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cpwater  Specific heat capacity of water (J/kg·K) 
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Image: Jaenecke Arkitekter AB), (b) The 

studied floor division in apartments. 



 

 



 

 

 

 

 



 

 

 

 

 

 

 

 



 

 

 

 

http://radsite.lbl.gov/radiance/




 





 

 

 



𝛥𝑉 = 𝑆𝑈𝑀(𝐴𝐵𝑆−) +  𝑆𝑈𝑀(𝐴𝐵𝑆+)                                                                                                             [1]
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𝛹

𝑈𝑤𝑖𝑛  =  
𝐴𝑔 · 𝑈𝑔 + 𝐴𝑓 ∙ 𝑈𝑓 + 𝐿𝑔 · 𝛹

𝛢𝑔 + 𝐴𝑓
                                                                                                         [2]

 







&

 





 



 

 

 

 

 

 

 

 



 

 

 

 

 







 



 

 



















², 29

² and 30 ² respectively. 









 



















 



















 















 

















 













 

 





 



 



 



 





 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 







 

̈ ̈











̧





̧





 





𝐸 =  𝜌𝑤𝑎𝑡𝑒𝑟 · 𝑉̇ · 𝑐𝑝 𝑤𝑎𝑡𝑒𝑟 · 𝛥𝑇 · 𝑡ℎ𝑜𝑡 𝑤𝑎𝑡𝑒𝑟                                                                                           [C1]
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ABSTRACT: This study assesses the trade-offs between the conflicting objectives of reducing heating 
intensity and increasing daylight utilization in the context of Swedish residential spaces, specifically for a 
north oriented bedroom. The optimization process is conducted within the visual programming environment 
of Grasshopper, where the simulation engines of Energyplus, Radiance and Daysim are interconnected and 
combined with the Strength Pareto Evolutionary Algorithm 2 (SPEA2). A fenestration algorithm is proposed 
that generates conventional window geometries in differing size and placement while considering the view 
towards the exterior environment. Iterations are assessed for their influence on annual measures of heating 
energy intensity, daylight illuminance deficit (ADID), electrical lighting use. Results indicated that diverse 
and efficient solutions can be generated by this method, allowing the design team to select among them 
based on higher-level / unquantifiable information. It was proven that the commonly used WWR parameter 
is not sufficient to assess the thermal and luminous needs of space. Different window configurations can 
yield different results depending on the actual position of the opening. 
Keywords: bi-objective optimization, heating energy, daylight autonomy 
 
 
 

INTRODUCTION  
This paper assesses the trade-offs between 

heating and daylighting when considering 
fenestration solutions for residential spaces. To 
facilitate this goal, a case study was chosen: the 
MKB Green House project in Augustenborg, 
Malmö (Fig. 1). In northern countries such as 
Sweden, with large seasonal variations in 
natural lighting, the ambient air temperature 
remains beneath the comfort zone for most of 
the year. It is therefore important to design 
fenestration with respect to both the daylight 
and heating needs of the occupants.  

Researchers in the context of energy codes 
and certification system requirements have 
mentioned this conflict between the heating and 
daylight objectives. Mardaljevic et al. (2009) 
argued in a seminal paper that practitioners 
encounter recommendations for target daylight 
factor (DF) values that result in over-glazed 
buildings with excessive solar gain and/or heat 
loss. The Heschong Mahone Group (2006) 

monitored six building spaces that did not 
achieve the LEED criteria  of an average 
daylight factor of 2 % (The U.S. Green Building 
Council, 2002). They found that even with high 
transmission glass, the window area would need 
to have been increased to such an extent that the 
spaces would not pass the energy code 
requirements.  
 

 
Figure 1: MKB Greenhouse residential building in 
Malmö, Sweden (Image: Jaenecke Arkitekter AB) 
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Due to the geometrical complexity of the 
parameters involved in fenestration studies, 
some researchers have utilized evolutionary-
based optimization algorithms to find a range of 
façade solutions that satisfy both energy and 
daylighting goals. The goal of this study is to 
simulate the effects of different fenestration 
alternatives on a single bedroom by means of 
generative design. The aim is not a single 
optimum window configuration for heating and 
daylight, but rather a diverse set of solutions. 
 
METHODOLOGY 

The MKB Greenhouse project includes three 
different apartment layouts of different 
orientations. For this paper, a north-facing 
bedroom of a mid-rise apartment was selected 
as the study object (Fig. 2). The north 
orientation was selected due to its lack of direct 
radiation, an attribute that highlights the conflict 
between the objectives of daylight and heating. 
The bedroom has an area of 14 m² and a volume 
of 36.56 m³. It is exposed on the north façade, 
and on part of the east façade as shown in Fig. 
2. The area defined by the points ABCD 
represents the available surface for the 
allocation of one window opening. The exposed 
walls are shaded in grey in Fig. 2, other surfaces 
are considered adiabatic. The definition of the 
script that generates different window designs is 
explained under the “Fenestration Definition” 
section further below. 

The simulation model was created in the 
Grasshopper environment, which is a visual 
programming language that is integrated in the 
Rhino3D modeller (Grasshopper, 2016; 
Rhinoceros, 2016)). The workflow included 
designing the geometry within Rhino 3D, 
importing it in Grasshopper and from there 
using Honeybee components to set the energy 
model, the daylight model and the electrical 
lighting model. Honeybee connects the visual 
programming environment of Grasshopper to 
the validated simulation engines - specifically, 
EnergyPlus, Radiance, Daysim and OpenStudio 
- which evaluate building energy consumption, 
comfort, and daylighting (Sadeghipour 

Roudsari M., Pak M., 2013). For every window 
alternative, Radiance calculates the average 
daylight autonomy with a benchmark of 150lx 
(DA150lx) for a nine-point grid, illustrated in 
Fig. 2. A Daysim simulation sums the hourly 
lighting energy use (kWh/m² annually) and 
finally Energyplus calculates the heating energy 
intensity of the bedroom (kWh/m² annually).  

 
 

 
Figure 2: Overall bedroom dimensions, the daylight 
analysis grid and the fenestration definition area ABCD. 
 
DAYLIGHT MODEL 

The overall Radiance settings for the 
daylight simulation are shown in Table 1. The 
DA150lx was calculated for an occupancy 
schedule of 00:00 – 07:00 and 22:00 – 00:00 
hours during weekdays and for 00:00 – 09:00 
and 23:00 – 00:00 hours during weekends, 
throughout the year.  

 
 

Table 1: Daylight model input data. 
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Relevant research has shown how time-
intensive Radiance simulations are (Larson, et 
al., 1998). As the window iterations for this 
paper reached a number of 864, the Radiance 
overall settings were selected in order to 
provide a medium level of accuracy (Dubois, 
2001). In addition, a transmissivity value of 
0,86 was calculated for a triple glazed unit that 
is represented in the model by a single glass 
surface. The daylight result was fed in the 
optimization algorithm component in values of 
f(d)t = 100 – f(DA150lx)t, where f(d)t is the 
hourly daylight illuminance deficit. It is the 
percentage of time when the daylight 
illuminance is lower than 150 lx, which is the 
inverse of the daylight autonomy DA150lx.  It 
was set this way because the evolutionary 
algorithm is optimizing by minimizing both 
objectives. This is due to the SPEA2 fitness 
assignment definition. The sum of all hourly 
deficits is the annual daylight illuminance 
deficit (ADID). The daylight simulation was 
connected to Daysim in order to generate the 
corresponding annual lighting energy intensity 
(kWh/m²) for every window alternative. The 
probability of the occupant to turn on or off the 
lighting was set according to the statistical 
analysis of the Lightswitch study (Reinhart, 
2004). 
 
ENERGY MODEL 

After the electrical lighting calculation, the 
energy simulation is conducted automatically 
using the Energyplus simulation engine. 
Lighting is calculated upsteam in the algorithm 
because it must be used as an input in the energy 
simulation for the sensible heat gains of the 
lamps. Table 2 shows the energy model input 
data. Heating is provided by the Ideal Air Loads 
System of Energyplus (US Department of 
Energy, 2015). In brief, the system is a demand 
controlled all-air system, where space heating is 
provided by air supplied in the zone to meet set 
ventilation requirements by the user. The 
algorithm was instructed to monitor the heating 
energy alone and couple it to the daylight 
illuminance deficit.   

Table 2: Energy model input data. 

 
 
 
FENESTRATION DEFINITION 

The geometry assigned to the 
aforementioned daylight and energy models 
consists of two parts: 1) a constant geometry 
that includes the floor, ceiling, door and all 
walls excluding the north-facing one and 2) the 
area of the north-facing wall within the 
boundary of ABCD of Fig. 2. The geometry of 
this wall alters, according to the window size 
and position that is generated by the algorithm. 
There are specific geometric constraints that 
define the window generation, as shown in Fig. 
3.The area is subdivided in a 0,5 x 0,5 m² grid, 
which defines squares that a window area can 
populate. The window width, height and sill 
height have therefore dimensions in integers of 
0,5 m. To reduce simulation time and to comply 
with realistic terms, the algorithm is ordered to 
bypass the cases where the window: 

 
1. Has an area of 0,5 x 0,5 m² or 0,5 x 1,0 m²  
2. Is a concave polygon 
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To account for the occupant view towards 
the exterior environment, a view-zone was set 
as shown in dashed lines in Fig. 3. Any 
generated window that does not intersect with 
this zone and lies altogether below or above is 
bypassed by the algorithm. In case a window 
design is a duplicate (one that was calculated in 
the past), the algorithm is instantly using the 
previous result. 

 
 

 
Figure 3: The window generation scheme in Area ABCD. 
 
 
 
 

According to Equation 1 the window U-
value, Uwin, is dependent on the total window 
area A1, areas of glazing Ag, and frame Af. Other 
factors include U-value for frame Uf  and 
glazing Ug, as well as the length Lg of the linear 
thermal bridge 𝛹 of the glazing perimeter. A 
constant frame width of 113 mm is adjusted 
parametrically for all window sizes. Calculating 
the U-value of the window according to this 
equation ensures that rectangular window 
geometries are given a lower U-value than 
square shaped windows. 

 

𝑈#$% 	= 𝐴) ∙
𝐴+ · 𝑈+ + 𝐴. ∙ 𝑈. + 𝐿+ · 𝛹

𝛢+ + 𝐴.
		 1  

 
 

To assess the trade-offs between the 
objectives of daylight and heating, results of 
DA150lx and heating energy intensity (kWh/m² 
annually) are supplied to the genetic algorithm 
for each valid window design. The genetic 
algorithm used is the Strength Pareto 
Evolutionary Algorithm, SPEA2 (Zitzler, et al., 
2001) through the Octopus component in 
Grasshopper. Fig. 4 shows the overall scheme 
of the developed algorithm. 
 
 
 

 
Figure 4: The scheme of the algorithm inside the visual programming environment of Grasshopper. 
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Table 3 shows the input data used for the 
optimization process. Mutation governs the 
search of the solution space as much as possible, 
whereas crossover controls the convergence of 
the objectives on the better solution. With a low 
mutation rate, different window iterations will 
not be generated to a full extent, posing a risk 
for the algorithm to converge to a local optimum 
solution. If the crossover rate is low, then 
designs will be generated but convergence 
towards optimum solutions will fail. The 
window design variables, that constitute the 
genes for the algorithm, were a) the sill height, 
b) the head height, c) the window width and d) 
the distance from the axis defined by points A, 
D in Fig. 3. Discrete values were used for all 
four genes, as shown in Table 4.   
 
Table 3: Octopus settings for genetic algorithm. 

 
 
Table 4: Octopus gene input variables. 

 
 
 
RESULTS AND DISCUSSIONS 

The Pareto front shown in black dots in Fig. 
5 indicates that there is no single optimum 
solution for the efficient trade-off between 
daylight and heating. Different configurations 
can be used, according to the choice of the 
design team. The advantage is that a decision 
can be made between only 17 out of 864 
solutions. The algorithm did not iterate between 
all these solutions, as the selection based on 
elitism decreased the necessary calculations. 
Fig. 5 shows that for smaller WWRs, the Pareto 
optimal solutions converge towards higher 
positions of the window. The window is placed 
more centrally to decrease ADID. It is also 
increased in size, always placed 1 m high above 

floor level, unless the WWR requires a lower 
sill height. 

 

 
Figure 5: The Pareto front and dominated solutions.  

 
Fig. 6 shows the electrical lighting use and 

the heating energy intensity for different ranges 
of WWRs. For WWRs between 10% - 40%, the 
electricity for lighting varies a lot, depending on 
the exact window position. The difference in the 
annual use for a WWR of 20-30% can reach 5 
kWh/m², which is nearly 30% of the total use of 
the worst-case solution. It is also evident that a 
WWR of 10 – 20% can admit more daylight 
than a WWR of 30 – 40%.  
 

 
Figure 6: The electrical lighting use and heating energy 
intensity for different ranges of WWR. 
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The heating intensity on the other hand 
presents a more straightforward trend. There is 
a clear correlation between the amount of 
glazing and the heating energy use, due to the 
significantly lower U-Value of the window. 
Furthermore, the room is oriented towards 
north, and increasing the window area does not 
provide enough solar gains to compensate for 
the low U-Value. For a balanced trade-off 
between heating and daylight, a WWR of 10 – 
30% is the optimum choice. 
 
CONCLUSION 

The optimization method presented in this 
paper generated a sufficient but at the same time 
limited amount of Pareto optimal solutions.  All 
solutions complied to user defined requirements 
of view and window geometries. Simulation 
data from both Pareto optimal and non Pareto 
optimal window geometries was analysed and 
showed that WWR is an insufficient prediction 
of daylight utilization. Centrally and highly 
placed windows performed better in terms of 
the optimization objectives. 
 In order for this fenestration technique to be 
more useful for practitioners in the design field, 
a simultaneous optimization of multiple 
windows and extended capabilities of the 
geometric filter could be implemented. Such a 
filter could facilitate interactive reprogramming 
by the user to comply with new ideas and design 
requirements of the design team. The 
computational burden of a reliable Pareto front 
population is bound to increase exponentially as 
more parameters are included. Further studies 
could look into ways of decreasing 
computational cost in multi window 
configurations without adversely affecting the 

solution space. Possible ways would be to 
reduce gene range, and to limit the impact of 
solution duplication by use of a simulation 
results database. 
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