observer
and a state feedback controller but when running on a physical setup, the discrete
time alternatives had to be used.

Discrete Kalman filter: This work is based on the Matlab/Simulink source which
is in turn based on the principles of [Franklin et al.,|1997]]. Using the discrete time
state space model seen in Equation[4.4] the discrete Kalman filter in Equation [4.6]is
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obtained.
x[n+ 1] = ®x[n] + Tu[n] + Gw[n]
y[n] = Cx[n] 4+ Du[n] + Hw|n] 4 v[n]
which is the discrete time alternative of the state space system in Equation with
the input u[n], w[n] and v[n] is the discrete time white noise of the process respec-
tively measurement where are

(4.4)

4.5)

where Q[n] is the process covariance, R[n] is the measurement covariance and N |[n]
is process and measurement cross covariance. The state estimator form can be seen

in Equation [4.6]
X[n+1|n] = ®R[n|n — 1)+ Tuln] + L[n](y[n] — CR[n|n — 1] — Du[n]) (4.6)
The gain L|n] is calculated trough the discrete algebraic Riccati equation
L[n] = (®@P[n]CT)(CP[n]CT + R[n])™!
P[n+ 1] = ®(P[n] — P[n]C" (CP[n]C" + R[n])~'CP[n])®" + Q[n] 4.7)
P[0] = E[(x[0] — £[0]) (x[0] — £[0])"]

where R[n] is the measurement noise covariance matrix and Q[n] is the process noise
covariance matrix defined in the Equation {.8]

Oln] = GQ[nG"
R[n] = R[n] + HN[n] + N" [n|H" + HQ[n|H" (4.8)
Nin) = G(Q[n]H" +Nin])

The G matrix is used to convert the scalar process covariance Q[n], into a process
variance matrix Q[n]. As expected the process noise covariance is the same for each
state which makes G the identity matrix of the same size as ®. The H matrix de-
scribes how the feedtrough disturbance from Qfn| affects the measurement noise
covariance matrix and as no feedtrough is present H is zero. These are not the usual
abbreviations or implementation that is taught in automatic control but the way that
Matlab/Simulink implemented it. The process noise covariance and measurement
noise covariance are measurable disturbances but instead using them to control the
Kalman filter gain is useful for rejecting the time delay. On a reference value change
a low Kalman filter gain is favourable to reduce oscillations due to time delay. After
a while it is instead better to use a higher Kalman filter gain for finer tuning because
a constant offset is not tolerable.
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4.2  Controller

Discrete linear quadratic integral controller: Implemented in a similar fashion
to the continuous time linear quadratic controller in the simulations which is based
on the principals of [Young and Willems, [1972]. For the discrete time state space
system,

x[n+ 1] = Ax[n] + Bu[n]

yln] = Cxl] @

the linear quadratic integral controller provides constant offset rejection and at the
same time minimizes the cost function J{u].

=)

J[u] = Z (z" Qz+u” Ru+ 27" Nu) (4.10)
n=0

where O, R and N are the weights for the state, control signal and cross term. z is
the state vector x with an added integrated state which is achieved by augmenting
the state space matrices. The reference value r is added to introduce integral action
to the controller.

dnt 1] = [qgh ﬂ 2]+ m uln] + m rin) = Duzfn) + Cauln] (411

h is process sample time which is used to form the discrete time integrator. The
optimal state feedback gain on infinite horizon is calculated by

K = (ITX®)(I'XT, +R)"! (4.12)
where X is the solution to the discrete time algebraic Riccati equation.
OIXP, — X +PIXT(TTXT, +R) 'TTXD,+0=0 (4.13)

The schematic setup can be seen in Figure[3.2] The feedback is taken from the esti-
mator instead of the real process. This was done to reduce the start up time but this
also introduces some issues with constant offset rejections. To generate the control
signals to the pumps, the feedback gain matrix is multiplied by the estimated states
seen in Equation{.T4]

[%ﬂ:—&m (4.14)

37



Chapter 4. Implementation

Control signal switching

As there is only one output from the process only one pump can be controlled at a
time. While one pump is regulated by feedback the other pump runs at a constant
speed by feedforward. In order to switch between the two modes, the gain feedback
matrix K is changed. By setting a row in K to zeros it disables the feedback which
can be seen in Equation [4.15]

oo [k ke ks ke ks
AZ10 0 0 0 0

4.15)

0 0 0 0 O

Kp =

|:0 7(/{3 +k4) ks kg k5]
One thing to note is that the B-concentrate only affects the last two states, as the
infusion point is between the first and second chamber in Figure The second
element in the gain feedback matrix Kp assures that no offset on the control signal
is present due to A-concentrates already added. When changing from A to B con-
centrate, the state vector £ will be non-zero due to the influence of A concentrate.
This means that the state feedback controller will start at a negative control signal
(which is saturated) until the integrator can catch up. With the B-concentrate only
affecting the last two states, the presence of electrolytes in the fluid path acts as
a load disturbance. But by subtracting the offset from the control signal the load
disturbance is dealt with without having to wait for the integrator to wind up. The
pump running at constant speed still has to feed the signal to the Kalman estimator
in order to properly track the states.
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4.3 Results

Closed loop performance on test setup
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Figure 4.2 Comparsion of real closed loop performance

The start up sequence for the dialysis machine can be seen in Figure [4.2] Starting
with the A-concentrate, it has to reache the reference value within a 1% tolerance. It
then waits for 45 seconds as a safety check to verify that the right type of concentrate
is used before B-concentrate starts. After this has been attained the B-concentrate
pump starts and when the conductivity is stable treatment can begin. The LQG
controller did it in around 36s and 14s for the A- and B-concentrate respectively.
These results are relativity close to the results in the simulations. The increase in
closed loop performance in the more advanced controller is most striking for the A-
concentrate which is likely due to the longer time delay and larger time constants.

4.4 Model variations

Although the model performed well when tested, real world usage often adds more
challenges. The ones stated below are the two major problems that were encoun-
tered while testing.
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Flow changes

When treatment has started it is sometimes necessary to change the main flow. As
a rule of thumb the main flow is usually set to twice the blood flow. For the pump
in open loop control this only entails a scaling relative to new flow set-point. For
the feedback controlled pump this results in a step change although the set-point is
still the same. The Kalman filter does not account for a variable flow, but by scaling
the control signal fed into the Kalman filter would trick the state estimator that
the concentrations were changing and this would in turn make the state feedback
controller react. In Figure [4.3] the green line represents the main fluid flow that
changes from the nominal 500m /min to 800ml /min and then down to 300m! /min,
the blue line show how the feedback is effected and the red and yellow shows the
unscaled control signal. The scaling of the control signal is the relation between
the nominal starting flow and the new flow set-point. Even though the dynamics
and time delay change it is still handled by the robustness of the controller seen in
Figure[d.3]. This could be solved by using an extended Kalman filter (EKF) instead.

Step change in main flow
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Figure 4.3 A change from 500 m!/min to 800 ml/min and then to 300ml /min
Start-up priming
Another issue related to model deviations is the priming sequences. The dialysis

machine is always empty before treatment begins. The goal of priming is to fill the
pick-up tubes with concentrate. The pick-up tubes are used to transport concentrate
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from the container to the pump. Independent of the type of concentrates used (either
a dry product or a premixed can be used), it has to be primed before the controller
can start. This is done by running the pumps at a fixed speed until the measurement
cell can detect a small but significant change in conductivity which can be seen in
Figure So for the first part of the priming no electrolytes are injected and the
Kalman filter will estimate wrongly. This is compensated by abusing the fact that the
Kalman filter gain in Equation 4.7|is dependent on the relation of the process noise
covariance Q and the measurement noise covariance R. By temporarily reducing the
measurement noise covariance R more trust is put into the measurement than into
the model and this allows the Kalman filter to quickly re-converge as the output
from the process will still be close to zero. This means that independent of the pick
up tube length or priming time it will not affect the start-up time.
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Figure 4.4 A priming sequence followed by a controller start

4.5 Alternative configurations

After some initial testing it was decided to remove the first mixing chamber on some
configurations to cut costs. This does, however, cause a problem with the controller,
reducing the system to a second order differential equation. The simple solution
would be to produce different code packages to each configuration but this would in
turn be problematic during production. Instead the controller was modified to alter
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the B matrix depending on configuration.

0K

ool fo o
V3 V3 V3

0 0 0 0

The changed state space equation becomes.

_é% 0 0 0 0 0

. g _2 9 0 0 0
£(t) = V02 J? o x(t)+ | gk, oKy | u(®) 4.17)

V3 _éﬁ 0 V3 V3

o o0 ¢ - 0 0

The change alters the model to make the first two states uncontrollable with no
input, setting them to zero removes their impact and effect on the control signal as
they will never change.

Some configurations also make use of another conductivity measurement cell.
It is placed between the first and second chamber and can be seen as greyed out in
Figure [2.1] This allows for running both A and B concentrate in feedback control.
This change affects the C matrix in Equation

0100
c=[0 00 1]%{0 0 0 J (4.18)

resulting in the state space system

—é% 0 0 0 a9
B -5 00 0 0
() = 5 o x(t)+ 0 Ok u(t)
o 0 %3 _2 o 0 (4.19)
0100
y(t){o 00 1]x

This in turn, adds another integral state to the state vector z which is defined in
Equation [3.10] Control signal separation is done by altering the state feedback gain

Puy ki k12 0 0 ks O
= 4.20
|:PMB:| [ 0  —(kastka) koz koa O k26:| ¢ 20

This setup is only needed when running dry product concentrates as the concentra-
tion can change depending on internal mixing ratios.
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4.6 Code generation

After successfully operating on a test setup of a dialysis machine at Baxter’s fa-
cilities it was deemed suitable to test on a real dialysis machine. The hardware in
a dialysis machine does not support either Labview or Matlab/Simulink. So once
again a choice had to be made concerning rewriting or auto-generate code. Both
Labview and Matlab/Simulink offer C code generators but previous testing at Bax-
ter had revealed that the Labview C coder has some issues. Matlab/Simulink offers a
few different alternatives for code generation which have been used by the company
previously to produce C code for other control loops with good results. Simulink
coder provides a code generation advisor to help with optimization and compilation
which turned out to be a quite useful feature. Some modifications of the Simulink
model had to be done i.e. replacing source and sink blocks with inputs and outputs,
declaring their respective input and output category. Generating code is favourable
from a designer stand point but not as popular with programmers. The model can
be seen in the Figure .5
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Figure 4.5 Part of the simulink model used for code generation
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Conclusions

A model based conductivity controller is well suited for use in a dialysis machine.
The cascading nature of the process means that a good model can be achieved in a
short time by dividing it into first order systems. This is only one of several time
consuming processes in dialysis machines but if the same work would be done for
other systems it could possibly save more time.

An LQG controller performs similar to other more advanced algorithms like
MPC in simulations. The speed-up it offers comes at the cost of robustness, where
it is more sensitive to model deviations than simpler alternatives such as a basic
PID.

A lot of time in this thesis work was spent on Labview programming to verify
the results from the simulations on a test setup. By instead using a hardware target
supporting Simulink Realtime would possibly speed up development by sizeable
amount and from there on generate the embedded code for production.

As there is no baseline value to compare the results to it is hard to specify the
total speed-up, but from the results of the simulations a PID properly tuned would
be around 1 minute slower. 1 minute might not sound like a lot compared to the
length of the treatment but the cost of a dialysis is highly related to the start-up as it
is the only time when the dialysis machine needs an operator.
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