
Symbolic Simplification Framework
in a Modelica Compiler

Johan Calvén, Zimon Kuhs

MASTER’S THESIS | LUND UNIVERSITY 2016

Department of Computer Science
Faculty of Engineering LTH

ISSN 1650-2884
LU-CS-EX 2016-25

Symbolic Simplification Framework

in a Modelica Compiler

at Lund University, Faculty of Engineering

Calvén, Johan

tna05jca@student.lu.se

Kuhs, Zimon

eng08zku@student.lu.se

20th June 2016

i

Abstract

The aim of the study is to develop a framework for symbolic simpli-
fication algorithms in the JModelica.org compiler. It should make the
procedure of adding new algorithms to the compiler easier. Instead of
the fixed order currently used in the compiler, algorithms will perform
their simplifications to the model equations iteratively. This opens up the
possibility for more simplifications being made, when all algorithms have
access to the constantly updated, reduced and simplified model equations.
We have implemented such a framework in the JModelica.org compiler
for the algorithms Alias Elimination and Variability Propagation. Also,
we have designed a canonical form for equations to alleviate the imple-
mentation of new algorithms to the framework. The framework improves
simulation time at the cost of increased compile time, whereas the effects
of the canonical form remain to be evaluated.

Keywords: Algorithm, compiler, expression, framework, JModel-
ica.org, Modelica, symbolic simplification, systems of equations, canonical
form, normal form.

ii

iii

Contributions

This thesis was performed by Johan Calvén and Zimon Kuhs and most of
the work was done in full collaboration. However, there are a few deviations to
this, which are listed below. While the listed items do not denote that all of
the work was performed by the student in question, they do indicate that the
majority of the work was performed by the student.

• Johan Calvén

– Most of the work concerning the two first canonicalization steps;
moving to one side (section 4.1), and removal of division (section
4.2).

– The rudimentary implementation of both the algorithm loops and
the worklist (section 3.1).

– The simplified version of the Variability Propagation algorithm (sec-
tion 3.2).

– Setting up tests and performing them (section 5.1). Data aggregation
was managed equally.

• Zimon Kuhs

– The work on the standardized AST (section 4.3).

– The re-ordering step in equation canonicalization (section 4.4).

– Implementation of id-use and variable updating.

– The simplified version of the Alias Elimination algorithm (section
3.2).

– Presentation of resulting test data (section 5.1). Data aggregation
was managed equally.

iv

Acknowledgements

We wish to extend our gratitude towards our supervisor at LTH, Niklas Fors,
as well as our supervisors at Modelon AB, Jon Sten and Jonathan Kämpe, and
also our examiner, Görel Hedin. We are thankful for the experience this thesis
has been.

v

Contents

1 Introduction 1
1.1 Problem description . 1
1.2 Related work . 2

1.2.1 Symbolic simplification algorithms 2
1.2.2 Symbolic simplification algorithm framework 2
1.2.3 Canonicalization of systems of equations 2

1.3 Results . 2

2 Background 4
2.1 Modelica . 4

2.1.1 Models . 4
2.1.2 Language . 4
2.1.3 Modelica Standard Library 6

2.2 JModelica.org . 7
2.2.1 Compiler steps . 7
2.2.2 Algorithms for simplifying systems of equations 7

2.3 Symbolic simplification algorithms 7
2.3.1 Alias Elimination . 8
2.3.2 Variability Propagation 8

2.4 Canonical form . 9
2.5 JastAdd . 10

2.5.1 Abstract grammar . 10
2.5.2 Aspects and attributes . 10

3 An algorithm framework 12
3.1 Symbolic transformation framework 12

3.1.1 Pre-requisite for loop termination 13
3.1.2 Adding an algorithm to the framework 13
3.1.3 The preRun() and postRun() methods 13

3.2 Simplified algorithms . 14
3.3 Modified algorithms . 14

4 A canonical form 15
4.1 Removal of left-hand side . 15
4.2 Division removal . 15
4.3 A standardized AST . 15
4.4 Ordering . 16

5 Evaluation 18
5.1 Framework results . 18

5.1.1 Compile time . 18
5.1.2 Simulation time . 21
5.1.3 Equation modifications 23
5.1.4 Difficulty of adding a new algorithm 26

5.2 Especially problematic models . 27
5.3 The canonical form . 27

vi

6 Discussion 29
6.1 Benefits and drawbacks of the framework 29

6.1.1 Benefits . 29
6.1.2 Drawbacks . 29

6.2 Future work . 30
6.2.1 Lifting some algorithm logic to framework level 30
6.2.2 Canonical form . 30
6.2.3 Common Subexpression Elimination 31
6.2.4 Modification of the current framework 31

7 Conclusion 32

vii

1 Introduction

The purpose of prototyping is to be able to test an early model of a, often
complex, physical system in a realistic setting before utilizing it in a larger
scale. Even so, the construction of even a handful of prototypes could be a
costly endeavour. Creating a digital prototype and performing simulations on
it can be a preferable approach, since doing so will likely lower the production
cost and time spent [15]. Modelica [19] is a modelling language capable of
describing complex systems on equation form. JModelica.org [18] is an open-
source platform for Modelica, maintained by Modelon AB, for simulation and
optimization of such complex physical systems.

In this thesis we have investigated two extensions to the JModelica.org com-
piler; an algorithm framework and translation of equations to canonical form.
The purpose of these extensions are to increase the amount of symbolic sim-
plifications made to produced code. This is done in order to reduce simulation
time, while keeping compilation time costs comparatively low.

1.1 Problem description
In JModelica.org several symbolic simplification algorithms are already in use,
however they are not utilized fully. Their goal is to reduce and simplify the
model equations as much as possible. Since algorithms are performed in a fixed
order in the compiler, one algorithm might introduce changes which an earlier
algorithm would have benefited from.

The number of algorithms is likely to increase with time as the developers
improve the compiler. Consequently JModelica.org would benefit from extension
with an algorithm framework, since this would facilitate the work of adding new
algorithms to it.

Canonical forms are a concern in the field of mathematics, but are also
equally relevant within the realm of computer science [1]. A canonical form for
equations minimizes the amount of possible representations of equations in a
program, possibly reducing algorithm complexity and implementation difficulty
[11]. As such, it is important to investigate to which extent the application of a
canonical form is possible in the JModelica.org compiler, so that the potential
benefits are used in further work. Introducing a canonical form to the equations,
would mean that management of them in JModelica.org would be easier. The
canonical form would translate systems of equations to a predictable form that
could facilitate algorithm implementation, such as e.g. Common Subexpression
Elimination (CSE).

1

1.2 Related work
As a basis for this thesis lies previous theses performed at Modelon AB.

1.2.1 Symbolic simplification algorithms

The JModelica.org compiler contains several algorithms for symbolic simplific-
ation, but this thesis focuses primarily on two of them. The first one is called
Alias Elimination (explained in Chapter 2.3.1) and is similar to the compiler
optimization algorithm Copy Propagation [5]. The second one is called Vari-
ability Propagation (explained in Chapter 2.3.2) and is a combination of the
two compiler optimization algorithms Constant Propagation [6] and Constant
Folding [7].

1.2.2 Symbolic simplification algorithm framework

Previous research at Modelon indicated that using algorithms in a fixed order
with a predefined number of iterations is sufficient for some programs, but might
not be for all of them [11]. To solve this problem, the algorithms should work to-
gether rather than separately and continue working until reaching a fix point. In
order for such an implementation to be easily extensible and modular, a frame-
work for algorithms is needed. Even for only two algorithms, re-implementing
them so that they alternate on a program should improve performance [14].
This would also, preferably, be possible without requiring detailed knowledge
of the other implemented algorithms when implementing a new algorithm, by
keeping the necessary logic at the framework level.

1.2.3 Canonicalization of systems of equations

Previous research at Modelon has also suggested that it would be possible to
improve the performance of the compiler’s algorithms with the application of a
canonical form for equations [10], [11]. A canonical form is sometimes referred
to as a normal form, i.e. the possible representation of equivalent equations
would be narrowed down (this is explained more thoroughly in Section 2.4). It
would make it easier to implement new algorithms for symbolic simplification,
since the number of possible expressions in equations would be decreased.

1.3 Results
A rudimentary framework for algorithms was implemented and was shown to
decrease simulation time (Section 5.1.2) at the cost of increased compile time
(Section 5.1.1) for Alias Elimination and Variability Propagation. As the com-
plexity of combining the two algorithms was higher than expected, there was
not enough time to investigate how difficult it is to make further algorithm
additions to the framework, and the difficulty of integrating the two suggests
that additions of other algorithms could be difficult. However, as a base for the
framework is implemented, it should be possible to extend and modify it so that
it is more accessible to developers.

Due to time constraints and prioritization of the framework, the implemented
algorithm that transforms equations to canonical form was never evaluated. We
can see that it can transform equations to the specified form, but the effects of it

2

on performance are still unknown, as the algorithm does not function properly
within the framework.

3

2 Background

In this chapter we will describe some of the concepts required to understand
the extensions to the JModelica.org compiler performed in this theses. A brief
introduction to Modelica will be given, as well as an illustration of how JModel-
ica.org and its compiler operates. The algorithms we are trying to improve are
explained, followed by the concepts of the canonical form. Finally, the compiler
construction framework JastAdd [4] is described briefly.

2.1 Modelica
Modelica is a declarative equation-based language for modelling and simulation
of different types of systems, e.g. automated, electronic, mechanical or thermal.
It uses features similar to ones used in object-oriented programming, e.g. us-
ing classes to represent systems or sub-systems. Models are represented with
systems of equations (see Figure 1), rather than with assignments.

x = 2y − z
y = 2z

z = 1

Figure 1: Variables in Modelica are described in relation to each other.

2.1.1 Models

A model is a defined structure much like a class in e.g. Java programs. It
can contain variables, equations, references to other models (components, see
Section 2.1.2 below), functions, etc. Its purpose is to describe a physical system.

2.1.2 Language

Figure 2 shows an example Modelica model, which describes a car’s movement
across a plane when a force is applied to it. The results of the model simulation
are seen in Figure 3.

To give a brief introduction to the Modelica language, some of its key parts
are described next:

Components A component is an instance of a model, meaning that in cre-
ating a model we can re-use several instances as components or sub-models of

4

1 model CarMovement
2 parameter Real mass = 1500 "Weight (kg)";
3 parameter Real force = 2000 "Applied force (N)";
4 Real pos "Car ’s position (m)";
5 Real velocity "The car ’s velocity (m/s)";
6 equation
7 velocity = der(pos);
8 force = mass * der(velocity);
9 end CarMovement;

Figure 2: Example of a Modelica model. The der(x) operator denotes the time
derivative of the argument x.

Figure 3: Simulation results for the CarMovement model.

5

other models. This is similar to how classes in Java can have references to
instances of other classes.

Equations Unlike most programming languages, the equals sign in Modelica
describes equality rather than assignment. This means that the left-hand side
and the right-hand side of an equation are equal, which must hold true through-
out the entire simulation. This is called using declarative programming rather
than imperative, since we only describe the relation between variables rather
than define how they are calculated.

Functions While equations are the focus for Modelica, true imperative pro-
gramming is sometimes more practical or even necessary. A function allows the
programmer to write code imperatively, with assignments (Modelica uses the
:= operator) and statements. An example is given in Figure 4.

1 function maxValue "Return maximum of two values"
2 input Real value1;
3 input Real value2;
4 output Real result;
5 algorithm
6 if value1 > value2 then
7 result := value1;
8 else
9 result := value2;

10 end maxValue;

Figure 4: An example of a Modelica function.

Simulation Simulation of a model means collecting data about how the model
responds for different sets of input over a period of time. When simulating a
Modelica model, a developer can see the behaviour of the model from generated
simulation data (see Figure 3). This is done in order to get an idea about
how the system would behave in real situations, which is the central purpose of
Modelica.

2.1.3 Modelica Standard Library

The Modelica Standard Library (MSL) [17] was created by the Modelica As-
sociation [19], in order to avoid re-creating components or models that many
developers would like to use. It contains model components and standard com-
ponent interfaces, which are used in models for simulation in a wide variety of
domains. E.g. something as simple as a capacitor or a valve might be part of
just about any modelled system. Naturally, this also applies to more complex
constructs, such as low- or high-pass filters.

6

2.2 JModelica.org
JModelica.org is a platform for simulation of intricate dynamic systems and is
based on Modelica. The platform is written in C, C++, Java, and Python, and
is open-source.

2.2.1 Compiler steps

The compiler will go through a couple of steps in order to transform Modelica
code into runnable code. During this process, three different abstract syntax
trees (AST) will be created.

The files are parsed and checked if syntactically correct. The parser creates
an AST called source AST which represents the parsed program. The source
AST is then unfolded when the chosen model is instantiated. All of its compon-
ents are also populated with the content that belongs to the component’s type
in a transitive manner. The resulting AST that is created is called the instance
AST. This process is mostly run by the semantic error checking. Most of the
error checking and analysis is performed on the instance AST.

The last AST created is called the flat AST. Since a model can utilize other
models via connections, these other models have their own sets of equations.
Flattening means that the source AST is transformed to a form where the entire
program consists of one system of equations rather than several. It is analogous
to moving all logic behind an entire Java program, all classes, methods and
data, into a singular class where all logic is contained. This is done in order
to improve execution time through removal of call overhead [12]. On the flat
AST different transformations are made to be able to simulate the system. The
transformed flat AST is used to generate C code.

2.2.2 Algorithms for simplifying systems of equations

The JModelica.org compiler features a collection of algorithms which analyse
and improve the flat AST, so that the simulation and remaining compilation
steps will be faster. These include e.g. Alias Elimination (explained in Section
2.3.1) and Variability Propagation (explained in Section 2.3.2).

Simplification of systems of equations
Using the flat AST it is time to perform simplification on the equation system.
This means analysing the structure of individual equations with the purpose of
finding and eliminating redundancy, as well as finding areas of improvement for
the equations. Improvements that will decrease simulation time of the model
while still retaining its behaviour.

Consider Figure 5a where we know at compile time, that the variables a and
b are literal integers. This means that if we replace the usages of a and b in
the equation on line 8 with the literals, we can immediately evaluate the value
of c at compile time. This yields the model in Figure 5b, which requires less
memory and fewer clock cycles to process.

2.3 Symbolic simplification algorithms
Following sections gives a brief explanation of how Alias Elimination and Vari-
ability Propagation works.

7

1 model crude
2 Real a;
3 Real b;
4 Real c;
5 equation
6 a = 1;
7 b = 2;
8 c = a + b;
9 end crude;

(a)

⇒

1 model improved
2 constant Real a = 1;
3 constant Real b = 2;
4 constant Real c = 3;
5 end improved;

(b)

Figure 5: Result of simplification algorithms applied on a Modelica model.

2.3.1 Alias Elimination

For an equation on the form a = b, we have two variables that are equivalent.
Alias Elimination (AE), similar to Copy Propagation [5], processes all equations
in order to find such expressions. It then replaces all usages of such variables
with one of them.

Consider the system of equations in Figure 6a, where there is an easily
identifiable alias. If AE chooses a over b, the system will instead have the form
given in system of equations in Figure 6b. The choice of variable does not
matter for the correctness of the modified model. It can be chosen according
some heuristic, such as the greatest number of occurrences in the model.

a = b

c = d

x = b+ c− d
y = a+ 2 ∗ b− c+ e

z = e+ x

a = 1

b = 3

(a)

⇒

x = a+ c− c
y = a+ 2 ∗ a− c+ e

z = e+ x

a = 1

b = 3

(b)

Figure 6: AE replaces the variables b and d with the variables a and c, respect-
ively.

Note that it is possible in the system of equations in Figure 6b that further
simplifications can be made by other algorithms, as we will see in Section 2.3.2.

2.3.2 Variability Propagation

The variability of an equation can sometimes be lowered during compile time.
There are four levels of variability [2], which, ordered from top to bottom, are
continues-time, discrete-time, parameter and constant. The constant variabil-
ity means that the value of the variable in an equation is always fixed. For

8

an equation on the form a = 1, the variable a can only take the value of 1.
Variability Propagation (VP), a combination of Constant Propagation [6] and
Constant Folding [7], finds such equations, changes the variable into a constant,
removes the constant equation and then propagates all usages of the constant
to its numerical value in other equations. Constant values in equations are
also computed during compile time to simplify the equations even further. An
equation on the form x = 1 + 2 + 3 + a will then be simplified to x = 6 + a.

Continuing with the system of equations example in Figure 6b, VP will first
find a = 1 and c = 3. This will lead to the system of equations in Figure 7b,
which is further reduced to the system of equations in Figure 7c. Here, AE
would have been able to continue simplifying the alias equation y = e if being
performed again. It is possible to run algorithms several times, however, for
large systems this might be costly in terms of compile time.

x = a+ c− c
y = a+ 2 ∗ a− c+ e

z = e+ x

a = 1

c = 3

(a)

⇒

x = 1 + 3− 3

y = 1 + 2 ∗ 1− 3 + e

z = e+ x

(b)

⇒

{
y = e

z = e+ 1

(c)

Figure 7: VP finds and lowers the two variables a and c to constants and their
values are propagated in (b). In (c), the same has happened to x and the
remaining equations have been folded.

2.4 Canonical form
An equation can be represented in many different ways, e.g. Equation (1) and
Equation (2).

x = a ∗ b ∗ c+ a ∗ b ∗ d (1)

x = (b ∗ (c+ d) ∗ a) (2)

The equations are semantically equivalent [3]. This means that for every
combination of values for a, b, c and x in one equation the other equation is also
satisfied. They are, however, lexically different. The purpose of maintaining a
canonical form (also referred to as a normal form) for equations is to decrease
the number of possible representations for them. This means that to canonize
an equation it would have to be transformed towards a normal form, and that
a semantically equivalent equation undergoing the same transformation would
come close to the same representation (ideally the same).

In our canonical form we move all operands to one side, remove divisions,
expand multiplications1, reorder variables according to a set of rules, and trans-

1The aim is to remove the need for parentheses. E.g. (a+ b)(c+ d) → ac+ ad+ bc+ bd

9

late negations and subtractions to multiplications with the literal −1. Both the
example equations would then have the form illustrated in Equation (3).

0 = a ∗ b ∗ c+ a ∗ b ∗ d+ x ∗ (−1) (3)

When two equations are lexically equivalent they are easy to compare. It
would be difficult for a program to identify the two original equations as equi-
valent, but with both equations on the same form it is only required to iterate
through all the characters in the respective strings2.

2.5 JastAdd
The JModelica.org compiler has been developed in the compiler construction
framework JastAdd. JastAdd is Java based and uses object-orientation, static
aspects and declarative computations to make the compiler easily extensible [4].
By adding new modules, called aspects, it is possible to extend the behaviour
of already existing classes without editing the classes directly. JastAdd also
uses attributes, data attached to AST nodes described in relation to methods or
other attributes.

When JastAdd generates Java code all behaviour related directly to a class is
weaved together into the same class. This means that attributes and methods
that belong in a class can be specified outside of it, where it may be more
contextually relevant.

2.5.1 Abstract grammar

The structure of an abstract syntax tree is defined by an abstract grammar. E.g,
Equation (4) and Equation (5) using infix and prefix notation respectively, are
semantically equivalent but lexically different. Abstract grammar is a viewpoint
which concerns itself with what parts of a language expression are actually
semantically significant, in this case, the fact that we have a summation of two
operands.

x := 1 + 2 (4)

x := + 1 2 (5)

2.5.2 Aspects and attributes

As was mentioned in Section 2.5 it is possible to define behaviour for a class
outside of its class using aspects, which are later weaved together when generat-
ing the Java code. See for example Figure 8, where the aspects can be declared
in separate files, but the resulting Java code will assemble the methods a() and
b() in the same class, A.

2An added benefit is that strings of non-equal length are immediately identified as non-
equivalent.

10

1 aspect A {
2 public void A.a() { ... }
3 }
4
5 aspect B {
6 public int A.b() { ... }
7 }

Figure 8: Example of two JastAdd attributes.

Weaving assembles all attributes and methods declared for A into the class
declaration of A. This means that extending a node type with functionality
requires only the addition of a new aspect, and disabling of specific functionality
requires only the removal of pertinent aspects.

11

3 An algorithm framework

This chapter describes the symbolic transformation framework and its basic
functionality. The two algorithms Alias Elimination and Variability Propagation
have been implemented in the framework.

3.1 Symbolic transformation framework
The transformation framework processes one equation at a time from the system
of equations, using the implemented algorithms. In order to keep track of what
equations have yet to be processed, a worklist (instance of a class WorkList)
of equations is maintained. Should an algorithm find that it can modify the
system using the information in the currently processed equation, it will update
the worklist with all equations it has modified.

In addition to this, a list of symbolic simplification algorithms is maintained,
and the algorithms therein are run one by one on the current equation, referred
to as the working equation (see Figure 9). The loop structure in Figure 9 is
explained below in Section 3.1.2.

1 List worklist <- getAllEquations ()
2 List listOfAlgorithms <- addAlgorithms ()
3
4 preConfiguration(listOfAlgorithms)
5
6 WHILE worklist has equations
7 workingEquation <- worklist.poll()
8 FOR each algorithm in listOfAlgorithms
9 IF algorithm.run(workingEquation) THEN

10 break
11 ENDIF
12 ENDFOR
13 ENDWHILE
14
15 postConfiguration(listOfAlgorithms)

Figure 9: Pseudo code of how the framework runs each algorithm in turn. The
algorithms update the worklist with the equations they modify. The methods
preConfiguration and postConfiguration handles the algorithms that needs to
perform work before and after the loops.

The loop continues until the worklist is empty. This means that as long

12

as modifications are performed, at least one repetition of all algorithms in the
worklist will be performed.

This equation-oriented procedure has an advantage over having each al-
gorithm work on the entire system of equations each time. If the latter pro-
cedure was used, each algorithm would need to process all equation each time
it executed, resulting in unnecessary operations. With the equation-oriented
procedure, an equation will only be revisited if it is modified.

3.1.1 Pre-requisite for loop termination

For the algorithm loop to terminate, it is required for each algorithm used
in the framework to always perform some form of reduction of the system of
equations. As the loop in itself always reduces the worklist unless a change is
performed, the requirement can be further narrowed to the following: for the
framework to terminate, any changes performed by the algorithms used in it
must be reductions of the system in some form.

3.1.2 Adding an algorithm to the framework

To add an algorithm to the framework, the algorithm needs to extend an ab-
stract class SymbolicTransformationAlgorithm that requires implementation
of two methods. The first method is isUsed() that should check if the al-
gorithm is used by the compiler3 and if so be added to the algorithm list in
the framework. The second method is run() that takes an equation as argu-
ment and runs the algorithm process. The run method returns a boolean value,
true if the algorithm succeeds in making any changes and false otherwise. The
reason for this is that if the algorithm succeeds, it might remove the current
working equation (this is the case for both AE and VP). If the run method
returns true, the framework will begin anew and poll the next equation in the
worklist. The algorithm list will then start over with the first algorithm in the
list. If run() returns false, the next algorithm will process the current working
equation. This main loop will terminate when all algorithms have processed the
working equation and there are no additional equations to poll from the work
list.

3.1.3 The preRun() and postRun() methods

While not necessary for the algorithm to function correctly inside the framework,
it can, depending on its character, need to use the preRun() and postRun()
methods. The method PreRun() perform modifications before the framework’s
loops (the nested loops in Figure 9, line 6), and an algorithm can thus process
the set of equations without interference from the other algorithms if needed.
Analogously, postRun() will process the set of equations after the loops. This
is illustrated in Figure 9, where the method preConfiguration() will call the
preRun method of each algorithm and the method preConfiguration() will
call the postRun method of each algorithm. The order in which algorithms
process equations in the loops is maintained for the pre- and postrun meth-
ods; e.g. if AE processes an equation γ first, and VP then processes γ, AE’s

3The compiler uses settings flags for using different features in it. Its algorithm do as well,
and the framework refers to these flags to see if it should use the algorithms.

13

preRun() method is run before VP’s, and the same order applies for postRun().
These methods are not required to be implemented by algorithms extending
SymbolicTransformationAlgorithm.

A possible addition to the framework would be to enable re-ordering of the
algorithms’ preRun() and postRun() methods, but for the sake of simplifying
the rest of the framework implementation, this was never attempted.

3.2 Simplified algorithms
As a first step, two simpler versions of the two algorithms AE and VP were
implemented. This was done in order to explore the framework solution without
involving the full complexity of the two existing algorithms.

The simpler AE algorithm was capable of eliminating direct alias equations
(as opposed to being able to manage e.g. negative alias equations) and con-
sequently update the remaining equations to reflect this. The simpler VP al-
gorithm was capable of propagating constants from constant-expression equa-
tions (e.g. x = 1), replacing variable uses in other equations. It could also
identify parameters and fold constants.

3.3 Modified algorithms
From the experience of the simpler algorithms, we moved on to implement the
versions of AE and VP used in the JModelica.org compiler. The functionality
of AE is explained in Section 2.3.1 and VP in Section 2.3.2. Both algorithms
were modified to work on a single equation, compared to originally having ac-
cess to the set of all equations. One of the major changes to the algorithms,
since they no longer had exclusive access to the set of all equations, was how
the modified equations were updated. Before, the algorithms could perform a
rewrite of the flat AST at the end of execution, when being done simplifying
the equations. Rewrites are costly in compile time and inside the framework,
the algorithms need to access constantly updated equations. Instead, the flat
AST is mutated at the nodes where changes have taken place. Rewrites will
only take place when the iteration of the worklist has ended and there are
no more equations to process. Extending AE and VP with the abstract class
SymbolicTransformationAlgorithm meant to work out which parts should be
in either the method run() or the method postRun().

14

4 A canonical form

A canonical form for equations denotes a normalized way of expressing an equa-
tion. As described in Section 2.4, it is possible for two semantically equivalent
equations to have differing lexical representations. A transformation to canon-
ical form reduces the amount of possible lexical representations. According to
Richard’s theorem [8] it is impossible to construct a canonical form with which
two semantically equivalent expressions are also lexically equivalent.

Deciding on a canonical form for equations was a continuous process. Begin-
ning with one rule, moving all operands and operations to one side, new rules
were established from discussion with the supervisors after assessing the effi-
ciency of the previous step. This procedure was chosen since the canonical form
was meant to be tailored to the needs of JModelica.org rather than considering
using a present one, such as the one used in ModSimPack [16].

4.1 Removal of left-hand side
Each equation, being on the form f(x) = g(x), is transformed by subtraction
with f(x) to 0 = g(x) − f(x). This means that we do not need to gather
information about operations and operands from both the left-hand side and
right-hand side, resulting in fewer collections to manage in the compiler.

4.2 Division removal
In order to simplify equations, all division expressions are translated into multi-
plication by multiplying all operands with their greatest common divisor. This
means that e.g. a∗b

c + c∗a
d∗c −

d
a+b would be multiplied by c∗d∗(a+b), translating

it into a ∗ b ∗ d ∗ (a+ b) + c ∗ a ∗ (a+ b)− d ∗ c ∗ d. This removes one operation,
division, entirely from equations. As such, there are fewer types of nodes to
consider in the AST.

4.3 A standardized AST
In order for a model to be in predictable form, the AST representing the program
should use an as simple structure as possible. The chosen structure for the AST
was to use only additions and multiplications. A negated expression and a
subtraction is represented with a multiplication with the literal −1

In addition, multiplications are "expanded" as thoroughly as possible, e.g.,
(a+b)(c+d)→ ac+ad+bc+bd. This means that the AST will be transformed
to have additions above the multiplications in the tree, creating what we refer
to as an add-mul tree (see Figure 10).

15

Equation (6) shows a non-canonicalized equation and in Equation (7) the
multiplications have been expanded and the resulting subtractions have been
translated to multiplications with −1.

Figure 10: The canonical form transforms the AST to keep additions at the
upper nodes and multiplications at the lower. All subtractions and divisions are
removed.

x = a− b · (1− c) (6)

x = a+ bc+ b · (−1) (7)

4.4 Ordering
In order for semantically equivalent equations to be able to become lexically
equivalent, expressions must be ordered according to some rules. For example
a + b can also be written as b + a, so both variables must be arranged in a
predictable manner. At this algorithm step, only additions, multiplications,
variables, and literals can occur in an equation, why the respective ordering
rules only govern those types of expressions.

Below, individual ordering priority for additions, multiplications, variables
and literals is listed.

1. Positive expressions are ordered before negative expressions.
(0 = −a+ b) ⇒ (0 = b+ a · (−1))

2. Multiplication expressions are ordered before variables.
(0 = a+ bc) ⇒ (0 = bc+ a)

3. Variables are ordered before literals.
(0 = 1 + a) ⇒ (0 = a+ 1)

4. Variables contained within a multiplication are ordered lexically.
(0 = cadb) ⇒ (0 = abcd)

5. Multiplication expressions with equal sign are ordered lexically according
to their first non-equal variable4.
(0 = abde+ abce) ⇒ (0 = abce+ abde)

16

6. Variables outside a multiplication expression are ordered as they would be
in a dictionary.
(0 = varNameMore+ varName) ⇒ (0 = varName+ varNameMore)

7. Literals are ordered numerically in descending order.
(0 = 45 + 123) ⇒ (0 = 123 + 45)

As an example, consider Equation (8) and Equation (9), where the first
equation is unordered and the second one is ordered.

0 = - ab * aa + c + d - e - f; (8)

0 = c + d + aa * ab * (-1) + e * (-1) + f * (-1); (9)

4Due to compiler simplifications performed before the framework is executed, equations on
the form C1f(α) +C2f(α)...+Cnf(α) for constants Ci and a multiplication expression f(α)
can not occur at this point. They are added together, producing (C1 + C2 + ...+ Cn)f(α)

17

5 Evaluation

In this chapter we present a comparison between the compiler’s performance
when using the framework and not using the framework. We also evaluate the
effect of the framework on the resulting models simulation time. Furthermore,
we briefly discuss the canonical form.

In order to test the framework for numerous models in a realistic setting a
benchmark is required. The MSL (Modelica Standard Library, see section 2.1.2)
was used for this, due to its variety in both kinds of systems and the scenarios
covered by the test models. MSL was used in order to measure both compile
time and simulation time, but also to verify correctness.

5.1 Framework results
In order to gauge the effectiveness of the framework, we use several different
metrics for it when evaluating the AE and VP algorithms. We gather informa-
tion about the compilation time for the models, as well as the simulation time
when running the resulting code. In addition, we look at how many times the
algorithm processes equations; the framework’s purpose is to use algorithms
until a fix point is reached, which can be costly in terms of compilation time.
The corresponding results for the original implementation, i.e. the compiler ver-
sion when the framework was first created, are consequently compared to these
metrics.

The eleven models that were used in the end are listed in Table 1. They are
ordered according to average compile time, with the lowest time being listed
first. For brevity we refer to the different models by their last name in the
remainder of the report, Math.Nonlinear.Examples.FirstExample e.g. will
be referred to simply as FirstExample.

We did not have enough time run all models in MSL (366 models), so we
decided to limit the number of models to a sample of 15. The smaller sample
consisted of five small, five medium and five large models. Unfortunately two of
these did not compile for the original JModelica.org compiler and another two
did not compile when adding the framework extension to the compiler. This
meant that we ended up with eleven models for comparing the results. In Section
5.2, an explanation to why we had more compile errors with the framework is
given.

5.1.1 Compile time

There is not much room for increasing compile time in JModelica.org since
it already suffers from relatively slow compile time, as it compiles very large
models and performs a lot of optimizations on them. This puts pressure on the

18

Model Names
Math.Nonlinear.Examples.quadratureLobatto3

StateGraph.Examples.FirstExample

Media.Examples.SolveOneNonlinearEquation.Inverse_sine

Thermal.HeatTransfer.Examples.TwoMasses

Electrical.PowerConverters.Examples.ACDC.RectifierBridge2Pulse.ThyristorBridge2Pulse_RL

Electrical.QuasiStationary.SinglePhase.Examples.ParallelResonance

Electrical.Machines.Examples.DCMachines.DCPM_Start

Magnetic.FluxTubes.Examples.Hysteresis.SinglePhaseTransformerWithHysteresis2

Mechanics.MultiBody.Examples.Loops.EngineV6

Media.Examples.R134a.R134a1

Media.Examples.R134a.R134a2

Table 1: The eleven models used to test the framework.

framework extension to keep the compile time comparably close to the original
compiler. Having more simplifications being made to a model should, in theory,
increase the time at this step of the compiler. At the same time, later steps
in the compiler could be given less work to do, leading to the overall compile
time being nearly unaffected or even reduced. We ran 50 compilations of each
of the eleven models and calculated the average time. As can be seen in Table
2 the changes in compile time are noticeable. The average time was increased
by 9.09%. Difference denotes the compilation time difference between using
the framework and not. Especially for the already time-consuming models (i.e.
EngineV6, R134a1, and R134a2) the increase in compile time was significant.

Model Difference (s) Percentage Change
quadratureLobatto3 0.09172 +2,79%
FirstExample 0.17354 +5,11%
Inverse_sine 0.06966 +2,04%
TwoMasses 0.0907 +2,6%
ThyristorBridge2Pulse_RL 0.45538 +7,50%
ParallelResonance 0.34404 +5,5%
DCPM_Start 0.25242 +4,02%
SinglePhaseTransformerWithHysteresis2 0.10404 +1,62%
EngineV6 12.01552 +24,9%
R134a1 38.528 +26,24%
R134a2 37.80302 +25,64%

Table 2: Comparison of compile time between using the framework and not.

If we use the data in Table 2 to view percentage as a function of the original
compile time we can illustrate this as a graph (refer to Figure 11). Using the
original compile time we get a sense of how complex it is for the compiler to
compile the model. We see that as the time of compiling a model increases, so
does the percentage increase rapidly. This is especially evident for the bigger
models, where the percentage is high relative to the smaller ones.

One must, however, consider how statistically certain the increase in compil-
ation time is. Because of this we calculated the confidence interval of the tests

19

Figure 11: Comparison of compile time between using the framework and not.
The x-axis show the compile time using the framework. The y-axis show the
percent change in compile time after using the framework compared to no using
it.

20

for each model at a 95% confidence level, as can be seen in Table 3. There are
no overlaps between respective confidence intervals, which means that we can
be certain with 95% confidence of the increase in compile time.

Model Without Framework With Framework Overlap
quadratureLobatto3 (3273.2, 3300.6) (3364.7, 3392.6) No
FirstExample (3377.1, 3410.8) (3550.5, 3584.5) No
Inverse_sine (3399.3, 3422.9) (3465.4, 3496.1) No
TwoMasses (3416.3, 3446.4) (3505.1, 3539.0) No
ThyristorBridge2Pulse_RL (6035.1, 6102.9) (6469.9, 6578.8) No
ParallelResonance (6195.6, 6273.4) (6528.1, 6629.0) No
DCPM_Start (6251.5, 6313.5) (6495.4, 6574.4) No
SinglePhaseTransformerWithHysteresis2 (6368.5, 6440.5) (6477.8, 6539.3) No
EngineV6 (48157.0, 48427.8) (60089.1, 60526.7) No
R134a1 (146503.9, 147192.1) (184828.4, 185923.6) No
R134a2 (147135.3, 147727.7) (184808.0, 185661.0) No

Table 3: Confidence intervals for compilation time for not using the framework
and using the framework.

5.1.2 Simulation time

Improving the simulation time is of real interest. It would show that the frame-
work increase the efficiency of the algorithms. To investigate this we ran 50
simulations for each of the eleven models used when investigating differences in
compile time. The average time was calculated. As can be seen in the compar-
ison of simulation times in Table 4, the difference between using the framework
and not is minuscule if anything. However, the framework decreases overall
simulation time by roughly 1.09%.

Model Difference (s) Percentage Change
quadratureLobatto3 -0.0004 -1,5%
FirstExample -0.0018 -6,3%
Inverse_sine -0.0005 -2,7%
TwoMasses 0.0001 +0,5%
ThyristorBridge2Pulse_RL 0.0006 +0,2%
ParallelResonance -0.0004 -1,2%
DCPM_Start -0.0006 -0,6%
SinglePhaseTransformerWithHysteresis2 -0.1614 -3,6%
EngineV6 -0.6580 -1,0%
R134a1 0.0003 +0,1%
R134a2 0.0473 +4,3%

Table 4: The difference in simulation time using the framework.

If we investigate the percentage change as a function of the original simula-
tion time we get the graph in Figure 12. Judging from this graph, there seems to
be little to no correlation between simulation time and any performance effects
from the framework.

As with compile time, we must consider the confidence of the generated data.
Therefore the confidence interval was calculated for simulation time as well (also
at a 95% confidence level), as is illustrated in Table 5. As can be seen there is

21

Figure 12: Comparison of simulation time between using the framework and
not. The x-axis show the simulation time using the framework. The y-axis
show the percent change in simulation time using the framework compared to
not using it.

22

quite a lot of overlap between the respective confidence intervals. This means
that even though the simulation time has improved, it is with some uncertainty.

Model Without Framework With Framework Overlap
quadratureLobatto3 (0,018, 0,034) (0,018, 0,033) Yes
FirstExample (0,014, 0,043) (0,013, 0,041) Yes
Inverse_sine (0,006, 0,031) (0,006, 0,030) Yes
TwoMasses (0,011, 0,027) (0,011, 0,027) Yes
ThyristorBridge2Pulse_RL (0,385, 0,408) (0,385, 0,409) Yes
ParallelResonance (0,022, 0,043) (0,021, 0,043) Yes
DCPM_Start (0,087, 0,105) (0,086, 0,105) Yes
SinglePhaseTransformerWithHysteresis2 (4,490, 4,518) (4,321, 4,365) No
EngineV6 (63,764, 63,955) (63,100, 63,303) No
R134a1 (0,513, 0,532) (0,515, 0,531) Yes
R134a2 (1,091, 1,108) (1,139, 1,155) No

Table 5: Confidence intervals for simulation time for not using the framework
and using the framework.

5.1.3 Equation modifications

The number of times an algorithm modifies an equation provides us with a sense
for how much added work the framework performs. Without the framework, AE
will run twice and on each run it will visit the equations only once. VP will only
run once, but it continues executing, in a similar way as the framework, until
reaching a fix point where no more simplifications are available. This means
that it will at least visit all equations once.

The framework will execute until both algorithms are entirely finished with
a model. Even though this still provides a finite amount of modifications, equa-
tions with many terms may be possible to simplify numerous times by different
algorithms. This is because the algorithms re-insert any equations that are
changed by them into the worklist, and the algorithms could find new changes
to perform after one another .

For the framework, Figure 13 and Figure 14 displays the number of times
an equation was modified for a model. Since counting equation modifica-
tions is fast relative to measuring compile time or simulation time, it was per-
formed for all MSL models the framework could run. With a mean of 123.16
modifications for AE and 183.41 for VP, the framework performs on average
124.06 + 221.35 = 345.41 modifications for a model. This is in contrast to how
the original implementation performs; 67.17+248.98 = 316.15. This means that
the framework enables on average 9.26% more modifications.

As expected with the framework, more changes are performed than without
it. While the end result may be relatively modest (9.26%), it remains to be
seen if compilation time is significantly increased as a result of the additional
modifications.

The ratio of success is also of interest, seeing as while the framework will find
more modifications to perform, it will also process a great deal more equations.
Figure 15 and Figure 16 below list the ratio modifications

visits where visits is the
number of times an algorithm processed an equation. It is notable but not
unexpected that the success rate has been lowered by the framework. An integral
part of the framework is to re-asses equations after they have been modified.

23

Figure 13: AE modifications for the two implementations.

Figure 14: VP modifications for the two implementations.

24

This is never done in the original implementation.

Figure 15: Success ratio of the two implementations for AE.

Figure 16: Success ratio of the two implementations for VP.

25

5.1.4 Difficulty of adding a new algorithm

While it is difficult to predict how complicated the addition of a new algorithm
can be (it depends in part on the algorithm in question), the initial framework
provides a Java abstract class SymbolicTransformationAlgorithm which only
requires implementation of four methods, preRun(), postRun, isUsed() and
run(), see Figure 17. The first two methods specify what needs to be performed
in advance and after the algorithm loop respectively. isUsed() specifies which
compiler option sets the algorithm to be used or not. The FClass attribute
references the flattened Modelica model on which the algorithms perform their
work. The WorkData attribute references the collection of equations for the
algorithms to process, and data required by the algorithms.

public abstract class SymbolicTransformationAlgorithm {
protected FClass fclass;
protected WorkData workData;

public SymbolicTransformationAlgorithm(FClass fclass ,
WorkData workData) {

this.fclass = fclass;
this.workData = workData;

}

public abstract boolean isUsed ();
public abstract void preRun ();
public abstract void postRun ();
public abstract boolean run(FAbstractEquation eqn);

}

Figure 17: The abstract class SymbolicTransformationAlgorithm in the
framework, which algorithms are to extend.

This means that in order to add another algorithm to the framework, a
compiler option entry is needed, as well as pre-loop (preRun()) and post-loop
(postRun()) modifications, and a compiler option entry. The method run()
describes the algorithm behaviour, which is where most of a developer’s work
will be focused, even though both the pre-work and post-work could be signi-
ficant, depending on the algorithm’s character. However, this is not the fault
of the framework and it can be safely declared that the framework provides an
accessible platform for algorithm addition.

However, during the transferral of the AE and VP algorithms there were
many complications. Many of them were dependent on the fact that the al-
gorithms presupposed that they were working on each individual equation in
the systems of equations undisturbed, rather than only at one equation at a
time. The fact that another algorithm may, and most likely will, intervene in
between equations means that a bit of logic had to be remodelled to make them
fit into the framework properly. This indicates that modifying an existing al-
gorithm might be quite difficult. It is of our opinion that if an existing algorithm
is to be restructured to fit the framework that the developer at least considers
remaking the algorithm entirely.

26

This again depends on the algorithm in question; the equation canonicaliz-
ation algorithm (see Section 4) works solely on one equation at a time and it
was consequently trivial to remodel it to fit the framework. Algorithm sharing
this characteristic would most likely be equally trivial to remodel.

5.2 Especially problematic models
Some models in MSL particularly proved to be difficult to work with, stemming
from difficulties in managing updates of derivative (and differentiated) variables
in AE. Derivatives are problematic to manage since they are represented as
separate implicit variables in the compiler. This also means that derivative
references are separate implicit variable references and is treated separately from
ordinary variable references. The compiler handles this by letting the variable
Real x know about its derivative variable Real der(x) (and vice versa), but
do not share the variable reference (x and der(x)).

Consider Figure 18, to handle the alias equation a = b one of the variables
Real a and Real b will be kept. Since we also have a derivative variable Real
der(a), the easiest would be to replace every reference of b with a. If we
had kept the variable Real b, we would have had to create a new variable
Real der(b), link it to the variable Real b and then replace the variable Real
der(a) with it. Keeping the variable having a derivative was also the approach
we opted for.

When both the alias variables have derivatives, as in Figure 19, there is no
issue with creating new derivative variables. If keeping the variable Real a, the
reference of b is replaced with the reference of a and the reference of der(b) is
replaced with the reference of der(a).

model derivativeVariable1
Real a;
Real b;
Real x;
Real y;

equation
a = b;
der(a) = x;
b = x + y + 3;
x = 1;

end derivativeVariable1;

Figure 18: An example model with only the alias variable a having a derivative
variable (der(a)). Keeping a instead of b is much easier to handle. Note that
derivative variables are not listed among the normal variables in a model.

5.3 The canonical form
As has been mentioned previously in Section 1.3, the canonical form algorithm
was never fully tested due to time constraints. As such, no significant metric
data from a collection of models (such as the MSL, Section 2.1.2) was produced,

27

model derivativeVariable2
Real a;
Real b;
Real x;
Real y;

equation
a = b;
der(a) = x;
der(b) = y;
b = x + y + 3;

end derivativeVariable2;

Figure 19: An example model with both alias variables a and b having derivative
variables (der(a) and der(b)). Because of this, it does not matter which one
to keep.

and it was deemed redundant to produce a few specific test models for the pur-
pose of evaluation. It would not neither be representative of canonicalization’s
effect on typical Modelica models.

28

6 Discussion

This chapter starts with describing the benefits and drawbacks of the framework.
It then follows with a discussion of future work that could be done for both the
framework and the canonical form.

6.1 Benefits and drawbacks of the framework
The addition of the framework has both its benefits and drawbacks. In this
section we describe both.

6.1.1 Benefits

As was mentioned in Section 5.1, it is difficult to evaluate the accessibility of
the chosen design of the framework. However, using only one abstract class
with a few methods only should mean that the overhead complexity of adding
a new algorithm is minimal. While the core purpose of the framework is to
allow for algorithms to not be run in a fixed order, it is still possible to do so
via the preRun() and postRun() method. If all algorithms do nothing in their
run() methods and instead execute entirely within preRun() or postRun(),
a traditional fixed order execution is maintained. It is important to consider
the fact that some algorithms may not function properly working on a singular
equation at a time, why this possibility is important to uphold.

6.1.2 Drawbacks

The most crucial benefit of the framework is that the compiler performs faster
simulations with the current version than it does without it. While this con-
clusion is not statistically significant for most models, it was for the largest
ones, which is promising. Thanks to the greater number of equation simpli-
fications simulation is undeniably quicker, meaning that in its current state it
could be recommended that it is used in the JModelica.org compiler. However,
one should consider weighing this against the increase in compile time that the
framework causes. A decrease in simulation time of 1.09% (Section 5.1.2) might
not warrant the increase in compile time of 9.09% (Section 5.1.1), even though
the decreased simulation time was in comparison to the current compiler which
is also performing optimizations.

The working order of the algorithms in the framework is relatively strict,
which could cause problems for the developer of a new algorithm. There is
currently no easy way of specifying the order in which algorithms execute, and
there is no way of re-ordering preRun(), run(), and postRun() methods on
their own (e.g. if AE is executed first in preRun(), it is also executed first in

29

the main loop and in postRun()). Since the logic in these three steps might be
vastly different for different algorithms some features of an algorithm may be
difficult or impossible to implement into the framework.

6.2 Future work
As the framework is relatively simple and only manages two algorithms, it can
still be developed and improved. Below follows a few suggestions for what future
research could entail.

6.2.1 Lifting some algorithm logic to framework level

There are still some logic left in AE and VP that could be handled by the
framework instead. In respective postRun() method, both algorithms iterates
over the lists of equations and variables and updates the content accordingly
to what has previously been removed. By letting the framework handle the
iterations, each list would only have to be visited once and the algorithms only
keep logic to handle the separate objects in the lists.

Even though WorkData keeps a list of removed equations, both AE and VP
still uses their own separate boolean tags in the FAbstracEquation class on top
of that, to trace the equations they remove. This logic should only be kept at
the framework level, but rather replacing the list in WorkData with a similar
boolean tag. There are some logic in VP that has to be taken in concern when
doing this, since some tagged equations should still exists in the model, but be
moved to another list containing other types of equations.

There are still some rewrites taking place during the process of the equations
in the worklist and also multiple rewrites performed during postRun. Reducing
or even removing most of these rewrites could have a positive effect on the
compile time.

6.2.2 Canonical form

As the canonicalization algorithm was never finalized and thus never part of the
framework, benefits and drawbacks of our canonical form are currently unknown.
A proper evaluation of the implementation is required in order to gauge the
effects of a simple canonical for Modelica models. Since there are different
possible canonical forms, there is incentive for investigating the strengths and
weaknesses of different representations. It might even be possible that different
canonical forms are better suited for different models. Keeping a selection of
canonical forms in the framework might be relevant to developers, and it could
even be possible for the compiler to deduce an optimal canonical form for a
given model or scenario.

It is also important to consider that since the algorithm has not been tested,
its impact on memory utilization is unknown. Currently the transformation to
an add-mul tree likely uses more memory than the model it has transformed,
since expansion of multiplications results in more additions and multiplications.
E.g. (a + b)(c + d) has two additions and one multiplication, whereas (ac +
ad + bc + bd) has three additions and four multiplications. This results in a
larger AST than before. It is possible that canonicalization is something that
should be done prior to simplification algorithms, but that the end result after

30

all simplifications should be translated to another canonical form involving other
structures that use less memory.

6.2.3 Common Subexpression Elimination

As was mentioned in Section 1.1, implementation of the Common Subexpression
Elimination algorithm would be a lot easier using a canonical form. Even if
CSE is implemented in the compiler it might be prudent to consider revising
the implementation to fit a canonical form, since upkeep of the algorithm or
further modification to it would likely be facilitated.

To give an example of how a canonical form could improve CSE, consider
the system of equations in Figure 20. In all equations, we see the expressions
(a + b) and (c + d) occur. Due to this, it should be possible to replace both
expressions with a temporary variable for which, during simulation, the value
is calculated once instead of twice, as is done in system of equations in Figure
21. This symbolic simplification is at the moment not implemented in CSE.

(a+ b)− (c+ d) = x;

(a+ b) ∗ (c+ d) = y;

(a+ b) + (c+ d) = z;

Figure 20: A system of equations where expressions could be replaced by
variables.

temp1 = (a+ b);

temp2 = (c+ d);

temp1− temp2 = x;

temp1 ∗ temp2 = y;

temp1 + temp2 = z;

Figure 21: A system of equations where expressions have been replaced by
variables.

Replacing CSE this way might be beneficial in terms of simulation time.
In the first system of equations, three arithmetic operations per equation are
required to evaluate the values to assign to x, y, and z, in total nine operations.
In the second system of equations, only two operations are required to evaluate
temp1 and temp2, and only one operation per equation is required to evaluate
x, y, and z, in total five operations.

6.2.4 Modification of the current framework

The abstract class SymbolicTransformationAlgorithm carries strict restric-
tions on the implementation of an algorithm, and it is possible that several
abstract classes may be beneficial to the framework’s flexibility. It might be
that some algorithms would be more clearly modelled by another abstract class
using other methods than the current one.

31

7 Conclusion
Improving the performance of algorithms in a compiler for an equation-based
programming language is a complex task. The algorithms can be simple in terms
of their effect on a given equation, but this does not infer that they are simple in
implementation. Modifying them so that they perform symbolic simplifications
in a dynamic manner, could carry tangible benefits for the extent to which they
can modify a system. We have shown that even a rudimentary implementation
of an algorithm framework with re-assessment of modified data can be benefi-
cial. We have also shown that the framework might not significantly improve
simulation time of generated code. The current implementation was shown to
be costly in terms of compile time, which infers that the trade-off between the
two must always be considered. Further optimization of the modified AE and
VP could possibly bring the compilation time down to a more acceptable level.

The framework constructed in this thesis provides the JModelica.org com-
piler with a module to integrate algorithms in. While it is relatively non-
furbished in terms of features, it establishes a baseline using the two algorithms
AE and VP. It is also constructed for usage with any algorithm, even though the
current implementation might not be capable of using any type of algorithm.
It provides future algorithm developers with an interface that directs algorithm
design towards a structure, that will enable the algorithms to work on a model
dynamically.

32

References
[1] A. Reilles, Canonical Abstract Syntax Trees. International Workshop on Re-

writing Logic and Applications, 2006.

[2] P. Fritzson, Principles of Object-oriented Modeling and Simulation with
Modelica 3.3: A Cyber-physical Approach, 2nd ed, Section 2.1.4 Variability,
2015

[3] M. Huth, M. Ryan, Logic in Computer Science, Cambridge [U.K.]: Cam-
bridge University Press, 2004.

[4] G. Hedin, An Introductory Tutorial on JastAdd Attribute Grammars, Gener-
ative and Transformational Techniques in Software Engineering III / Lecture
notes in computer science, pp. 166-200, 2011.

[5] J. Skeppstedt, An Introduction to the Theory of Optimizing Compilers, pp.
149-151, 2012.

[6] J. Skeppstedt, An Introduction to the Theory of Optimizing Compilers, pp.
151-157, 2012.

[7] S. Muchnick, Advanced Compiler Design Implementation, pp. 329-331, 1997.

[8] D. Richardson, Some Undecidable Problems Involving Elementary Functions
of a Real Variable, The Journal of Symbolic Logic, vol. 33, no. 4, pp. 514-520,
1968.

[9] T. Ekman, G. Hedin, Rewritable Reference Attributed Grammars, ECOOP
2004 – Object-Oriented Programming, pp. 147-171, 2004.

[10] J. Kämpe, Applying Constant Propagation in a Modelica compiler. Lund,
department of Computer Science, Faculty of Engineering LTH, 2013.

[11] P. Rizescu, Applying Optimization Algorithms in a Modelica Compiler .
Lund, department of Computer Science, Faculty of Engineering LTH, 2014.

[12] J. Al Dallal, How and When to Flatten Java Classes? , IJCSEIT, vol. 4, no.
2, pp. 73-79, 2014.

[13] F. Casella, Simulation of Large-Scale Models in Modelica: State of the
Art and Future Perspectives. Proceedings of the 11th International Modelica
Conference, September 21-23, 2015, Versailles, France.

[14] X. Zhang, M. Burger, S. Osher, A Unified Primal-Dual Algorithm Frame-
work Based onBregman Iteration, Journal of Scientific Computing, vol. 46,
no. 1, pp. 20-46, 2010.

[15] R. Sinha, C. Paredis, V. Liang, P. Khosla, Modeling and Simulation Meth-
ods for Design of Engineering Systems, Journal of Computing and Informa-
tion Science in Engineering, vol. 1, no. 1, p. 84, 2001.

[16] P. Bunus, "A Simulation and Decision Framework for Selection of Numer-
ical Solvers in Scientific Computing", 39th Annual Simulation Symposium
(ANSS’06), pp. 178-187, 2006.

33

[17] Modelica Standard Library, 2016. [Online]. Available:
http://modelica.github.io/Modelica/help/Modelica.html. [Accessed: 18-
May- 2016].

[18] JModelica.org, 2016. [Online]. Available: http://jmodelica.org/. [Accessed:
09- Jun- 2016].

[19] Modelica, Modelica and the Modelica Association, 2016. [Online]. Available:
https://www.modelica.org/. [Accessed: 18- May- 2016].

34

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTATIONSDAG 2016-06-03

EXAMENSARBETE Iterative symbol simplification - extending the Jmodelica.org compiler with
a framework for symbolic simplification algorithms
STUDENT Johan Calvén, Zimon Kuhs
HANDLEDARE Jon Sten (Modelon AB), Jonathan Kämpe (Modelon AB), Niklas Fors (LTH)
EXAMINATOR Görel Hedin (LTH)

Extending the JModelica.org compiler
with a framework for optimization
algorithms

POPULÄRVETENSKAPLIG SAMMANFATTNING Johan Calvén, Zimon Kuhs

Compiler optimization algorithms serve to increase the efficacy of the resulting pro-
grams, but usually operate sequentially without revisiting the code post-change.
This work has implemented a framework in the JModelica.org compiler that al-
lows its optimization algorithms to re-investigate modified programs and search for
additional improvements.

In order to increase the efficiency of programs many
algorithms for improving programs have been devel-
oped to be utilized by compilers, e.g. by removing
unnecessary methods or unused variables. Usually
these algorithms are run sequentially in a set order
even though the changes made by one algorithm in
a later stage could put the program in a state where
there is additional opportunity for improvements by
an earlier algorithm. By using a framework for these
algorithms, designed with re-visitation in mind, it is
possible for the algorithms to take turns modifying
the program. This allows algorithms to find even
more improvements without running them against
the entire program ad infinitum.

We have constructed the basis for such a framework
for the JModelica.org Modelica compiler. It provides
a structure where the developer of a new algorithm
is not required to consider in which way it works in
the context of other algorithms, but where it will still
benefit from the changes made by them.

Modelica is a programming language used to model
physical systems using sets of equations. The sets of

equations describe how different parts of the system
relate to each other, e.g. the set of equations in figure
1.

a = b + c
b = c + 1
c = 1

(1)

The algorithm variability propagation (VP) looks
for variables that are constants (e.g. c = 1) and re-
places the uses of that variable with the constant. In
the figure, it would find the last equation and replace
the cs in the other two. This would mean that the
second equation would become b = 1 + 1 = 2, mean-
ing that VP could improve the system further. In
the framework, the altered equation will be marked
so that the other algorithms, VP included, will know
that it has changed and it might be possible to per-
form further changes. VP will then find and replace
the new constant b = 2.

	Introduction
	Problem description
	Related work
	Symbolic simplification algorithms
	Symbolic simplification algorithm framework
	Canonicalization of systems of equations

	Results

	Background
	Modelica
	Models
	Language
	Modelica Standard Library

	JModelica.org
	Compiler steps
	Algorithms for simplifying systems of equations

	Symbolic simplification algorithms
	Alias Elimination
	Variability Propagation

	Canonical form
	JastAdd
	Abstract grammar
	Aspects and attributes

	An algorithm framework
	Symbolic transformation framework
	Pre-requisite for loop termination
	Adding an algorithm to the framework
	The preRun() and postRun() methods

	Simplified algorithms
	Modified algorithms

	A canonical form
	Removal of left-hand side
	Division removal
	A standardized AST
	Ordering

	Evaluation
	Framework results
	Compile time
	Simulation time
	Equation modifications
	Difficulty of adding a new algorithm

	Especially problematic models
	The canonical form

	Discussion
	Benefits and drawbacks of the framework
	Benefits
	Drawbacks

	Future work
	Lifting some algorithm logic to framework level
	Canonical form
	Common Subexpression Elimination
	Modification of the current framework

	Conclusion

