
Integrating Xtext and JavaRAG:
Using an attribute grammar library
in a language workbench

Emin Gigovic, Philip Malmros

MASTER’S THESIS | LUND UNIVERSITY 2016

Department of Computer Science
Faculty of Engineering LTH

ISSN 1650-2884
LU-CS-EX 2016-22

Integrating Xtext and JavaRAG: Using an
attribute grammar library in a language

workbench

Emin Gigovic
dat11egi@student.lu.se

Philip Malmros
dat11pma@student.lu.se

June 13, 2016

Master’s thesis work carried out at
the Department of Computer Science, Lund University.

Supervisors: Jesper Öqvist jesper.oqvist@cs.lth.se

Examiner: Görel Hedin, gorel.hedin@cs.lth.se

mailto:dat11egi@student.lu.se
mailto:dat11pma@student.lu.se
mailto:jesper.oqvist@cs.lth.se
mailto:gorel.hedin@cs.lth.se

Abstract

Having a specialized editor or IDE has become commonplace for many pro-
gramming languages. Smaller languages, especially domain-specific ones that
normally have very narrow usage areas, often lack such convenience features
due to their naturally small user base. Tools for implementing editor support
for these languages are called language workbenches. Unfortunately these of-
ten lack features for more advanced semantic analysis, as they must be able to
handle a wide range of language specifications. Reference attribute grammars
(RAGs) can be used to formulate powerful semantic analysis and might, if in-
tegrated with a language workbench, help alleviate this problem.

JavaRAG is a library that can be used to add RAGs to Java based projects,
which means it should be possible to integrate with the language workbench
Xtext, which is built on Java. This thesis has evaluated this integration of
JavaRAG into Xtext to see how beneficial the addition of RAGs would be
when constructing an editor. To do this we implemented three editors, two
relatively equivalent ones for a simple language where one only used Xtext
while the other also made use of JavaRAG. The last editor covered a subset of
a more complex language, where more advanced parts of JavaRAG could be
used.

Finally we concluded that JavaRAG could be integrated into Xtext without is-
sue, and that it offered beneficial functionality formore complex error-checking
problems where Xtext’s own features were sometimes lacking.

Keywords: Xtext, JavaRAG, JastAdd, domain-specific language, editor

2

Acknowledgements

We would like to thank our supervisor Jesper Öqvist for his extensive help during this
thesis, even helping us with this report just hours before he was going on a trip to the US.
We also have to thank Görel Hedin for helping us finalize the report during the last few
weeks.

3

4

Contributions

The work for this thesis was divided quite equally between us. Every design choice was
thoroughly discussed together before any implementation. Philip has been more involved
in the development of the static analysis and JavaRAG integration, while Emin focused
more on the IDE features of Xtext and defining the grammars for the languages we used
in our case studies. Other work like planning, data collection, research and the report has
been evenly distributed between the two of us.

5

6

Contents

1 Introduction 9

2 Background 11
2.1 Abstract Syntax Tree . 11
2.2 Xtext . 12

2.2.1 Xtend . 14
2.3 JavaRAG . 14
2.4 Case study . 16

2.4.1 The simple language:
JastAdd ASTs . 16

2.4.2 The complex language:
JastAdd aspect modules . 17

3 Implementation 19
3.1 Pure Xtext editor for simple language 20

3.1.1 The Xtext grammar . 20
3.1.2 Static analysis . 20
3.1.3 Syntax highlighting . 22
3.1.4 Content Assist . 24

3.2 Combined Xtext/JavaRAG
editor for simple language . 25
3.2.1 JavaRAG utilization . 25
3.2.2 Outline view . 26
3.2.3 Formatting . 27

3.3 Combined Xtext/JavaRAG
editor for complex language . 27
3.3.1 The Xtext grammar . 27
3.3.2 Static analysis . 28
3.3.3 Integration with Java . 29

7

CONTENTS

4 Evaluation 31
4.1 Xtext . 31

4.1.1 Integrating with JavaRAG . 32
4.2 Editors . 37

4.2.1 Analysis . 37
4.3 Lines of code . 38

5 Related Work 41

6 Discussion and conclusion 43
6.1 Future work . 44

Bibliography 45

8

Chapter 1
Introduction

A domain-specific language (DSL) is a programming language that in contrast to general
purpose languages like Java and C++ has a specific usage area where it excels, at the cost
of not being able to do much else [1]. As implementing a DSL essentially means imple-
menting a new language, albeit relatively small, there is a need for tools that make this
process as easy as possible. These tools are so called language workbenches, with a few
examples being Spoofax [2], EMFText [3] and Xtext [4]. However, even with these tools,
it is difficult to formulate some standard static semantic that goes beyond the most fun-
damental things like duplicate name declarations. Reference attribute grammar (RAG)
[5] systems, which are good at specifying static semantics, could therefore be a valuable
addition to these tools.

The focus of this master thesis has been to evaluate the possibility to add RAG-support
for Xtext. In order to do this we used JavaRAG [6], a library that enables the use of RAG
concepts in Java-based projects. This was one of the main reasons we chose Xtext as our
language workbench, as it is built using Java. We started with constructing two editors for
a simple domain-specific language. One of the editors was to use nothing but Xtext func-
tionality, while the other would make use of JavaRAG to see if there were any problems
combining it with Xtext. When it had been established that JavaRAG indeed could work
with Xtext we implemented the foundation of an editor for a more complex language in
order to test some other parts of JavaRAG, and see how well it performed when put into a
more complicated Xtext project.

The simple language that we implemented editor support for first is used by the compila-
tion system JastAdd [7] to construct so called .ast files that specify an abstract grammar.
The complex language is also used by JastAdd, but it handles so called .jrag files instead,
that are used to specify attribute rules.

9

1. Introduction

When we had the editors in place we did an evaluation to see if the inclusion of JavaRAG
actually had been worthwhile. Essentially everything that can be implemented through
JavaRAG is already supported in Xtext in some form, or can be implemented with only
Xtext functionality. It is mainly a question of how extensive the code has to be in order to
achieve the same results. So we had to evaluate how and when we should use JavaRAG
instead of only native Xtext to solve a problem. Some of the things we had to consider
when doing this were things such as performance, readability vs code size and extensibility.

The result of our case studies showed that JavaRAG could be integrated well with Xtext.
While by no means replacing all the standard Xtext functionality, JavaRAG could effec-
tively be used in tandemwith it to bolster some areas where Xtext would normally struggle
on its own. Specifically this concerns the semantic analysis of a language, and then usually
the more advanced parts of this analysis.

This report is divided into the following chapters: chapter 1 gives a general overview of
what the project is about, and in chapter 2 we discuss relevant background on abstract
syntax trees, Xtext, JavaRAG, and our case study languages. Chapter 3 describes how we
implemented the various coding-related parts of the project. In chapter 4 we present how
well JavaRAG integrated with Xtext, as well as the benefits of JavaRAG compared to only
using Xtext. Chapter 5 discusses alternative solutions and other tools. Finally chapter 6
summarizes the report and discusses future work.

10

Chapter 2
Background

There exists several language workbenches that can be used to develop DSLs with different
sets of available features depending onwhat framework is used. Examples include Spoofax
[2], EMFText [3] and Xtext [4]. Spoofax is based on the high-level SDF [8] grammar
formalism, containg features like syntax highlighitng and code folding. Error handling
and content assist can also be implemented using an extern language called Stratego [9].
Another language workbench, EMFText, is based on the the Eclipse Modeling Framework
(EMF) [10]. Currently there exists a collection of 100 concrete text syntaxes available on
the EMFText website, which can be used for further development or inspiration. Xtext
which is also based on EMF with the support for the majority of the features stated above.
It should be considered that the EMFText editor does not seem to be updated as frequently
as Spoofax orXtext. We choose to useXtext as our languageworkbench over the other ones
mentioned above due to it being most documented, maintained, and its tight integration
with Java.

2.1 Abstract Syntax Tree
An abstract syntax tree (AST) is the abstract syntactic representation of a program, where
each node in the tree corresponds to a language construct in the source code. ASTs are
often used by compilers and language workbenches to construct an internal representation
of a program that only contains the essential information of how the program’s source code
is structured. Figure 2.1 and 2.2 show an example of how source code could be represented
by an AST.

11

2. Background

1 if (a > b) {
2 a = a + 2;
3 } else {
4 a = a + 1;
5 }

Figure 2.1: Example code with AST representation in figure 2.2.

Figure 2.2: AST representation of the code in figure 2.1.

Figure 2.3 shows part of a simple grammar (in EBNF [11]) that covers the code in Figure
2.1. It should be noted that this grammar is very simplified and hard-coded to work as a
small example. It is written specifically to not need the more general productions an actual
grammar would have to represent something like an if-statement.

1 If -> "if" "(" Condition ")" Block ["else" Block]
2 Condition -> Expression Operation Expression
3 Block -> "{" Assign* "}"
4 Assign -> ID "=" Add
5 Add -> Expression "+" Expression

Figure 2.3: Grammar in EBNF form covering the AST in figure
2.2 with corresponding code in figure 2.1.

2.2 Xtext
Xtext is an open source framework based on the Eclipse IDE, used for developing pro-
gramming language editors. Functionality such as static analysis, syntax coloring, code
completion and an outline view can be implemented either by only using native Xtext tools
or by combining the functionality from the existing Xtext tools, or with external libraries.

12

2.2 Xtext

The Xtext grammar is defined by the user to describe the concrete syntax of a language and
how it is mapped to the AST, in Xtext referred to as the semantic model. An advantage
with the Xtext framework is that it automatically handles the creation of the AST and
creates corresponding Java classes to store the AST with defined rules for each class. The
generation of the AST is executed by EMF, which provides code generation support for
building tools and applications based on structured data models. The grammar consists of
rules for each language construct, and for each rule an EMF interface and class is generated
by Xtext. The generated fields for each feature defined by the rules are combined with
getters and setters. Figure 2.4 shows the grammar production for the if-statement from
the first line of code in figure 2.3. In figure 2.5, the corresponding generated interface is
shown, presenting the generated methods for the If production.

1 If:
2 ’if’ ’(’ condition = Condition ’)’
3 block = Block
4 (’else’ elseBlock = Block)?
5 ;

Figure 2.4: The Xtext grammar production for the if-statement
described in figures 2.1, 2.2 and 2.3.

1 // Note that all language construction classes inherits from
EObject, which is the root type of all the modeled objects

2 public interface If extends EObject
3 Condition getCondition();
4 Block getBlock();
5 Block getElseBlock();
6 void setCondition(Condition value);
7 void setBlock(Block value);
8 void setElseBlock(Block value);
9 {

Figure 2.5: The generated interface for the If production de-
clared in figure 2.4.

After defining the grammar or later modifying it, theModelingWorkflow Engine (MWE2)
must be run to generate an ANTLR parser and EMF classes. ANTLR [12] is a LL(*) parser
generator used widely and by Xtext to build languages, tools and frameworks. MWE2 is
a generator used by Xtext to generate classes and corresponding methods, and derive an
ANTLR specification to create the AST. The generated code is placed in the source folder
src-gen, in which nothing should be modified, because everything in the folder will be
overwritten by the next generation.

13

2. Background

2.2.1 Xtend
By default, several of the files in Xtext are written in Xtend [13], a statically typed language
extending Java, with a focus on more concise syntax. Xtend also supports functionality
such as type inference, extension methods, lambda expressions and operator overloading.
In figure 2.6 we can see the difference in creating an ArrayList in Java versus Xtend.
The main difference is the use of var in Xtend and defining the type of the ArrayList
is optional since Xtend has type inference.

1 //Create an ArrayList in Java
2 ArrayList<Integer> myList = new ArrayList<Integer>();
3

4 //Create an ArrayList in Xtend
5 var ArrayList<Integer> myList = new Arraylist<Integer>()
6

7 //or with type inference in Xtend
8 var myList = new ArrayList<Integer>()

Figure 2.6: Some differences for variable declarations in Java and
Xtend.

2.3 JavaRAG
JavaRAG [6] is a Java library based on RAGs supporting computations of static properties
in an AST, and can be attached to an AST if the nodes in the tree are based on Java. The
most common use of RAGs is for developing modular extensible compilers and program-
ming analysis tools.

Figure 2.7: Illustrates the connection between an AST and
JavaRAG, where the information from the AST is passed along
to JavaRAG with the help of a TreeTraverser.

14

2.3 JavaRAG

Figure 2.7 gives a general overview of how JavaRAG operates. The AST, in our case con-
sisting of EObjects generated from Xtext, that we want to add RAG functionality to is
given to a so called TreeTraverser. The TreeTraverser retrieves information from the AST
and passes it to JavaRAG, which then calculates its attributes from the AST information
and stores it in its own data structures.

The method checkConditionIsBool in figure 2.8 illustrates how JavaRAG can be
used by Xtext’s error checking.

1 def checkConditionIsBool(If stmt){
2 // The line below retrieves JavaRAG information
3 val evaluator = getEvaluator(stmt)
4 val isBool = evaluator.evaluate("conditionIsBool", stmt)
5 // Give an error if "isBool" is false...
6 }

Figure 2.8: A simple check using a JavaRAG attribute to check if
the condition in an if-statement is valid (if it is a boolean value).

The same kind of attributes are used in JastAdd and JavaRAG, attributes are defined by
equations and can be synthesized or inherited. A synthesized attribute is annotated as
@Synthesized and an inherited attribute as @Inherited, making it clear for the
evaluator how to evaluate an attribute. @Cached attributes perform caching to avoid
unnecessary recalculations. The @Circular attribute may depend on itself and is eval-
uated through a fixed-point iteration. JavaRAG and JastAdd use the same algorithm [14]
to check circular attributes, with a minor modification in JavaRAG to increase the evaula-
tion efficiency. In figure 2.9 we can see how attributes are declared in JavaRAG, with an
illustration of its corresponding AST in figure 2.10.

1 public class NameAnalysis extends NameAnalysis.Interface>
extends Module<T> {

2 public interface Attributes {
3 @Inherited ClassDeclaration parent(Child self);
4 @Inherited Declaration lookup(Child self, String name);
5 @Synthesized String name(ClassDeclaration self);
6 @Synthesized String name(Child self);
7 }
8

9 // ...
10 }

Figure 2.9: Example code showing how attributes are declared in
JavaRAG. Corresponding AST representation is shown in figure
2.10.

15

2. Background

Figure 2.10: AST representation of the code in figure 2.9.

2.4 Case study
To evaluate how well JavaRAG could be integrated with Xtext, we implemented editor
support for two languages as our case study. Both languages are used by JastAdd [7], a
Java based meta-compilation system that supports RAGs. The first language is used for
handling .ast files while the other one is used for .jrag files.

2.4.1 The simple language:
JastAdd ASTs

The .ast language is relatively small, which is the main reason we chose to implement it
as the first step of the thesis. It would give us a good opportunity to test the feasibility of
using JavaRAG instead of pure Xtext on something smaller, instead of starting to work on
the main attribute grammar part of JastAdd immediately. The usage of this language is to
specify an abstract grammar by declaring attributes in AST classes. In figure 2.11 we can
see an example of an abstract grammar, and figure 2.12 shows a more detailed example of
what a class declaration consists of.

1 abstract A;
2 B : A;
3 C ::= B [E];
4 D : C ::= B;
5 E ::= <myNumber:Integer> myList:C*;
6 F ::= /G/;

Figure 2.11: Example of AST code.

16

2.4 Case study

Figure 2.12: A Class declaration in the simple language.

2.4.2 The complex language:
JastAdd aspect modules

An object-oriented representation of the AST combined with the use of attribute grammars
is the base of JastAdd. Attributes can be defined as synthesized or inherited, depending on
if the information should be propagated upwards or downwards in the AST. The equation
of a synthesized attribute is defined in the same node as the attribute, while inherited
attributes are defined in a child node but the corresponding equation is in an ancestor. The
user can reorganize the code into modules for reuse and composition. JastAdd supports
many different attribute declarations, some of which are shown in figure 2.13.

1 aspect ABC {
2 syn String A.x() = "myString";
3 syn nta Integer D.w() = 3;
4 syn Integer A.y();
5

6 eq A.y() = 1 + 2;
7

8 inh C B.z();
9

10 eq A.getB().z() {
11 return getC();
12 }
13

14 coll LinkedList A.c();
15

16 String myString = "Hello";
17 }

Figure 2.13: Example of an aspect module.

17

2. Background

18

Chapter 3

Implementation

In our thesis we developed three interactive editors: Two versions implementing a sim-
ple language (JastAdd AST language) where one only used Xtext functionality, and the
other making use of JavaRAG. The last editor covers a subset of a more complex language
(JastAdd aspect modules). Figure 3.1 shows a simple illustration of how the language
workbench Xtext works. The first step is to chose a programming language that the editor
is to be built for, and then construct a grammar that covers it. With the grammar com-
pleted, IDE features can be added until the editor has all the functionality that is required.
JavaRAG can then be added to certain parts of the IDE features to take advantage of RAGs.
This chapter will cover some of the main areas of each editor, and where applicable some
comparisons will be made between them.

Figure 3.1: A simplified structural overview of how Xtext and
JavaRAG interact.

19

3. Implementation

3.1 Pure Xtext editor for simple language
To get started with Xtext, we implemented an editor for the AST language used by JastAdd.
This would later be used as the baseline for what our second editor version should support.
We implemented full AST language support, including the following features:

• Static analysis
• Content assist
• Syntax highlighting
• Quick-fix
• Automated tests

Something that should be kept in mind is that we didn’t need tomake use of all the available
parts of Xtext when building our editors. For instance Xtext lets you specify a full code
generator for your language, but in our case this wasn’t needed, as we can simply run the
code through JastAdd instead.

3.1.1 The Xtext grammar
The grammar used by Xtext to cover the simple language is very straightforward, and only
consists of 9 rules spread over 28 source lines of code. When JavaRAG was used in the
simple language this was increased to 12 rules and 39 source lines of code, but this was
mostly to introduce some abstraction for the rules. Generally the rules are only one line
long, and many of them are variations of the Child rule as seen in figure 3.2. The reason
for this is simply that the language to cover is small, and only really needs to be able to
declare classes and their potential child nodes.

1 Child:
2 Component | ListComponent | OptionalComponent |
3 TokenComponent | NTA
4 ;

Figure 3.2: Rule for the Child nodes in the Xtext grammar.

3.1.2 Static analysis
In Xtext, static analysis is implemented through a so called validation file. Every time in-
formation in the editor is changed, methods in this file that have the annotation “@Check”
and a parameter taking a class declared in the grammar, will be called. It should be noted
that if a @Check has a parameter of the type “Abc”, the @Check will be called for every
separate instance of “Abc” that was parsed from the source code.

20

3.1 Pure Xtext editor for simple language

Having several instances calling time-consuming @Checks every time something changes
in the editor might however put a heavy strain on performance. An alternative can then be
to add a parameter to the @Check, informing the editor to only run it on certain events.
The available parameters areFAST,NORMAL orEXPENSIVE, whereFAST is the standard
option and NORMAL only performs @Checks when the file is saved. In our implemen-
tation we did not make use of these parameters, as most of our @Checks are not very
demanding, and not getting any feedback on errors apart from when a file is saved restricts
the usefulness of a @Check drastically.

1 @Check
2 def checkAbcForAnError(Abc abc) {
3 // Perform some evaluation of an aspect of abc...
4 if (error was found) {
5 error(...)
6 }
7 }

Figure 3.3: Example structure for a @Check.

Figure 3.3 shows an example of how one of our @Checks is structured. The parameter has
information specified from the grammar, and in the body of the @Check-method some
evaluation is made to find errors or warnings. If an error or warning is found, it is reported
to the user through corresponding methods, error(...) or warning(...). Generally we fol-
lowed the norm in software-testing to only test for one thing per test.

The list below gives an overview of what kind of @Checks we have implemented for
this editor, and in figure 3.4 there are some code examples that violates a few of these
@Checks.

• Classes and child nodes have correctly defined names
• Classes do not depend on themselves, i.e. circular inheritance
• Child nodes have correctly defined types, and do not extend their parent class

Something we had to keep in mind when implementing the static analysis was that the
validation file is written in the Xtend language which has a few quirks that we had to
work around. The most notable example is how Xtext makes use of null when assign-
ing default values to certain objects, and how Xtend handles these null values in some
situations. If a value in an object from the grammar is not initialized, like in the case of
an optional value, it gets assigned null, leading to frequent null-checks in the validation
class. As a special case String variables get assigned an actual String with the value
“null” if uninitialized, so checks for those values have to use an equals method instead.

21

3. Implementation

Figure 3.4: Examples that violate the validation rules for the sim-
ple language using pure Xtext.

3.1.3 Syntax highlighting
The practical benefits of syntax highlighting is the immediate feedback regarding the syn-
tactic correctness, achieved by customizing code in different visual styles, leading to in-
creased readability overall. Important keywords in the language are easier to distinguish
and recognize, due to being highlighted in a customized color.

Our implementation of the syntax highlighting functionality is separated into two parts,
semantic and lexical highlighting [15]. Highlighting customization is achieved by pro-
viding an implementation of the interface ISemanticHighlightingCalculator,
where the AST generated by Xtext is traversed and selected node elements are highlighted
in a custom style. In figure 3.5 the implementation for highlighting an element of type
ClassDeclaration is shown, where the AST generated by Xtext is traversed and if
the node is of type ClassDeclaration, highlighting is performed.

22

3.1 Pure Xtext editor for simple language

1 public class AstHighlightingCalculator implements
ISemanticHighlightingCalculator {

2

3 public void provideHighlightingFor(XtextResource resource, ...)
{

4 INode root = resource.getParseResult().getRootNode();
5 for (INode node : root.getAsTreeIterable()) {
6 if (node.getSemanticElement() instanceof

ClassDeclaration) {
7 // Highlight the node of type ClassDeclaration
8 } else if (...)
9 // more cases for different highlighting

10 }
11 }

Figure 3.5: Shows how the AST is traversed and a selected ele-
ment is highlighted.

The configuration of a style customization is defined in a separate class and performed
by implementing the interface IHighlightingConfiguration, which defines the
style of a selected node element. The defined style is then assigned an unique ID, which is
called in the semantic highlighting implementation when a selected node element should
be highlighted. Below in figure 3.6 an example of the syntax highlighting function is illus-
trated for a short code example. Note that the child nodes B and C in the class declaration
E are highlighted differently because E has a superclass D which has the same child nodes
B and C.

Figure 3.6: Illustrates syntax highlighting for the simple lan-
guage.

23

3. Implementation

3.1.4 Content Assist
Content assist, or auto complete, is a feature providing the user with valid code suggestions
in the actual context of how to complete partially typed code. Xtext auto-generates a basic
content assistant with core functionality only using suggestions from existing keywords in
the grammar language. We added more suggestions by extending the class Abstrac-
tAstProposalProvider and defining corresponding methods for each element in
the grammar. Additionally we changed for which contexts the content assist gave sugges-
tions, for instance so that it did not always present every possible option no matter what
you were writing.

Our content assist helps the user to create a new grammar element by providing the user
with a skeleton of the intended declaration with standard names, where the user then can
change the standard names to their liking. Keyword suggestions are shown in the right
context with the exception of bracket, assignment and list symbols. Proposals are given
for existing declarations if the user wants to reuse them later. The autocomplete is accessed
via the keyboard shortcut Ctrl + Spacebar and an example of it in use is shown in figure
3.7.

Figure 3.7: The content assist feature being used in the editor.

24

3.2 Combined Xtext/JavaRAG
editor for simple language

3.2 Combined Xtext/JavaRAG
editor for simple language

To evaluate JavaRAG, we made a copy of the editor we already had, but changed the
validation file to make use of JavaRAG instead. Originally we had intended to make the
validation functionality completely equal between the two variants, however, compared
to the first version we ended up fixing some issues and adding some functionality. IDE
features that was added, compared to the pure Xtext versions was: formatting, outline
view and auto generation of classes. While the editors are no longer completely equal, the
evaluation of how well JavaRAG could be integrated is still valid.

3.2.1 JavaRAG utilization
As stated above, our goal was to port over the static analysis from the original editor and
implement the equivalent functionality again while taking advantage of JavaRAG. We had
two ways of doing this, either by simply taking the code from the @Checks in the first
editor and put them in attributes in JavaRAG, or by generally changing the way the calcu-
lation was made by using RAG concepts.

Overall we had no significant problems with moving, or adding new, code to the JavaRAG
file or calling this code from the validation class. We did however notice that while our
goal was to use JavaRAG as much as possible, Xtext had already done a lot of the work for
us. For instance we could have added attributes for all the important information such as
names of objects or their types, and accessed these using JavaRAG. However most basic
information like this was already available through simple method calls in Xtext, as any
decent grammar will have parsed this information into the objects from the code it is given
through the editor. This led us to opt for using the already available Xtext methods a lot of
the time when possible, since there was no real point investing time into writing JavaRAG
code that would always be inferior to the built in Xtext functionality. Instead we focused
on trying to use JavaRAG for things that would be more difficult to do in Xtext, and that
could not be solved through a simple method call. This mainly meant that we changed the
implementation of the@Checks for correct declarations of names and circular inheritance.
We also extended @Checks for valid names of inherited child nodes and classes or child
nodes using keywords as names. Figure 3.8 shows some examples of code that violates
the changed/new @Checks.

25

3. Implementation

Figure 3.8: Examples that violate the validation rules for the sim-
ple language when both JavaRAG and Xtext are used.

3.2.2 Outline view
The outline view is located at the right-hand side of the editor, helping the user navigate
through the model by being represented as a hierarchical view, where the elements are
sorted in the order they are typed into the editor. By selecting an element in the outline
view the corresponding element in the editor is highlighted. The outline view is cus-
tomized by implementing an IOutlineTreeProvider, where each node in the tree
is an instance of an IOutlineNode.

Since the calculations of the outline nodes are done on demand, the UI will show expand-
able nodes that do not actually have any child nodes if selected, so called hidden nodes.
We solved this by overriding a specific method for each declaration that could possibly
have a child node, which caused them to be revealed and represented in the outline view
in a correct way. In figure 3.9 we can see the outline view feature from our editor.

Figure 3.9: A code snippet on the left and its outline view repre-
sentation on the right.

26

3.3 Combined Xtext/JavaRAG
editor for complex language

3.2.3 Formatting
The formatting feature in our editor is accessed via the keyboard shortcut Ctrl + Shift +
F, rearranging the code in the editor for improved readability. The implementation of this
feature is achieved by extending the class AbstractDeclarativeFormatter and
specifying actions that should be applied for each declaration in the grammar language.
We chose to have a newline after each declaration in the editor, unnecessary white space
in a declaration is removed and the line indentation of each line is set to zero.

3.3 Combined Xtext/JavaRAG
editor for complex language

Compared to the simple language versions, the complex language editor is significantly
larger in scope and more complex, due to a much more extensive grammar language. In
this editor we combined native Xtext and JavaRAG functionality more freely than in the
simple language editor. RAG concepts were utilized more with the focus of plugging the
gaps where using only native Xtext would be clunky or convoluted, while pure Xtext was
used for the more straightforward @Checks. As mentioned in section 3.2.1 Xtext makes
it easy to access information directly related to a given object. However, while it is possi-
ble to then reach most other objects by traversing the AST, writing the code for this will
involve quite a few loops and conditions to access information, and of course, the time it
will take to go through all these loops and conditions only increases as files become larger.
By contrast, with JavaRAG we can instead use Collections to gather information in a
node that is easily reachable by objects that need it. A Collection is a type of attribute
that combines values defined through another type of attribute called a Contribution,
that can be spread throughout the AST [16].

The aim for this editor was never to fully cover all of JastAdd, as this would require a
significantly larger time investment. Our goal was rather to build an editor that could
handle the parsing of JastAdd and contain error handling and other editor features for a
smaller core part of the language. Naturally this core needed to contain enough to make
the addition of JavaRAG worthwhile, and also make room for possible additions, so that
a larger and eventually fully featured version could be implemented.

3.3.1 The Xtext grammar
JastAdd aspects contain RAG-specific constructs as well as plain Java code, and in section
2.4.2 in figure 2.13 we can see an example of how they are used. One of the main reasons
why we used Xtext in this thesis was specifically since it lets us import functionality for
Java-related things like import sections, standard types, classes and interfaces. We do this
by importing Xbase [17], a statically typed expression language for Java, into the Xtext
grammar. Unfortunately, like the other options we have looked at, Xbase does not support
the use of pure Java code blocks. So we had to do a compromise where the code blocks
that in JastAdd would normally be Java code, are replaced with blocks of Xbase code.

27

3. Implementation

The Xtext grammar for the complex language consists of 22 rules spread over 112 source
lines of code, compared to the simple language grammar that is described in section 3.1.1.
Considering that this grammar is so much larger than the ones used in the other editors, we
had to make more extensive use of the abstract functionality in Xtext’s grammar language.
Otherwise the code needed for the static analysis, and to an extent JavaRAG, would quickly
have started to get filled with several non-trivial methods size-wise that would have to be
more or less duplicated multiple times.

3.3.2 Static analysis
Due to the more complex nature of the JastAdd grammar, the code used for the static anal-
ysis has in turn increased. Not only because there are more different things that can be
analysed now, but also since some types of analysis now require significantly more code
to perform in relation to the simple language counterpart. An example of this would be
the analysis needed to check for duplicate names in the complex language. The reason for
this is that more checks are needed in order to make sure there are no duplicate names,
since there are more types of named entities in the complex language.

Because of the time it would take to fully implement the static analysis for JastAdd, we
decided that for this thesis we would focus on implementing validation rules covering a
basic core of the aspect language. The main reason being that we don’t need a full imple-
mentation of JastAdd to evaluate how helpful JavaRAG has been in the implementation of
the editor. The more important rules implemented in the static analysis include:

• Return values are of correct type
• Equations must have connected attributes
• Synthesized attributes must have an equation
• Errors for duplicate names

To be a bit more specific about the use of JavaRAG, 9 of the 19 @Checks rely on JavaRAG
to function. It should also be kept in mind that several of the pure Xtext @Checks are
fairly simple and are only a few lines in length, and include style warnings for attribute
names etc.. From the list of rules described before, it is only the @Check for return values
that uses pure Xtext, and the other three must have access to information that is retrieved
with JavaRAG. In figure 3.10 there are some examples of code that violate rules in the
previously mentioned list of @Checks.

28

3.3 Combined Xtext/JavaRAG
editor for complex language

Figure 3.10: Examples that violate the validation rules for the
complex language.

3.3.3 Integration with Java
In the complex language ordinary Java code can be used to construct attributes, but also
independently in an aspect module. In figure 3.11 we see an example of how Java code
can be used to determine the return type (String) of the syn attribute.

1 syn String A.b(){
2 var myString = "Hello"
3 return myString
4 }

Figure 3.11: Example code showing the use of Java and Xbase in
the complex language.

To be able to use Java code in our language we used Xbase, a programming language that
can be embedded and extendedwithin DSLswritten in Xtext. A JVM (Java VirtualModel)
model had to be inferred, which means that we implemented the IJvmModelInferrer
interface and defined where Java code should be allowed. For the code example in figure
3.11 we specified that the return type of the syn attribute is allowed to be a Java type
and inside the block. Each attribute in a Java class is generated as their own classes in the
src-gen folder, and for the code example above a class will be generated with the name
Syn_A_b.java. The generated class consists of methods, getters, setters and fields
specified in the attribute construction. As we mentioned in section 3.3.1 the consequence
of using Xbase is that pure Java code cannot be used inside blocks, instead Xbase code
must be used, which is similar to Java.

29

3. Implementation

30

Chapter 4
Evaluation

In this chapter we will evaluate how well the tools we used for this thesis have performed,
both from the perspective of what they have allowed us to do as well as how effectively we
have used them. To start with we will describe our experiences working with Xtext, and
how suited it has been for the task at hand. Then we will discuss how we combined Xtext
with JavaRAG. If it was as useful as we had initially hoped, and if it could be properly
taken advantage of to overall perform better than a pure Xtext implementation. After this
we will give our thoughts on the state of our editor(s), how well featured they are and
considerations in regards to performance and extensibility. Finally we give a general look
at the size of the project’s code base.

4.1 Xtext
We had no previous experience with using programs like Xtext before starting this thesis,
so the workflow needed to make Xtext function in Eclipse was our first real obstacle. As
there are so many different parts that can be used in Xtext, not all of them even necessary,
we had to make sure that we were working in the correct areas and that everything we put
into our code would function together with the other modules in Xtext. This led us to focus
on a subset of the available modules that we identified as necessary to make the editor run
in the first place.

Later we discovered that some problems could have been solved differently if we had used
other modules that were not needed at the start to make the editor function. For instance
we could have used the native Scoping module to make Xtext generally calculate what
objects had access to other objects. If properly implemented this would have let Xtext
handle most errors concerning unique names for classes etc. on its own. By comparison
we solved this by having special @Checks in the validation class directly. Several of the
modules would however remain unused as they were simply not related to, our outside,

31

4. Evaluation

the scope of this thesis. For example the Generator module would have served no real
purpose, as the system for code generation is meant to be JastAdd.

As was mentioned in section 3.1.2, the Xtend language, which is used in several Xtext
files, has a few traits that can take some time to get used to, in particular how it handles
null values. Having to make use of extensive null-checking might not be an appealing
solution, but it is not necessarily wrong. The problem we had was that another trait of
Xtend seems to be that under some circumstances NullPointerExceptions will be
blocked or ignored, and the program is allowed to keep running as if no exceptions were
thrown. In the case of a forgotten null-check this would often result in confusion as entire
methods or @Checks simply seemed to stop working for no apparent reason.

4.1.1 Integrating with JavaRAG
Because of the way Xtext creates several projects and then has them work together to ul-
timately construct the editor, we were at first worried that there might be some problems
adding JavaRAG on top of all the native Xtext functionality. However, when we found
where JavaRAG could be the most useful, it turned out to be surprisingly easy to integrate
it into Xtext.

One aspect of the JavaRAG implementation that is suboptimal is the performance. This
stems from that JavaRAG is dependant on Xtext’s generated AST for its calculations, so if
that AST changes, the JavaRAG information also has to be updated. The validation class is
similar to a JUnit class in that on some event, for Xtext that would be an editor-change, all
the methods marked with a certain annotation are run. The issue for the validation class
is that it has no equivalent to the @Before and @After annotations found in JUnit.
This coupled with that the JavaRAG information has to be updated on every editor-change
means that every single time wewant to make use of JavaRAG in a @Check, that @Check
has to recalculate all the JavaRAG information it depends on. While the implementations
we have worked on are small enough that this is not really a problem for us now, in the
future if this editor was to cover all of JastAdd, this could turn into a critical obstacle. We
have attempted a few solutions to this problem, including storing the Evaluator as a
member variable that was only updated once every time a change occurred in the editor by
using a "dirty" flag. While this might only have been an issue with our implementation,
this method did not work reliably. In the end we agreed on that while we likely could
implement some form of hack solution to only update the Evaluator once per editor-
change, it would be better to keep the code correct even if it means worse performance.
Finding an actually good solution to this problem is definitely something that would be on
the list of future work.

32

4.1 Xtext

Apart from the performance concerns, the addition of JavaRAG has generally felt like a
worthwhile one. We found that it can be used to move code out of the validation class and
into separate JavaRAG files, as shown in figure 4.1, if this actually makes the code easier
to read is a matter of personal preference. The main benefit we found for JavaRAG has
been the use of Collections. A Collection is an attribute that uses some form of
data structure to store important information, which when needed calls all of its connected
Contribution attributes to populate the data structure. This essentially lets us send
information across the program with ease as long as the Collection is declared on a
class that is always reachable, like the root-node of the program.

1 // IN VALIDATION FILE
2 def checkForCircularInheritance(ClassDeclaration classDecl) {
3 val evaluator = getEvaluator(classDecl)
4 if (evaluator.evaluate("cycleInSuperclassChain",

classDecl)) {
5 error(...)
6 }
7 }
8

9 // IN JAVARAG FILE
10 public boolean cycleInSuperclassChain(ClassDeclaration self) {
11 // True if self has a a cycle on its superclass chain

(actual method is 21 lines long)
12 }

Figure 4.1: Example of how JavaRAG can be used to refactor
out code as if a normal method call had been made, but with the
benefit of RAGs.

One of the main annoyances we had implementing parts of the simple language editor
using pure Xtext was that accessing data not directly linked to an object required loops
and conditions for often relatively simple checks. Here the Collections from JavaRAG
turned out to be a significant boon. Consider the following: we want to perform a check on
an attribute that requires the names of all other similar attributes, like when we want to see
if the attribute’s name has already been used. We have found three ways to do this. The first
and most brute force one being to use Xtext methods to cast a net covering every visible
object and then filtering out the attribute declarations we need. This works in something
smaller like the simple language editor when looking for duplicate names, but seems very
taxing otherwise. The second method is to crawl through the AST with standard loops and
conditions, which could look something like the code in figure 4.2.

33

4. Evaluation

1 def checkDuplicateAttributeNames(ABC abc) {
2 val model = EcoreUtil2.getRootContainer(abc) // Get access

to root-node
3 for (aspect : model.aspectElement) {
4 for (statement : aspect.statement) {
5 if (/*statement is in same namespace as ABC*/) {
6 if (statement.name.equals(abc.name) {
7 // If this happens twice, a duplicate has

been found, can for instance be done with
a counter

8 }
9 }

10 }
11 }
12 }

Figure 4.2: Apossible way that the AST could be crawled through
in order to find dublicate declarations of abc.

The third option is to use Collections. Figure 4.3 shows how we set this up, with the
list of attribute names being accessed simply by calling the "attributes" attribute. The
advantage that the third option using Collections has here is that it does not require any
kind of information filtering which will only get slower as the amount of code to process
increases. Instead there is a direct connection between the data structure to populate, and
the entity possessing the information that the data structure wants. While it takes some
overhead to set the Collection up initially, if done properly it is also easy to reuse
between @Checks that need the same information.

34

4.1 Xtext

1 public interface Interface {
2 // Declares the Collection in the root-node (Model)
3 @Collected List<Declaration> attributes(Model self);
4 }
5

6 // Mainly decides what kind of data structure to use
7 public CollectionBuilder<List<Declaration>, Declaration>

attributes(Model self) {
8 return new CollectionBuilder<List<Declaration>,

Declaration>(new ArrayList<Declaration>());
9 }

10

11 // Declares a Contribution for all objects of the type "ABC"
12 public void attributes(ABC self, Collector<Declaration> col) {
13 Model node = (Model) EcoreUtil2.getRootContainer(self);
14 col.add(node, self);
15 }
16

17 // Other Contributions for types also considered to be
attributes

Figure 4.3: All the necessary code to set up a Collection that
contains a list of all the declared attributes in the program.

JavaRAG also made it possible to implement a lookup pattern [5] to find multiple decla-
rations of classes etc.. This pattern basically means that an object it is invoked on "looks
up" in the AST to see if there are any objects that match a certain criteria, a name for
example. In the case of a match the matched object is returned, and if this isn’t the same
object the lookup was invoked on, a duplicate has been found. See figure 4.4 for a simple
code example of the "lookup pattern".

35

4. Evaluation

1 public void methodA() {
2 int a;
3 if (...) {
4 int a;
5 }
6 }
7

8 public void methodB() {
9 int a;

10 }

Figure 4.4: Illustrates the lookup pattern with Java code. If the
lookup is invoked on the a inside the if it will "look up" in the
AST and ask methodA if there are any declarations with the
name a there, which there is. If the lookup had been done on the
a in methodB instead the lookup would not find either a from
methodA, since methodB will not find anything in itself, and
Java methods cannot look in each other. See figure 4.5 for a more
graphical representation.

Figure 4.5: A simplified AST for the code in figure 4.4

36

4.2 Editors

4.2 Editors
As mentioned in the start of chapter 3 we implemented two separate editors for the simple
language and one editor for the complex language. Our objective with this thesis was to
evaluate howwell JavaRAG integrated with Xtext, therefore we utilized JavaRAG as much
as possible where we found it suitable compared to native Xtext functionality. The main
difference between the two editor versions of the simple language is in the static analysis
part, where we took advantage of JavaRAG functionality to implement our validation rules.

4.2.1 Analysis
The syntax highlighting, content assist, formatting and outline view modification features
in our editor(s) were implemented with the functionality offered by Xtext. The reason be-
ing that these features did not seem to benefit from functionality offered by JavaRAG, and
so we felt that native Xtext was more appropriate to use here. This is because the methods
in these features do not need access tomore information than is declared in the grammar for
any object, and this is easily retrieved using Xtext methods, making JavaRAG superfluous.

While Xtext offers good support for accessing information of a specific node object, the
node can have a parent node and zero or multiple child nodes connected to it. Accessing
information that is connected to a node located further down or up in the hierarchy can be
demanding depending on how far away the information is located. For example consider
a node which has a list of child nodes, and each of these children in turn has children, and
so on. If we want to access an object located a bit further down in the hierarchy, we have
to first retrieve the child list from the start node, iterate through that list and find our next
connection node. Wewill then have to repeat this procedure until we find the node we were
actually searching for. If now each list is of size n, then at worst we have to iterate through
n elements in a list and this procedure is done at worst m times, where m is the number
of steps we iterate up or down in the hierarchy. The complexity or the performance won’t
be an issues if m is a small number, indicating that we access an object located near the
start node. This is not quite optimal, and therefore when more demanding and complex
property access is needed, we felt is was better to utilize JavaRAG Collections as
described in section 4.1.1.

As stated in section 3.3.3 we used Xbase to be able to use Java code in the complex
language, which resulted in classes being auto-generated for each attribute construction.
There exists a lot of space for optimization and customization of this functionality, what
should be generated and how it can be used. We noticed a minor bug with this function-
ality on the current Xtext version, where we sometimes had to refresh the src-gen project
folder to display the newly auto-generated classes, but apart from that the function worked
well.

37

4. Evaluation

We tested how well our editor for the simple language could handle larger files by using
input from ExtendJ [18], which is an extensible compiler for Java. The largest AST file
was in the range of 500 lines of code and our editor handled it without errors, noticeable
bugs or significant lag. The aspect editor was tested manually, and checked to see if the
code was valid or not according to the syntax. Due the use of Xbase inside the expression
blocks rather than Java, it was difficult to use existing aspect files for testing.

4.3 Lines of code
We made a quantitative comparison in the form of lines of code with the evaluation tool
Cloc [19]. Cloc counts SLOC (Source Lines of Code), i.e., the amount of code excluding
blank lines and comments of a chosen programming language. In table 4.1 we can see the
amount of code for the implementation of the static analysis for both editors of the simple
language. An additional file called NameAnalysis in this case, has to be included in the
JavaRAG version, which contains the JavaRAG functionality. Comparing the lines of code
for the two versions of the simple language, we can see that the one including JavaRAG
is almost twice as large. The reason for this size difference is that JavaRAG needs some
setup code, which is approximately 70 - 100 SLOC. Another reason is that the combined
Xtext/JavaRAG version contains a fewmore implemented features than the pure Xtext ver-
sion, which may result in the versions not being relatively comparable. The intention is to
show an approximate difference in SLOC when JavaRAG is added.

File Code Total
Pure Xtext Validator 230 230
Combined Xtext/JavaRAG Validator 254

NameAnalysis 201 455

Table 4.1: Source lines of code for the simple language editor.

Table 4.2 shows the lines of code for the static analysis implementation of the editor for
the complex language. The Validator file is understandably larger compared to the simple
language editor, but the Nameanalysis file is also noticeably smaller. This is mainly be-
cause the Nameanalysis code uses JavaRAG very differently for the two languages. In the
simple language editor a "lookup pattern" is used, while in the complex language editor
Collections are used more extensively, and in general Collections take less space
than the lookup pattern. The reason why we used different approaches was that during the
progression of our thesis work we learned more about how JavaRAG could be used, which
resulted in that the JavaRAG functionality was better utilized in the complex language ed-
itor.

File Code
Validator 433
NameAnalysis 142

Table 4.2: Source lines of code for the complex language editor.

38

4.3 Lines of code

An absolute value of the amount of code for all the files that we implemented for respective
editor is shown in table 4.3 and in figure 4.4 the number of SLOC is shown for each feature
in respective editor. This gives us a brief overview of the size for the implemented editors.
Xtext generates several files when a Xtext project is created, which are not included in our
measurement.

Editor Code
Simple language with pure Xtext (1) 975
Simple language with Xtext/JavaRAG (2) 1591
Complex language with Xtext/JavaRAG (3) 1230

Table 4.3: Total source lines of code for respective editor.

Feature 1 2 3
Grammar 28 39 112
Static analysis 230 455 575
Syntax highlighting 187 204 -
Content Assist 64 64 -
Quick-Fix 66 157 -
Tests 400 524 -
Formatting - 51 110
Outline View - 77 121
JVM Inferrer - 20 312

Table 4.4: Source lines of code for each feature in respective edi-
tor.

39

4. Evaluation

40

Chapter 5
Related Work

Today there exists a number of different DSL language workbenches to develop DSLs with
both simple and more advanced features. Below we will give a brief overview of a set of
academic efforts that have been published in this domain, and also how RAGs can be ap-
plied and used in different areas.

Bettini, Stoll, Völter, and Colameo, 2012 [20] proposed several approaches and tools for
implementing type systems in Xtext. Themain purpose of their evaulation was to conclude
the flexibility, required effort and usability of respective approach and tool. Their compar-
ison was based on three alternative approaches to implement type systems in Xtext, named
XSemantics [21], Xtext Type System (XTS) [22] and Xbase. The conclusion of their study
stated that Xbase was very useful when the DSL was tightly integrated with Java, because
of the full integration support with the Java type system. Meanwhile XSemantics and
XTS provided a framework and a DSL to make the type system implementation concise
and more maintainable, regardless of the DSL had any connection to Java or not.

Buerger, Karol, Wende and Assmann, 2010 [23] approached a concept to integrate meta-
modelling languages like EMF with RAGs. Because of the lack of support for formal se-
mantic in metamodelling they developed JastEMF. JastEMF is a tool used for specifying
the semantics of an EMF metamodel by using JastAdd RAGs. Given an EMF metamodel
the semantics are specified by integrating generated code from JastAdd and EMF, with
the help of JastAdd RAGs. Their approach confirms that RAGs can be integrated with
meta-models such as EMF. JastEMF differs from Xtext in such way that it is centralized
around adding RAGs to specify semantics for a meta-model, while in Xtext RAGs are not
added directly to the meta-model. The development of JastEMF is based on using gener-
ated code from JastAdd, which is a drawback in such way that if JastAdd is updated the
current JastEMF version will not work properly.

41

5. Related Work

Name Binding Language (NaBL) [24] is Spoofax’s own DSL, used for the specification of
name bindings and scope rules. Name binding is the relation between definitions and ref-
erences in a language, while scoping rules are used to restrict the visibility of a definition.
NaBL uses an algorithm to automatically generate IDE features such as error marking for
unresolved references, constraint checks and code completion. Compared to the devel-
opment of our editors and the integration of Xtext and JavaRAG, some of these features
were manually implemented and others automatically included by Xtext. Error marking
for unresolved references was automatically included as a feature by Xtext, while the code
completion feature was implemented from scratch.

42

Chapter 6
Discussion and conclusion

This thesis work was based on the idea of combining the JavaRAG library with the lan-
guage workbench Xtext and evaluating the benefits of this combination. This was done
largely in two steps. First two relatively small editors were implemented for the .ast files
used by JastAdd, where one of them took advantage of JavaRAG to solve part of the im-
plementation, while the other did not. The second step was to make an editor for a more
advanced language used by .jrag files in JastAdd that would be more able to take advantage
of the features offered by JavaRAG.

During the first stepwe did an evaluation of the feasibility of integratingXtext with JavaRAG.
This was done so that when we started working on the editor for the complex language we
could be assured that problems encountered generally would not stem from trying to make
use of JavaRAG. While we had initially been worried about adding JavaRAG function-
ality into the Xtext project structure, this turned out to be a non-issue. Instead we were
surprised at how few problems we had when making use of JavaRAG. When issues with
JavaRAG did arise, it was mostly contained within the JavaRAG files, and not concerning
the combination of JavaRAG and Xtext. While we were expecting that JavaRAG would
mainly be used for the static analysis, we also considered other areas where it might be
useful, like the content assist or quick-fix features. We did not find that JavaRAG offered
any better solutions in these areas than pure Xtext however, so in the end JavaRAG was
used exclusively in the static analysis.

After we had established that JavaRAG could be used by Xtext during the first part of the
thesis, we started working on the editor for the complex language, where we found more
clear advantages of JavaRAG. In the first two smaller editors most of the functionality we
needed could be covered by Xtext without any problems, but in the third one this started to
change. Xtext had problems with accessing certain data easily when performing the error-
checking, but JavaRAG offered solutions with more readable and concise code assuming
the reader knows how RAGs work. Up until this point the addition of JavaRAG had felt

43

6. Discussion and conclusion

like nice a concept, but we had struggled to find any particular aspect where it felt clearly
superior to a solution offered by Xtext, but the data-access methods offered by RAGs had
now finally changed this.

In the end we can with confidence conclude that JavaRAG generally functions well with
Xtext, and while maybe not immediately useful for simple problems concerning error han-
dling, it makes a good addition for more complex tasks. The main challenge when utilizing
JavaRAG is finding where and how to use it to get a better solution than with standard Xtext
functionality.

6.1 Future work
There are several parts of Xtext that we did not use when constructing our editors, and one
of them is the code generator. While we did not want to implement this from scratch, we
would want to connect it to JastAdd, for making the use of the editors more seamless than
having to compile the code separately. Another feature that has been mentioned earlier in
section 4.1 is Scoping, which if implemented would have the potential to make some of
the code in the validation class simpler.

Naturally the parts that we have implemented can be further extended as well, for instance
the validation for all the editors so that more advanced errors can be found. The JastAdd
editor’s syntax highlighting, content assist and quick fix features could also be extended
to not only cover the most basic cases.

A limitation with developing the editor for the complex language, mentioned in section
3.3.1, was the lack of support for pure Java code in blocks and expressions, even though
Xbase was used which is based on Java. A future improvement to our editor is to imple-
ment support for pure Java code. To do this a plugin named Jbase [25] can be used instead
of Xbase. Jbase is a variant of Xbase, able to handle pure Java code in expressions and
statements. The Jbase plugin is currently in a development state and only supports older
Xtext versions, with the porting to newer Xtext version underway. The transition from
Xbase to Jbase in our implementation would not require much work due to Jbase’s sim-
ilarities with Xbase. The required work would be managing the Jbase installation, such
as a correct classpath setup as well as in the grammar language file changing the top line
from:

1 grammar se.lth.cs.jastaddxtext.aspect.Aspect with Xbase.Xbase

to:

1 grammar se.lth.cs.jastaddxtext.aspect.Aspect with jbase.Jbase

More details for using Jbase with Xtext can be found in an article [26] written by Bettini
in 2015.

44

Bibliography

[1] Lorenzo Bettini. Implementing Domain-Specific Languages with Xtext and Xtend.
Packt Publishing, 2013.

[2] MetaBorg Software Foundation. Spoofax, 2006.
http://www.metaborg.org/spoofax/meta-language.

[3] Christian Wende, Mirko Seifert, Florian Heidenreich, Sven Karol and Jendrik Jo-
hannes. Emftext, 2007. http://www.emftext.org/index.php/EMFText.

[4] The Eclipse Foundation. Xtext, 2009. https://eclipse.org/Xtext/.

[5] Görel Hedin. Reference attributed grammars. Informatica (Slovenia), 24(3), 2000.

[6] Niklas Fors, Gustav Cedersjö, and Görel Hedin. Javarag: a java library for reference
attribute grammars. In Proceedings of the 14th International Conference on Mod-
ularity, MODULARITY 2015, Fort Collins, CO, USA, March 16 - 19, 2015, pages
55–67, 2015.

[7] Görel Hedin. An introductory tutorial on jastadd attribute grammars. In Generative
and Transformational Techniques in Software Engineering III - International Sum-
mer School, GTTSE 2009, Braga, Portugal, July 6-11, 2009. Revised Papers, pages
166–200, 2009.

[8] Mark van den Brand, Paul Klint, Jurgen Vinju. The syntax definition formalism sdf,
2007. https://en.wikipedia.org/wiki/Syntax_Definition_Formalism.

[9] Spoofax Language Workbench. Stratego, 2007. http://strategoxt.org/.

[10] The Eclipse Foundation. Eclipse modeling framework - emf, 2009.
https://eclipse.org/modeling/emf/.

[11] Niklaus Wirth. What can we do about the unnecessary diversity of notation for syn-
tactic definitions? Commun. ACM, 20(11):822–823, November 1977.

45

BIBLIOGRAPHY

[12] ANTLR/Terence Parr . Another tool for language recognition - antlr, 1992.
http://www.antlr.org/.

[13] The Eclipse Foundation. Xtend, 2011. http://www.eclipse.org/xtend/.

[14] Eva Magnusson and Görel Hedin. Circular reference attributed grammars - their
evaluation and applications. Sci. Comput. Program., 68(1):21–37, 2007.

[15] The Eclipse Foundation. Syntax highlighting in xtext, 2009.
http://www.eclipse.org/Xtext/documentation/310_eclipse_support.html.

[16] John Tang Boyland. Descriptional Composition of Compiler Components. PhD
thesis, 1996. AAI9722877.

[17] The Eclipse Foundation. Xbase, 2010. https://wiki.eclipse.org/Xbase.

[18] Torbjörn Ekman and Görel Hedin. The jastadd extensible java compiler. In Proceed-
ings of the 22nd annual ACMSIGPLAN conference onObject-oriented programming
systems and applications, OOPSLA ’07, pages 1–18, New York, NY, USA, 2007.
ACM.

[19] A. Danial. Cloc — count lines of code, 2009. http://cloc.sourceforge.net/.

[20] Lorenzo Bettini, Dietmar Stoll, Markus Völter, and Serano Colameo. Approaches
and tools for implementing type systems in xtext. In Software Language Engineer-
ing, 5th International Conference, SLE 2012, Dresden, Germany, September 26-28,
2012, Revised Selected Papers, pages 392–412, 2012.

[21] Lorenzo Bettini. Xsemantics, 2012. http://xsemantics.sourceforge.net/.

[22] Lorenzo Bettini. Xtext type systems (xts), 2011. http://xtypes.sourceforge.net/.

[23] Christoff Bürger, Sven Karol, Christian Wende, and Uwe Aßmann. Reference at-
tribute grammars for metamodel semantics. In Software Language Engineering -
Third International Conference, SLE 2010, Eindhoven, The Netherlands, October
12-13, 2010, Revised Selected Papers, pages 22–41, 2010.

[24] GuidoWachsmuth, Gabriël D. P. Konat, and Eelco Visser. Language design with the
spoofax language workbench. IEEE Software, 31(5):35–43, 2014.

[25] Lorenzo Bettini. Jbase, 2015. https://github.com/LorenzoBettini/jbase.

[26] Lorenzo Bettini. Tutorial: Embedded java with xtext, 2015.
https://typefox.io/tutorial-how-to-embed-java-in-an-xtext-dsl.

46

Institutionen för Datavetenskap | Lunds Tekniska Högskola | Redovisas 3 JUNI 2016
Examensarbete: Användning av JavaRAG i en Xtext editor
Student(er): Emin Gigovic, Philip Malmros
Handledare: Jesper Öqvist (LTH)
Examinator: Görel Hedin (LTH)

En kraftfullare snickarbänk för
programspråk
POPULÄRVETENSKAPLIG SAMMANFATTNING AV Emin Gigovic, Philip Malmros

ATT IMPLEMENTERA EN EDITOR FÖR ETT PROGRAMMERINGSSPRÅK ÄR EN TIDSKRÄVANDE PROCESS. DET FINNS
LYCKLIGTVIS FLERA SÅ KALLADE ”SPRÅKSNICKARBÄNKAR” (LANGUAGE WORKBENCHES) SOM KAN HJÄLPA TILL
MED DET HÄR, MEN DE ÄR INTE ALLTID SÅ LÄTTA ATT ANVÄNDA. VÅRT ARBETE HAR FOKUSERAT PÅ ATT INTEGRERA
EN AV DESSA SPRÅKSNICKARBÄNKAR MED ETT KRAFTFULLT VERKTYG SOM KALLAS RAGS (REFERENSATTRIBUT-
GRAMMATIKER), SOM GÖR DET LÄTTARE ATT IMPLEMENTERA VISSA FUNKTIONER.

Ett program som används till att implementera en
editor för programmeringsspr̊ak kallas ofta för en
”spr̊aksnickarbänk”. En enkel jämförelse kan göras mel-
lan ett s̊adant här program och hur man i en generisk
ordbehandlare som Microsoft Word lägger till stöd för
olika spr̊ak. Vanliga spr̊ak som Svenska eller Engelska
använder sig av olika ord, har annorlunda grammatik
etc., och samma princip gäller för programmeringsspr̊ak.
Om ett spr̊ak ska ha fullt stöd i en programmerings-editor
räcker det dock inte med att spr̊akets grammatik hante-
ras korrekt, utan det krävs speciella markeringar för vissa
ord eller fraser s̊a att de är lättare att urskilja, samt en
uppsjö av andra funktioner. P̊a grund av att det är s̊a
mycket som ska ing̊a i en spr̊aksnickarbänk har de en
tendens att vara ganska komplexa, och att implemente-
ra fullt stöd för ett nytt programmeringsspr̊ak är ofta
väldigt tidskrävande.

Hur kan RAGs hjälpa till?

Bilden nedan är en väldigt simpel illustration av hur en
spr̊aksnickarbänk vid namn Xtext fungerar. Första steget
är att välja ett programspr̊ak man vill bygga en editor
för. Sedan konstruerar man en s.k. grammatik som kan
beskriva hela spr̊aket. När detta är klart kan man ge-
nom Xtext lägga till en massa funktionalitet för de olika
delarna av grammatiken.

En av de viktigaste sakerna att lägga till är seman-
tisk analys, som kontrollerar att om n̊agot bryter mot
spr̊akets grammatik, s̊a ska det markeras p̊a n̊agot sätt.
Bilden nedanför visar ett exempel p̊a en felkontroll som
blir enklare att utföra med RAGs, än med endast Xtext
funktionalitet. Att definiera semantisk analys för ett
spr̊ak är RAGs väldigt bra p̊a, och det vi ville utvärdera
var om vi med hjälp av RAGs kan förbättra den analys
man normalt har tillg̊ang till i Xtext. För att testa detta
implementerade vi tre olika editorer. Tv̊a av dem hante-
rade samma spr̊ak, men där den ena bara fick använda
sig av standard Xtext funktionalitet, kunde den andra
ocks̊a använda RAGs. Den tredje editorn hanterade ett
mer komplext spr̊ak än de andra, s̊a att RAGs kunde
användas till mer avancerade funktioner.

Resultat
För att integrera Xtext med RAGs använde vi kod-
biblioteket JavaRAG, som till̊ater användning av RAGs
i projekt som är skrivna i spr̊aket Java. D̊a det finns ett
visst överlapp mellan funktionaliteten i Xtext och RAGs
var ett av de huvudsakliga problemen att bestämma
när man skulle utnyttja RAGs istället för standard-
funktioner fr̊an Xtext. Till slut drog vi slutsatsen att
RAGs främst var användbart när man behövde mer
avancerad funktionalitet, och särskilt d̊a man ville kom-
ma åt sv̊artillgänglig information vid implementation av
semantisk analys. Vi har genom v̊art arbete visat att det
är möjligt att integrera Xtext med RAGs för att lösa
problem som kan vara sv̊ara att lösa med enbart Xtext,
vilket kan vara användbart i kommande Xtext projekt.

	Introduction
	Background
	Abstract Syntax Tree
	Xtext
	Xtend

	JavaRAG
	Case study
	The simple language: JastAdd ASTs
	The complex language: JastAdd aspect modules

	Implementation
	Pure Xtext editor for simple language
	The Xtext grammar
	Static analysis
	Syntax highlighting
	Content Assist

	Combined Xtext/JavaRAG editor for simple language
	JavaRAG utilization
	Outline view
	Formatting

	Combined Xtext/JavaRAG editor for complex language
	The Xtext grammar
	Static analysis
	Integration with Java

	Evaluation
	Xtext
	Integrating with JavaRAG

	Editors
	Analysis

	Lines of code

	Related Work
	Discussion and conclusion
	Future work

	Bibliography

