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Abstract

The goal of the thesis is to model stock prices as a stochastic process which exhibits
reversion towards an equilibrium point, where the equilibrium point is set by fundamental
data points of the company. The stochastic model is compared to the standard approach
of using Geometric Brownian motion to simulate stock prices.

The autocorrelations of a group of stocks are investigated. This has lead to the development
of a method of modifying stochastic models of stock movements to include autocorrelation,
by introducing an autoregressive term.

A method to achieve an index behaviour for a group of simulated stocks is developed,
by the introduction of an index term. This can be added to stochastic models of stock
movements.
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1. Introduction

The mathematical formalization of a path consisting of a succession of discrete random
steps is known as a random walk. Random walks are used in many different areas such
as physics, economics, computer science, chemistry, and biology. A rigorous mathematical
framework for random walks has been developed to allow for applications in many different
areas. A standard random walk has discrete time steps, the continuous-time analogue to
a random walk is called Brownian motion.

There are a lot of different applications for Brownian motion, as well as extensions of the
standard Brownian motion to apply it to additional situations. One example of this is
geometric Brownian motion, in which the logarithm of a random varying quantity follows
Brownian motion with the introduction of a drift term. The drift term represents the
rate at which the average of the process changes. One of the places where Geometric
Brownian motion is applied is in the modelling of stock price movements, as it has similar
characteristics as stock prices. For example, the movements of Geometric Brownian motion
are independent of the previous value; it produces only positive values; Geometric Brownian
motion creates jumps in the value similar to what is seen in the stock market. The model
of geometric Brownian motion simulates the stock movement without incorporating what
a stock is.

But a stock is a security that represents a partial ownership in a corporation, where it
accounts for a claim on a part of the company’s assets and earnings. Shares are bought
and sold on stock markets and it is this buying and selling that gives rise to stock prices.
The fundamentals of a company, such as earnings and assets are commonly used in the
analysis of stocks by investors but is ignored in stochastic models of stock movements. The
intrinsic value of a stock refers to the shares claim on the value of the underlying business,
taking into account both tangible and intangible factors. So in an ideal world, the price of
the stock and its intrinsic value should be the same. But this is not the case as the stock
price is constantly changing.

In this thesis, the idea of modelling the stock price as a stochastic process which exhibits
properties of reversion towards the intrinsic value is explored, where the intrinsic value is
calculated using the companies earnings, assets, etc. This can be thought of as if the stock
price is connected to the intrinsic value with a spring and the spring pulls the stock price
towards the intrinsic value. This new model is then compared to the method of simulating
the price development of a stock using Geometric Brownian motion. The models are then
explored further to find the limitations and how they can be corrected.

Section 2 explains the principles of what a stock is and how the stock market works, as
well as useful stochastic processes and statistical tools. In section 3 are stock prices sim-
ulated using stochastic processes and properties such as autocorrelations and correlations
are studied. The results from section 3 are discussed in section 4. In section 5 further



developments are discussed and in section 6 conclusions are given.



2. Background

2.1 Stock

A stock is a type of security that signifies a partial ownership in a corporation and repre-
sents a claim on a part of the company’s assets and earnings. So if a company has 1,000
outstanding shares and one person owns 100 shares, that person would own and have a
claim to 10% of the business’s assets and earnings. The company’s outstanding shares are
the total number available shares in the market of that company.

A market is a place or an environment where the traders meet to exchange assets[4], where
a trader refers to everyone who buys or sells an asset. Stocks are bought and sold on stock
exchanges, which is a regulated marketplace where shares are traded. For a stock to be
traded on an exchange, it needs to be listed on that exchange. Different exchanges have
their own regulations and requirements that must be meet in order for the companies to
have their shares traded on the exchange. The requirements can include conditions such as
minimum annual income, minimum number of shares outstanding and minimum market
capitalization.

Markets provide liquidity, which means that the shares can easily be bought and sold. The
more buyers and sellers there are the more liquidity there is. The price of a share is quoted
with a Bid-Ask spread. The bid (the lowest) is the price at which the stock can be sold,
and the ask (the highest) is the price at which the share can be bought. The difference
between the ask and bid is known as the spread. The width of the spread will be different
for different companies and changes over time. The spread usually reflects the liquidity of
the share and it is the price at which a transaction between buyers and sellers occurs that
is the quoted stock price.

Stocks are only traded on days called "trading days’ which correspond to weekdays. Thus,
there is no trading on weekends or holidays. So there can be a different number of trading
days per year, but there are approximately 250 trading days per year. In this paper any
references to a year refer to the trading days within the year and the weekends and holidays
are ignored.

The price of a stock changes during the day, but is commonly quoted in data sets of
historical stock prices with the price it has at the end of the trading day. This price is
known as the end of day stock quote and is what is referred to as the price of a stock in
this thesis.



2.1.1 Index

To measure the performance of a group of stocks a stock index (I(t)) is used, which
calculates the collective movements of the group of stocks. The index is calculated at
discrete times t; with a fixed time step At = ¢, — t;. In this case, At will be equal to a
trading day as the data that are used are only reported once a day.

The price of a stock at time ¢ of company k is denoted with either S¥ or S*(¢), both
notations will be used interchangeably trough the thesis. The index k=1..K denotes the
compamies which are included. The index (/(t)) is commonly calculated as

I(t) = 1oy my(t)Sk(t), (2.1.1)

where [ is a constant used to set the price of he index at time ¢ = 0, my(¢) is the number
outstanding shares for company k at time t. So my(¢)S*(t) is the market capitalization of
company k at time t i.e. the market value of the whole company. So this type of index is
called a market capitalization weighted index.

In an index weighted by market capitalization, a single company can come to dominate
the entire index. This effect can be minimized by using an equally weighted index. It
calculates the index (I(t)) by setting the price of the stocks at ¢ = 0 equal to one,

1) = 10; my@(w, (2.1.2)

where S*(t = 0) is the price of company k’s stock at time ¢ = 0 and Ij is a constant used
to set the price of he index at time ¢t = 0.

2.1.2 Fundamental data points

The intrinsic value of a company is the value of the business as a whole with all aspects
of the company included, regarding both tangible (earnings, assets, etc.) and intangible
(business model, governance, etc.) factors. The intrinsic value is also referred to simply as
the value. The value of a company does not have to be equal its share price.

The value of a company is calculated independently of its market value, and it is assumed
it can be calculated for any company or business. Given the fact that a share is not just
a tradable price of paper but represents a fractional ownership of that business, the share
of a company should then be valued proportional to its claim on the intrinsic value.

The fundamentals of a company refer to qualitative (intangible) and quantitative (tangible)
information that affects the value of a company. Since intangible factors are unquantifiable,
they are not included in standard valuation models. Valuation models which estimate the



intrinsic value rely instead on the fundamental data points that are easily quantifiable and
standardized, thus making it possible to compare different companies.

Fundamental data points refer to data points that are connected to the company such as
earnings, revenue, assets, liabilities, and growth in earnings. It does not include quantities
that relate to the trading patterns of the stock itself, such as volatility of the stock price.
The share price and the fundamental data points need to have the same scale in order to
compare the results from different companies. This can be done by dividing the funda-
mental data points such as earnings, equity, etc. with the total number of shares for that
company. Thus the fundamental data points will become earnings per share, equity per
share etc. The company reports its earnings, equity, etc. quarterly with a special emphasis
on the last rapport each year, which summarizes the annual results.

So earnings per share (E;) is the portion of a company’s profit allocated to each share at
time t. Thus, it serves as an indicator of the company’s profitability and, as such earnings
per share is a key driver of the stock price. F; is calculated by dividing net income earned
in a given reporting period (quarterly or annually) by the total number of outstanding
shares.

Earnings growth (g;) is a measure of the growth in a company’s earnings per share over a
particular period, where t is the time of the last E}; in the period. g; is calculated by fitting
the function

E;=c(1+4") (2.1.3)

to F; during the selected period using the least mean square method. ¢ and ¢’ are constants
and ¢ = ¢; where t corresponds to the time of the last F; in the period used in the
calculation. Three or five data points are commonly used in the calculations of g;. In this
thesis ¢; is calculated using three data points; this means that the data points E;_o, F;_{
and FE; are used in the calculation of g;.

A company has assets such as cash and inventory, as well as equipment, buildings and real
estate that are subject to depreciation according to accounting standards. The company
also has liabilities such as loans, accounts payable and mortgages. Assets and liabilities are
combined into a measure called equity, where the equity is calculated by subtracting the
liabilities from the assets. It is similar to the book value per share (B;), which is calculated
by subtracting the liabilities from the assets and dividing by the number of outstanding
shares. The book value per share can thus be considered a measure of the amount of money
a shareholder would receive for each share if the company were to liquidate.

Accounting standards make it possible manipulate the earnings (F;) and book value (B;)
to some degree, both by creating lower and higher values. For example, current assets such
as receivables and inventories are usually worth close to the reported value, but plants and
equipment may be outmoded or obsolete and thus worth less than carrying value. On the
other hand, a company with fully depreciated plant and equipment could have a reported
value considerably below the real value. Things like real estate purchased decades ago with
a reported value equal to the original cost decades ago may be worth considerably more
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today. Thus, a precise determination of the value with an algorithm or function using
variables such as E;, B; is not possible; rather an estimate of the intrinsic value is the
goal.

There are many investment theories which outline a framework how to pick a winning
stock. But there are primarily two of them that have proven successful over long time
periods. Those are value investing and growth investing: in value investing the goal is
to buy stocks trading below their intrinsic value, and profit as the stock price increases.
In growth investing is the goal to pick a stock that will grow fast and thus get a higher
intrinsic value in the future which will result in a higher stock price in the future.

2.1.3 Valuation model

A common valuation procedure in finance is performed by discounting cash flows(DCF).
The DCF analysis is a very adaptable tool, which can be used to estimate the intrinsic value
of companies, determining the price of initial public offerings and other financial assets. It
estimates the present value (V') of its future cash flows by discounting the future cash flows
with a discount rate, so that cash flows such as future earnings are worth more if they will
be earned next year compared to if they are earned 10 years into the future. The DCF
method is subject to assumption bias and small changes in the underlying assumptions of
the analysis will alter the valuation results. The value of future cash flows is given by

Fy
V=) —— (2.1.4)
¢
—~ (1+d)
where V is the present value, F}; is the future cash flow at time ¢, N is the number of
years and d is the discount rate[2]. The choice of discount rate (d) is different in different
implementations of DCF models[10], but it is assumed to be a constant.

The future cash flows for companies are estimated by assuming the future earnings per
share are growing according to

Et == Et,1 . ’it, (215)

where 7; is an interest corresponding to time ¢ and F; is the earnings per share at time ¢.
The interest rate must go towards zero as t — oo, as it is not possible for a company to
grow its earnings indefinitely. As a first approximation a step function with i; equal to the
growth in earnings per share(g) for the first five years and then drops to zero is commonly
used. In more details models an exponential decay of g is used as the interest, which is
calculated according to

iy = ge " (2.1.6)

where ¢ is the growth in earnings per share and wu is a constant that determines how fast
the interest goes towards zero.
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As the book value per share (B;) can be thought of as the liquidation value or as the
accumulated value from the past, it should also be included in a valuation model. This
gives a formula to estimate the intrinsic value(V') of a company, which is given by

—u-t

N
Ly -gyse
V = _ -B 2.1.7
tZtA (1+d)t tc V) ( )

where d, u and ¢ are constants that need to be determined for the specific company, and
E; is the earnings per share at time f, By is the book value at time f and gy is the growth
rate of earnings per share at time f. Ef, By and gy correspond to fundamental data points
that are reported annually at time f.

The valuation model (eq. (2.1.7)) can be used when the data points Ef, By and gy are
known. Since the data set used only contains annual information on the companies and it
is only possible to calculate the value in these points, thus the value can only be calculated
once per year. So in order to compare the value(V) with stock prices which are quoted
daily, the data points in between were interpolated using a straight line given by

V(i) = V()
T

V(t) t+V(fi). (2.1.8)
Where V(f;) is the calculated value using the annual data points from f and 7T is the
number of trading days between f; and f;,;.

It is possible to obtain the constants d, u and ¢ for the eq. (2.1.7) by assuming that the
share price (S(t)) oscillates around V' (¢) during the analysed period. Thus it is possible to
fit V() to S(t) using a least mean square procedure over the desired period, and this gives
the parameters d, u and c. By assuming that the parameters are the same for other time
periods it is possible to use the calculated parameters to calculate the V'(t) for other data
points outside the given period.

2.1.4 Data set

The fundamental data points were sourced from the U.S. Securities and Exchange Commis-
sion(SEC) directly in combination with data derived from SEC sourced data. It consisted
of ten years (2002-2012) of annual fundamental indicators and financial ratios for active
and inactive US companies.

The historical stock price data obtained for stocks from the New York Stock Exchange(NYSE)
and The National Association of Securities Dealers Automated Quotations(NASDAQ),
which is the largest and second largest stock exchanges in the world ranked by market
capitalization[7]. The stock price data were validated against prices published on Yahoo
Finance.
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2.2 Stochastic processes

In its most basic form the random walk model is defined as a process where the current
value is composed of the past value plus a randomly drawn number (¢;). € is drawn from
a distribution with zero mean and variance one. A one dimensional random walk can be
expressed as the quantity X, which is composed of N random steps(AX,,)

X =) AX,. (2.2.9)

n=1
AX, is drawn from a distribution ¢(AX,,) [4], which is normalized and symmetric

/ T UAXDIAY, =1 g(—AX,) = g(AX,). (2.2.10)

o0

Random walk can be generalized as a Wiener process, given by
dX, = oeV/dt, (2.2.11)

o sets the scale and has the dimension of X;. ¢ is a dimensionless random number dis-
tributed according to the standard normal distribution (N (0,1)).

A commonly used distribution when generating random numbers is a Gaussian, which is
given by the formula [8]

N S el Gl D
f(w)f\/%g p[ 207) 1 (2.2.12)

and is commonly denoted N(u,o). The standard normal distribution is denoted N(0, 1)
and is obtained when u = 0 and ¢ = 1, which gives the formula

1
\ 2T

¢(r) =

exp {_2:62} . (2.2.13)

For the case where 0 = 1 the Wiener processes is denoted dW;, making it possible to

express a Wiener process as

where o is a constant and o? is the volatility. This can be generalized by introducing a
drift term, which adds a general trend to the process X;. This gives the expression

dX, = pdt + odW, (2.2.15)

where p is a constant, this is known as Brownian motion with drift.
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2.2.1 Geometric Brownian motion

If a stochastic process X, satisfies the flowing stochastic differential equation
dXt = ILLXtdt -+ O'Xtth, (2216)

it is said to follow Geometric Brownian Motion(GBM), where p and o are constant and
dW, is an increment of a Wiener process or an increment of Brownian motion. The term
uXdt corresponds to the drift and represents the "trend”, the term oX,dW; represents
the random noise and corresponds to a random walk. So o gives the order of the random
movement and is the variance per unit time, while p controls the drift and can thus be
considered to be the expected return per unit time. GBM is also often written as

dx
—L = pdt + odW,, (2.2.17)
Xi

note that dX; in all the stochastic differential equations is not an exact differential.

It is possible to estimate the parameters u and ¢ by using the Euler-Maruyama discretiza-
tion on eq. (2.2.16), which results in the expression

X, = X1 + pXo At + o X, e,V dt. (2.2.18)

It can be rewritten as ¥ _x
tX—H = uAt + oe,Vdt, (2.2.19)

t—1

then using linear regression the parameters ;1 and o can be estimated. It is also possible
to use eq. (2.2.18) to simulate GBM.

Applying GBM to the stock movements gives the expression
dSt = ,uStdt + O'Stth, (2220)

where p will correspond to the drift in stock prices commonly observed during long time
periods. o2 corresponds to the volatility of the stock price S;.

The expectation value of S; at time ¢ depends only on the initial price at t = 0, the drift
and volatility parameters[9], and is given by

(S(t)) = Soexp [t(n+0°/2)] . (2.2.21)
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2.2.2 Ornstein—Uhlenbeck process

The Ornstein—-Uhlenbeck process(OU) is a stochastic process that can be used as an alter-
native to Brownian motion when a tendency of reversion towards an equilibrium point is
required. The process is stationary([3] and given by

dXt = oz(,u — Xt)dt + Uth, (2222)

where X, is a stochastic variable, «, p and o are constants. « is larger than zero and
determines the rate at which the process reverts towards p, o gives the amplitude of the
stochastic movements and dWW, is an increment of a Wiener process.

From eq. (2.2.22) it can be inferred that X; will revert to the constant level 4 when o > 0.
If Xy > p, the coefficient of the drift term a(u — X;)dt will be negative. So X; will tend to
move downwards, with the reverse happening if X < u. When a = 0 eq. (2.2.22) becomes
Brownian motion with no drift.

2.2.3 Geometric Ornstein-Uhlenbeck process

Their is also a counterpart to GBM that exhibits reversion towards an equilibrium point.
It is given by
dXt = —&(Xt — /L)dt + O'Xtth, (2223)

and is known as the Geometric Ornstein-Uhlenbeck process(GOU). For a = 0, the pro-
cess is equivalent to GBM with the drift parameter equal to zero. Eq. (2.2.23) can be
approximated in discrete time using the Euler-Maruyama discretization, which gives the
expression

Xt = Xt—l — Oé(Xt_l - ,u)At + O'Xt_l V At&t (2224)
where ¢, ~ N(0,1).
The estimation of the parameters o and ¢ for GOU can be done using a linear regression|5]

by writing eq. (2.2.24) as

X, — X, 1
2ol A+
X1 Xi1

apAt + oV Ate,. (2.2.25)

Setting R; = % gives

Ry =c(1) +¢(2)

2.2.26
Xt_l + €t ( )

where ¢(1) = —aAt, ¢(2) = aAtp and e; = oV Atey.

Generalizing eq. (2.2.23) so that the equilibrium point is function of time (F(t)) instead
of a constant value pu, gives the expression

dX, — dF, = —a(X, — F)dt + o X,dW,, (2.2.27)
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where «, ¢ are constants and dW; is an increment of a Weiner process. Similarly, this can
be approximated in discrete time as

Xt — Xt—l — (Ft — Ft—l) = —CY(Xt_l — E_l)At + O-Xt—lgt\/ At (2228)
where e ~ N(0,1) and a and ¢ are constant.

In the same way as for GOU, a and o be estimated by rearranging eq. (2.2.28) to

Xi—Xo1— (Fy— Fi F,
=X = (B = Fia) — (1 - 1) At + oV At (2.2.29)
Xt X1
Setting R; = Xt);t—)fi*l gives
1
Ri=c|1-— 2.2.30
(- ) e (2:2.30
where ¢ = —aAt and e; = o/ Ate;, which can be solved using linear regression.

2.3 Correlations

Correlation is a statistical measure of how two time series move in relation to each other.
The product-moment correlation coefficient px y is given by

pPxXy = BlX - gx()j(Y — MY)], (2.3.31)

where F is he expected value operator, ¢ is the variance and p is the mean of the time
series. The correlation coefficient ranges from +1 to —1 with three special values,

+1 completely correlated,
Pij = 0 completely uncorrelated,

—1 completely anticorrelated.

The closer pxy is to +1 or -1, the more closely the two time series are related. If it is close
to zero, it indicates that their are no relationship between the two time series.

For a sample consisting of n data points, x1, ..., x, and yi, ..., y, the correlation coefficient

is calculated using
Do (@ —2) (i — )

Tay = \/Z?ﬂ (i — j)2\/2?:1 (yi — ?7)2

(2.3.32)

=151 o
where 7 = - > | ;.

The stock price of different companies can be correlated, uncorrelated and anticorrelated.
For example, companies that are in the same industry are more likely to be correlated as
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they are subject to similar economic influences compared to two companies that are in
different industries and operate on different continents.

The synchronous time evolution of two stocks can be studied using the correlation coeffi-
cient p;; of the daily changes in return for the two stocks 7 and j. If the stock price for
company k at time ¢ is given by S¥(t), then the return for company k is given by

Sk(t) — Sk(t — At)
Sk(t — At)

rk(t) = (2.3.33)
r*(t) makes it possible calculate the correlation between two companies without being

affected by differences in the size of S*(t) by looking at the relative amplitude of the
movement for the stocks. The logarithmic differences in price

GF(t) = In S*(t) — In S*(t — At), (2.3.34)

are also commonly used instead of 7* when looking at high-frequency data, as it is possible
to approximate

SE(t) — S*(t— At)]  SH(t) - SF(t—At) .
St—an |~ sa—ang W
(2.3.35)
when At is small and |S*(t) — S*(t — At)| << S*(t). But using G(t) is not always suited
for data sets consisting of daily data points but rather intra day data.

InS*(t) —In S*(t — At) =In |1 +

This makes it possible to calculate the correlation coefficient for the stocks ¢ and j according
to , ,
B R R e

Pij = :

ot vt = ) (ot = YY)

It is often of interest to study how set of K stocks are correlated by calculating all the
possible correlation coefficients for the time series of the companies, S*(t), k = 1,.... K
where K is the number of stocks. The correlation coefficients are commonly arranged in a
correlation matrix C, which is a K x K square matrix consisting of the elements C; ; = p; ;
and is real and symmetric[4].

(2.3.36)

Thus, the elements of C' fulfil C; ; = C;; so the diagonal elements of the matrix will be equal
to one, as they represents the correlation of a stock with itself. There will be (K x K)/2
different p;; for the set of K stocks but as the diagonal elements that are equal to one, and
not of interest. So there will be (K x (K — 1))/2 different p;; that are of interest.

So the correlation matrix is calculated using K time series of length 7', and if 7" is not
very large compared to K the correlations coefficients will be noisy. Thus the correlation
matrix is to a large extent random and random matrix theory can be applied. Using random
matrix theory it is possible to predict how the eigenvalues will be distributed.

17



The eigenvalues of the correlation matrix are obtained by solving the equation
det(C'— ) =0, (2.3.37)

where the eigenvalues \;, 7 = 0,..., N — 1, are the ones that solve the equation. In the
limit N — oo, K — o0 and Q = T/K > 1 eigenvalues of a random matrix C, will be
distributed according to

o — @ VOO =)

— 2.3.
2mo? A ’ (2.3.38)

M =0(1+1/Q +£2/1/Q), (2.3.39)
with A € [A_, \;], and where o2 is equal to the variance of the elements in the timeseries

used to calculate C' [6]. So with the condition @ > 1 in eq. (2.3.39) A will be larger than
Zero.

Note that this distribution is valid in limit K — oco. So when looking at data from
stocks the edges of the distribution become blurred. If () < 1, the distribution will be even
more blurred as a lot of the eigenvalues will be close or equal to zero. When looking at a
correlation matrix then the eigenvalues corresponding to noise will be distributed according
to eq. (2.3.38). A first approximation of the eigenvalues corresponding to the noise will be
the bulk of the eigenvalues. Thus it is possible to distinguish information from noise by
looking at the eigenvalues outside of the bulk of eigenvalues.

However, if @) < 1 then a fraction of the eigenvalues 1 — @ will be zero ie. (1 — Q)K
eigenvalues will be equal to zero, the remaining eigenvalues will follow po(A). In the case
were there exists an eigenvalue \g which is larger than the bulk such as A\g >> A\,, n # 0
then o2 = % This can be used to clean up the distribution of eigenvalues and find which
eigenvalues corresponds to the bulk.

Let A; be the largest eigenvalue of the bulk and the eigenvalues \; be the eigenvalues
outside of the bulk. Thus A\; > A, are the eigenvalues of interest. The largest eigenvalue
(Ao) corresponds to the correlation of the market itself and the other eigenvalues outside
of the bulk represent the different sectors, and A < A, is noise. The stocks that make up
the components of the eigenvector for \; are the stocks that make up that sector.

2.3.1 Autocorrelation

The correlation between a time series X; and a lagged version of the same time series
X1, over successive time intervals is given by the autocorrelation. The autocorrelation
is calculated in the same way as a correlation coefficient using eq. (2.3.31), but with the
same mean and variance. Giving the expression
El(X; — p)(Xir —
R(r) = EE = WXy = )] (2.3.40)

o2

18



where p is the mean and o is the variance of the time series X;. In the same way as for
correlation coefficients, the autocorrelation can range from +1 to -1, where an autocorre-
lation of +1 represents complete correlation, -1 represents complete anticorrelation and 0
represents no correlations between the time series and a lagged version of itself.

In the same way as the correlation between stocks are calculated using the return, so should
the return be used in the calculation of autocorrelation. Giving the expression

R(r) = (i) = ) (i) . (2.3.41)
Ut vk = ) (st b — G017

Note that when using daily data of stock prices i.e. one data point per day, 7 will be an
integer.

2.4 Autoregressive Models

An autoregressive model(AR) is a random process that depends linearly on its previous
values with a stochastic term. An autoregressive model of order p can be written as

p
Xi=c+ Y ¢:iXimi+dW,, (2.4.42)

i=1

where ¢ is a constant and dW; is an increment of a Wiener process. The parameters

¢1, ..., ¢p are used to control the time series pattern. This type of model is referred to as
an AR(p) model.

AR models can be used to create autocorrelation in the simulated time series X;. The
autocorrelation for each time step is controlled by the choice of parameters ¢, ..., ¢,. The
order of the process determines for how high value of 7 autocorrelations will exist.

When simulating a time series with the same autocorrelations as real data, the coeffi-
cients ¢1, ..., ¢, and the order p needs to be selected with care. The coefficients ¢y, ..., ¢,
can be estimated using the standard least mean square procedure or using Yule-Walker
equations[11]. The order p needs to be selected in such a way that it agrees with the actual
data.

2.5 Central limit theorem

The central limit theorem (CLT) states that if X, is the sum of n independent random
variables, then the distribution function of X,, will be a Gaussian when n is large.
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The CLT thus shows what will happen with a sum of a large number of independent
random variables, where each variable contributes with small amount to the total. It is
also closely related to the law of large numbers, which states that the mean of the sample
converges to the distribution mean as the sample size increases.
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3. Results

3.1 Value reverting model

The basic OU process given by eq. (2.2.22) are well suited for applications in finance
where reversion towards an equilibrium point is desired. Here u represents an equilibrium
point supported by a fundamental property, o describes the volatility and « is the rate at
which rate the variable reverts to the equilibrium point. Since stocks represent a fractional
ownership of a company, it would be possible to say that there exist a value that is possible
to calculate from the company fundamental data points such as earnings, equity, etc.

BN SNt I Y L

Figure 3.1: The stock price for 'The Coca-Cola Company, (NYSE: KO)’ simulated using
the value reverting model(VRM) is plotted in red and the stock price simulated using
Geometric Brownian motion(GBM) is plotted in black. The realized stock price(S) is
plotted in green. The parameters used in the simulations were calculated using the data
from the period 2002-2007.

But since a company consists of multiple parts, and there are big differences between
different companies it is not possible to perform an exact calculation of value using a simple
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algorithm. Instead eq. (2.1.7) was used to estimate the value (V}), based on fundamental
data points. The fundamentals of a company change with time as the company changes,
which means that the value of the company will also change with time.

So the basic OU process will not function as desired, given the fact that p needs to be
constant. Instead the modified geometric Ornstein-Uhlenbeck process eq. (2.2.27) can be
used, where the share price (5;) exhibits reversion towards the value (V;). This gives the
expression

This can be discretized as
St —Si-1— (Vi = Vi) = —a(Si—1 — Vie1) At 4+ 0516V AL, (3.1.2)

where S; is the share price at time ¢, V; is the estimated value per share at time ¢, « is
the rate at which the stochastic process exhibits reversion towards V;, o is the volatility
and dW; is an increment of a Wiener process. This will be referred to as value reverting
model(VRM) in the rest of this thesis.

By using both GBM and VRM to simulating the stock price path for "The Coca-Cola
Company, (NYSE: KO),” it is possible to compare the differences between modelling stock
price movements using VRM compared to the standard approach of GBM.

The parameters for d, u and ¢ for the valuation model (eq. (2.1.7)) were estimated with data
from the period 2002-2007 using the least mean squares method. Then V, were calculated
using eq. (2.1.7) with the fundamental data points from the period 2002-2012. Note that
three consecutive fundamental data points for the company are needed to calculate the
growth rate (g) which means that it was possible to calculate V; for the period 2004-
2012.

The parameters used for VRM and GBM were estimated using data from the period 2002-
2007 to see how well suited the models are to both simulate the stock during the period
used to fit parameters and to extrapolate future stock movements beyond the period used
to estimate the parameters. So the parameters a, oy gy for VRM (eq. (3.1.1)) and p and
oapm for GBM (eq.(2.2.20)) were estimated using the least mean squares method.

The fitting for "The Coca-Cola Company, (NYSE: KO)’ resulted in the parameters r =
9.64 - 1072, u = 3.25, ¢ = 8.05 - 107! for the valuation model. The parameters for VRM
were o = 7.93 - 1073, 0 = 8.55 - 1072 and the parameters for GBM were pu = 7.63 - 107°
o = 855-1073. Then these parameters were used to simulate the stock path during
the period 2004-2012 using the discretized VRM and GBM, given by eq. (3.1.2) and eq.
(2.2.18). This means that the simulation during the period 2004-2007 is simulated with
well fitted parameters and the period 2008-2012 acts as an extrapolation.

In fig. (3.1) the share price movement is simulated using VRM and GBM as well as the
real stock path (S;). But only looking at a single simulation of VRM and GBM does not
show how the simulation will look when repeated. By doing the same simulation with the
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Figure 3.2: Simulation of the stock price of "The Coca-Cola Company, (NYSE: KO)’ during
the period 2004-2012, using the value reverting model. The grey lines are 1000 simulations
and the green line is the real stock price. The parameters used in the simulation were
estimated using data from the period 2002-2007.

same parameters 1000 times, it is possible to observe how the different models behave. The
simulations of VRM can be seen in fig. (3.2), where the simulated stock paths are plotted
in gray.

Similarly the simulations using GBM can be seen in fig. (3.3). The distribution of the
simulated stock prices for the day 2011-12-30 is shown in fig. (3.4). Note the difference
in scale for the plots using VRM compared to GBM and also that the stock prices are
distributed according to a lognormal distribution.

The inclusion of the intrinsic value in the model of stock price movements, provides a
narrower band of possible stock prices compared to the standard model of GBM. This
is seen when comparing fig. (3.1) and fig. (3.2). Thus, the inclusion of the fundamental
datapoints of the company in a model of stock price movements provides a better prediction
of the stock price movements.
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Figure 3.3: Simulation of the stock price of 'The Coca-Cola Company, (NYSE: KO)’
during the period 2004-2012, using the Geometric Brownian motion. The grey lines are
1000 simulations and the green line is the real stock price. The parameters used in the
simulation were estimated using data from the period 2002-2007.

3.2 Autocorrelation

By looking at the autocorrelation of a stock it is possible to see if the stock price movements
are correlated with a lagged version of itself. If there exists noticeable autocorrelation, then
it indicates a memory effect where the daily change in stock price depends on the previous
changes in stock price. If this is the case, then this behaviour needs to be included in the
models of stock price movements.

The autocorrelation for the stock 'The Coca-Cola Company, (NYSE: KO)’ was calculated
using eq. (2.3.40). In fig. (3.5) the autocorrelation coefficient is plotted as a function of
number days the time series are shifted (7). The R(7) is calculated using stock price from
the period 2000-2015. From what is seen in fig. (3.5), it would be reasonable to conclude
that the autocorrelation is negligible as R(7) is evenly distributed around zero for 7 > 0.
One should keep in mind though that 7 is an integer and 7 = 0 is simply the time series
correlated with it self and by definition R(0) = 1 and thus not of interest.
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Figure 3.4: Distribution of the 1000 simulated stock prices at the day ’2011-12-30" for
"The Coca-Cola Company, (NYSE: KO)’. In a) the value reverting model is used for the
simulations and in b) the share price is simulated using Geometric Brownian motion. The
green line is the real stock price at day '2011-12-30".

However, the autocorrelation can not be considered negligible when considering a group of
stocks. This can be seen by studying the mean value of autocorrelation as a function of 7
i.e. taking the mean value of Ry of the group of stocks for a fixed 7. The mean value of
Ry, is calculated as

1

(Rie(7))y = Ve Ry.(7) (3.2.3)

]~

k=1
where K is the number of stocks analysed, Ry(7) is the autocorrelation of company k
calculated using eq. (2.3.41).

The calculations of autocorrelation were performed using all the stocks listed on the NYSE
and NASDAQ during the period 2000-2015. This corresponds to 7164 stocks that were
used in the analysis of mean autocorrelation. By calculating (R (7)), for the stocks from
NYSE and NASDAQ), it is evident that the autocorrelation is no longer negligible, which
can be observed in fig. (3.6), where there is a larger amplitude of the mean autocorrelation
for 7 =1,2,3 compared to how (Rj(7)), behaves for larger values of 7.

It is also of interest to look at the distribution of Ry(7) for a fixed 7 as one would expect
a symmetric distribution around zero. In fig. (3.7) the distribution of Rx(7 = 1) can be
seen. There is an asymmetry in the distribution of Ry(7), as well as a shift of (Ry(7)),
away from zero for 7 = 1,..,4. For larger values of 7 the distribution of R} is symmetric
and the mean autocorrelation oscillate around zero.

There is a big difference in distribution of Ry(7) for 7 =1 in fig. (3.7) and larger 7 values.
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Figure 3.5: The autocorrelation (R(7)) for "The Coca-Cola Company, (NYSE: KO)’ as a
function of 7. R(7) is calculated using stock price from the period 2000-2015.

In fig. (3.8) the distribution of Ry(7 = 9) is plotted. For 7 = 9 there is a Gaussian
distribution with small standard deviation compared with a case of 7 = 1 which has a
unsymmetrical distribution with a large standard deviation.

As seen in fig. (3.6), there is noticeable autocorrelation for small values of 7 when consid-
ering the mean value of the autocorrelation for the stocks trading on NYSE and NASDAQ
during the period 2000-2015. So the autocorrelation of stock price movements is not neg-
ligible as commonly thought. This mean that there is a memory effect, where the stock
price movement depends on the recent stock price movements.

3.3 Probability of movement in opposite direction

A simplified model was used to interpret how small autocorrelations affects the movement
of stock prices. The simplified model looks at the probability of the stock to move in the
opposite direction from a previous movement, by looking at d.S; - dS;_, < 0 compared to
dS; - dS;_. # 0. This model will be referred to as the probability of movement in opposite
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Figure 3.6: The mean autocorrelation ((Ry(7)),) for stocks trading on NYSE and NASDAQ
during the period 2000-2015 as a function of the time lag 7 in days, starting from 7 = 1.

direction (PMOD).

The daily movement of a stock (dS;) is mostly influenced by the stochastic term ¢.S,dW;,
which will be distributed symmetrically around zero. So PMOD of stock movement will
be analogous to a series of coin flips, where each day an increase in stock price (dS; > 0)
corresponds to heads and a decrease in stock price (dS; < 0) corresponds to tails. Thus, it
is the direction of the movement that is of interest and not the size of the movement. So
the amplitude of the movement is not included in the analysis, as well as an inability to
process dS; - dS;_, = 0, which would be equivalent to the coin landing on its edge. So for

the case of 7 =1 it corresponds to the probability of two consecutive coin tosses to show
different sides i.e. heads(H) and tails(T).

There are four possible outcomes for two consecutive coin flips, H- H, H- T, T - H and T
- T. So from the law of large numbers one would expect to see the probability for H - T,
T - H go towards .5, as the number of flips analysed increase. Let P(7) be this probability
of movement in opposite direction.

It is possible to study the how P(7) should be distributed when looking at multiple series
of coin flips. Let X be the outcome for the analysis of two consecutive flips (7 = 1), where
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Figure 3.7: The distribution of autocorrelation coefficients (Ry) for 7 = 1. Ry is calculated
for the stocks trading on NYSE and NASDAQ during the period 2000-2015, which resulted
in 7164 autocorrelations coefficients.

we assign the value one if there are different sides of the coins H - T and T - H and the
value zero if it is the same side twice i.e. H - H and T - T. Then X will have the expected
value

E(X) =1/2(1) + 1/2(0) = 1/2, (3.3.4)

with the standard deviation

o(X) = Vwar(X) = /1/2(1 —1/2)2 +1/2(0 — 1/2)2 = 1/2. (3.3.5)

According to the CLT P(7) will be distributed according to a Gaussian with p = 1/2 and
o= (1/2)/y/(N — 1), where N is the number of coin flips in one series, this assumes that
the series of coin flips have the same length. This is not the case when looking at a group
of stocks that forms an index, but the majority of the stocks will have approximately the
same number of trading days during the analysed period. So a P(7) is still expected to be
distributed according to a Gaussian.

The calculation of the probability of movement in opposite direction for a stock, S*(t) with
T* number of data points for company k is performed by looking at the number of times
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Figure 3.8: The distribution of autocorrelation coefficients (Ry) for 7 = 9. Ry, is calculated
for the stocks of NYSE and NASDAQ during the period 2000-2015, which resulted in 7164
autocorrelations coefficients.

the stock moves in the opposite direction

1, ifdSF-dSF., <0

: (3.3.6)
0, otherwise

OF(t,7) = {

compared to the number of time their is actual change in the stock price

1, ifdSF-dSt_+#0

. (3.3.7)
0, otherwise

Nk(t,T) = {

Using this it is possible to express P¥(7) as

L Ok (t,7)

Pk(T) = %
1 NE(t,7)

, (3.3.8)

where dSF = SF — SF | and T* is the number of data points for company k.
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Figure 3.9: The mean probability of movement in opposite direction ((P*(7)),) as a func-
tion of 7 in days. Where <Pk(7)>k is calculated using the stocks trading on NYSE and
NASDAQ during the period 2000-2015.

In fig. (3.9) the mean value of P* is calculated for all companies in NYSE and NASDAQ
during the period 2000-2015. The mean value of P* for a given 7 is given by

(P*(1)), = % > PH(r) (3.3.9)

where K is the number of companies.

The distribution of P*(7 = 1) and P*(7 = 9) for the stocks trading on NYSE and NASDAQ
during the period 2000-2015 can be seen in fig. (3.10) and fig. (3.11).

Note that a negative autocorrelation would mean a PMOD larger than .5 and this is what
is observed for small values of 7, as shown in fig. (3.9). This is not unexpected as PMOD
looks at a similar property as autocorrelation, but PMOD does not include the amplitude
of the movement. So PMOD agrees with the autocorrelation for small values of 7 and also
indicates a memory effect for stock price movements.

30



700 5 5 ! |
o) I
A00F -

300

Distribution

200

100k

0.4 0.5 0.6 0.7 0.8 0.9

P (r=1)

Figure 3.10: The distribution of probability of movement in opposite direction (P*(7)) for
7 = 1. Where P* is calculated using the stocks trading on NYSE and NASDAQ during
the period 2000-2015, which are 7164 stocks.

3.4 Autoregressive Model

In order to include the memory effect of stock price movements that is observed when
studying autocorrelation and PMOD, an autoregressive model is used. But to use an
autoregressive model as eq. (2.4.42) to model a stock price movements as well as capture
the behaviour of autocorrelations and PMOD, the stochastic term needs to be modified in
such a way that it behaves as GBM. This is done by using the stochastic term oSFdW}
instead of dW} in eq. (2.4.42), giving the expression

p
dSf =Y " ofdSy , + ot Sydw. (3.4.10)

=1

Sk is the stock price of company k at time ¢, o® is the volatility parameter for company
k and the parameters ¢F, ...,gb’; are used to create the behaviour of autocorrelation for
company k and p is the order of the autoregressive term.

Eq. (3.4.10) does not explain the drift of stock prices, so a drift term needs to be added as
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Figure 3.11: The distribution of probability of movement in opposite direction (P*(7)) for
7 =9. P¥is calculated using the stocks trading on NYSE and NASDAQ during the period
2000-2015, which are 7164 stocks.

well. For simplicity the drift term from GBM is used, as the autocorrelation only looks at
effects from short time-spans. So it will not make a difference if the drift term from GBM
or VRM is used. Combining an AR model with GBM gives

p
dSf =" édSy , + ptFSydt + ot Sydw, (3.4.11)

=1

where S¥ is the stock price of company k at time t, o* is the volatility parameter and
p* is the drift parameter for company k. The parameters ¢%, ...,(b’; are used to create
the behaviour of autocorrelation for company k and p is the order of the autoregressive
term.

Eq. (3.4.11) is used to simulate the stocks of NYSE and NASDAQ during the period
2000-2015. As there existed a deviation away from zero in the mean autocorrelation, as
well as an asymmetry in the distribution of Ry(7) for 7 = 1,...,4 in the real data, the
autoregressive term was selected to be of the fourth order i.e. p = 4. The parameters o,
p® and ¢F where i = 1,...,4 are estimated for each k using a least mean square procedure

fitting eq. (3.4.11) to each stock during the period 2000-2015.
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Figure 3.12: The mean autocorrelation coefficient ((Ry(7)),) as a function of 7 for simu-
lated data. The parameters used in the simulations were estimated using the stocks trading
on the NYSE and NASDAQ during the period 2000-2015, resulting in 7164 autocorrelation
coefficients.

Eq. (3.4.11) was used with the estimated parameters to simulate a stock price for the
stocks trading on NYSE and NASDAQ during the period 2000-2015. The simulated stock
price was the same as for the real stock in the first time step and the same number of time
steps as the real stock. Thus, a new data set was created that has the same number of
stocks and with the same amount of trading days as for the each company as the data set
previously used when looking at the autocorrelation and PMOD.

The simulated stocks were then analysed in the same way as before, by calculating the
autocorrelation coeflicient using eq. (2.3.41). The mean autocorrelation (Ry(7)), can be
seen in fig. (3.12) plotted as a function of 7. The distribution of Ry for 7 = 1 can be
seen in fig. (3.14). The same thing can be done for PMOD by calculating P*(7) using eq.
(3.3.8) and calculate <P"“(7')>,C using eq. (3.3.9) as a function of 7, which is shown in fig.
(3.13).

When the autoregressive term is of the first order, it is possible to calculate the expectation
value of the share price. Start by considering eq. (3.4.11) with the autoregressive term of
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Figure 3.13: The mean probability of movement in opposite direction ((Rg(7)),) as a
function of 7, calculated for stocks simulated using GBM with an additional autoregressive
term of the forth order. The parameters were estimated from the stocks trading on the
NYSE and NASDAQ during the period 2000-2015, which corresponds to 7164 stocks.

the first order, given by
dSt = ¢d8t_1 + HStdt + O'Stdm. (3412)

Then the expectation value of the share price can be calculated by

where E is the expectation value operator. Using E[dW;] = 0 and dE[S;_1] = dE[S;] gives
the expression

dE[S,] = ﬁE[St]dt. (3.4.14)
Since it is a deterministic differential equation it can be solved by looking for the function
a(t) = E[S;] that solves the differential equation, a’(t) = Sa(t) with the condition a(0) = S
where 5 = %ﬁ

The solution is given by a(t) = Spexp[St], using it one obtains the expression for the
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Figure 3.14: The distribution of autocorrelation coefficients (Ry) for the simulated data
for 7 = 1. Ry is calculated for stocks simulated using GBM with an autoregressive term
of the forth order. The parameters were estimated for the stocks from trading on NYSE
and NASDAQ during the period 2000-2015, which corresponds to 7164 stocks.

expectation value of 5,

E[S,] = SyexplBt] = Sy exp [ﬁ } . (3.4.15)

Note that when p € (0, 1), the autoregressive term will make the derivative of E(S;) larger,
which will make E(S;) grow faster than the GBM in the case pr > 0. The expectation value
of the stock simulated with GBM is obtained when p = 0. When p < 0 the autoregressive
term will reduce the second derivative of E(S;) and thus make it will grow slower compared
to GBM when p > 0.

The addition of the autoregressive term of the fourth order to GBM captures the observed
behaviour of autocorrelation and PMOD for a group of stocks for small values of 7. Thus
it captures the observed memory effect for small values of 7. But both the mean value of
the autocorrelation in fig. (3.12) and the mean value of PMOD in fig. (3.13) shows smaller
volatility for large values of 7 compared to what is seen for real data.
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3.5 Index

A model of stock movements should also be consistent when looking at the movements of
a group of stocks. This can be studied using a stock index, which calculates the collective
movements of the group of stocks. No model of stock price movements can predict a stock
market crash, but a model should allow market crashes to occur.

3.5.1 Equally weighted index

An equally weighted index using eq. (2.1.2) for a group of stocks is used to avoid a stock
with a very high market capitalization being responsible for large movements of the index
and thus obscuring the results, which could be possible if an index is weighted by market
capitalization as in eq. (2.1.1).

Figure 3.15: The simulation of an equally weighted index using value reverting model
(Iyry) and Geometric Brownian motion (Igpy) as well as the real data(lg), for the
period 2004-2012. The indices were calculated with the stocks from the NYSE that had
sufficiently many data points to estimate the parameters of GBM and VRM, which were
647 stocks.
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For simplicity each stock is set equal to one at t£ and the entire index equal to one at
to. tF is the first trading day for the stock k during the selected period and ¢, is the
first trading day of the selected period. This equally weighted index is calculated by the
expression

I(t) = %;%Sk(t), (3.5.16)

where K; is the number of stocks in the index at time ¢ and S*(¢) is the stock price of
company k at time ¢.

The equally weighted index of NYSE for the period 2002-2012 was simulated using VRM
and GBM. The value term (V/}¥) was calculated using eq. (2.1.7) using parameters estimated
using data from the time period 2002-2007. The parameters of GBM and VRM were
estimated using a least mean squares approach for eq. (3.1.1) and eq. (2.2.18) with the
stocks trading on NYSE during the period 2002-2012. The parameters were then used to
simulate the stock price movements of each company using VRM according to eq. (3.1.1)
and GBM using eq. (2.2.18) where the simulated stock had the same initial value at ¢ as
the real stock. There were 712 stocks that traded on the NYSE during the period 2002-
2012 where it was possible to calculate V; during at least one year. As three fundamental
data points are needed to calculate the V; the first time, it was only possible to simulate
the stock price during the period 2004-2012.

For the estimation of value to be good, the business needs to be engaged in similar opera-
tions during the time analysed. So for example, a company like "The Coca-Cola Company,
(NYSE: KO)’ does the same thing without any big changes during the period, will make
the value far more stable and predictable. However, the market crash 2008 caused some
companies to alter the way they were doing business dramatically.

For example, during the crash 2008 American International Group, Inc (AIG) got a bailout
of 85 billion dollars from the U.S. government and as a result, the U.S. government received
nearly 80% of the firm’s equity. This caused a major change in AIG’s business and resulted
in a drop in the AIG’s share price from above 400 $ just before the crash to below 10$ a few
months after the crash. The valuation model is not capable of taking this into account and
thus gives a very bad estimate of the value (V;), which then has an effect on VRM.

So in order to avoid cases like this a filter was applied to the simulated data. The filter
removed any stock that became 100 times larger than the initial value during the simulation
from both the GBM and VRM simulation. The number of companies that passed this
screen was 647 and 65 stocks were removed.

The stocks that passed the filter were then used to calculate an equally weighted index
using eq. (3.5.16) for the stocks simulated using VRM and GBM as well as the real stocks.
The index for the real data is denoted Ig, the stocks simulated using the VRM denoted
Iy rar and the stocks simulated using GBM are denoted Igpys, the indices can be seen in
fig. (3.15).
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Figure 3.16: Simulated paths of equally weighted indices for the period 2004-2012, using
value reverting model (/y) and Geometric Brownian motion (/) with the addition of an
index term. The indices are also simulated with an additional autoregressive term, [,y
and I4,¢. The index calculated using the real data ([g) is also included. The indices
were calculated with the stocks from the NYSE that had sufficiently many data points to
estimate the parameters of GBM and VRM, which were 622 stocks.

The fact that there is so small volatility of Iy gy and Igpas is due to the stochastic part
of GBM and VRM consisting of randomly drawn numbers ef ~ N(0,1). ¥ is independent
drawn for each company and for each time step. So if one considers the mean value of ¥
for the companies k in each time step,

()= 2>k = (), N (0, \/LE) | (3.5.17)

where K is the number of companies used to calculate the index at time ¢ with the compa-
nies k =1,..., K. So <5,’f>k will follow the distribution N (0, \/—%> [1]. The stochastic term
o®Skek  consist of two additional variables. This means that the variance of each time step
may not distributed exactly according to N (O, #) as o®SF will make the influence the

impact of the weighting when calculating the index. But the variance of the index will
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decrease as K increase according to \/—%

3.5.2 Inclusion of an index term

The difference in volatility for both the simulated Iy gy and Iggy compared to the actual
data (Ig) indicates that there may be some correlations in the daily stock moment for
the stocks. The inclusion of an autoregressive term to the model of stock prices as in eq.
(3.4.11) does not change the fact that there is no index behaviour.

So by introducing a stochastic variable that is the same for all the stocks will potentially
create an index behaviour. The index term should have a similar structure as the stochastic
term of GBM in order to allow different degrees of influence of this term on the stock price.
With the same structure as GBM, the index term can be expressed as

ok SFAW, (3.5.18)

The movement of the index dW; is the same for all the stocks. SF is the stock price of
company k at time ¢ and o¥ is a constant for company k. The value of for o can be both
positive and negative; a negative value will create anti-correlation with dW; and if it is
positive the stock will be positively correlated with dW;. So this new index term makes
correlations between the stocks possible, and an index behaviour can occur.

So adding the index term to eq. (2.2.20) gives GBM with the additional index term,
dSF = pkFSkdt + oF SFaWE + ok Skaw,. (3.5.19)

Including the autoregressive term and the index term to GBM gives

P
dSf = ofdSy , + ptSydt + of SyAWF + of SfdW;. (3.5.20)

i=1
Sk is the stock price of company k at time ¢ and dW; is an increment of a Wiener process and
is the same for the group of companies analysed at time ¢ and o¥ is a term corresponding to

the index term. Just as for GBM p* is a drift term, of is the volatility and ¢f are constants
for the autoregressive term where p gives the order of the autoregressive term.

The same thing can be preformed for the VRM by adding the index term to eq. (3.1.1),
which gives

dS¥F = —ak(SF — VFYat + oF SFawF + avik 4 ok Skaw,. (3.5.21)
Adding the autoregressive term and the index term to VRM gives

p
dSf =Y ¢rdsy, — of(Sf — VF)dt + of SFAWF + dVF + o SFdW, (3.5.22)

=1
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where o is the rate of reversion towards the value, S¥ and V¥ are the share price and value
of company k at time t. dW; is an increment of a Wiener process, of gives the volatility of
the share price that is independent of the index behaviour and &% is the volatility associated
with the index behaviour. Just as before ¢ are the constants of the autoregressive term
and p gives the order of the autoregressive term.

To compare the simulated stocks with real data, dW; needs to be the same in the simulations
as for the real data. So for the simulations, the stochastic part of the index term is estimated
using real data by calculating the mean value of the return in each time step for the group
of companies

K
1 3 Sf—Sf
k=1 -

where K is the number of stocks being analysed, SF is the share price of company k at
time ¢. This means that dI; is used in stead of dW; in the simulations.
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Figure 3.17: Distribution of the correlation coefficients (p;;). p;; were calculated using the
stocks from NYSE during the period 2004-2012 that passed the selection criteria. This
resulted in 193131 correlation coefficients.

The equally weighted index of NYSE is simulated for the period 2004-2012, by simulating
the individual stocks from the NYSE using the four models eq. (3.5.19), eq. (3.5.20), eq.
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(3.5.21) and eq. (3.5.22). The value term (V) was calculated using eq. (2.1.7) using
parameters estimated using data from the time period 2002-2007.

The parameters for eq. (3.5.19), eq. (3.5.20), eq. (3.5.21) and eq. (3.5.22) were estimated
using data from the period 2002-2012. The autoregressive term was selected to be of the
fourth order to agree with the observed behaviour for autocorrelation and POD.

There were 712 stocks that traded at least four consecutive years during the period 2002-
2012 for which all the data points required were accessible. As before a filter was applied
to the simulated data. The filter removed any stock that became 100 times larger than the
initial value during the simulation from both the GBM and VRM simulation. The number
of companies that passed this screen was 622 out of 712 companies.

The stocks that passed the filter were then used to calculate an equally weighted index using
eq. (3.5.16). The index calculated using real data is denoted Ig(t), the index calculated
with stocks simulated using VRM with the additional index term (eq. (3.5.21) is denoted
I/ (t). When the index is calculated using stocks simulated using VRM with the additional
index term and an autoregressive term (eq. (3.5.22)) it is denoted I,y .

When the stocks used to calculate the index are simulated using GBM with the additional
index term (eq. (3.5.19)) it is denoted I(¢) and when the stocks are simulated using GBM
with the additional index term and an autoregressive term (eq. (3.5.20)) it is denoted 4.
The indices are plotted in fig. (3.15).

The inclusion of the new index term resulted in an index behaviour and the market crash
that occurred in late 2008 is captured in this model. The crash is captured due to the fact
that dI; is calculated with real data. The inclusion of the autoregressive term increased
the agreement of both VRM and GBM to the real data, which can be seen in fig. (3.15),
but it is VRM with the additional index term and the autoregressive term (/4,v) which is
the closest to the index calculated with real data (Ig(t)).

3.5.3 Correlations

Now with the inclusion of the index term, an index behaviour is achieved. So now it is of
interest to study how the simulated stocks correlate with each other and how this compares
with the real data. The data simulated with VRM with the additional index term and the
autoregressive term is used for the analysis of correlations between the stocks, as it had
the best agreement with the index calculated with real data.

Using eq. (2.3.36) the correlation coefficients p;; are calculated using the returns the entire
time interval. Fig. (3.17) shows the distribution of the unique correlations coefficients
for the real data where the stocks correlation with itself is not included. This can be
compared with fig. (3.18) where the unique correlations coefficients (p;;) are plotted for
the stocks simulated using VRM in combination with an autoregressive term and an index
term according to eq. (3.5.22).
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Figure 3.18: Distribution of the correlation coefficients (p;;) for simulated stocks from
NYSE that passed the selection criteria. The stocks were simulated using a value reverting
model with the an index term and an autoregressive term of the fourth order, which resulted
in 193131 correlation coefficients.

Similarities in the distribution of correlation coefficient do not show how close the real and
simulated correlation matrices agree. By comparing the correlations coefficients for the
stocks ¢ and j for the real data (p;;) and the simulated data (p§;™) it is possible to see how
well the simulation and real data agree. So by looking at the ratio

S

D, =i (3.5.24)

1J )

Pij
this can be studied. If the simulated and real correlations coefficients are close to each

other D;; will be close to one.

By looking at D;; on a year by year basis it is possible to see how it changes with time.
The mean value and standard deviation of D;; were used to see how it D;; changes over
time for such a large sample. Where the mean value (m) is given by
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Figure 3.19: The mean value (m) of the ratio between correlation coefficients calculated
using simulated data and the correlation coefficient calculated using real data is plotted as
a function of time. The stocks were simulated using a value reverting model with the an
index term and an autoregressive term of the fourth order. The ratio was calculated using
the stocks from NYSE that passed the selection criteria, which were 622 stocks.

and the standard deviation(o) is calculated according to

If pf]”” is close to p;; it would result in m oscillating around one and with a small . In

fig. (3.19) m is plotted as a function of time and in fig. (3.20) o is plotted as a function of
time where m and o are calculated using data for a year.
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Figure 3.20: The standard deviation (o) of the ratio between correlation coefficients calcu-
lated using simulated data and the correlation coefficient of the real data, which is plotted
as a function of time. The stocks were simulated using a value reverting model with the
an index term and an autoregressive term of the fourth order. The ratio was calculated
using the stocks from NYSE that selection criteria, which were 622 stocks.

The analysis of correlation coefficients is continued by looking at the eigenvalues of the
correlation matrices. The correlation matrices are calculated using the data from the
simulation using eq. (3.5.22) as well as the real data.

In fig. (3.21) the normalized distribution of eigenvalues )\; is plotted, where the fraction
1 — @ of eigenvalues equal to zero is not included. The eigenvalues were calculated for
the stocks trading on NYSE during 2005. The eigenvalues \; ¢ = 5, ..., K — 1 are included
in the plot but the five largest eigenvalues \; ¢ = 0, ...,4 are not included in the plot. In
addition to the eigenvalues in the plot, the theoretical distribution is given by eq. (2.3.38)
included in the plot.
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Distribution

Figure 3.21: Distribution of the eigenvalues ();) for the correlation matrix. Note that
the largest eigenvalue )¢ is not included. The correlation matrix is calculated with the
622 stocks that traded on NYSE during 2005, and that passed the selection criteria. The
theoretical distribution of the bulk of eigenvalues given by eq. (2.3.38) is plotted in red.

The ratio Q = T/K will be smaller than one for this data set as T is equivalent to the
number of trading days of a year which are approximately 250 days. K is the number of
companies that passed the selection criteria(K = 622). Since ) < 1 there will be a lot
of eigenvalues at or close to zero. Then choosing to focus on the three largest eigenvalues
outside the bulk, \; ¢ = 0,1, 2 for further analysis.

Ao is the largest eigenvalue and corresponds to correlations caused by the market. \; and
Ay are the second and third largest eigenvalues and thus corresponds to the two largest
sectors of the stock market. So by calculating the \; ¢ = 0,1,2 on year by year basis, it is
possible to see how they change with time. This is done for both the data simulated with
eq. (3.5.22) and for the real stock price data. In fig. (3.22) \; i = 0,1,2 is plotted as a
function of time; ¥ are the eigenvalues calculated using real stock price data and plotted
as a line. A/ #M are eigenvalues calculated for the stocks simulated using eq. (3.5.22) and
are plotted as a dashed line.

The mean value of the ratio between the simulated correlation coefficients and the corre-
lation coefficients calculated with real data ((D;;)) shows that there is a bad agreement
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between the correlation coefficients for the simulated data and the real data. This is seen
in fig. (3.19) where (D;;) is plotted as a function of time and (D;;) is not close to the
expected value of one, which would indicate a good agreement.

The further analysis of the three largest eigenvalues from the correlation matrix also shows
that the model does not capture the correlations caused by different sectors in the stock
market. This can be seen by looking at the bad agreement of the second and third largest
eigenvalue between for the real and simulated data in fig. (3.22).
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Figure 3.22: The tree largest eigenvalues (\;, i = 0,1, 2) of the real and simulated correla-
tion matrix plotted as a function of time. The eigenvalues calculated using real stock price
are plotted as a full line and the eigenvalues calculated from simulated data are plotted as
a dashed line. The stocks were simulated using a value reverting model with the an index
term and an autoregressive term of the fourth order. 622 stocks from NYSE that passed
the selection criteria were used in the calculations
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4. Discussion

The stock market is a man-made system, that changes with time. So a model that describes
the stock market perfectly may never be found. The big challenge is that there is only
one real stock price path during a period for each company. So the stock price path of a
company can be seen as a non repeatable experiment, as it is impossible to replicate all
the initial conditions and repeat the initial public offering of the same company. Instead
the stock path of multiple companies, all with different parameters and initial conditions
have to be used to determine what is a good model of the stock price movements.

When looking at the simulation of the stock price for "The Coca-Cola Company, (NYSE:
KO)’ using VRM and GBM which is shown in fig. (3.1), it is not possible to distinguish
between the simulations and the real data. But this inability does not mean that both of
the models are good at simulating the stock price. When looking at multiple simulations
of VRM and GBM, using the same parameters as shown in fig. (3.2) and fig. (3.3). It is
clear that VRM creates a narrow band of share prices compared to GBM that has a wider
range of possible share prices.

This difference is due to the difference in how the drift term in the two models functions.
In VRM, the drift term —a(S; — V;)dt acts as a spring and results in a stronger force the
further share price deviates from V; and thus creates a narrow of possible share prices. In
contrast, GBM does not have a ”corrective” action, but rather the drift term pS;dt simply
adds to the share price independently of the size of the share price. The drift term for GBM
gets bigger and crests a higher share price if g > 0 when S, gets big, where VRM would
create a larger downwards force if the share price saw an increase in .S; above V.

So by using fundamental data points of the underlying business, the simulation of the
stock prices can be improved compared to GBM. But in order to utilize VRM effectively in
applications, a fair estimate of the value is needed. A problem with this estimation of V' (t)
is the assumption that the business will behave similarly when extrapolating V' (¢) beyond
the period used to estimate the parameters. It does hold true and is a good assumption in
most cases. But several companies had to do big changes in their business after the 2008
crash. In those cases, the model did not work well to extrapolate V'(¢) with the calculated
parameters from 2002-2007 beyond 2008. Similar cases must exist in other time periods
for some companies. This problem could potentially be addressed with better data points
or more elaborate selection criteria, but this was not possible with data points used.

The estimation of value was done with fundamental data points that were reported annu-
ally. These annual data points were then used to calculate the value at one time during
the year. To create a time series (V;) with data points on all trading days, a line was
fitted between the points calculated annually. A straight line was used instead of a step
function, as companies report their earnings quarterly in addition to press releases, etc.
Which means that there will in reality be multiple sources of information from the company
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during a year, that need to be included in the stock price. So using a straight line between
the annual data points is an attempt to use the data available as well as well as possible.
Of course, a better dataset containing quarterly data would be preferable, but this could
not be accessed.

The value reverting model can be used to select a stock that will increase in price. One
way is to select a stock that is trading at a significantly lower level than the estimated
value. Then relying on the property of reversion towards the value to see an appreciation
in the stock price. This method is refereed to as value investing by investors. Another
way is to predict the future value and to buy a stock that will have a greater value in the
future than the current share price, and relying on the reversion towards value to create
an appreciation of the stock price over time. This is refereed to as growth investing by
investors as the future value is highly dependent on the growth of the company. So VRM is
consistent with the investment frameworks of value investing and growth investing. While
GBM is not, as the only way with GBM to pick a successful stock is to look at the drift
parameter p.

The presence of autocorrelations when looking at the stocks from an entire index could
potentially also be used to profit in the stock market. The mean autocorrelation coeffi-
cient as a function of 7 is shown in fig. (3.6), where it is shown that there are negative
autocorrelations for small values of 7. The mean value of PMOD ((P*(7)), ) as a function
of 7 and the distribution of P* for fixed 7 is similar to what is observed when studying
the autocorrelation. The mean value of the autocorrelation as seen in fig. (3.6) compared
to and mean value of PMOD in fig. (3.9) behave similarly in that they deviate from the
expected value of 0 and .5 respectively for low values of 7. This similarity is to be expected
as they look at a similar property, but where autocorrelation also captures the amplitude of
the movements whereas PMOD only look at the direction of the movement. It is possible
to conclude that autocorrelation is not negligible as the mean autocorrelation for NYSE
and NASDAQ is negative for small values of tau.

The expected Gaussian behaviour of probability of movement in the opposite direction is
not observed in the case 7 = 1 as seen in fig. (3.11). But it is observed for 7 = 9 as seen in
fig. (3.11). This indicates that the assumption of the daily movement is independent on
the previous days movement is wrong, but for larger values of 7 it is a valid assumption.
So when studying a group of stocks, the autocorrelation and PMOD are not negligible for
the 7 = 1, ..., 4, this could be interpreted as the stock price have a "memory” of the last
four trading days. This behaviour can be included in models of stock price movements by
adding an autoregressive term.

When comparing the mean autocorrelation ({(Ry(7)),) for the real data in fig. (3.6) with the
simulated data using GBM with an autoregressive term of the forth order in fig. (3.12). It
can be seen that there is a similar behaviour for 7 = 1, ..., 4. But the mean autocorrelation
has larger volatility in the real data when 7 > 4. This could be corrected by using a larger
order of the autoregressive term. An order larger than five for the autoregressive term
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would mean a memory of past movements larger than a week. Which would only model
the behaviour without an adequate explanation of why it is present in the data. It would
also be computationally expensive in the estimation of the autoregressive coefficients.

So the autoregressive term may not be the perfect description of the behaviour of auto-
correlation and PMOD. However it provides a simple way of modifying models like VRM
and GBM to include the autocorrelation behaviour for small values of 7. As seen in fig.
(3.6) the mean autocorrelation will oscillate around zero for larger values of 7, so it will
not have a noticeable effect on the simulations. So the autoregressive term is suitable to
use given the fact that is simple to include in models.

When considering an index where each stock is simulated using VRM or GBM with no
additional terms, which is seen in fig. (3.15). The desired index behaviour does not
occur, but rather a smooth line. This is due to the fact that the stochastic part (dW})
of the stochastic term o*SFdW} will cancel each other out. This will result is a smaller
volatility than observed for real data. The introduction of an index term which has the
same stochastic variable (dW;) for all the companies, allows for correlation between the
companies to occur, which creates the desired index behaviour.

The addition of an autoregressive term to the model of GBM with the index term (/a.¢)
have a noticeable effect compared to GBM with only the index term (Ig) as seen in fig.
(3.16). I is larger than the real value (Ig), the addition of the autoregressive term creates a
dampening effect that makes [ 4, closer to Is. This can be due to the autoregressive terms
adds additional parameters, which will create a better fitting. Or as seen when looking at
the expectation value of the share price when the autoregressive term is added to GBM,
it will act dampening when the drift is positive, and the autocorrelation correlation is
negative.

However, the damping is not observed for the equally weighted index simulated using VRM
with the index term ([y) and with the additional autoregressive term (I4,1/). But as seen
when looking at the simulations of KO, VRM provides a narrow range of the share price,
and the additional parameters may not have as much influence on the result as it have
on GBM. Which is why [y and 4,y is closer to the real data (Ig). In 2008 Iy, and I,y
started to decline before Ig, this is due to the extrapolation of V; from annual point to
daily points. The crash causes a decrease in earnings in 2009 which influences V; during
the period 2008-2009 which in turn creates a downward trend during this period, which
could be improved with the use of fundamental data points reported quarterly.

The combination of an autoregressive term and an index term to VRM gives a similar
distribution of correlation coefficients as for the real data which can be seen in fig. (3.18)
and fig. (3.17). But this does not mean that the simulated correlation coefficients agree
with the real correlation coefficient.

The ratio of correlations coefficients for the stocks ¢ and j for the real data (p;;) and

the simulated data (pi™) given by Di; = p§i™/ps; as a function of time as shown in fig.
(3.19), which shows that there is a bad agreement between the two. The agreement in
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the distribution of pfi™ in fig. (3.18) and py; in fig. (3.17) can be due to the fact that
the parameters for the model are fitted during the entire period and it is this period that
is used in when looking at the distribution of the correlation coefficients. While D;; is
analysed on a year by year basis,. The bad agreement of D;; could be improved if the
parameters used in the simulations were time-dependent and for example estimated on a

year by year basis instead of estimated during the whole period.

However, when looking at the largest eigenvalues of the correlation matrices for the real
data and simulated data in fig. (3.21), there is almost no agreement for A\; and Ay, where
A1 and Ay represent the two largest sectors. But there is some agreement for A, which
represents the market. The lack of agreement is a result from how dI; in the index term
is calculated. It treats all the sectors and the whole market as one variable. The different
sectors and the market should be broken down into unique variables and treated separately,
in order to achieve a better model. This could be solved by expanding the index term

ok Skaw, (4.0.1)

in such a way that it have additional terms that correspond to different sectors. Such
as

M
> onStaw (4.0.2)
m=1

where M is the number of sectors as well as the market as a whole, m is a sector or market

that corresponds to the eigenvalues outside of the bulk.

The inclusion of sectors in the model could provide a more accurate model of how the stock
market functions. But it does not provide a way in predicting how the market and sectors
will move each day as this is modelled as a random process, which means that it does not
provide a framework to simulate individual stocks into the future with any precision. So the
best option in predicting future stock prices is by using VRM, with the possible inclusion
of an autoregressive term. The value reverting term provides a framework to predict the
direction of how the stock price will move, but it introduces the need of predicting the
future value.
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5. Further developments

The theoretical framework of VRM can be expanded further, to the point where it is
possible to to find the theoretical band of possible stock prices. This can be done by looking
at the expectation value of the VRM process and looking at the theoretical variance of the
process. When looking at how VRM could be used, the limiting factor was the size of the
data set with fundamental data points that were used in the estimation of V;. It would
be interesting to use a larger data set both of more stocks and over a longer period. This
would allow for a more detailed analysis of the limits of how VRM can be used as well as
comparing different time periods to each other.

This could involve using fundamental data points reported quarterly instead of annually
and would make it possible to use a more detailed valuation model with four times as many
data points during the same period. More detail data points reported quarterly would also
make it possible to drop or alter the assumption of value (V;) being a continuous function.
By letting V/(t) being non-continuous and making the parameter of reversion towards the
equilibrium («) in VRM be time dependent, could provide a framework to describe jumps
in stock prices. By looking at a jump in V; in combination with an increase in « during a
short period.

The analysis of PMOD and autocorrelations could be expanded by looking at how they
change over time. This could entail comparing different time intervals as well as comparing
stocks from different indices. It is also well established that dSF are distributed with
fat tails, but in this thesis a normal distribution is used in the simulations instead of a
distribution with fat tails. So the models used in this thesis can be improved upon by
introducing distributions with fat tails.

The index term o¥SFdW; can also be expanded in such a way that it has additional terms
that correspond to different sectors as outlined in eq. (4.0.2). This could improve the
agreement of the correlation coefficient for simulated and real stock price data.
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6. Conclusions

VRM introduces a different type of drift term compared to GBM, that is more accurate in
the simulation of stock price movements and relates the drift of stock prices to the value
given by the fundamental data points of the company. Compared to GBM, that simply
observes the existence of drift in the share price and introduces a term to model it, without
providing a mechanism that describes why the drift exits. So VRM provides a better
prediction of the future share price compared to GBM but also introduces new difficulties
in the calculation V;, such as the need for fundamental data points of the company. VRM
is not the perfect model, but fundamental data points of the company should be included
in the model in order to achieve a accurate model of the stock market.

As an initial model, GBM behaves similar to a stock price and is a functional first approx-
imation of stock movements. GBM can easily be used to extrapolate into the future by
using the estimated parameters. However just because it is easy to use this does not mean
that GBM has a high degree of accuracy in the prediction.

When looking at a single stock both GBM and VRM can provide a good model of stock
movements. But when considering a group of stocks and how they create an index VRM
and GBM are no longer adequate, as GBM and VRM do not create an index behaviour
but rather a smooth line. By introducing an index term, it is possible to simulate an index
that behaves similar to actual data.

It is commonly thought that the autocorrelations of stocks are negligible and can be ig-
nored. But when looking at the mean value for the autocorrelation coefficient for a group
of stocks, it is clear that autocorrelation actually is present and should not be ignored.
It is possible to include the behavior of autocorrelation in stochastic models using an
autoregressive term.
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