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Abstract

This paper focuses on pricing of basket Credit Default Swaps. The credit market in-
struments such as CDSs and CDOs are introduced. The concepts of trading these
derivatives in basket CDSs divided into tranches is also of big importance. Different
pricing models are presented and compared. Those are Semi-Analytic Valuation model
with a Copula approach used together with the methods compound and base correla-
tion Also two contagion models are presented, one pure contagion and one contagion
Copula mixture model. They are compared to each other to see how the prices differ
for different tranches and premium payments. It is impossible to say which model
prices right, but the main conclusion is that the prices differ. The models need to be
further investigated in order to decide which one is the best for which purpose.

Keywords: Basket CDS, Copula, Contagion model, Credit market, Compound cor-
relation, Base Correlation, Semi-Analytic Valuation
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Chapter 1

Introduction

1.1 Background

Credit risk is the probability of borrowers not being able to pay back their loans. The
lender faces the risk of not getting his money back. This risk can be traded in several
different ways, in credit derivatives. There are many traded credit derivatives on the
market and some of them are fairly complex. The risk in the derivatives is not easy to
predict since it is the result of many macro economic factors, links and dependencies
between companies. Due to their complexity they have been one of many parts con-
tributing to crises such as the financial crises in 2008 [Wang, 2014].

Common credit derivatives are for instance Credit Default Swaps, CDS and collat-
eralized Debt Obligations, CDO. When the CDSs and CDOs were introduced in the
late 80’s it was a way for the banks to securitize their loans. With many bonds in
the same basket it would be a risk diversification if one argues that it is unlikely that
many default simultaneously. This is only true for uncorrelated bonds though. This
is where the problem started because the reality is definitely not uncorrelated. The
impact from this correlation were underestimated. Investors thought, according to the
banks rating, that this was a safe investment and insurance companies, pension funds
and big banks themselves believed in this safe investment with high return. The truth
was the opposite. With many correlated bonds the investment was very risky. On the
other hand, those few investors believing CDOs weren’t safe bought a lot of CDS, this
specific insurance explained later, on those and made a lot of money [Wang, 2014].

Important to emphasize is that this was not an unknown problem. While some, for
instance Salmon in [Salmon F, 2009], claim that the crises were all due to the wrong
model assumptions, others like [Brigo, 2011] argue that one can not blame the models
only for the financial crises. The effect were rather underestimated and the models
obviously needs to be improved but are not entirely responsible. People may have
different opinions about this, but the Copula model presented in this paper, and ex-
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1.2. OBJECTIVES CHAPTER 1. INTRODUCTION

tensions, is commonly used on the market. There are improvements to do but they
can still be useful, if considered carefully.

There are mainly three approaches to model the risk and price these credit deriva-
tives. Those are conditional independence, Copula and contagion models. This paper
will have its focus on the Copula, Contagion and Contagion Copula mixture model.

1.2 Objectives

For the uninitiated reader it may be suggested to read through chapter 2 introducing
the concepts and the credit market before coming back to this section.

One objective of this thesis is to explain the credit market and relevant valuation
processes used today. As mentioned in the introduction, these derivatives have been
in trouble and modeling the correlation between defaults is still something to improve.
How previous defaults changes the probability of future defaults is an important part
of the valuation process. It will be investigated what valuation methods are used today
and if there are other models possible to use for this problem. The focus will be on
default correlations and how they should be considered in the most common valuation
method with a Copula approach. One of the main objectives is to get a model that
prices the basket CDS for a given premium. If an entity wants to insure their loans
and pay X every quarter of a year, what is the price of that?

Another approach investigated is to look at the default intensities as for epidemic
or contagion models. For epidemics, the more that are infected by the disease the
higher is the risk of even more infections. In this case with loans, the more names that
have already defaulted the higher is the risk of another default. In short, this thesis
is about how one should describe the impact on future defaults from previous when
looking at a diversified basket of loans.

Given traded market prices, is it possible to calibrate the model and use it for pricing
of other tranches and/or underlying portfolios?

1.3 Outline

Chapter 2 initially explains the credit market, concepts and different derivatives on the
market, among them CDSs and CDOs which are the main derivatives of this paper.
Definitions, concepts and notations are also introduced in this chapter. In chapter 3 the
models are presented and explained. In chapter 4 the implementation is explained on
detail for the reader to understand the models deeper. There is also the data presented.
Chapter 5 presents the results from the models. Chapter 6 draw significant conclusions
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and compare the models. Finally in chapter 7 it is also discussed how the models can
be improved and how to continue this research.
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Chapter 2

Theory

2.1 Credit Default Swap - CDS

For anyone lending money there is always a risk for the borrower, or the so called is-
suer, not to be able to pay back. To eliminate this risk the lender can buy an insurance
from a third party. The lender pays a premium for this insurance, normally one, two
or four times a year and then if the issuer defaults meaning that he cannot pay back,
the insurer pays for the loss. The company lending the money continues to pay the
insurance premium until a default event occurs or the CDS contract ends. The CDS is
a derivative instrument that transfers the risk of default from the lender to the insurer.
The insurer is obligated to pay the lender if a credit default occurs [Hull, 2009]. In
Figure 2.1 the payments are shown from issuer to insurer and the other way around.
The figure is from Credit Valuation [”Reference, Credit Valuation”, 2014].

The CDS is the most traded credit derivative. When a default occurs the insurer
is obligated to either pay cash or physically deliver the bonds corresponding to the size
of the default. The premium is usually paid in arrears and if a default occur the insured
company will have to pay for the premium up to the day of the default. For the CDS
a notional value is defined. That is the total value of the underlying assets. A basket

Figure 2.1: Payments from credit default swap, issuer(solid lines) and insurer in case
of default (dotted line)
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2.2. COLLATERALIZE DEBT OBLIGATION - CDO CHAPTER 2. THEORY

CDS may contain hundreds of underlying loans and the combined value of those are
the notional value. The CDS spread is the premium as percent of the notional value.
The premium should cover the risk free rate and the risk [Hull, 2009].

The trading with CDSs has varied a lot over time. The two years with the most
traded CDSs were clearly 2007−2008. According to Bank for International Settlements
[”OTC, Credit default swaps”, 2016] the notional amount outstanding, the value of the
underlying basket went from 24000 billion USD in 2004 to 100000 in 2007− 2008 and
since then the trading has decreased for every year. In 2014 the trading was back on
37000 billions USD. This is based on statistics from central banks and other authorities
from 13 different countries including Sweden, United States, Australia, Japan, Canada
and some additional western Europe countries [”OTC, Credit default swaps”, 2016].

2.1.1 Basket Credit Default Swap

If there is more than one issuer, companies with loans, insured simultaneously it is
called a basket CDS. Then the entire basket of loans is considered as the portfolio to
pay insurance for. It is possible to create different derivatives from this basket CDS.
For instance the add-up or linear basket CDS which provides payoff for the first and
all other defaults. The first-to-default CDS provides payoff only for the first default.
The second-to-default CDS provides payoff for the second default and the kth-to-default
CDS provides payoff for the kth default [Hull, 2009]. There are also loss basket CDSs
that provide payoffs for sizes of losses within a certain range which will be further
explained in a later section.

2.2 Collateralize Debt Obligation - CDO

There are several similarities between CDSs and Collateralize debt obligation, CDOs.
The CDO is mainly a fancy bond, an asset backed security where the assets are bonds.
The underlying portfolio contains numerous, usually hundreds of assets such as loans,
mortgages or other CDOs. CDOs can be constructed based on anything with regular
cash flows, paybacks of loans, memberships, or credit card receivables. This could even
include the premium payments that flow from the CDS [Kyle G, Russel A, 2013].

To distinguish the CDS from the CDO it can be concluded that a CDS is just an
insurance against a risk while a CDO is a pool of bonds which is also possible to insure
in the same way as in a CDS. Mathematically basket CDS and CDO are essentially
the same. For a cash-flow CDO the underlying assets are real. It could for instance be
possible to insure the underlying bonds and pay the insurance premiums entirely by
the income of the bonds. These derivatives can obviously be fairly complex.
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2.3. LOSS BASKET CDS - TRANCHES CHAPTER 2. THEORY

2.2.1 Synthetic CDO

A synthetic CDO is called that because it does not necessarily have any underlying
assets. To fully explain this we look at the general structure of a CDO. Investors buy
the CDO to get exposure to the underlying assets, which are often a big number of
diversified assets. The importance for the investor is not whether the CDO actually
owns the underlying assets but if it pays out the same cash flow. The synthetic CDO
is instead made up of different CDS with exposure to the same assets as the corre-
sponding cash-flow CDO. Instead of owning the asset the special purpose entity sells
CDS protection for the same asset and sells the cash flow to the investors. In this way
the investors obtain the same exposure to the asset as they would have done through
a cash-flow CDO. The reason for doing this is because it can be practically hard to
collect the specific pool of assets [Kyle G, Russel A, 2013].

While the cash flow CDOs are the easiest to understand those are not so heavily traded
compared to the synthetic CDOs due to practical advantages [Altrock F et al., 2006].

2.3 Loss Basket CDS - Tranches

Loss basket CDS means that each investor take care of a certain part of the loss. The
bonds in the CDO or basket CDS are usually collected by a bank and sold to a special
purpose entity. This entity provides an investment vehicle where investors buy a share
in the portfolio with preferred risk and return. The return is provided if credit defaults
are avoided and cash flow is available. The CDO and basket CDS are divided into
tranches which means that investors themselves chose the risk they want to take in
the portfolio. We divide them into the tranches Senior, Mezzanine and Equity. The
Senior tranche has the lowest risk and thus also the lowest return. The equity has the
highest risk which means that they take care of the default first and receive income
after Senior and Mezzanine. This makes it possible for investors to choose which level
of risk they are willing to take. Loss sensitive investors should prefer the senior tranche
[Kyle G, Russel A, 2013].

The credit risk is moved entirely to the investors in different tranches. In the eq-
uity tranche the investors finance say the first 5% of the defaults the and will have a
return of 30%. The senior investors finance a lot more, say 75% and have a return of
6%. What happens then is that the senior investors get their return first and only if
there are resources left the next tranche will get their return. The equity tranche get
their return if and only if all other investors already got theirs. This means that if
we experience credit defaults, the equity tranche will receive less than 30% as return.
This example is further explained in chapter 23 in [Hull, 2009] and figure 2.3 from
[Hull, 2009] illustrates it.
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2.4. LINEAR BASKET CDS CHAPTER 2. THEORY

Figure 2.2: Loss (pink line) for the mezzanine tranche 3− 6% together with the proba-
bility distribution (blue line) for a basket CDS.

As an example figure 2.2 from [Altrock F et al., 2006] shows the loss for the mez-
zanine tranche, 3− 6%, specifically. Up to the first 3% defaults the mezzanine tranche
is not influenced and the investors will get their expected return. Between 3% and
6% the return decreases linearly. When 6% has defaulted the mezzanine investors get
no return at all. The blue line in the figure explains a standard loss distribution for
underlying portfolio.

2.4 Linear Basket CDS

The term linear basket CDS means that all investors are exposed to all defaults
[”Linear Credit Default Swap”, 2016]. It is similar to a loss basket CDS but the range
for each investor is 0-100% so there is only one tranche. All investors bear the same
risk and expected return. Compared to the mezzanine tranche the line describing the
loss in figure 2.2 would be a straight line between 0% and 100% on the loss scale.
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2.5. ITRAXX CHAPTER 2. THEORY

Figure 2.3: The special purpose vehicle owns the entire basket of assets and divide it
into tranches with different risks and returns.

2.5 iTraxx

The iTraxx indexes are reference points for CDS, tradable credit default swap prices.
The iTraxx index is one of two families of indexes. The other is the CDX indexes
that contain North America and Emerging Market companies while the iTraxx indexes
contain companies from the rest of the world. Which companies that should be in-
cluded in the index portfolio are determined every six months. The index is available
for different times to maturity and sometimes also for different tranches. This is done
so that the index portfolio is ”up to date” and contains what is actually traded on the
market. The iTraxx indexes are managed by the International Index Company and
are available in currencies USD, EUR and JPY [”Product Descriptions”, 2013]. It was
invented to bring greater liquidity, transparency and acceptance to the CDS market
when it grew bigger [”Definition of iTraxx”, 2016]. Thus should the names, companies
and organizations, selected for the iTraxx indexes represent the most liquid, traded
part of the market and are chosen by International Index Company [”iTraxx”, 2016].
The underlying companies are set to have equal probability distribution over time.

There are many indexes with different standard tranches. They could for instance
be for iTraxx 0− 3%, 3− 6%, 6− 9%, 9− 12% and 12− 22% while for CDX they are
0− 3%, 3− 7%, 7− 10%, 10− 15% and 15− 30% [Fabozzi F, et al., 2006]. Used later
in this paper is 0 − 3%, 3 − 6% and 6 − 12% and 0 − 10%, 10 − 20% and 20 − 35%
which are combined standard tranches which is also possible to obtain market prices
for [Amato J, Gyntelberg J, 2005].
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2.6. CREDIT CURVES CHAPTER 2. THEORY

The index is presented in the so called spread which represent the credit quality. The
spread unit is basis points where 100bps = 1% which explains how much it costs to
insure the basket. With the cost of 500bps it costs 5 to insure 100 for one year. This
is a curve that have a value for each time point a coupon is payed out. This value is
possible to transform into the default probability, which will be explained in section
2.6.

2.6 Credit Curves

Before the models are presented some things will be said about credit curves. The
credit curves describe the credit quality such as default probability, spread and default
intensity.

2.6.1 Hazard rate

There is a useful relationship between survival probability and hazard rate according to
the article ”On Bootstrapping Hazard Rates from CDS Spreads” [Castellacci G, 2012].
Hazard rate is another word for default intensity. This is needed for the contagion
models described in later sections. The expression is presented by Castellacci as

S(t) = exp

(
−
∫ t

0

h(u)du

)

where S(t) is the survival probability (= 1− pt) and h(t) is the hazard rate, or default
intensity, as function of time. By taking the inverse the expression for the default
intensity becomes

h(t) = − d

dt
lnS(t)

where S(t) is survival probability before time t. This is possible to solve for bootstrap-
ping methods further described in [Castellacci G, 2012]. A more practical approach is
to do the approximation

h(t) = −dS(t)

S(t)

1

dt
≈ −S(t+ ∆t)− S(t)

S(t)

1

∆t

where the hazard rate is approximated to being constant over the interval t+ ∆t.

2.6.2 Default probability

An important feature of the spread is the relationship to default probability. The
formula is

pt = 1− e−stt
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2.6. CREDIT CURVES CHAPTER 2. THEORY

where pt is the cumulative default probability before time t and st is the corresponding
spread [Manning, 2004]. The probability refer to the probability for a default before
every time point where coupons are paid. The spread is the index reference point as
previous described in section 2.5.

2.6.3 Hazard rate JPMorgan Model

This is as well according to Castellacci [Castellacci G, 2012]. There is more than one
way to calculate the default probability. One of them, a commonly used model is the
JP Morgan model. The rate will be calculated from the CDS spreads. Let PVD(T )
denote the present value of the default leg, the payment if a default occurs. Let also
PVFIX(T ) denote the total value of the insurance payments up to time T . The fair
deal is whenever those two are equal. Let s = s(T ) be the fair spread for the CDS,
then we can introduce the variable PVFIX,S related to PVFIX as PVFIX = sPVFIX,S.
That means that

PVFIX,S =
value of protection, default leg

spread

is value of protection per spread unit. Denote τ the time of default and assume that
the payments occur at the end of the periods. Then the present value of the default
leg can be written as

PVD(T ) = (1−R)
n∑
i=1

dfTiP (Ti−1 < τ ≤ Ti) =

(1−R)
n∑
i=1

dfTi(S(Ti−1)− S(Ti))

where R is recovery rate, dfTi is the discount factor, and S(Ti) is probability to survive
time Ti. This could be thought on as discounted values for experienced defaults in
time periods {Ti−1, Ti}. The recovery rate converts the loss to experienced loss. Now,
look at the fixed payments instead. Here is assumed that if the issuer defaults he does
halfway through each time period. The following expression explains the present value
of the fixed legs

PVFIX(T ) = s

n∑
i=1

∆idfTiP (Ti < τ) +
s

2

n∑
i=1

∆idfTiP (Ti < τ ≤ Ti) =

s
n∑
i=1

∆idfTiS(Ti) +
s

2

n∑
i=1

∆idfTi(S(Ti−1)− S(Ti)) =

s

n∑
i=1

∆idfTi
S(Ti−1) + S(Ti)

2
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with the same notations as before and ∆i is the fraction of a year corresponding to
the length of the interval {Ti−1, Ti}. The intuitive explanation of this is that the fixed
legs are payed out if we survive the time period Ti and half of the following time period.

So given the spread curve it is possible to find all default probabilities. When i = 1,
the probability of surviving previous time step S(T0) is 1. Then it is possible to
find S(T1). Given S(T1) it is for the next spread value possible to find S(T2) as
well. This can be continued for all i and the default probabilities are uniquely de-
termined. This is the method used in this paper to obtain the default probabilities
[”Reference, Credit Valuation”, 2014].
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Chapter 3

Methods and Models

3.1 Semi-Analytic Valuation

The credit quality is modeled with a factor Copula. This model is presented in
[Fabozzi F, et al., 2006]. From this it is possible to obtain the probability distribution
of surviving time t conditioned on a variable describing the general status of the market
which is equal for all issuers. This is referred to as The Factor Model. The conditional
joint loss distribution for all issuers is then obtained by the so called Probability buck-
eting approach. This approach is simply a way to put different defaults in the same
bucket with corresponding probability. The joint loss unconditioned distribution is
then the integral over the conditioned variable. From the loss distribution the present
value of the derivatives can be calculated. The only unknown parameter in the model
is the correlation in the Copula. This will be discussed in section Correlation Input. A
summary of the steps are

• Find marginal distribution for each issuer of surviving time t conditioned on the
common factor

• Find the joint loss distribution for the loss at a given time point, conditioned on
the same common factor.

• Integrate the probability distribution over the common factor to obtain the un-
conditioned probability distribution of losses at all time points

• Calculate the present value of the CDS contract given the unconditioned proba-
bility distribution.

• Find the correlation that gives correct present value given the index spread.

3.1.1 The One Factor Model

The distribution for the default loss is computational time consuming and what is usu-
ally used today to model the default correlations is a factor copula [Hull J, White A, 2004].

15
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The joint probability for losses at all times is then created from the marginal distri-
butions and the correlation.There are many different Copula methods that would be
possible to use for the valuation. We will consider the standard normal copula model
which is the most commonly used model since it is a practical and straightforward
method [”Reference, Credit Valuation”, 2014]. The definition of the Copula function
is

C(u1, u2, ...um, ρ) = P (U1 ≤ u1, U2 ≤ u2, ..., Um ≤ um)

The Copula function represents the joint distribution including their pairwise correla-
tion. The standard normal Copula method thus means that we have standard normal
variables and a correlation to combine within a Copula function.

Set Xi as the credit quality of issuer i. We want to model credit quality of each
issuer as a function of a common factor Y0 and an idiosyncratic factor Yi. What is
meant with idiosyncratic is that it describes the structural behavior of credit quality
for issuer i. The common factor on the other hand describes the general status of the
market and is equal for all issuers. These two together explains the credit quality for
the issuer and can be written as

Xi = aiY0 +
√

1− a2iYi

where Y0 and Y1 both are standard normal random variables
[”Reference, Credit Valuation”, 2014] . Thus is Xi also a standard normal random
variable but correlated with Y0 and Yi, in other words is this a one factor standard
normal Copula function.

The correlation between Xi and Xj are aiaj but if conditioned on the common factor
all issuer’s credit quality, Xi, are independent. It would be possible to use different ak
but standard is to use the same for all k.

What we will obtain here is the probability for the ith issuer to survive a given time T
conditioned on the common factor Y0. Because of the normal distribution assumption
the expected value is

E[Xi|Y0] = E[aiY0 +
√

1− a2iYi|Y0] = aiY0

and the standard deviation

D[Xi|Y0] = D[aiY0 +
√

1− a2iYi|Y0] =
√

1− a2i

Thus is

P (Xi ≤ x|Y0) = Φ

(
x− aiY0√

1− a2i

)
(3.1)
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where Φ(x) is the cumulative distribution function for a standard normal random
variable. Think of Xi as a variable with distribution function Fi(x). Under the Copula
model the percentile Fi(x) can be mapped to a percentile for the default time ti, lets
call this Qi(t) = P (ti ≤ t), so that Fi(x) = Qi(t) or equally P (xi ≤ x) = P (ti ≤ t).
Then equation (3.1) can be rewritten as

P (ti ≤ t|Y0) = Φ

(
x− aiY0√

1− a2i

)

Since Fi(x) = Qi(t), also x = F−1i (Qi(t)) and thus

P (ti ≤ t|Y0) = Φ

(
F−1i (Qi(t))− aiY0√

1− a2i

)

It is also known from before that Xi is a standard normal random variable and thus is
the conditional distribution for issuer i to survive time T , Si(T |Y0) given as

Si(T |Y0) = P (ti ≥ T |Y0) = 1− P (ti ≤ T |Y0) = 1− Φ

(
Φ−1i (Qi(t))− aiY0√

1− a2i

)

where Qi(t) is the probability for issuer i to survive time t obtained from the credit
curve.

3.1.2 Probability Distribution

From the conditional probability distribution the next step is to find the joint prob-
ability distribution for total loss [Hull J, White A, 2004]. There are different ways of
doing this and here the so called probability bucketing approach will be presented. The
goal is to find the probability distribution of the loss for time T. The first thing to do
is to put losses into different ranges, “buckets”.

The recovery rate is assumed to be known and constant for all issuers. Recovery
rate is how much an issuer recovers within a default and (1- recovery rate) times the
loss is the experienced loss. If the recovery rate is 40% it means that when an issuer
defaults at a size of 100 they immediately recover 40% and the experienced loss is
(1 − 0.4) ∗ 100 = 60. A commonly used value is 40% according to chapter 23 in Op-
tions, Futures and other Derivatives [Hull, 2009].

Let the buckets be {0, b0}, {b0, b1} ... {bK−1,∞}. Thus the first bucket corresponds
to no loss and the others have equal widths. If only one tranche is valued it would
make sense to have narrow buckets within the tranche and wide outside to optimize
computation time. The goal is then to obtain the conditional probability for the loss
to be in the kth bucket, and this will be denoted pk = PT (k|Y0).
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The mean loss in bucket k is defined as Ak. This means that

Ak =
1

2
(bk−1 + bk)

The method is iterative and calculates pk and Ak by adding one bond at the time.
Each bucket is represented with its mean Ak and this has been shown to be a quite
accurate model according to [Hull J, White A, 2004].

When there are no bonds in the basket there is also no loss for sure, so the proba-
bility of being in the first bucket is p0 = 1, and in all other buckets probability zero,
pk = 0 for all k > 0. Worth noting is that all these probabilities are still conditioned
on Y0. Now assume that i− 1 bonds are already added and next step is to add the ith.
That means that the probability of being in each bucket and corresponding average
loss is calculated for each bucket respectively, for the first i− 1 bonds. The loss of the
default from this bond would be LAV G since it is assumed that all defaults are equal.
Denote the probability of this default conditioned on Y0 as αi. Adding another default
to the mean value Ak imply that the total loss might end up in another bucket than
that corresponding to Ak. Denote this new bucket u(k). The impact of this bond is
thus that some probability is moved from bucket k to u(k). The updating formulas are

pnk = ppk − p
p
kαi

pnu(k) = ppu(k) + ppkαi

Ank = Apk

Anu(k) =
ppu(k)A

p
u(k) + ppkαi(A

p
k + LAV G)

ppu(k) + ppkαi

Here αi = 1−Si(T |Y0) is the probability of default before time T for issuer i conditioned
on Y0. That probability is the one calculated in the factor model. The probability pnk
is the new probability of being in bucket k after adding bond i. The probability ppk
is the previous value of the same probability. There is a minus sign decreasing the
probability which is moved to another bucket, pu(k) which is increased with the same
size. For each issuer added the updating formulas are used, so first some probability
is moved from bucket 0 to 1, then from 1 to 2 and so on. The new Au(k) is calculated
to be the mean of the bucket containing loss (Ak + LAV G). In the case where a loss is
added but the total loss remains in the same bucket for this additional loss LAV G, the
updating formulas are simplified to

pnk = ppk

Ank = Apk + αiLAV G
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When all bonds have been added to the basket the conditional distribution of total
loss P (k|Y0) is determined [Hull J, White A, 2004]. Since Y0 is a continuous random
variable the unconditional probability is obtained by an integral

P (k) =

∫ 6

−6
P (k|Y0)

dΦ(y)

dy
dy

This has to be solved numerically and is done by Legendre abscissas and weights which
will not be further explained here [”Reference, Credit Valuation”, 2014], but is mainly
a discrete integration. Recall the law of total probability

P (k) =
∑
Y0

P (k|Y0)P (Y0)

By choosing 50 points between −6 and 6 with these particular weights and consider it
as a discrete probability distribution the result seems to be a fair approximation.

3.1.3 Many Factor Model

The many factor model is found in more detail in [Hull J, White A, 2004]. The one
factor model can be extended to many factors. Then the probability of surviving a
given time can be derived conditional on all common factors.

Xi = a0Y00 + a1Y01 + ...+ amY0m + Zi

√
1− a20 − a21 − ...− a2m

where all Yi and Zi are standard normal variables. The corresponding conditional
probability for issuer i to survive time T becomes

P (ti ≥ T |Y00 , Y01 ...Y0m) = 1− Φ

(
Φ−1i (Qi(t))− a0Y00 − a1Y01 − ...− amY0m√

1− a20 − a21 − ...− a2m

)
where an is the pairwise correlation between issuer i and n and the other notations
as before. The probability distribution is obtained as for the one factor model and
the result is the probability distribution for k defaults given all conditioned variables
P (k|Y00 , Y01 ...Y0m). The unconditioned probability distribution can be derived in a
similar way as will be presented in next section for the one factor model. This model
immediately becomes difficult since here one correlation is needed for each factor.
Already for two factors there are infinitely many solutions when trying to find the
correlation for each tranche. Also with 50 integration points as in the one factor model
the sum goes over 50m terms which is computational hard for many factors.

3.1.4 Simplified Theory and Examples Semi-Analytic Valua-
tion

The theory presented above could be simplified in a couple of steps. The loss in the
semi-analytic valuation model is assumed to be equal for all defaults and thus is only
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the number of defaults interesting. Each bucket represents a number of defaults where
bucket bk corresponds to exactly k defaults. The loss within a default is assumed to
be the mean of the nominal amount times (1- recovery rate) for each issuer. Thus the
average loss is calculated as

LAV G =
1

n

n∑
j=1

(1− ri)Mi

where ri is the recovery rate for issuer i, Mi is the nominal amount of issuer i and n is
the number of issuers [”Reference, Credit Valuation”, 2014].

For the updating formulas in the probability distribution the average loss Ak is en-
tirely left out since each bucket bk corresponds to exactly k defaults, there is no mean
to calculate. Being in bucket k is equal to a loss of k ∗ LAV G. The two different cases,
where a default implies that the total loss ”changes bucket” or not is irrelevant since
another default by definition means another bucket.

To easier understand this an example is presented. Assume three issuers are already
added to the basket and next step is to add the fourth. Assume for the three first
issuers that the probabilities for 0− 4 defaults are 0.4, 0.3, 0.2, 0.1, 0 respectively. The
last probability corresponds to four defaults which is not possible yet since only three
issuers are added so far. Assume for current time step that the probability of a default
is 0.1. The updating formulas are

p0 = p0 − p0 ∗ α = 0.4− 0.4 ∗ 0.1 = 0.4− 0.04 = 0.36

where the probability of which p0 is reduced is added to p1

p1 = p1 + p0 ∗ α = 0.3 + 0.04 = 0.34

In the next step some of the probability is moved from this new p1 to p2. The size
of the moved probability is determined by the probability of being in bucket 1 in the
previous step. This is intuitive since if it was very likely to be in bucket 1 after added
one issuer it should be more likely to be in bucket 2 after adding two issuers than if
we most likely were in bucket 0 for one issuer

p1 = pnew1 − pold1 ∗ α = 0.34− 0.3 ∗ 0.1 = 0.34− 0.03 = 0.31

and p2 is increased with the same probability

p2 = p2 + pold1 ∗ α = 0.2 + 0.03 = 0.23

In the same way
p2 = 0.23− 0.2 ∗ 0.1 = 0.21
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p3 = 0.1 + 0.2 ∗ 0.1 = 0.12

p3 = 0.12− 0.1 ∗ 0.1 = 0.11

and the new bucket gets the probability

p4 = 0 + 0.1 ∗ 0.1 = 0.01

So the new probabilities after introducing the fourth issuer are

p0 = 0.36 p1 = 0.31 p2 = 0.21 p3 = 0.11 p4 = 0.01

where pk is the probability of k defaults. The sum of all probabilities is still 1 but some
probability is moved from the the already existing buckets to the new that appear
first when the fourth issuer is introduced. This is then done for all time steps so the
probability of k defaults is calculated for all k up to number of issuers in the basket.

3.1.5 Pricing a Loss Basket CDS

Now the probability for k defaults at time t is known for all issuers. The total loss at
time t is

L(t) = LAV G

n∑
j=1

Ij(t)

where Ij(t) is the indicator function taking values 1 or 0 depending on if it is a default
(1) or not (0). For the loss basket contract payments are done for losses between
attachment point C and detachment point D. We denote the total received payments
from insurer

D(L(t)) =


0, L(t) ≤ C

L(t)− C, C < L(t) ≤ D

D − C, D < L(t)

and the nominal amount of owning the tranche, the value paid to the insurer, is

N(L(t)) =


D − C, L(t) ≤ C

D − L(t), C < L(t) ≤ D

0, D < L(t)

(3.2)

The interesting thing here is to compare the present value of the default leg and present
value of premiums paid. The present value of the default leg is the expected value of
the default leg E(L(T )) discounted. Since the probabilities of default now are known
the expected default leg is

E(D(L(t))) =
K∑
k=0

pt(Lk)D(Lk)
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and the discounted default leg is

PVDL =
T∑
t=1

dft

K∑
k=0

(pt(Lk)− pt−1(Lk))D(Lk) (3.3)

where dft is the discount factor for time t. The first sum sums over all different time
periods and discount the amount D(L(t)) that is paid out during time {t− 1, t} with
probability pt(Lk)− pt−1(Lk). In the similar way the present value of the premium leg
is calculated as the discounted coupons cN(L(t)).

PVPL = c

T∑
t=1

∆tdftE(N(L(t))) = c
T∑
t=1

∆tdft

K∑
k=0

pt(Lk)N(Lk) (3.4)

with the same notations as before, cN are the coupons and c is the coupon in percent
of the nominal amount, and ∆t is the cash flow period in years. This is needed to
compensate for the fact that the premiums can be payed out at different time points.
If they are payed out quarterly ∆t should be equal to 1/4 for all t.

The price of the CDS is now possible to determine given the input data and the
unknown correlation.

3.1.6 Pricing a First-to-Default Basket CDS

The first-to-default basket CDS is a special case of the Nth-to-default basket CDS so
we will derive the premium leg and default leg for the Nth-to-default basket CDS. As
for the loss basket CDS the indicator function will be used to derive the total loss
which is here equal to number of losses.

I(t) =
n∑
i=1

Ii(t)

For a Nth-to-default basket CDS is the insurance payed out when I(t) = N . The total
amount payed out at time t is

A(I(t)) =

{
0, I(t) < N

LAV G, I(t) ≥ N

So when the Nth default occurs the average loss for a default is payed out. Nothing is
paid before the Nth default and more than N defaults has no further impact. This is an
insurance against the Nth default and only against that. The corresponding nominal
amount is

M(I(t)) =

{
M, I(t) < N

0, I(t) ≥ N
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The expected value for the total amount payed out is

E(A(I(t))) =
K∑
k=0

pt(k)A(k)

As for the loss basket CDS the present value of the default leg is obtained as

PVDL =
T∑
t=1

dft

K∑
k=0

(pt(k)− pt−1(k))A(k)

and the value for the premium leg is in the corresponding way

PVPL = c

T∑
t=1

∆tdftE(M(I(t))) = c
T∑
t=1

∆tdft

K∑
k=0

pt(k)M(k) (3.5)

3.2 Correlation input

Now the model is presented and the valuation procedure is unambiguous given the
input correlation. The interpretation of default correlations is how likely it is that
another issuer defaults when one already has. If the correlation is −1 they would never
default at the same time. If the correlation is 1 one default would immediately cause
another default. If the correlation is positive but less than 1 they do not necessary
default at the same time but if one name defaults the risk increases for other defaults.
With negative correlation the risk would not be so high, since if one defaults it would
be less likely that another issuer also does and crises when many companies default at
the same time would be extremely rare.

The model is based on the assumption of all companies being equally likely to default
[Livesey M, O’Kayne D, 2004]. Within a tranche the correlation is set to be pairwise
equal but the pairwise correlation differs between tranches. If there is a very high
correlation it means that if one defaults then it is very likely that others also will. It
means that the senior tranches are closer to the equity tranche in terms of riskiness
and would increase the value of the equity tranches and decrease the senior tranches.
If the correlation is very low, the senior tranches are ”safe” because the likelihood that
many issuers default at the same time is quite unlikely and thus their value is increased
and the opposite for the equity tranche.

For the following theory it is needed to understand the term present value of the
CDS tranche. The present value of the CDS tranche is equal to PVtr = Pricetr +
PVPL−PVDL where Pricetr is the upfront payment or the price of the insurance. This
is a one time payment compared to the regular coupons.
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3.2.1 Tranche Correlation / Compound Correlation

One approach to obtain the input correlation is the so called compound correlation.
Compound correlation is used for both Nth to default and loss protection. The
compound correlation is obtained by assuming that PVtr = 0 or equally Pricetr =
PVDL − PVPL. This is similar to section 2.6.3 where the two legs were set to be equal
to back out the default probability. Here is the goal instead to back out the correlation.

Pricetr =
T∑
t=0

dft

K∑
k=0

(pt(Lk)− pt−1(Lk))A(Lk)− c
T∑
t=1

∆tdft

K∑
k=0

pt(Lk)N(Lk) (3.6)

where c are the coupons payed regularly during the insurance period, the spread which
is known. The price is also observed on the market and thus equation (3.6) is known
except for the correlation of the tranche ρtr. For example the coupons payed every year
could be 1% and the price for that derivative is 1000, then by putting the coupon to
1% there is a correlation corresponding to the price 1000. The calculations are done by
numerical optimization but does not necessarily have a solution or in some cases even
more than one. This can be done for all standard tranches using their index spreads
and traded prices.

A drawback of compound correlation is that it is not good to use in other intervals
than standard tranches. This will be discussed later.

3.2.2 Base Correlation

This chapter explaining Base correlation is a detailed explanation of the method pre-
sented in Base Correlations [Galiani S, et al., 2004]. Base correlations are used only
for loss protection contracts. They are created from base tranches, all starting from
zero representing all tranches as a subtraction between detachment and attachment
point. As in figure 3.1 the tranche K1−K2 will be calculated as a subtraction between
0 − K2 and 0 − K1. Take for instance the CDX index tranches 0 − 3%, 3 − 7% and
7− 10%. The corresponding base tranches are then 0− 3%, 0− 7% and 0− 10%. The
question is how to use the standard tranche spreads to find base correlations. After
finding correlations for all standard tranches the base correlations can be interpolated
to find correlations and spreads even for non standard tranches.

The first base tranche correlation 0 − 3% is implied in the same way as the com-
pound correlation for the equity tranche. Then the tranche 0− 7% can be seen as the
sum of 0− 3% and 3− 7%. Looking at the equality

Pricetr(0− 7%) = Pricetr(0− 3%) + Pricetr(3− 7%) (3.7)

where the relationship between price and present values are the same as explained in
the introduction to this section. For each tranche it is known which premium is used
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Figure 3.1: A mezzanine tranche with attachment K1 and detachment K2 with linear
loss within the certain tranche.

and to what price the derivative is traded. This premium is called the market spread
and is usually equal for the tranches. The method to find the correlation for 0 − 7%
is first to find the price that tranche would have been traded for. This is found as the
sum of the prices for the tranches 0− 3% and 3− 7%. To compensate for the different
widths of intervals the nominal should be scaled in accordance to the width in terms
of the 0− 7% tranche. That implies the equation

7

7
Pricetr(c

market, ρ0−7) =
3

7
Pricetr(0− 3) +

4

7
Pricetr(3− 7) (3.8)

The right hand side is then possible to calculate since the prices for both 0− 3% and
3 − 7% tranches are known. Then it is possible by linear optimization to obtain the
correlation ρ0−7.

In the exactly same way it is possible to obtain the base correlations for all other
base tranches. For instance the 0 − 10% tranche base correlation is obtained by the
steps

• Look at the price of the 0− 10% tranche as the sum of 0− 7% and the standard
tranche 7− 10%

• Take the price obtained in previous calculation for 0− 7% tranche and use price
for 7− 10% tranche

• Scale the prices in accordance to tranche widths and calculate the price of the
0− 10% tranche

• Use linear optimization to find the tranche correlation for tranche 0− 10%

25



3.2. CORRELATION INPUT CHAPTER 3. METHODS AND MODELS

3.2.3 Pricing Standard Tranches

When all base correlations are estimated the task left is to price the tranches with help
of those. It is possible to price the standard tranches in accordance with equation 3.7,
but not to forget the scaling due to different nominal values. That equation becomes

Pricetr(cprice, ρ3−7) = Pricetr(cprice, ρ0−7)− Pricetr(cprice, ρ0−3)

where cprice is the chosen premium that is desired to price for. The scaling should be
such that the price calculated on the right hand side is obtained ”in terms of the 3−7%
tranche”. The equation now looks like

Pricetr(cprice, ρ3−7) =
7

4
Pricetr(cprice, ρ0−7)−

3

4
Pricetr(cprice, ρ0−3)

and that is the final pricing formula for standard tranches from base correlations.

3.2.4 Finding Base Correlations for Non Standard Tranches

One thing that is possible to do with base correlation but not with compound correla-
tion is to derive prices and correlations for non standard tranches. Base correlation has
a unique solution which is an advantage compared to compound correlation. Base cor-
relation is a more intuitive way of interpolation of tranche correlations than compound
correlation. Base correlation is an increasing function while the compound correlation
is normally higher for equity and senior tranche and lower for the mezzanine tranche.
This is referred to as correlation smile. There are many explanations of this smile.
One could be the uncertainty in the model and since the equity and senior tranches
are more sensitive to changes in correlations, they need a ”model risk premium” in-
cluded in the derivative. This and other reasons to the smile are further discussed in
[Amato J, Gyntelberg J, 2005].

This could be compared to implied volatility surfaces for European options. According
to the Black and Scholes theory for pricing of European options should the volatility
be independent of strike price and expiration date. But the volatility is in reality a
function of time to maturity and strike price. Some points on the surface are known
because they correspond to traded options. The rest of the surface is interpolated
between those points. Then the entire surface is used for pricing of European options
with non observable prices. The implied volatility is commonly a U-shaped ”smile” as
a function of strike price [Daglish T, et al., 2006].

Prior to the stock market crash in 1987 where the volatility surface fairly flat but this
changed afterwards in order to obtain better models for the pricing [Derman E, 2003].

In this paper is instead the volatility, or correlation, a function of defaults. This
have been further developed since the crash in 2008 and the similarities between this
smile and the implied volatility smile for European options can be recognized.
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3.2.5 Pricing Non Standard Tranches with Base Correlation

Say we want to price 5 − 8% tranche. Looking at this 5 − 8% tranche it can be
represented by owning a 0 − 8% tranche (long position) and selling a 0 − 5% tranche
(short position). The steps to find the price are as follows

• The first step is to interpolate between the two closets standard tranche detach-
ment points, 0 − 7% and 0 − 10% to obtain the 0 − 8% base correlation and
between 0− 3% and 0− 7% to obtain 0− 5% base correlation.

• The next step is to price both tranches as PVtr = PVPL − PVDL in accordance
with the factor model with those correlations and spreads.

• Then the price of the tranche 5 − 8% can be calculated as the difference be-
tween the price for the base tranches weighted by the corresponding width ratios.
Pricetr(5− 8%) = 8

3
Pricetr(0− 8%)− 5

3
Pricetr(0− 5%)

It is shown that the difference between compound and base correlation is most signifi-
cant in the mezzanine tranche [Galiani S, et al., 2004].

3.3 Contagion Model

Another approach to handle the correlation between defaults is to draw the parallel to
contagion or epidemic proliferation. Instead of looking at correlation between issuers,
varying intensity for defaults can be considered. After one default the intensity for
another default is increased by this contagion ratio. There are several studies bringing
this theory up and also the combination of copula and contagion, a so called copula
contagion mixture model. What are mostly brought up there is the analysis of the
effect of different correlations (copula part) and contagion ratio (contagion part) on
the spread for the basket CDS.

3.3.1 Simple Contagion Model

The approach is to represent the default intensity by a mathematical model. The
simplest form is chosen to have only one parameter, a contagion ratio for each tranche.
The equation to solve for every tranche is as before

Pricetr = PVDL − PVPL

where expressions for the expected value of present value for default and premium
fees are needed to match the market price. With those it should be possible to find
a contagion rate for each tranche which would easily be possible to use for pricing
of non-standard tranches and other basket CDSs. Non standard tranches could for
instance be priced by an interpolated contagion ratio. This model is from À la Carte
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Correlation Models: Which One to Choose [Zheng H, 2012]. The simplest form of the
model contains the intensity on the form

λi(t) = a

(
1 +

n∑
j=1,j 6=i

c1{τj≤t}

)
, i = 1, ..., n (3.9)

where λi(t) is the intensity for the i:th default after i−1 defaults have already occurred.
Parameter a is the unconditional default intensity for issuer i and c is the contagion
ratio that is a constant but different between tranches. Parameter n is the number
of names in the basket CDS. The intensity increases with number that have defaulted
before time t, τj ≤ t. The default time τk is the default time for the k:th default and
the formal definition is

τi = inf

{
t > 0 :

∫ t

0

λi(s)ds ≥ Ei

}
(3.10)

where Ei = − ln(1 − Ui), i = 1...n. In other words is the default time i the smallest
time such that the integral over the intensity exceeds Ei.

The default times can be obtained from Monte Carlo simulations. Based on this model
the default times for all issuers can be determined in the following way

• Generate standard uniform variables Ui, i = 1, .., n

• SetEi = −ln(Ui), i = 1, .., n and sort Ei in increasing order such that E∗1 < E∗2 <
... < E∗n.

• Then the default times can be found as

τ1 =
E∗1
a
, τk = τk−1 +

E∗k − E∗k−1
a(1 + (k − 1)c)

k = 2, ..., n

Where a is the unconditional default intensity. From the default times it is possible to
price the CDS by calculating present value of default and premium legs. This will be
done in the section after the following where a more complex contagion model first is
presented.

3.3.2 Copula Contagion Mixture Model

This model is as the name indicate a mixture of the pure Contagion and Copula models.
The first thing here is the difference in the expression for the intensity.

λi(t) = a

(
1 +

n∑
j=1,j 6=i

ce−d(t−τi)1{τj≤t}

)
, i = 1, ..., n (3.11)
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where another constant d is introduced. The Copula part is represented with, as before,
a model that tries to represent the credit quality as

Xi = ρZ +
√

1− ρ2Zi

So the defaults are again correlated by this ρ. One difference compared to the pure
contagion model is that the random samples from where the default times are gener-
ated are correlated. Except that, step 1 and step 2 in the algorithm for finding the
default times will be the same for the simple contagion model and this mixture model.

The correlated uniform variables are generated by first drawing correlated normal dis-
tributed random samples. This is done by generating independent normal random
samples X1 and X2 and from those construct X3 = ρX1 +

√
1− ρ2X2 where X1 and

X3 are correlated.

From the correlated normal distributed observations the cumulative normal distribu-
tion function is evaluated in those sample points. By taking the inverse of the uniform
cumulative distribution function the correlated random uniform samples are obtained.
The more tricky part in this model is to find the default time. Equation 3.11 can be
rewritten as ∫ t

0

λk(s)ds = at+
ac

d

k−1∑
i=1

(1− e−d(t−τi))

and from the relationship 3.10 ∫ τk

0

λk(s)ds = E∗k

Define

Fk(t) =

∫ t

0

λ(s)ds

and thus is

Fk(t) =

∫ t

0

λk(s)ds = at+
ac

d

k−1∑
i=1

(1− e−d(t−τi))

and

Fk(τk) =

∫ τk

0

λk(s)ds = E∗k

Thus is the default time found by solving the equation

Fk(τk)− E∗k = 0

By using the starting point τk−1 the Newton algorithm converges quadratically to the
root τk which is a good property and can be further read about in [Zheng H, 2012].
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3.3.3 Pricing of contagion models

Given all the ordered default times it is possible to price the loss basket CDS. At first
the loss needs to be defined as

L(t) =
n∑
k=1

k

n
1{τk≤t<τk+1

}

where n is the number of names in the portfolio and τk is default time for issuer k. This
expression could possibly only be a sum of one non-zero term since a given t can only
be in one interval, between default k and k + 1. If there are 50 names in the basket
and t is between default 10 and 11 the loss becomes 10/50 = 20%. The loss is thus
20% of the nominal value. The loss at time t for an entire tranche l can be obtained as

Ll(t) = (L(t)− kl−1)1{kt−1≤L(t)≤kt} + ∆kl1{L(t)>kl}

where kl is the attachment point for tranche l and ∆kl = kl−1 − kl. This means
that the tranche loss is the loss minus the attachment point given that the loss is
between attachment and detachment point plus the difference between detachment and
attachment point given that the loss is greater than detachment. Whit this notations
it is possible to express the present value of the default leg as

PVDL = E(
n∑
i=1

dfti(Ll(ti)− Ll(ti−1)))

so that the loss is calculated and discounted for all time points. The present value of
the premium leg is

PVPL = slE(
n∑
i=1

(ti − ti−1)dfti(∆kl − Ll(ti)))

where sl is the spread for tranche l and ∆kl − Ll(ti) is the nominal value minus the
loss. This is discounted with dfti and multiplied with the size of the time step between
premium payments.

The model can be used to find a contagion ratio c for a given spread sl. Then there
will be one ratio for each index tranche. There is no previous work found on how this
could be used for pricing CDSs but the simplest way would be to interpolate the ratio
to use for other tranches and non-index portfolios as well. Say that c0, c1 for 0 − 3%
and 3−7% tranche are calculated respectively. The corresponding c for 2−6% tranche
would be 1

4
c0 + 3

4
c1. The c is independent of size of the tranche and thus it is only

interesting how much of the new c that is taken from each of the other tranches 2−3%
and 3− 6% which is here 1

4
from the first tranche 0− 3% and 3

4
from tranche 3− 7%.
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Chapter 4

Data and Implementation

4.1 Calibration Data

The data is provided from Handelsbanken Capital Markets system which includes credit
curves such as spread and discount factor for given time periods and indexes. The
default probabilities are the individual probability of default for one company in the
underlying portfolio. The data is from different series and maturities. Here follows a
presentation of the CDSs used

• iTraxx Main Europe S 24, maturity 3 years, itrxEurMain/3Y
- Underlying index is iTraxx Europe
- 125 underlying names
- Calibration tranches 0− 3%, 3− 6% and 6− 12%.
- Nominal 1000000 for each tranche
- Market premium 1%

• iTraxx Main Europe S 24, maturity 5 years, itrxEurMain/5Y
- Underlying index is iTraxx Europe
- 125 underlying names
- Calibration tranches 0− 3%, 3− 6% and 6− 12%.
- Nominal 1000000 for each tranche
- Market premium 1%

• iTraxx Xover Europe S 24, maturity 5 years, itrxEurXover/5Y
- Underlying index is iTraxx Europe Crossover
- 75 underlying names
- Calibration tranches 0− 10%, 10− 20% and 20− 35%.
- Nominal 1000000 for each tranche
- Market premium 5%

Where market premium refers to the premium that the price is calculated for. The
yearly premium paid to the insurer. All data for each CDS is taken from Handels-
bankens system at the same time point to be able to compare the tranches within the
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CDS. The Xover index is a subset of the main index and represents the 75 most liquid
obligors. The S above represent Series referring to the series with roll date September
21, 2015. Roll date is meaning that the indexes are traded from that date. It may be
known a few weeks earlier though [”Markit iTraxx”, 2015].

4.2 Implementation

For implementation of the presented theory, Python 2.6.6 has been used together with
Eclipse. The libraries NumPy and SciPy are used a lot because of their mathematical
and statistical purposes. Also Handelsbankens system Prime, provided by Sungard
Front Arena is the foundation for calibration of the models. Given the price Prime
presents, which are the market prices for the standard tranches the models have been
calibrated. The term market price refers to the price from the index. The assignment
has then been to compare the prices the models obtain to each other.

For the implementation, another approach is taken to implement the recovery rate
which has been done to be able to compare with the valuation models in Prime. This
is as far as the author knows not a commonly used method. The difference here is
that the tranches do not contain what would have been expected from previous theory.
The computing programs have been easy to modify in order to price with the same
tranches. It has been necessary to do this adaption since Primes models give prices
that would not be possible with the definitions in this paper. As defined before, the
recovery rate means that the tranche 0− 10% with nominal 1000000 contains the 10%
first defaults. Say there are 100 names in the underlying index and thus 10 defaults in
the tranche. With recovery rate 40% this would imply an experienced loss of

1000000(1− 0.4)

10
= 60000

for each defaulted name. The maximum experienced loss would be Nominal ∗ (1 −
recoveryRate) = 1000000 ∗ (1− 0.4) = 600000. This turns out not to be the case here.

When the underlying names have recovery rate 40% does it not mean that the tranche
0 − 10% contains 10% of the underlying names but the number of names needed to
lose up to the nominal value with that recovery rate. Assume that the nominal value is
100, recovery rate is still 40% with 100 underlying names. The tranche 0− 10% would
correspond to 10 defaults out of 100 names with no recovery. Each default correspond
to a loss of 10. In the case of recovery is the loss only 10 ∗ (1− recovery rate) = 6 and
thus is, since 16 ∗ 6.25 = 100, 17 names included in the tranche. There are 16 entire
defaults and then 25% of the 17th default included in the tranche 0− 10% instead of
10. This does not necessary have an impact on the rest of the theory but is useful to
be aware of in order to understand all results. The main interest is to compare the
models and see how the pricing of the derivatives differ. The most obvious appearance
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of this approach is that for some tranches the present value is higher than would be
possible with the previous definition, for instance a price above 600000 for a tranche
with nominal 1000000.

Both contagion models are calibrated with 10000 simulations. The results of the con-
tagion models are presented together with standard deviation. For the pricing 1000
simulations are made with 100 repetitions, the price is the mean of all prices and the
standard deviation can easily be found by looking at all prices.

The models are calibrated towards already existing CDSs in Prime. These are not
the standard tranches but combined standard tranches which should not matter to
compare the models.
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Chapter 5

Result

Each of the indexes have been valuated with all four pricing appoaches. Afterwards all
the models are used to price other CDSs and tranches. Those are compared to each
other to see how the models differ in pricing.

5.1 Calibration

All models are calibrated against data from Handelsbanken. There are market prices
for the CDS for which the models are tried to be calibrated. The point is that after
calibration be able to price other tranches and premiums. All models presented earlier
in the paper are considered. To remind the reader those are Copula model with both
compound and base correlation, and two different contagion models, one simple with
only one unknown parameter and one with three parameters. The compound correla-
tion is only used for pricing standard tranches, since as mentioned in chapter 3 it is not
good for non standard tranches due to the correlation smile. Base correlation is used
for both standard and non standard tranches. Since the contagion ratio during the
calibration phase has turned out to be increasing over tranches (approximately), with
the same argument as for compound and base correlation it may be enough for pricing
even non standard tranches with just interpolation of the ratio. This is investigated to
find out if it is a good approach.

For the contagion models the default times are generated. The obtained parameters
are gained from 10000 simulations of default times.

5.1.1 iTraxx Europe Main S24 3Y Calibration

In Table 5.1 are the parameters for compound correlation and contagion model (simple)
models presented. The parameters are calibrated towards the prices in the first column
in Table 5.1 which is the market price. The underlying index is the main index Series
24 with coupon 1% payed every quarter of a year with maturity 3 years. In Table 5.2
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is the parameters for the two other models, base correlation and complex contagion
model shown. For the complex model is all tranches needed to obtain the parameters
while for the other models there are one parameter found for each tranche.

Table 5.1: iTraxx Europe Main S24 3Y, Parameter values Calibration, coupon 1%

Tranche
Model

Market Val Comp Corr Cont Mod

0− 3% 213200 0.6711 0.8464
3− 6% 8060 0.3004 1.452

0.9713
6− 12% -16660 0.4433 1.871

Table 5.2: iTraxx Europe Main S24 3Y, Parameter values Calibration, coupon 1%

Tranche
Model

Base Corr
Parameter

Model
Cont Mod 3Par

0− 3% 0.6711 Cont ratio, c 17.67
0− 6% 0.7548 Decay ratio, d 49.90
0− 12% 0.8466 Correlation, ρ 0.2151

5.1.2 iTraxx Europe Main S24 5Y Calibration

In Table 5.3 are the parameters for compound correlation and contagion model (simple)
models presented. The parameters are calibrated towards the prices in the first column
in Table 5.3 which is the market price. The underlying index is the main index Series
24 with coupon 1% payed every quarter of a year with maturity 5 years. In Table 5.4
is the parameters for the two other models, base correlation and complex contagion
model shown. For the complex model is all tranches needed to obtain the parameters
while for the other models there are one parameter found for each tranche.

Table 5.3: iTraxx Europe Main S24 5Y, Parameter values Calibration, coupon 1%

Tranche
Model

Market Val Comp Corr Cont Mod

0− 3% 426600 0.6701 0.9730
3− 6% 85590 0.9403 1.131
6− 12% 5826 0.3006 1.388
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Table 5.4: iTraxx Europe Main S24 5Y, Parameter values Calibration, coupon 1%

Tranche
Model

Base Corr
Parameter

Model
Cont Mod 3Par

0− 3% 0.6701 Cont ratio, c 1.979
0− 6% 0.7544 Decay ratio d, 3.224
0− 12% 0.8500 Corr, ρ 0.1244

5.1.3 iTraxx Europe Xover S24 5Y Calibration

In Table 5.5 are the parameters for compound correlation and contagion model (simple)
models presented. The parameters are calibrated towards the prices in the first column
in Table 5.3 which is the market price. The underlying index is the Xover index Series
24 with coupon 5% payed every quarter of a year with maturity 5 years. In Table 5.6
is the parameters for the two other models, base correlation and complex contagion
model shown. For the complex model is all tranches needed to obtain the parameters
while for the other models there are one parameter found for each tranche.

Table 5.5: iTraxx Europe Xover S24 5Y, Parameter values Calibration, coupon 5%

Tranche
Model

Market Val Comp Corr Cont Mod

0− 10% 654200 0.5534 0.6060
10− 20% 113500 0.9573 0.5894
20− 35% -101000 0.4934 0.7064

Table 5.6: iTraxx Europe Xover S24 5Y, Parameter values Calibration, coupon 5%

Tranche
Model

Base Corr
Parameter

Model
Cont Mod 3Par

0− 10% 0.5534 Cont ratio, c 1.822
0− 20% 0.6531 Decay ratio, d 7.128
0− 35% 0.7735 Corr, ρ -0.0906

5.1.4 Compound Correlation Illustrations

In figure 5.1 - 5.3 is the relationship between price and correlation shown for the equity
tranche for the three indexes. The market price is also plotted as a black line and their
intersection is the correlation corresponding to market price. In figure 5.4 - 5.6 are the
corresponding relationship for the mezzanine tranche and in figure 5.7 - 5.9 the senior
tranche.
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Figure 5.1: Correlation for the 0−3% iTraxx Main 3Y tranche (blue). Price to calibrate
against (black). Matching correlation is 0.6711

Figure 5.2: Correlation for the 0−3% iTraxx Main 5Y tranche (blue). Price to calibrate
against (black). Matching correlation is 0.6701.
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Figure 5.3: Correlation for the 0 − 10% iTraxx Xover 5Y tranche (blue). Price to
calibrate against (black). Matching correlation is 0.5534.

Figure 5.4: Correlation for the 3−6% iTraxx Main 3Y tranche (blue). Price to calibrate
against (black). Matching correlations are 0.3004 and 0.9713
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Figure 5.5: Correlation for the 3−6% iTraxx Main 5Y tranche (blue). Price to calibrate
against (black). Matching correlation is 0.9403.

Figure 5.6: Correlation for the 10 − 20% iTraxx Xover 5Y tranche (blue). Price to
calibrate against (black). Matching correlation is 0.9573.
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Figure 5.7: Correlation for the 6 − 12% iTraxx Main 3Y tranche (blue). Price to
calibrate against (black). Matching correlation is 0.4433

Figure 5.8: Correlation for the 6 − 12% iTraxx Main 5Y tranche (blue). Price to
calibrate against (black). Matching correlation is 0.3006.
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Figure 5.9: Correlation for the 20 − 35% iTraxx Xover 5Y tranche (blue). Price to
calibrate against (black). Matching correlation is 0.4934.

5.2 Validation

The data in each table is presented so that each row corresponds to a specific tranche
and coupon, priced with different models. The models are the columns and the inter-
esting thing becomes to compare how the prices differs over the columns in each row.
The column called ”Prime” is the value that Handelsbankens system provides and for
the three first tranches this is equal to the market price, given by the index.

The non standard tranches are chosen so that they represent diversified tranches in
terms of seniority and widths.

5.2.1 iTraxx Europe Main S24 3Y Validation

In Table 5.7 - 5.9 are all models used for pricing of index Main 3Y for different tranches
and coupons given the calibration from Table 5.1 and 5.2.

5.2.2 iTraxx Europe Main S24 5Y Validation

In Table 5.10 - 5.12 are all models used for pricing of index Main 5Y for different
tranches and coupons given the calibration from Table 5.3 and 5.4.
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Table 5.7: iTraxx Europe Main S24 3Y, Prices using Calibrated Models, coupon 1%

Tranche
Model

Prime Comp Cor Base Cor Cont M (Std) Cont M2 (Std)

0− 3% 213100 213200 213200 208300 (2398) 212500 (3387)
3− 6% 8060 8062 8063 8542 (1546) 9902 (1544)

8065
6− 12% -16660 -16660 16670 -17320 (759.0) -18170 (848.9)

Non stand tranche

0− 6% 110600 - 110600 115000 (1719) 111600 (2408)
2− 5% 49860 - 50380 22150 (1671) 32250 (1835)
5− 10% -11770 - -11320 -15020 (731.0) -13370 (1126)

Table 5.8: iTraxx Europe Main S24 3Y, Prices using Calibrated Models, coupon 2%

Tranche
Model

Prime Comp Cor Base Cor Cont M (Std) Cont M2 (Std)

0− 3% 189000 189100 189100 183300 (2811) 188400 (2978)
3− 6% -19510 -19470 -19350 -18840 (1542) -17150 (1679)

-19160
6− 12% -44540 -4440 -44380 -45340 (823.9) -45960 (865.4)

Non stand tranche

0− 6% 84740 - 84890 89110 (1732) 85670 (2075)
2− 5% 22910 - 23590 -5522 (1829) 5457 (2033)
5− 10% -39590 - -38980 -42980 (761.4) -41150 (950.7)

5.2.3 iTraxx Europe Xover S24 5Y Validation

In Table 5.13 - 5.15 are all models used for pricing of index Xover 5Y for different
tranches and coupons given the calibration from Table 5.5 and 5.6.
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Table 5.9: iTraxx Europe Main S24 3Y, Prices using Calibrated Models, coupon 5%

Tranche
Model

Prime Comp Cor Base Cor Cont M (Std) Cont M2 (Std)

0− 3% 116500 117100 117100 109500 (2974) 116200 (3055)
3− 6% -102200 -102100 -101600 -101700 (1465) -99220 (2009)

-100800
6− 12% -128200 -127600 -127500 -128500 (776.9) -129200 (939.0)

Non stand tranche

0− 6% 7141 - 7752 10910 (1918) 8633 (2281)
2− 5% -57950 - -56780 -87630 (1817) -75150 (2435)
5− 10% -123000 - -121900 -126200 (819.6) -124000 (1042)

Table 5.10: iTraxx Europe Main S24 5Y, Prices using Calibrated Models, coupon 1%

Tranche
Model

Prime Comp Cor Base Cor Cont M (Std) Cont M2 (Std)

0− 3% 426600 426600 426600 422000 (3968) 414600 (3867)
3− 6% 85590 85590 85620 86540 (2826) 92950 (2848)
6− 12% 5825 5831 5830 4040 (1736) -7958 (1764)

Non stand tranche

0− 6% 256100 - 256100 252200 (2873) 254000 (3485)
2− 5% 173600 - 174700 143500 (3331) 152200 (3533)
5− 10% 22850 - 22090 12770 (1912) 11340 (1922)

Table 5.11: iTraxx Europe Main S24 5Y, Prices using Calibrated Models, coupon 2%

Tranche
Model

Prime Comp Cor Base Cor Cont M (Std) Cont M2 (Std)

0− 3% 389700 390000 390000 384200 (4021) 377800 (3985)
3− 6% 39460 40280 39760 40170 (2672) 46640 (3049)
6− 12% -41740 -41750 -41480 -43550 (1838) -55500 (1785)

Non stand tranche

0− 6% 214600 - 214900 210000 (2790) 212600 (3081)
2− 5% 129500 - 130900 97540 (3208) 107400 (3733)
5− 10% -24420 - -24920 -34970 (1735) -34750 (1916)
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Table 5.12: iTraxx Europe Main S24 5Y, Prices using Calibrated Models, coupon 5%

Tranche
Model

Prime Comp Cor Base Cor Cont M (Std) Cont M2 (Std)

0− 3% 279000 280100 280100 270400 (4497) 265700(4540)
3− 6% -98940 -95640 -97810 -99670 (2978) -91420 (3398)
6− 12% -184400 -184500 -183400 -186500 (1959) -198200 (1894)

Non stand tranche

0− 6% 90030 - 91140 83730 (3470) 87870 (3258)
2− 5% -2844 - -575.4 -39220 (3985) -27280 (3909)
5− 10% -166200 - -165900 -177200 (2109) -178000 (2276)

Table 5.13: iTraxx Europe Xover S24 5Y, Prices using Calibrated Models, coupon 5%

Tranche
Model

Prime Comp Cor Base Cor Cont M (Std) Cont M2 (Std)

0− 10% 654200 654200 654200 650700 (3443) 625800 (3425)
10− 20% 113500 113500 113500 107600 (3802) 158500 (4523)
20− 35% -101000 -101000 -101000 -100300 (2413) -133100 (2725)

Non stand tranche

0− 15% 501000 - 502400 507400 (3707) 498700 (3595)
5− 12% 442300 - 444600 457200 (4964) 424500 (4600)
10− 30% 15910 - 17200 44120 (2892) 28200 (3593)

Table 5.14: iTraxx Europe Xover S24 5Y, Prices using Calibrated Models, coupon 1%

Tranche
Model

Prime Comp Cor Base Cor Cont M (Std) Cont M2 (Std)

0− 10% 758000 757000 757000 769800 (3376) 736900 (3418)
10− 20% 283500 277200 282500 286700 (4287) 325500(4426)
20− 35% 84190 84390 83110 87540 (2643) 54190 (2395)

Non stand tranche

0− 15% 624800 - 625100 644200 (3275) 626100 (3343)
5− 12% 579800 - 580900 610300 (4666) 568300 (4467)
10− 30% 192900 - 193100 226500 (3506) 205600 (3059)
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Table 5.15: iTraxx Europe Xover S24 5Y, Prices using Calibrated Models, coupon 10%

Tranche
Model

Prime Comp Cor Base Cor Cont M (Std) Cont M2 (Std)

0− 10% 524400 525700 525700 501600 (3483) 487800 (4612)
10− 20% -98970 -91130 -97730 -116900 (4389) -53040 (4558)
20− 35% -332500 -332700 -331100 -336000 (3142) -367300 (2843)

Non stand tranche

0− 15% 346300 - 349200 335700 (3952) 338100 (4620)
5− 12% 270500 - 274200 265500 (5095) 246400 (5230)
10− 30% -205300 - -202600 -183300 (3755) -192600 (3949)
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Chapter 6

Conclusions

6.1 Calibration parameters

6.1.1 Compound Correlation

The mezzanine tranche for Main 3Y ρ, in Table 5.1 is the only tranche having more
than one solution. It has one solution that is significantly lower than the corresponding
correlation for the other indexes and one that is higher, close to 1. This can be seen in
figure 5.4. Mezzanine tranche is not as sensitive to compound correlation as the other
tranches. That could possibly explain why there are bigger differences in correlations
and even more than one that give satisfying models. If the correlations goes up, the
senior tranche gets more risky and should be more expensive to insure. The opposite
holds for the equity tranche. For the mezzanine tranche, it is not obvious how it
affects the price but the figures 5.4 - 5.6 shows that the price goes up for a while before
decreasing again. The same pattern can be seen for the senior tranche in figures 5.7
- 5.9 where the price goes down after a while, but for higher correlation than for the
mezzanine tranche.

6.1.2 Base correlation

Base correlation has in opposite to compound correlation a unique solution
[Galiani S, et al., 2004] and are quite similar for iTraxx Main 3Y and 5Y while a bit
lower for the Xover index. It may be reasonable to think that the correlation for
5Y and 3Y should be the same since the underlying names are the same for both
indexes. Base correlations has turned out to be increasing with tranches in accordance
to earlier theory. The base correlations are very similar for the two main indexes which
is reasonable since they have the same underlying names.

46



6.2. MODEL PRICING CHAPTER 6. CONCLUSIONS

6.1.3 Simple Contagion Model

For both the Main indexes are the contagion ratios for the different tranches both
strictly increasing. The Main indexes are relatively more equal than the Xover index.
The Xover index has significantly lower contagion ratios for all tranches than the main
indexes. This may also here be explained by the fact that the Main indexes have the
same underlying portfolio and the default should affect the remaining names similarly
independent of time to maturity. The contagion ratios are not increasing between the
0 − 10% and 10 − 20% tranche, but they are relatively close. Since the ratios are
increasing with tranches for two of the three indexes and the third is close to constant,
the contagion ratios have been interpolated in order to try to price non standard
tranches. This is with the same argument as for the increasing base correlation.

6.1.4 Complex Contagion Model

For all indexes the parameter optimization gives the decay as the biggest parameter
value and the correlation the smallest. The correlation is negative for Xover 5Y index.
This may not be expected since the correlation obviously were high in the previous
calibrations. It may on the other hand have been compensated by the other parameters
so negative correlation should not be excluded as a possibility.

6.2 Model Pricing

In this section will the pricing be compared between the models. The models are cal-
ibrated towards the price given by Prime. For the Tables 5.7 5.10 and 5.13 with the
coupons used for calibration (1% for the Main indexes and 5% for the Xover index)
should the three first tranches be as close to Primes value as possible. For the other
tranches and coupons there is no ”should be” since Prime is just one of the pricing
models here as well. The important thing is that there is no right or wrong here, they
are just compared. So what is more interesting is the non standard tranches and the
tables with different coupons than those used for calibration.

For the equity tranche compound and base correlation will always generate the same
price since the base correlation is equal to the compound correlation. As seen there
are the two contagion models less accurate than the semi-analytic valuation and this
is of course due to the simulation done for those models.

What is interesting is that their confidence interval will not cover the calibration value
for many of the calibrations. To remind the reader is the simulation for both the
contagion models done with 1000 simulations and 100 repetitions and the normal ap-
proximated 95% confidence interval would thus become

price± σ ∗ 1.96/
√

100 ≈ price± σ/5
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where σ is the standard deviation presented after the price in the contagion columns.
This is the case for all indexes. Since the interval does not cover the calibration price the
conclusion is that it is probably not an accurate price and the contagion ratio could have
been improved by calibration with more simulations. The complex contagion model
is sometimes not so close to the calibration values. It is because of the optimization
with three parameters that it not finds an exact solution. The contagion models are
calibrated and priced with the same number of simulations. The limitation here is the
computational time since the algorithm must include all simulations in every value it
goes over within the optimization.

6.2.1 iTraxx Main S24 3y

Consider Table 5.8 and 5.9 the upper part, three first tranches. This index was the
only one with more than one solution for one of the tranches. Comp corr lies between
Prime and base correlation value for the lower correlation, and slightly above for the
high correlation. Since the calibration is more accurate with the lower correlation, this
could be seen as the one to use and that imply for the other coupons prices closer to
Primes values. This is also the compound correlation used as the first base correlation.
Comparing the compound and base correlation for the standard tranches and different
coupons, the lower compound correlation is slightly closer to Prime for all tranches
and coupons than the base correlation.

In the calibration in Table 5.7 differs the complex contagion model most from the
calibration values. Compared to the other indexes is this a quite accurate calibration
for the complex contagion model though. The mezzanine tranche is above the calibra-
tion value and the senior and equity tranche is below. This can be seen in the prices
for standard tranches with other coupons as well, the mezzanine tranche is above and
the senior and equity are below. For the non standard tranches is base correlation the
model that prices most equal to Prime. Between the contagion models is the complex
model closer to Primes values for all non standard tranches.

6.2.2 iTraxx Main S24 5y

For this index, the complex contagion model when calibrated is a bit off for the senior
tranche. The calibration errors in the complex contagion model can be seen in standard
tranches for other coupons. It prices higher than Prime and base correlation for the
mezzanine tranche and below for the other equity and senior tranche. Both contagion
models price below Prime and base correlation for all non standard tranches. Simple
contagion model has calibration values closer to Prime and keeps generating standard
tranche prices closer to Prime compared to the complex contagion model. The interest-
ing thing is what happens with the non standard tranches. There the complex model
is closer to the other models than the simple one. Semi-analytic valuation with base
correlation as input and Prime are definitely the models that are most similar.
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6.2.3 iTraxx Xover S24 5y

The complex contagion model perform worse than for the other two indexes in terms
of close to the calibration value. All tranches are quite different from the calibration
value. This can be seen in Table 5.13. The simple contagion model is usually closer
to Prime and base correlation values for standard tranches while for non standard
tranches it is again the opposite. The complex model does actually perform more like
the other models for non standard tranches than for the standard tranches in this case.
Compound and base correlation are usually closer to Primes values than the other two
models, but it differs between them which is closest and has the highest/lowest price.
For this index the base correlation and simple contagion model varies which one is
bigger but for almost all prices are Primes values in between of those. For the non
standard tranches is over all base correlation definitely the approach that performs
most like Primes values.

6.2.4 Conclusions

Comparing the two contagion models gives that the simple contagion model is easier
to calibrate accurately because of fewer parameters. For all indexes the simple model
prices more similar to Prime and base correlation for standard tranches compared to
the complex model. The interesting thing is that for the non standard models is it the
opposite for all indexes.

One conclusion to draw from this is that the contagion models do not calibrate as
accurate as compound and base correlation. The pattern seen within the calibration
of those are usually possible to find in standard tranches for other coupons as well.
Semi-Analytic valuation with Base correlation as input is definitely the approach that
over all prices most similar to Prime.

49



Chapter 7
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What would have made the contagion models perform better which may be of great
impact is a lower standard deviation which could be done by more simulations both
for the calibration and the pricing part. Maybe some other optimization algorithms
should be considered or restrictions to find the parameters easier. Also some variance
reduction could be useful such as antithetic sampling. Since the pattern from the cali-
bration were possible to trace even in pricing for standard tranches with other coupons,
it would be of interest to calibrate the contagion models really accurate to see how the
pricing differs then.

There are other models that would give additional pricing options which could be
interesting to investigate. For instance could the copula model be used with other
distributions than normal such as t-distribution or any other known distribution.

This is just a presentation of different pricing models. If one would choose one to
use, it could not be done based on this paper. What can be done further, and was
the initially purpose was to compare the pricing with these models with market prices,
traded between parties. The reason to why this was not done here is that all the data
available were traded in SEK. The CDS index is not available in SEK and thus it is
not possible to compare the prices without a method to convert the spreads between
currencies. This is because of the correlation between defaults and the currency, some
underlying names are connected to what happens with a specific currency if they de-
fault. This is a future area of work to be able to compare with actual prices on the
market.

Without any further measurement it is hard to tell which model is best and the im-
pact from the calibration accuracy needs to be investigated. Even though the simple
contagion model seemed to alone have the most different pricing for the non standard
tranches the idea of interpolating the contagion ratio for different tranches should not
be rejected yet. It could also be further investigated how to find the contagion ratios
for non standard tranches, maybe the simple interpolation is not the best. It would be
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interesting to see how the contagion models price with more simulations for the cali-
brations since the calibration affects all later pricing for those tranches. The complex
contagion model is probably not so useful when the calibration not goes well. To be
able to price the derivatives accurately the calibration needs to be accurate.

As a conclusion there is not an answer which is best, this needs a clear view of how
to measure that and data to compare the pricing towards. One thing that can be said
is that the differences in prices do not grow with size of the coupons, it stays approxi-
mately the same for different coupons. The biggest challenge is to price non standard
tranches. There does the prices differ most and can affect the trading the most.

It is also clear that the pricing do differ between models and some models can probably
be good for pricing different tranches, indexes and coupons. One question to answer in
future research is: what is a good model and how to measure that? This is definitely
an area where a lot of research is left and improvements are to come.
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