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Abstract

Register allocation is one of the most critical parts of an optimizing com-
piler. Although a great effort has been put into researching how to allocate
registers, not much of it has been focused on vector registers. This report
seeks to find out what fundamentally new problems arise when allocating vec-
tor registers rather than scalar registers, how the previously known problems
change in vector registers and what methods can be used to tackle these issues.
Furthermore, an attempt to use a combined scheme of register allocation and
instruction scheduling is made, to see how it performs with vector registers.
This thesis presents the results of an investigation of how two commonly used
register allocation techniques, Linear scan and Graph coloring, perform rela-
tively. Furthermore, it presents generalizations to a commonly used algorithm
used in graph coloring, Chaitin’s algorithm.

Using the internal performance suites of ARM Midgard compiler, our in-
vestigation revealed that linear scan can in fact speed up code generation quite
significantly, up to 12.5% compared to graph coloring. However, this comes
at the cost of reduced code quality. The generalized spill criterion resulted in
an significant reduction in spill code inserted, where 10% less spill code was
inserted using the derived criterion. This however did not equate to 10% re-
duction in execution time, although execution time of the generated code was
overall decreased by 0.5%. The combined scheme reached comparable effi-
ciency compared to graph coloring, however, since it was only used for single
basic block shaders, it is difficult to say how efficient the register allocation
would be for larger shaders.

Keywords: Register allocation, vector registers, graph coloring, compiler optimiza-
tion.
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Chapter 1
Introduction

A graphics processing unit, or GPU abbreviated, is a processor which handles displaying
graphics. The reason why this is done on a separate processor, and not the CPU, is because
the task of displaying graphics is fairly different from normal computation. First of all,
much of graphics can be computed in parallel. Another difference is the extensive use
of vectors, which motivates the use of SIMD-instructions. SIMD is an abbreviation of
single instruction, multiple data, and simply means that instead of using the two separate
instructions add r0.x, r1.x, r2.x and add r0.y r1.y, r2.y, have a single instruction add
r0.xy r1.xy, r2.xy [11]. For a GPU, this is practically invaluable, since computer graphics
heavily uses vectors for many reasons, e.g. to model the light sources, characters, texture
positions, pixel positions etc. Being able to do these operations in a single clock cycle
results in a vast improvement of performance.

This have been done with SIMD on e.g. ARM NEON [2] or SSE [11], but a vital
difference between those and GPU-vector registers is the use of swizzling. Swizzling is the
act ofmodifyingwhich components is read/written in a register, so that wemay for instance
have instructions such as add r0.x~z r1.y~w, r2.x~x, where the tilde on a component signals
that that components is not read or written. In this instruction, we would add the y-value
of r1 and the x-value of r2 and store it as the x-value in r0, while simultaneously add the
w-value of r1 to the x-value of r2 and store it as the z-value in r0. It is possible to do this
in SSE and NEON, however in order to do so, we need an vector permute, which is often
an instruction. Swizzling is common in computer graphics, and for this reason, using an
instruction to reorganize the registers would be quite expensive. While swizzling may not
seem to be a big difference, it allows for much flexibility in how the components can be
allocated. Furthermore, it allows for increased optimization properties, as discussed in
detail later. Using a SIMD architecture does not only offer improvements. Some issues
with using a SIMD architecture are that it typically uses more power and instructions have
a higher latency.

Programs that run on a GPU are called shaders. Shaders are of course not written in
machine code, and thus need to be compiled into machine code by a compiler. A compiler
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1. Introduction

is typically divided into three stages, called front-end, middle-end and back-end. The
front-end parses source code and creates an intermediate representation, (IR), which is
sent to the middle-end. The middle-end then performs several high-level optimizations on
the code, for instance to reduce redundancy. Finally, the representation enters the back-
end, which converts the IR into machine code. The back-end is dependent on the target
machine and its characteristics while the front-end is dependent on the program language.
One of the most crucial parts of the back-end is Register allocation, which is the main
focus of this thesis.

The range between the first definition of a variable and the last use of it is called its
live range. Register allocation attempts to assign each variable a register for the entirety
of its live range. There are many ways of allocating registers to variables. One of the most
commonly used methods is to construct a graph, called the Register Interference Graph,
or RIG abbreviated, which one then attempts to color using at most as many colors as
there are registers available. Since graph coloring is a NP-complete [8] problem, it is not
feasible to use an optimal algorithm. Another way of performing register allocation is by
linear scan, which simply attempts to order the live ranges in some order allocate them in
that order. The clear advantage of this is faster compilation time, but it may result in worse
register allocation. There is also a possibility to allocate registers during the Instruction
scheduling pass. Such a scheme would perhaps prove useful, since it eliminates the need
to perform liveness analysis and register allocation after the scheduling. It is also worth
mentioning that efforts have been made to use constraint programming to achieve optimal
register allocation. However, due to the amount of computational time it would take to
find such a solution, it is not feasible on a GPU compiler [9]. There is a strong incentive
to design architectures with as few registers as possible, since register memory is very
expensive. Being able to reduce the amount of registers while not significantly reducing
performance is thus very beneficial for hardware design.

Finally, there are different types of compilers, two of which are ahead-of-time, ab-
breviated AOT, and just-in-time, abbreviated JIT, compilers. The difference lies in that
AOT-compilers compile source code prior to execution whereas JIT-compilers compile
during runtime. There are advantages and disadvantages of both types, but the main dif-
ference is speed of compilation. Since JIT-compilers compile during runtime, it is vital
that they are quick, whereas AOT-compilers are allowed to take longer time to compile in
order to better improve code efficiency.

1.1 Research Questions
This thesis aims to investigate how the vector registers in a GPU affect register allocation,
and how the current techniques can be improved. Furthermore, other techniques will be
investigated to see how they perform. This has motivated the following research questions,
which the thesis revolves around:

• How does Linear Scan perform relative to Graph Coloring in a GPU compiler?

• Can the current implementation of Graph Coloring be improved?

• How do vector registers affect the possibility to perform register allocation during
instruction scheduling?
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1.2 Contributions

• How can fragmentation be avoided when performing register allocation during in-
struction scheduling? Fragmentation will be formally defined in Section 2.4.

1.2 Contributions
The contributions in this thesis comes in three fields, namely linear scan, graph coloring
and combining register allocation with instruction scheduling.

I have compared how the, for GPUs, commonly used technique linear scan performs
relative to graph coloring. I have also investigated how different orderings of linear scan
perform with vector registers.

Register allocation by graph coloring has been in an ad-hoc manner with vector reg-
isters. I present a mathematical generalization of the ad-hoc method for finding trivially
colorable nodes. I then prove the generalization to be non-optimal, and formulate a true
generalization of trivial colorability. I then present a new criterion for spill node selec-
tion. Lastly, I present an improved version of Chaitin-Briggs algorithm, called Subgraph
coloring, which is meant to decrease the amount of potential spill nodes which are spilled.

Lastly, I have implemented a combined scheme of register allocation and instruction
scheduling. The effectiveness of such a scheme in a GPU compiler has been investigated.
I have also found some problems which arise when combining the two methods. Many
of these problems occur in register allocation in general, since they are related to register
fragmentation.
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Chapter 2
Background

In this chapter a detailed description of the register allocation pass, as well as the necessary
information of compiler infrastructure will be presented. Lastly, the characteristics of a
SIMD-vector register are presented and formulated.

Throughout this thesis, the terms variable, live range, register and output of instruction
will be used interchangeably. A variable is the output of an instruction which is stored in a
register during its live range. This background presumes scheduling is done before register
allocation.

2.1 Compiler infrastructure in general
As mentioned in the introduction, a compiler consists of three parts: front-end, middle-
end and back-end. We will be focusing on the back-end, since that is where instruction
scheduling and register allocation are performed. For the purpose of this thesis, we simply
assume that we will be given a Control Flow Graph, (CFG), which we will do these passes
on. A more formal definition of a graph is found in Section 2.3.1. The CFG is a directed
graph, whose nodes are basic blocks, and there exists an edge between two nodes in the
CFG if there exists a branch instruction from the origin basic block to the target basic
block. A basic block is a set of instructions which contains an entry point and only a
single branch instruction at the end of the basic block. There are two special basic blocks
in the CFG; the entry and the exit blocks. The entry block is the source of all flow in the
CFG, and the exit block is the sink of all flow in the CFG [13].

In order to make better optimizations, the variables are transformed into Single Static
Assignment form, or SSA for short. In SSA, each variable is only defined once. Once
a variable is updated, the output of such an instruction results in a new variable rather
than an updated variable. This is done in the middle-end, and its purpose is to make it
easier to handle definitions and uses of a variable. An issue which arises due to this, is
that we sometimes define a variable once, but there are two different definitions. Take the
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2. Background

following C-code for example:

1: function Example C-code
2: int a = 2;
3: int foo;
4: if bar then
5: f oo = a + 5;
6: else
7: f oo = a + 10;
8: end if
9: f oobar = 2 ∗ f oo;
10: end function

In this case, there exist two definitions of the variable foo. We have previously claimed
that a redefinition creates a new variable. The issue is that there are two definitions and we
do not know which of these reaches the use in foobar. To solve this issue, the concept of
phi-nodes is introduced. A phi-node is a pseudo-instruction which takes all the possible
values of the defined variable, and assigns the correct value to the variable according to
the actual control transfer CFG edge. From the example code, we can construct a CFG,
which would look like this:

foo = φ( f oo1, f oo2)
foobar = 2*foo

f oo1=a+5f oo2=a+10

a=2

2.2 Compiler Back-end
In this section, the parts of a compiler back-end which are vital for this report will be
presented.

2.2.1 Instruction Scheduling
Instruction scheduling is done in order to use the hardware efficiently. This needs to be
done in the back-end, since it is highly dependent on the characteristics of the target ma-
chine. Processors heavily use pipelining to achieve better performance. Pipelining is an
act of splitting computations into sequential stages. In a traditional 5-stages pipeline, there
are the following stages [11]:

1. Instruction Fetch
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2.2 Compiler Back-end

2. Instruction Decode

3. Execute

4. Memory Access

5. Write Back

During stage 1, the next instruction is fetched. During stage 2, the fetched instruction is
decoded, so that the processor knows what to do. Stage 3 is where the actual computation
is done. During stage 4, memory is accessed, which is not always necessary. Finally,
during stage 5, the output of the instruction is written to a register. There are dependencies
[11, 13], which determine how instructions may be issued. For instance, there are data
dependencies, such that an instruction i defines a value, which is then read by instruction
j. We can clearly not issue instruction j before the instruction i has written its output to
registers.

Typically, instruction scheduling is done on a basic block level, so that each basic block
in the CFG is scheduled individually. It is possible to construct a dependency graph [13]
from the instructions in a basic block. All instructions in the basic block then forms nodes,
and there is a directed edge from a node to another if there exists a dependency from the
origin instruction to the target instruction, e.g. if the origin instruction produces a result
which is used by the target instruction. There can be no cycle in such a graph, which makes
it a directed acyclic graph (DAG), and the dependency graph is henceforth referred to as
the DAG. Although it is possible to traverse the DAG in many ways, we will focus on two,
which are Top-down and Bottom-up.

Essentially, every time we select an instruction to schedule, we select an instruction
from a set of instructions which are available for scheduling. What instructions are avail-
able for scheduling is dependent on whether the scheduling is top-bottom or bottom-up.
Which instruction to choose is not important for the purpose of this thesis, but it not a
trivial problem (in fact, it is also NP-complete [13]).

Top-down is perhaps the most intuitive way to schedule, since it follows the flow of the
program. Essentially, instructions which have all operands they use defined, are available
for scheduling, and may be scheduled. In terms of the DAG, this is equivalent to a node
having no incoming edges. After an instruction has been scheduled, all outgoing edges
are removed from the DAG. This is then done until the DAG is empty, at which point the
entire basic block has been scheduled.

In bottom-up scheduling however, an instruction is available for scheduling if it has no
outgoing edges, i.e. there is no instruction dependent on it which has not yet been sched-
uled. When an instruction has been scheduled, all incoming edges from its corresponding
DAG-node will be removed. Much like in top-down, whenever the DAG is empty, the
entire basic block has been scheduled.

Finally, the scheduler needs to take register pressure into account. Register pressure
is an estimate of how many physical registers are currently live. If the register pressure is
high, then it is likely that we need to spill variables. Every instruction may use a number
of variables and may write to a register. An instruction which writes its value to a register
clearly requires register space. If there is currently a shortage of registers, then the sched-
uler should focus on freeing register space, whereas if the is a large amount of register
space, the scheduler should focus on consuming register space.
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2. Background

In a VLIW, an abbreviation of very long instruction word, or a superscalar architecture,
several instructions are issued the same clock cycle [11]. There are a number of functional
units which the instructions can utilize, and if there for instance only exists a single adder,
then two instructions which utilize an adder may not be scheduled at the same clock cycle.
Using a superscalar or VLIW architecture means that the scheduler needs to take all the
instructions in the instruction word into account when calculating how register pressure is
affected by this instruction word, while at the same time optimizing functional unit usage,
for instance using the adders as efficiently as possible.

2.2.2 Liveness Analysis
Liveness analysis is determining when a variable is live. Formally, a variable is live be-
tween its definition and its last use. This duration is called its live range [13], and that is
what we will use henceforth. It is not necessarily easy to determine a variables live range.
A variable may for instance have different last uses depending on paths taken in the CFG.
If two variables at some point in time can not share register, then they are said to interfere.

We may split the live ranges into local and global live ranges. A local live range is
a live range which is only live during a single basic block, whereas a global live range
is live during several basic blocks. This division will be used later when describing the
combined scheme of register allocation and instruction scheduling.

2.3 Register Allocation
Register allocation is the act of assigning all the variables in the CFG a register to be stored
in through their live ranges. Typically, live ranges are ordered and then they are allocated
according to that ordering. There are two main ways in which the ordering is done, which
is Graph Coloring and Linear Scan.

2.3.1 Graph Coloring
A graph G is said to consist of vertices, sometimes referred to as nodes, and edges, some-
times referred to as arcs. The two entities are denoted V and E respectively, and the graph
itself is denoted G(V, E). Two nodes are said to be adjacent if there exists an edge which
connects the two nodes. Additionally, the set of all nodes adjacent to a node is called its
neighborhood [8].

During graph coloring, the nodes of a graph are colored, such that no adjacent nodes
share the same color. Generally, we attempt to find a coloring using k colors, which is
referred to as a k-coloring. The lowest number of colors needed to color a graph is said
to be its chromatic number and is denoted χ(G). An example graph, called the Diamond
Graph, is displayed in Figure 2.1. We see in Figure 2.1 that the chromatic number for the
diamond graph is 2.

How does graph coloring correlate to register allocation? To answer that question, we
first look into how variables can be stored in registers. Assume that we have a value in
register R0. Then it must be safe to overwrite that value with another value if the original
value did not have any more uses. Analogously, if we overwrite the value but still need to
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2.3 Register Allocation

D

A

CB

Figure 2.1: Diamond graph.

use it at some point in the future, we need to write that value to a register again. This of
course means that we either need to have the value stored in memory, so that we can load
it from memory, or have the possibility to compute the value again. Regardless of which
way we restore the value to a register, it comes at a cost. Ideally, we would not want to
need to restore any values in such a manner. We thus come to the conclusion that if two
values are ever live simultaneously, then we do not want them to share the same register.
This is equivalent to allowing two variables to share a register if they do not interfere. In
graph coloring, we want to find a coloring such that no node shares color with an adjacent
node. Assume we let a node represent a variable, and let there be an edge between two
nodes if their corresponding variables interfere. Finally, if we let the number of colors
equal the number of registers present, then we see that we can rephrase register allocation
as "We attempt to assign registers to all variables, such that no interfering variables share
the same register". We thus conclude that if we can find a coloring of the constructed
graph, called the Register Interference Graph (RIG), then we can successfully allocate the
variables registers [5].

It is possible to find optimal coloring in polynomial time when the graph is in SSA
form. Performing register allocation in SSA form however results in non-optimal register
allocation for the phi-nodes in the graph, since they have not been removed [3]. For this
reason, graph coloring is not done in SSA form in this thesis. Finding a k-coloring for the
interference graph is thusNP-complete [6]. IfP6=NP, then there are no optimal polynomial
solutions to the problem. Proving that graph coloring is NP-complete is not included, but
the idea is that in order to find a k-coloring, what is needed is to split the set of nodes V
into k independent sets. There have been much research on finding efficient NP-solutions
of graph-coloring, but it is generally still expensive.

2.3.2 Chaitin’s Algorithm
Chaitin’s algorithm is an iterative algorithm for approximating solutions of graph coloring,
which is based on the notion of trivial colorability [5]. If we let the number of edges from
a node be the degree of that node and the number of registers be N, then we note that a
node vi can be trivially colored if the following holds:

Definition 2.3.1. A node vi is deemed to be trivially colorable if N > degree(vi) holds.

Chaitin’s algorithm is based on graph reductions. If a node is trivially colorable, then
it can be colored regardless of how its adjacent nodes are colored. In essence, this means
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that such a node plays no role in the coloring, and as such, it can be removed. Removed
nodes are pushed to a stack. The clever part of the algorithm is that all nodes which are
pushed on the stack can definitely be assigned a color if all other nodes it is adjacent to have
already been assigned colors. Since all adjacent nodes will be stored on top on the trivially
colored node, we can simply pop from the stack and allocate in that order, after the graph
has been completely reduced. There is however a possibility that the graph is blocked. The
graph is blocked if there are no more trivially colorable nodes. This is illustrated in Figure
2.2. If there are no nodes which are trivially colorable, a node needs to be selected to be
spilled. Spilling a node means that that node will be stored in memory and then loaded
into registers when it is needed but not present in registers. This is costly, and we thus want
to do this as little as possible. There are two things which makes a node a good choice for
spilling. One is that it should cost little in terms of spill code inserted. The other is that
removing the node should free up the graph as much as possible. In Chaitin’s algorithm,
we let the degree of a node determine how much removing a node frees up the graph. This
means that in Figure 2.2, we would have selected B or C as spill nodes since they both
have the highest degree, which is equal to three.

D

A

CB

Figure 2.2: Blocked graph when coloring with 2 colors.

Chaitin’s algorithm is outlined below [5].

1: procedure Chaitin’s algorithm(V )
2: S = ∅
3: while V 6= ∅ do
4: for v ∈ V do
5: if v is trivially colorable then
6: S ← R + v
7: V ← V − v
8: end if
9: end for
10: if No node was removed this iteration then
11: v ←best spill node
12: V ← V − v
13: end if
14: end while
15: return S
16: end procedure

16



2.3 Register Allocation

In the algorithm outlined above, V is the set of nodes in the RIG, and S is the stack
which all the removed nodes are pushed to. Additionally, for the stack, the + operator
means stack pushing, whereas for the set, the − operator means removing the element
from the set.

It is important to note that the actual register allocation is not done during the graph
coloring, but rather afterwards, during register assignment. The graph coloring creates an
ordering of the live ranges, so that the allocator should be able to iterate through the stack
and successfully allocate the live ranges. During register assignment, nodes are popped
from the stack and then assigned a color. Furthermore, the algorithm presumes that spilling
does not fail.

2.3.3 Chaitin-Briggs algorithm

In Chaitin’s algorithm, one would always spill if the graph got blocked. Briggs et al [4].
found that some graphs which Chaitin’s algorithm would spill in, do not necessarily need
to spill. An excellent example of such a case is the diamond graph, which is illustrated in
Figure 2.1. In the diamond graph, we clearly can color the graphwith two colors. However,
since no node in the graph has a degree lower than two, one node would be spilled.

Briggs et al. suggested that the decision of spilling should be postponed until the actual
assignment, and when removing a node from the graph it is only marked as a potential
spill [4]. During the actual allocation, we attempt to allocate even nodes which were
marked as a potential spill. If such a node could be allocated, then it is allocated and
otherwise it is spilled. This is an improvement which makes the Briggs style allocator
at least as efficient as the Chaitin allocator. If Briggs spills, then Chaitin also spills. If
Chaitin spills, then maybe Briggs will not spill.

This addition to the allocator does not introduce any dangers of failing allocation of
trivially colorable nodes, since all nodes which are allocated after a potential spill node
are trivially colorable, whilst the ones above it will be allocated before the spill node. This
will guarantee that the nodes which the potentially spilled node could affect the color of,
will already have been allocated when the potential spill node is allocated.

The revised algorithm for graph coloring thus is:
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1: procedure Chaitin-Briggs colorer(V )
2: S = ∅
3: while V 6= ∅ do
4: for v ∈ V do
5: if v is trivially colorable then
6: S ← S + v
7: V ← V − v
8: end if
9: end for
10: if No node was removed this iteration then
11: v ←best spill node
12: V ← V − v
13: S ← S + v
14: Mark v as potential spill
15: end if
16: end while
17: return S
18: end procedure

2.3.4 Linear Scan
Graph coloring is a fairly expensive technique to order the live ranges for register allo-
cation, both in terms of memory usage and compilation time. First, the RIG needs to be
constructed, which is done in O(n2), where n is the number of live ranges in the program,
which is equivalent to the number of nodes in the RIG. Then, we apply Chaitin-Briggs
coloring algorithm which in itself runs in O(n2).

Linear scan uses the idea that all that is ever really done during register allocation
with graph coloring is to order the live ranges in an order which makes allocation go as
smooth as possible, and then simply allocate as well as it can. This sounds exactly like the
reasoning behind a greedy algorithm. If one can do something clever with the ordering of
the list from the beginning, one perhaps does not need to use graph building, traversal and
stack pushing just to get a good ordering of the live ranges. There are many different ways
to order live ranges and each has its strengths and weaknesses. For instance, Poletto and
Sarkar suggested ordering the live ranges by first definition [12]. If one for instance were to
allocate the ranges with longest live range first, then that would avoid fragmentation caused
by ranges which are short lived. A completely different strategy would be to allocate
shorter live ranges first.

2.4 Vector Registers
In this section, the properties of vector registers are presented. The biggest difference be-
tween CPU register allocation and GPU register allocation is the usage of vector registers.
A vector register has a size, i.e. a number of bytes of data it can hold. There is nothing
inherently which states that a vector register is in fact larger than a scalar register but in
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general, vector registers should be larger, so they may hold more data.

Definition 2.4.1. A vector register is a register of a given number of bytes, capable of
holding several variables. Furthermore, the set of all vector registers present during com-
pilation is denoted R.

Theway vector registers differ from normal scalar registers is their division into register
components. Data can be read from these register components. There exists a smallest lane
which data can be read through. Analogously, there exists a largest lane which data can be
read through. Typically, these buses are aligned. If we for instance have 8 bits as smallest
components size, then we can read 32-bit values from component 0 to 3, 4 to 7 etc.

Definition 2.4.2. A vector register is divided into several minimal register components.
Each register component has the same number of bytes, denoted B, which is constant and
equal for all vector registers in R. The number of register components is denoted N. All
of these register components can be accessed through swizzling, so that no reordering of
the register is necessary due to accessing its components.

An example register where some register components are occupied is presented in
Figure 2.3.

Figure 2.3: Example vector register, with N=8, where compo-
nents 0 and 1 are occupied.

Definition 2.4.3. A variable has two values: The number of components the variable has,
denotedm, and the number of register components a single component occupies, denoted n.
All valid values of n need to be powers of two. In practice, a variable vi has mi components,
each requiring ni register components to allocate.

Definition 2.4.4. A variable is said to be scalar if m=1.

All components of a variable need to be allocated in the same register. A new behaviour
in vector registers is that the allocator needs to handle register fragmentation. In Figure
2.3, we may for instance have had an allocation of a variable vi with ni=2. It is important
to note that vi now blocks the entire bottom half of the vector register for a variable v j
where n j=4. Since the bus is between 0 through 3, and 4 through 7, we can not place the
first two components of the variable v j in register component 2 and 3, and then the other
two components in register component 5 and 6. This means that efficiently, the placement
of vi has lead to 4 register components being occupied, because the allocation blocks the
usage of the data bus. This is illustrated in Figures 2.4 and 2.5.
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Figure 2.4: Vector register allocation of a variable with ni=2, as
seen from the point of view of a variable with ni=2. Thick lines
mark start and end of input buses.

Figure 2.5: Vector register allocation of a variable with ni=2, as
seen from the point of view of a variable with ni=4. Thick lines
mark start and end of input buses.

Lemma 2.4.5. For a scalar variable vi, an allocation of the scalar variable v j will block
max(ni, n j) register components for vi.

Proof. To prove this claim, we distinguish between two cases,

1. ni < n j

2. ni ≥ n j

If 1 holds, then the allocation of v j will block exactly n j
ni
input buses for vi. It will

however fully block all of these buses. In this case, the allocation thus occupies n j
vector register components. If 2 holds, then the allocation of v j will partially block
a single input bus for vi. This in turn means that the allocation of v j will make an
allocation of vi impossible for that bus, which means that vi will block ni vector
register components.

Lemma 2.4.5 is illustrated in the following two figures:

Figure 2.6: Register allocation of a variable with n=4.

As seen in Figure 2.6, this allocation blocks the first 4 register components. If we e.g.
were to allocate another scalar variable which has n=2, the allocation still blocks 4 vector
register components.
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Figure 2.7: Register allocation of a variable with n=2, seen from
the point of view of a variable with n=4

In the other case, where ni ≥ n j , we get the following situation:
As illustrated in Figure 2.7, we have a variable allocated with n=2. If we now want to

allocate a variable which has n=4, we find that the allocation blocks the usage of the data
bus from register components 0 through 3, since register components 0 and 1 are occupied.
There is no bus which can read from register components 2 through 5, so it is not possible
to allocate this larger variable in register components 2 to 5. The allocation of the smaller
variable thus effectively makes allocation impossible in vector components 0 through 3.

So what changes with these new characteristics? Essentially, three parts which become
vastly different are instruction scheduling, liveness analysis, and of course, the register al-
location. Instruction scheduling now needs to adjust register pressure, since issuing some
instructions which write to registers will not necessarily write to a new register. The live-
ness analysis needs to be adjusted, since the components of a variable may have different
live ranges. This means that we now not only need to keep track of when a variable dies,
but also keep track of when every of its components goes dead. Graph coloring in itself
needs to be adjusted to handle the new behaviour, both with the aforementioned alignment
issues, but also how to handle registers being capable of holding several values.
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Chapter 3
Hypotheses

In this chapter, the contributions of this thesis from a theoretical point of view are pre-
sented. Initially much focus will be put in an attempt to generalize Chaitin’s algorithm
to work for general purpose vector registers. Then follows a mechanism to maximize the
chance of allocating potential spills. Finally, some theories on how to perform register
allocation during instruction scheduling with vector registers will be discussed.

3.1 RequiredAdjustments ToChaitin-Briggs
Algorithm

In this section the adjustments needed to generalize Chaitin-Briggs graph coloring algo-
rithm to hold for vector registers will be presented. First follows a generalization of the
criterion for trivial colorability, which has been performed in a ad-hoc manner up to this
point. After that a more exact method of determining trivial colorability will be presented.
Using the ideas from the trivial colorability, a new spilling metric is presented. Lastly, a
method for reducing the amount of potential spills which fail allocation is presented.

3.1.1 Criterion for Trivial Colorability
As stated in the previous chapter, the algorithms and heuristics provided by Chaitin and
Briggs are only focusing on scalar registers and as such do not handle the complications
inherent to vector registers. Smith, Ramsey and Holloway generalized how register allo-
cation may be performed when the registers are of different register classes [14], which
have been useful for insights regarding this generalization.

Lemma 3.1.1. The number of vector register components a single variable vi requires in
order to be allocated into a vector register is denoted Ni, and is given by, Ni = ni ∗ mi.
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Proof. Each variable component requires ni vector register components, so mi variable
components requires ni ∗ mi register components to be allocated.

Lemma 3.1.2. The maximum amount of vector register components which can be blocked
by other variables without hindering an allocation of a variable vi is denoted Si, and is
given by, Si = N − Ni.

Proof. There are N register components in a vector register. If vi require Ni register com-
ponents, then clearly the maximum amount of registers components which can be blocked
is equal to N − Ni, which literally means that we can just fit vi into that register.

Using the lemmas outlined above, we arrive at the following theorem:

Theorem 3.1.3. The worst-case number of vector components which can be blocked by
other variables which hinder an allocation of a variable vi in a register is Si + 1.

Proof. From Lemma 3.1.2, we know the maximum amount of vector register components
which can be blocked by other variables is equal to Si. If we could allocate vi with Si +

1 vector components blocked, then Si would not be the maximum amount, which is a
contradiction.

Definition 3.1.4. The total number of vector register components which are blocked by
interfering variables across all vector registers, for a given variable vi is denoted Ii.

The value Ii is distributed over all register available. The interference from any one
node is however calculated to only hold for a single vector register. This is from the fact
that a variable needs to be fully allocated to a single register, and can not be distributed
amount several registers. Theorem 3.1.1 and Definition 3.1.4, can be combined to form
the following formula for trivial colorability:

Theorem 3.1.5. The least number of register components which needs to be blocked in
order to prevent an allocation an allocation of a node vi to any register is (Si + 1) ∗ R.

Proof. Blocking Si + 1 register components is the least amount of register components
which needs to be blocked in order to fully block a register. Then the least number of
register components which needs to be blocked to prohibit an allocation to any register
must be (Si+1)∗R, since in the worst case, all registers then have Si+1 register components
blocked.

Definition 3.1.1 mentions that there exists a value Ii which is the amount of register
components blocked by all adjacent nodes. Each of the adjacent nodes will contribute
with some interference, which we conservatively approximate, meaning that we assume
that all nodes are allocated in the worst possible manner. From Lemma 2.4.5, we know
that the worst case interference a scalar variable will cause another scalar variable. In fact,
the lemma may be generalized into theorem 3.1.6.

Theorem 3.1.6. Any variable vi will have the worst case interference by a scalar variable
v j to be WC1(vi, v j) = max(ni, n j), where the superscript signals that it is one component
of v j interfering with vi.
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3.1 Required Adjustments To Chaitin-Briggs Algorithm

Proof. The fact that vi is a vector does not mean that v j can block more register compo-
nents, so it must hold.

Using all of the above theorems, we arrive at the following theorem.

Theorem 3.1.7. The worst way a vector variable v j can interfere with another variable vi
is given by
Ii j = min(m j ∗WC1(vi, v j), Si + 1)

Proof. In essence, the worst possible waym j components can be allocatedwill be noworse
than m j worst-case single component allocations. The other case originates for the cases
where a single variable blocks an entire register for another variable. Assume we have a
vector register with N=8. Then, assume that we have a variable we want to allocate, vi,
with ni=4 and mi=1, and another variable allocated, v j , with m j=3 and ni=2. The register
state could in that case be as illustrated in Figure 3.1.

Figure 3.1: Illustration of an allocation of a variable with n=2 and
m=3.

We would get that the worst-case number of register components blocked by v j would
be 3*(max(4,2))=12. The major issue is that 12 register components blocked implies that
v j blocks register components in several registers, since there are only 8 register compo-
nents in each register. Since the interference caused by a single variable is containedwithin
a single register, this is clearly not correct. It is thus not possible for a variable to ever block
more than N register components. We can then let there be an upper bound of N register
components. Alternatively, we can let the upper bound be S+1. Both bounds would work.
The reason why I choose to use Si + 1 is that in doing so, no other modifications needs to
be done. We know that blocking Si + 1 register components exactly blocks a register fully.
If we instead had used N to signal that a variable fully blocks a register for allocation,
then we would have needed to reduce the amount of registers available accordingly. As
an example, imagine that we have a variable vi with ni = 1 and mi = 3 and a variable v j
with n j = 2 and m j = 2 with a vector register with N = 8. This would in turn mean that
Si = 8− 3 ∗ 1 = 5 and S j = 8− 2 ∗ 2 = 4. Then the interference vi inflicts on v j is given by
I ji = min(mi ∗WC1(ni, n j), S j + 1) = min(3 ∗ 2, 4 + 1) = 5. The worst case interference is
illustrated in Figure 3.2. As seen in the figure, the worst case interference caused from vi
will in the worst case block an allocation in a whole register. The interference v j inflicts
on vi is given by Ii j = min(m j ∗ WC1(ni, n j), Si + 1) = min(2 ∗ 2, 5 + 1) = 4, meaning
that vi in the worst case blocks 4 register components for v j . The worst case interference
is illustrated in Figure 3.3. As seen in the figure, the interference from v j does not fully
block an entire register for vi. If however, another variable vk blocks 2 register components
for vi interferes, then the combined interference from v j and vk prohibits an allocation of
vi in the same register as they are allocated to, in the worst case.
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Figure 3.2: Illustration of the worst case interference caused by a
variable with n = 1,m = 3 for a variable with n = 2,m = 2.

Figure 3.3: Illustration of the worst case interference caused by a
variable with n = 1,m = 3 for a variable with n = 2,m = 2.

Now we have all the necessary information to define how to calculate the interference
defined in Definition 3.1.4.

Definition 3.1.8. The interference all the nodes adjacent to a given node vi affects vi with
is given by Ii =

∑
v j∈Vi Ii j where Vi is the set of all nodes adjacent to vi.

Using Definition 3.1.8, we can extend Theorem 3.1.5 into the generalized form of
trivial colorability for vector registers.

Definition 3.1.9. We define that a node vi is trivially colorable if the following criterion
hold:
(Si + 1) ∗ R > Ii =

∑
v j∈Vi Ii j .

Finally, I would like to prove that it is possible to reduceDefinition 3.1.9 into the regular
Chaitin criterion for trivial colorability. This would imply that a register has only a single
register component, i.e. N=1. This in turn implies that n=1 and m=1 for all variables.
Using the equation in Definition 3.1.9, we get:

(Si + 1) ∗ R >
∑
v j∈Vi

WCm j (vi, v j) ⇐⇒

(0 + 1) ∗ R >
∑
v j∈Vi

WC1(vi, v j) ⇐⇒

R >
∑
v j∈Vi

1 ⇐⇒

R > |Vi | = deg(vi)

(3.1)

which is equivalent to the Chaitin criterion for trivial colorability.

3.1.2 True Criterion For Trivial Colorability
The generalized criterion does not find any not trivially colorable node to be trivially col-
orable. It however does not find all the trivially colorable nodes. This is illustrated by the
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following example. Imagine a case where we have two vector registers, and that a vector
register has four components. Then assume we have a node that requires one vector regis-
ter component, which is labelled A. Furthermore, assume that it has three adjacent nodes,
all requiring three vector register components in order for them to be allocated, labelled
B, C and D respectively. The interference graph is illustrated in Figure 3.4.

D

A

CB

Figure 3.4: Interference graph which disproves the generalized
criterion of colorability.

In Figure 3.4, the node A is the node which requires one register component, and the
other three nodes requires three register components. This is not the full RIG, since if it
was, then the nodes B, C and D would have been trivially colorable by the generalized
criterion. For simplicity’s sake however, the rest of the RIG has been left out. Then we
can apply the generalized of trivial colorability for the node A, yielding

(3 + 1) ∗ 2 > 3 + 3 + 3 =⇒ 8 > 9 (3.2)

Since the criterion does not hold, we would regard node A to not be trivially colorable.
However, if we imagine how the components of the variables can be placed in the vector
registers, the nodes B and C would in the worst case be allocated as in Figure 3.5. As

Figure 3.5: Worst-case register allocation of B and C, where B is
allocated to the left register and C to the right register.

seen in Figure 3.5, there is a free register component in each of the two registers. Since
D requires all of its components to be allocated in the same register, we can definitely fit
A in whichever register D is not allocated to. We can thus see that A in fact is trivially
colorable.

Finding such trivial colorability is more difficult than using the generalized criterion
for trivial colorability. In this case, in order to block A from allocation in a single register,
4 register components needs to be blocked in that register. The set of interference which
affects A is Ii = {3, 3, 3}. If there are no two disjoint subsets of Ii, such that the sum of the
values in the subsets surpass 4, then the node is trivially colorable. This is the true criterion
for trivial colorability. We need two subsets since there are two registers and the sum
needs to surpass 4 since 4 register components needs to be blocked in a register to prevent
allocation to that register. The subsets needs to be disjoint, such that no interference caused
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by a single node, is in two of the subsets, since a variable only interferes in a single register.
In the example case, we can not find two such subsets, the closest we can get is the two
sets {3, 3} and {3}, so the node must be trivially colorable. We can additionally see that if
A was adjacent to another node which blocks a single register component, then we could
find two such subsets, e.g. the sets {3, 3} and {3, 1}. The generalization of this criterion is
found in Definition 3.1.10.

Definition 3.1.10. A node vi is trivially colorable if it is not possible to partition Ii into
R disjoint subsets, such that sum of the interference of all nodes in each subset is at least
Si + 1.

An issue is that finding the subsets that make allocation of the node impossible requires
us to iterate through all possible subsets to find an optimal subset, which of course takes
NP-time. There must however be an upper bound on how high degree a node maximally
may have in order to possibly have such subsets, and an upper bound of howmanymembers
the subset maximally may have. The latter value is Si + 1, since each node blocks at least
one register component, so in the worst case, we would need Si + 1 nodes in the subset. If
a node thus have a degree of more than R ∗ (Si +1), then clearly we can partition the nodes
in such subsets.

This technique should only be used if the alternative is to select a potential spill node,
since it is far more computationally demanding than the generalized criterion for trivial
colorability.

3.1.3 Criterion for Potential Spill
Chaitin proposed that the node to be removed from the graph was selected by weighing
a spill cost and the number of adjacent nodes it had in the graph. The rationale for using
the number of adjacent nodes as a measurement is that a node with many adjacent nodes
will be more likely to increase the colorability of the graph. The rationale behind spill
choice does not change when using vector registers. However, simply using the number of
adjacent nodes does not suffice. What we need is to incorporate the sizes of the variables
when we select a spill node. A simple measurement for a given node vi would be to use
ni ∗ mi ∗ deg(vi) as a metric, where deg(vi) is the number of nodes vi is adjacent to. The
rationale for such a criterion is that both the degree and the size of a variable affect the
colorability of the graph. As in the Chaitin criterion, the higher degree of a node, the more
likely it is that removing the node unblocks the graph. A larger variable occupies more
register components, so removing a large variable should free more register components.
To illustrate the issue with such criterion, imagine the following:

Assume we have two nodes, vi which requires two vector register components and has
five adjacent nodes, and v j requiring only a single vector register component, but has nine
adjacent nodes. By using the above criterion, we would select vi as the potential spill. In
general, it is better to spill the larger node, since it frees two register components for five
nodes. Imagine however that v j has only adjacent nodes which require a full register in
order to allocate. Then effectively v j blocks a whole register for all of its adjacent nodes.
Removing the vi will then effectively free a whole register for all nine adjacent nodes. It
is reasonable that the spill criterion is modified to take the number of register components
a node blocks for its adjacent nodes into account.
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It is possible to rephrase the rationale for the traditional spill node criterion as "select
the node which has the highest ratio between spill cost and how much it frees up in the
graph". Spill cost is largely unchanged, so it is the latter part of the criterion which we
will focus on. The node which frees up the most in the graph is reasonably the node which
blocks the total highest amount of register components. This motivates the following def-
inition:

Definition 3.1.11. The total amount of register components a given node vi blocks for all
its adjacent nodes is denoted Ii and is called the spill degree of the node vi. The bar signals
that this is a separate value than the original Ii.

Definition 3.1.12. The worst-case amount of register components a node vi can block for
an adjacent node v j is given by

Ii j =

mi ∗WC1(v j , vi), if mi ∗WC1(v j , vi) + n j ∗ m j < N
N otherwise

The first case is in essence the same as for trivial colorability. The condition where the
first case is used can be translated into "if vi does not block enough register components to
prevent an allocation to a register by itself". The second case simply states that we should
count the amount of register space the node blocks as N, i.e. blocks an entire register, if
vi in itself prohibits an allocation to a single register. From Definition 3.1.12, we can then
arrive at the following definition:

Definition 3.1.13. The spill degree of a node vi is given by Ii =
∑

v j∈Vi Ii j .

I would like to finish this section aswith the generalized criterion for trivial colorability,
and prove that reduction fromDefinition 3.1.13 results in the Chaitin criterion for spill node
selection.

Once again, scalar registers means that N=1, and for all nodes that m=1 and n=1. This
would make the Ii j equal

Ii j =

mi ∗WC1(v j , vi), if mi ∗WC1(v j , vi) + n j ∗ m j < N
N otherwise

=

1 ∗ 1, if 1 ∗ 1 + 1 ∗ 1 < 1
1 otherwise

= 1
(3.3)

This means that the spill degree of a node vi will be,

Ii =
∑
v j∈Vi

Ii j =
∑
v j∈Vi

1 = |Vi | = deg(vi)

which is equivalent to Chaitin’s criterion.
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3.2 Subgraph Coloring
In this section a variation to the traditional Chaitin-Briggs scheme is developed, which
attempts to reduce the amount of potential spill nodes which actually are spilled during
allocation.

To illustrate inefficiencies of Chaitin-Briggs algorithm, here follows an example. As-
sume that we attempt to color the graph in Figure 3.6 with three colors. Since no node
have a degree of less than three, we select a potential spill. Since A has the highest degree,
it is selected as the potential spill node.

A

B

C

D E

FG

I

H

M

K L

J

Figure 3.6: Example graph where Chaitin-Briggs fails.

As long as the nodes are trivially colorable when they are removed, it is possible to get
an arbitrary order of the stack from Chaitin-Briggs algorithm. The resulting stack might,
for instance, be as in Figure 3.7.

If we have the colors red, green and blue, then we may for instance color the nodes
with the following coloring scheme:

• Color the node red if red is available.

• Color the node green if red is not available and green is.

• Color the node blue if no other color is available.

If we were to assign colors to the nodes in the graph using the scheme above, then we
would get the graph in Figure 3.8.

As seen in Figure 3.8, the neighbors of the potential spill node have been colored
using all available colors, meaning that the potential spill node, A, would be spilled. The
chromatic number of the graph is however three, as can be seen in Figure 3.9.

Why did coloring fail when using Chaitin-Briggs for this graph? The only part which
affects whether we successfully color the potential spill or not, is how we color the nodes
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Figure 3.7: One of the possible resulting stacks when running
Chaitin-Briggs algorithm.
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Figure 3.8: Coloring of the example graphwith the stack in Figure
3.7

.
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Figure 3.9: 3-coloring of the example graph.

adjacent to the potential spill. If the nodes adjacent to a potential spill node were to share
more colors, as in Figure 3.9, then we would be able to color the potential spill node. It is
more likely that two such nodes can share the same color if they are colored early, since
in that case less constraints will be put as to which color they can be colored with. It is
this notion that founds the basis of Subgraph Coloring. Subgraph coloring consists of
partitioning the graph into two graphs, V and V ′, where V ′, the subgraph, consists of the
nodes adjacent to a potential spill node and V , the disjoint graph, is the rest of the graph.
In the example graph, we would have V ′ = {B,C,D, E, F} and V = {G,H, I , J,K, L,M}
We then remove nodes from V as normal, however, we only remove nodes from V ′ when
we have no other choice. This should in theory make the nodes in V ′ to be placed higher
up in the stack than they would have been, had not Subgraph Coloring been used. The
earlier a node is removed from V ′, the more likely it is that it is assigned a color which
makes coloring the potential spill node impossible. For this reason, we want to remove
as few nodes from V ′ as possible. Due to this, when we need to remove a node from
V ′, we remove the node which increases the colorability of the disjoint graph the most,
i.e. the node with the highest disjoint degree, which is the number of nodes it is adjacent
to which are members of V . Removing such a node makes it the most likely that more
nodes becomes trivially colorable in the disjoint graph. Selecting such a node however
also means that the disjoint graph at worst will block a high amount of colors for the node,
which may force the node to be colored such that we fail coloring the potential spill node.

Using the above heuristics, we attempt to color the graph in Figure 3.6. We would thus
select the node with the highest disjoint degree, which in this case is a tie between the
nodes B, D and F, since they all have a disjoint degree of 1. We see that C has a disjoint
degree of 2, however, we can not remove it since it is not trivially colorable. We arbitrarily
select B for removal. Removing B does not make any disjoint nodes trivially colorable,
however it makesC trivially colorable. SinceC has disjoint degree of 2, we remove it from
the graph. Removing C makes I and G trivially colorable. It is then possible to remove
all nodes from the disjoint graph, so that the only remaining nodes are the nodes in the

32



3.2 Subgraph Coloring
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Figure 3.10: One of the possible resulting stacks when running
subgraph coloring algorithm.

subgraph. We may then arbitraily remove the nodes in the subgraph. A possible resulting
stack from running subgraph coloring on the example graph is presented in Figure 3.10
and the coloring of the graph is in Figure 3.11.

We could instead have removed F in the beginning, which would have made it possible
to remove J,K, L and M. The graph would then have been blocked, after which another
node from V ′ would have been removed. If we attempt to color the example graph with
subgraph coloring and remove F first, then the resulting stack may be as illustrated in
Figure 3.12.

We can compare the stack produced by subgraph coloring and the stack produced by
ordinary Chaitin-Briggs algorithm. This is presented in Figure 3.13. We can see that, in
essence, subgraph coloring moves the nodes in the subgraph upwards in the stack. More-
over, we see that three nodes from the subgraph are colored first by the subgraph coloring
algorithm. It is not possible that the coloring of these nodes by themselves prevents color-
ing of the potential spill. This means that the only nodes which may be colored such that
we can not color the potential spill, are B and F.

The above example only has a single potential spill node. If there are several potential
spill nodes, then we add each of their neighbors to the subgraph. Wemay want to bias from
which of the potential spill nodes we want to remove a neighbor. The basis of subgraph
coloring is that coloring is easier the higher up in the stack a node is placed. For this
reason, we may want to avoid removing nodes neighboring to a potential spill node which
was removed from the graph early, since removing one of its neighborsmakes it more likely
that we fail coloring it. Conversely, we may want to avoid removing nodes neighboring
the potential spill which was removed last, since it is the most likely that we can still color
it. Removing one of its neighbors may result in it becoming non-colorable. These are
two different strategies which are interesting in subgraph coloring. A completely different
strategy would be to use the heuristics from spill node selection. This is based on the fact
that we want to avoid spilling nodes which are expensive to spill. We let the nodes in the
subgraph carry the spill cost of the potential spill node it neighbors, and then select nodes
which have low cost. The spill cost criterion is what was used in this thesis.
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Figure 3.11: Coloring of the example graph with the stack pro-
duced by subgraph coloring, found in Figure 3.10
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Figure 3.12: One of the possible resulting stacks when running
subgraph coloring algorithm when removing F first.
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Figure 3.13: Comparison between the stacks produced by
Chaitin-Briggs algorithm and subgraph coloring. The nodes
which are adjacent to the potential spill are hatched for easier
comparison. Left: Stack produced by Chaitin-Briggs algorithm.
Right: Stack produced by Subgraph coloring

Another problem which arises in subgraph coloring when having several potential
spills, is that some nodes in the subgraph may be adjacent to several potential spill nodes.
If using heuristics dependent on when a node in the subgraph was inserted in the sub-
graph, then no adjustments are needed. If we however use the spill cost heuristic, then we
can make an adjustment. In the worst case scenario, removing a node from the subgraph
which is adjacent to several potential spill nodes will make coloring impossible for all of
the potential spills it is adjacent to. We can thus let every node in the subgraph carry the
sum of the spill costs of all potential spill nodes it is adjacent to.

The revised Chaitin-Briggs colorer is presented in Algorithm 1. The main structure of
Chaitin-Briggs algorithm is unchanged. The new part lies in the case where no nodes in
V are trivially colorable. In that case, we either select the best trivially colorable node to
remove in V ′, or if no nodes in V ′ are trivially colorable, then a new potential spill node
is selected. If V is the empty set, and there are nodes left in V ′, then the graph V ′ can be
colored using the subgraph coloring algorithm. In this thesis, we used the highest disjoint
degree and spill cost of the associated potential spills to select which node to remove from
the V ′.

The amount of potential spills should not be affected. The subgraph colorer will only
remove a node from V ′ if no disjoint node is trivially colorable. But we will only select a
new potential spill if no node in V ′ or V is trivially colorable, which is the scenario where
we spill in a classic Chaitin-Briggs scheme. The amount of spill code inserted should
however be affected, since in theory, this scheme should reduce the amount of potential
spills which are spilled during allocation.
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Algorithm 1 Subgraph Coloring algorithm.
1: procedure Subgraph Coloring(V )
2: S ← ∅
3: V ′ ← ∅
4: while V 6= ∅ do
5: for v ∈ V do
6: if v is trivially colorable then
7: S ← S + v
8: V ← V − v
9: end if
10: end for
11: if No node was removed this iteration then
12: if can remove node in V ′ then
13: v ← best node in V ′ to remove
14: V ′ ← V ′ − v
15: S ← S + v
16: else
17: v ←best spill node
18: for all vi ∈ Ev do
19: if vi /∈ V ′ then
20: V ′ ← V ′ + vi
21: V ← V − vi
22: else
23: Increment spill cost of vi
24: end if
25: end for
26: V ← V − v
27: S ← S − v
28: Mark v as potential spill
29: end if
30: end if
31: end while
32: if V ′ 6= ∅ then
33: S ← S+ Subgraph Coloring(V ′)
34: end if
35: return S
36: end procedure

3.3 Linear Scan
In linear scan, the only thing we are interested in at this point, is how to order the live
ranges for an efficient allocation. The orderings we investigate are,

1. Earliest definition

2. Longest life span
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3. Longest life span*size

Earliest definition is the criterion suggested in [12]. The longest life span can be in-
teresting, since those live ranges are the most likely to affect other live ranges. The last
criterion is an attempt to make an easy ordering which takes size of variables into account,
since that is not done in the previous two.

3.4 Combining Register Allocation with In-
struction Scheduling

In this section, methods developed for a combined register allocation and instruction schedul-
ing scheme are discussed.

3.4.1 Top-down or Bottom-up
In a combined scheme for register allocation and instruction scheduling, scheduling di-
rection is of major importance. If scheduling top-down, register space will be allocated
upon scheduling a definition of a variable and deallocated when the last instruction which
has a data dependency upon it is scheduled. If scheduling bottom-up, register space will
be allocated when we schedule the first instruction which has a dependency towards that
instruction and deallocate when scheduling variable’s definition. A difference between
regular registers and vector registers is that the various components of a variable may be
defined by different instructions, which is why there may be bias as to which strategy is
best. To illustrate this bias, here follows two examples.

Assume we are using top-down scheduling, and that we have a variable v, with three
components, namely v.x, v.y and v.z, and that they are defined at instructions i1, i2 and
i3 respectively. Finally, assume there is an instruction i which kills all components of v.
Instruction i1 is scheduled first, followed by i2, followed by i3. Instruction i is scheduled
last. When we schedule i1, we need to allocate v.x. We do not need to allocate v.y or v.z
right now, since we have not yet scheduled i2 or i3. However, we may only allocate other
variables to the register space they will occupy if we can guarantee that those variables
die before scheduling of i2 or i3. Since we do not know when we will schedule i2 or i3, we
resort to allocating all of v during scheduling of i1. In this case, we are effectively wasting
the register space which v.y and v.z occupies until we schedule i2 and i3 respectively. As-
sume now that we would schedule bottom-up, so that i is scheduled first, followed by i3,
followed by i2 and lastly i1. Then when scheduling i, we would allocate register space for
all components of v. Upon scheduling the definitions of v, we will then deallocate their
respective component. This means that we will not waste any register space in this case.
Since we prefer not to waste register space, we prefer bottom-up to top-down.

Now assume the opposite. We have a variable v with three components, all of which
are defined by a single instruction i. There are three instructions i1, i2 and i3, that kill v.x,
v.y and v.z respectively. Assume that we are using top-down scheduling. Upon scheduling
i, we will allocate register space for v. The components will then be deallocated upon
scheduling of their respective last use. Unlike the previous example, top-down scheduling
will not waste any register space. Now assume we use bottom-up scheduling. The order of
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scheduling is then first e.g. i3, followed by i2, followed by i1 and lastly i. Upon scheduling
of i3, we notice that we face the same issue as we faced in the previous example for top-
down scheduling. We can only allocate any variable in the components occupied by v.x
or v.y if that variable dies before we schedule i1 or i2. We still do not know when either
i1 or i2 is scheduled, so we will allocate all components of v upon scheduling i3, resulting
in register wastage until i1 and i2 are scheduled. This results in register wastage, so in this
case, we prefer top-down scheduling.

To find which scheduling direction is most beneficial, we should investigate how com-
monly these two scenarios occur.

3.4.2 Avoiding Fragmentation
Register allocation during instruction scheduling should only be performed for local live
ranges, which are live ranges that only are live within a single basic block. The reason for
this is that it is difficult to keep the global live ranges allocated efficiently, especially with
live ranges in phi-nodes. For this reason, we will use a scheme as proposed by D. Ivanov
in [7].

Disregarding allocating global variables, the main issue with performing register al-
location during instruction scheduling with vector registers is avoiding fragmentation. To
illustrate with an example, assume we have vector registers with 4 components. Assume
we need to allocate two variables which require three components, and three variables
which require a single component. It seems to be a good idea to allocate one variable
requiring three components together with one which requires one component, since such
a grouping together occupies a whole vector register. Doing so would result in the register
state illustrated in Figure 3.14.

Figure 3.14: Example of optimal temporal register allocation.

With this allocation we are subject to minimal fragmentation if we allocate in this
manner. The issue however is that this allocation is optimal in regards to fragmentation for
this particular clock cycle. It may however be the case that the two 3 component variables
dies the next clock cycle. If that were to happen, the register state would be as in Figure
3.15 the next clock cycle, presuming no other variables are allocated to the registers.

Figure 3.15: Resulting register state from temporal optimal reg-
ister allocation.

38



3.4 Combining Register Allocation with Instruction Scheduling

The allocation has now introduced a lot of fragmentation in the registers. In fact, this
allocation prevents an allocation of a variable which require a whole register in all three
registers.

3.4.3 Placement Strategy
Themain problem in the previous sectionwas that we did not take the liveness into account.
Of course, one issue with performing register allocation during instruction scheduling is
that we have not determined the liveness yet. We therefore must approximate the liveness.
Let Li be the approximation of the liveness of variable vi, and that it is equal to the exact
number of instructions we at least need to schedule in order to kill vi.

Assume we now have a set of variables V allocated to a given vector register. We
may then estimate the worst-case register waste from that allocation. We let W denote the
worst-case register waste, and it is given by:

W (V ) = L ∗ (N − NV ) +
∑
vi∈V

(L − Li) ∗ Ni (3.4)

where L is the maximum approximated life length of all variables in V and NV is the
amount of register components occupied in the vector register.

Assume we have a set of variables I , which is the set of variables that should be allo-
cated right now. Furthermore, assume that we have R registers, and that Vi is the set of
variables currently allocated to Ri. Then we want to allocate all members of I , such that
we minimize

W (I) =
∑
Ri∈R

(W (Vi)) (3.5)

If we can find allocations of I such that we minimize W (I), then we are less likely to
get fragmentation in the vector registers. There are two primary shortcomings of using
such a method to find a good allocation. The first is that it seems to be NP-complete. The
second is that we do not use any information of what will be scheduled next. Since we have
information regarding what instructions are available for scheduling, we effectively know
roughly what we will need to allocate the next cycle. The issue is that we still can not use
that information effectively. We may force the scheduler to schedule a given instruction
because it improves allocation, but that may have consequences later during scheduling.

3.4.4 Fragmentation and Live Range Splitting
Even though we preemptively work towards minimizing the fragmentation in the registers
by following the placement strategy, this work may not be ideal. Instead of spilling or
rematerializing a variable, we may perform live range splitting instead. Rematerialization
is the act of recalculating a value. Live range splitting is the act of splitting a live range
into several subranges and letting the subranges be allocated in different registers [10], or
in the case of vector registers be allocated to different components within a register.

If there exists no available instruction whose output can be stored in a register due to
register fragmentation, then we may still not need to spill. Imagine the case where there,
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for instance, exists enough space in a vector register, but the register is so fragmented that it
would not be possible to allocate a certain live range in it. We may instead do some clever
reorganization of the vector registers, which would make live range fit. Among the cur-
rently allocated variables, we want to select one, or perhaps more, variables to reallocate
in order to decrease fragmentation. This is hard, since we in essence want to minimize the
amount of moves that we insert, i.e. the amount of variables that we reallocate. Further-
more, we want to reduce the fragmentation as much as possible. How to manage optimal
live range splitting for fragmentation is an interesting topic, but no answer is presented in
this thesis.
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Chapter 4
Evaluation Methodology

The target compiler is the ARM Midgard compiler, used in Mali GPU. The hardware is
the ARM Midgard architecture [1]. Primarily the focus lies on the Mali-T760, however
whenmore data is needed, more available versions ofMali is used. The benchmarks which
the efficiency of the algorithms are tested on, are the internal performance suites of ARM
Midgard. They consist of a large amount of commonly used programs, representative for
normal GPU computation. The programs are compiled, after which the compiled code is
run. After running the program, data regarding the amount of load cycles spent, which
spilling mostly affects, the execution time and the number of registers used, is gathered.
This data then forms the basis of the evaluation. Since shaders are typically small, there
are no larger differences with any techniques, which makes min and max differences less
interesting. For this reason, we will focus on averages to see trends.

For linear scan, the anticipated result is that the amount of register used, load cycles
and the execution time of the compiled programs is increased, compared to programs
compiled using graph coloring. We however anticipate that the compilation time will
decrease when using linear scan, compared to using graph coloring. Linear scan will thus
be measured in terms of amount of registers used, loads executed and execution time, as
well as compilation time.

The true criterion of trivial colorability will be measured in reduction in amount of
potential spills. There should be some situations where the generalized criterion for trivial
colorability results in a blocked graph, but by using the true criterion of trivial colorability
we can find more nodes to be trivially colorable and thus make the graph not blocked. For
this reason, the amount of potential spills should be reduced when using the true criterion
for trivial colorability.

For the new method of spill node selection, the main metric will be the amount of
clock cycles spent on loads and execution time. Intuitively it seems like a good idea to use
amount of spill code inserted as an evalutation, however this may be misleading. Reduc-
tions in inserted spill code may still result in an increase in load cycles spent, since the
spill code inserted may have been inserted in a loop for instance.
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Subgraph coloring is, much like the improved spill criterion, meant to decrease spills.
For this reason they have the same evaluation metric. It would be interesting to see what
effect subgraph coloring has on compilation time as well, since it should make compilation
slower. This will however not be investigated, due to limitations in the compiler which
makes the implementation far from being optimized, which would result in an unrealistic
measurement of compilation time.

For the combined scheme for instruction scheduling and register allocation, the main
metrics will be average amount of registers used and compilation time. The combined
scheme is a prototype, so many of the values are preliminary.
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Chapter 5
Results and Discussion

In this chapter, the results of the investigations are presented and discussed.

5.1 Linear Scan
The results of the different linear scan orderings are presented in Figure 5.1. In the figure,
a higher value than 1, in for instance registers used, means that the ordering used more
registers than graph coloring. The same holds for load cycles and execution time, where
a value higher than 1 equates to having more load cycles and longer execution time than
graph coloring. Furthermore, data from the benchmark Mali-T760 GLES was gathered.
The result is presented in Figure 5.2.

As seen in both Figure 5.1 and Figure 5.2, the ordering of the live ranges which resulted
in the best allocation was longest live range first. The reason why this was the best may
be connected to the fact that a variable which is live for a long time is more likely to have
more overlapping live ranges. This would mean that such a node would have a high degree
in the RIG, if it was constructed. In general, the stack produced by Chaitin’s algorithm is
ordered in decreasing original degree, so that the longest living live ranges are in general
placed on top of the stack. Linear scan with the live ranges ordered in decreasing life
length thus approximates the graph coloring solution. This is likely the reason why it also
performed the closest to it. Another interesting observation is that life length*size does
not perform as well as only longest life length. This is quite interesting and suggests that
how hard it is to allocate a variable is more dependent on life length than size. Size seems
to matter, but not as much as life length.

Using linear scan instead of graph coloring reduced compilation time by roughly 12%
on average. It also reduced the register allocation time by roughly half.

Much like predicted, linear scan reduced compilation time, at the cost of lower perfor-
mance of machine code. For an AOT-compiler, there is no question as to what to choose;
graph coloring is preferred. However, even for a JIT-environment, I would suggest using
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5. Results and Discussion

Figure 5.1: Performance of Linear Scan relative to Graph Color-
ing, in respect to amount of registers used, load cycles executed
and execution time. The bars are the different orderings of linear
scan. The left bar is earliest definition, the middle bar is longest
live range and right bar is length*size.

Figure 5.2: Performance of Linear Scan relative to Graph Color-
ing for Mali-T760. The bars are the different orderings of linear
scan. The left bar is ordering by earliest definition, the middle bar
is ordering by longest life range and right bar is ordering by life
length*size.
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the graph coloring algorithm. One of the most problematic aspects of register allocation
when using vector registers is avoiding fragmentation and handling the different sizes of
variables. Adjusting the linear scan algorithm to take this into consideration would make
it slower, which reduces the attractiveness of the algorithm. Chaitin’s algorithm inherently
handles fragmentation by ordering the live ranges with regard to interference. For this rea-
son, I would say that graph coloring is preferred over linear scan for a linear scan register
allocator.

5.2 Graph Coloring
In this section, the results specific to graph coloring improvements are discussed.

5.2.1 True Criterion For Trivial Colorability
Using the true criterion for trivial colorability yielded no difference in the amount of po-
tential spill nodes. This is quite interesting, because there were many nodes which could
be removed with this improved way of determining colorability. A reasonable explanation
why this still did not lead to any reduction in potential spills may be that it is rarely so that
such nodes are bottlenecks which later trigger more nodes to be trivially colorable. The
graph in Figure 5.3 might not be commonly found in a RIG and we instead have then graph
in Figure 5.4. In such a graph, there is no way to avoid spilling, so the effort to remove A
from the graph is futile since we need spilling regardless.

D

A

CB

Figure 5.3: Graph where removing a node using the true criterion
for trivial colorability unblocks the graph.

D

A

CB

Figure 5.4: Graph where the true criterion for trivial colorability
does not matter.
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5.2.2 Criterion For Potential Spill
The results gathered for changing the criterion of potential spill node is represented in
Figure 5.5.

Figure 5.5: Results of changing the Spill criterion to my criterion.
The left bar is loads relative original criterion and the right bar is
execution time relative to original criterion.

As seen in Figure 5.5, the effect of changing the spill criterion was fairly unsubstantial.
For most suites, the new criterion outperformed the original, so Mali-T760 GLES is a
unrepresentative measurement. The positive effect likely comes from the fact that it is
impossible to say how much register space a node blocks by simply looking at the number
of adjacent nodes and space required. The new criterion for potential spills is dynamic,
and has its foundation in the amount of register space blocked. This result however, does
not mean that using my criterion is guaranteed to outperform the original criterion for
any shader. In fact, as seen in Figure 5.5, the new criterion performed slightly worse for
the benchmark Mali-T760 GLES. It is also not unlikely that the two criteria chooses the
same potential spill nodes in some cases, since the size increases the amount of register
components blocked, as does the degree. In that case, there will be no difference between
the two criteria.

One reason why my criterion would result in more spill code inserted may be that in
general, the nodes selected with the original criterion may be easier to allocate than nodes
selected with my criterion. It is possible that choosing nodes with the stricter criterion may
select nodes which can not be allocated during allocation, whereas nodes selected with the
other criterion can be allocated. In that case, we are taking a risk. The node selected by
my criterion will insert less spill code if spilled, but at a higher risk of failed allocation.
This may explain why some shaders performs better with the original criterion, whereas
in general, the new criterion performs better in terms of spilling and execution time.
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5.2.3 Subgraph Coloring

The results from using the Subgraph Coloring algorithm, while only taking disjoint inter-
ference into account are presented in Figure 5.6.

Figure 5.6: Results of extending Chaitin-Briggs with Subgraph
Coloring. Left bar is loads relative Chaitin-Briggs and right bar is
execution time relative to Chaitin-Briggs.

As seen in Figure 5.6, the benefits of only utilizing the disjoint interference part of Sub-
graph Coloring is insignificantly small, if any. If we however use the internal interference
as well, we get Figure 5.7.
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Figure 5.7: Results of extending Chaitin-Briggs with Subgraph
Coloring. Left bar is loads relative Chaitin-Briggs and right bar is
execution time relative to Chaitin-Briggs.

As we see, the improvement is now larger, with an average decreased execution time
of 0.5%. Combining the spill criterion and Subgraph Coloring results in the Figure 5.8.

Figure 5.8: Results of extending Chaitin-Briggs with Subgraph
Coloring. Left bar is loads relative Chaitin-Briggs and right bar is
execution time relative to Chaitin-Briggs.

As seen in Figure 5.8, the effect of combining the two methods decreased both time
spent on load cycles and execution time. This seems reasonable, since they both contribute
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to decreasing spill code insertion.
One reason why the Subgraph coloring algorithm does not improve performance by

much may lie in the fact that shaders are short programs, often not more than a hundred
clock cycles long. In such programs, there is generally not much spilling, so the effect of
subgraph coloring might not be as clear as in longer programs

5.3 Combined Scheduling and Register Al-
location

In this section, results gathered from the combined scheme are presented and discussed.

5.3.1 Top-down or Bottom-up
The effects under investigation was having several defining instructions and a single killing
instruction, and having a single defining instruction and several killing instructions. In-
vestigation revealed that 9.74% and 12.1% of all live ranges had the first and second char-
acteristic respectively. One might argue that due to this, there is no significant difference
between the two cases and as such it does not matter. It is however pivotal that we in-
vestigate how substantial these scenarios are. If we let one byte-cycle (abbreviated BC
henceforth) measure the amounts of bytes occupied each cycle, then we may measure how
many bytes are wasted in the vector register based on the different scenarios. It is here that
the two scenarios vastly differ. Data gathered when using the internal performance tests
revealed that on average 196 BC were wasted due to effect the first case, however 1064
BC were wasted due to second case, which is more than 5 times as much. For a combined
scheduling and register allocation scheme, it would thus be better to use top-to-bottom
scheduling to minimize the amount of register space wasted. The vast difference between
the two characteristics can be explained by the nature of shader programs. It is common
that vectors use all their components in dot products. Afterwards, it is possible that the x
and y component is used for map lookups, which would make it so that the z (and poten-
tially w component) would have died by the dot product, but the x and the y component
died by the texture lookup. Furthermore, it is common to use depth, which typically is a
single component of a vector, which might make all other components of the vector die
early.

5.3.2 Efficiency of a combined scheme
The results of using a combined scheme for single basic-block shaders are presented in
Figure 5.9.
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Figure 5.9: Comparison of how the combined scheme performs
for single basic-block shaders.

We see that in Figure 5.9, the compilation time decrease is fairly significant. The
register usage reduction is a bit misleading, since there are a couple identical shaders in
which the combined scheme performs better than graph coloring. Regardless, the two
methods are quite similar in terms of register usage.

Since the results presented in this thesis are based on only single basic-blocks, it is
likely that the relative compilation time is increased when using more basic blocks. This
has got to do with using a conventional allocation technique, such as linear scan or graph
coloring, for global variables, which is more time consuming. Furthermore, it is difficult to
decrease fragmentation in a combined scheme, since we do not exactly know the liveness
of the variables which are allocated. Additionally, we do not know which variables which
needs to be allocated shortly. We may force the scheduler to schedule variables which fit
into the registers and reduces fragmentation, however this might come at the cost of worse
scheduling.
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Chapter 6
Conclusions

In this chapter, the key insights of the thesis will be presented. Lastly, the future work will
be discussed.

6.1 Summary
As seen in the results, using linear scan for register allocation results in faster compilation
at the cost of reduced code quality compared to graph coloring. It is difficult to state that
one is superior to the other, since it is fairly situational. If the compiled code is only run
once, then it may be worth using linear scan. If the compiled code however is run many
times, then the increased code quality will result in better performance.

Using the true criterion of trivial colorability does not seem to offer any improvements,
despite the fact that it does findmore trivially colorable nodes than the generalized criterion
for trivial colorability. The reason for this might be in the characteristics of RIGs and that
the case where removing nodes with the true criterion for trivial colorability unblocks the
graph simply does not occur.

Generalizing the spill criterion seems to offer improvements to graph coloring. Less
spill code was inserted and in general, both the time spent on loading from memory and
execution time decreased.

Using subgraph coloring seems to be able to improve graph coloring by reducing the
amount of potential spill nodes which are actually spilled during allocation. The improve-
ment would come at the cost of longer compilation time. The increased compilation time
was not investigated in this thesis, since the result would be inaccurate regardless.

Using a combined scheme of register allocation and instruction schedulingmight prove
useful in a GPU compiler. Both the amount of registers used and compilation time was
reduced, however this can be misleading since the programs which were compiled only
consisted of single basic blocks. In order to make more accurate conclusions, we would
need to allow the combined scheme to be used for any program.
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6.2 Future Work
There has not been enough time to implement Subgraph coloring on a CPU compiler.
Since the rationale holds for both a GPU and CPU compiler, it would be very interesting
to investigate whether similar improvements can be found in CPU compilers.

Two of the most crucial elements to the combined scheduling and register allocation
scheme can be utilized by any register allocation technique for vector registers. These two
are the live range splitting for fragmentation and the preemptive solution to avoid fragmen-
tation. For a CPU, the choices we have when spilling are simply to either rematerialize
or load spilled instructions. In a GPU compiler, we also have the possibility to perform
split live ranges to ensure better packing of the variables if we fail to allocate a potential
spill node. In fact, when using VLIW instruction words, it is not impossible that we can
reallocate a register at a low cost. This may happen if there is an instruction word which
we can issue a move instruction, which is a very cheap way to avoid spilling. The scheme
presented to preemptively reduce amount of fragmentation could also be adjusted to be
used in the register allocator for linear scan or graph coloring. In theory, it would be even
better to do so during normal register allocation, since we then have access to all liveness
information.
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Optimering av användning av
registerminne för grafikprocessorer

POPULÄRVETENSKAPLIG SAMMANFATTNING Max Andersson

Register-allokering är en av de viktigaste delarna för optimerande kompilatorer. En
förbättring av register-allokering skulle leda till inte bara ökad prestanda, utan även
minskad energiförbrukning av datorer. I detta arbete har olika tekniker undersökts
för att utföra register-allokering, samt nya tekniker utvecklats för att hantera prob-
lem som uppstår för grafikprocessorer.

En processor är datorns beräkningsenhet och utför
alla instruktioner i ett program. En GPU är en pro-
cessor som hanterar visning av grafik på elektron-
iska enheter, bland annat på datorer och telefoner.
För att kunna visa grafiken snabbt är det skillnad
på en vanlig processor och en GPU. I en vanlig pro-
cessor finns det register som är kapabla att lagra ett
värde. Till skillnad från vanlig beräkning använder
grafik vektorer väldigt mycket. En vektor är flera
tal som tillsammans beskriver något, exempelvis kan
tre värden användas för att beskriva en position i
ett spel. Därför använder en GPU vektor-register,
vilket är register som är kapabla att lagra flera vär-
den. Det är då möjligt för processorn att exempelvis
göra beräkningen "addera värde ett och tre i regis-
ter 1 med värde två och fyra i register 2 och lagra
resultatet som värde ett och två i register 3".

Program skrivs normalt inte i maskinkod, som en
processor förstår, utan i högnivå-språk, vilket är språk
mer lika våra mänskliga språk. Programmen måste
då omvandlas till maskinkod, vilket sker i en pro-
cess som kallas kompilering. En nödvändig process
i kompilering är register-allokering, vilket tilldelar
varje variabel i ett program ett register att lagras

i. Dålig register-allokering leder till försämring av
prestanda. Att hitta en optimal allokering är väldigt
svårt, så därför används oftast ungefärliga metoder
för register-allokering. De två vanligaste metoderna
är Graph coloring och Linear scan.

I mitt arbete jämfördes hur graph coloring och
linear scan presterar med vektor-register. Vidare
utvecklades teori som generaliserar Chaitin-Briggs
algoritm, vilket är det vanligaste sättet att allok-
era med graph coloring. Slutligen undersöktes hur
möjligheten att kombinera register-allokering med
instruktion-schemaläggning, en tidigare optimering,
påverkas av vektor-register. Graph coloring gav 2%
snabbare kod, men 12% långsammare kompilering
relativt linear scan. Teknikerna jag utvecklat min-
skade tiden det tog att köra programmen med unge-
fär 0.5% i snitt. Tänk exempelvis på att ett data-
center förbrukar lika mycket energi som 180000 hus1.
Tiden som program körs kan löst översättas till elför-
brukning. Energin som sparas med teknikerna skulle
därför kunna försörja 1000 hus med el per datacenter
om samma resultat skulle uppnås där.

1http://science.time.com/2013/08/14/power-drain-the-
digital-cloud-is-using-more-energy-than-you-think/
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