

DIVISION OF CERTEC | DEPARTMENT OF DESIGN SCIENCES
FACULTY OF ENGINEERING LTH | LUND UNIVERSITY
2016

MASTER THESIS IN INTERACTION DESIGN

Oscar Axelsson Fredrik Carlström

Evaluation Targeting React Native in
Comparison to Native Mobile Development

Evaluation Targeting React Native in
Comparison to Native Mobile

Development
An assessment of Developer Impression, User

Experience and System Performance

Oscar Axelsson and Fredrik Carlström

Evaluation Targeting React Native in Comparison to
Native Mobile Development
An assessment of Developer Impression, User Experience and System
Performance

Copyright © 2016 Oscar Axelsson Fredrik Carlström

Published by
Department of Design Sciences
Faculty of Engineering LTH, Lund University
P.O. Box 118, SE-221 00 Lund, Sweden

Subject: Interaction Design (MAMM01)
Division: Certec
Supervisor: Kirsten Rassmus-Gröhn
Co-supervisor: Alexander Georgii-Hemming Cyon
Examiner: Charlotte Magnusson

4

Abstract

The app-industry today is ruled by two giants, namely Android and iOS. For companies
and developers, it is essential to deliver their product to the majority of users, thus adapting
to both platforms. The platforms involve their ownway of developing applications and only
barely resembles each other. A problem that the industry faces resides here, having to hire
staff with knowledge in either Android or iOS, or both, to build two separate applications
that in turn require parallel upkeep.

Cross-platform frameworks that could bridge this gap have come and gone, not suc-
ceeding in creating applications with the same visual or functional standard as the native
frameworks deliver. Facebook has announced a new framework named React Native that
promises to deliver a fully native experience with the use of only one code base. This
thesis revolves around an evaluation of this framework, focusing on the development side,
system performance and the user experience that React Native delivers.

We found that the users, when testing both a React Native application in comparison
with native application separately, did not notice any difference, but when the applications
were placed side by side all participants could distinguish the two systems. The overall
quality of React Native encompasses more than development time and implementation,
and we found a more situational recommendation to be adequate, thus addressing all un-
derlying issues.

The end result shows that React Native applications are currently not as good as na-
tive applications regarding the user experience nor performance, but it demonstrates the
capabilities of cross-platform reducing the existing gap between them. We anticipate our
thesis to be a starting point for developers, deciding if they should select a native or cross-
platform implementation.

Keywords
Android, Cross-Platform Development, iOS, React Native, System Performance, Testing,
User Experience

5

6

Sammanfattning

Applikationsbranschen styrs idag av två giganter, nämligen Android och iOS. För företag
och utvecklare är det essentiellt att kunna leverera sin produkt till majoriteten utav an-
vändarna, där av pressade att utveckla för båda plattformarna. Varje plattform har sitt eget
sätt att utveckla applikationer och liknar bara vagt varandra. Problemet som industrin idag
möts utav beror på detta, att behöva anställa kompetent personal med kunskap inom antin-
gen Android eller iOS, eller båda, för att skapa två separata applikationer som behöver
underhållas parallellt.

Mulitplatform-ramverk som kan minska detta avstånd har kommit och gått, men miss-
lyckats med att skapa applikationer med samma visuella eller funktionella standard som
native systemen kan leverera. Facebook har presenterat ett nytt ramverk, nämligen Re-
act Native, som lovar att leverera en komplett native upplevelse med användandet utav en
gemensam kodbas. Denna masteruppsats kretsar kring en utvärdering utav detta system,
med fokus på utveckling, prestanda och användarupplevelse.

Vi fann under våra tester att användarna inte upplevde någon skillnad i React Native ap-
plikationen i jämförelse med native, när de testades separat, men när applikationerna var
placerade bredvid varandra kunde användarna med enkelhet urskilja skillnaderna. Den
övergripande kvaliteten på React Native omfattar mer än utvecklingstid och implementa-
tion, därav finner vi en situationsbedömning vara mer passande, som även adresserar de
underliggande problemen.

Slutresultatet visar att nuvarande React Native applikationer inte är lika bra gällande
användarupplevelse eller prestanda, men det visar påmöjligheterna för plattformsoberoende
utveckling att minska avståndet till native. Vi förväntar oss att vår masteruppsats ska vara
en utgångspunkt för utvecklare, i valet mellan native eller mulitplatforms-ramverk.

Nyckelord
Android, Användarupplevelse, iOS, Mulitplarforms-utveckling, Prestanda, React Native,
Testning

7

8

Acknowledgements

We would like to thank Netlight Consulting AB for the opportunity to research this master
thesis at their Stockholm office with support from the whole organization and employees.
We would like to thank the participants in our survey, who have willingly shared their
precious time during the process of interviewing. A special thanks do we target to our
supervisor at Netlight Alexander Georgii-Hemming Cyon for all the valuable input and
support during the whole project.

Wewould furthermorewant to thank our supervisor at LundUniversityKirsten Rassmus-
Gröhn for the continuous support and advise.

——
I would foremost like to thank my family for all the support throughout this whole

process, frommy parents Bertil and Lotta, my brothers Christopher, Joachim andMikael to
my sisters Catthy and Karin. Whose love and understanding is nothing short of astounding
and is what has fueled me these past six months, if not for my whole life.

I would secondly like to thank all my friends, whom grouped together in this crude
manner are all individually a big part of me. Thank you all for the continued support,
patience and encouragement during this time!

Finally, I would like to dedicate my involvement in this thesis to my twin brother
Mikael, my biggest inspiration.

Fredrik Carlström
——

Iwant to thankmy parents IngeAxelsson and LenaGustavsson for their support throughout
the years. Also, I would like to thank my family and all my friends for their patience and
continuous encouragement. Last but not least do I want to thank my beloved girlfriend
Helen Holmgren for all of the sacrifices that you made on my behalf and always staying
supportive.

This accomplishment would not have been possible without you all, Thank you!
Oscar Axelsson

——
Stockholm, June 2016

9

10

Contents

I Introduction 17

1 Background 19
1.1 Problem Formulation . 20

1.1.1 Goal . 20
1.1.2 Thesis Deliminators . 21

1.2 Thesis Outline . 21
1.3 Work Distribution . 21

2 Theory 23
2.1 The Industry Today . 23
2.2 React . 24
2.3 React Native . 25

3 Methodology 27
3.1 Research . 28
3.2 Testing . 28

3.2.1 Real User Experience . 28
3.2.2 Reliability . 29
3.2.3 Benchmark . 30
3.2.4 Interaction with Sensors . 30

3.3 Survey . 31
3.3.1 Online Survey . 31
3.3.2 Type of participant . 32
3.3.3 Number of participants . 32
3.3.4 Comparing data . 32
3.3.5 Counterbalancing . 32

3.4 Integration . 33
3.4.1 The Application . 33

11

CONTENTS

3.4.2 Development Process . 35
3.5 Interviews . 37

3.5.1 Single Ease Question . 38
3.5.2 System Usability Scale . 38
3.5.3 Wordlist . 39
3.5.4 Lookback . 39
3.5.5 Structure . 40

II Development 41

4 Logical Stories 43
4.1 Login . 43
4.2 Information retrieval . 44
4.3 Internal storage . 45
4.4 Interaction with sensors . 46
4.5 Animation . 47
4.6 Other applications . 48

5 UX Stories 51
5.1 SetupView . 51
5.2 ShakeView . 52
5.3 GameView . 53
5.4 MatchView . 54
5.5 FinishView . 55

III Result 57

6 Online Survey 59

7 Development 63
7.1 Logical Stories . 63
7.2 UX Stories . 65
7.3 Comparison . 66

8 Performance 67

9 Interviews 69
9.1 SEQ . 70
9.2 SUS . 71
9.3 Wordlist . 73

10 Discussion 75
10.1 Utilization of Hardware Sensors . 75
10.2 Interruption Handling . 76
10.3 Performance . 76

10.3.1 CPU . 76

12

CONTENTS

10.3.2 Memory . 76
10.3.3 Application Size . 76

10.4 User Interface . 77
10.5 User Experience . 77

10.5.1 Single Ease Question . 77
10.5.2 System Usability Scale . 78
10.5.3 Wordlist . 79

10.6 Development . 79
10.6.1 Community . 80
10.6.2 Developer Support . 80
10.6.3 Potential Errors . 81

11 Conclusion 83
11.1 Developer Impression . 83
11.2 User Experience . 84
11.3 System Performance . 84
11.4 Recommendation . 84

12 Future work 87

References 88

IV Appendix 93

A Timeplan 95

B Online Survey 96

C Single Ease Question Survey 97

D System Usability Scale Survey 98

E Wordlist Survey 100

F Comparison 101

13

CONTENTS

14

Abbreviations and Acronyms

API - Application Programming Interface
CPU - Central Processing Unit
CSS - Cascading Style Sheets
DOM - Document Object Model
HTML - HyperText Markup Language
HTTP - Hypertext Transfer Protocol
HTTPS - Hypertext Transfer Protocol Secure
JSON - JavaScript Object Notation
OS - Operating System
POJO - Plain Old Java Object
RAM - Random Access Memory
REST API - Representational State Transfer Application Program Interface
RN - React Native
SEQ - Single Ease Question
SLOC - Source Lines of Code
SUS - System Usability Scale
UI - User Interface
UX - User Experience

15

CONTENTS

16

Part I

Introduction

17

Chapter 1
Background

——–

As seen in statistics fromDeveloper Economics, 80% of companies still have development
teams that are solely dedicated to one or the other platform [1].

——–

Tools that allows the developer to use the same source code for two different platforms
is nothing new. We’ve all heard the promise of cross-platform native apps driven by
JavaScript or HTML5. Tools like Phone Gap, Appcelerator and Xamarin has been around
for quite some time, but they often fall short in terms of performance and user experience
[2], [3] and [4]. Either you’re wrapping a web application in a web-view, or they are tied to
HTML and CSS. The big problem is that the application, does not feel like an application,
but a website. React Native, however, seems to have addressed these issues [5]. If React
Native can provide a user experience in level with that of an application written in fully
native code, it will most likely change the industry.

Many believe that the use of native tools is much more beneficial in building the best
user experience. Native applications are faster, cleaner, and they behave and look just the
way users expect them to do. The ability to utilize sensors (GPS and accelerometers),
functions (Datepicker and Dialogbox) and design patterns, i.e. native implementations,
are some examples of what makes a native application (just that) native.

The preconceived notion is that creating native applications is harder to learn and can
also require much more time to master properly compared to the cross-platform mobile
development. Additionally, native applications require a complete code rewrite with a dif-
ferent language before they can run on any other mobile platform.

To develop one application that runs on 96.7% (Figure 2.1) of the mobile devices (An-
droid and iOS) you need two teams working simultaneously, or one team with twice as
long development cycle, doing basically the same logic, but in different programming lan-
guages and environments.

19

1. Background

Today many companies have both Android and iOS teams, where the team members
knowledge is mostly limited to one platform. If all these companies could instead have
one single team, being able to develop both Android and iOS apps, it would cut the devel-
opment time and the costs dramatically.

This thesis strives to analyze the possibilities of cross-platform applications regarding
React Native overtaking native development, reducing both the time and cost for many
companies.

Our interest in this evolves from the industry’s demands for improved solutions in the
subject of cross-platform applications and our own interests in the subject. We both have
several years of experience in app development and have found it difficult to cover all
platforms without building two exact copies of the same application using two different
programming languages. If React Native is the solution to these issues remains to be seen,
but the effect this could have on the industry and future app development is what drives us
to conduct this research.

The research is intended for other master thesis students with an interest in mobile
development and user experience. It also targets developers or companies standing in
front of the choice of creating a React Native or native application. It may also include
anyone interested in the development of mobile applications and what the future may look
like.

1.1 Problem Formulation
With React Native as the top emerging cross-platform solution, we aim to asses and eval-
uate its capabilities compared to native developed applications. We are approaching this
problem of evaluation with little to no experience of the tool itself. With overwhelming
positive response found from researching, the essential question we are striving to answer:
How good is React Native in contrast to native development? We have below structured
six questions that in more detail describes our objective.

1.1.1 Goal
We have reduced the problem of this assessment to six main questions:

• How well does React Native utilize the hardware sensors?

• How well does React Native handle interruptions that occur in everyday usage of
applications?

• Is the performance of React Native applications on par with native?

• Is the user interface indistinguishable from native applications?

• Is the user experience of React Native on the same level as native applications?

• Is React Native an efficient tool for developing mobile applications?

20

1.2 Thesis Outline

1.1.2 Thesis Deliminators
During this research we only focus on the two major platforms on the market iOS and An-
droid. There are other competitors, but collectively they only cover a small fraction of the
market and due to limitations of time we have decided not take them into consideration,
see more about the industry in Section 2.1. We have also decided not to focus on compar-
ing other cross-platform frameworks such as Xamarin or PhoneGap. Mainly because the
cross-platform frameworks are trying to conquer the native market and the interest is to
find out if we could use React Native instead of a native development tool.

1.2 Thesis Outline
For the reader to get a better grasp of React Native and why this is of such interest, a more
in depth look is described in Chapter 2 Theory: Section 2.1 The Industry Today and 2.2
React Native.

This is followed by an introduction to our approach and process for evaluating React
Native in Chapter 3 Methodology. Section 3.2 Testing and 3.5 Interview are explanations
of how the tests of the end product were structured and executed. Within the same chapter
the development process’ conception and structure is described in Section 3.3 Survey and
3.4 Integration.

Part IIDevelopment presents the whole development’s evolution, split into to chapters,
namely Chapter 4 Logical Stories and Chapter 5 UX Stories. Lastly the thesis ends with a
presentation of results, discussion and conclusion in Part III Result.

1.3 Work Distribution
We have during the project worked side-by-side and divided the workload evenly between
us. During the development phase did both work on React Native separately and later
merged our implementations into one solution. Fredrik handled the native iOS develop-
ment and the native Android was developed by Oscar. The remaining work such as the
interviews, surveys, report and the presentation have we both been working on together.

21

1. Background

22

Chapter 2
Theory

The purpose of this section is to introduce the reader to the fundamental theory, necessary
to understand this thesis.

2.1 The Industry Today
The mobile industry is booming like never before, it is an exciting environment, but not
without its issues. The industry wants to be able to build applications more efficient than
what now is the standard. But at the same time you want the application to have the same
feel as any other application on the market. The issue arises when you start to develop
and realize that you have to set up several different environments and learn at least two
different programming languages, Java and Objective-C/Swift.

One of the big giants on the market, Apple, had a revenue growing to 28% during
2015 with nearly $234 billion and the Q4 2015 they made a revenue of $51.5 billion and
quarterly net profit of $11.1 billion [6]. These numbers are believed to increase during the
start of 2016 thanks to the release of the next model iPhone 7. Despite that, the market for
Apple could soon be saturated, caused by the growing Chinese market [7]. Apple has also
received a greater interest from developers with their new programming language Swift
[8], which is increasing despite that 16% of the developers working in it is not making any
revenue, compared to 4% on Objective C side [1]. The big interest in Swift could be that
it is making it easier for developers to create and learn iOS development compared to the
standard Objective-C.

Despite the rise of Swift, only a mere one out of six developers have experience with
it, according to VisionMobile, "Developer Economics: State of the Developer Nation Q3
2015". This can be compared to Objective-C, which stands at 40% of developers.

All the success for Apple aside, currently the most popular language by developers is
Java, with more than 65% of all developers having experience with it. This is something

23

2. Theory

that favors Android, since Java is the language used for development, and with a market
share for 2015 Q2 of 82.8% it is not surprising, compared to 13.9% for Apple [9].

Figure 2.1: The Worldwide Smart phone OS Market Share from
2012 Q2 to 2015 Q2

The two giants on the mobile market owns 96.7% of the market which is remarkable.
The competitors on the market are having trouble to break through and there is no sign of
the market changing in the near future. The market share can be viewed in Figure 2.1

As a developer with a good idea for an application and a goal of reaching the vast mar-
ket there is no question that it must cover both Android and iOS platforms. The average
game developers builds apps for 2.6 platforms and for non-games developers it is 2.2 plat-
forms [1]. Currently 37% of all mobile developers target both iOS and Android, but it is
expected that their numbers will grow in the next few years. This means that 37% of the
mobile developers has knowledge and experience in both platforms. The remaining part
has experience only from one of the other platforms. Starting a new project at a company
you will probably be forced to at least set up two teams, one for Android and one for iOS
and create the same application twice. This is not an efficient way since it will cost both
money and take time. The question then arises if we can’t "learn once, write anywhere".

2.2 React
The story begins with React which is a JavaScript library, built by Facebook, with the first
release in 2013 [10]. React is a framework that focuses on breaking down the applications
components to represent a single view. The components facilitate the possibility to only
re-build the part of the application that was changed. This creates a faster and easier
development cycle that facilitates for changes. React creates a lightweight Virtual DOM
(Document Object Model) every time components are rendered, and diffs them to figure
out the smallest amount of real DOM changes needed. With this new system Facebook has
been able to quickly build and test the system, making the agile iteration process faster and

24

2.3 React Native

the time to market shorter. Another big change React creates is that it wraps the DOM’s
mutative, imperative API (Application Program Interface) with a declarative one, which
raises the level of abstraction and simplifies the programming model.

An imperative style focuses on how the program operates, but a declarative style fo-
cuses on what the program should accomplish. React is able to, with a JavaScript object,
declarative render a structure and then let the library figure out how to reify it into DOM
objects. With a declarative approach it makes the codemore predictable because the devel-
oper knows how its going to behave. This makes the developer confident to make changes
because they know how it works. According to Facebook and Tom Occhino (Engineering
Manager at Facebook and one of the creators of React Native), as he stated on React.js
Conf 2015 Keynote, new developers that never before have worked with JavaScript can
in the end of their first day make changes to the code. This has never been experienced
before at Facebook [11]. With this, Facebook made their code more predictable and as a
result can iterate more quickly, thus creating applications that are more reliable and does
not break.

But if the web is a lot better by using React, why don’t we use it on mobile as well?
A native application results in a better application thanks to all the platform-specific UI

components that are available, such as a date picker and dialog box as well as asynchronous
image decoding, text measurement and rendering. With a native application the developer
also gets access to a sophisticated threading model that can take the design compilations
of the UI thread, which makes animations and image rendering flow seamlessly.

But mobile development also has issues because we have two (if we only mention the
dominant operating systems) disjointed platforms.

There also exist a large issue with native applications, that they don’t compile fast
enough, taking approximately 30 seconds for a new change, making the process and de-
velopment velocity slow. The reason engineers are willing to go through the pain of de-
veloping to native is because they can create a user experience that is a lot better than any
website (at the moment) can create. As Tom Occhino from Facebook said on F8 2015 "We
build native apps because we can create better, more consistent experiences" [12].

So what we want to achieve is the native experience for mobile with the developer
experience of the web. This can be achieved through several different ways, one of the
more popular is:

WebView It is a webpage that can be displayed using WebView inside a simple native
wrapper application. It is a good idea, but unfortunately it does not provide the
native user experience. The WebView also lacks the ability to parallelize work on
different threads and sophisticated gesture handlingwhich can be created in an native
environment. A WebView is therefore not a good replacement for native develop-
ment.

2.3 React Native
The solution to this might be the newly presented framework React Native, developed
by Facebook, first released in 2015, and is now and open source project on GitHub [13].
With React Native we can use the best from React (such as fast re-builds and an declarative

25

2. Theory

DOM) and be able to run an instance of the JavaScriptCore inside the application and by
that create platform specific components [14]. The application logic is written and runs in
JavaScript, whereas the application UI is fully native. With React Native we can use both
JavaScript and native implementation, making the switch to a cross-platform development
smaller for existing projects. We can also, if a functionality does not exist in React Native
framework, use native code, so the user gets the best experience possible.

React Native is not aiming to be a "write once, run anywhere" tool. It is aiming to
be "learn once, write anywhere". Android and iOS are two different systems and should
be treated differently, therefore not be designed in the same way. There are differences in
components and special native features which makes the experience better and unique. By
learning React Native’s syntax and structure will the developer be able to compile targeting
different platforms without the need to learn a new set of techniques. With the same code
and technologies a developer will be able to deploy an application to both Android and
iOS.

26

Chapter 3
Methodology

In this chapter we present the methodologies and approach used in our thesis to answer
our previously stated problem formulation.

The approach that we chose can be divided into two segments, illustrated with Figure
3.1 and Figure 3.2 below. With the first segment being the groundwork for, and including,
the development of the applications.

Development

Figure 3.1: First Segment

Interviews Analysis

Figure 3.2: Second Segment

The second segment consist of final testing and comparing the finished products in
terms of user experience, efficiency and performance, see Section 3.2. Then after both
segments were completed we gathered all data for analysis for the conclusion and discus-
sion, Chapter 10 and 11. All these methods will be introduced in a more precise manner
further down.

27

3. Methodology

3.1 Research
Before starting with the project we researched everything involved. From ways of struc-
turing surveys, conducting interviews to methods of testing the developed products. Ev-
erything covered in this section is thoroughly researched using literature provided to us by
our supervisor and also the information that is available online. Furthermore, the appli-
cation scope and features were all investigated, making sure it was possible to implement
everything in all environments.

3.2 Testing
To carry out our comparison of React Native with native applications we did extensive
tests. We divided it in four main approaches: User Experience, Reliability, Interaction
with sensors and Benchmark. With these four approaches we are confident that we are
covering all important areas that concern app development. The first part covers the user
experience with the mobile device, the second part focuses on the reliability and the hard-
ware utilization and the third with interruptions that occur during usage. These three cover
everything surrounding the users interaction and lastly, benchmark addresses the specifics
when it comes to the applications usage of the device resources.

3.2.1 Real User Experience
Confusion can often arise when mentioning the two terms user experience and usability.
According to the International Organization for Standardization (ISO), user experience can
be described as "person’s perception and responses resulting from the use and/or antici-
pated use of a product, system or service" [15]. Usability, found in the same standard (ISO
9241-210: "Ergonomics of human-system interaction"), is described as "extent to which
a system, product or service can be used by specified goals with effectiveness, efficiency
and satisfaction in a specified context of use".

In the book "Measuring User Experience" by Tom Tullis and Bill Albert, they distin-
guish the two terms with the simple statement "Usability is usually considered the ability
of the user to use the thing to carry out a task successfully, whereas user experience takes
a broader view, looking at the individual’s entire interaction with the thing, as well as the
thoughts, feelings, and perceptions that result from that interaction." [16]. UX (User Ex-
perience) is something all developers are concerned with. If measured, it can help improve
the product and the impression the user gets from it. When looking at applications that are
deployed to mobile devices, UX is a big concern. The operating system themselves play a
major part in this, design patterns and interaction between the user and the application are
different depending on the OS (Operating System) and can even differ between the updates
within the same OS [17] and [18].

It is clear that user experience will affect further usage of an application, especially
when there may exist a plethora of other applications that fulfill the same purpose. Thus,
with a cross-platform tool such as React Native, utilizing the nature of the native design
can be crucial for success (this is not stating that UX is the only factor, but simply that
its role should not be minimized). When researching the developing public’s opinion on

28

3.2 Testing

thematter of React Natives capabilities of native design implementation, ignoring develop-
ment issues and focusing more on abilities, we found promising results [19], [20] and [21].

It may not be clear though how to measure UX, as it mainly deals with something sub-
jective. The broad consensus is using surveys and interviews, but how you design these
questionnaire is not a walk in the park. Our supervisor recommended the aforementioned
"Measuring User Experience" by Tom Tullis and Bill Albert that deals with exactly this,
the science behind measurements of UX.

The questionnaire is designed in a way that will avoid the "acquiescence bias", meaning
that people are more likely to agree with a statement than disagree with it. A proposed
solution to this problem is to balance a positive-phrased statement with a negative one. It
is also known that people tend to rate the experience highly even though they have failed to
complete the task. There has been studies which have concluded that subjects are reluctant
to criticize a design or the technology because it might give an impression that they are
negative people or that they are not good at adapting to computer-based technology. A
person often rates his/her skills higher than what the actual test shows they are, mostly
because they don’t want to seem inexperienced or show a lack of knowledge.

With this we could confidently compare the user experience with the application de-
veloped in the two different environments, which we will discuss more in Section 3.3 and
3.5.

3.2.2 Reliability
In ISO/IEC/IEEE 24765: "Systems and software engineering", reliability is described in
a two part manner: "the ability of a system or component to perform its required functions
under stated conditions for a specified period of time. 2. capability of the software product
to maintain a specified level of performance when used under specified conditions" [22].

For React Native we wanted to consider the reliability of the developed applications.
What this means is testing how the applications handles various interruptions that occur in
everyday application usage. When researching React Native we almost exclusively found
discussions about the user experience, but we believed that reliability testing is just as im-
portant. If the application were to crash, when receiving a SMS for example, it would also
affect the overall quality. For this purpose it was important to test the end products toler-
ance for interruptions with a list of common everyday disturbance factors for applications.

In the end this was compiled into a checklist which we could asses manually and below
are the main tests we focused on [23]:

• Incoming and Outgoing SMS and MMS

• Incoming and Outgoing calls

• Incoming Notifications

• Cable Insertion and Removal for data connection

• Network outage and recovery

• Device Energy saving mode

29

3. Methodology

3.2.3 Benchmark
Even if it is closely related to UX, a big variable that needs to be examined by itself is
performance. It is described in ISO/IEC/IEEEE 24765 as "the degree to which a system or
component accomplishes its designated functions within given constraints, such as speed,
accuracy, or memory usage" [22].

While the time to retrieve information from a database is evident to the user, mem-
ory issues might not be as noticeable. When evaluating a framework, performance is a
prominent property that requires its own testing.

This is called benchmark, comparing performance metrics between two sources. From
Androids own "Performance Profiling Tools" page they state: "Putting pixels on the screen
involves four primary pieces of hardware" [24]. This gave us a natural way of selecting
how to measure the applications capabilities and divide the benchmarks into five main
parts:

CPU Monitor the processing power and behavior

Memory Monitor the memory management

Battery Measuring the energy consumption

Network Noting the network performance

Application Size The application size on the mobile device

Our plan was to compare the results of these tests of the different applications, but
on the same mobile to get a more accurate result. The legitimacy of benchmark testing
and the results have been greatly discussed, more specifically when commercial products
advertise their specifications [25]. Because systems and the conditions might effect the
data from benchmark testing, the result can be a good base, but not an accurate depiction
of how behavior will be at the hands of the everyday user. Since our result are only based
on comparison, empirical data that we gathered with the same environment and conditions,
we found benchmark to be a sufficient tool for our analysis. The conditions were as similar
as possible with deployment on the same device for the specific platform minimizing the
differences. The tests were conducted at the end of the development of both the Logical
and UX Stories. For an even more accurate result were the tests performed several times
with a calculated average result.

We also took advantage of the systems own tools for performance analysis and main
focus was aimed at results within the same system [24] and [26].

3.2.4 Interaction with Sensors
Mobile devices come packed with hardware that, when used, make mobile applications
more unique than websites. The interaction with these components is something that has
been lacking in some older tools that have attempted to do the same thing as React Native.
With a survey we attempted to pinpoint the most valuable perceived hardware interactions
that users regard, and incorporated these features in our application to compare accessibil-
ity with the native application. With these important sensors in mind we checked whether

30

3.3 Survey

React Native had access to them and if they could be implemented. The results from the
survey, along with the features most participants preferred with a mobile device, can be
viewed in Chapter 6.

3.3 Survey
We used four surveys for our research, where three were made with Google Forms [27].
Google Forms allows for online distribution and feedback in a simple yet effective manner,
easy to construct and are the reason we chose it. The first survey (referred to as Online
Survey) served as a foundation on which we identified native components and features that
we focused onwhen developing the applications, whichwe present further in Section 3.3.1.
The other three are used in our final assessment for how React Native’s user experience
stands in contrast to native implementation, described in Section 3.5.

3.3.1 Online Survey
For our foundationwe asked three questions to find out what users think of applications ver-
sus websites in general, specific functions that they enjoy and also asked them to list their
favorite applications. This was sent out as an online survey and can be seen in Appendix
B. The survey was created more specifically to narrow the scope of our implementation,
since an implementation of all mobile hardware functions would require significantly more
time to integrate in our applications.

With our first question we wanted to identify the users preferred mobile device, i.e.
Android, iOS, Windows Phone or other. This distinction was made with question four
in mind, where the participant is asked to list their favorite application, for a better un-
derstanding of which applications users appreciate. Our second question is an attempt
to identify the participant’s views on the subject of applications versus websites, to aid
us in our development as guidelines, getting a better grasp of perceived native behavior.
The third question asks the participant to be more precise in their reasoning behind native
behavior, where specific functions listed in the result could be integrated in our application.

The remaining three surveys were used in a more comprehensive UX interview. To
structure this we followed the pattern suggested in the book "Measuring User Experience"
by Tom Tullis and Bill Albert [16]:

• What type of participants do we need?

• How many participants do we need?

• Are we going to compare the data from a single group of participants or from several
different groups?

• Do we need to counterbalance (adjust for) the order of tasks?

Within these questions there are a series of questions that, in turn, require an answer.
By answering these questions we had thorough understanding of what was needed for the
interviews. This can be seen below, where the list of questions are divided into subsections.

31

3. Methodology

3.3.2 Type of participant
First of all comes the question about
"How well the participants will reflect the target audience?"
For a survey you would want perfect reflection, but this may not be achievable and then a
more approximate reflection could be sufficient.
"Is the data going to be divided by the type of participants?"
If so, it would require additional thought as to the quantity of each group. The last refers
to
"Sampling Strategy".
The strategies are all different ways of reaching a more generalized conclusion about the
overall user experience. The strategy is to find a way of representing the general popula-
tion. For this you can use different strategies: Random sampling, Systematic sampling,
Stratified sampling and Samples of convenience. Since we wanted to get as much feed-
back as possible, without any restrictions, we settled for a sample of convenience.

3.3.3 Number of participants
When it comes to sampling size Tom Albert and Bill Tullis state that there is no bottom
factor requirement of size, but merely "the goals of your study and your tolerance for a
margin of error". It depends on the objective at hand, with a small sample, issues might
be addressed, but compared to the relative task smaller problems may still persist. But if
major problems are the only objective then a small sample size might be as efficient as
a large. The other factor, tolerance for margin error, will also contribute to deciding the
sample size. Confidence intervals can then be established based on the sample size and
success rate, which will in turn give a more accurate reflection.

3.3.4 Comparing data
There are two choices to bemade here, either to useWithin-Subjects or a Between-Subjects
Study. Within-Subjects refers to comparing different data for each participant (analyzing
individual parts of the design) and Between-Subjects means looking at the data for each
participant to other participant (analyzing collective data for different groups).

3.3.5 Counterbalancing
Lastly the need for task order might be of concern:
"Will something be gained from participants performing the task given in a certain or-
der?"
Knowledge gained from performing a specific succession of tasks might saturate the re-
sult and can be prevented by counterbalancing. If the order might effect the result then
changing the order for participants would be a solution.

32

3.4 Integration

3.4 Integration
Since we chose to develop applications in both React Native and native platforms it pro-
vides a more comprehensive base for measuring the differences as the applications were
deployed on equal mobile devices. This also provided us with a thorough insight into the
development process of React Native. With many parameters to consider, we proposed a
story based iteration process, where after each completed story we could reflect and com-
pare the different environments with comments on complexity, time and source lines of
code as our main metrics, as these are good indicators of quality developing.

3.4.1 The Application
The application itself is based on the popular game "Memory". It was suggested by our su-
pervisor at Netlight, to provide the company with an easy and fun way for their employees
to put names to all the faces of their fellow colleagues. For this we were granted access to
Netlight’s internal REST API (Representational State Transfer Application Program Inter-
face) that they have up and running. The application incorporated all the features listed in
Section 3.4.2. With a fully functioning REST API we spent minimal time on the back-end
functionality and our focus was on the main objective, front-end development.

Figure 3.3: A mock-up of the login screen for our Memory Ap-
plication

The authentication process is a login and start page, a mock-up can be seen in Fig-

33

3. Methodology

ure 3.3, where Netlight credentials were needed, but is provided for every employee at
Netlight, including us. A token is then generated by the server when authentication is
accepted. With this token could we, through a call to the API, retrieve a list of all the
employees at Netlight, with their respective profile information and profile picture. The
information is then stored on the mobile device’s internal memory.

Figure 3.4: A mock-up of the setup screen for our Memory Ap-
plication

The user will after a successful login be prompted with a setup screen, a mock-up can
be seen in Figure 3.4. Here geolocation is utilized and with it the user will, depending on
his/her position, be prompted with the closest city from which the employees in the game
will be selected. This is because you often want to learn the names of colleagues at the
same office, but if the user already knows all the employees at one office, it is possible
to change the city, by swiping between the different offices. The user will also be able to
select a different degree of difficulty. The setup process is then completed and the game
can begin by clicking the start button.

34

3.4 Integration

Figure 3.5: A
mock-up of the
game screen for our
Memory Applica-
tion

Figure 3.6: A
mock-up of the
match screen
for our Memory
Application

The game is modeled after the popular game "Memory", layout seen in Figure 3.5.
The objective of the game is to match pairs of cards, that are shuffled and placed face
down. These cards contain profile pictures of Netlight’s employees. When a match occurs
a screen will be presented, mock-up seen in Figure 3.6. This screen will show the matched
employee’s profile information, alongside actions that enable the player to call, sms, mail
or add the employee to their contacts. The memory game will persist until all cards are
matched. When the game ends the user will be prompted with another screen and then,
with the touch of a button, be sent back to the setup screen.

3.4.2 Development Process
When choosing which development methodology that would suit this project the best, we
concluded that we needed short cycles, so the process and results could quickly be analyzed
in a continuous delivery. With only two developers, communication was easy and efficient,
therefore we settled on an agile development process. In short, agile is a development
process that corresponds to our needs, an iterative incremental way of development that
opens up for quick changes during the iterations [28]. With this process we were able
to implement and test continuously for each new implementation of a feature, which will
further on be referred to as a Story.

35

3. Methodology

Logical Stories
For our application we identified six initial stories, that were complemented by the first
survey regarding interaction with sensors, see Chapter 6. From a discussion with our
supervisor at Netlight and a couple of meetings internally were we able to determine six
distinct features that our application required. These stories also served as milestones for
the progress of our development phase.

Story 1 - Login Contains the task of connecting to Netlights REST API via a HTTPS
connection. The user is authenticated with corresponding username and password.
If the network is available and a correctly formatted input is provided then a HTTPS
POST request is sent to the API. A response code is then returned by the server. If
the response is OK (200) the user will be logged in and a token is provided used for
accessing employee data. An error message is provided if the user is Unauthorized
(401) or Forbidden (403).

Story 2 - Information retrieval It contains the task of retrieving information from a re-
mote server. Using the token from previous Story to download the all the employee
information from Netlight.

Story 3 - Internal storage During this Story we store the information retrieved in Story 2
to the mobile devices’ internal memory. For security reasons we are not storing any
sensitive information such as the token received from the API or the password used
to sign in. Only a list of all employees containing public information such as email
address and name are stored. This is done for improved user experience, eliminating
the task of login for the user.

Story 4 - Interaction with sensors This Story includes implementation of hardware func-
tions such as GPS and accelerometer. We select the closest Netlight office, proximity
wise, based on coordinates of the user. We also implement a way of recognizing a
shake gesture based on the accelerometer by using a threshold value based on the
x,y and z-values in the accelerometer.

Story 5 - Animation Utilizing animations within the application. The animation itself
is a grid of boxes which flip themselves when touched. If two boxes are flipped
in a consecutive order and they contain the same value then they will stay in this
flipped state for the remainder of the game; if the values differ then they will both
simultaneously flip back to the initial state.

Story 6 - Other applications Capabilities of launching other applications. When amatch
occurs in thememory game the profile information alongwith the ability to call, sms,
email or add the contact information is shown. So for this story we tested the ability
to launch these applications from the application itself.

After the completion of each Story we marked down the comments, time and source
lines of code it required and also tested the stories with benchmark and reliability, de-
scribed above in Section 3.2.2 and 3.2.3.

36

3.5 Interviews

UX Stories
The next phase of our implementation included improving the design and user experience
in the application. Together with our supervisor at Netlight a first draft was designed.
We are following the structure and development methodology from the Logical Stories
because it was found successful and worked for our purpose. The stories for this phase are
for simplicity divided by the five different screens in the application.

Story 1 - SetupView The first Story concerns the setup screen as can be seen in Figure
3.4. This screen includes creating a board size selection with a board size of 6, 12 or
18 and an office selection containing the name of the office with an image from the
corresponding city including the number of employees. It also contains the ability
to swipe between the offices. There was also some structure implementation needed
to be improved for the ability to sort employees for the offices and select a random
number of employees that will be included in the created game.

Story 2 - ShakeView The profile images for the employees selected to be a part of the
game are downloaded in the background. During this will the user be presented
with clear instructions to perform a shakemotion. If the ongoing download of profile
images are not completed will a progress bar be presented asking the user to wait.

Story 3 - GameView This Story mainly concerns the design of the cards in the board,
further more using the usernames of the flipped cards to check whether a match has
occured. When a match has taken place the employee information is packaged and
then sent to the following screen.

Story 4 - MatchView The MatchView is an transparent overlay of GameView and will
present the employee that has been matched in the game. The view contains the
employee’s name, level and profile image. The user also has the option to call, text
message, mail or add the person to his/her private phone book.

Story 5 - FinishView To finish the game we added an additional screen, composed of
static text messages and a return button. When the button is clicked the user will
finish the game and return to the SetupView, where a new game can be initiated.

3.5 Interviews
In the same sense as surveys, interviews can be constructed and conducted in several dif-
ferent ways. Our approach was selected with guidance from our supervisor and a semi-
structured interview was deemed the best method for our comparative user study. We
used three surveys as our basis for the interviews: Single Ease Question, System Usabil-
ity Scale and a Wordlist, which are explained further down in this section. Single Ease
Question helped us score the individual implemented components while System Usability
Scale served as an overall indicator. The Wordlist helped us get even more feedback on
what the perceived differences were. With the comparative nature of our thesis we found
that these tools would provide concrete results to stand on when interpreting the overall
thoughts and perceptions of the applications compared to each other. This was also com-
plemented by using a video capturing tool called Lookback to record the user expressions

37

3. Methodology

and voice, described in Section 3.5.4.

When entering into the interviews we were aware of the mindset needed for conducting
a successful interview. For this we used an article written by Isabelle Peyrichoux, "When
Observing Users Is Not Enough" [29]. With psychology at its basis, taking inspiration
from psychology giants like Carl Jung and Carl Roger, it delves into personality types and
structuring questions for honest answers and also getting the most from the participants.
Most notable points are being genuine and honest yourself, adapting the pace and being
aware of the participant involved. It can be viewed as a guidebook and was used as our
foundation when conducting the interviews.

3.5.1 Single Ease Question
Single Ease Question (SEQ) is, in its entirety, very simple [30]. After each completed
task the participant is asked the question "Overall, how difficult or easy was the task to
complete?" and the reply is given with a number between 1 and 7 (with 1 being Very
Difficult and 7 being Very Easy). The survey is presented in Appendix C.

Although incomplex, the results are shown to work as well, or even better, than similar
tests, such as Subjective Mental Effort Questionnaire or the ratio scaled Usability Magni-
tude Estimation [31].

The average score has been calculated over extensive studies, more specifically 200
tasks with 5000 participants, and an average score of 5 has been found. Therefore it is
encouraged to question the participant’s reasoning behind a score of 5 or less to get a
better understanding of the shortcomings regarding the system.

3.5.2 System Usability Scale
SUS (System Usability Scale) is a widely used technology independent usability test and
the results are shown to be equal to, or even more reliable, than other commercial evalu-
ations [32]. With a standardized way of scoring participants’ answers, SUS can be relied
upon to deliver consistent results, even with a smaller sample size. It is important to state
that the test was not constructed to diagnose and delve into the actual usability issues, but
grade the overall usability of the intended system. The test itself is administered through a
questionnaire where the participant’s reply range from Strongly Disagree - 1 all the way
to Strongly Agree - 5. The questionnaire can be viewed in Appendix D and is structured
as such:

1. I think that I would like to use this system frequently.

2. I found the system unnecessarily complex.

3. I thought the system was easy to use.

4. I think that I would need the support of a technical person to be able to use this
system.

5. I found the various functions in this system were well integrated.

38

3.5 Interviews

6. I thought there was too much inconsistency in this system.

7. I would imagine that most people would learn to use this system very quickly.

8. I found the system very cumbersome to use.

9. I felt very confident using the system.

10. I needed to learn a lot of things before I could get going with this system.

The answers are then converted through a set of specific rules:

• For odd items: Subtract one from the user response.

• For even items: Take the value five and subtract the user response.

• Finally add all response for a user and multiply it by 2.5. This new converted range
of possible values are now from 0 to 100 instead.

With data collected from 500 studies and 5000 individual replies, a score of 68 (deviation
of 12,5) is found to be a sufficient threshold when determining if a system is usable. By
normalizing and dividing the score into percentile groups the system in question can also
be given a grade that ranges from F to A.

3.5.3 Wordlist
Tomeasure the users satisfaction are we using a questionnaire as a part of the usability test.
We are using a generated and randomized word list created by Dr. David Travis [33]. The
subject is asked to read through all the words and select all words that best describe the
experience with the application. From the selected words are five adjectives highlighted
that later will become the basis of the post-test interview questions where the selected
words can be explained and discussed more. The metrics received from the questionnaires
are presented in aword cloudwhere the font size of eachword is directly proportional to the
number of times a word was selected by participants. The words presented are only from
the five highlighted words selected by the user. From this can the opinion and reflection
from the participants easily be viewed, showing what users perception of the application
was. The survey used is presented in Appendix E.

3.5.4 Lookback
For our interviews we received a recommendation from our supervisor of a tool named
Lookback [34]. Lookback is a UX research tool for building better mobile applications and
websites. Lookback lets you capture the mobile screen and users face, via the front facing
camera, voice and all the touches/clicks on the device. This let us not only see their touches
and interaction, but also their emotions and expression during the task. We also combined
this with an additional camera in the periphery to get a more comprehensive view of the
interview. This camera recorded the entire session including the oral questionnaires which
creates an ability for us to replay the interview and not be committed to writing everything
down.

39

3. Methodology

3.5.5 Structure
All interviewswere conducted in a equal structured fashion. The participant was first asked
to choose the platform that they felt the most accustomed to (iOS or Android) and was then
given two mobile phones of the same brand and model based on this choice. One mobile
phone contained the React Native application and the other the native application. The
starting phone was selected through a predetermined order with Lookback installed, where
the order was simply switched for every new participant. For every application the user
tested Lookback recorded the whole session. For our interview process we constructed a
use case that would force the user to interact with most of the application in a time effective
manner. The use case was structured as following:

• Select the Munich office

• Select a board size of 12

• Shake to continue

• Play the game

• When a match occurs, choose Mail and then navigate back to the application

• Play until end and return to the setup screen

For each of these tasks the participant was orally asked a Single Ease Question, rating the
difficulty of the task performed 1 to 7. After the use case was completed the participant
was handed the System Usability Scale and asked to fill it out. Subsequently the Wordlist
was presented and asked to be filled out. All this was then repeated for the second mobile
phone with the other application, executed in the exact same order without the participants
knowing which platform they were testing.

When both use cases were completed we asked the participant to reflect and elaborate
on the different scores and words selected in the surveys. If any questions had arose from
the questionnaire or if we had any uncertainties of the responses it was also discussed. The
participant were also asked to reflect on the systems and deliver a final conclusion on the
experience and their differences. At the end the participant was given both applications
side by side, asked to interact and talk about what their impressions were with both sys-
tems next to each other. As a last question the participant was asked if they could identify
which system was native and motivate their choice.

For the interviews an invitation was sent out internally at Netlight to all employees at
the Stockholm office covering over 500 people. Wewere not making any selection or prior-
itizing, but simply following the service policy first-come, first-served. A conference room
located at Netlight’s office in Stockholm was booked for the meetings. For convenience
and flexibility, a whole day was also booked for the possibility of drop-in testers.

40

Part II

Development

41

Chapter 4
Logical Stories

In this part we will describe our process when it came to developing the application, break-
ing it down into stories for a better overview of our process. Every Story will include a
time summary and commentary on how the development process has been. For our first
iteration we tried to follow the motto "Simplest and fastest implementation possible". This
had a direct impact on the design of the interface, as we focused on design in our second
iteration. The time appended to every Story is the effective time and does not include any
breaks.
The first survey was conducted early in the process and can be viewed in Appendix B.
These responses serve as basis for our selection of native functionality.

The native development was divided by the two of us, one covering iOS and the other
Android. React Native however was a combined development, often involving pair pro-
gramming and alternatively going separate ways, but then merging solutions. The order
in which we implemented the systems also alternated for every new Story, starting with
native implementation first and React Native implementation second, then switching and
implementing React Native first for the second Story. However, to maintain a consistent
structure, we have chosen to always present the systems in the same order for every Story
below.

4.1 Login
Story 1 - Login. Contains the task of connecting to Netlights REST API via a HTTPS
connection. The user is authenticated with corresponding username and password. If the
network is available and a correctly formatted input is provided then a HTTPS POST is
sent to the API. A response code is then returned by the server. If the response is OK (200)
the user will be logged in and a token is provided used for accessing employee data. An
error message is provided if the user is Unauthorized (401) or Forbidden (403).

43

4. Logical Stories

React Native
Total time: 5 hours and 45 minutes
Quick Summary: The first 2 hours and 30 minutes were spent learning the environment
and familiarizing with the React Native mindset through development of the shell for the
Story (two input fields and a button). The next 2 hours consisted of learning about the
REST API: what to send, how to send and what we received from a correct message.
Lastly the remaining 1 hour and 10 minutes consisted of error handling when connection
was lost or wrong credentials were used. All areas were pretty straightforward, the main
reason for the time can be contributed to our non-existent experience of this framework.

iOS
Total Time: 6 hours and 15 minutes
Quick Summary: Just like React Native this was almost an uncharted territory, so the
first 2 hours and 30 minutes were spent in the same manner, setting up the user interface
and altering the mindset to Swift development. With knowledge of the REST API most
time was spent for parsing JSON (JavaScript Object Notation) and then navigating to the
next page with this retrieved information. This did not come as easily as first predicted,
but was managed in the end through extensive searches on the web. Also an unanticipated
problem of centering all components contributed to this time, which has not been present
in older versions of Xcode.

Android
Total Time: 5 hours 45 minutes
Quick Summary: With former experience in Android development there was no need for
acclimatization to the same degree as in the aforementioned developing environments, but
there were still some spaces of knowledge that needed to be filled. Most time was spent
with a library that we had no former experience with, helping to make the asynchronous
call to the REST API, namely RetroFit2 [35]. This would facilitate future development
regarding scaling and introducing new calls to the API and receiving JSON data.

4.2 Information retrieval
Story 2 - Information retrieval. It contains the task of retrieving information from a remote
server. Using the token from previous Story to download the all the employee information
from Netlight.

React Native
Total Time: 2 hours 45 minutes
Quick Summary: For Story 2 we decided to go the same route as Story 1 and work in
parallel on the same task and later on merge our progress. The Story was fairly similar
with the previous Story of retrieving information, only that the amount of data was larger

44

4.3 Internal storage

and formatted differently. This Story required very little focus on GUI and we could there-
fore focus on the task of retrieving all employees from the REST API. After 2 hours and
14 minutes we had a working retrieval and could display any employee information we
wanted. The last 30 minutes were spent turning the information into a scrollable list, for
a better overview of the result. The only bump in the road for this Story was the structure
we had in our previous declaration of the class from Story 1. The reason for this was our
inexperience in React Native forcing a wrong structural decision for the task. With some
refactoring of the code and some new features the application worked smoothly.

iOS
Total Time: 2 hours 15 minutes
Quick Summary: In this Story we used a framework called Alamofire, which is a library
that enables easy asynchronous information retrieval and parsing which was more than
welcome for this task [36]. The first 30 minutes included installing and fixing issues that
arose with this. But after getting over the hump everything was pretty easy. The final
problem was considered a blunder and concerned displaying the profile picture. If the
employee selected did not have a picture it simply displayed nothing, which resulted in
questioning of the code instead of realizing this problem.

Android
Total Time: 1 hour 45 minutes
Quick Summary: The large amount of time spent on the previous Story 1 and using the
library RetroFit made this task easier. RetroFit is a Type-safe HTTP client for Android
and with the use of a serialization library named gson was the conversion from JSON text
to java object very easy [37]. The time spent on this Story was reduced as a result of the
implementation of the previous Story. Although we experienced some issues regarding
the conversion from JSON to a POJO (Plain Old Java Object), was it later solved.

4.3 Internal storage
Story 3 - Internal storage. During this Story we store the information retrieved in Story
2 to the mobile devices’ internal memory. For security reasons we are not storing any
sensitive information such as password or the token received from the API. Only a list of
all employees containing public information such as email address and name are stored.
This is done for improved user experience, eliminating the task of login for the user.

React Native
Total Time: 2 hours 45 minutes
Quick Summary: The approach was to create a new class that checks if data has been
stored and depending on the result either opens the login screen or the setup screen. The
class FetchStoredData handles the connection to the internal storage via an AsyncStorage

45

4. Logical Stories

class. The implementation of storage was simple and easy to understand. An issue that
emerged was how to handle the navigation from the FetchStoredData View because it
should only forward information to the next View. We received some help from a Netlight
employee who has previous experience in JavaScript and the problem was solved.

iOS
Total Time: 5 hours 30 minutes
Quick Summary: Using Core Data for internal storage in iOS turned out to be a bigger
challenge than expected. Mainly because when we initiated the project we did not check
the "Use Core Data"-box that would have made the whole experience a lot faster. The first
2 hours and 34 minutes were spent going in circles, following various tutorials that were
dated. After giving up an afternoons work we began anew the following morning. Now
everything went much faster and after 2 hours we had a working internal storage. The last
40 minutes were spent refactoring the code, making it more readable.

Android
Total Time: 3 hours
Quick Summary: All the data downloaded was stored temporarily in a Java structure
converted from JSON to POJO, we now needed to store it permanently. One approach
was to keep the structure and save it complete with a database, but a simpler solution was
found. Since a library was and the structure for it was set up for the ability to convert
JSON to Java objects, were it easier to permanently store the JSON file in internal storage.
One issue we had was how to get the original JSON file before it was converted to a Java
object by the library RetroFit. The issue was solved and minor changes in the structure
was needed before the Story was complete.

4.4 Interaction with sensors
Story 4 - Interaction with sensors. This Story includes implementation of hardware func-
tions such as GPS and accelerometer. We select the closest Netlight office, proximity wise,
based on coordinates of the user. We also implement a way of recognizing a shake gesture
based on the accelerometer by using a threshold value based on the x,y and z-values in the
accelerometer.

React Native
Total Time: 8 hours 30 minutes
Quick Summary: When implementing GPS we found that React Native had a GPS mod-
ule that could be utilized for both iOS and Android. It retrieved both the latitude and lon-
gitude for the user and with this we tried two different paths; one that would use Google’s
implementation of maps to get the closest office and the basic way where distances were
calculated by simply using distance between two points. Importing and using Google

46

4.5 Animation

Maps turned out to be a challenge and so the naive way of looking up coordinates for
all offices available and then calculating the minimum distance was deemed the best way.
Accelerometer on the other hand turned out to be an issue with compatibility for the plat-
forms. For iOS there existed an available library, but the same did not exist for Android.
This put us in a new position when testing the React Native environment. We knew native
Android has the capability to access their sensors so our goal was to write native Android
(Java) code which would be able to build and run in React Native. The first module we
created was an Android text notification and it was a success, the next step was to include
the sensors. An issue that arose was to create a callback when a sensor was changed. It
was later solved and React Native includes two different accelerometer solutions regarding
the system context. So after 2 hours we had a functioning React Native iOS application
with Android taking about 8 hours and 20 minutes to complete.

iOS
Total Time: 2 hours and 15 minutes
Quick Summary: ImplementingGPS for iOSwas a breeze once you get over the challenge
of dealing with CLLocations. The first 1 hour and 29 minutes were spent getting the
underlying mechanisms (GPS and accelerometer) to work and the last 38 minutes were
dedicated to the choice of nearest office. Since coordinates for offices had previously been
looked up, during React Native the development time was also shortened.

Android
Total Time: 2 hours
Quick Summary: Since we had an Android module in React Native with native code to
access the sensors were it not a problem just copying that to the native Android application,
taking only 13 minutes to complete the part. The remaining task to access the GPS was
fairly simple when you have done a research on the subject. We choose to utilize the
Google Play Service for location access and an own implemented function to calculate the
distance between the offices from the coordinates.

4.5 Animation
Story 5 - Animation. Utilizing animations within the application. The animation itself is
a grid of boxes which flip themselves when touched. If two boxes are flipped in a consec-
utive order and they contain the same value then they will stay in this flipped state for the
remainder of the game; if the values differ then they will both simultaneously flip back to
the initial state.

React Native
Total Time: 17 hours 30 minutes
Quick Summary: When we started working with React Native we found a library for flip

47

4. Logical Stories

animations that was said to work with both Android and iOS.We found this library lacking,
in terms of control. For an extended period of time we tried implementing the logic with
the functions and callback provided, in hope of completing the Story. What we found,
after hours of head scratching and wasted efforts, that the library simply was not sufficient
enough for our intentions. So we edited the library after our needs, which in retrospect
should have been the initial approach. We implemented variables and callbacks to our
main view and could finally mark this Story finished. The other large implementation was
to create a working Grid layout to handle the cards. A library was used but small issues
with the layout and mapping of cards were troubling, resulting in longer development time.

iOS
Total Time: 3 hours 45 minutes
Quick Summary: The biggest struggle for implementation of iOS was finding the right
way of presenting a grid. Getting the actual animation of flipping boxes to work was a
breeze since there are several tutorials available online. After game logic also was added
there persisted a problem of centering the grid layout. This was achieved by calculating
the height of the device screen and then giving the collection a margin offset based on this.

Android
Total Time: 10 hours 30 minutes
Quick Summary: The development of the animation for Android experienced several
issues and setbacks resulting in the long development time. At first we started with a
fragment animation where the whole fragment worked as a card. This was troubling and
the result was to only flip the image for the card. We also had issues with the grid layout,
trying different solutions. The last and most time consuming issue that we experienced
was that the first card in the grid was not clickable due to reinitiation. The issue was later
solved but a lot of time was spent on debugging this behavior.

4.6 Other applications
Story 6 - Other application. Capabilities of launching other applications. When a match
occurs in the memory game the profile information along with the ability to call, sms,
email or add the contact information is shown. So for this story we tested the ability to
launch these applications from the application itself.

React Native
Total Time: 2 hours 30 minutes
Quick Summary: To be able to open other applications on both Android and iOS, using
the same codebase, we found a library called Linking. The only issue was that it was only
usable in React Native version 0.20 and above and our project only had version 0.19. We
came to the realization that an upgrade was justified, but in previous attempts of upgrade

48

4.6 Other applications

we had experienced errors and then simply reverted the changes. This time we made more
of an effort on debugging and a solution was found fairly quick within the hour, so the
new version was now 0.21. For adding contacts we had to use a whole other library called
Contacts, since Linking did not provide methods for this. The implementation of this took
30 minutes and so we had completed our first iteration of React Native.

iOS
Total Time: 3 hours
Quick Summary: Opening other applications with Swift is easy, just specify an URL and
open it. So for instance, using the phone is opened with the string: "tel://12345". The time
mostly reflects the issue of saving the contact information, more specifically if you want
to open up the Contacts application in editing mode with some prefilled fields. For iOS
9 there exists a Contacts framework, compared to the old implementation AddressBook
which is more unstructured. After 35 minutes everything was working: making a call, text
and adding contact (without opening up the application in editing mode). The remaining
2 hours and 25 minutes were spent trying implement this last step. We decided after this
time that, because of React Natives limited contact capabilities, simply adding the contact
(without editing mode) would suffice.

Android
Total Time: 45 minutes
Quick Summary: The ability to open other applications is fairly simple on Android. You
can start a new application based on some pre-set tags from Android. If the "EMAIL" tag
is set will Android provide the user with all applications available on the system to perform
the task. The user can then select the preferred application or set a default application that
on next occasion will launch immediately. This is handled very simple and easy from An-
droid’s side, minimizing the work for developers, contributing to a fast implementation.

49

4. Logical Stories

50

Chapter 5
UX Stories

The next step in our development meant UX and aesthetical implementation. By sepa-
rating the logic and UX development into two parts we believed a clearer picture of the
effort required was achieved. With the logical implementation done we were in for some
light touch-up implementation, except for some hiccups along the way that meant some
restructuring of the code.

For this part we have not included source lines of code, only time consumed for each
Story. This is because of the previously mentioned restructuring, which proved to produce
a very inconsistent result, that did not reflect the effort put in.

5.1 SetupView
Story 1 - SetupView. The first Story concerns the setup screen as can be seen in Figure
3.4. For this screen includes creating a board size selection to be able to select a board (6,
12 or 18) and an office selection containing the name of the office with an image from the
corresponding city and number of employees. It also includes the ability to swipe between
the offices. There was also some structure implementation needed to be improved for the
ability to sort employees for the offices and select a random number of employees that will
be included in the created game.

React Native
Total Time: 8 hours
Quick Summary: The first task was to create a board selection with three buttons. This
was not as simple as expected. The structure we went with included an update to the whole
state whenever a button was pressed andwas somethingweweren’t completely happywith,
but settled for. The office selection was implemented by a library we found that worked
with both Android and iOS. We made some small modifications and had a functioning

51

5. UX Stories

selector. What took time was figuring out how to get the selected office, which proved to
be quite difficult with the structure we had set up. We finally solved it after some hours of
implementing different callbacks.

iOS
Total Time: 10 hours
Quick Summary: Working with Storyboards has been somewhat of a challenge. It started
as a small obstacle that was overcome. Or so we thought. Storyboards is very forgiving
until you want to add a more complex structure. The layout editor is built in such a way
that supports all screen sizes and this lead to confusion. The layout of preview was nothing
like the layout of the application. Without a deeper understanding of Storyboards, many
hours were spent in limbo. After some reading and testing we finally understood this visual
editor and the next problem could be dealt with, office selection. This was not as easy as
first predicted. Some hours were spent here as well, working with tutorials that only bared
a smaller resemblance to the problem. The last hour was spent adding more attributes to
the Employee data structure, since that had been left out in previous stories.

Android
Total Time: 10 hours 15 minutes
Quick Summary: The main obstacle of Story 1 was the component created to swipe be-
tween different offices. We had no similar experience within the subject so major time was
spent on searching for a good approach. A solution was found but needed a lot of mod-
ifications both for implementation and for the layout to make it fit dynamically for every
screen. The total time for only implementing the swipe locations were 6 hours with a lot of
them spent on solutions that in the end was not usable. The other tasks was boardSelection
which was fairly simple taking only an hour. With the remaining part being the structure
modifications of the data due to new variables and a new list for every office. A large part
of this was how to send a custom object to another activity. Hours was spent on finding
a good solution and the question was also discussed internally at Netlight. The solution
found laid the foundation for other activity’s and Stories.

5.2 ShakeView
Story 2 - ShakeView. The profile images for the employees selected to be a part of the
game are downloaded in the background. During this will the user be presented with clear
instructions to perform a shake motion. If the ongoing download of profile images are not
completed will a progress bar be presented asking the user to wait.

React Native
Total Time: 4 hours
Quick Summary: The underlying structure we set up for shake gesture included two dif-
ferent versions of the same function, differing on the platform used. This called for a little

52

5.3 GameView

bit of circumventing when implementing the callback of shake recognition. The first ap-
proach was using promises, which proved to be insufficient when it came to the Android
structure, so this idea was scratched after some implementation and switched out for a
more straightforward prop callback, that was successful for both platforms. The issue here
was that React Native had not yet chosen a clear callback structure to use.

iOS
Total Time: 2 hour
Quick Summary: With new found understanding of Storyboards everything went by
quickly. The shake screen has a simple design, just two text fields and a progress bar.
Adding these elements and aligning them was easy and time was spent doing the back-
ground work, i.e. downloading all the images required and saving them in the objects
that are sent to the next screen. The logic of choosing the default images was created as
a simple check. Checking whether or not the image data was empty, rendering either an
employee’s profile picture or a default colored background with the employees username
centered. All in all, it was a quick Story.

Android
Total Time: 3 hours
Quick Summary: The layout of the shake screen was simple and was finished in a couple
of minutes. The large part was how to download the employee images and cache them
properly for usage in the game screen. An issue that appeared was the problem to pass the
downloaded profile images to the next Activity without causing an ’OutOfMemoryError’.
It was thrown because the images needed to be sent were too large when selecting a large
board. The issue was solved by compressing the images before sending them and on the
other screen decompress them. The other problem was how to create a default image for
employees without a profile image. The response status from the REST call was checked
and if it was not ’OK’ a default image with the employees username was created.

5.3 GameView
Story 3 - GameView. This Story mainly concerns the design of the cards in the board, fur-
ther more using the usernames of the flipped cards to check whether a match has occured.
When a match has taken place the employee information is packaged and then sent to the
following screen.

React Native
Total Time: 3 hours 45 minutes
Quick Summary: This Story proved to be harder than expected. First we needed an over-
haul of the previously implemented card-structure. Then came downloading images, or
more specifically checking if the image was available. After some reading and trial and

53

5. UX Stories

error printing, we found a bug on the Android system of React Native that gave us unfore-
seen problems with JSON conversion of the received body when a picture was null. This
required some ingenuity and we simply used the HEAD method of the HTTP-protocol,
but that was done after some hours of trying to locate and fix the problem on the Android
side. This solution circumvented the problem and the response header was all we needed
when deciding if a default picture was to be used or not.

iOS
Total Time: 1 hour 30 minutes
Quick Summary: With everything already set up, the Story required very little additional
code. The pictures were downloaded in the previous Story and the cards were simply
supplied with the employee information. The time here was spent on the internal memory
structure of employees.

Android
Total Time: 1 hour
Quick Summary: TheActivity did not include any large changes, only to change the cards
from the previous set default image to the new downloaded profile image and also prepare
the data for the subsequently MatchView. A redesign was also justified since the design
and size of the cards did not match the other platforms.

5.4 MatchView
Story 4 - MatchView. The MatchView is a transparent overlay of GameView and will
present the employee that has beenmatched in the game. The view contains the employee’s
name, level and profile image. The user also has the option to call, text message, mail or
add the person to his/her private phone book.

React Native
Total Time: 3 hours 15 minutes
Quick Summary: Implementing the match structure was pretty straightforward. Here we
used manual insertion of the items and added a helper class for the action logic, to achieve
more readable code. The problem here consisted of adding the screen over the game when
a match was found.

iOS
Total Time: 3 hours 45 minutes
Quick Summary: The time spent during this Story concerned finding the best approach
of displaying the MatchView overlay. The design and layout of MatchView was not a
complicated matter, but took some time since a dynamic method with enumeration of

54

5.5 FinishView

creating the buttons was chosen. In retrospect, a more static approach could have been
used, which would have resulted in shorter time consumption, but this method opens up
for future expansion of actions.

Android
Total Time: 1 hour 15 minutes
Quick Summary: Almost all time was spent on making the XML layout look as intended.
Making the overlaying structure was not difficult with Android’s dialog class. Getting the
layout correct and structuring the component caused some trouble but was later solved.

5.5 FinishView
Story 5 - FinishView. To finish the game we added an additional screen, composed of static
text messages and a return button. When the button is clicked the user will finish the game
and return to the SetupView, where a new game can be initiated.

React Native
Total Time: 1 hour 45 min
Quick Summary: The overlay modal was similar to the MatchView Story with just some
few design changes. The time was spent on composing a correct navigation via the return
button displayed on the overlay. The navigation previously created needed some changes
to be able to clear the top and start a new game from setup screen. It was also a initial step
on creating a navigation for the application.

iOS
Total Time: 1 hour 45 min
Quick Summary: Navigating backwards was something we left out until the very last
Story. The ability to navigate forward was in place, but backwards required some thinking.
The issue here consisted of making the setup screen the root, even when the user had
used the login screen. This was solved by setting the setup screen as the navigations root
whenever it was loaded.

Android
Total Time: 30 minutes
The structure of FinishView was similar to MatchView, time was spent on making the
layout look as intended. The navigation was also implemented creating a return button
and making the SetupView the new root by clearing the history stack.

55

5. UX Stories

56

Part III

Result

57

Chapter 6
Online Survey

A short summary of the results from the online survey is presented below, described in
Section 3.3.1, where we received around 40 responses from employees at Netlight.

The first question of the survey concerned the users operating system. From the re-
sponses can we see that it is close between Android and iOS, with 19 for Android and 21
for iOS, also with an honorable mention of one Windows phone user.

For our second question we asked:
"Would you rather use an app instead of a website? If so, what do you consider to be the
reason for this?"
All answers to this question overwhelmingly correspond to time and efficiency. We illus-
trate the first part of this question as a pie chart, see Figure 6.1

Yes	:	21	Responses

Yes	:	21	Responses

No	:	5	Responses

No	:	5	Responses

Depends	:	14	Responses

Depends	:	14	Responses

Yes No Depends
meta-chart.com

Figure 6.1: A pie chart representation of the answers to the ques-
tion "Would you rather use an app instead of a website?"

59

6. Online Survey

When it comes to the majority—the ones who answered Yes—everything came down
to easy interaction. Keywords found in the responses are: navigation, scrolling, smoother,
native integrated, loads faster, responsive, offline, native functions and overall experience.
Accessibility when it comes to login was also something that was mentioned throughout,
e.g. credentials being stored in a more efficient way on the mobile device and not having
to type the address to the website.

The 35% that answered Depends stated, with the exception of time, that the frequency
of usage was a determining factor for the choice. If the need was once or twice they would
rather use the website instead of an application; for more frequent usage they would prefer
the application. The functionality and purpose of the applications would also be a deciding
factor.

The minority—replying with a No—had three issues, with the required installation of
applications as their main concern. Having too many applications on their mobile device
and a feeling of being "Closed in" were the other two concerns.

Next was the question regarding what functions on a mobile device they appreciate, in
contrast to the web.
Are there any specific functions within applications that you enjoy, in contrast to websites?
The responses we received were better than expected, though the answers where very ex-
tensive. It gave us a better picture of what the user views as native functionality and ap-
preciates with mobile devices.

By analyzing the results we discovered some interesting facts. 15 people out of the
survey has answered that the main functionality they enjoy more on a mobile device is
the smoothness and flow within the application. Of these, five users specifically stated the
scroll functionality. A lot of users have also mentioned the ability within mobile devices to
keep track of the users settings and be able to continue where they left of. One participant
answered:
"The main function is that I can be logged in all the time, and the app can remember me
and my credentials".
Closely touching on the same subject have four participants said the ability to customize
the applications to suit their own needs and make it feel personal.

17 users have also mentioned the direct access to the hardware such as GPS or ac-
celerometer, but also the ability to utilize the limited amount of hardware spec on a mobile
device. One user also stated:
"An app can integrate with the hardware in a much better way".

9 other participants have also mentioned the easy access to camera, alarms, offline
support, voice control and easy multitasking.

The last question of the survey asked the participants to name some of their favorite
mobile applications when it comes to look and feel. This was included in our development
as a reference to what the users perceive as good user experience and design. The word
cloud below lists every application that was mentioned by more than one participant. The
most popular application is shown with the largest font.

60

Figure 6.2: A word cloud answering the question: What is your
favorite mobile application, more specifically when it comes to
look and feel?

Deliminators: The survey was sent out internally to a company where the majority of
employees have a broad technical experience, the result may have been different if another
target group was selected, since this is not a good reflection of the general public.
Slack is the internal communication system used by all employees at Netlight and this may
be the reason for its large representation in the word cloud.

61

6. Online Survey

62

Chapter 7
Development

In this chapter we present all results gathered from both our development phases. This
includes time consumption and source lines of codes that have been recorded throughout
development. The results have been split into two sections involving the Logical Stories
and the UX Stories.

7.1 Logical Stories
Table 7.1 contains the amount of time spent developing all Logical Stories.

Story React Native (h) Android (h) iOS (h)
1 5.75 5.75 6.25
2 2.75 1.75 2.25
3 2.75 3.00 5.50
4 8.50 2.00 2.25
5 17.50 10.50 3.75
6 2.50 0.75 3.00

Total Time 39.75 23.75 23.00

Table 7.1: Table of corresponding hours of development for Log-
ical Stories

Figure 7.1 shows the data from Table 7.1 in a grouped column, where the total time
consumption for both Android and iOS is combined and presented as a gray area behind
the columns.

63

7. Development

Figure 7.1: Graph presenting the corresponding development
time for Logical Stories

Below, in Table 7.2, are the source lines of code for each Logical Story presented.

Story React Native (SLOC) Android (SLOC) iOS (SLOC)
Initial 2458 1077 925
1 +360 +565 +264
2 -32 +406 +201
3 +92 +89 +269
4 +699 +235 +77
5 +265 +402 +256
6 +110 +84 +99

Added SLOC +1494 +1781 +1166
Final SLOC 3952 2858 2091

Table 7.2: Table of corresponding source lines of code for the
development from initiation and all logical Stories

Figure 7.2 presents the data from Table 7.2 in a line graph. Excluding the added lines
of code after the creation of each project.

64

7.2 UX Stories

Source Lines Of Code for Logical Stories
So
ur
ce
 L
ine
s O
f C
od
e

Figure 7.2: Graph presenting the corresponding source lines of
code for all Logical Stories

7.2 UX Stories

Table 7.3 contains the amount of time spent developing all UX Stories.

Story React Native (h) Android (h) iOS (h)
1 8.00 10.25 10.00
2 4.00 3.00 2.00
3 3.75 1.00 1.50
4 3.25 1.25 3.75
5 1.75 0.50 1.75

Total Time 20.75 16.00 19.00

Table 7.3: Table of corresponding hours of development for UX
Stories

Here below, in Figure 7.3, is the time spent developing each UX Story presented in a
grouped column, where the gray area behind the columns represents the combined devel-
opment time of Android and iOS.

65

7. Development

Figure 7.3: Graph presenting the corresponding development
time for UX Stories

7.3 Comparison
The end-product can be seen in Appendix F. The applications is presented as a collection
of screenshots for each screen, where they are taken from the two different platforms, iOS
and Android.

Figure 7.4 presents the total time consumption for Logical Stories, UX Stories and the
combined time. Android and iOS is shown as a stacked grouped column to visualize the
time comparison better.

Figure 7.4: Graph presenting the total development time

66

Chapter 8

Performance

In this chapter we present the results from both Reliability and Benchmark testing.

The reliability checklist is presented in Table 8.1. Checkmarks are used if the system
completed the test unaffected. The Device Energy Saving Mode-test proved to influence
the smootheness in rendering of React Native Android animations and is therefore marked
x.

Test React Native Android React Native iOS
Incoming and Outgoing SMS
Incoming and Outgoing calls

Incoming Notifications
Cable Insertion and Removal
Network Outage and Recovery
Device Energy Saving Mode x

Table 8.1: Table showing the outcome of the test cases performed
on React Native for both Android and iOS.

Our benchmark tests conducted on the final product can be seen in Table 8.2. The
values for CPU are gathered at the high points of consumption. TheMemory consumption
is an average value that the application is using during the entire test session. We have not
included our results from network or battery tests, since these metrics were found to be
irrelevant and did not add anything to our comparison.

67

8. Performance

Test Android React Native Android iOS React Native iOS
CPU 10% 35% 21% 45%
RAM 32 MB 46 MB 25 MB 42 MB

Application Size 14.6 MB 18 MB 24.8 MB 7.9 MB

Table 8.2: Table presenting the results of selected benchmark
tests.

68

Chapter 9

Interviews

In this chapter we present the compiled result from out interviews, described in Section
3.5. We received a total of 11 participants for the interviews which we were pleased with
since we projected between 10-15 participants. During the interview we used three differ-
ent surveys for each participant to answer and create a concrete result base. The other part
includes the feedback participants contributed with during the test in the form of oral dis-
cussions. From this we gathered some very useful information and future improvements
of the applications. At the final stage, when the test was completed, we asked the users
how they felt about the systems and if they noticed any differences.

The first thing that almost all of participants expressed was the large similarities in
the systems and that they did not notice any differences. But when the participants were
presented with both the systems side-by-side and had the ability to feel and compare the
systems they fairly quickly discovered differences. The first screen they had the ability to
compare was the setup and many of them noticed that the office selection was slightly slow
and in some cases lagging for React Native. Some also noticed that the buttons used to
switch board size had different colors when it was focused. During the shake screen did
no participant have any comments to add, but regarding the succeeding game screen were
several of the participant attentive of the card animation. What they noticed was React
Natives inability to save images, causing the profile image to download during the flip an-
imation and in some cases causing the card to be white before the image has downloaded.
The participants on the React Native Android platform also discovered some bad perfor-
mance on the flip card animation. The final question that the participants answered was
if they after the ability to test the systems side-by-side could identify which system was
React Native or native platform. All of the participants made the correct choice. Their
decision was based on the above mentioned deviations.

69

9. Interviews

9.1 SEQ

In the graph below, Figure 9.1, are the results presented from the Single Ease Question
questionnaire, shown as a grouped columns for each task. Each group consists of the
different systems that were developed and used during the interviews: iOS, React Native
iOS, React Native Android and Android. A more detailed description can be found in
Section 3.5.1.

Figure 9.1: The average score given for each task

The standard deviation for the different tasks within the same system is presented in
Table 9.1.

Task Android RN Android iOS RN iOS
Office Swipe 0.75 0.82 1.10 0.55
Board Size 0.82 1.17 0.45 0
Shake 0.82 0.75 1.79 1.64
Game 1.26 1.05 0 0.89
Mail 2.04 1.63 0.45 0
Quit 0.82 0.41 0 0

Table 9.1: Table of standard deviation of the SEQ score for the
different systems

Figure 9.2 shows the average Single Ease Question-score from each participant is pre-
sented as grouped column for each user. The colors are representative of the system used
in each of the interviews.

70

9.2 SUS

Figure 9.2: The average score given by each participant

9.2 SUS
The graph below, Figure 9.3, presents the total averaged score from the System Usability
Scale, shown as four columns where the color represents the different systems used in the
interviews. The average SUS score according to Jeff Sauro in "A practical Guide to the
SystemUsability Scale" is 68 [32]. The score can then be divided into different percentiles
presented as A-F. Even though a SUS score can range from 0 to 100, it isn’t a percentage.
A score of 70 would mean that it is just above the average 50%, the grades can be viewed
below in Table 9.3. A more detailed description can be seen in Section 3.5.2.

A

B

C

D

F

System Usability Survey (SUS)

Sc
or
e

Figure 9.3: The total averaged score given for each system

The standard deviation of the responses from the Single Usability Scale for the different

71

9. Interviews

systems is presented in Table 9.2.

System Standard deviation
iOS 10.52
RN-iOS 9.78
Android 7.81
RN-Android 8.90

Table 9.2: Table of standard deviation of the SUS score for the
different systems

Grade SUS score System
A+ 95-100
A 93-94
A- 90-92 iOS (90.5)
B+ 87-89 Android (87.1), RN-iOS (88.5)
B 83-86 RN-Android (85.8)
B- 80-82
C+ 77-79
C 73-76
C- 70-72
D+ 67-69
D 63-66
D- 60-62
F 0-59

Table 9.3: Table of corresponding SUS score with the grade

Figure 9.4 presented the individual score from each participant in the System Usability
Scale. The score is shown as a grouped columnwith colors indicating the different systems
used in each interview.

Figure 9.4: The score given by each participant

72

9.3 Wordlist

9.3 Wordlist
The collective result from theWordlists are presented beneath in the form of a word cloud,
Figure 9.5 and Figure 9.6. Where the size of each word is directly proportional to the fre-
quency in which the words were selected by the users. The outcome was divided into two
individual word clouds where Figure 9.5 shows the shared results for both native system
and Figure 9.6 shows the complete results for React Native. A more detailed description
can be seen in Section 3.5.3.

Figure 9.5: A word cloud presenting the most frequently selected
words when describing the native platforms

Figure 9.6: A word cloud presenting the most frequently selected
words when describing the React Native platform

73

9. Interviews

74

Chapter 10
Discussion

We have divided our discussion into six sections, delving further into the questions that
are outlined as Goals in Problem Formulation, Section 1.1.

10.1 Utilization of Hardware Sensors
Mobile applications work very close with the hardware and its functions, utilizing these
unique possibilities that exists on mobile devices. Using hardware functionality, such as
camera and vibration, enriches the user experience by making it both easier and better.
This is something that is lacking on websites, often because it can differ vastly depending
on what platform the user is located on.

One of our goals for this thesis included an investigation into React Native’s capabilities
of utilizing these hardware sensors. We used an online survey, see Chapter 6, to help
identify two hardware sensors that could be implemented in our applications. The choice
of only two sensor was done because of our limited time for development, narrowing the
scope of our application. The survey concluded that accelerometer and GPS were the most
used hardware sensors when it came to mobile devices. For our development we included
a Logical Story that contained the implementation of these functions, namely Story 4 -
Interaction with Sensors.

The results in Chapter 7 show a spike in the development time during Story 4, as can
be seen in Figure 7.1. This higher time consumption pertains to the difficulties we faced
when implementing the accelerometer, more so than the GPS. We can also see that this
time is even greater than both native applications put together, outlined as a gray area in
the background. The time consumption here was mostly spent on bridging native Android
code to React Native, since a library for the accelerometer did not exist at the time. This
bridging is also shown in Table 7.2, with this Story containing the most added lines of
code.

But we would expect these time consuming tasks to decrease as the framework receives

75

10. Discussion

more updates, libraries and patches.

10.2 Interruption Handling
To investigate React Native’s interruption handling we set up a fairly simple test on the
different platforms, outlined in Section 3.2.2. The results shown in Chapter 8 reveal a
single error on React Native Android’s Energy Saving Mode. This was marked with a ’x’
because of the decrease in animation performance. The rest of the tests are marked with
a check mark since we did not experience any drop in performance or any other problems
during execution.

10.3 Performance
Performance is split into three subsections, for a better overview and concise discussion
regarding the results we received.

10.3.1 CPU
We can see a significant difference between the native systems and React Native when
looking at the CPU usage in Table 8.2. We found that the CPU usage is fairly stable when
in idle mode, as only minor percentage changes occur. Since the application does not use
any push notifications or other parts requiring connection will the application be idle in
parts when not used. The CPU usage peaks at the flipcard animation in GameView and
the loading of SetupView, this is expected since they are image and resource heavy parts.
We can see that React Native shows a higher CPU usage than both the native systems, this
is due to the animation part when access to native functions is crucial and affects perfor-
mance tremendously.

10.3.2 Memory
The memory usage can be dependent on were the application is deployed. A phone with
larger resolution will use larger images resulting in a higher value for the memory con-
sumption. It should not be compared between the two platforms, but within the same
device for a more accurate representation, where we found consistently larger memory us-
age from React Native. It’s also interesting to note that on iOS, this value is almost double
compared to the native platform.

10.3.3 Application Size
We also see a significant difference for iOS and React Native iOS in application size in Ta-
ble 8.2. This is partially due to us using Swift, which means that the entire Swift library is
embedded in the application file. Further inspection of this file reveals that the framework

76

10.4 User Interface

library for Swift is about 17.3 MB for our project. If we were to subtract all Swift libraries
this would leave us with an application size of 7.5 MB, much smaller than the original 24
MB seen in the Benchmark Table. Roughly about the same size as React Native iOS, but
that is of course without any native iOS frameworks at all.

The application sizes for Android is fairly similar with native Android 3.4 MB smaller
than React Native. The main part in the Android APK-file are classes of 8 MB and 5 MB
of resolution files such as images and design elements. The React Native application has
a smaller folder class with 4.3 MB, but has a large part for the libraries. This part mainly
consists of libraries for React conversion to a runnable native Android application.

10.4 User Interface
From our interviews we received a resounding answer regarding the similarities between
the user interfaces. Amajority of the participants could not differentiate React Native from
the native application by simply looking at them. This is something we also experienced
when developing, the innate ability that React Native possesses of creating a native exte-
rior. The end product was not identical, but even we had problems distinguishing them.

10.5 User Experience
The feedback from the interviews, that at first glance it was hard to differentiate the two
systems, was followed by a 100% guessing rate when it came to identifying the systems
once they were used next to each other. This situation describes almost all interviews we
held. That the system in question was not easily identifiable until the other system was
introduced right next to it. Differences in animation smoothness and responsiveness were
perceived as the biggest indicator when the applications were used simultaneously. This
criticism was mainly directed at the office selection and the card flip animation located
inside the actual memory game. It has been a recurring issue that we have known for
a while during development and have been struggling to implement equally across the
different platforms. We were therefore not surprised with the outcome and agree fully
with the participants’ assessment.

Below we have included discussions regarding rest of the methods and results from
our interviews.

10.5.1 Single Ease Question
First of all the validity and relevance of Single Ease Question come into question. Perform-
ing short and simple tasks and then rating the challenge with a number of one to seven is
not the most indicative method of why something works or not, but we would argue that
this method provides a pretty clear picture of where the advantage and problem areas re-
side. Looking at the average task score, seen in Figure 9.1, the overall lower scored tasks
are Office Swipe, Shake and Game. These results correlates with what we received in
form of oral discussion when participants were asked to motivate why they believed one

77

10. Discussion

system was native compared to the other.

Additionally we have constructed another graph, Figure 9.2, to showcase the average
SEQ score given by each participant. We believe this graph provides us with a better under-
standing of how the actual difference was perceived between the two systems, participant
by participant. Here it can be viewed that the average score given for the React Native and
native systems was almost identical when it came to the individual scoring, only differing
slightly. Participant 9 was the one who scored the most varying result for the different
systems, as seen in the graph. In the SEQ survey filled out by the participant it reveals
that the task of shaking was the only answer that differed, scoring iOS with a seven and
React Native iOS with a four. This difference in score was due to a perceived higher shake
threshold in React Native compared to native.

We can see from both graphs that the Single Ease Question survey yielded similar
results between the two systems used during each interview session, although the overall
averaged score for each task in Figure 9.1 seems somewhat scattered. We can also see
that the averaged score in Figure 9.2, although dispersed among the participants, shows a
consistently close score between the two tested systems.

10.5.2 System Usability Scale
The System Usability Scale was used in our evaluation as an overall score of the different
systems. The questions from this survey were not always completely relevant, making this
test rather impractical on some points. But we used it in a broader sense, trying to find
differences in the systems on a more official and standardized level. What can be seen in
Figure 9.3 is a consistent superior result for the native systems compared to React Native.
Just like SEQ we also presented the SUS score for each participant, gaining a better un-
derstanding of the perceived difference for each participant.

The biggest difference in score is given by Participant 8, that scored the systems equal
in the Single Ease Question survey. This participant stated that the responsiveness and
speed of animations caused this variation in scoring, commenting that the difference was
minuscule.

With the average SUS scorewe found the overall grades to differ, even though theywere
closely related, which can be seen in Table 9.3. Although different grades, the difference
between the best and the worst is only five points. The difference in grades between the
React Native applications is something we attribute to the animation setbacks of React
Native Android, as this drop in performance was reiterated numerous times. This was
also something that we were aware of and was not surprised of the outcome. But with an
application receiving a score above 70 as the accepted level did all application perform
well and have made the cut. An application rating as high as B and above would be seen
as well performing and should definitely be published. Although native Android has been
rated lower than iOS can we see that the difference between React Native and native are
equal within the same system.

78

10.6 Development

10.5.3 Wordlist
If we compare the results from the two word clouds are they at first glance very similar.
Many of the participants did not experience any difference in the systems and explicitly
said during the interview that they tried to mark the same words for both surveys.

The small differences can depend on the first impression, what comes to mind, which
we encouraged the participants to elaborate on. Another variable could be which system
they received first, making the second survey differ in aspects of what they had previously
learned by using the first system.

When taking a closer look at the word clouds we notice some words that establish a
difference between the systems. Five participants found the native platform Fast compared
to none for React Native andwe also found one participant who answered with the antonym
Slow for React Native.

For the native platform we also found words as Responsive, Clear and Understand-
able which can’t be viewed for the React Native platform. But in comparison we found
words as Simple and Fresh stand out for React Native. This is a very similar responses
and only varies marginally in the word selections.

React Native has also received some less positive reviews that we can’t find for the
native platforms, such as Annoying and Unpredictable. It displays the users’ require-
ments on a system and that even if there are small differences the user will notice them
and consequently reduce their rating of the application.

The result should still be considered in a positive light since the majority of the par-
ticipants seem to feel that there is no difference in the systems and would prefer either
one.

10.6 Development
When starting this project neither of us had any major experience in JavaScript nor React.
A lot of the issues we faced had the origin in us not knowing how the structure of React
should be set up. We have on some occasions been forced to ask for help from our fellow
colleagues at the office for help with JavaScript. They have, without major problems, been
able to understand and help us in our situation, showing us how effortless it is for a de-
veloper with previous knowledge in JavaScript and React to not only understand, but also
contribute to the project. The threshold from knowing JavaScript to start programming
in React Native is low if we compare it to our own experience when adapting from Java
to Android. We found this conversion harder due to a whole new Activity lifecycle and
layout managers with Android XML that needed a new mindset.

Our biggest challenge during the development has been the animations of card flip.
Although animations have been smooth with iOS, there has been significant problems
with rendering on the Android side. This was solved with React Natives lifecycle meth-
ods, where implementation was needed to make underlying modules decide whether to
update or not, thus heavily influencing the rendering work done and directly impacting the
smoothness of said animations. Controlling these functions is of course a strength if used

79

10. Discussion

properly, but can be a hassle when you are forced to even reflect upon something that is
done so seamlessly on the other platforms.

The actual application result, from our point of view, still needs improving though.
The libraries we used were in some cases lacking the specific functions we needed, but
were created by independent users, not with an official Facebook stamp of approval. So
the initial approach we used of simplest first lead to our frustration in development when
dealing with the UX-development. This aside, the amount of code in our project that is
shared between the platforms is nothing less than astounding. If we look at the Added
SLOC-row in Table 7.2 we see a clear advantage of shared logical lines of code, where
React Native contains fewer lines of code than Android, but executable on two platforms.
The time consumption is also impressive were React Native is more efficient than devel-
oping to both native platforms. It can be seen in Figure 7.4 that React Native during Phase
2 (UX) is similar to iOS regarding the development time, then it should be remembered
that a Android application is also produced.

10.6.1 Community
One of the major strengths in React Native is the open source community. Contributing to
the React Native development and supporting the employees at Facebook with bug fixes
and new ideas. To this day have over 750 developers been a part of the development of
React Native [38]. We would even venture to say that this community is the strongest
advantage React Native has. The community frequently contributes and helps this product
blossom, thus making it apparent that it is not only Facebook who wants this framework
to become great, but also the community as a whole. The community is also contributing
with free components and modules, available for anyone to include in their application.
React Native for Android is very new to the market with its release September 2015 and
iOS more than a year earlier. The head start that iOS has received is most noticeable in
the amount of external libraries and modules created by the community.

This accessibility has been tricky since the libraries do not always work as intended or
equally across both platforms. Since there is no control of the libraries, the use is at own
risk, whereas Facebook controls and decides what features should be implemented or not
in the official React Native release. This has in some case resulted in us using an existing
iOS library, but needing to create our own for Android. It is a great feature (if something
is missing you can always extend native code), but it’s time consuming, seen in the Figure
7.1 Story 4 (Sensors).

10.6.2 Developer Support
Although Facebook has an extensive documentation of React Native, it is sometimes not
sufficient. Online questions and solutions from other independent programmers is a vital
part of the development process, opening up other perspectives to the issues, at least when
you are new to the framework. This is something that is missing for React Native as the
tool is practically untouched compared to the giants like Android and Swift, where you
can expect to find multiple solutions and discussions for the same issue. For example, a
problem we faced during development was using the state variables in an efficient way.

80

10.6 Development

It was hard to get a good understanding regarding the best approach for updating these
variables throughout underlying modules and using callbacks efficiently for communica-
tion between parent and child views. Since the documentation was fairly limited regarding
best usage of states, callbacks and lifecycles, it were hard to figure out which the "right
way" to go was.

Even if the time consumption looks very promising for React Native in Figure 7.4, it
can be misleading. The total time spent during the design phase does not factor in the
copious amount of time that bug-fixes and small adjustments required. These debugging
periods can partially be attributed to our inexperience, but we would argue that this is a
consequence of the unstructured approach the documentation yields. "This section is more
experimental than others because we don’t have a solid set of best practices around call-
backs yet" is an example of this, quoted from the React Native website [39].

10.6.3 Potential Errors
The potential errors from the interviews can be traced back to the sampling size. With
only six participants testing Android and only five testing iOS, it is hard to argue that
these figures are an absolute truth. But for SUS it has been shown that a sample size of
five, the sample mean is within six points of a very large sample SUS score 50% of the time
[40]. Even though we had a small sample size the result could still get close to the actual
SUS score in more than half of the cases. As can be seen in 9.2 are the standard deviation
not so big, with the largest of iOS with 10.52. An even smaller standard deviation would
of course be better but with the small sample size we have are the results good.

Looking at the standard deviation from the Single Ease Question survey in Table 9.1,
we see a pretty scattered result. Android had a consistently high deviation, as well as
React Native Android, for every task. This shows an uncertainty when it came to setting a
score for the completed task, or at least a non consensus when it came to the difficulty. In
retrospect, we realized that the tasks were too easy altogether, which made the scoring a
tad confusing for the participants. But since we were comparing between the systems, the
scoring was almost equally scattered, as seen in the table. What we found, despite only
having a handful of testers, was that the conversation and thoughts on the applications were
pretty similar for every interview. This is something we figured was useful, not relying on
SEQ score for a definite answer, but serving as a catalyst for this vital conversation.

81

10. Discussion

82

Chapter 11

Conclusion

A conclusion regarding React Native is something that encompasses more than just the
final product. In our thesis we included the developer’s side of it all, an often forgotten
part when it comes to the output. React Native is something that thrives on the restlessness
and willfulness of the community, the people that selflessly contribute time and ideas to
make React Native a successful framework. We firmly believe that if the environment in
which developers spend their time is welcoming and supporting, then it would spring about
more products in this framework. But just like we mentioned, this is a two-way street, the
end product must be something that the general public would use, and in the same sense
the framework needs to contribute with a friendly environment for developers.

11.1 Developer Impression

The biggest readjustment we faced was JavaScript and React coupled with React Native’s
way of thinking. Moving away from Object Oriented Programming and closing in on
module implementation ’callbacks and promises, states and render methods’. Here we
faced question marks regarding which path was the wisest, were the documentation proved
insufficient.

For developers the threshold from knowing JavaScript to start programming in React
Native is low compared to other systems, making it easy for developers to be apart and
contribute to a new project fast. The React Native implementation also shows a smaller
time consumption than Android and iOS combined, thus proving a more time efficient
option than creating two native applications.

83

11. Conclusion

11.2 User Experience
What we found in our interviews was an overwhelming consensus, that the differences
were minuscule. Users found React Native’s capabilities of producing a superficial replica
close to perfect and did not notice any difference from a native application. There are only
minor differences in the surveys regarding usability SUS and SEQ. These results are also
reflected in the wordlist were the users are homogeneous with only small changes in their
selection.

A closer look at the results shows us a slightly worse score for React Native. With
problems according to the test participants, residing in the functionality of three compo-
nents, Shake, Office Selection and Card Flip. Two of them involving animations, which
were issues we struggled with during development and would even venture to write off
as inabilities from our side. Note that everything worked, but not performing identically.
Which we believe is caused by the one-year head start that React Native iOS has over React
Native Android.

11.3 System Performance
During the implementation of hardware sensors did we experience React Natives easy im-
plemented connection and approach to access mobiles hardware sensors. The issue we
encountered was the lack of an accelerometer for React Native Android, were another side
of React Native was revealed, namely the possibility of native implementations. When a
library is not provided by React Native or a function needs native control the user can by
writing native code, develop their own module, creating a more modifiable and customiz-
able environment.

The measured performance from all systems are similar with only minor differences.
The native platforms performance regarding animations are slightly better which is some-
thing we have been struggling with during the development phase and it is also a part users
have commented on. We believe that this is due to the short time React Native Android has
been out on the market compared to React Native iOS and are according to us requiring
some improvements in the performance area.

11.4 Recommendation
After developing and experiencing the results from the different frameworks first hand, it
is still not easy to give a clear recommendation. We would argue for a more situational
recommendation. This is because of the very early stage React Native is in at the moment,
where the progress in the framework and knowledge from team members might dictate
usage.

For us, the prior knowledge of JavaScript is the definite determining factor when it
comes to deciding whether to develop an application in either native or React Native. This
is because we disregard the perfomance metrics, since the CPU and RAM usage is in an

84

11.4 Recommendation

acceptable range. And the hurdles one faces with components and responsiveness is some-
thing we strongly believe can be solved or even avoided if prior knowledge of JavaScript or
React already exists. If you have a team with knowledge in JavaScript or React we would
definitely recommend React Native.

If experience in native platforms already exists then the migration to React Native can
be confusing at times, but far from impossible. Trading in visual editing for performance
management in form of React lifecycles, auto-generated classes and design patterns for
a simple text editor and Facebook’s insufficient documentation. This needed change in
mindset can lead to small inconsistencies and unforeseen issues throughout the project.
Many of the issues that we faced during development can be narrowed down to this inex-
perience in React and the JavaScript language.

With no experience in either of the above would we recommend starting with React if
you would like a fast and easy way to deploy two systems. The learning curve of React
Native compared to native is fast. React Native enables quick prototyping at a very high
initial velocity since the rules for doing something is not forced upon the developer and
these regulations can be perceived as cumbersome when starting out with native.

For native however, the connection between UI and logic takes some time of getting
used to, opposed to the fast and seamless React Native with its UI-code placed in the same
class. But with this you can loose the structure that comes with a visual layout editor
which, can be something efficient and powerful. This question in trade off is something
that can be reduced to the need of visual complexity in the application to develop. If the
application itself only needs basic functions and basic visual elements, then React Native
might be the way to go.

For more intricate visual graphics, maybe think twice and research React Native’s ca-
pabilities on these particular tasks. There always exist the possibility to extended React
Native with native code and native views, and also integrate well with other controllers.

85

11. Conclusion

86

Chapter 12
Future work

Although our research has solely focused on apps regarding smartphones could this be
expanded. Tablet is a platform we have left untouched mainly because of the time frame
limiting the project size. The market of tablets and user base are big would it be a cred-
itable path to follow. It is possible to use React Native applications on tablets, but how
well does it perform in comparison to mobile, are some interesting questions that could
examine. React Native has recently implemented support for development in Apple tvOS,
but not the complete feature set as in React Native for smartphones. Still an interesting
market with better and faster performance in SmartTVs.

At the F8 Developer conference 2016 Facebook (the same company behind React Na-
tive) announced that both Microsoft and Samsung are committed to bring Microsoft’s
Windows 10 and Samsung’s Tizen to React Native. This would open a new playground
for React Native with two major players on the market supporting the system. It would
also mean that the developer can create applications for the Universal Windows Platform
and for Samsung’s Tizen which mostly powers their Smart TVs and smartwatches.

React Natives user base and interest are increasing every day, with growing amount of
contributors and partners, will it be interesting to follow the journey ahead.

87

12. Future work

88

Bibliography

[1] VisionMobile Ltd. (2015). Developer Economics: State of the Developer Nation Q3 2015 London,
Great Britain: VisionMobile.

[2] Adobe Systems Inc. (2016). Adobe Phone Gap. Retrieved January 28, 2016, from http://
phonegap.com/

[3] Appcelerator Inc. (2016). Mobile App Development Platform & MBaaS | Appcelerator. Retrived Jan-
uary 28, 2016, from http://www.appcelerator.com/

[4] Xamarin Inc. (2016).Mobile AppDevelopment&AppCreation Software - Xamarin. Retrieved January
28, 2016, from https://xamarin.com/

[5] Facebook Inc. (2016). React Native | A framework for building native apps using React. Retrieved
January 28, 2016, from https://facebook.github.io/react-native/

[6] Apple Inc. (2016). Apple - Press Info - Apple Reports Record Fourth Quarter Results. Retrieved January
28, 2016, from http://www.apple.com/pr/library/2015/10/27Apple-Reports-
Record-Fourth-Quarter-Results.html

[7] Rivera, J. Meulen, R. (2015, August 20). Gartner Says Worldwide Smartphone Sales Recorded Slowest
Growth Rate Since 2013. The Gartner

[8] Apple Inc. (2016). Swift - Overview - Apple Developer. Retrieved January 28, 2016, from https:
//developer.apple.com/swift/

[9] IDC Research, Inc. (2016). IDC: Smartphone OS Market Share 2015, 2014, 2013, and 2012.
Retrieved January 28, 2016, from http://www.idc.com/prodserv/smartphone-os-
market-share.jsp

[10] Facebook Inc. (2016). A JavaScript library for building user interfaces | React. Retrieved February 1,
2016, from http://facebook.github.io/react/

[11] Facebook Inc. (2016). React.js Conf 2015 Keynote - Introducing React Native | Engineering
Videos | Facebook Code. Retrieved February 1, 2016, from https://code.facebook.
com/videos/786462671439502/react-js-conf-2015-keynote-introducing-
react-native-/

89

http://phonegap.com/
http://phonegap.com/
http://www.appcelerator.com/
https://xamarin.com/
https://facebook.github.io/react-native/
http://www.apple.com/pr/library/2015/10/27Apple-Reports-Record-Fourth-Quarter-Results.html
http://www.apple.com/pr/library/2015/10/27Apple-Reports-Record-Fourth-Quarter-Results.html
https://developer.apple.com/swift/
https://developer.apple.com/swift/
http://www.idc.com/prodserv/smartphone-os-market-share.jsp
http://www.idc.com/prodserv/smartphone-os-market-share.jsp
http://facebook.github.io/react/
https://code.facebook.com/videos/786462671439502/react-js-conf-2015-keynote-introducing-react-native-/
https://code.facebook.com/videos/786462671439502/react-js-conf-2015-keynote-introducing-react-native-/
https://code.facebook.com/videos/786462671439502/react-js-conf-2015-keynote-introducing-react-native-/

BIBLIOGRAPHY

[12] Facebook Inc. (2016). F8 2015 - React Native and Relay - Bringing Modern Web Tech-
niques to Mobile | Engineering Videos | Facebook Code. Retrieved February 1, 2016, from
https://code.facebook.com/videos/931163756933706/f8-2015-react-
native-and-relay-bringing-modern-web-techniques-to-mobile/

[13] GitHub, Inc. (2016). facebook/react-native: A framework for building native apps with React. Re-
trieved February 1, 2016, from https://github.com/facebook/react-native

[14] Occhino, T. (2015). React Native: Bringing modern web techniques to mobile [blog post]. Retrieved
February 1, 2016, from https://code.facebook.com/posts/1014532261909640/
react-native-bringing-modern-web-techniques-to-mobile/

[15] International Organization of Standardization (2010). ISO 9241-210: Ergonomics of human-system
interaction. Retrieved June 15, 2016, from http://www.iso.org/iso/iso_catalogue/
catalogue_tc/catalogue_detail.htm?csnumber=52075

[16] Albert, B. & Tullis, T. (2008). Measuring the User Experience Collecting, Analyzing, and Presenting
Usability Metrics (2nd ed.). Waltham, MA, USA: Morgan Kaufmann.

[17] Google Inc. (2016). Design | Android Developers. Retrieved January 28, 2016, from http://
developer.android.com/design/index.html

[18] Apple Inc. (2016). iOS Human Interface Guidelines: Designing for iOS. Retrieved Jan-
uary 28, 2016, fro https://developer.apple.com/library/ios/documentation/
UserExperience/Conceptual/MobileHIG/

[19] Schaaf, H (2015). Diary of Building an iOS App with React Native [blog post]. Retrieved January
28, 2016, from http://herman.asia/building-a-flashcard-app-with-react-
native

[20] Petrash, A (2015). A developer’s review of React and React Native’s use and potential [blog post].
Retrieved January 28, 2016, from http://www.ekreative.com/blog/a-developer-s-
review-of-react-and-react-native-s-use-and-potential/

[21] Lassen, A (2015). How Facebook’s React Native Will Change Mobile Apps | TechCrunch [blog
post]. Retrieved January 28, 2016, from http://techcrunch.com/2015/04/20/how-
facebooks-react-native-will-change-mobile-apps

[22] International Organization of Standardization (2010). ISO/IEC/IEEE 24765: Systems and software en-
gineering. Retrieved June 15, 2016, from http://www.iso.org/iso/catalogue_detail.
htm?csnumber=50518

[23] Nimbalkar R. (2013).Mobile Application Testing andChallenges. International Journal of Science and
Research (IJSR). Retrieved January 29, 2016, from http://www.ijsr.net/archive/v2i7/
MDIwMTM1OA==.pdf

[24] Google Inc. (2016). Performance Profiling Tools | Android Studio. Retrieved January 29, 2016, from
http://developer.android.com/tools/performance/index.html

[25] Zhang X. (2001). Application-Specific Benchmarking. PhD Thesis, The Division of Engineering and
Applied Sciences, Harvard University, Cambridge, MA, USA. http://www.eecs.harvard.
edu/~syrah/application-spec-benchmarking/publications/thesis.pdf

[26] Apple Inc. (2013). Performance Tools. Retrieved January 29, 2016, from https://developer.
apple.com/library/ios/documentation/Performance/Conceptual/
PerformanceOverview/PerformanceTools/PerformanceTools.html

[27] Google Inc. (2016). Google Forms. Retrieved February 1, 2016, from https://www.google.
com/forms/about/

90

https://code.facebook.com/videos/931163756933706/f8-2015-react-native-and-relay-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/videos/931163756933706/f8-2015-react-native-and-relay-bringing-modern-web-techniques-to-mobile/
https://github.com/facebook/react-native
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=52075
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=52075
http://developer.android.com/design/index.html
http://developer.android.com/design/index.html
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/MobileHIG/
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/MobileHIG/
http://herman.asia/building-a-flashcard-app-with-react-native
http://herman.asia/building-a-flashcard-app-with-react-native
http://www.ekreative.com/blog/a-developer-s-review-of-react-and-react-native-s-use-and-potential/
http://www.ekreative.com/blog/a-developer-s-review-of-react-and-react-native-s-use-and-potential/
http://techcrunch.com/2015/04/20/how-facebooks-react-native-will-change-mobile-apps
http://techcrunch.com/2015/04/20/how-facebooks-react-native-will-change-mobile-apps
http://www.iso.org/iso/catalogue_detail.htm?csnumber=50518
http://www.iso.org/iso/catalogue_detail.htm?csnumber=50518
http://www.ijsr.net/archive/v2i7/MDIwMTM1OA==.pdf
http://www.ijsr.net/archive/v2i7/MDIwMTM1OA==.pdf
http://developer.android.com/tools/performance/index.html
http://www.eecs.harvard.edu/~syrah/application-spec-benchmarking/publications/thesis.pdf
http://www.eecs.harvard.edu/~syrah/application-spec-benchmarking/publications/thesis.pdf
https://developer.apple.com/library/ios/documentation/Performance/Conceptual/PerformanceOverview/PerformanceTools/PerformanceTools.html
https://developer.apple.com/library/ios/documentation/Performance/Conceptual/PerformanceOverview/PerformanceTools/PerformanceTools.html
https://developer.apple.com/library/ios/documentation/Performance/Conceptual/PerformanceOverview/PerformanceTools/PerformanceTools.html
https://www.google.com/forms/about/
https://www.google.com/forms/about/

BIBLIOGRAPHY

[28] Beck K.; et al. (2001). Manifesto for Agile Software Development. Retrieved February 1, 2016, from
http://www.agilemanifesto.org/

[29] Peyrichoux, I. (2007). When Observing Users Is Not Enough. Retrieved January 28, 2016, from
http://www.uxmatters.com/mt/archives/2007/04/when-observing-users-
is-not-enough-10-guidelines-for-getting-more-out-of-users-verbal-
comments.php

[30] Sauro, J. (2012). 10 Things To Know About The Single Ease Question (SEQ). Retrieved April 22,
2016, from https://www.measuringu.com/blog/10-things-SUS.php

[31] Sauro J. & Dumas J. (2009). Comparison of Three One-Question, Post-Task Usability Questionnaires.
In CHI 2009, Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (p.
1599-1608). New York, NY, USA.

[32] Sauro J. (2011). A Practical Guide to the System Usability Scale: Background, Benchmarks & Best
Practices Denver, CO, USA: CreateSpace Independent Publishing Platform.

[33] Dr. Travis D. (2008). Measuring satisfaction: Beyond the usability questionnaire. Retrieved April 22,
2016, from http://www.userfocus.co.uk/articles/satisfaction.html

[34] Lookback (2016). Super simple user research with Lookback. Retrived January 29, 2016, from
https://lookback.io/

[35] Ruesch J. (2013). Android Async HTTP Clients: Volley vs Retrofit. Retrieved February 9, 2016, from
https://instructure.github.io/blog/2013/12/09/volley-vs-retrofit/

[36] Github Inc. (2016). Alamofire. Retrieved February 16, 2016, from https://github.com/
Alamofire/Alamofire

[37] Github Inc. (2016). Google-Gson. Retrived February 16, 2016, from https://github.com/
google/gson

[38] Github Inc. (2015). Contributors to facebook/react-native. Retrieved May 11, 2016, from https:
//github.com/facebook/react-native/graphs/contributors

[39] Facebook Inc. (2016). Native Modules – React Native | A framework for building native apps us-
ing React. Retrieved April 28, 2016, from https://facebook.github.io/react-native/
docs/native-modules-ios.html

[40] Jeff Sauro. (2013). 10 Things To Know About The System Usability Scale. Retrieved June 14, 2016,
from http://www.measuringu.com/blog/10-things-SUS.php

91

http://www.agilemanifesto.org/
http://www.uxmatters.com/mt/archives/2007/04/when-observing-users-is-not-enough-10-guidelines-for-getting-more-out-of-users-verbal-comments.php
http://www.uxmatters.com/mt/archives/2007/04/when-observing-users-is-not-enough-10-guidelines-for-getting-more-out-of-users-verbal-comments.php
http://www.uxmatters.com/mt/archives/2007/04/when-observing-users-is-not-enough-10-guidelines-for-getting-more-out-of-users-verbal-comments.php
https://www.measuringu.com/blog/10-things-SUS.php
http://www.userfocus.co.uk/articles/satisfaction.html
https://lookback.io/
https://instructure.github.io/blog/2013/12/09/volley-vs-retrofit/
https://github.com/Alamofire/Alamofire
https://github.com/Alamofire/Alamofire
https://github.com/google/gson
https://github.com/google/gson
https://github.com/facebook/react-native/graphs/contributors
https://github.com/facebook/react-native/graphs/contributors
https://facebook.github.io/react-native/docs/native-modules-ios.html
https://facebook.github.io/react-native/docs/native-modules-ios.html
http://www.measuringu.com/blog/10-things-SUS.php

BIBLIOGRAPHY

92

Part IV

Appendix

93

A Timeplan

D
ev
el
op
m
en
t

Te
st
in
g

R
es
ea
rc
h

A
st
he
tic
 D
ev
el
op
m
en
t

O
pi
ni
on

Fi
na
liz
at
io
n

Ja
n
20
16

Fe
b
20
16

M
ar
 2
01
6

A
pr
 2
01
6

M
ay
 2
01
6

Ju
n
20
16

Figure A.1: Our timeplan for this project

95

B. Online Survey

B Online Survey

2/3/2016 Mobile Application

https://docs.google.com/a/student.lu.se/forms/d/1hTlaVr01Iae48-qRVE6gklGyNqtZIDTGf7XwOLklntg/edit 1/2

Mobile Application
We are writing a master thesis on the subject of cross platform development. We want to find
out what makes the mobile applications popular. By this survey are we gathering information
about why people use an application on a mobile device instead of using the webpage.

* Required

1. Which operating system are you using? *
Mark only one oval.

 Android

 iOS

 Windows Phone

 Other

2. Would you rather use an app instead of a website?
If so, what do you consider to be the reason for this?

3. Are there any specific functions within applications that you enjoy, in contrast to
websites?

4. What is your favorite mobile application, more specifically when it comes to look
and feel?

Figure B.1: The online survey used to identify native behavior

96

C Single Ease Question Survey

SEQ
Generellt, hur svårt eller lätt var det att utföra uppgiften?

1. Välja kontor
Markera endast en oval.

1 2 3 4 5 6 7

Väldigt svårt Väldigt lätt

2. Välja brädstorlek
Markera endast en oval.

1 2 3 4 5 6 7

Väldigt svårt Väldigt lätt

3. Skaka
Markera endast en oval.

1 2 3 4 5 6 7

Väldigt svårt Väldigt lätt

4. Spela
Markera endast en oval.

1 2 3 4 5 6 7

Väldigt svårt Väldigt lätt

5. Mail
Markera endast en oval.

1 2 3 4 5 6 7

Väldigt svårt Väldigt lätt

6. Avsluta
Markera endast en oval.

1 2 3 4 5 6 7

Väldigt svårt Väldigt lätt

Figure C.1: Single Ease Question survey used in each interview

97

D. System Usability Scale Survey

D System Usability Scale Survey

System Usability Scale Survey

1. I think that I would like to use this system frequently.
Mark only one oval.

1 2 3 4 5

Strongly Disagree Strongly Agree

2. I found the system unnecessarily complex.
Mark only one oval.

1 2 3 4 5

Strongly Disagree Strongly Agree

3. I thought the system was easy to use.
Mark only one oval.

1 2 3 4 5

Strongly Disagree Strongly Agree

4. I think that I would need the support of a technical person to be able to use this
system.
Mark only one oval.

1 2 3 4 5

Strongly Disagree Strongly Agree

5. I found the various functions in this system were well integrated.
Mark only one oval.

1 2 3 4 5

Strongly Disagree Strongly Agree

6. I thought there was too much inconsistency in this system.
Mark only one oval.

1 2 3 4 5

Strongly Disagree Strongly Agree

Figure D.1: System Usability Scale Survey used in each inter-
view, Page 1

98

Powered by

7. I would imagine that most people would learn to use this system very quickly.
Mark only one oval.

1 2 3 4 5

Strongly Disagree Strongly Agree

8. I found the system very cumbersome to use.
Mark only one oval.

1 2 3 4 5

Strongly Disagree Strongly Agree

9. I felt very confident using the system.
Mark only one oval.

1 2 3 4 5

Strongly Disagree Strongly Agree

10. I needed to learn a lot of things before I could get going with this system.
Mark only one oval.

1 2 3 4 5

Strongly Disagree Strongly Agree

Figure D.2: System Usability Scale Survey used in each inter-
view, Page 2

99

E. Wordlist Survey

E Wordlist Survey

Participant #: YourCompanyName

o Simplistic o Exciting o Bright
o Entertaining o Time-­consuming o Approachable
o Impressive o Trustworthy o Boring
o Friendly o Satisfying o Old
o Ambiguous o Ineffective o Consistent
o Relevant o Unattractive o Hard to Use
o Fun o Usable o Counter-­intuitive
o Creative o High quality o Energetic
o Compelling o Inconsistent o Reliable
o Accessible o Engaging o Intimidating
o Cutting edge o Effective o Credible
o Cluttered o Desirable o Predictable
o Professional o Illogical o Too technical
o New o Confusing o Powerful
o Overwhelming o Business-­like o Rigid
o Motivating o Time-­saving o Faulty
o Innovative o Stressful o Organised
o Flexible o Familiar o Convenient
o Limited o Advanced o Simple
o Fresh o Clean o Frustrating
o Clear o Intuitive o Obscure
o Ordinary o Fast o Dull
o Comprehensive o Attractive o Expected
o Annoying o Incomprehensible o Slow
o Busy o Appealing o Controllable
o Contradictory o Meaningful o Sophisticated
o Stimulating o Unconventional o Non-­standard
o Unpredictable o Understandable o Straightforward
o Empowering o Distracting o Efficient
o System-­oriented o Misleading o Responsive
o Complex o Difficult o Easy to use
o Poor quality o Useful o Awkward
o Vague o Irrelevant
o Effortless o Unrefined
o Inadequate

Step 2: Now look at the words you have ticked.
Circle five of these words that you think are most descriptive of the product.

Step 1: Read over the following list of words. Considering the product you have just used, tick those words
that best describe your experience with it. You can choose as many words as you wish.

Figure E.1: Word list used in each interview

100

F Comparison

Figure F.1: Setup screen. Upper Left: iOS, Upper Right: Re-
act Native iOS, Lower Left: Android, Lower Right: React Native
Android

101

F. Comparison

Figure F.2: Shake screen. Upper Left: iOS, Upper Right: Re-
act Native iOS, Lower Left: Android, Lower Right: React Native
Android

102

Figure F.3: Game screen. Upper Left: iOS, Upper Right: Re-
act Native iOS, Lower Left: Android, Lower Right: React Native
Android

103

F. Comparison

Figure F.4: Match screen. Upper Left: iOS, Upper Right: Re-
act Native iOS, Lower Left: Android, Lower Right: React Native
Android

104

Figure F.5: Finish screen. Upper Left: iOS, Upper Right: Re-
act Native iOS, Lower Left: Android, Lower Right: React Native
Android

105

	I Introduction
	Background
	Problem Formulation
	Goal
	Thesis Deliminators

	Thesis Outline
	Work Distribution

	Theory
	The Industry Today
	React
	React Native

	Methodology
	Research
	Testing
	Real User Experience
	Reliability
	Benchmark
	Interaction with Sensors

	Survey
	Online Survey
	Type of participant
	Number of participants
	Comparing data
	Counterbalancing

	Integration
	The Application
	Development Process

	Interviews
	Single Ease Question
	System Usability Scale
	Wordlist
	Lookback
	Structure

	II Development
	Logical Stories
	Login
	Information retrieval
	Internal storage
	Interaction with sensors
	Animation
	Other applications

	UX Stories
	SetupView
	ShakeView
	GameView
	MatchView
	FinishView

	III Result
	Online Survey
	Development
	Logical Stories
	UX Stories
	Comparison

	Performance
	Interviews
	SEQ
	SUS
	Wordlist

	Discussion
	Utilization of Hardware Sensors
	Interruption Handling
	Performance
	CPU
	Memory
	Application Size

	User Interface
	User Experience
	Single Ease Question
	System Usability Scale
	Wordlist

	Development
	Community
	Developer Support
	Potential Errors

	Conclusion
	Developer Impression
	User Experience
	System Performance
	Recommendation

	Future work
	References

	IV Appendix
	Timeplan
	Online Survey
	Single Ease Question Survey
	System Usability Scale Survey
	Wordlist Survey
	Comparison

