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Antonin Kusbach 

 

 

Analysis of Arctic peak-season carbon flux estimations 

based on four MODIS vegetation products 
 

Abstract (English). Increased temperatures in high latitudes may alter the carbon dynamics 

throughout the Arctic. Modelled CO2 simulations show that current climate conditions 

constitute the Arctic a net carbon sink, though the large extent and fine landscape 

heterogeneity raise an uncertainty about the carbon sink/source status of the region. The 

understanding of Arctic CO2 fluxes can be improved through integration of remote sensing 

techniques and environmental modelling. In this study, vegetation indices, i.e. LAI and 

NDVI from four MODIS products are used in the Pan-Arctic Net Ecosystem Exchange 

(PANEEx) model to calculate NEE at 12 Arctic study sites. The main objective was to 

determine the impact of the vegetation indices at 250 m, 500 m and 1 km resolution on the 

precision of NEE estimations. Data from eddy covariance towers (EC) were used to identify 

similarities and discrepancies between modelled and in situ LAI and NEE scores in July 

2008-2010. Google Earth Engine (Google Inc.), a powerful geospatial platform, was 

implemented for data acquisition and quantitative analysis. Linear correlations on 1:1 scatter 

plots and inferential statistics were used to assess the relationships between the modelled 

and in situ estimations. The model run using the 250 m MOD13Q1 LAI product simulated 

78% of the measured NEE fluxes (R
2
 = 0.73, p < 0.001) throughout the study sites. Overall, 

utilization of the PANEEx model with 250 m MODIS products indicates a potential for 

future modelling in the Arctic. Data analysis generated considerable differences in modelled 

NEE outputs and hence, their application in environmental modelling needs to be 

considered. The model simulations also demonstrate the potential of employing vegetation 

indices on much finer scale, i.e. 10-30 m in order to capture the Arctic heterogeneous 

landscape.  

 

Key words: Arctic, net ecosystem exchange, vegetation indices, satellite-derived data, big 

data analysis 
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Antonin Kusbach 

 

Analys av kolflöde under Arktis högsäsong uppskattning 

baserad på fyra MODIS produkt vegetation  
  
Sammanfattning (Svenska).  Förhöjda temperaturer på höga breddgrader kan förändra 

koldynamiken i hela Arktis. Modellerade CO2 simuleringar visar att under nuvarande 

klimatförhållanden utgör Arktis en netto kolsänka, fast den stora utsträckningen samt fina 

geografiska heterogenitet lyfter upp osäkerhet kring dess status som CO2 sänka/källa i 

regionen. Förståelsen för arktiska koldioxidflödekan förbättras genom integrering av 

fjärranalys och miljömodellering. I denna studie används fyra MODIS vegetations index 

(NDVI & LAI) som används i en simpel Pan-Arctic Net Ecosystem Exchange (PANEEx) 

modell för att beräkna NEE vid 12 arktiska undersökningsområden. Huvudsyftet var att 

bedöma effekten av fyra olika vegetationer index på precisionen av NEE uppskattningar de 

fyra indexen har upplösningarna 250 m, 500 m och 1 km. Data från eddy covariance torn 

(EC) användes för att identifiera likheter och skillnader mellan modellerade och 

platsbaserade LAI och NEE mätningar mellan juli 2008 till 2010. Google Earth Engine 

(Google Inc.), en kraftfull geospatial plattform, användes för datainsamling och kvantitativ 

analys. Linjära korrelationer på 1:1 spridningsdiagram och trendanalys användes för att 

bedöma förhållandet mellan modellen och de platsbaserade uppskattningarna. Modellen som 

kördes med produkten från MOD13Q1, LAI i 250 meters cellstorlek, simulerade 78 % av 

den uppmätta variationen (R
2
 = 0,73; p < 0,001) på samtliga undersökningsområden. 

Sammantaget så indikerar användande av PANEEx modell med 250 m vegetation en 

potential för framtida modellering i Arktis. Dataanalys genererade stora skillnader i 

modellerade NEE effekter och deras tillämpning i miljömodellering behöver därmed 

övervägas. Modellsimuleringar visar också potential att använda index vegetationsindex på 

en mycket finare skala, dvs. < 30 m för att fånga det arktiska heterogena landskapet.  

Nyckelord: Arktis, netto ekosystem utbyte, index vegetation, ursprunglig satellitdata, 

stordata analys   
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1. Introduction 

Concurrently, one of the most pursued topics in natural science is climate change 

(Kalnay et al., 1996; Francis, 2013) and its impact on carbon balance. High latitude regions 

contain substantial stores of carbon and the response of the Arctic carbon cycle to warmer 

conditions raises issues of a global concern (ACIA, 2005; McGuire et al., 2006; Tang et al., 

2015). The notion that the Earth is warming every year (IPCC, 2014) is acknowledged in the 

scientific community, e.g. IPCC (Intergovernmental Panel on Climate Change) or ACIA 

(Arctic Climate Impact Assessment) monitor and reveal continuous evidence of climate 

warming (Chapman & Walsh, 1993). Studies of climate change suggest that Arctic regions 

are more profoundly affected by climate change relative to mid-latitudes (arctic 

amplification) (Screen & Simmonds, 2010; Serreze et al., 2009). The Arctic is more 

susceptible to environmental changes (e.g. increases in temperature) due to large number of 

positive feedback processes, involving snow and sea ice loss, land heat storage, etc. 

(Overland et al., 2015); thus it is regarded as a ‘delicate’ region. 

The climatologically correct definition of the Arctic region (from the environmental 

perspective) can be derived from a natural phenomenon – the tree line, which indicates a 

zone where the severity of climate prevents trees from growing. However, a more common 

definition delineates all areas north of the Arctic Circle (66°32' N), which approximately 

marks the southern-most boundary of the midnight sun. Other studies have confined the 

Arctic according to the scope of their investigations; i.e. The Arctic Monitoring and 

Assessment Programme (AMAP) or the Circumpolar Arctic Vegetation Map (CAVM). All 

four definitions are used to evaluate the status of the Arctic in context of climate change, 

pollution, soil, etc. and produce public outreach reports to inform policy and decision-

making processes.   

Evidence for ecological changes on Arctic land can be gathered by (1) field-based 

measurements, (2) remote sensing and (3) long-term observations. Åkerman and Johansson 

have reported field measurements (1) on the state of the cryosphere throughout a 29-year 

period (1970s – 2006) (Åkerman, 1982; Johansson et al., 2008; Åkerman & Johansson, 

2008; Christiansen et al., 2010). Their extensive research in the Nordic area, esp. northern 

Sweden, documents the changes in the active-layer thickness (top-most fluctuating seasonal 

soil layer), permafrost (subsurface earth materials remaining below 0°C for two consecutive 

years) presence and the effect of increasing temperatures. It is reported that the recent 

1 
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climate-warming trend is thickening the active layer (2 cm/yr) and increasing permafrost 

temperatures, resulting in its decline (absence in 81% of sites) (Åkerman & Johansson, 

2008). Field measurements based on local carbon balance are carried out using both gas 

chamber techniques (Williams et al., 2006) and eddy covariance (EC) towers (Baldocchi, 

2003). These EC towers capture footprint upwind of the tower (see details in section 2.2.). 

Data obtained through remote sensing (2) is a relatively a new and effective way of 

measuring the environment (Faisal et al., 2012). Earth-orbiting satellites, such as MODIS 

(Moderate Resolution Imaging Spectroradiometer), LANDSAT (Land Remote-Sensing 

Satellite) or SPOT (Satellite Pour l’Observation de la Terre)  provide remote measurements 

of the Earth’s surface and atmosphere; the information derived from satellites is stored in 

geo-servers and is often available to the public (Zhao et al., 2013).  Vegetation indices, i.e. 

leaf area index (LAI) and normalized vegetation index (NDVI) are typical satellite-derived 

products that provide information on vegetation phenology and composition of terrestrial 

ecosystems (Li et al., 2014). Despite the widespread use of LAI in science, it remains 

difficult to directly and indirectly quantify accurately, because of large spatial and temporal 

heterogeneity across the landscape (Van Wijk & Williams, 2005). Long-term observations 

(3) provide scientists information on climate through time series data (temperature, 

precipitation, etc. For example, ecosystem responses to climate and other changes can be 

observable on multi-decadal scales and hence, a long record of observations is necessary 

(Callaghan et al., 2013). 

In modern science, researchers commonly conduct experiments through an 

interdisciplinary approach to understand natural phenomena from a more holistic approach. 

Combining knowledge from various fields of natural science, such as satellite remote 

sensing and environmental modelling can provide deeper insights into the impacts of climate 

change in a broader context (Comiso & Parkinson, 2004). The information provided by the 

satellite sensors consequently opens a broad field of implications within the Geo-physical 

science where in situ observations are often complemented by data acquired through remote 

sensing. Ecological parameters, such as gross primary production (GPP) or net ecosystem 

exchange (NEE) are examples of variables that can be computed via remote sensing based 

on existing empirical relationships and correlations (Mbufong et al., 2014). 
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1.1. Arctic net ecosystem exchange  

 

GPP and NEE are utilized as ecological indicators to provide an approximation of the 

ecological state of a biome. NEE is a commonly used proxy that estimates carbon balance 

(carbon uptake vs. carbon release) in a particular area. Also termed net ecosystem 

production, NEE is defined as the residual difference between carbon uptake by vegetation 

GPP and carbon loss through autotrophic and heterotrophic respiration, collectively called 

ecosystem respiration (Kimball et al., 2009). In simpler terms, NEE is a useful measure of 

carbon flux between ecosystems and the atmosphere, such that: 

 

NEE = (Ra + Rh) – GPP                                                  (Equation 1) 
         
     Ra – autotrophic respiration 

  Rh – heterotrophic respiration 

       GPP – gross primary production 

 

There are a few denotations of NEE in various fields of science. In ecological terms, 

NEE is denoted as positive (+) and negative (-) where the signs refer to respective terrestrial 

loss or uptake of CO2. A scientific site in Abisko, Sweden illustrates this with an average 

July NEE flux: -1.74 µmol m
-2

 s
-1

 (Stoy et al., 2013), i.e. an uptake of CO2 to the terrestrial 

environment. 

A study by Oechel & Vourlitis (1996) estimates carbon fluxes and suggests that 

vegetation distribution and landform patterns are indicators of carbon balance regimes at 

regional-scales. Mbufong et al. (2014) found that the understanding of the Arctic carbon 

exchange can be improved based on calculations of a simplified NEE model. The model 

utilizes parameters, the majority of which can be acquired or derived from remotely sensed 

data. Furthermore, based on the author’s recent findings (Mbufong et al. (In Prep)), it was 

demonstrated that vegetation indices (digital datasets that describe the amount of greenness), 

such as LAI and NDVI, are crucial in modelling of carbon exchange in the delicate Arctic 

tundra. They have been identified as one of the major drivers of spatial variation of Arctic 

tundra NEE during the peak growing season (McMichael, 1999). Digital remotely sensed 

products, e.g. LANDSAT or MODIS that provide information about the distribution and 

density of vegetation throughout the Arctic have increasingly become available for scientific 
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use. Watts et al. (2014) employ MODIS Terra (MOD13A1) and Aqua (MYD13Q1) datasets 

to represent Arctic LAI and successfully simulate Arctic GPP.  

 

1.2. Addressing problems with NEE calculation 

 

Analysis of upscaled data, such as NEE over a large spatial extent and natural variation 

is a challenging task. Knowledge of NEE fluxes in the Arctic is constrained due to an 

uncertainty surrounding the accuracy of satellite images involved in the upscaling process 

(Williams et al. 2001). As previously stated, NEE estimations in the Arctic are linked with a 

representation of Arctic vegetation cover and other related proxies, e.g. LAI or NDVI. These 

vegetation representations are suitable for monitoring landscape patterns, however, they 

often provide generalized characterizations of Arctic biomes and therefore, they may 

contribute to distinct variations in modelled NEE. In general, the sensitivity of the satellite-

derived estimations is closely linked to the technical configuration of a particular 

platform/sensor or to the method of acquisition (Stow et al., 1998). Therefore, the accuracy 

of modelled measurements depends on the quality of the input satellite data in the 

computation formula. Acquisition methods related to, e.g. spatial resolution, temporal 

resolution or spectral configuration of satellite sensors should be considered when selecting 

satellite-derived products. Spatial resolution refers to the pixel or cell size of images, 

ranging from coarse resolution (~1 km) to fine resolution (~10 m) (Longley, 2005). 

Given vegetation properties are one of the major drivers of spatial variation of Arctic 

tundra NEE, different sources of LAI and NDVI are expected to yield variation in Arctic 

tundra characterization, and thereby, modelled NEE estimations may relate to the vegetation 

representations. Williams et al. (2001) demonstrate that LAI derived from satellites with 

spatial resolutions of approximately 1 km, related to the footprint of the EC flux data, show 

a poor correlation versus the in situ LAI in 0.2 m x 0.2 m quadrats. In conclusion, the 

authors propose that improved characterization of vegetation via remote sensing is required 

prior to any upscaling methods in carbon budgeting can reduce uncertainty in environmental 

modelling in heterogeneous landscapes.  

In 2015, the Pan-Arctic Net Ecosystem Exchange (PANEEx), which was conducted by 

researchers at Lund University, Aarhus University and Dublin City University (funded by 

Google) developed a method to upscale remotely sensed data to refine understanding of 
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Arctic carbon fluxes in the terrestrial regions of Arctic tundra. The team used Google Earth 

Engine (GEE), an online interactive platform, which organizes geospatial information and 

makes it available for analysis to process data and generate results (Google Earth Engine 

Team, 2015).   

In this thesis, I intend to introduce an approach that aids in reducing the knowledge gap 

between modelling of NEE and remote sensing. I propose the development of a method that 

utilizes remote sensing techniques and enables users to evaluate satellite-derived products 

and apply them in environmental modelling. Knowledge gained from this study can 

contribute to further development of large scale NEE models and reduce the uncertainty 

surrounding upscaling of satellite-derived data on a global scale. 

1.3. Study purpose and aims  

 

In section 1.2, the relevance of remotely sensed data and vegetation indices to modelling 

of Arctic NEE was described. Here, I present a study that improves the understanding in 

using satellite-derived products to model Arctic NEE using investigation of relationships 

between modelled and in situ measurements at 12 Arctic study sites. Thereby, this thesis 

aims to address the following goals: 

 Acquire and apply vegetation indices from four MODIS products in the PANEEx 

NEE  formula (Mbufong et al., 2015) 

 Analyze the modelled NEE and LAI estimations and identify discrepancies or 

similarities in regards to ground observations 

 Assess the effect of spatial resolution in determining the most realistic NEE 

estimations from  MODIS products 

It is assumed that the satellite-derived vegetation indices with finer spatial resolution 

may yield more accurate estimations of NEE in relation to in situ observations. Additionally, 

the temporal resolution (image acquisition interval) is also believed to be associated with 

precision of modelled NEE estimations because it defines the number of images used in the 

analysis. However, the analysis of LAI standard deviations illustrates that there is no 

significant variation in Arctic LAI during the studied period (31 days in July). The spatial 

and temporal resolutions of four MODIS-derived LAI inputs are outlined in table 1.  
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Table 1. Technical description of MODIS products used in this study. 

* LP DAAC – Land Processes Distributed Active Archive Center 

Recent developments in satellite remote sensing and environmental modelling offer 

users the potential for direct measurement and improved resolution of environmental 

constraints for estimating land-atmosphere carbon exchange (Kimball et al., 2009). 

Therefore, the first aim in this study is addressed by utilizing available data and employing 

appropriate software (e.g. Google Earth Engine) to generate four sets of Arctic NEE 

estimations based on four independent vegetation inputs. Employment of GEE as processing 

software is essential in this study because its cloud-based computational infrastructure can 

facilitate parallel processing of large quantities of data. The execution of the second and 

third aim is done based on statistical and graphical interpretations of the results. Here, the 

degree to which the four MODIS products describe the variation in  NEE estimations at the 

study sites is examined. The configuration of MODIS products varies in this study and 

therefore, the results are assumed to reflect the suitability, advantages and disadvantages of 

each product used.  

2. Theoretical Background 

2.1. Carbon dynamics in the Arctic 

Northern high-latitude boreal and tundra biomes play an important role in the global 

carbon cycle because they sequester a significant portion of atmospheric carbon dioxide 

(CO2); they account for approximately 119 Pg of soil organic carbon (Kimball et al. 2009). 

Under current climatic conditions, the Arctic is regarded as a net sink of atmospheric carbon 

dioxide (IPCC, 2013), although there are large uncertainties surrounding the spatial variation 

of carbon fixation due to high heterogeneity across Arctic tundra. McGuire et al. (2010) 

discuss the culminating strength of the Arctic carbon land sink and argue that the diminished 

carbon storage over the terrestrial areas is due to increased fire disturbance. The authors 

Product 
Spatial 

Resolution 
Temporal resolution Source 

MCD15A3 - LAI 1 km 4 - day LP DAAC, USGS
*
 

MOD13A1 - NDVI 500 m 16-day GEE, MODIS Terra 

MOD13Q1 - NDVI 250 m 16-day GEE, MODIS Terra 

MYD09GA - NDVI 1 km Daily GEE, MODIS Aqua 
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further emphasize that methane (CH4) emissions are greater than the CO2 sink, therefore the 

Arctic is a net source of greenhouse gas forcing to the climate system. Despite its low 

atmospheric concentrations, it is important to consider CH4 because it has a substantially 

larger impact on the global warming potential than CO2. Local wetting throughout the Arctic 

(Watts et al. 2012), in association with Arctic warming, may also increase the rate of CH4 

emissions, although a large uncertainty rests in the spatial variability of areas likely to get 

wetter or drier. In this thesis, however, the influence of CH4 on carbon fluxes is not 

considered nor discussed. 

Rapid changes in temperature of the northern latitudes relative to the mid-latitudes in 

recent decades are indisputable (Screen & Simmonds, 2010; Serreze et al., 2009). Since the 

pre-industrial era, the temperature anomalies associated with warmer climatic conditions 

over the Arctic have been unprecedented (IPCC, 2013). The impact of warming climate on 

terrestrial ecosystems (e.g. increased decomposition rates), particularly on the delicate 

Arctic has been increasingly becoming a subject of extensive scientific research. The 

sensitivity of Arctic ecosystems to climate (and anthropogenic) perturbations is well 

understood as the cryosphere, i.e. terrestrial snow and ice, permafrost and sea ice constitute  

major elements in global heat budget, however, scientists are often provided with little 

diagnostic insight about the underlying biophysical processes (Anderson, 2015). The 

assessment of possible consequences that northern ecosystems may experience is a 

challenging task, considering the region’s landscape heterogeneity and the level of 

uncertainty amongst scientists. Recent studies (Piao et al., 2008; Angert et al., 2005 and 

Watts et al., 2014) demonstrate that current and projected regional warming trends may 

exacerbate global climate change by destabilizing regional soil organic carbon stocks and 

reducing the capacity of northern ecosystems to sequester atmospheric CO2.  

The projected changes associated with diminishing strength of carbon sink in the Arctic 

and the subarctic may inflict changes on the surface characteristics and may have further 

influence on vitality of circumpolar ecosystems, with considerable impact on plant and 

ecosystem carbon sequestration (Stiegler, 2016). Expanding our knowledge on geographical 

data and their acquisition is thus essential in gaining deeper understanding of carbon fluxes 

as well as developing more accurate models that simulate the prevailing dynamics in the 

Arctic. The development of ecosystem models (and estimations of sink/source areas in the 

Arctic) can offer a great potential for establishing an effective framework for high resolution 
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monitoring of greenhouse gases (CO2) in the vulnerable changing Arctic. In order to 

accomplish these goals, further research and in situ observations are crucial for improved 

understanding of Arctic carbon dynamics.  

2.2. Measurements of carbon in the Arctic 

EC towers provide a valuable insight into the environmental constraints as they measure 

direct fluxes of CO2 and CH4 over the extent of ca. 1 km upwind of the tower (Baldocchi, 

2003). Gas chambers represent another example of measuring carbon fluxes, although on a 

smaller scale (1 m x 1 m) and therefore, they capture a rather homogenous footprint of 

present vegetation (Williams et al, 2006). There are only a few sites that run gas chamber 

and EC tower measurements in the high Arctic. The limited availability of these 

measurements is closely linked to Arctic’s harsh climate as well as to the remoteness of the 

stations (INTERACT, 2015). Certain measurements, e.g. plant annual productivity or 

maximum LAI require field sampling that can be conducted only without the presence of 

snow and, thus they are linked with Arctic climate seasonality. The datasets employed in this 

study therefore pertain to the peak season exclusively. July 1 - 31 is regarded as the time 

period of the maximum plant growth and also the time when the conditions where snow and 

moisture perturbations, as well as the surface self-heating effect, are expected to exert 

minimal or none impact on the instruments for EC measurements (Burba et al., 2008; 

Mbufong et al., 2014). Ground observations are scarce, but their amount in high and low 

Arctic is sufficient for scientists to assess results obtained through environmental modelling. 

Knowledge on the various available vegetation products as well as their 

representativeness of the Arctic tundra has increasingly been becoming important for 

understanding the region’s carbon balance dynamics. An accurate characterization of Arctic 

ecosystems can be achieved through remote sensing monitoring, which constitutes a key 

element for improving knowledge surrounding, e.g. climate change impacts, developments 

of more accurate models etc. To meet such demands, the environmental modelling 

community is working towards more accurate models, associated with both time (temporal 

resolution) and space (spatial resolutions). For instance, Watts et al. (2014) employ 16-day, 

250 m NDVI to capture the overall seasonal variability in tower EC fluxes, whereas Tang et 

al. (2012) utilize 8-day, 500 m land surface reflectance  to derive explanatory variables for 
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NEE estimation. Consequently, this demands powerful computation technology, advanced 

model development and evaluation techniques; the criteria depend on the type of 

application. Other organizations and institutes participate in conducting research of such 

scope, amongst which are, e.g. the Rossby Centre at Swedish Meteorological and 

Hydrological Institute (SHMI), Hadley Centre for Climate Prediction and Research or 

internationally recognized Google Earth platform as a part of Google Inc.  

Investigating topics, such as NEE estimations based on various vegetation indices 

requires readily available data with, preferably, the finest resolution in time and space. Due 

to the wide range of applications and good data accessibility, MODIS  products were chosen 

as an adequate source and representation of Arctic LAI (Table 1 in section 3.1. summarizes 

the major technical attributes of MODIS products used in this study).  

2.3. Methodology in NEE Estimations 

The modelling community uses a variety of models to determine carbon exchange. The 

models are parameterized based on functional relationships between ancillary variables that 

characterize the natural conditions. For instance, Williams et al. (2006) use the ‘PIRT’ 

model to determine NEE of CO2 in tundra vegetation based on a combined representation of 

photosynthetic irradiance-response and temperature-sensitive respiration. They found 

moderately significant correlation between photosynthetic rate and LAI (R
2 

= 0.53, p < 

0.01). A simple terrestrial carbon flux model (‘TFC’) driven by satellite remote sensing 

inputs from MODIS and the Advanced Microwave Scanting Radiometer (AMSR-E) to 

estimate carbon stocks, NEE and respiration was developed by Kimball et al. (2009). GPP 

inputs in their study were acquired directly from a MODIS product (MOD17A2) and 

allowed successful computation of carbon stocks in high-latitude North America. The 

weakness in this method rests in a large spatial resolution of satellite-based GPP (1 km) and 

low accuracy of the TFC model to simulate dynamic equilibrium between GPP and 

ecosystem respiration.   

Mbufong et al. (2014) found that light response curve (LRC) parameterization can be 

successfully used to predict summertime NEE of CO2 throughout the Arctic. Spatial 

variation of LRC parameters can be explained with leaf area index (LAI), mean July air 

temperature (Ta) and photosynthetic photon flux density (PPFD). PPFD is derived from 
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photosyntheticaly active radiation (PAR), which is an important element in ecological 

modelling (incident PAR spans in the visible spectrum from 400 to 700nm) (Liang et al., 

2013). Such variables can be acquired through remote sensing with suitable spatial and 

temporal resolution, i.e. MODIS. Remotely sensed data are extensively used in Earth 

Science to monitor and analyze landscape changes on global and ecosystem scale (Luus et 

al., 2013). Using remote sensing techniques and Geographical Information Systems (GIS), it 

is possible to upscale satellite-based images by implementing Pan-Arctic Net Ecosystem 

Exchange (PANEEx) 2015 NEE formula (equation 2). This approach aims to effectively 

model estimations of carbon fluxes in the circumpolar Arctic. In this effort, an integration of 

environmental modeling with satellite data enables to gain further insights into climate 

change and its effects on terrestrial ecosystems on a large spatial scale.  

The calculation of NEE in the pan-Arctic region based on freely available satellite and 

satellite-derived datasets will be implemented using the following relationship, utilizing the 

three stated variables (Mbufong et al, 2014):   

 

NEE = −(Fcsat + R𝑑) (1 − 𝑒
−α(PPFD)

𝐹𝑐𝑠𝑎𝑡+𝑅𝑑) + 𝑅𝑑                                                  (Equation 2) 

    

Where  

 

 Fcsat [µmol m
-2

 s
-1] indicates maximum CO2 exchange at light saturation 

 Rd or ‘dark respiration’ [µmol m
-2

 s
-1] represents nighttime CO2 flux, i.e. when PPFD = 0 

 PPFD [µmol m
-2

 s
-1] corresponds to the incoming solar radiation 

 α signifies the initial slope of LRC. It can be also described as a parameter that affects 

the rate of CO2 exchange in response to increase in PPFD. 

 

3. Materials and Methods 

The following section reveal characteristics of the study area, describe parameters used 

in NEE estimations, introduce satellite-derived products and they encompass the study 

design as well as statistical analysis. 
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3.1.Study Domain and study sites 

This study estimates NEE for the Arctic, which encompasses regions, such as northern 

Alaska, North and Northeast Canada, Greenland, northern tip of Iceland, non-forested parts 

of Scandinavia and Northern Siberia (Figure 1). Due to environmental variations in, e.g. 

temperature, presence of large water bodies, permafrost cover etc., several definitions of the 

Arctic exist among scientists. The CAVM characterization of the Arctic was used to 

delineate to the boundary of the study area because its extent and biome classification are 

suitable for the purposes of this study, i.e. all study sites are included within the boundary. A 

Map of the study domain including the locations of the 12 study sites is shown in Figure 1. 

The southern limit of Arctic tundra vegetation is established based on the circumpolar Arctic 

vegetation map (CAVM, 2003). The following table (Table 2) identifies the studied stations 

that were used in the analysis. Some of the stations belong to the INTERACT (International 

Network for Terrestrial Research and Monitoring in the Arctic) network, which establishes 

‘hot spots’ of research activity within the remote and vast environments (INTERACT, 

2015). 

Table 2. List of the studied sites in alphabetical order. The ecosystem type has been determined 

according to MODIS MCD12Q1 classification, International Geosphere-Biosphere Programme 

(IGBP). 

*Source: NASA, LP DAAC at https://lpdaac.usgs.gov 

Station Location Ecosystem type (IGBP)* Latitude Longitude 

Anaktuvuk Alaska Open shrublands 68.93 N 150.27 W 

Andøya Norway Grasslands 69.14 N 16.02 E 

Barrow Alaska Permanent wetlands 71.32 N 156.63 W 

Daring Lake Canada Open shrublands 64.87 N 111.57 W 

Ivotuk Alaska Open shrublands 68.49 N 155.75 W 

Kaamanen Finland Woody savana 69.14 N 27.30 E 

Kytalyk Russia Open shrublands 70.83 N 147.49 E 

Nuuk Greenland, DE Woody savana 64.13 N 51.39 W 

Saymolov Island Russia Open shrublands 72.37 N 126.50 E 

Seida Russia Woody savannas 67.05 N 62.93 E 

Stordalen Sweden Woody savana 68.35 N 19.05 E 

Zackenberg Greenland, DE Open shrublands 74.47 N 20.56 W 
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Data for analysis in this study comes from EC measurements of NEE of CO2 and 

environmental variables, such as PPFD, temperature (air and soil), soil moisture, etc. Each 

station is equipped with meteorological instruments and EC towers for measuring turbulent 

heat and greenhouse gas fluxes between the biosphere and the atmosphere (Baldochi, 2003). 

Various instruments for EC measurements have been used across the study sites, such as the 

open-path LI-7500 (LiCor Inc., USA), closed-path LI-6262 and LI-7000 (LiCor Inc., USA) 

and the open-path IRGA designed by NOAA’s Atmospheric Turbulence and Diffusion 

Division (ATDD). The usual flux footprint is defined as the area around the flux tower with 

the distance ca. 1 km. Footprint size depends, e.g. on the height of the EC tower, wind 

direction and speed and topography (Baldocchi 2003). Flux data in this study was based on 

eddy covariance data and is used as in situ NEE estimations across the study sites.  

Eddy covariance technique ensures direct measurements of gas fluxes over larger 

regions compared to small-scale chamber techniques. EC measurements are thus appropriate 

for environmental modelling studies that consider ecosystem properties. Furthermore, this 

technique offers measurements of CO2 flux over different times ranging from minutes to 

years (Mbufong, 2015). This study examines only peak season data (July, 2008 to 2010), 

which corresponds with the in situ NEE with a few exceptions (e.g. Barrow, Seida,) where 

missing data was complemented from previous or following consecutive seasons. The list of 

references for in situ NEE is located within Table 4. 

The study sites are located within the most common types of tundra ecosystems throughout 

the circumpolar Arctic, with the latitudinal range 64 to 74° N (Mbufong et al., 2014). The 

ecosystems range from peat land to wet and dry tundra and certain sites (e.g. Barrow, Nuuk) 

exist on an underlying layer of continuous or sporadic permafrost (Callaghan et al., 2014). 

Due to a large spatial extent of the study domain, the climatic conditions vary significantly 

for each specific site. 

According to Jensen & Rasch (2008), the low Arctic site Nuuk experiences a typical 

climate with mean annual Ta around 0°C and mean annual precipitation of ca. 700 mm 

(1961 – 1990). Williams et al. (2006) describe the annual mean Ta and annual precipitation 

at Barrow (high Arctic) between 1985 and 1993 as -7.4°C and 340 mm respectively. The 

vegetation can vary greatly, depending on the ecosystem type, from polar desert to spruce 

forest in the southern reaches of the low Arctic (Figure 1). The vegetation is dominated by 

sedges, low shrubs and tussock forming sedge; amongst the common species are Eriophorum 
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Figure 1. Map of studied domain. Polar conic projection shows 12 studied sites in global 

perspective. Different shades of blue denote Arctic bioclimatic subzones, according to 

zonation of Arctic vegetation (Matveyeva, 1998). The CAVM (Circumpolar Arctic 

Vegetation Map) line delineates the southern-most boundary of the Arctic, as used by CAVM 

Team, 2003. Note: since Fennoscandinavia is excluded from the official classification, the 

CAVM boundary has been re-edited according to the Arctic circle to integrate Swedish, 

Norweigan and Finnish sites.  

Coordinate System: CGS 

WGS 84;  

Projection: North Pole 

Lambert Azimuthal 

Equal Area. 

Source: Author 

Map was designed in GEE 

and ArcGIS 
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vaginatum, Vaccinium uliginosum, Betula nana, Salix spp., etc. (Kutzbach et al., 2007; 

Parmentier et al., 2011 and Rocha & Shaver, 2011). 

3.2.Satellite-derived vegetation inputs 

This study is based on investigating and applying various vegetation datasets to the 

PANEEx model (equation 2). Several vegetation index datasets were acquired from 

Moderate-Resolution Imaging Radiospectrometer (MODIS). Among the studied vegetation 

datasets are MODIS/MCD15A3 LAI, MODIS/MOD13A1 NDVI, MODIS/MOD13Q1 

NDVI and MODIS/ MYD09GA NDVI. The metadata and supplementary information 

regarding the above-stated datasets was obtained from the Land Processes Distributed 

Active Archive Center (LP DAAC) site: https://lpdaac.usgs.gov/dataset_discovery. 

The selection of the studied products was based on their different spatial and temporal 

resolutions as well as data availability. As mentioned, the remaining variables in the 

PANEEx model are PPFD (derived from PAR; PPFD = PAR × 4.57), and air temperature. 

Air temperature was estimated from MODIS land surface temperature (MOD11A1), as 

outlined in Mbufong et al., (in prep.) The MCD15A3 LAI product and its metadata for July 

2008-2010 were obtained from https://lpdaac.usgs.gov/, maintained by the NASA Earth 

Observing System Data and Information System (EROS), USGS/EROS, Sioux Falls, South 

Dakota, 2014; the other three MODIS vegetation products are stored in readily-available 

format in GEE (Google Earth Engine Team, 2015), but originally were downloaded from 

USGS/EROS server as well. PAR data was obtained from The Global Land Surface Satellite 

(GLASS) server (Liang & Zhang, 2012). The GLASS PAR was available from 2008-2010 at                                                                                                                                 

5 km spatial resolution and three-hour temporal resolution. Furthermore, this product had 

been evaluated and validated (Fang et al., 2013; Xiao et al. 2013a, 2013b) and the 

preliminary results indicate that they are of higher quality and accuracy than the existing 

product at eight-day temporal resolution (1982–2012 and 1981–2010) (Zhao et al., 2013).  

Air temperature was derived from MODIS/MOD11A1 Land Surface Temperature and 

Emissivity, as used in Mbufong (2015), land surface temperature at 1 km spatial resolution 

and with a temporal resolution of one day. To preserve environmental conditions for each 

season, air temperature was derived separately for each July in 2008, 2009 and 2010. This 

means that every study site contains a specific air temperature measurement for a particular 

year. Additional subsets, e.g. clear sky coverage, day time and night time temperature 

https://lpdaac.usgs.gov/dataset_discovery.
https://lpdaac.usgs.gov/
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constitute MOD11A1. Data downloaded from MOD11A1 are contained within the GEE 

(Google Earth Engine Team, 2015).  

The following sections provide a more detailed description of the MODIS vegetation 

products used in the analysis and, where applicable, steps taken in data preparation and 

harmonization: 

 MCD15A3, LAI  

MCD15A3 version 005 LAI/FPAR was acquired through the NASA-maintained server: 

https://lpdaac.usgs.gov. The data was downloaded using the USGS Global Visualization 

Viewer (GloVis).   

The MCD15A3 V005 contains additional layers including: Fraction of Photosyntheticaly 

Active Radiation (FPAR), LAI and quality assessment data. Only layer 2 (LAI 

[m²plant/m²ground]) was used. MODIS LAI is available in multiple versions: MODIS Terra 

(MOD15A2), MODIS Aqua (MYD15A2) and the combined MODIS Terra & Aqua 

(MCD15A2) of the eight-day temporal resolution. The V005 combined MCD15A3 LAI 

(Terra & Aqua) is a product based on satellite image composites captured every four days. It 

was chosen for this study because of its global coverage, good accessibility and 1 km spatial 

resolution. More detailed metadata descriptions regarding LAI derivation were not provided 

by the source.  

The increased temporal resolution is aimed at improved phenology monitoring and 

associated rapid changes that occur throughout the transition periods – plant bloom and 

senescence (Land Processes Distributed Active Archive Center (LP DAAC), 2002). This 

product represents LAI with the coarsest spatial resolution in this study and is therefore 

assumed to yield generalizations in modelled LAI and, consequently, a potential source of 

error in NEE estimations compared to in situ observations. MCD15A3 has not been 

incorporated to GEE database, therefore additional steps were required to input these raster 

data for further analysis:  

1. Append individual image tiles to create East (E) and West (W) hemisphere Arctic LAI 

raster images. The LAI was separated into two halves as an extra step in order to 

circumvent downloading and handling large image files. 

2. Append E and W raster images to form a global Arctic LAI. 

https://lpdaac.usgs.gov/
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3. Cell statistics-maximum pixel value to produce maximum LAI images for each July 

2008-2010. 

4. Cell statistics-mean pixel value to produce an average maximum Arctic LAI image 

for July 2008-2010. 

5. Clip average maximum Arctic LAI to the study area (CAVN boundary, Figure 1.) 

The terms highlighted in italics represent individual ArcGIS (10.2.2) tools used during the 

LAI data preparation.  

 MOD13A1, NDVI & MOD13Q1, NDVI 

MODIS datasets 13A1 and 13Q1, produced on 16-day intervals at multiple spatial 

resolutions, provide consistent spatial and temporal comparisons of vegetation canopy 

greenness, a composite property of leaf area, chlorophyll and canopy structure. The two 

datasets are derived from atmospherically-corrected reflectance in the blue, red, near-

infrared wavebands, centered at 469 nm, 445 nm and 858 nm respectively (Didan & Huete, 

2006). Despite the coarse temporal resolution, the composites 13A1 and 13Q1 are 

characterized by relatively fine pixel resolution, i.e. 500 m
2
 and 250 m

2
, making those 

suitable datasets for environmental modelling at regional and global scales. In this project, 

the environmental variation is sampled throughout the circumpolar Arctic and thus, the 

spatial scales of 13A1 and 13Q1 are expected to be sufficient. This approach should provide 

better insights into environmental modelling in the Arctic because other studies (McGuire et 

al., 2010; Watts et al., 2014) employ vegetation indices or vegetation classifications grids 

ranging from 0.5 - 1° (1° ~ 100 km). Furthermore, 13A1 and 13Q1 complements NOAA’s 

Advanced Very High Resolution Radiometer (AVHHR), which provides high quality data 

acquisition and continuity in time series applications. This MODIS NDVI product is 

computed from atmospherically corrected bi-directional surface reflectances that have been 

masked for water, clouds, heavy aerosols and cloud shadows. 

Given the adequate spatial and temporal dimensions of MODIS 13A and 13Q, it is 

presumed that these products likely yield the most realistic NEE estimations compared to 

measured values, considering the high variation of NEE fluxes in Arctic tundra (Tape et al., 

2012). 
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 MYD09GA, NDVI 

Originally, MYD09GA NDVI was generated from the MYD09GA MODIS surface 

reflectance composites. Its reflectance products provide an estimate of the surface spectral 

reflectance as it would be measured at ground level in the absence of atmospheric scattering 

or absorption. Cloud masking has been achieved using the ‘state_1km’ scientific dataset 

included in the MYD09GA NDVI product, which uses two cloud detection algorithms: the 

MOD/MYD35 cloud mask (Frey et al., 2008) and an additional, internal cloud screening 

(Vermote et al., 2008). The product’s data quality has been validated at stage 2, i.e. the 

accuracy has been assessed over a widely distributed set of locations and time periods.  

MYD09GA NDVI is delivered on daily basis, which makes it a suitable dataset in 

regards to vegetation dynamic representativeness, however, at the expense of pixel size (1 

km
2
). The fine temporal resolution and reduced atmospheric disturbance constitute 

MYD09GA a valuable product in this study and it is therefore presumed to provide sound 

NEE estimations. Hilker et al. (2012) successfully employ MYD09GA and derived 

composites (MYD09A1, MCD43A4 and MYD13A2) for observation of the vegetation 

dynamics in tropical environments like Amazonia where atmospheric disturbance (cloud 

aerosols, light scattering, etc.) is significant. 

Portions of this description are modifications based on work created and shared by 

Google and used according to terms described in the Creative Commons 3.0 Attribution 

License (https://code.earthengine.google.com/).  

3.3.LAI derivation 

 

Leaf area index represents a good approximation of plant productivity in physical 

science. In general, it is defined as a dimensionless fraction of leaf area per ground surface 

area [plant m
2
 / ground m

2
], ranging from 0 (bare ground) to 10 (dense forest) (Myneni et al., 

1997). Many publications deploy LAI to characterize the state of ’greenness’ in their studies 

(Boelman et al., 2003; Van Wijk et al., 2005 Mbufong et al., 2014. NDVI is equivalent to 

LAI as both indices measure the amount of vegetation in an area, though NDVI is most 

likely to be associated with satellite-derived data because its calculation requires light 

reflectance data, i.e. red and infrared bands. It ranges from 0 to 1 and it is dimensionless, 

where 0 represents bare ground and 1 dense vegetation. Typically, data collectors measure 

https://code.earthengine.google.com/
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LAI in field using harvesting and scanning technique (leaf area / ground surface area) but 

MODIS NDVI is satellite-derived and has been a is stored as a digital dataset since February 

2000. In order to calculate Arctic NEE based on PANEEx NEE formula, all vegetation 

inputs needed to be homogeneous, i.e. the satellite-derived NDVI products were converted 

to LAI. This is accomplished by implementing a relationship between LAI and NDVI, 

utilized by Van Wijk & Williams (2005) (Equation 3). 

LAI =  0.0026 ×  e(8.0783 × 𝑁𝐷𝑉𝐼)                               (Equation 3) 

 

LAI – leaf area index 

NDVI – normalized difference vegetation index 

e – exponent (Euler’s number)                    
 

 

This relationship was developed to effectively derive LAI from NDVI in low vegetation 

Arctic tundra ecosystems nearby Abisko, Sweden. It was chosen because it successfully 

estimates 97% of the measured LAI through vegetation harvesting techniques. Moreover, 

the LAI estimation was conducted through combining field measurements of canopy 

reflectance (NDVI) and light penetration through the canopy. LI-COR LAI-2000 Canopy 

Analyzer (LI-COR, Lincoln, Nebraska, USA) was employed to carry out the measurement. 

Application of this relationship in this study is optimal because the parameters were 

calibrated mainly for the Arctic tundra environments. 

The LAI of arctic vegetation could be estimated accurately and rapidly by combining 

field measurements of canopy reflectance (NDVI) and light penetration through the canopy 

(gap-fraction analysis using a LI-COR LAI-2000). By combining the two methodologies, 

the limitations of each could be circumvented, and a significantly increased accuracy of the 

LAI estimates was obtained. 

3.4.Statistical approach 

 

Similarly, data analysis in this study uses the conception of modelled vs. observed data 

and attempts to identify correlations and discrepancies between the two datasets. Thus, 

inferential statistics are used in order to make assumptions about the sampled data and to 

compare correlations of various sets of NEEs and LAIs (Lattin et al., 2003). A linear 

correlation line is fit through modelled and observed data in order to determine the amount 
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of explained variance, i.e. the goodness of fit (R
2
), the root-mean-square-error (RMSE), the 

95% significance test (p-value) and the regression line parameters (slope and y-intercept). 

The modelled data and ground observations are plotted on 1:1 scatter plots to assure clear 

data interpretation and comparison. Here, the slope parameter refers to the relationship 

between the modelled and measured data. For instance, given a plot with a slope of 0.5 

means that the model simulated 50% of the measured fluxes; in other words, the slope of the 

correlation line describes the degree to which the model succeeded to yield estimations 

compared to in situ observations (ideally, the slope of a perfect fit would be 1, i.e. 100 %).  

To effectively evaluate individual vegetation indices and their relevance to Arctic NEE 

estimations, it was necessary to exploit relationships between modelled and measured LAI 

and NEE scores separately. The LAI correlation analysis was carried out using 12 study sites 

whereas the NEE analysis contained only 11 sites; station Barrow was excluded from the 

NEE correlation due to insufficient data. The scope of analysis and calculation used in NEE 

upscaling is imposed by the techniques employed. Satellite derived data was retrieved and 

processed via Google Earth Engine (Google Inc.). ESRI ArcGIS Desktop vs. 10.2.2 

(Redlands, CA, USA) was used for raster analysis and map generation and Matlab vs. 

R2014a (The MathWorks, Inc., Natick, MA, USA) served as a statistical processing 

software.  

 

3.5.Data processing in Google Earth Engine 

 

Prior to fitting a correlation line through the data, both NEE and LAI scores were 

calculated and retrieved using the GEE server (GEE, Google Inc.). GEE encompasses other 

extensions, such as Google Maps Engine (GME) that allows users to upload external 

geographical data in form of raster files, vectors, etc. and makes them compatible with GEE 

interface. The connection of external variables with GEE is facilitated using an ID linker 

code so the dataset can be directly imbedded in PANEEx NEE model on the same platform. 

Using Java syntax, which is GEE’s operational input language, a model script that links all 

corresponding variables and processes has been developed, as outlined in workflow chart 

(Figure 2); The boxes with green outline are identified as the main three input variables (air 

temperature Ta, LAI, and PAR) in NEE estimation. The main three input variables were 

used to define the LRC parameters (explained in section 2.3.) Fcsat, α and Rd, as outlined in 
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Mbufong et al. (2014). Ta is used to define Fcsat, PAR is used to derive PPFD and LAI is 

used to define all three parameters, i.e. Fcsat, α and Rd. As mentioned, the various NEE 

estimations were obtained based on alternations of vegetation proxy datasets, i.e. the model 

was run four times and each iteration, a LAI proxy was substituted with one of the MODIS 

LAI/NDVI products described in section 1.3, Table 1.  

It was also necessary to upload external data into GEE to perform the analysis. In this 

study, a vector file containing XY coordinates of in situ sites had been manually ingested 

into GEE via GME. The ingested vector that spatially coincides with the coordinates of 

ground observation stations and EC towers was used for LAI and NEE score extraction. This 

ensured that the location of extracted modelled and in situ data was matching. Geospatial  

 

Figure 2.  Workflow chart of NEE calculation. The chart displays chronological steps in data 

processing as well as input data in the PANEEx NEE  formula,  based on Mbufong (2015). The final 

product represents an average daily carbon flux at the peak of the growing season in  [µmol m
-2

 s
-1

]. 

Matlab 

Google Earth Engine 
(GEE) 

Google Maps Engine 
(GME) 

Raster & vector analysis 
(GIS) 

Clipping + projection 
(WGS 84) 

Data upload and  
synchronization 

(asset ID) 

LAI Ta 

PANEEx NEE = -(Fcsat +Rd  )(1 - e-α(PPFD)/Fcsat+Rd) +Rd 

Average July NEE 

 [µmol m-2 s-1] 

LRC parameters 
conversion 

PAR  
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tools included in GEE allowed pixel extraction based on XY coordinates, masks and fusion 

tables; additional external data, i.e. PAR and vector files that are not included in GEE 

database were uploaded and synchronized through GME. 

Analysis of global datasets is a demanding task in terms of data storage and operational 

speed. Data processing in GEE presented an effective way of handling large datasets in this 

study because the analysis was executed through a Google-powered cloud server, which 

enables simultaneous operations at a time. The execution of the PANEEx script in GEE does 

not have any effect on the precision of the produced estimations. There are a few constraints 

associated with GEE, i.e. time and the methods used. Large datasets can be processed by 

GEE if the network is not overloaded; in other words, the processing time is related to the 

size of the dataset being processed and the current server workload.  

3.6.Execution of PANEEx in Google Earth Engine 

Carbon fluxes in the Arctic are regarded as fluctuating proxies that are closely linked 

with variations in ambient topography and climate conditions. Although there are clear 

patterns in carbon flux dynamics in the Arctic, studies (Lund et al., 2012; Mbufong et al., 

2015) have shown that the correlations between ancillary natural processes and CO2 uptake 

or release have a non-linear nature. For instance, light availability and length of the growing 

season are both related to plant GPP in a particular year. In this study, multiple linear 

relationships between the LRC parameters and satellite-derived variables are implemented, 

i.e. Ta and LAI to estimate carbon exchange. Modelling of NEE estimations throughout the 

circumpolar Arctic is contingent on the three listed variables, particularly the PAR, owing to 

its substantially fine resolution in time (8 times per day). PANEEx NEE model is therefore a 

function of PPFD (derived from PAR) in [W/m
2
]. 

In high-latitude areas where PPFD images were aligned imperfectly (at the expense of 

seam lines), a hollow space in form of masked pixels containing no data was substituted 

with pixels, such that PAR = 0 W/m
2
. This resulted in a potential source of error and will be 

further discussed (see section 5.2.2).  

Given the study scope of 31 days in July of each study year, the model produced 31 daily 

NEE outputs based on three-hour temporal resolution of PAR. Averaging the 31 NEE daily 

estimations in July for each study year has resulted in deriving an average July NEE where 

this measurement is considered as a total annual carbon yield for a particular year. The 
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highest photosynthetic rate by plants was considered at full vegetation growth. This was 

achieved by implementing maximum LAI raster images to account for the potential plant 

production at light saturation. Maximum LAI means that that the highest pixel value 

throughout the 31 days was prioritized instead of a monthly mean during a raster overlay 

analysis. 

The PANEEx NEE model was executed for three separate years (2008, 2009 and 2010) 

and the presented results show a single NEE average for this time period. After the PANEEx 

model had quantified Arctic NEE, MATLAB and ArcGIS were used for further data 

analysis and figure generation. 

4. Results 

The following chapters analyze the relationships between modelled and observed LAI 

and NEE scores for the study sites. The results are illustrated in 1:1 scatter plots, bar graphs 

and supplementary maps. Linear correlations and parameters slope and y-intercept are used 

to infer about the statistical significance and relationship strength between modelled and in 

situ data. 

4.1.Satellite-derived LAI  

 

The satellite-derived vegetation indices compared to ground measurements are presented 

in this section. Prior to analyzing the modelled NEE estimations, the LAI scores from the 

four MODIS products were plotted against in situ observations in attempts to identify their 

capability to describe vegetation variation amongst the studied sites. Figure 3 illustrates 

linear correlations between satellite-derived and in situ LAI scores (n = 12). It was found 

that MODIS products yielded relationships with slopes ranging from slopes 1.22 to 2.45 and 

RMSE spanning between 0.12 - 0.29. This shows that the satellite-derived products 

contributed with a systematic bias ranging from 22 % to 145 % with respect to in situ LAI. 

In spite of the bias in calculated LAI, all four MODIS products yielded relationships that 

satisfy the 95% significance test. Very strong relationships between satellite-derived and 

ground LAI were achieved using datasets (MCD15A3 and MOD13A1) shown in Figure 3, 

plots A) and B), R
2
 = 0.8 and 0.89 respectively. In both cases, however, the LAI was 

considerably overestimated (slopes: 2.45 and 1.47 respectively). 
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Figure 3. Linear correlations between satellite-derived and in situ 

maximum average July LAI for 12 Arctic sites. Maximum average  LAI 

refers to the mean of the three maximum LAIs in 2008, 2009 and 2010. 

Maximum LAI is the highest measured value in July in a particular year. 

The concept of maximum LAI is used in order to simulate the potential 

gas exchange at peak-season (full vegetation growth).  

R2 
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Furthermore, the dataset MOD13Q1 (Figure 3C) represents the least biased relationship in 

this study (slope: 1.22). In contrast, it accounts for the lowest correlation fit (R
2
 = 0.59, 

RMSE = 0.23). LAI scores for all study sites and four MODIS products are reported in 

Table 3. The standard deviations (σ) for MCD15A3, MOD13A1, MOD13Q1 and 

MYD09GA span between 0 to ± 0.36, ± 0.04 to ± 0.77, ± 0.01 to ± 0.46 and ± 0.04 to ± 0.25 

respectively. 

Results from table 3 are graphically presented in a bar chart (Fig. 4). The colored bars 

represent satellite-derived LAI scores from four MODIS products and the bar whiskers 

correspond to the standard deviation, i.e. the annual variation in July LAI throughout the 

study period 2008 – 2010 LAI. This figure presents a quantitative comparison of satellite-

derived and ground LAI scores for each study site. The performance and accuracy of each 

MODIS product can be compared to the in situ LAI displayed as a ‘blue dot’. The results 

from this figure suggest that MCD15A3 has yielded LAI estimations that exceed the in situ 

measurements by a factor of two and, in case of a high Arctic site Zackenberg, by a factor of 

three. Therefore, it is considered as the least suitable satellite-derived product. Moreover, the 

products MOD13Q1 and MOD13A1 demonstrate the most realistic representations of the in 

situ measurements, both graphically and statistically (see the statistical parameters in Figure 

3). 

 

 

Figure 4. Graphical representation of the Arctic satellite-derived and ground LAI scores at the 12 study sites. 

The error bars denote the standard deviation of LAIs between 2008-2010. 
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4.2.Satellite- derived NEE 

 

This section presents modelled daily peak-season NEE based on different LAI inputs. 

Figure 5 illustrates relationships between modelled and measured NEE at the study sites (n = 

11). It was found that 1 out of 4 vegetation datasets (MCD15A3) yielded NEE estimations 

that poorly correlated with the variation contained in in situ data (R
2
 = 0.24, n = 11). The 

linear correlation further showed that the residuals account for a large variation and the data 

falls out of the 95% significance interval (p < 0.72) (Fig. 5A). A successful representation of 

Arctic NEE was achieved by implementing MOD13Q1 (Fig. 5C), which estimated 78% of 

the measured fluxes (slope = 0.78) with RSME = 0.22. There is strong fit between 

MOD13Q1 NEE and in situ (R
2
 = 0.73, n = 11), though it is consistently underestimated 

throughout all the sites. 

In spite of having the second finest spatial resolution (pixel size = 500 m), MOD13A1 

has not succeeded to effectively characterize the NEE (outside of the significance interval, p 

< 0.079); a boxplot analysis of modelled NEE based on MOD13Al (see Appendix 2) had 

identified an outlier Seida. In this case, the outlier was treated as confounding data and was 

accounted for in the analysis; however, its exclusion from the linear correlation did not 

improve the fit (Fig. 5B). The other three NEE datasets did not account for any outliers. 

MYDGA09 NEE showed a moderate goodness of fit compared to in situ (R
2
 = 0.52, n = 11) 

(Fig. 5D) with RMSE = 0.34 and is, as well as MOD13Q1, consistently underestimated 

throughout the Arctic study sites (slope = 0.86). In this study, MYDGA09 NEE therefore 

constitutes the second most suitable estimation, even though it had been initially assumed 

that its relatively coarse spatial resolution (1 km) may not generate the expected outcomes. 

Although one outlier (Seida) was identified within the modelled NEE sets, other NEE 

estimations (e.g. Barrow) had to be excluded from the analysis due to insufficient data or 

errors related to the reflectance properties in satellite-derived products. 

Modelled and measured NEE scores, including the standard deviation for all sites are 

reported in table 4. 
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Figure 5. Linear correlations between modelled and measured 

average July NEE for 11 Arctic sites. Site Barrow is excluded 

from the analysis due to insufficient data. Site Seida (displayed as 

an outlier) does not show horizontal bars throughout the plots. 

This is because data source for Seida provided data only for one 

year (2008) and thus Seida does not show standard deviation for 

measured NEE.  

Slope = 0.29  

Intercept = -0.94 

R
2
 = 0.15; rmse = 0.30 

R2 R2 

R2 R2 
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The bar chart (Fig. 6) graphically illustrates the NEE fluxes contained in Table 4. The 

colored bars represent modelled peak-season NEE based on four MODIS products and the 

bar whiskers correspond to the standard deviation of NEE throughout the study period 2008 

– 2010. The figure depicts the contribution of MODIS products to NEE estimations at each 

study site; the ‘blue dot’ (measured NEE) serves a comparison of what the modelled NEE 

should be equivalent to. A visual analysis suggests that the NEE estimations generated from 

MCD15A3, MOD13Q1 and MYD09GA are consistently overestimated at all 11 study sites, 

with the standard deviation (σ) ranging from ± 0.11 to ± 0.68, ± 0.07 to ± 0.46 and ±0.05 to 

± 0.37 respectively, whereas vegetation dataset MOD13A1 contributed to overestimations at 

9 study sites with the seasonal variation, i.e. σ = ± 0.02 to ± 0.49. Alternatively, an 

overestimation in NEE means that the Arctic tundra behaves as a pronounced sink of CO2 

compared to reality.
 
In other words, the model has simulated that the net CO2 uptake by land 

is greater than the in situ observations suggest in this study.  

 

4.3.Examples LAI variation on small scale 

 

 Two study sites, i.e. Stordalen (Sweden) and Zackenberg (Greenland, DE) were chosen 

as examples to illustrate small-scale variation in satellite-derived LAI. In order to show the 

differences between the four MODIS products, a map with zoom-in windows of 5 x 5 km
 

was produced (Fig. 7). The eight windows present characteristics of the four satellite-derived 

Figure 6. Graphical representation of the Arctic modelled and measured NEE fluxes at the 11 study sites. 

The error bars denote the standard deviation of NEE between 2008 - 2010. Site Barrow is excluded from the 

analysis due to insufficient data. 
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LAI raster images at the two study sites. The differences between the LAI representations 

reflect mainly the spatial resolutions of the MODIS products but also the configuration of 

the satellite sensors. A particular level of pixel patchiness is evident as the MODIS products 

capture Arctic vegetation variation at spatial resolutions ranging from 1 km to 250 m. A 

visual analysis of the LAI maps shows that MOD13Q1 LAI (Fig. 7C) characterizes the 

landscape with the highest level of detail. The other products, Fig. 7A, 7B and 7D, present 

Arctic LAI in a coarser resolutions and their representativeness of this diverse land raises an 

uncertainty; as it was emphasized earlier in this study, Arctic landscape often varies on 

much smaller scale. 

Another unique characteristic of the various MODIS products is their ability to 

discriminate and classify non-vegetation land cover classes, i.e. to distinguish between water 

bodies, bare ground etc. This is especially important for sites with a close vicinity to 

coastlines or lakes. Figure 7 shows that all MODIS products capture the land cover 

heterogeneity on different scales. For instance, Stordalen is situated directly south of the 

lake Torneträsk. As seen in Figure 7A and 7D, this is demonstrated only by two MODIS 

products (MCD15A3 & MYD09GA) which identify a water body in the same location and 

extent; the other products show several sporadic pixels classified as ‘water bodies’ (Fig. 7B) 

or show no presence of water at all (Fig. 7C). This potentially questions the accuracy of 

MODIS products nearby wetted areas in this study. As demonstrated in the previous chapter, 

MCD15A3 has not contributed to sound NEE estimations compared to in situ, however, its 

features enable users to distinguish between LAI and other general land cover classes. 

The value of the underlying incident LAI pixel can be seen in the green patches (Fig. 7) 

and compared to in situ measurements noted in the figure description. Pixels in images of 

larger resolutions are expected to be associated with generalizations, however, in areas of 

low landscape heterogeneity, they can provide similar or the same LAI approximation as the 

finer pixels.  
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Figure 7. Examples of small-scale variations in MODIS LAI products for 2 study sites: Stordalen and 

Zackenberg. Paired images A) to D) correspond to individual MODIS LAI datasets and illustrate 

‘patchiness’ of LAI gridcells in 5 x 5 km window. Values in green-shaded rectangles represent the 

underlying satellite-based LAI value for each study site. This can be compared to in situ LAI, where: 

Zackenberg ~0.24 and Stordalen ~ 0.63 
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5. Discussion 

5.1.Suitability of MODIS products 

The results suggest that the alternation of MODIS products in PANEEx 2015 model 

accounts for considerable variation in the modelled NEE throughout the Arctic. It was 

demonstrated, that MOD13Q1 (250 m) provides the most realistic NEE estimations followed 

by MYD09GA (1 km). This is in agreement with Schubert et al. (2012) who modelled 

Nordic GPP using MODIS time series data. They report that 250 m MODIS vegetation 

products captured the overall seasonal variability in tower EC flux records better than the 

MODIS 1 km GPP product. Furthermore, Watts et al. (2014) also employ 16-day 250 m
 

NDVI scores in satellite driven modelling of carbon fluxes throughout the Arctic. 

Interestingly, they used combinations of MODIS Terra (MOD13A1) and Aqua (MYD13Q1) 

records, which reduced the acquisition interval gap to approximately 8 days, compared to 16 

days as used in this thesis. By combining two MODIS products, the authors managed to 

improve the temporal resolution of NDVI by ca. 50% (acquisition interval was halved). 

Their NEE simulations showed a strong correlation (R > 0.80, p < 0.05) with tower EC 

records. This finding suggests that 250 m MODIS vegetation products used in this study 

present a very suitable datasets for NEE estimations and are in accord with other studies. As 

further shown in Watts et al. (2014), higher temporal resolution is beneficial and can 

improve the overall accuracy of the modelled NEE and LAI estimations by combining 

multiple MODIS products. The authors used linear interpolation in order to fill in the 

missing data and reduce the acquisition interval. However, this constitutes an additional step 

in data analysis and the method may introduce a source of error (Meijering, 2002) 

Another study performed by Stow et al. (1998) implements satellite-derived NDVI and 

cover type maps to estimate CO2 flux in Arctic tundra. Here, a coarse-scale NDVI from 

NOAA AVHRR (ca. 1 km) and SPOT (20 m) are used to extrapolate regional CO2 fluxes 

with a particular emphasis on landforms and spatial patterns. It was found that 1 km
 
NDVI is 

much larger than the resolution of the landscape features, whereas SPOT-generated 

relationships established at 1-10 m suggest that NDVI is a good predictor of CO2 exchange 

(McMichael, 1999). Moreover, the authors state that even at the 20 m sample scale, the fine 

landscape features influence the NDVI variability.  

Several implications are proposed from the above claims to the methods in this thesis. 

(1) Satellite-derived vegetation indices are valuable proxies in environmental modelling, but 
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their effectiveness in modelling of Arctic vegetation varies on the scale and type of 

application. (2) Coarse-scale vegetation indices (< 1 km) may be useful in planet-scale 

modelling, but are too coarse for regional NEE estimations and (3) even 250 m vegetation 

indices may present an uncertainty. The latter is debated in Tape et al., (2012) who argue 

that modelling in environments with distinct landscape heterogeneity, 500 m
 
and 250 m 

vegetation indices may not be sufficient. It is further reported that the landscape 

heterogeneity varies greatly throughout the Arctic and the “patchiness” of NDVI may be 

underestimated or overlooked due to a large pixel size.  

 

5.2. Accuracy of modelled NEE and LAI 

5.2.1. Methods-related uncertainty 

 

There are potential sources of uncertainty in the study methods that may have introduced 

errors in the modelled NEE and LAI scores. The accuracy of these estimations is constrained 

by the limited number of in situ observations in this study. It is important to emphasize that 

carbon fluxes are studied on regional as well as global scale and therefore, the requirements 

on validation sites may vary. 

First, the number of sites in this study (n = 12) did allow statistically significant analysis 

and verification of modelled results against ground observations in most cases. In 

comparison, research demonstrates that moderately correlated measurements of carbon 

fluxes in global Arctic were carried out by using only 9 study sites (Kimball et al., 2009). 

The correspondence of modelled NEE and in situ measurements in their investigation 

accounted for between 26% and 50% of in situ variability for boreal sites and less than 28% 

of in situ variability for tundra sites. In regional scale, McMichael (1999) examined the 

GPP-NDVI relationship at two Alaskan tundra sites, approximately 200 km apart, with 12 – 

16 observations for each plot. The NDVI accounted for 68% and 74% variation of the NPP 

at the confidence level p = 0.02. 

Compared to the aforementioned studies, the CO2 fluxes at certain ecosystems may be 

underrepresented in this study. The results presented in this thesis could be improved by 

incorporating more in situ measurements. Locations, such as Svalbard, Norway or Iceland 

are not included in this work and would be a valuable contribution to the rest of the study 

sites in terms of balanced proportion of ecosystem extents. 
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Secondly, the sources of error can be due to imperfect relationships between variables, 

e.g. the methods of LAI derivation. In situ NDVI measurements in this study have been 

sampled by many field collectors using various instruments and non-standardized 

techniques. Furthermore, the NDVI scores needed to be converted to LAI scores, to which 

PANEEx 2015 model is calibrated. Having employed the Wijk & Williams (2005) 

relationship, the LAI was derived from NDVI, explaining 97 % of the NDVI variation. 

Although this relationship enables effective NDVI-LAI conversion, it is imperative to stress 

that this model has been designed in low vegetation ecosystems nearby Abisko, Sweden and 

thus, the estimation of LAI scores throughout the low and high Arctic generates a source of 

error and needs to be considered. This can be seen in relatively high standard deviations 

(e.g., σ for MOD13A1 = 0.77) for and maximum to minimum ranges of modelled LAI scores 

in this study. In comparison, Fang et al. (2013) cover an extensive study on MODIS LAI and 

claim that non-forested regions account for a typical deviation less than 0.5.  

The product MCD15A3 is the only LAI source in this study and hence, needed not to be 

converted to NDVI. According to the produced plots, this product contributed to large biases 

in of both LAI and NEE estimations. This could be because LAI used herein is more 

sensitive to vascular plant cover, thus ignoring non-vascular understory like mosses and 

lichens, which contribute significantly to Arctic ecosystem CO2 exchange (Street et al., 

2012). 

The contribution of various temporal resolutions of MODIS products is not discussed in 

depth in this study, although its effect in combination with spatial resolution can be 

discerned between 4-day MCD15A3  and 16-day MOD13A1 LAI estimations (Figure 3A) 

and 3B)). Here, the 4-day product with finer temporal resolution shows lower variability 

(standard deviation bars) throughout the study years as opposed to the 16-day product. This 

finding may be attributed to the inability of the 16-day product to simulate landscape 

variation during the study period, resulting in greater differences in satellite-derived July 

LAI estimations. The relatively large patchiness of 1 km MCD15A3 LAI could explain the 

shorter span of the standard deviations in satellite-derived LAI estimations. The cell size of 

1 km with combination of 4-day acquisition time constitute MCD15A3 a valuable product 

that delivers stable estimations with a low variation spread. The weakness of this product 

rests in its spatial resolution that may not be sufficient to capture the resolution of landscape 

features in Arctic tundra. 
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Even though MCD15A3 and MOD13A1 have not contributed to statistically significant 

results, there is potential for future applications, particularly for MCD15A3. This product 

generated a strong correlation (R
2
 = 0.8, p < 0.01) and therefore, it may present as a useful 

LAI source once problems with overestimation are resolved. 

5.2.2. Quality and availability of used materials 

 

This section discusses several examples of possible sources of error associated with used 

materials. Satellite-derived data is practical in monitoring vegetation dynamics over large 

regions but in the recent years, studies have indicated uncertainty stemming from the lack of 

quality (Hilker et al., 2012). The MODIS vegetation products used in this study have been 

validated through a quality control assessment and, in some cases, corrected for atmospheric 

disturbances. Yet, noise and spectral inconsistencies are often imbedded in satellite-derived 

datasets and need to be accounted for. 

PPFD, derived from PAR is one of the primary model inputs in this study. It has fine 

temporal resolution (3-hour) but it has the coarsest spatial resolution (5 km) of all the 

variables and therefore, it may not fully reflect the illumination conditions across the Arctic 

tundra. It was established (see section 3.6.) that PAR masked pixels were replaced by a static 

value, PAR = 0 W/m
2
. This was done to ‘unmask’ the empty pixels and simulate neutral 

illumination conditions and to avoid possible NEE overestimation at the incident location. 

Furthermore, the inter-annual scope of this study is limited by the PAR availability (2008-

2010). The Global Land Cover Facility (GLCF), accessible at www.landcover.org, is 

working towards an increased availability of PAR data and thus, there is a possibility of 

extending this study once an updated product is published. In addition, The European Space 

Agency (ESA) at www.sentinel.esa through collaboration with the Copernicus programme 

will introduce the Sentinel-satellite missions in the near future. Here, the PAR data could be 

accessed in ca. 1 km resolution, which would give a great incentive for further refinement of 

the PANEEx model. 
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Figure 8. LAI spectral discrepancies. The two (A) images pertain to the same location at Kaamanen, Finland. 

The left image shows LAI for 2009 and the right one for 2010. The image in 2010 shows bright and 

geometrically confined LAI pixel values. This is also seen in a bar chart (B) that summarizes the retrieved 

LAI scores for all study sites during 2008 – 2010. The retrieved LAI scores are abnormally high in two cases, 

as shown by black arrows. 

(A) 

(B) Modelled LAI 

2009 

 

Figure 8 depicts another example of error in this study. The screenshots of LAI raster 

images show the location surrounding the study site Kaamanen, Finland in 2009 and 2010. 

The right image (Fig. 8A) shows a discrepancy in LAI classification in form of unusually 

bright pixel values. The exact source of this error remains unknown; it is hypothesized that 

the error may be due to a satellite sensor inability to capture high reflection surfaces caused 

by, e.g. rain or standing water. 

2010 

2010 
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5.3.Future challenges 

The results in this study have shown that implementation of PANEEx (Equation 2) 

model is useful in estimating NEE throughout the Arctic. A recent study by Mbufong et al., 

(In Prep) that employs the PANEEx model illustrates how integration of upscaling 

techniques with remotely sensed data can provide insight into spatial heterogeneity of Arctic 

NEE. Mbufong et al. (In Prep) produced a map (see Appendix 1) that characterizes average 

peak season NEE identifies regions of CO2 uptake and release spanning from -4.5 to 0.5 

µmol m
-2

 s
-1

.  

Knowledge gained from this thesis can reduce the uncertainty surrounding the 

representation of Arctic vegetation by MODIS vegetation products. There is a potential for 

improving the sensitivity of the PANEEx model by acquiring data in optimized spatial and 

temporal resolution. The European Space Agency (ESA) has been developing a new-

generation Earth observation mission, the Sentinel satellites, consisting of a wide range of 

technologies in order to provide robust datasets of land, atmosphere and hydrosphere. In 

regards to future research in this matter, I recommend that inclusion of Sentinel 2 data as it 

would be a valuable contribution for global high-resolution monitoring of Earth (Martimort 

et al., 2007). In order to meet user’s requirements, Sentinel 2 products Level-1B, Level-1C 

and Level-2A will be available in 10 m, 20 m and 60 m spatial resolution and capture of 

geophysical features, such as LAI, PAR, chlorophyll content, leaf water content, etc. 

(Verrelst J., 2013). In the future, these products could be considered as proxies in 

environmental modelling, leading to even more accurate NEE and LAI estimations. 

6. Conclusions 

The purpose of this study was to extend the current knowledge in environmental 

modelling and improve the understanding of relevance of vegetation satellite-derived data to 

modelling of Arctic NEE. The main objective in this thesis was to evaluate the suitability of 

four MODIS vegetation products in light of PANEEx NEE estimations in the circumpolar 

Arctic. The modelled NEE and LAI estimations were compared against 12 Arctic study 

sites. In doing so, it was demonstrated that individual MODIS products generate variations 

in modelled NEE and LAI, however, their accuracy differs depending on the configuration 

of each product. The conclusion drawn from study is that products MOD13Q1 followed by 
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MYDGA09 best simulate the NEE estimations compared to in situ observations. Here, the 

model estimated 78 % and 86 % of the measured fluxes with RMSE of 0.22 and 0.34 

respectively. 

In regards to the stated aims, the study has confirmed that the product with the finest 

resolution MOD13Q1 (250 m 16-day NDVI) generated the most accurate results. The results 

further show that this may not be always the case, given the second best estimation of NEE 

was modelled using MYD09GA (1 km daily NDVI). The findings in this thesis are 

supported by the reviewed literature. Other authors also employ 250 m vegetation indices in 

their research but it is imperative to mention that their methods differ.  

Based on the comparisons with other studies, the following implications are identified 

for the future work on this matter: (1) the number of study sites (n = 12) may not be 

sufficient in a global study, (2) integration of multiple vegetation products through 

interpolation techniques may increase temporal resolution, thereby data availability and (3) 

attention should be paid to vegetation  datasets with even finer spatial resolution than 250 m. 

Among the suggested improvements is, e.g. utilization of Sentinel 2 data (spatial resolution: 

60 – 30 m), which has recently become available. 
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Appendix 1. Global mean July Arctic NEE 2008-2010. Map illustrates spatial heterogeneity of NEE 

throughout Arctic tundra. Source: Mbufong et al., (In Prep). 
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Appendix 2. The boxplot analysis shows average Arctic NEE 2008-10 based on MOD13A1 LAI. An outlier 

has been identified and is displayed as red cross. 


