
Intrusion Detection System by
Statistical Learning

Julian Kroné, Meris Bahtijaragic

MASTER’S THESIS | LUND UNIVERSITY 2016

Department of Computer Science
Faculty of Engineering LTH

ISSN 1650-2884
LU-CS-EX 2016-26

Intrusion Detection System by
Statistical Learning

(Using keyword features to classify HTTP requests)

Meris Bahtijaragic
dat11mba@student.lu.se

Julian Kroné
dat11jkr@student.lu.se

June 29, 2016

Master’s thesis work carried out at Digifort AB.

Supervisor: Pierre Nugues, Department of Computer Science, Faculty of Engineering,
Lund University pierre.nugues@cs.lth.se

Markus Millbourn, Chief Executive Officer, Digifort Sverige AB
markus@digifort.se

Examiner: Jacek Malec, jacek.malec@cs.lth.se

mailto:dat11mba@student.lu.se
mailto:dat11jkr@student.lu.se
mailto:pierre.nugues@cs.lth.se
mailto:markus@digifort.se
mailto:jacek.malec@cs.lth.se

Abstract

A web server intrusion is when a user gains unauthorized access to resources.
This is often accomplished using code injection attacks. Intrusion detection
systems today often utilize regular expressions to detect code injection attacks.
Some attempts have beenmade tomerge the fields of web security andmachine
learning. However, they often simply distinguish intrusion attempts from reg-
ular requests without detailed classification.

In this thesis, we separate benign requests from malign ones by determin-
ing the intention of a request. During our process, we found that request inten-
tions are not always easily separable into good or bad. There are certain types
of requests that appear to be malicious, but are actually benign. We present a
novel approach to multinomially classify requests based on their textual rep-
resentation.

We explore three data representation methods, as well as four classification
algorithms. These algorithms are compared and their applicability is discussed
in the context of an intrusion detection system: Triggerfish. Finally, we report
results that reach an accuracy of 99.51%.

Keywords: Classification, data mining, intrusion detection, web security

2

Acknowledgements

Wewould like to thank PierreNugues, our supervisor, for his support and guidance through-
out this thesis. We would also like to thank the guys at Digifort, Markus and Henrik, for
all the data, expert advice, and coffee. Thanks to Pedregosa et al. (2011) for developing
the library, scikit-learn, which has made all of this possible. Last but not least, we would
like to thank Ylva Nilsson for reading our report and providing valuable feedback.

3

4

Abbreviations

BEN Benign

CV Cross validation

DBSCAN Density Based Spatial Clustering of Applications with Noise

DTC Decision Tree Classifier

FN False Negative

FP False Positive

IDS Intrusion Detection System

KNN K-nearest-neighbors

LOO Leave-one-out

LR Logistic Regression

RI Rand Index

SQL Structured Query Language

SVM Support Vector Machine

TN True Negative

TP True Positive

XBD XSS by design

XSS Cross-site scripting

5

6

Contents

1 Introduction 9
1.1 Background . 9
1.2 Related work . 10
1.3 Digifort and the Triggerfish platform . 11

1.3.1 Triggerfish client . 11
1.3.2 Triggerfish backend . 12

1.4 Purpose . 14
1.5 Limitations . 14
1.6 Contributions . 14
1.7 Report outline . 15

2 Approach 17
2.1 Cross Industry Standard Process for

Data Mining . 17
2.1.1 Business understanding . 17
2.1.2 Data understanding . 18
2.1.3 Data preparation . 20
2.1.4 Modeling . 22
2.1.5 Evaluation . 23
2.1.6 Deployment . 23

3 Algorithms 25
3.1 Clustering algorithms . 25

3.1.1 K-means . 25
3.1.2 DBSCAN . 27

3.2 Classification algorithms . 28
3.2.1 Decision tree . 29
3.2.2 K-nearest-neighbors . 30
3.2.3 Logistic regression . 31
3.2.4 Support vector machine . 32

7

CONTENTS

4 Evaluation Measures 35
4.1 Clustering evaluation . 35

4.1.1 Purity . 35
4.1.2 Normalized mutual information 36
4.1.3 Rand index . 36
4.1.4 F1 measure . 36

4.2 Classification evaluation . 36
4.2.1 Confusion matrix . 37
4.2.2 Learning curve . 38

5 Results 41
5.1 Clustering results . 41
5.2 Classification results . 42

6 Discussion 47
6.1 Results . 47
6.2 Possible applications . 48

6.2.1 Clients . 48
6.2.2 Backend . 49

6.3 Achievements . 49

7 Conclusions 51
7.1 Summary . 51
7.2 Future improvements . 51

7.2.1 Data set improvement . 51
7.2.2 Feature engineering . 52
7.2.3 Further hyperparameter optimization 52
7.2.4 Adding more classes . 52
7.2.5 Hybrid trees . 52

Bibliography 53

Appendix A Final Decision Tree 57

Appendix B Results 59

8

Chapter 1
Introduction

This chapter describes the context, background and purpose of the thesis. By explaining
the objectives, limitations and outlines of the report, it aims to provide an understanding
of the work carried out in order to produce the results.

1.1 Background
Web server intrusions are often accomplished by code injections. In this thesis we will
focus on two types of code injection techniques: SQL injection and cross-site scripting.

The SQL injection (SQLi) attack is considered to be one of the more severe attacks
in web security. If successful, the attacker can potentially manipulate or retrieve any data
stored in the database. Typically, it is achieved by sending a part of a SQL query as input
to an application. The injection is successful if the input is parsed as a SQL query, instead
of plain data.

This attack is generally made possible by applications mixing SQL queries with user
supplied data. For example: select text from posts where id=$id, is a
query where the parameter $id is supplied by the user. The logic of the query can be
changed by setting $id to 1 or 1=1. This results in the following SQL query being run:
select text from posts where id=1 or 1=1. The injected query will then
return all posts instead of a single post.

The cross-site scripting (XSS) injection attack targets users of a web application, more
than the web application itself. Generally, two forms of XSS exist: reflected and stored.
Reflected XSS is achieved by crafting a URL with a HTML parameter containing HTML
or javascript. Stored XSS is achieved by sending data in the form of HTML or javascript
to the web application, where it is stored. The injection attack is successful if the web
application presents this input as HTML/javascript, instead of plain text. If successful,
the attack can be used by the attacker to steal information shared between the user and
the web application. For example: authentication details, private messages, and HTTP

9

1. Introduction

Cookies. Additionally, the attack can be used to deface a website by injecting a script
which replaces the body of a web page with a message from the attacker. Detecting XSS
is made more complex by the fact that some web applications intentionally let users inject
HTML/javascript to the server. The reason behind this is to allow administrators to use
the web application to edit HTML/javascript stored on the web application. We consider
this a special case and we will handle XSS by design (XBD) as a benign form of injection.

The most usual approach to detect intrusion attempts in web applications is to use a
regular expression to identify patterns in HTTP parameters. The purpose of the patterns is
to detect code injection. Maintaining a regular expression can be a cumbersome process,
which potentially yields false positives and false negatives.

This thesis explores another approach, namely machine learning, which is a way to
recognize patterns and make predictions based on input data. There are two approaches to
group instances within the area of machine learning, clustering and classification. Cluster-
ing is an unsupervised method to group instances with similar attributes without previous
knowledge of the data, while classification is a supervised method to predict the class of a
new instance based on previously annotated data.

1.2 Related work
There have been several attempts to apply machine learning theory to the field of intrusion
detection, many with successful outcomes. This suggests that machine learning theory is
an applicable approach to separating normal requests from malicious ones.

• Wressnegger et al. (2013) explore the possibility of using n-grams as features when
trying to detect malicious requests. They compare two approaches to solve this:
Anomaly detection and Classification, where the first one is accomplished by cre-
ating a model of normality to detect abnormal requests. They also apply these ap-
proaches to numerous different datasets, where the HTTP dataset is most in line with
our thesis. As a result they achieve 100% true positives, when using an acceptance
rate of 0.01% false positives. These figures are reached using a 4-gram model to
train a binary SVM classifier.

• Cheon et al. (2013) develop a system to detect and prevent SQL injection attacks.
They extract the parameters from HTTP requests and translate them to a numerical
representation using SQL keywords as patterns. They then classify the parameters
using a Bayesian classifier. With this solution, they are able to achieve a high accu-
racy of detecting SQL injections.

These two studies share the same approach and are both applied to a binary problem:
intrusion attempt or not. To the best of our knowledge, no investigations regarding the
potential of applying these theories to systems that identify multiple classes have been
attempted. This thesis aims to minimize this deficiency by introducing a novel approach
to a common problem.

10

1.3 Digifort and the Triggerfish platform

1.3 Digifort and the Triggerfish platform
Digifort is a computer security start up founded in 2009 in Lund, Sweden. The company
offers web security services such as penetration tests, code reviews, and threat modelling.
Digifort also offers a web application IDS, Triggerfish, designed to automatically detect
intrusion attempts and provide customers with security related insights into their web ap-
plication.

The Triggerfish platform is a collection of client side libraries and server side process-
ing tools designed to detect security vulnerabilities, malicious activity and attacks aimed
at web servers. Triggerfish consists of two main working parts: the client and the backend.
Figure 1.1 shows a diagram of how these parts work together.

1.3.1 Triggerfish client
There are Triggerfish client implementations for a wide variety of web server frameworks
– for example Ruby On Rails, PHP, and Java Servlets. The primary responsibility of a
Triggerfish client is to implement so called triggers. Triggers are API calls which notify
the Triggerfish analysis server of an event. These triggers can for example be:

SuccessfulLogin Notify the Triggerfish analysis server of a successful login to the
web application.

FailedLogin Notify the Triggerfish analysis server of a failed login to the web appli-
cation.

XSSAttemptInParameter Notify the analysis server of a cross-site scripting attempt.

SQLInjectionInParameter Notify the analysis server of an attempted SQL Injec-
tion attempt.

Note that under some circumstances, triggers are called upon automatically – for example
if the Triggerfish client detects a cross-site scripting attack. The XSSAttemptInPa-
rameter is then called without the need for the trigger to be placed within the main
application logic. The full set of triggers can be found in the Triggerfish documentation
(Digifort Sverige AB, 2015).

After an event has been triggered, its context is saved by collecting the data contained
in the web request – parameters containing personal information such as personal identi-
fication numbers, passwords, and full names are filtered as configured in the client. When
the context has been collected, it is serialized as specified by a common protocol defined
both in the clients and the analysis server. The serialized event is then sent to the analysis
server for further analysis.

In order to reduce the performance overhead on the web server using the Triggerfish
client, the clients are as light as possible in terms of logic. This results in the Triggerfish
code injection detection systems being more prone to false positives than systems where
more computational time is used. Moreover, if no triggers have been called upon, no event
will be sent to the backend – this is both to reduce the load on the web server and the
backend.

11

1. Introduction

1.3.2 Triggerfish backend
The primary function of the Triggerfish backend is to process information sent from the
clients and present it in a comprehensible and useful way. This is accomplished by using a
modular architecture, where each module has a limited responsibility. The modules which
will be discussed in this section are: the analysis engine known as the analysis server, and
the presentation modules known as the frontend and the reporting service. This section
explains in detail the software architecture of the Triggerfish backend.

Analysis server
The analysis server analyzes incoming events. Events are annotated with more information
and persisted in the database, or filtered if the analysis deems the event uninteresting.

The analysis server has many features, for example:

• Geo IP lookups, to resolve which geographical location an IP address originates
from.

• Custom alarm aggregation, to group events together by custom criteria. For ex-
ample: Many failed logins from the same IP during a 5-minute interval should be
grouped together as a brute-force login attempt.

• Saving an analyzed event to the database.

Each of the features are implemented as filtors, which is a word play on the words filter
and mathematical functor. Each filtor takes an event as input and returns either an event,
modified in some way or unchanged, or nothing. The filtors are chained together, and if
one filtor returns nothing to the next filtor in the chain, the chain is broken and the event
is discarded. However, if the event makes it to the end of the filtor chain, it is saved in the
database such that the details of the events can be shown in the frontend.

Frontend and reporting service
Themain way for a customer to interact with Triggerfish is through the frontend. It is a web
application which displays the events that have been triggered by a customers Triggerfish
client. Its primary responsibility is to present the information in the form of charts, lists,
or detailed views to the user. The frontend also provides the user with means of filtering
or manipulating the information shown in the interface. Figure 1.2 shows an example of
the Triggerfish frontend.

In order to present the information, the frontend gathers its data from another module,
called the reporting service, which provides an API in the form of web resources. This API
is called upon with different parameters, which are specified by the user in the frontend
interface.

All database manipulation functions are implemented in the reporting service, for ex-
ample: collection of graph data to be displayed in the frontend, the collection of all data
regarding an event such that a customer can view a specific event, archiving of alarms and
vulnerabilities, which have in some way been amended by the customer.

12

1.3 Digifort and the Triggerfish platform

User

Frontend

Reporting Service

ServerBackend

Client

Webapp

DB

Figure 1.1: A simplified scheme of the Triggerfish architecture,
where arrows illustrate regular flow of data.

Figure 1.2: Figure showing the dashboard in the Triggerfish fron-
tend.

13

1. Introduction

1.4 Purpose
The purpose of this thesis is to provide Digifort with means of improving the accuracy of
their classifications, more specifically, to answer the following question:

Is machine learning an applicable approach to detect web server exploitation
attempts?

In order to answer this question, we have broken down the problem into several goals:

Reach an acceptable accuracy
This goal is somewhat arbitrary, an acceptable accuracy is not defined. False posi-
tives, i.e. classifying benign requests as malign, is more acceptable than the oppo-
site. Primarily, a method for measuring and comparing classification models should
be suggested. Additionally, the model needs to be able to distinguish between XSS
and XBD.

Account for model performance and size requirements
Themodels should be described in a way which makes their selection clear given the
context, in respect to performance and memory requirements. It should also be clear
if there are any trade-offs regarding model accuracy and model performance/size.

Describe how these models can be implemented into Triggerfish
It should be clear how each model could be used in the Triggerfish platform. Im-
portantly, resource constraints should be taken into consideration for each suggested
implementation.

Find a model that provides a second opinion and a degree of confidence
Compare the resulting models and find at least one that provides a measurement, in
addition to a classification, which can be used as a basis for the classification.

1.5 Limitations
This thesis aims to investigate the possibility to applymachine learningmethods to the area
of web security. The thesis is limited to threat detection, using a distinct set of algorithms
described in Chapter 3. These algorithms were chosen for their diversity, while still being
common practice. Since we only have access to test data that has previously been classified
by Triggerfish, we have opted to limit our dataset to requests classified as either XSS or
SQLi by Triggerfish, while hopefully maintaining diversity of the attacks in the dataset.
The execution and testing during the thesis has been carried out on our own MacBook
Pro’s, which has limited performance.

1.6 Contributions
We have both been involved in each step throughout this thesis to some extent, though
some parts has been more divided than others. Meris focused more on data collection,

14

1.7 Report outline

data preparation within the database and clustering exploration, while Julian has been
more involved in feature engineering, classification exploration and evaluation setup.

The report has been divided somewhat equally, though Meris has been more involved
in Digifort background and information, and contributed more in the approach chapter.
Julian has contributedmore regarding evaluationmeasure and algorithm descriptions. The
remainder of the report can be seen as equally contributed to by both parties.

1.7 Report outline
Following this chapter, the report is structured as follows:

Chapter 2. Approach describes the workflow used during this thesis, and brings up im-
portant choices taken and discoveries found.

Chapter 3. Algorithms describes the algorithms chosen to produce the values used to
evaluate the thesis.

Chapter 4. Evaluation measures describes the measures chosen to produce the details
of the thesis results.

Chapter 5. Results presents the results gained from the thesis, and provides a short de-
scription of them.

Chapter 6. Discussion evaluates the results presented in Chapter 5, and discusses their
validity and compares them to our goals. Furthermore, it proposes ways of applying
the results to Triggerfish.

Chapter 7. Conclusions summarizes the thesis and proposes future work and improve-
ments.

15

1. Introduction

16

Chapter 2
Approach

This chapter describes the process model standard we used to derive the thesis workflow.
It describes the purpose of each step, as well as the process and considerations. It also
outlines the tools used and the theory applied to produce the results described in Chapter 5.

2.1 Cross Industry Standard Process for
Data Mining

The Cross Industry Standard Process for Data Mining (CRISP-DM) is a process for de-
veloping data mining projects introduced by Chapman et al. (2000). CRISP-DM consists
of six phases: Business understanding, Data understanding, Data preparation, Model-
ing, Evaluation, and Deployment, each consisting of several tasks. It is an agile process,
where adjacent phases are often iteratively explored and implemented. Figure 2.1 shows
a visualization of the CRISP-DM process model.

2.1.1 Business understanding
The first phase is all about understanding the problem from a business point of view, back-
ground and objectives are brought up during this phase. This is also when the project plan
is produced (Chapman et al., 2000).

During this phase, we discussed the architecture of the Triggerfish platform. We came
to the conclusion that XSS and SQLi detection systems would need some improvement.
Today, a couple of libraries are used for the detection of SQL and XSS injections – when-
ever one of these libraries classifies something incorrectly, and produces a false positive,
manual intervention has to be taken. This manual intervention is either in the form of
correcting the library, or adding a manual filter containing a regular expression allowing
a specific form of payload.

17

2. Approach

Figure 2.1: A visual representation of the major phases in the
CRISP-DM process

False positives can also come in the form of XSS injections by design. For example
when editing aWordPress site, one is actually injecting HTML into an editing form. When
making a manual intervention against this specific type of payload, one must take into
context both the web resource being targeted (e.g. /wp-admin/edit.php), and the
specific parameter key pointing to the value of the payload (perhaps also that a username
is set, e.g. a logged in user is doing the injection).

The first conclusion drawn was that the objective could not be defined as “We need to
find code injections”, since some customers might have XSS, or HTML injection pages
by design. We need to draw a boundary between malicious code injections, benign code
injections, and completely benign payloads (in the sense that they are not a code injection).
Another requirement was to provide a confidence, for example in the form of a statistical
probability, in addition to a classification.

We limited the scope of the thesis to research and dataset collection, and as such we
were free to choose any machine learning software stack available. We decided on us-
ing Python in conjunction with the machine learning library Scikit-learn created by
Pedregosa et al. (2011) due to the wide variety of modelling options it offers.

2.1.2 Data understanding
The data understanding phase starts with an initial data collection, followed by data famil-
iarization activities such as data exploration, detecting interesting subsets, finding corre-
lations and form hypotheses (Chapman et al., 2000).

Initial data collection
In the Triggerfish database, only certain parts of an event are indexed. When data is indexed
in a database, it means that this data is searchable. The indexed parts are for example: event

18

2.1 Cross Industry Standard Process for
Data Mining

type, event id, classification, and time of the event – the rest is stored as a binary blob in
the database. Whenever more details are required, one must deserialize the binary blob
and extract the information required.

For this purpose we constructed a tool. This tool first uses the Triggerfish database
index to find events of a specific type. In our case, the tool collects the event id for XSS and
SQLi events and deserializes them, then extracts the HTTP request and saves it, indexed
with all parameters.

Data exploration

When a user wishes to view a certain web resource, she requests this resource (mainly
through a browser) by sending a HTTP request to the server containing this resource. De-
pending on the kind of request, and if the request is valid, the server responds with a HTTP
response.

A HTTP request follows a particular specification, as defined by Fielding et al. (1999)
and can look like this:

POST / cg i −b in / p r o c e s s . c g i HTTP / 1 . 1
User−Agent : Moz i l l a / 4 . 0 (c ompa t i b l e ; MSIE5 . 0 1 ; Windows NT)
Host : www. t u t o r i a l s p o i n t . com
Conten t −Type : a p p l i c a t i o n / x−www−form−u r l e n cod ed
Conten t −Length : l e n g t h
Accept−Language : en−us
Accept−Encoding : gz ip , d e f l a t e
Connec t i on : Keep−Al ive

l i c e n s e ID = s t r i n g&c o n t e n t = s t r i n g &/paramsXML= s t r i n g

A request starts with with a request line, followed by zero or more headers, followed
by an optional message body. At a minimum, a HTTP request consists only of a request
line, but the host header may be mandatory depending on which HTTP version is used by
the server.

The data in the Triggerfish database is structured as an event, where an event contains
both a classification, an event type and its corresponding HTTP request. The data in a
HTTP request is structured as key-value pairs, consisting of the GET, POST, header and
cookie parameters. These key-value pairs will from now on be referred to as parameters.

To better understand what makes a request malign, we consulted an expert at Digifort.
We found some examples of code injection events and tried to identify what parts of an
event needed to be inspected to draw the conclusion that it was malign. We analyzed the
contents of these events and reduced the amount of context needed to determine the intent
of the payload. We concluded that we should look at the HTTP request at the parameter
level, partly because one parameter could be a XSS attempt, and another parameter could
be a SQL injection attempt. It is only necessary for a single parameter in a HTTP request
to be malign for the whole request to be considered malign. Thus, our data should be
viewed as a collection of parameters instead of a whole HTTP request.

19

2. Approach

0 50 100 150

0

50

100

150

Number of parameters

N
um

be
ro

fr
eq
ue
sts

Figure 2.2: Ahistogram illustrating the distribution of parameters
per request.

Data description and quality
The initial dataset consisted of 1,350 HTTP requests, where at least one HTTP parameter
had either been classified as an XSS or SQLi by Triggerfish. The total number of parame-
ters was 38,801 with 4,191 unique values. Figure 2.2 shows the distribution of parameters
per request. Since there often are a large amount of parameters in a request, each request
would most likely provide at least one malicious parameter, and several benign parame-
ters. By extracting only malicious request, we would actually acquire a dataset consisting
of parameters of both malign and benign intentions.

2.1.3 Data preparation
During the data preparation phase, all the necessary steps to convert the initial dataset into
the final dataset needed by the model are covered. This is done through iterations together
with the modeling phase, since new important information about the data might surface.
Tasks such as limiting the dataset, final attribute selection, data transformation, and data
cleaning are performed during this phase (Chapman et al., 2000).

Data selection and cleaning
In order to normalize the text based data, we first had to eliminate possible HTML entities
and URL encoding, that can either be a way for an attacker to mask an attack, or done
automatically by a web browser. Since our data exploration concluded that only the pa-
rameter value could decide if a request was malign, we reduced the dataset from 38,801
key-value pairs to 4,191 by eliminating duplicates. Initially, we wanted to reduce the im-
balance of the dataset classes, even though duplicate values indicate that the values are
recurring. Later we concluded that this had another positive effect: the importance of a
specific instance is not affected by the frequency of the instance. To balance the classes in

20

2.1 Cross Industry Standard Process for
Data Mining

our dataset, we continually added more instances during the process. In the end we had
2,055 SQL, 204 XSS, 721 XBD, and 2,980 BEN.

Data construction
To facilitate and automate the evaluation process, we created a tool for annotating data.
Each instance would manually be assigned one of four classifications based on its textual
representation: XSS, SQL, XSS by design (XBD), benign (BEN). Where the latter two
are non malicious, or negative, classifications. During the annotation, we assumed that the
data consisted of a partition of four classes. In order to train a model, we had to convert
the text based value to a feature vector representing the meaning of the value. Several
approaches to this were attempted, at first a basic approach of representation called n-
grams was explored.

An n-gram is a sequence of n tokens, where a token is a predetermined number of
characters in sequence. In our case, a token is simply one character, given that the value
of a parameter is not necessarily derived from any specific natural languages. To convert
a dataset to a set of features, first a set of all the n-grams from the whole training set is col-
lected – this set corresponds to the vector space from which each instance in the dataset is
modeled after. Then each instance x, is converted to a feature vector v, where each element
in the feature vector, vi, describes the frequency, or count of the feature in the instance.
For example, given the vector space, [a, b, c], the instance aabbbca would have
the feature vector [3,3,1] – assuming that each dimension counts the occurrences of
the characters in the instance. Figure 2.3 illustrates this.

input string: a a b b b c a

vector space: [a b c]

feature vector: [3 3 1]

Figure 2.3: An illustration of how a 1-gram representation can be
derived from text.

Initially we used models with 1- or 2-grams. This allowed n-grams which occur in
SQL injection attacks to be represented. For example, in the case of a 1-grams the string
literal (’), and in the case of 2-grams the start of a comment (--). We concluded that a
combination of both 1- and 2-grams would have to be used to capture the most discrim-
inating features. This results in a quite large vector space with features that have a large
variation of discrimination. Some features, such as single alphanumeric characters, can
occur in all four classes without necessarily indicating an attack – which makes short al-
phanumeric sequences a nondiscriminating feature. Using 1-grams resulted in a model
which has 90 features. A combination of 1- and 2-grams resulted in a model with 3,533
features, which increased the time required to run the tests.

In order to decrease the number of nondiscriminating features, we studied the syntax
of injection attacks. We found that for each class we could typically expect one set of lan-
guages to be used. Some kind of SQL syntax would always have to be used to accomplish
SQL injection attacks. Typically a combination of javascript and HTML would be used in

21

2. Approach

XSS payloads, but would also occur in our negative class: XBD. Each of these languages
is precisely and finitely defined by its syntax and grammar. We took advantage of this and
collected the reserved keywords from SQL, javascript, and HTML. Then we used these
keywords as discriminating features. By extracting these features from an instance, the
class could be represented precisely. This was our final feature extraction algorithm, with
which we achieved highest accuracy and performance. Using this method, we found 166
features. Figure 2.4 shows an illustration of how this representation can be derived from
a parameter in the case of a SQLi.

input string: ’ or 1=1; --

vector space: [select from where ’ or --]

feature vector: [0 0 0 1 1 1]

Figure 2.4: An illustration of how a keyword representation of a
SQLi can be derived from text.

2.1.4 Modeling
During this phase, various modeling techniques are selected and parameters are calibrated
in order to find the optimal setting. A test design is formed to aid in assessing each model
(Chapman et al., 2000).

Modeling techniques
There is a wide variety of methods for modeling both classification and clustering prob-
lems. Since the project is constrained in timewe had to findways to pick a set of techniques
and thoroughly investigate them.

For clustering, we initially chose k-means and DBSCAN since they are both de-
scribed as general purpose algorithms, and having different approaches to the same prob-
lem. There exists a huge variety of classification models, though most of them are derived
from the same subset of core models. From these core models, we chose four different
algorithms to investigate:
Logistic regression provides a confidence measurement in the form of probability esti-

mates.

Decision tree visualizes the solution in a way that is easy to understand, furthermore it
has a low time complexity regarding classification.

K-nearest-neighbors is easy to understand.

Support vector machine is a commonly used algorithm for classification.
Some of these algorithms have hyperparameters, that can be tuned to better suit a specific
dataset. The hyperparameters for each available model were optimized iteratively with
the evaluation phase, to determine if a result was acceptable, or had the opportunity to be
improved. A more detailed description of these algorithms can be found in Section 3.2.

22

2.1 Cross Industry Standard Process for
Data Mining

Test design
Before creating these models, we had to determine how we could compare them to each
other. For the clustering models, we chose four common external evaluation criteria: pu-
rity, normalized mutual information, Rand index, and F1 measure. For the classification
models, we chose to both utilize learning curves to see the models learning capabilities,
and confusion matrices to determine exact measures such as accuracy, both average and
per-class. Chapter 4 describes the details of these evaluation measures.

2.1.5 Evaluation
As mentioned, this phase is often reached iteratively throughout the entire development
process, each time with more understanding of the problem and the data. The purpose of
this phase is to evaluate the results acquired when utilizing the test design, mentioned in
the previous section, and to decide upon how to proceed (Chapman et al., 2000).

For clustering we started out evaluating our groups manually, by simply examining the
contents of the clusters. Eventually, we streamlined this process by using the test design
we decided upon. For classification, we initially used cross-validation from scikit-learn to
evaluate the models, and decide how to tune the hyperparameters. In the end, we used the
described test design to evaluate and rank our classification models.

2.1.6 Deployment
This final phase includes the production of the final report and the final presentation. It also
includes a complete project review that mentions the development process, the evaluated
project outcome, and future project improvements (Chapman et al., 2000).

23

2. Approach

24

Chapter 3
Algorithms

This chapter describes the theory behind the clustering and classification algorithms we
have used. We explain the k-means and DBSCAN algorithms, as well as the decision tree,
k-nearest-neighbors, logistic regression, and support vector machine algorithms.

3.1 Clustering algorithms
Clustering analysis is a subset within unsupervised learning, used to detect patterns within
data. The objective of a clustering algorithm is to divide a set of instances, xn, n = 1, . . . ,N ,
into groups, ck, k = 1, . . . ,K , where the grouped instances have a higher similarity towards
each other, and a lower similarity towards instances in other groups. For our cluster anal-
ysis we chose the two commonly used algorithms k-means and DBSCAN.

3.1.1 K-means
K-means, proposed by Lloyd (1982), is a clustering algorithmwith the purpose of dividing
N instances of data, represented by vectors in I dimensions, into K clusters. The means,
i.e. the centers of each cluster, is denoted mk. The distance between the points can be
calculated using an arbitrary distance metric, d(x, y), for example Euclidean distance as-
suming that xn ∈ R and mk ∈ R. The goal is to assign a cluster to each point and minimize
the intra-cluster distance to the cluster mean. This algorithm requires the desired number
of clusters as input from the user, as it has no way of resolving this on its own. This can be
seen as both an advantage and as a disadvantage, depending on what the user knows about
the dataset.

The algorithm consists of four different phases:
1. Initialize each mean mk by selecting K values from the data domain of the points

in xn. There are a number of ways of initializing the means (Hamerly and Elkan,
2002), for example:

25

3. Algorithms

Forgy Set m to be K random observations from the data set.
Random Partition Also known as Lloyd’s algorithm. Randomly pick K values

within the domains of the data set.

In this thesis, a slightly more advanced initialization algorithm k-means++ will
be used for this step, the algorithm will be described further below.

2. Each point xn is assigned to a cluster based on the proximity defined by the distance
metric as

ck : {n|d(xn,mk) ≤ d(xn,ml), l 6= k}.

3. For each cluster, a new mean is calculated:

mk =

∑
n∈ck

xn

|ck |
,∀k. (3.1)

4. Repeat step 2 and 3 until the means have converged.

(a) Phase 1: For k = 3, 3 points
within the data domain are cho-
sen at random.

(b) Phase 2: Each point is as-
signed a cluster based on its
proximity to the mean points.

(c) Phase 3: New mean points
are calculated for each cluster.

(d) Phase 2 (iteration 2): The
k-means will iterate over step 2
and 3 until the means converge.

Figure 3.1: Illustration of the four first steps of the k-means algo-
rithm with the parameters using the Random Partition initializa-
tion method. The squares indicate the points of the given dataset,
and the circles indicate the current means (Weston.pace, 2007).

26

3.1 Clustering algorithms

The k-means++ algorithm
Thek-means++ initialization algorithmwas proposed byArthur andVassilvitskii (2007),
where it is shown that the k-means++ algorithm improves both the running speed and
accuracy of k-means. Let X be the input data set and let D(x) denote the shortest distance
from a data point, x, to the closest center we have already chosen.

1. Assign the first cluster center, c1, randomly from X.

2. Assign a new center, ci, choosing x ∈ X with probability

D(x)2∑
x∈X

D(x)2 .

In this step, data points which are further away from a cluster have a higher proba-
bility of being assigned.

3. Repeat step 2 until K cluster centers have been assigned.

3.1.2 DBSCAN
Density-based spatial clustering of applications with noise (DBSCAN), is a clustering
algorithm for spatial data, i.e. data related to space – defined within a coordinate system.
DBSCAN was proposed by Ester et al. (1996) and evaluates the density of points within
a given space. It extracts high-density areas, distinguished by a low-density boundary,
which are to be clustered together as a group. Apart from the data set, DBSCAN requires
only two parameters:

minPts is the minimum number of neighbors that a data point needs to be classified as
high-density.

eps (ε) is the maximum distance between two data points for them to be considered neigh-
bors.

The points within the data set are divided into three classifications; core, non core, and
outliers/noise. A point is a core point if at least minPts are within ε distance of it. A point
is a non-core point if it has at least one core point within ε distance of it, but less than
minPts within ε distance. Clusters are made up of core- and non-core points, where the
non-core points make up its edges. Lone data points with too few neighbors, are marked
as outliers and do not belong to any cluster. As opposed to k-means, DBSCAN does not
require to specify the number of clusters beforehand, and the algorithm has the possibility
to find arbitrarily shaped clusters.

The algorithm consists of three different phases:

Finding
Find a point, xn, that does not already belong to a cluster.

Counting
Calculate the density dn of xn where density is the number of points that are within

27

3. Algorithms

Figure 3.2: Illustration of DBSCAN density algorithm. Core
points with high-density are marked with grey, non-core points
with lower densitymarkedwith white, and outliers with lower den-
sity marked with black (Chire, 2011).

a radius of ε . If dn < minPts, continue with the next point in phase 1, otherwise
proceed to the next phase with xn as the initial core sample.

xn /∈ ck if dn < minPts
xn ∈ ck if dn ≥ minPts

(3.2)

Expanding
Gather the neighbors Nε of xn as

Nε (xn) : {xi |d(xn, xi) ≤ ε }. (3.3)

For each point xi ∈ Nε (xn), calculate the density di of xi Increase the neighborhood
set by evaluating the density of the newly visited points xi.

Nε (xn) ∪ {x j |d(xi, x j) ≤ ε } if di ≥ minPts. (3.4)

If di < minPts, xi is only added to ck as a non-core sample. When |Nε (xn)| = 0,
proceed with the next point in phase 1.

Figure 3.2 shows a simple illustration of the DBSCAN algorithm phases, where any of the
grey core samples could have been picked as the initial core sample. If any of the points B,
C, or N would have had its density calculated, the density would have been too small for
any of them to have become core samples. Figure 3.3 shows a real example of DBSCAN
using three clusters.

3.2 Classification algorithms
The objective of a classification algorithm is to identify the category a new observation
belongs to on the basis of a training set containing classified instances.

28

3.2 Classification algorithms

Figure 3.3: DBSCAN example showing three clusters, with black
outliers. Thick points are core samples, and thin points are non-
core samples (scikit learn, 2014).

3.2.1 Decision tree
A decision tree algorithm extracts key data features that can be used to distinguish one
group of instances from another. Based on these features, a tree of decisions can be built
in order to classify instances. In our implementation, we use a decision tree algorithm
called Classification And Regression Tree (CART), introduced by Breiman et al. (1984).
The measure used to determine the optimal data feature is called impurity. Below are two
common impurity variants, Gini and Entropy. pi is the probability of choosing an instance
of class i from all the instances available at the current node.

pi =
1
N
|{x j |x j ∈ ci}| (3.5)

HGini =
∑
i∈C

pi(1 − pi) =
∑
i∈C

(pi − p2
i) =
∑
i∈C

pi −
∑
i∈C

p2
i = 1 −

∑
i∈C

f 2
i (3.6)

HEntropy = −
∑
i∈C

pi log2 pi. (3.7)

To build a decision tree, the following algorithm is used:

1. The data at node m is represented by Q, each node has a split criteria θ = (j, tm)
consisting of a feature j and a threshold tm. For each node, partition the data Q into
QL(θ) and QR(θ) subsets

QL(θ) = (x, y)|x j ≤ tm
QR(θ) = Q\QL(θ).

(3.8)

29

3. Algorithms

������������������������
�������������

�������������
��������������������

��������������

����������
������������

������������������
��������������

����

�����������������������
����������

�������������
�������������������
������������������

�����

������������������������
������������

������������
������������������
������������������

������������������������
�������������
������������

������������������
�����������������

�����������������������
�������������
������������

������������������
������������������

�����������������������
�������������
�����������

�����������������
�����������������

����������
������������

������������������
������������������

����������
�����������

�����������������
�����������������

����������
�����������

�����������������
�����������������

������������������������
�������������
�����������

�����������������
������������������

����������
�����������

�����������������
������������������

����������
�����������

�����������������
�����������������

������������������������
�������������
�����������

�����������������
�����������������

����������
������������

������������������
�����������������

����������
�����������

�����������������
������������������

����������
�����������

�����������������
�����������������

Figure 3.4: An example of a decision tree using scikit-learns built
in data set, each node provides its current feature, threshold, im-
purity and sample information

2. The impurity of this split G is computed using one of the above described impurity
measures

G(Q, θ) =
nL

N
H(QL(θ)) +

nR

N
H(QR(θ)). (3.9)

3. Finally the parameters θ that minimize this impurity are selected, and the algorithm
is recursively performed for subsets QL and QR until the chosen stopping criteria is
met.

Figure 3.4 shows an example of a finished decision tree.

3.2.2 K-nearest-neighbors
The k-nearest-neighbors algorithm is a relatively simple classification algorithm. Its input
is a training set of instances which consists of I numerical features. It is non-parametric in
the sense that the distribution of these instances is irrelevant. The algorithm predicts the
class label of a new observation by finding the k nearest training set instances to the new
observation. The instance is assigned the class which is most common amongst these k
nearest neighbors. Additionally, the algorithm is unique in the sense that does not have a
training phase.

30

3.2 Classification algorithms

Figure 3.5: An example of how linear regression (left) and logistic
regression (right) differ in their probability function when using
the simpler binary classification.

3.2.3 Logistic regression
Logistic regression developed by Berkson (1944) is a classification algorithm that is harder
to visualize compared to decision trees or K-nearest-neighbors, as it has a more algebraic
approach to the problem. The algorithmmodels the probability that an instance belongs to
a particular class using a logistic function. In our case, it means that it models the proba-
bilities that a parameter belongs to each of the classes ci, where the sum of all probabilities
must be 1. Logistic regression derives from linear regression, where the probability of a
class instance is represented by the linear function

p(X) = β0 + β1X. (3.10)

Logistic regression however uses the logistic probability function

p(X) =
eβ0+β1X

1 + eβ0+β1X . (3.11)

Figure 3.5 illustrates how these algorithms finds different representations, the most impor-
tant difference is that the logistic function always stays inside the probability space [0, 1].
It also attains an S-shaped curve, which contributes to obtaining sensible predictions. The
equation in (3.11) is equivalent to another function

log
p(X)

1 − p(X)
= β0 + β1X (3.12)

where the left-hand side is called logit. As can be seen, the logistic regression model has
a logit that is linear in X. This is the reason why logistic regression is also sometimes
referred to as log-linear classification (Pedregosa et al., 2011).

The regression coefficients β0 and β1 in (3.11-3.12) are estimated using the maximum
likelihood function, based on the available training data. It chooses β0 and β1 to maximize
the function

l(β0, β1) =
∏
i∈ck

p(xi)
∏
x j /∈ck

(1 − p(x j)). (3.13)

This function utilizes Equation 3.11 and uses the available training data to map the in-
stances based on classification. The instances of one class should receive higher probabil-
ity of belonging to that class compared to the other classes instances.

31

3. Algorithms

3.2.4 Support vector machine
Support vector machines is an umbrella term for three different classifiers, the maximal
margin classifier, the support vector classifier, and the support vector machine. Each of
which is an extension of the former. All of these classifiers are based on hyperplanes
to classify instances. A hyperplane is a flat subspace that in a p-dimensional space is
represented in p − 1 dimensions, e.g. for a 2-dimensional space, a hyperplane is a line.
These hyperplanes are used by the classifiers to separate instances of different classes.
How these hyperplanes are used differ among the classifiers:
Maximal margin classifier

The maximal margin classifier (Vapnik and Lerner, 1963) is a simple and intuitive
classifier that utilizes an optimal separating hyperplane, which is a separating hy-
perplane that is placed as far away from the training instances as possible, while still
separating them into classes, i.e. maximizing the margin of the hyperplane to the
training instances. The classifier can then classify instances based on which side of
the hyperplane they lie. The training instances closest to the hyperplane are called
support vectors, since they support the hyperplane in the sense that if one of them
were moved slightly, the hyperplane would likely also have to be moved. This also
implies that other instances that are not support vectors have no impact on the sepa-
rating hyperplane. The fact that this classifier solely relies on the support vectors can
lead to overfitting when operating in higher dimensions, it also renders the classifier
unusable in the case when classes are not completely separated.

Support vector classifier
The support vector classifier (Cortes and Vapnik, 1995) reduces the impact that sin-
gle instances can have upon the hyperplane, and simultaneously allowing the classi-
fier to not have a perfectly separating hyperplane. This is done by introducing what
is called a soft margin. Instead of trying to find the largest possible margin so that
all instances is not only on the correct side of the hyperplane, but also on the cor-
rect side of the margin, the support vector classifier allows for some instances to be
within the margin, or even on the wrong side of the hyperplane. By allowing a small
reduction in training instance accuracy, a greater robustness to individual instances
can be achieved. Due to that the support vector classifier is still a linear classifier, it
can have issues when the instances have no linear boundary between classes.

Support vector machine
The support vector machine extends the support vector classifier by increasing the
feature space using something called kernels (Boser et al., 1992). The purpose of
this feature space expansion is to enable the classifier to implement a non-linear
hyperplane. Without going into to much technical detail, the solution to finding the
optimal hyperplane in a support vector classifier, only involves the inner products of
the instances. The inner product of two instances xi and x j is given by

K(xi, x j) =
p∑

k=1

xikx jk (3.14)

where K is referred to as a kernel. Equation 3.14 is linear in the features, which is
why the support vector classifier is linear. Equation 3.14 is also the same function

32

3.2 Classification algorithms

that is used by the linear kernel of the support vector machine. The linear kernel
can be changed to

K(xi, x j) = (1 +
p∑

k=1

xikx jk)d (3.15)

which is what is called the polynomial kernel. By using the polynomial kernel with
d > 1, the support vector machine can produce a more flexible boundary and there-
fore also classify instances that the linear kernel is not capable of. Another kernel
is the radial kernel which is given by

K(xi, x j) = exp(−γ
p∑

k=1

(xik − x jk)2) (3.16)

where γ is a positive constant. When the support vector classifier utilizes a non-
linear kernel such as Equation 3.15 or Equation 3.16, the resulting classifier is the
support vector machine.

Figure 3.6 shows an example of these algorithms hyperplanes.

(a)Maximummargin clas-
sifier with an optimal sep-
arating hyperplane.

(b) Support vector classi-
fier with a soft margin hy-
perplane.

(c) Support vector machine
using a polynomial kernel
of degree 3.

Figure 3.6: Illustration of the three support vector machines
(James et al., 2013).

33

3. Algorithms

34

Chapter 4
Evaluation Measures

This chapter describes the algorithms behind the measures used to produce the results in
Chapter 5. By explaining both clustering and classification measures, it aims to provide
an understanding to why these measures were used.

4.1 Clustering evaluation
The goal when clustering data is to receive a high intra-cluster similarity, while simulta-
neously receiving a low inter-cluster similarity, i.e. we want one cluster for each class in
the dataset. For small datasets, this can easily be evaluated manually by simply looking
at the contents of each cluster, but for larger datasets, this could become cumbersome. To
enable the evaluation of larger datasets, we have selected a few external evaluation crite-
ria, recommended by Manning et al. (2008), to ensure cluster quality: purity, normalized
mutual information, rand index, and F1 measure.

4.1.1 Purity
To compute purity, each cluster is given a class based on which class that is most frequent
in that cluster. Then the number of correctly assigned instances is counted for each cluster
and this total number is divided by the total number of instances N . Formally:

purity(Ω,C) =
1
N

∑
k

max
j
|wk ∩ c j | (4.1)

Where Ω = w1,w2, ... is the set of clusters and C = c1, c2, ... is the set of classifications
given to the aforementioned clusters.

35

4. Evaluation Measures

4.1.2 Normalized mutual information
The problem with purity is that it improves with an increasing amount of clusters, if we
have N clusters, then we will have the maximum purity. Normalized mutual information
(NMI) handles this by penalizing an increasing numbers of clusters. The calculation of
NMI is the following:

NMI(Ω,C) =
2 · I(Ω;C)

[H(Ω) + H(C)]
, (4.2)

where I is the mutual information, and H is the entropy.

4.1.3 Rand index
Rand index (RI), introduced by Rand (1971), sees the problem as a series of decisions,
one for each pair of instances. For each pair of instance, if these are similar and assigned
to the same cluster, they are considered a true positive (TP). If these are dissimilar and
are assigned to different clusters, they are considered a true negative (TN). Intuitively, if a
pair of dissimilar instances are assigned to the same cluster, they are a false positive (FP),
and if a pair of similar instances are assigned to different clusters, they are a false negative
(FN). RI simply measures the accuracy of these decisions:

RI =
TP + TN

TP + TN + FP + FN
. (4.3)

4.1.4 F1 measure
RI sees both types of false decisions as equally wrong, even though false negatives might
be worse. F1 measure (F1) penalizes false negatives and is evaluated using precision (P)
and recall (R):

P =
TP

TP + FP
, R =

TP
TP + FN

, F1 = 2 ·
P · R
P + R

. (4.4)

4.2 Classification evaluation
When training a model, it is always better to use as much of the available data as possible.
This however limits the testing to to be done on the same data. To learn the parameters
of a predictive function and then test the function on the same data is methodologically a
mistake. The model would remember the data and simply return the input label, producing
a false evaluation score. In machine learning, this is called overfitting. If, on the other
hand, the available data is split into one training and one testing set, the prediction will be
unbiased, but the evaluation score might end up nowhere near the true model score.

A common practice to solve both of these problems is by using a procedure called cross
validation (CV) (Mosteller and Tukey, 1968). The basic approach to CV, called k-fold CV,
splits the available data into k smaller sets of equal size, trains the model on k − 1 sets,
and tests it on the last set. This is repeated k times, until all k subsets have been used for
testing, resulting in k evaluation scores.

36

4.2 Classification evaluation

To evaluate our model, we used a particular CV procedure, called LeaveOneOut-CV
(LOO). LOO trains the model using all the instances except one i.e. for n instances it trains
the model using n−1 instances, and tests the model on the last instance. This is equivalent
to a k-fold CV where k = n. With this procedure, we were able to precisely extract the
results from the model, used to fill out the confusion matrix described in Section 4.2.1.

In addition to evaluating models based on the accuracy of the predictions, we consid-
ered how the models differ in time consumption. Since we have a time requirement in our
goals, both training and classification time is to be considered. To accomplish this, we
performed 10 simple 5-fold CV and measured the average time passed. This allows us to
evaluate complete model time, as well as accumulating deviating times.

4.2.1 Confusion matrix
We created a confusion matrix to evaluate how well the classifiers labeled the documents.
A confusion matrix is a visual representation of the exact results achieved from at least one
test, where it illustrates the actual classes of all the instances, and how they were predicted
by the model. A generic example of a confusion matrix is the binary classification based
matrix. Table 4.1 shows an example of this matrix. From this representation there are
several measures that can be used to evaluate a classifier. Some examples of thesemeasures
are: average accuracy, precision, and recall. Table 4.2 shows the confusion matrix we
used, that is based on a multi class classification.

Predicted pos Predicted neg
Actual pos True positive False negative
Actual neg False positive True negative

Table 4.1: Binary confusion matrix example

Predicted
SQL XSS XBD BEN

Actual

SQL True SQL False XSS False XBD False BEN
XSS False SQL True XSS False XBD False BEN
XBD False SQL False XSS True XBD False BEN
BEN False SQL False XSS False XBD True BEN

Table 4.2: Multi class confusion matrix example

Average accuracy
The average accuracy (ACC) of a classifier is the simplest and most intuitive way to mea-
sure its effectiveness. It calculates the average correctness of the classifications by dividing
the correct predictions with all the predictions.

ACC =
∑l

i=1
tci

tci+ f ci

l
(4.5)

37

4. Evaluation Measures

where l is the total number of classes, tc are the correct classifications, and f c are the sum
of the incorrect classifications.

Precision
Precision, or Positive Predictive Value (PPV), is ameasure of per-class effectiveness. From
all the predictions that have been made as the same class, it calculates the ratio of instances
that have been classified correctly.

PPV =
tci

ci
=

tci

tci +
∑

f ci
(4.6)

where tci are all the correct classifications of class i, ci are all classification classified as
class i, and f ci are all classifications incorrectly classified as class i.

Recall
Recall, or True Positive Rate (TPR), is another way to measure per-class effectiveness.
From all the items that belong to a class, it calculates the ratio of instances that have been
classified correctly.

TPR =
tci

Ii
=

tci

tci +
∑

I f ci

(4.7)

where tci are all the correct classifications of class i, Ii are all the instances that belong to
class i, and I f ci are all the instances of class i that have been classified incorrectly.

4.2.2 Learning curve
A learning curve (Ebbinghaus, 1913) is a graph that illustrates a measure of performance
over a varying amount of learning effort. The term learning curve is used in two different
contexts within machine learning, one concerning neural networks, and one that is more
generally adaptive. We used the general approach to learning curve, where the graph
illustrates the predictive generalization performance as a function of the number of training
examples used. Figure 4.1 shows an example of a learning curve.

We began by dividing the dataset into two sets of equal size, one training set, and one
testing set. During each iteration, we increased the dataset size used to train the classifier,
trained several models using different parts of the training set, and used these models to
predict the instances of the testing set. The average ratio of correct predictions was the
performance measure for that specific dataset size. By using a training size over a range
from 1% to 50% of the complete dataset, this created a curve that illustrates the learning
performance of the used classifier.

38

4.2 Classification evaluation

Effort

Accuracy

Figure 4.1: A learning curve illustrating the increase in perfor-
mance while the effort increases.

39

4. Evaluation Measures

40

Chapter 5
Results

This chapter presents the results of the clustering algorithms as well as the classification
algorithms explained in Chapter 3. The results are gathered using the measures described
in Chapter 4.

5.1 Clustering results
During the clustering analysis, we explored two different clustering algorithms: one that
requires the desired numbers of clusters beforehand (k-means), and one that does not (DB-
SCAN). Tables 5.1-5.2 shows the results of these algorithms. Note that we consider the
data to consist of four different groups.

As we can see from the results, the DBSCAN algorithm performs best with an epsilon
ε = 0.4. Since all our measurements agree on this, this is our optimal DBSCAN clustering.
However, the resulting numbers of clusters is 9, which is more than double the actual
number.

The k-means algorithm performs best with 6 clusters, which is closer to our inter-
pretation. This clustering also receives higher evaluation scores than the best DBSCAN
clustering, on all measures except F1 measure.

Table 5.1: Results of the clustering analysis, using DBSCAN ε
between 0.2 − 1.0.

ε Purity NMI RI F1 Number of clusters
0.2 0.8815 0.7262 0.7636 0.8601 10
0.4 0.9381 0.8077 0.8617 0.9326 9
0.6 0.8235 0.701 0.6904 0.7627 5
0.8 0.834 0.7317 0.7359 0.7705 4
1.0 0.5 0.0 0.0 0.3333 1

41

5. Results

Table 5.2: Results of the clustering analysis, using k-means with
k between 4 − 8.

k Purity NMI RI F1
4 0.9328 0.8086 0.8695 0.9144
6 0.9452 0.8462 0.9105 0.9269
8 0.9448 0.845 0.9093 0.9265

5.2 Classification results
During the classification analysis, we explored four different classification algorithms, and
three ways of representing features. Based on the evaluation measures described in Sec-
tion 4.2, we have concluded a number of results.

Figures 5.1-5.3 show the learning curves. As can be seen, the learning curves behave
as expected. With little data, we are still able to achieve a relatively high accuracy. The
models using keyword feature representation learn quicker compared to models using n-
gram feature representation.

0% 10% 20% 30% 40% 50%
Percent of data set

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

u
ra

cy

Decision Tree
KNN
LR
SVM

Figure 5.1: Learning curve of the different algorithms using a 1-
gram representation of the parameters.

Table 5.3 shows the results of the time measurements. As we can see, the decision
tree model is the fastest, independent of feature representation. Furthermore, all models
are faster using the keyword feature representation, except for k nearest neighbors where
1-gram representation is faster.

Table 5.4 shows the average accuracy of all models and feature representations. The
worst result is logistic regression using 1-grams, which achieved an accuracy of 97.1%.
KNN using keyword feature representation achieved the best result with an accuracy of

42

5.2 Classification results

0% 10% 20% 30% 40% 50%
Percent of data set

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

u
ra

cy

Decision Tree
KNN
LR
SVM

Figure 5.2: Learning curve of the different algorithms using a 1-
2-gram representation of the parameters.

Table 5.3: Time (s) measurements for all models and feature rep-
resentations.

Features DTC KNN LR SVM
1-gram 0.1917 1.9981 2.8634 1.6003
1-2-gram 5.7893 65.9405 10.9168 62.0825
keyword 0.1034 2.6094 0.6845 0.6690

99.51%. Furthermore, all the models achieved their highest accuracy using the keyword
feature representation. Tables 5.5-5.8 shows the details of the keyword model evaluation.
Whereas, the n-gram model details can be found in Appendix B.

Table 5.4: Accuracy (%) for all models and feature representa-
tions.

Features DTC KNN LR SVM
1-gram 99.08 98.57 97.10 98.26
1-2-gram 99.16 98.31 98.91 98.64
keyword 99.48 99.51 99.01 99.24

Figure 5.4 shows a partial decision tree generated by the DTC model. The tree is a
flowchart-like structure and the starting node is the top one. All non-leaf nodes start with
a feature condition. If this condition holds true, the left node is chosen as the next node.

This is illustrated in Figure 5.4 where the start node has the feature condition ’ <=
0.5. This means that if there is less than 1 occurence of the single-quote in our instance,
the next decision node is the left one.

43

5. Results

0% 10% 20% 30% 40% 50%
Percent of data set

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

u
ra

cy

Decision Tree
KNN
LR
SVM

Figure 5.3: Learning curve of the different algorithms using our
own keyword representation of the parameters.

Table 5.5: Confusion matrix and the resulting evaluation mea-
sures, using the decision tree model with keyword features.

Predicted
SQL XSS XBD BEN

Actual

SQL 2051 3 0 1
XSS 4 190 9 1
XBD 0 6 715 0
BEN 6 1 0 2973

SQL XSS XBD BEN
Precision 99.51 95.00 98.76 99.93
Recall 99.81 93.14 99.17 99.77

Accuracy: 99.48%

Additionally, each node in the diagram contains other information such as the impurity
(Gini), number of samples (samples), the class distribution in the node (values), and the
majority class (class).

Table 5.9 summarizes the properties of trees generated by the DTC model. 1-grams
results in the largest trees, with the highest average depth and node counts – while the
keyword representation has the highest maximum depth. 1-2 grams has the lowest number
of nodes, lowest average depth and lowest maximum depth.

44

5.2 Classification results

Table 5.6: Confusion matrix and the resulting evaluation mea-
sures, using the k nearest neighbors model with keyword features.

Predicted
SQL XSS XBD BEN

Actual

SQL 2052 2 0 1
XSS 3 190 10 1
XBD 2 4 715 0
BEN 5 1 0 2974

SQL XSS XBD BEN
Precision 99.52 96.45 98.62 99.93
Recall 99.85 93.14 99.17 99.80

Accuracy: 99.51%

Table 5.7: Confusion matrix and the resulting evaluation mea-
sures, using the logistic regression model with keyword features.

Predicted
SQL XSS XBD BEN

Actual

SQL 2037 2 0 16
XSS 7 175 9 13
XBD 2 3 712 4
BEN 3 0 0 2977

SQL XSS XBD BEN
Precision 99.41 97.22 98.75 98.90
Recall 99.12 85.78 98.75 99.90

Accuracy: 99.01%

Table 5.8: Confusion matrix and the resulting evaluation mea-
sures, using the support vector machine model with keyword fea-
tures.

Predicted
SQL XSS XBD BEN

Actual

SQL 2042 5 0 8
XSS 6 184 10 4
XBD 0 6 715 0
BEN 5 1 0 2974

SQL XSS XBD BEN
Precision 99.46 93.88 98.62 99.60
Recall 99.37 90.20 99.17 99.80

Accuracy: 99.24%

Table 5.9: Comparison of the properties of the decision trees gen-
erated by different feature collection methods.

Features Nodes Average Depth Max Depth
1-grams 163 7.3 21
1-2-grams 105 6.7 15
Keyword 123 6.9 22

45

5. Results

' <= 0.5
gini = 0.6153

samples = 5960
value = [2055, 204, 721, 2980]

class = benign

...

True
< <= 4.5

gini = 0.2583
samples = 2017

value = [1724, 110, 182, 1]
class = sqli

False

javascript: <= 0.5
gini = 0.1195

samples = 1841
value = [1724, 109, 7, 1]

class = sqli

class <= 0.5
gini = 0.0113

samples = 176
value = [0, 1, 175, 0]
class = xss by design

...

' <= 12.0
gini = 0.0425
samples = 46

value = [0, 45, 1, 0]
class = xss

gini = 0.0
samples = 45

value = [0, 45, 0, 0]
class = xss

gini = 0.0
samples = 1

value = [0, 0, 1, 0]
class = xss by design

br <= 2.0
gini = 0.375
samples = 4

value = [0, 1, 3, 0]
class = xss by design

gini = 0.0
samples = 172

value = [0, 0, 172, 0]
class = xss by design

gini = 0.0
samples = 1

value = [0, 1, 0, 0]
class = xss

gini = 0.0
samples = 3

value = [0, 0, 3, 0]
class = xss by design

Figure 5.4: Reduced decision tree generated by the DTC-model.
The original tree can be found in Appendix A and has 123 nodes
with a maximum depth of 10 and the average depth is 6.9 nodes.

46

Chapter 6
Discussion

This chapter evaluates the results presented in Chapter 5, and discusses their validity and
relevance. Furthermore, it discusses possible applications of this project, and compares
the result to the set goals.

6.1 Results
Given that we already knew that we had four distinct classes in our dataset, the clustering
analysis felt somewhat unnecessary. We used this part of the process largely to learn more
about our data. The clustering helped us to confirm that the data set could be split into four
groups. We know from the results that XSS and XBD are separable. Moreover, Table 5.2
shows that for k = 4 we are given reasonable results. Furthermore, the results are not
much lower than for k = 6, which is the best clustering result.

Unfortunately, this test only gives an overall performance measure. It does not provide
detailed information such as individual performance per class, nor does it provide an indi-
cation of false positives or negatives. However, we still consider this approach to be valid
if little is known about the data.

In order to fully perceive our results, we used n-grams as a baseline. N-grams were
chosen since this is an explored approach which requires little to no feature engineering.
Additionally, n-grams can be applied to a wide variety of unspecific text based problems.

All learning curves behaved in the way we expected. The lowest accuracy was around
70% using about 1% the dataset. The learning curve for the keyword representationwas the
quickest to plane out. This shows that the keyword representation is a good approach for
our problem. This does not imply that the n-gram approach was bad, just that the keyword
representation learns quicker. What we learn from these curves is that these approaches
are useful even when the available data is limited.

If we look at the n-gram representation time measurements, it is clear that the number
of features has a direct impact on the performance. However, our keyword representation

47

6. Discussion

has more features than 1-gram, but is still faster for all models but KNN. This implies that
the time performance is not only related to the number of features, but also to the number
of relevant features. This test evaluated both training and classification performance for a
great number of instances. As such, practically doing a single classification, with a trained
model, would take less time.

The accuracies in Table 5.3 show that keyword features is an approach in the right
direction. Even though it is marginally better than the baseline accuracies, we consider
the marginal improvement important. Since small changes in accuracy can have a great
effect on usefulness, any increase in accuracy is highly valued.

Accuracy can be misleading, since some misclassifications are worse than others. A
false positive, for example, classifying a BEN as a XSS is more acceptable than a false
negative. This is better demonstrated in the confusion matrices and its accompanying
precision/recall tables. In this case for XBD and BEN, we strive to achieve high precision,
and for SQL and XSS, we strive to achieve high recall, since these values indicate that a
malicious parameter has been classified as benign. More specifically, it appears that XSS is
our weak link in regard to recall. DTC and KNN perform best in regard to recall with both
reaching a value of 93.14%. This could be caused by a lack of XSS samples, especially in
the balance between XSS and XBD. All the models seem to have a difficulty to distinguish
XSS from XBD. This is most likely due to that the classes are textually similar.

In terms of decision trees, 1-2-grams seem to generate a smaller tree even though it has
a greater number of features. This is likely due to that 1-2-grams have more discriminating
features, and thus the tree can easier select its decision conditions. It seems that tree size
and time performance are not directly correlated. Time performance seems to be affected
by both number of features and discriminating features. Practically, if the decision tree is
already constructed, the performance of this tree is more related to its size. Additionally,
only features which are used as conditions in the tree would need to be collected in the
feature representation.

6.2 Possible applications
In this section, we explore how the models could be applied in the Triggerfish Platform.
Each model that we have evaluated has different properties, not only in the sense of the
evaluated metrics such as accuracy and time, but also in how the models are fitted and
used. Moreover, each model can present the results in a different way. For example, a
DTC model can produce a decision tree while an LR model presents the result of its clas-
sification as a list of classes and their probabilities. Additionally, the different models have
a different resource impact, in both memory and computing time, which is also an aspect
to be discussed in this section.

6.2.1 Clients
As mentioned in the introduction, the clients should be light on performance in both time
and disk space used and therefore a machine learning model used in the client must be
lightweight. As a suggestion to reduce redundant calculations in all clients, a fitted model
should be supplied in the client. This also reduces the disk space used by a model since

48

6.3 Achievements

a fitted model is smaller than the training data used to create the model. If needed, the
procedures for automatically updating the model should be implemented in the client.
Consequently, a training module should be developed for the backend, which can update
the client with new models.

As can be seen in the time measurement test in Table 5.3, the DTC-model is the fastest
model to complete its cross-validation. Furthermore, to use the DTC-model as a classifier
one only needs to have the actual decision tree, which, in turn, does not necessarily use all
features which are collected by the feature-vectorizer. This makes the model lightweight
in disk space. Moreover, as we can see in Table 5.5, the DTC model has good scores when
it comes to classification accuracy.

6.2.2 Backend
In the backend, resources are less constrained, therefore a slower model is acceptable.
Additionally, disk space is not constrained here – thus the whole training set can be stored.
The LR model could be used in the backend for its probability measures. KNN is another
possibility, since it scored the highest accuracy in our tests – it does however not provide
a real confidence measure in the form of a probability.

The frontend should display the probability measures as a confidence level for a classi-
fication. Consequently, the analysis server would have to have a LR or KNN classification
filtor to do the actual classification for injection attacks. Furthermore, the frontend could
be used to collect feedback from the users. This feedback would be used as additional
training data.

For training models, a backend module should be developed. This is done in order to
not change the current modular design of the backend, and to not increase complexity in
other modules. The responsibilities of this module would be limited to: training a model
for the analysis server, training a model for the clients, and serving updates to the client
models.

6.3 Achievements
The purpose of this thesis was to explore the possibility to adapt machine learning the-
ory to code injection attempts, more specifically, to the Triggerfish platform. To do this,
we established interim goals and in this section we explain how these goals have been
accomplished.

Reach an acceptable accuracy In order to answer whether this goal was reached, we
chose appropriate evaluation measures. Additionally, we established a baseline us-
ing two n-gram representations. We attained a maximum accuracy of 99.51% using
the keyword representation. This was higher than the baseline, which implies that
this goal has been reached. Furthermore, all models are able to distinguish between
the XSS and XBD classes.

Account for model performance and size requirements Our results from the timemea-
surements (Table 5.3) show the performance of our models. Furthermore, the results
are discussed in Section 6.1 and it is clear that the keyword representation is faster

49

6. Discussion

than the baseline. Additionally, Section 6.2 discusses the size requirements of the
different models.

Describe how these models can be implemented into Triggerfish Section 6.2 discusses
how the models can be implemented into the existing Triggerfish architecture. Fur-
thermore, specific examples of models are motivated based on their performance
and characteristics.

Find a model that provides a second opinion and a degree of confidence Out of all our
evaluated models we found that the LRmodel provides a real estimate of probability
for each class. All the models could function as a second opinion to the Triggerfish
platform. Furthermore, both SVM and KNN provide measures which could be seen
as degrees of confidence – but are not pure probability measures.

50

Chapter 7
Conclusions

This chapter summarizes the content of this report, and provides suggestions to future work
and improvements that can be applied to the project.

7.1 Summary
In this thesis, we have explored the possibility to classify HTTP requests using machine
learning techniques. More specifically, we aimed not only to distinguish between benign
and malign requests – but also to separate three different code injection classes from each
other. Using a standard data mining process, we constructed evaluation measures both to
review several classification algorithms, and also three different data representation meth-
ods. Finally we succeeded in finding the intentions of HTTP requests by identifying lan-
guage specific syntax. This lead to the final data representation using language specific
keywords, which achieved an accuracy of 99.51% using the k-nearest-neighbors algorithm.
Additionally, we have suggested ways of integrating the findings into the Triggerfish plat-
form.

7.2 Future improvements
Even though we consider this thesis project to be a success, there are still a few areas which
could be improved. This section discusses some ways that could improve the results of this
project, and also ways to further increase the applicability of our results.

7.2.1 Data set improvement
As we have previously mentioned, the data that we used is slightly imbalanced. More
specifically, the number of XSS is comparatively low. This might be the reason for the

51

7. Conclusions

relatively low recall for the XSS class. If the classes could be balanced, as well as the total
cardinality increased, the results may improve.

7.2.2 Feature engineering
Naturally, further manual feature engineering could be done to improve both accuracy and
performance of the model, however an automated approach to feature engineering could
be attempted. Minimum Redundancy Maximum Relevance (mRMR) (Peng et al., 2005)
is a feature selection algorithm to find the optimal features. Given an annotated dataset,
it eliminates redundant features and extracts the most discriminating ones. The algorithm
could, for example, be used in conjunction with a n-gram range, and reduce the n-gram
features to a predetermined number of discriminating features. This approach could po-
tentially remove the need for future manual feature engineering – but would increase the
time and memory requirements of the data preparation phase.

7.2.3 Further hyperparameter optimization
Most classification models provided by scikit-learn provide several hyperparame-
ters which determine the behavioral characteristics of the model. The existing evaluation
framework could be used in conjunction with a grid search to find better hyperparameters.

7.2.4 Adding more classes
The Triggerfish platform is not limited to detecting code injection attacks. As such, more
classes could be added to the model. This could for example be detecting remote code
execution such as the shellshock attack, or directory traversals. For some cases this would
require further feature engineering to deduce new keyword features.

7.2.5 Hybrid trees
The satisfying performance and accuracy of the decision tree makes this a suitable classi-
fier. It could however be possible to improve these results if a decision tree collaborated
with a binary classifier, such as SVM. Instead of having a true or false condition in a node,
it could contain a SVM classifier with data relevant to this node.

52

Bibliography

Arthur, D. and Vassilvitskii, S. (2007). K-means++: The advantages of careful seeding. In
Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’07, pages 1027–1035, Philadelphia, PA, USA. Society for Industrial and Ap-
plied Mathematics.

Berkson, J. (1944). Application of the logistic function to bio-assay. Journal of the Amer-
ican Statistical Association, 39(227):357–365.

Boser, B. E., Guyon, I. M., and Vapnik, V. N. (1992). A training algorithm for optimal mar-
gin classifiers. COLT ’92 Proceedings of the fifth annual workshop on Computational
learning theory, pages 144–152.

Breiman, L., Friedman, J., Stone, C. J., and Olshen, R. A. (1984). Classification and
Regression Trees. The Wadsworth and Brooks-Cole statistics-probability series. Taylor
& Francis.

Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C., and Wirth, R.
(2000). CRISP-DM 1.0, Step-by-step data mining guide. SPSS Inc.

Cheon, E. H., Huang, Z., and Lee, Y. S. (2013). Preventing sql injection attack based
on machine learning. In IJACT: International Journal of Advancements in Computing
Technology, volume 5 of 9, pages 967–974.

Chire (2011). Dbscan-illustration. https://commons.wikimedia.org/wiki/
File:DBSCAN-Illustration.svg. Accessed: 2016-03-01.

Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine Learning,
20(3):273–297.

Digifort Sverige AB (2015). Documentation for the Triggerfish Rails client.

Ebbinghaus, H. (1913). Memory: A Contribution to Experimental Psychology. Columbia
University. Teachers College. Educational reprints. no. 3. University Microfilms.

53

https://commons.wikimedia.org/wiki/File:DBSCAN-Illustration.svg
https://commons.wikimedia.org/wiki/File:DBSCAN-Illustration.svg

BIBLIOGRAPHY

Ester, M., Kriegel, H., Sander, J., and Xu, X. (1996). A density-based algorithm for dis-
covering clusters in large spatial databases with noise. pages 226–231. AAAI Press.

Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., and Berners-Lee,
T. (1999). Hypertext transfer protocol – http/1.1.

Hamerly, G. and Elkan, C. (2002). Alternatives to the k-means algorithm that find better
clusterings. Proceedings of the eleventh international conference on Information and
knowledge management, pages 603–604.

James, G., Witten, D., Hastie, T., and Tibshirani, R. (2013). An Introduction to Statistical
Learning with Applications in R. Springer.

Lloyd, S. (1982). Least squares quantization in pcm. IEEE Transactions on Information
Theory, 28(2):129–137.

Manning, C. D., Raghavan, P., and Schütze, H. (2008). Introduction to Information Re-
trieval. Cambridge University Press.

Mosteller, F. and Tukey, J. W. (1968). Data analysis, including statistics. Addison-Wesley,
Reading, MA.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,
M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau,
D., Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research, 12:2825–2830.

Peng, H., Long, F., and Ding, C. (2005). Feature selection based on mutual information:
criteria of max-dependency, max-relevance, and min-redundancy. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 27(8):1226–1238.

Rand, W. M. (1971). Objective criteria for the evaluation of clustering methods. Journal
of the American Statistical Association, 66(336):846–850.

scikit learn (2014). Demo of dbscan clustering algorithm. http://scikit-learn.
org/stable/auto_examples/cluster/plot_dbscan.html. Accessed:
2016-03-01.

Vapnik, V. and Lerner, A. (1963). Pattern recognition using generalized portrait method.
Automation and Remote Control, 24:774–780.

Weston.pace (2007). K means example step 1, 2, 3 and 4. https://commons.
wikimedia.org/wiki/File:K_Means_Example_Step_1.svg,
https://commons.wikimedia.org/wiki/File:K_Means_Example_
Step_2.svg, https://commons.wikimedia.org/wiki/File:
K_Means_Example_Step_3.svg, https://commons.wikimedia.
org/wiki/File:K_Means_Example_Step_4.svg. Accessed: 2016-02-29.

Wressnegger, C., Schwenk, G., Arp, D., and Rieck, K. (2013). A close look on n-grams
in intrusion detection: Anomaly detection vs. classification. In Proceedings of the 2013
ACM Workshop on Artificial Intelligence and Security, AISec ’13, pages 67–76, New
York, NY, USA. ACM.

54

http://scikit-learn.org/stable/auto_examples/cluster/plot_dbscan.html
http://scikit-learn.org/stable/auto_examples/cluster/plot_dbscan.html
https://commons.wikimedia.org/wiki/File:K_Means_Example_Step_1.svg
https://commons.wikimedia.org/wiki/File:K_Means_Example_Step_1.svg
https://commons.wikimedia.org/wiki/File:K_Means_Example_Step_2.svg
https://commons.wikimedia.org/wiki/File:K_Means_Example_Step_2.svg
https://commons.wikimedia.org/wiki/File:K_Means_Example_Step_3.svg
https://commons.wikimedia.org/wiki/File:K_Means_Example_Step_3.svg
https://commons.wikimedia.org/wiki/File:K_Means_Example_Step_4.svg
https://commons.wikimedia.org/wiki/File:K_Means_Example_Step_4.svg

Appendices

55

Appendix A
Final Decision Tree

57

' <
=

0.
5

gi
ni

 =
 0

.6
15

3
sa

m
pl

es
 =

 5
96

0
va

lu
e

=
[2

05
5,

 2
04

, 7
21

, 2
98

0]
cl

as
s

=
be

ni
gn

<
<=

 0
.5

gi
ni

 =
 0

.4
02

9
sa

m
pl

es
 =

 3
94

3
va

lu
e

=
[3

31
, 9

4,
 5

39
, 2

97
9]

cl
as

s
=

be
ni

gn

Tr
ue

<
<=

 4
.5

gi
ni

 =
 0

.2
58

3
sa

m
pl

es
 =

 2
01

7
va

lu
e

=
[1

72
4,

 1
10

, 1
82

, 1
]

cl
as

s
=

sq
li

Fa
ls

e

--
<=

 0
.5

gi
ni

 =
 0

.1
90

3
sa

m
pl

es
 =

 3
33

1
va

lu
e

=
[3

31
, 2

1,
 0

, 2
97

9]
cl

as
s

=
be

ni
gn

sc
rip

t <
=

0.
5

gi
ni

 =
 0

.2
10

1
sa

m
pl

es
 =

 6
12

va
lu

e
=

[0
, 7

3,
 5

39
, 0

]
cl

as
s

=
xs

s
by

 d
es

ig
n

se
le

ct
 <

=
0.

5
gi

ni
 =

 0
.0

35
3

sa
m

pl
es

 =
 3

01
5

va
lu

e
=

[3
3,

 2
1,

 0
, 2

96
1]

cl
as

s
=

be
ni

gn

se
le

ct
 <

=
0.

5
gi

ni
 =

 0
.1

07
4

sa
m

pl
es

 =
 3

16
va

lu
e

=
[2

98
, 0

, 0
, 1

8]
cl

as
s

=
sq

li

on
ev

en
t <

=
0.

5
gi

ni
 =

 0
.0

19
9

sa
m

pl
es

 =
 2

99
0

va
lu

e
=

[9
, 2

1,
 0

, 2
96

0]
cl

as
s

=
be

ni
gn

un
io

n
<=

 0
.5

gi
ni

 =
 0

.0
76

8
sa

m
pl

es
 =

 2
5

va
lu

e
=

[2
4,

 0
, 0

, 1
]

cl
as

s
=

sq
li

ja
va

sc
rip

t:
<=

 0
.5

gi
ni

 =
 0

.0
12

sa
m

pl
es

 =
 2

97
8

va
lu

e
=

[9
, 9

, 0
, 2

96
0]

cl
as

s
=

be
ni

gn

gi
ni

 =
 0

.0
sa

m
pl

es
 =

 1
2

va
lu

e
=

[0
, 1

2,
 0

, 0
]

cl
as

s
=

xs
s

an
d

<=
 0

.5
gi

ni
 =

 0
.0

09
4

sa
m

pl
es

 =
 2

97
4

va
lu

e
=

[9
, 5

, 0
, 2

96
0]

cl
as

s
=

be
ni

gn

gi
ni

 =
 0

.0
sa

m
pl

es
 =

 4
va

lu
e

=
[0

, 4
, 0

, 0
]

cl
as

s
=

xs
s

or
 <

=
0.

5
gi

ni
 =

 0
.0

05
4

sa
m

pl
es

 =
 2

96
3

va
lu

e
=

[3
, 5

, 0
, 2

95
5]

cl
as

s
=

be
ni

gn

gi
ni

 =
 0

.4
95

9
sa

m
pl

es
 =

 1
1

va
lu

e
=

[6
, 0

, 0
, 5

]
cl

as
s

=
sq

li

on
cl

ic
k

<=
 0

.5
gi

ni
 =

 0
.0

03
4

sa
m

pl
es

 =
 2

96
0

va
lu

e
=

[0
, 5

, 0
, 2

95
5]

cl
as

s
=

be
ni

gn

gi
ni

 =
 0

.0
sa

m
pl

es
 =

 3
va

lu
e

=
[3

, 0
, 0

, 0
]

cl
as

s
=

sq
li

on
er

ro
r <

=
0.

5
gi

ni
 =

 0
.0

01
4

sa
m

pl
es

 =
 2

95
7

va
lu

e
=

[0
, 2

, 0
, 2

95
5]

cl
as

s
=

be
ni

gn

gi
ni

 =
 0

.0
sa

m
pl

es
 =

 3
va

lu
e

=
[0

, 3
, 0

, 0
]

cl
as

s
=

xs
s

gi
ni

 =
 0

.0
sa

m
pl

es
 =

 2
95

5
va

lu
e

=
[0

, 0
, 0

, 2
95

5]
cl

as
s

=
be

ni
gn

gi
ni

 =
 0

.0
sa

m
pl

es
 =

 2
va

lu
e

=
[0

, 2
, 0

, 0
]

cl
as

s
=

xs
s

an
d

<=
 0

.5
gi

ni
 =

 0
.5

sa
m

pl
es

 =
 2

va
lu

e
=

[1
, 0

, 0
, 1

]
cl

as
s

=
sq

li

gi
ni

 =
 0

.0
sa

m
pl

es
 =

 2
3

va
lu

e
=

[2
3,

 0
, 0

, 0
]

cl
as

s
=

sq
li

gi
ni

 =
 0

.0
sa

m
pl

es
 =

 1
va

lu
e

=
[0

, 0
, 0

, 1
]

cl
as

s
=

be
ni

gn

gi
ni

 =
 0

.0
sa

m
pl

es
 =

 1
va

lu
e

=
[1

, 0
, 0

, 0
]

cl
as

s
=

sq
li

an
d

<=
 0

.5
gi

ni
 =

 0
.3

48
8

sa
m

pl
es

 =
 8

0
va

lu
e

=
[6

2,
 0

, 0
, 1

8]
cl

as
s

=
sq

li

gi
ni

 =
 0

.0
sa

m
pl

es
 =

 2
36

va
lu

e
=

[2
36

, 0
, 0

, 0
]

cl
as

s
=

sq
li

or
 <

=
0.

5
gi

ni
 =

 0
.4

95
sa

m
pl

es
 =

 4
0

va
lu

e
=

[2
2,

 0
, 0

, 1
8]

cl
as

s
=

sq
li

gi
ni

 =
 0

.0
sa

m
pl

es
 =

 4
0

va
lu

e
=

[4
0,

 0
, 0

, 0
]

cl
as

s
=

sq
li

--
<=

 1
.5

gi
ni

 =
 0

.0
99

7
sa

m
pl

es
 =

 1
9

va
lu

e
=

[1
, 0

, 0
, 1

8]
cl

as
s

=
be

ni
gn

gi
ni

 =
 0

.0
sa

m
pl

es
 =

 2
1

va
lu

e
=

[2
1,

 0
, 0

, 0
]

cl
as

s
=

sq
li

i <
=

0.
5

gi
ni

 =
 0

.1
10

7
sa

m
pl

es
 =

 1
7

va
lu

e
=

[1
, 0

, 0
, 1

6]
cl

as
s

=
be

ni
gn

gi
ni

 =
 0

.0
sa

m
pl

es
 =

 2
va

lu
e

=
[0

, 0
, 0

, 2
]

cl
as

s
=

be
ni

gn

a
<=

 0
.5

gi
ni

 =
 0

.1
17

2
sa

m
pl

es
 =

 1
6

va
lu

e
=

[1
, 0

, 0
, 1

5]
cl

as
s

=
be

ni
gn

gi
ni

 =
 0

.0
sa

m
pl

es
 =

 1
va

lu
e

=
[0

, 0
, 0

, 1
]

cl
as

s
=

be
ni

gn

gi
ni

 =
 0

.1
24

4
sa

m
pl

es
 =

 1
5

va
lu

e
=

[1
, 0

, 0
, 1

4]
cl

as
s

=
be

ni
gn

gi
ni

 =
 0

.0
sa

m
pl

es
 =

 1
va

lu
e

=
[0

, 0
, 0

, 1
]

cl
as

s
=

be
ni

gn

>
<=

 1
.5

gi
ni

 =
 0

.0
46

4
sa

m
pl

es
 =

 5
47

va
lu

e
=

[0
, 1

3,
 5

34
, 0

]
cl

as
s

=
xs

s
by

 d
es

ig
n

<
<=

 1
5.

0
gi

ni
 =

 0
.1

42
sa

m
pl

es
 =

 6
5

va
lu

e
=

[0
, 6

0,
 5

, 0
]

cl
as

s
=

xs
s

>
<=

 0
.5

gi
ni

 =
 0

.4
91

5
sa

m
pl

es
 =

 2
3

va
lu

e
=

[0
, 1

0,
 1

3,
 0

]
cl

as
s

=
xs

s
by

 d
es

ig
n

on
er

ro
r <

=
0.

5
gi

ni
 =

 0
.0

11
4

sa
m

pl
es

 =
 5

24
va

lu
e

=
[0

, 3
, 5

21
, 0

]
cl

as
s

=
xs

s
by

 d
es

ig
n

gi
ni

 =
 0

.0
sa

m
pl

es
 =

 3
va

lu
e

=
[0

, 3
, 0

, 0
]

cl
as

s
=

xs
s

da
ta

 <
=

0.
5

gi
ni

 =
 0

.4
55

sa
m

pl
es

 =
 2

0
va

lu
e

=
[0

, 7
, 1

3,
 0

]
cl

as
s

=
xs

s
by

 d
es

ig
n

ja
va

sc
rip

t:
<=

 0
.5

gi
ni

 =
 0

.4
01

2
sa

m
pl

es
 =

 1
8

va
lu

e
=

[0
, 5

, 1
3,

 0
]

cl
as

s
=

xs
s

by
 d

es
ig

n

gi
ni

 =
 0

.0
sa

m
pl

es
 =

 2
va

lu
e

=
[0

, 2
, 0

, 0
]

cl
as

s
=

xs
s

on
er

ro
r <

=
0.

5
gi

ni
 =

 0
.3

04
7

sa
m

pl
es

 =
 1

6
va

lu
e

=
[0

, 3
, 1

3,
 0

]
cl

as
s

=
xs

s
by

 d
es

ig
n

gi
ni

 =
 0

.0
sa

m
pl

es
 =

 2
va

lu
e

=
[0

, 2
, 0

, 0
]

cl
as

s
=

xs
s

co
de

 <
=

0.
5

gi
ni

 =
 0

.2
31

1
sa

m
pl

es
 =

 1
5

va
lu

e
=

[0
, 2

, 1
3,

 0
]

cl
as

s
=

xs
s

by
 d

es
ig

n

gi
ni

 =
 0

.0
sa

m
pl

es
 =

 1
va

lu
e

=
[0

, 1
, 0

, 0
]

cl
as

s
=

xs
s

on
lo

ad
 <

=
0.

5
gi

ni
 =

 0
.1

32
7

sa
m

pl
es

 =
 1

4
va

lu
e

=
[0

, 1
, 1

3,
 0

]
cl

as
s

=
xs

s
by

 d
es

ig
n

gi
ni

 =
 0

.0
sa

m
pl

es
 =

 1
va

lu
e

=
[0

, 1
, 0

, 0
]

cl
as

s
=

xs
s

gi
ni

 =
 0

.0
sa

m
pl

es
 =

 1
3

va
lu

e
=

[0
, 0

, 1
3,

 0
]

cl
as

s
=

xs
s

by
 d

es
ig

n

gi
ni

 =
 0

.0
sa

m
pl

es
 =

 1
va

lu
e

=
[0

, 1
, 0

, 0
]

cl
as

s
=

xs
s

on
m

ou
se

ov
er

 <
=

0.
5

gi
ni

 =
 0

.0
07

6
sa

m
pl

es
 =

 5
23

va
lu

e
=

[0
, 2

, 5
21

, 0
]

cl
as

s
=

xs
s

by
 d

es
ig

n

gi
ni

 =
 0

.0
sa

m
pl

es
 =

 1
va

lu
e

=
[0

, 1
, 0

, 0
]

cl
as

s
=

xs
s

ob
je

ct
 <

=
1.

0
gi

ni
 =

 0
.0

03
8

sa
m

pl
es

 =
 5

22
va

lu
e

=
[0

, 1
, 5

21
, 0

]
cl

as
s

=
xs

s
by

 d
es

ig
n

gi
ni

 =
 0

.0
sa

m
pl

es
 =

 1
va

lu
e

=
[0

, 1
, 0

, 0
]

cl
as

s
=

xs
s

gi
ni

 =
 0

.0
sa

m
pl

es
 =

 5
20

va
lu

e
=

[0
, 0

, 5
20

, 0
]

cl
as

s
=

xs
s

by
 d

es
ig

n

>
<=

 7
.0

gi
ni

 =
 0

.5
sa

m
pl

es
 =

 2
va

lu
e

=
[0

, 1
, 1

, 0
]

cl
as

s
=

xs
s

gi
ni

 =
 0

.0
sa

m
pl

es
 =

 1
va

lu
e

=
[0

, 1
, 0

, 0
]

cl
as

s
=

xs
s

gi
ni

 =
 0

.0
sa

m
pl

es
 =

 1
va

lu
e

=
[0

, 0
, 1

, 0
]

cl
as

s
=

xs
s

by
 d

es
ig

n

gi
ni

 =
 0

.0
sa

m
pl

es
 =

 6
0

va
lu

e
=

[0
, 6

0,
 0

, 0
]

cl
as

s
=

xs
s

gi
ni

 =
 0

.0
sa

m
pl

es
 =

 5
va

lu
e

=
[0

, 0
, 5

, 0
]

cl
as

s
=

xs
s

by
 d

es
ig

n

ja
va

sc
rip

t:
<=

 0
.5

gi
ni

 =
 0

.1
19

5
sa

m
pl

es
 =

 1
84

1
va

lu
e

=
[1

72
4,

 1
09

, 7
, 1

]
cl

as
s

=
sq

li

cl
as

s
<=

 0
.5

gi
ni

 =
 0

.0
11

3
sa

m
pl

es
 =

 1
76

va
lu

e
=

[0
, 1

, 1
75

, 0
]

cl
as

s
=

xs
s

by
 d

es
ig

n

sc
rip

t <
=

0.
5

gi
ni

 =
 0

.0
76

3
sa

m
pl

es
 =

 1
79

5
va

lu
e

=
[1

72
4,

 6
4,

 6
, 1

]
cl

as
s

=
sq

li

' <
=

12
.0

gi
ni

 =
 0

.0
42

5
sa

m
pl

es
 =

 4
6

va
lu

e
=

[0
, 4

5,
 1

, 0
]

cl
as

s
=

xs
s

on
ev

en
t <

=
0.

5
gi

ni
 =

 0
.0

53
9

sa
m

pl
es

 =
 1

77
2

va
lu

e
=

[1
72

3,
 4

3,
 5

, 1
]

cl
as

s
=

sq
li

ev
al

 <
=

0.
5

gi
ni

 =
 0

.1
62

6
sa

m
pl

es
 =

 2
3

va
lu

e
=

[1
, 2

1,
 1

, 0
]

cl
as

s
=

xs
s

im
g

<=
 0

.5
gi

ni
 =

 0
.0

40
2

sa
m

pl
es

 =
 1

75
9

va
lu

e
=

[1
72

3,
 3

0,
 5

, 1
]

cl
as

s
=

sq
li

gi
ni

 =
 0

.0
sa

m
pl

es
 =

 1
3

va
lu

e
=

[0
, 1

3,
 0

, 0
]

cl
as

s
=

xs
s

on
lo

ad
 <

=
0.

5
gi

ni
 =

 0
.0

29
4

sa
m

pl
es

 =
 1

74
9

va
lu

e
=

[1
72

3,
 2

0,
 5

, 1
]

cl
as

s
=

sq
li

gi
ni

 =
 0

.0
sa

m
pl

es
 =

 1
0

va
lu

e
=

[0
, 1

0,
 0

, 0
]

cl
as

s
=

xs
s

br
 <

=
0.

5
gi

ni
 =

 0
.0

21
6

sa
m

pl
es

 =
 1

74
2

va
lu

e
=

[1
72

3,
 1

3,
 5

, 1
]

cl
as

s
=

sq
li

gi
ni

 =
 0

.0
sa

m
pl

es
 =

 7
va

lu
e

=
[0

, 7
, 0

, 0
]

cl
as

s
=

xs
s

st
yl

e
<=

 1
.5

gi
ni

 =
 0

.0
17

1
sa

m
pl

es
 =

 1
73

8
va

lu
e

=
[1

72
3,

 1
2,

 2
, 1

]
cl

as
s

=
sq

li

>
<=

 2
.0

gi
ni

 =
 0

.3
75

sa
m

pl
es

 =
 4

va
lu

e
=

[0
, 1

, 3
, 0

]
cl

as
s

=
xs

s
by

 d
es

ig
n

st
rin

g
<=

 1
.0

gi
ni

 =
 0

.0
13

8
sa

m
pl

es
 =

 1
73

5
va

lu
e

=
[1

72
3,

 9
, 2

, 1
]

cl
as

s
=

sq
li

gi
ni

 =
 0

.0
sa

m
pl

es
 =

 3
va

lu
e

=
[0

, 3
, 0

, 0
]

cl
as

s
=

xs
s

ne
w

 <
=

0.
5

gi
ni

 =
 0

.0
11

5
sa

m
pl

es
 =

 1
73

3
va

lu
e

=
[1

72
3,

 7
, 2

, 1
]

cl
as

s
=

sq
li

gi
ni

 =
 0

.0
sa

m
pl

es
 =

 2
va

lu
e

=
[0

, 2
, 0

, 0
]

cl
as

s
=

xs
s

' <
=

2.
5

gi
ni

 =
 0

.0
09

2
sa

m
pl

es
 =

 1
73

0
va

lu
e

=
[1

72
2,

 5
, 2

, 1
]

cl
as

s
=

sq
li

' <
=

2.
5

gi
ni

 =
 0

.4
44

4
sa

m
pl

es
 =

 3
va

lu
e

=
[1

, 2
, 0

, 0
]

cl
as

s
=

xs
s

>
<=

 0
.5

gi
ni

 =
 0

.0
36

3
sa

m
pl

es
 =

 4
35

va
lu

e
=

[4
27

, 5
, 2

, 1
]

cl
as

s
=

sq
li

gi
ni

 =
 0

.0
sa

m
pl

es
 =

 1
29

5
va

lu
e

=
[1

29
5,

 0
, 0

, 0
]

cl
as

s
=

sq
li

' <
=

1.
5

gi
ni

 =
 0

.0
09

3
sa

m
pl

es
 =

 4
28

va
lu

e
=

[4
26

, 1
, 0

, 1
]

cl
as

s
=

sq
li

' <
=

1.
5

gi
ni

 =
 0

.5
71

4
sa

m
pl

es
 =

 7
va

lu
e

=
[1

, 4
, 2

, 0
]

cl
as

s
=

xs
s

gi
ni

 =
 0

.0
sa

m
pl

es
 =

 3
17

va
lu

e
=

[3
17

, 0
, 0

, 0
]

cl
as

s
=

sq
li

--
<=

 0
.5

gi
ni

 =
 0

.0
35

5
sa

m
pl

es
 =

 1
11

va
lu

e
=

[1
09

, 1
, 0

, 1
]

cl
as

s
=

sq
li

sl
ee

p
<=

 0
.5

gi
ni

 =
 0

.0
77

6
sa

m
pl

es
 =

 5
0

va
lu

e
=

[4
8,

 1
, 0

, 1
]

cl
as

s
=

sq
li

gi
ni

 =
 0

.0
sa

m
pl

es
 =

 6
1

va
lu

e
=

[6
1,

 0
, 0

, 0
]

cl
as

s
=

sq
li

se
le

ct
 <

=
0.

5
gi

ni
 =

 0
.1

50
4

sa
m

pl
es

 =
 2

5
va

lu
e

=
[2

3,
 1

, 0
, 1

]
cl

as
s

=
sq

li

gi
ni

 =
 0

.0
sa

m
pl

es
 =

 2
5

va
lu

e
=

[2
5,

 0
, 0

, 0
]

cl
as

s
=

sq
li

an
d

<=
 0

.5
gi

ni
 =

 0
.2

72
2

sa
m

pl
es

 =
 1

3
va

lu
e

=
[1

1,
 1

, 0
, 1

]
cl

as
s

=
sq

li

gi
ni

 =
 0

.0
sa

m
pl

es
 =

 1
2

va
lu

e
=

[1
2,

 0
, 0

, 0
]

cl
as

s
=

sq
li

or
 <

=
0.

5
gi

ni
 =

 0
.3

70
4

sa
m

pl
es

 =
 9

va
lu

e
=

[7
, 1

, 0
, 1

]
cl

as
s

=
sq

li

gi
ni

 =
 0

.0
sa

m
pl

es
 =

 4
va

lu
e

=
[4

, 0
, 0

, 0
]

cl
as

s
=

sq
li

no
w

()
<=

 0
.5

gi
ni

 =
 0

.5
sa

m
pl

es
 =

 6
va

lu
e

=
[4

, 1
, 0

, 1
]

cl
as

s
=

sq
li

gi
ni

 =
 0

.0
sa

m
pl

es
 =

 3
va

lu
e

=
[3

, 0
, 0

, 0
]

cl
as

s
=

sq
li

on
er

ro
r <

=
0.

5
gi

ni
 =

 0
.6

25
sa

m
pl

es
 =

 4
va

lu
e

=
[2

, 1
, 0

, 1
]

cl
as

s
=

sq
li

gi
ni

 =
 0

.0
sa

m
pl

es
 =

 2
va

lu
e

=
[2

, 0
, 0

, 0
]

cl
as

s
=

sq
li

gi
ni

 =
 0

.5
sa

m
pl

es
 =

 2
va

lu
e

=
[0

, 1
, 0

, 1
]

cl
as

s
=

xs
s

gi
ni

 =
 0

.0
sa

m
pl

es
 =

 2
va

lu
e

=
[2

, 0
, 0

, 0
]

cl
as

s
=

sq
li

gi
ni

 =
 0

.0
sa

m
pl

es
 =

 2
va

lu
e

=
[0

, 0
, 2

, 0
]

cl
as

s
=

xs
s

by
 d

es
ig

n

u
<=

 0
.5

gi
ni

 =
 0

.3
2

sa
m

pl
es

 =
 5

va
lu

e
=

[1
, 4

, 0
, 0

]
cl

as
s

=
xs

s

gi
ni

 =
 0

.0
sa

m
pl

es
 =

 4
va

lu
e

=
[0

, 4
, 0

, 0
]

cl
as

s
=

xs
s

gi
ni

 =
 0

.0
sa

m
pl

es
 =

 1
va

lu
e

=
[1

, 0
, 0

, 0
]

cl
as

s
=

sq
li

gi
ni

 =
 0

.0
sa

m
pl

es
 =

 1
va

lu
e

=
[0

, 1
, 0

, 0
]

cl
as

s
=

xs
s

gi
ni

 =
 0

.5
sa

m
pl

es
 =

 2
va

lu
e

=
[1

, 1
, 0

, 0
]

cl
as

s
=

sq
li

gi
ni

 =
 0

.0
sa

m
pl

es
 =

 1
va

lu
e

=
[0

, 1
, 0

, 0
]

cl
as

s
=

xs
s

gi
ni

 =
 0

.0
sa

m
pl

es
 =

 3
va

lu
e

=
[0

, 0
, 3

, 0
]

cl
as

s
=

xs
s

by
 d

es
ig

n

--
<=

 0
.5

gi
ni

 =
 0

.0
86

8
sa

m
pl

es
 =

 2
2

va
lu

e
=

[1
, 2

1,
 0

, 0
]

cl
as

s
=

xs
s

gi
ni

 =
 0

.0
sa

m
pl

es
 =

 1
va

lu
e

=
[0

, 0
, 1

, 0
]

cl
as

s
=

xs
s

by
 d

es
ig

n

gi
ni

 =
 0

.0
sa

m
pl

es
 =

 2
0

va
lu

e
=

[0
, 2

0,
 0

, 0
]

cl
as

s
=

xs
s

' <
=

1.
5

gi
ni

 =
 0

.5
sa

m
pl

es
 =

 2
va

lu
e

=
[1

, 1
, 0

, 0
]

cl
as

s
=

sq
li

gi
ni

 =
 0

.0
sa

m
pl

es
 =

 1
va

lu
e

=
[1

, 0
, 0

, 0
]

cl
as

s
=

sq
li

gi
ni

 =
 0

.0
sa

m
pl

es
 =

 1
va

lu
e

=
[0

, 1
, 0

, 0
]

cl
as

s
=

xs
s

gi
ni

 =
 0

.0
sa

m
pl

es
 =

 4
5

va
lu

e
=

[0
, 4

5,
 0

, 0
]

cl
as

s
=

xs
s

gi
ni

 =
 0

.0
sa

m
pl

es
 =

 1
va

lu
e

=
[0

, 0
, 1

, 0
]

cl
as

s
=

xs
s

by
 d

es
ig

n

br
 <

=
2.

0
gi

ni
 =

 0
.3

75
sa

m
pl

es
 =

 4
va

lu
e

=
[0

, 1
, 3

, 0
]

cl
as

s
=

xs
s

by
 d

es
ig

n

gi
ni

 =
 0

.0
sa

m
pl

es
 =

 1
72

va
lu

e
=

[0
, 0

, 1
72

, 0
]

cl
as

s
=

xs
s

by
 d

es
ig

n

gi
ni

 =
 0

.0
sa

m
pl

es
 =

 1
va

lu
e

=
[0

, 1
, 0

, 0
]

cl
as

s
=

xs
s

gi
ni

 =
 0

.0
sa

m
pl

es
 =

 3
va

lu
e

=
[0

, 0
, 3

, 0
]

cl
as

s
=

xs
s

by
 d

es
ig

n

Appendix B
Results

Table B.1: Confusion matrix and the resulting evaluation mea-
sures, using the decsion tree model with 1-gram features.

(a)

Predicted
SQL XSS XBD BEN

Actual

SQL 2041 11 0 3
XSS 9 187 6 2
XBD 0 8 713 0
BEN 9 7 0 2964

(b)

SQL XSS XBD BEN
Precision 99.13 87.79 99.17 99.83
Recall 99.32 91.67 98.89 99.46

Accuracy: 99.08%

59

B. Results

Table B.2: Confusion matrix and the resulting evaluation mea-
sures, using the k nearest neighbors model with 1-gram features.

(a)

Predicted
SQL XSS XBD BEN

Actual

SQL 2018 3 0 34
XSS 4 183 1 16
XBD 1 8 697 15
BEN 1 1 1 2977

(b)

SQL XSS XBD BEN
Precision 99.70 93.85 99.71 97.86
Recall 98.20 89.71 96.67 99.90

Accuracy: 98.57%

Table B.3: Confusion matrix and the resulting evaluation mea-
sures, using the linear regression model with 1-gram features.

(a)

Predicted
SQL XSS XBD BEN

Actual

SQL 2009 3 5 38
XSS 12 155 12 25
XBD 2 7 695 17
BEN 11 6 35 2928

(b)

SQL XSS XBD BEN
Precision 98.77 90.64 93.04 97.34
Recall 97.76 75.98 96.39 98.26

Accuracy: 97.10%

Table B.4: Confusion matrix and the resulting evaluation mea-
sures, using the support vector machine model with 1-gram fea-
tures.

(a)

Predicted
SQL XSS XBD BEN

Actual

SQL 2033 5 3 14
XSS 7 186 6 5
XBD 4 9 702 6
BEN 22 15 8 2935

(b)

SQL XSS XBD BEN
Precision 98.40 86.51 97.64 99.16
Recall 98.93 97.36 98.49

Accuracy: 98.26%

Table B.5: Confusion matrix and the resulting evaluation mea-
sures, using the decision tree model with 1-2 grams features.

(a)

Predicted
SQL XSS XBD BEN

Actual

SQL 2045 4 0 5
XSS 11 184 8 1
XBD 2 8 711 0
BEN 7 3 0 2970

(b)

SQL XSS XBD BEN
Precision 99.03 92.00 98.89 99.80
Recall 99.51 90.20 98.61 99.66

Accuracy: 99.16%

60

Table B.6: Confusion matrix and the resulting evaluation mea-
sures, using the k nearest neighbors model with 1-2 grams fea-
tures.

(a)

Predicted
SQL XSS XBD BEN

Actual

SQL 1997 2 0 56
XSS 3 188 1 12
XBD 2 4 697 18
BEN 2 1 0 2977

(b)

SQL XSS XBD BEN
Precision 99.65 96.41 99.86 97.19
Recall 97.18 92.16 96.67 99.90

Accuracy: 98.31%

Table B.7: Confusion matrix and the resulting evaluation mea-
sures, using the logistic regression model with 1-2 grams features.

(a)

Predicted
SQL XSS XBD BEN

Actual

SQL 2038 1 0 16
XSS 4 191 3 6
XBD 2 1 701 17
BEN 2 1 11 2966

(b)

SQL XSS XBD BEN
Precision 99.61 98.45 98.04 98.70
Recall 99.17 93.63 97.23 99.53

Accuracy: 98.93%

Table B.8: Confusion matrix and the resulting evaluation mea-
sures, using the support vector machine model with 1-2 grams
features.

(a)

Predicted
SQL XSS XBD BEN

Actual

SQL 2031 9 3 12
XSS 1 189 6 8
XBD 1 6 706 8
BEN 15 7 5 2953

(b)

SQL XSS XBD BEN
Precision 99.17 89.57 98.06 99.06
Recall 98.83 92.65 97.92 99.09

Accuracy: 98.64%

61

I takt med att tillgängligheten ökar på nätet så ökar även behovet av smidiga
säkerhetslösningar. Detta examensarbete utforskar möjligheten att tillämpa statistiskt
lärande för att upptäcka intrångsförsök.

POPULÄRVETENSKAPLIG SAMMANFATTNING Meris Bahtijaragic, Julian Kroné

Webbsäkerhet genom statistiskt lärande

Ett webbserverintrång är när en användare
får obehörig tillgång till information. För
att uppnå detta används vanligtvis kodinjek

tioner. En kodinjektion är när en attackerare får en
server till att köra kod som den ej är avsedd till att
köra. Med en lyckad kodinjektion kan en attack
erare stjäla, manipulera, eller förstöra lagrad infor
mation på en server.

I dag finns det över 3 miljarder internet användare
världen över. Mycket av deras användnings statistik
lagras, men istället för att använda denna data
till att lära upp och förbättra säkerhets system så
används istället manuellt framställda regler. System
som upptäcker intrångsförsök kallas för Intrusion
Detection Systems (IDS). Dessa system analyserar
data som skickas från användare för att identifiera
intrångsförsök. I vårt arbete används data från ett
befintligt IDS för att lära en maskin att se mönster.
Denna maskin kan sedan användas för att upptäcka
webbserverintrång.

Precis som vid ett läkarbesök nöjer man sig
inte enbart med att få veta om man är frisk eller
sjuk, utan man vill också veta vad är det för sjuk
dom och hur den kan behandlas. På samma sätt är
det vid ett intrångsförsök på en webbserver. Det är
inte tillräckligt att enbart få veta om det har skett,
utan man vill även ha mer information. Vad är det
för typ av intrångsförsök, hur det påverkar mig,
och hur stor är sannolikheten att det är ett faktiskt
intrångsförsök och inte ett så kallat falskt larm.

De mönsterbaserade IDS som finns på marknaden
idag identifierar ofta attacker genom metoder som
enbart kan visa att ett intrångsförsök har skett eller
ej. Ett problem för dagens mönster baserade IDS är
att det förekommer nätverks kommunikation som
ser elakartad ut, men i själva verket är godartad.
Detta ger upphov till falska larm. I detta examens
arbete utforskas datadrivna metoder som reducerar
denna typen av falska larm.

Digifort är ett Lundabolag vars främsta tjänst
är ett IDS som heter Triggerfish som upptäcker
intrångsförsök riktade specifikt mot webbapplika
tioner. I detta examensarbete utvärderas hur våra
framtagna algoritmer kan tillämpas i Digiforts platt
form Triggerfish. Detta görs eftersom maskinerna
som testats har olika egenskaper. Exempelvis har en
sorts maskin förmågan att förmedla hur säker den
är på sitt svar, en annan maskin har med hjälp av ett
beslutsträd möjlighet till snabb återkoppling.

Med hjälp av Triggerfish har exempel på kod
injektioner samlats in, dessa kategoriserades till
en början manuellt beroende på dess typ. Den
kategori serade datan används sedan för att lära upp
våra maskiner. Eftersom mängden data bidrar till en
maskins förmåga att kunna kategorisera händelser
så användes dessa maskiner sedan till att kategori
sera ny data och utöka datamängden. Genom detta
kom vi slutligen fram till ett antal rimliga me to
der för att känna igen och kategorisera injektions
attacker, varav den bästa med 99.51% precision.

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTATIONSDAG 2016-06-03

EXAMENSARBETE Intrusion Detection System by Statistical Learning – Using keyword features to classify
HTTP requests

STUDENTER Meris Bahtijaragic, Julian Kroné

HANDLEDARE Pierre Nugues (LTH), Markus Millbourn (Digifort Sverige AB)

EXAMINATOR Jacek Malec (LTH)

	Introduction
	Background
	Related work
	Digifort and the Triggerfish platform
	Triggerfish client
	Triggerfish backend

	Purpose
	Limitations
	Contributions
	Report outline

	Approach
	Cross Industry Standard Process for Data Mining
	Business understanding
	Data understanding
	Data preparation
	Modeling
	Evaluation
	Deployment

	Algorithms
	Clustering algorithms
	K-means
	DBSCAN

	Classification algorithms
	Decision tree
	K-nearest-neighbors
	Logistic regression
	Support vector machine

	Evaluation Measures
	Clustering evaluation
	Purity
	Normalized mutual information
	Rand index
	F1 measure

	Classification evaluation
	Confusion matrix
	Learning curve

	Results
	Clustering results
	Classification results

	Discussion
	Results
	Possible applications
	Clients
	Backend

	Achievements

	Conclusions
	Summary
	Future improvements
	Data set improvement
	Feature engineering
	Further hyperparameter optimization
	Adding more classes
	Hybrid trees

	Bibliography
	Appendix Final Decision Tree
	Appendix Results

