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Abstract

During, for example, search-and-rescue operations at sea, technical equipment like
spotlights and thermal cameras are important aids. However, heave and sway affect
the ship and make it harder for finding a person in distress.

This thesis presents a way of stabilizing a thermal camera by controlling a stepper
motor connected to it. Moreover, the thermal camera can only be turned upwards
and downwards.

The whole process was investigated to see what can and needs to be measured for
stabilization at sea to work. With this knowledge, sensors had to be chosen to collect
the necessary measurements.

The measurements from the different sensors were merged together using a Kalman
filter to give an estimation for the tilt and elevation of a ship, which was used for
controlling the stepper motor. Moreover, the control of the stepper motor was done
using PID control.

The process was simulated in Simulink, making it possible to tune different param-
eters so that good performance was ensured based on assumed models. This was
then implemented on the real system and tests were carried out to verify what was
found during simulations. The result from this thesis is a stabilized thermal camera
which helps an operator enormously in searching and finding objects at sea.
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Abbreviations and symbols

ADC Analog-to-Digital Converter
CAN Controlled Area Network
DLPF Digital Low-Pass Filter
I2C Inter-Integrated Circuit
IMU Inertial Measurement Unit
MCU MicroController Unit
MEMS MicroElectroMechanical Systems
PID Proportional-Integral-Derivative
RAO Response Amplitude Operator
UART Universal Asynchronous Receiver/Transmitter
Sa Acceleration measurement in sensor frame
Ea Accelerometer measurement in Earth frame
ωx,ωy,ωz Angular velocity measured around x, y and z axis respectively
ax,ay,az Acceleration measured around x, y and z respectively
φ Rotation around x-axis
θ Rotation around y-axis
ψ Rotation around z-axis
α Tilt of the thermal camera set by operator
β Tilt of the ship
γ Compensated tilt needed for the thermal camera
∆t Sampling time
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1
Introduction

A searchlight on a ship is traditionally a big lamp which is mostly used to illuminate
an area to find or avoid objects, such as humans or icebergs, which can be hard to
spot visually by looking out at the surface of the sea. Some modern searchlights,
such as certain models made by Colorlight, come with an optional thermal camera.
This makes the searchlight more versatile and improves the possibility of finding
objects at sea, especially at night. A thermal camera is especially good at sea be-
cause of the homogeneous surface temperature, making it easy to spot objects with
a different temperature. Interestingly, one can spot a human at sea at a distance of
up to 800m by using the thermal camera provided by Colorlight [Searchlight system
by Colorlight 2014].

The way an area is scanned at sea by an operator differs between an ordinary search-
lights and a thermal camera. Although both are operated from the wheelhouse, tra-
ditional light can be observed through the windows of the wheelhouse whereas a
screen is needed for the thermal camera. Using a screen has the disadvantage that
the thermal camera is sensitive to disturbances such as vibrations. The image also
follows the motion of the ship, which can cause seasickness. Furthermore, unless
compensated for, it does not need much motion from the ship to cause an object on
the screen to disappear.

1.1 Background

Colorlight is a company that produces searchlights for ships, and the searchlights
can be equipped with an optional thermal camera. As of today, everything is con-
trolled manually by an operator using a joystick and a control panel. While the
searchlight can be turned both horizontally and vertically, the thermal camera itself
can only be controlled vertically. Manual control is not an issue with the traditional
searchlight since the illuminated area is large enough to handle various motions of
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Chapter 1. Introduction

a ship. The thermal camera, however, is sensitive to a ship’s motions since objects
moves around much more on the screen.

One way of solving this problem is by controlling the stepper motor that is con-
nected to the thermal camera. Sensors need to be brought in so one can compute
and compensate for the motion of the ship, thus stabilizing the thermal camera in a
given direction. The greatest challenge with using onboard sensors is that there is
no external sensor correcting the internal sensors, which will make them sensitive
to drift.

1.2 Aim of this thesis

The primary aim of this thesis is to investigate if it is possible to control the stepper
motor to minimize disturbances. The goal is to keep the image stable from the ther-
mal camera in the direction set by the operator. This is critical both when searching
for an object and when an object is found and should be kept on the screen.

The secondary aim of this thesis is to see if it is possible to do absolute tracking of
an object on the screen by using image processing. The goal is to keep an object
centered on the screen.

1.3 Problem formulation and objectives

To be able to fulfill the aims of this thesis, one has to investigate and evaluate fea-
sible equipment, such as sensors, that can be used to achieve the goals. If different
sensors are used, then it needs to be investigated if and what kind of sensor fusion
that is needed, so that disturbances and inaccuracies are minimized.

The searchlight, in which the stepper motor and thermal camera is mounted, is en-
capsulated to keep water out. However, the temperature inside can get very high
due to the stepper motors. Generally, an increased current to the stepper motor in-
creases the heat generation, and the temperature can get dangerously high which in
the worst case scenario could potentially damage electronics inside. Because of this,
it is of great importance to minimize the amount of time the stepper motor is fed
a high current, but not so much that the stepper motor fails to stabilize the thermal
camera.

Finally, everything developed in this thesis has to be implemented on top of the
original framework, both hardware and software, and needs to work within the time
constraints and other limitations.

12



1.4 Demarcation

1.4 Demarcation

The circuit board available in this thesis, referred to as the secondary circuit board,
is used for controlling the thermal camera and stepper motor and is separated from
the primary circuit board. The primary circuit board is used for handling the joystick
and control panel used by an operator and sends instructions to the secondary circuit
board. Unfortunately, the primary circuit board is not available for experiments, thus
instructions sent from primary to secondary cannot be handled in this thesis. The
control of the stepper motor does not need to handle changes from the operator, e.g.,
a tilt change of the thermal camera.

External forces, such as waves, cause the ship to be set in motion, and the control of
the stepper motor needs to cancel out the effect of this motion. However, the control
does not need to perform better than the conditions in which humans can operate.
While a ship can tilt up to 60° before capsizing, it is hard to work properly if the
tilt exceeds 20° [Pawlowski, 2010]. Therefore, the control does not need to handle
more than the latter.
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2
Material and system
overview

This chapter includes discussion about materials used in this thesis, both hardware
and software.

2.1 Hardware

Hardware listed in this section is material which has been actively worked with
to accomplish the results. Only technical data about each unit is described here,
whereas details and theory is described in Chapter 3.

Colorlight searchlight
Figure 2.1 shows one of the different types of searchlight currently manufactured
by Colorlight. The thermal camera is mounted inside the camera house at the top of
the module and is connected to a stepper motor as in Figure 2.2.

Thermal camera
The thermal camera, seen in Figure 2.3, is a FLIR Tau 2 and can detect a man/ship
at 800m/2000m, recognize a man/ship at 200m/550m and identify a man/ship at
100m/300m.The different categories for detection, recognition and identification
is given by Johnson’s criteria which simply describes the probability of detect-
ing/recognizing/identifying an object at a certain distance [Searchlight system by
Colorlight 2014] [CohuHD, 2014].

ARM Cortex-M3
The MicroController Unit (MCU) is an NXP LPC1754 ARM Cortex-M3 which
can operate at a CPU frequency up to 100MHz and includes 512kB flash memory
together with 64kB data memory. Furthermore, it has four Universal Asynchronous
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2.1 Hardware

Figure 2.1 A searchlight made by Colorlight. This one is using LEDs. The thermal camera
is mounted inside the black camerahouse mounted on top [CLITE2].

Figure 2.2 The stepper motor, on the right side, is connected to the thermal camera, on the
left side, using a belt.

Figure 2.3 FLIR Tau 2, a thermal camera with a 25mm lens [Tau 2].
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Chapter 2. Material and system overview

Receiver/Transmitter (UART), two Controlled Area Network (CAN) channels and
two Inter-Integrated Circuit (I2C) bus interfaces [LPC1759/58/56/54/52/51 2015].
In the original work, one UART, one CAN-channel and one I2C-bus was already in
use.

Stepper motor
The stepper motor, 28SH32-0674A, is the actuator for controlling the tilt of the ther-
mal camera. A motor driver is needed to translate instructions from the MCU into
corresponding signals to the stepper motor, see Figure 2.5, and include instructions
such as direction and step time. Step time is the time between two steps, and the
fastest possible rotation speed is 66.7°/s with a step time of 1ms. A stepper motor
has both advantages and disadvantages, as described below.

Advantages

1. The rotation speed is proportional to the frequency of the input pulse.
2. The stepper motor has full torque at standstill if the windings are energized.
3. The positioning error for each step is only 3-5% and does not accumulate.
4. It has excellent response to starting, stopping and reversing.
5. The stepper motor does not need any encoder to know the current position.

The position is known simply by tracking input step pulses.

Disadvantages

1. Resonance may occur if not properly controlled.
2. It is not easy to operate at extremely high speeds and may lose steps.
3. If the stepper motor misses a step the positioning will be wrong, and without

an encoder there is no way of tracking this error [A4982 Motor Driver 2014].

The stepper motor is connected to the thermal camera as in Figure 2.2. The camera
can be tilted a total of 40°, defined as ±20° above and below the horizontal axis
[Searchlight system by Colorlight 2014]. In this interval, the stepper motor is capa-
ble of taking 600 steps, or 0.067°/step. When the searchlight is started, the stepper
motor rotates clockwise for a few seconds to ensure that the tilt is -20°. This to
ensure that the position is known at start.

The stepper motor performs in two modes, running and standby. When the stepper
motor has to take steps the mode is set to running, which will feed a higher cur-
rent to the stepper motor. Once the desired steps have been taken, the mode is set
to standby. In this mode, the current is lowered so that adequate holding torque is
achieved to withstand vibrations and accelerations while keeping the heat genera-
tion to a minimum, thus reducing the risk of overheating.
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2.1 Hardware

Figure 2.4 The stepper motor which is used for controlling the tilt of the thermal camera
[28SH32-0674A].

Figure 2.5 The microcontroller sends command pulses to the motor driver, A4982, which
in turn translates this to corresponding signals to the stepper motor [A4982 Motor Driver
2014].

Inertial Measurement Unit
This Inertial Measurement Unit (IMU), MPU-9150 is a microprocessor which com-
bines three MicroElectroMechanical System (MEMS) sensors - a triple axes ac-
celerometer, a triple axes gyroscope and a triple axes digital magnetometer. How-
ever, only the accelerometer and gyroscope were used due to the distance between
IMU and stepper motor. While the stepper motor is running, the IMU will be under
the influence of a magnetic field much greater than that from Earth, rendering the
digital magnetometer useless.

Both the accelerometer and gyroscope use a 16-bit Analog-to-Digital Con-
verter (ADC) for each axis, and the measurements are represented using two’s-
complement. Thus, measurements can be represent in the interval [-215, 215-1], or
[-32768, 32767] [Brorsson, 2011]. Furthermore, each sensor has a full-scale range
that can be set, where a lower range means higher resolution. The accelerometer
can be set to ±2g, ±4g,±8g and ±16g, while the gyroscope can be set to ±250°/s,
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Chapter 2. Material and system overview

±500°/s, ±1000°/s and ±2000°/s. Thanks to the dedicated microprocessor, this
IMU can collect and save bytes of data continuously to registers, as well as sending
and receiving data from the MCU using I2C at 400kHz. Moreover, the IMU also
supports an auxiliary sensor, such as a pressure sensor [MPU-9150 2012].

Pressure sensor
This digital pressure sensor, Bosch BMP085, was connected as an auxiliary sensor
to the IMU and has its own address which enables communication from MCU using
I2C. Apart from measuring pressure, it also measures temperature which can be used
for a better altitude estimation. It comes factory calibrated with fixed calibration
coefficients that are used when computing altitude. Pressure is measured as hPa and
has a range of [300, 1100], corresponding to the height interval [9000, -500] above
sea level in meters.

The noise in the measurements, range from 0.06hPa (0.5m) down to 0.03hPa
(0.25m), depends on what mode the sensor is running in. Higher accuracy corre-
sponds to a lower sample rate.

Unlike the IMU, this sensor does not have a dedicated microprocessor which can
collect data continuously. Instead, collection of data has to be started from the MCU
every time it is needed [BMP180 2013].

2.2 System architecture

A system overview on how the hardware is connected can be seen in Figure 2.6.
A laptop was used and connected to the circuit board using a JTAG-debugger,
which was used both for transferring code to the MCU and debugging using Eclipse
[Eclipse].

Communication to the laptop was done using a Future Technology Devices Inter-
national (FTDI) cable through UART. The FTDI-cable was used to convert signals
from RS-232 to Universal Serial Bus (USB) signal [FTDI 2010].

The communication from the MCU to laptop was used for troubleshooting by dis-
playing outputs on the screen of a laptop using the terminal program Putty [PuTTY
FAQ]. Putty could also log the outputs in a text document. The logged outputs could
later be used for analysis in MATLAB. Caution had to be taken when sending data
from the MCU to laptop, since only integer values are supported.

The MCU, on the other hand, was connected and in control of the thermal camera,
the stepper motor and all the sensors, where only the sensors are sending data back
to the MCU. Furthermore, the MCU was fitted with a real time operating system
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2.2 System architecture

called FreeRTOS. This operating system supports the use of threads, protection
of variables using methods such as critical section and mutex, and has predefined
methods to ensure a fixed sample period [freeRTOS, 2016].

Figure 2.6 Control overview. Laptop communicates with the MCU, which in turn commu-
nicates and controls the thermal camera, stepper motor and the sensors.
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3
Theory

In this chapter the theory will be presented about different parts such as waves,
ships and sensors. Furthermore, any assumptions and simplifications made will be
explained as well as how and why they are used.

3.1 Wave theory

When studying waves, two cases are generally examined - shallow waters and deep
waters. Deep water applies if the depth is equal or larger than half of the wavelength
of the current waves. Shallow waters typically occurs in lakes, rivers or near a coast
[Perez, 2005].

Because ships mostly travel at deep waters, this was the only case that was used in
this thesis. Because of this, there are a couple of assumptions and simplifications
that can be made.

One type of waves, regular waves, is defined as a harmonic wave that is moving
along a surface as in Figure 3.1. The equation for such a wave is given by Equation
3.1. The elevation from equilibrium, ζ (x, t), depends on the wave amplitude, A,
which is half of the wave height, H. Furthermore, λ is the wave length and ω is
the circular wave frequency, which depends on the wave period time ω = 2π/T .
Moreover, the crest of the wave is moving with a speed defined as c = λ/T and is
called wave celerity.

From [Perez, 2005] it is shown that one can take the encounter angle, i.e., the angle
of which the waves are moving along a ship, as well as the forward motion of the
ship into consideration. However, when modeling and evaluating the motion of the
ship due to waves, only the elevation itself is important. Because of this, it was
assumed during simulations that the ship moves only along the vertical axis with
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3.1 Wave theory

the waves and is stationary along the surface, i.e., no forward motion. Due to this, x
in Equation 3.1 can be set to zero.

By combining the wave period time and wave celerity and solving for ω , one gets
that ω = 2πc

λ
. When substituted in Equation 3.1, as well as assuming that a ship is

not in motion along the surface, the simplified equation is defined in Equation 3.2.

ζ (x, t) = Asin(ωt− kx) (3.1)

ζ (0, t) = Asin(
2πc
λ

t) (3.2)

Figure 3.1 A wave can either be described by its propagation (left picture) or by the eleva-
tion in a fixed point (right picture) [Perez, 2005].

Equation 3.2 therefore depends on three constants: wave amplitude, celerity length
and wave length. Moreover, each constant is limited in one way or another and
many assumptions can be made since only deep water is considered. The wave
length is limited by h ≥ λ/2, where h is the depth of the sea. Furthermore, using
the dispersion relation, i.e., λ = g

2π
T 2, one can see that the wave length depends on

the wave period time T [Perez, 2005]. By substituting T with the wave celerity and
solving for c, one gets Equation 3.3.

Finally, according to [Acheson, 1990], only linear terms are considered. Thus, for a
wave to exist and not fall apart due to its steepness, the relation A/λ � 1 must hold.

c =

√
gλ

2π
(3.3)
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Chapter 3. Theory

A way of finding a reasonable wave amplitude is to use the significant wave height,
Hs. In the time domain, Hs is defined as the average wave height of the largest one-
third of the measured waves as in Equation 3.4. Hi is the individual wave height of
each wave measured, sorted in such a way that the first term is the highest and the
last term is the lowest. Another way of determining the wave amplitude is to look at
the largest one-tenth of the measured waves, called H1/10, which is approximately
1.27 times larger than Hs. This can be used during simulation to see how well the
control handles rare waves with a very large amplitude. Generally, Hs for moderate
waves is 1.25-2.5m, high is 6-9m and very high is 9-14m [Ainsworth, 2006][Perez,
2005].

Hs =
1

1
3 N

1
3 N

∑
i=1

Hi, (3.4)

All equations, limitations and assumptions above can be summarized as:

1. Only deep water was assumed.
2. A certain wave height, A, requires a specific wave length, given by the relation

A/λ � 1.
3. With the computed λ , the wave celerity c is given in Equation 3.3.
4. The elevation at time t is calculated as ζ (0, t) = Asin( 2πc

λ
t).

3.2 Ship theory

In the field of ship design, the Response Amplitude Operator (RAO) is used to
determine the likely behavior of a ship at sea based on a set of design parameters.
However, the transfer function for RAO is only defined for linear motion [Allan,
1945]. As long as it is linear, the equation of motion is given as Equation 3.5, where
x is a degree of freedom, ω is the oscillation frequency, M is the structural mass,
A(ω) is the inertia of added mass, B(ω) is the linear damping, C is the restoring
coefficient and F(ω) is the harmonic excitation force proportional to x and the wave
height [Perez, 2005][Holden et al., 2007].

F(ω) =Cx+B(ω)ẋ+
(
M+A(ω)

)
ẍ (3.5)

The variables in the equation above are highly dependant on the type of ship con-
sidered and the sea conditions. Although RAO can potentially be used to improve
the response in the control loop or improve simulations, not enough time was put
into developing this further.

22



3.3 Coordinate systems

The simulations in this thesis were performed using a general case, whereas the
Colorlight searchlight is used on a great variety of ships ranging from work boats,
such as coast guard or fishing boats, to mega yachts and commercial ferries. As a
result, RAO was not used directly, but rather to give insight and understanding about
the process. This could then be used to verify the simulation results. For example,
RAO shows that a ship does not follow the wave motion exactly, but has a phase lag
and a lower elevation compared to incoming waves [CalQlata].

According to [GDV], accelerations that occur on a ship depend on many parame-
ters such as the shape of the ship, its beam, the center of gravity and the center of
buoyancy. All motions on a ship can be divided into three linear motions and three
rotational motions, see Figure 3.2. Surge is the motion alongside the ship, sway is
the sideways motion, heave is the up and down motion while roll, pitch and yaw are
the rotational motions along the respective linear motion. A ship’s total motion on
the sea strongly depends on the character of the waves which affect the ship. For
example, perpendicular waves make the ship roll from side to side, while parallel
waves alongside the ship will rotate the ship around pitch [Perez, 2005].

The characteristics of the rotational motion also differ. The pitching motion has
a fairly low tilt, commonly less than 10°, and alternates between quick and slow
rotation between crest and trough. Roll on the other hand can reach up to 50° in rare
cases, but is commonly less than 30° during rough weather. This motion also has a
long time period, commonly several seconds. In general, a larger tilt corresponds to
a longer time period [GDV].

3.3 Coordinate systems

In this thesis, two types of coordinate systems have been used. The measurements
from the sensors were given in sensor frame, while orientation was done using Earth
frame, and both made use of the Cartesian right-hand coordinate system [Perez and
Fossen, 2007]. Rotation from sensor to Earth frame was needed when computing
both orientation and elevation of a ship.

Earth frame
The Earth frame coordinate system is shown as On in Figure 3.2 and is fixed against
Earth as a local tangent plane. This system uses NED-orientation which gets its
name from how the axes are pointed, with xn pointed North, yn pointed East and zn
pointed Down to the center of Earth [Fossen, 2002][Perez and Fossen, 2007].

Sensor frame
This frame, also referred to as body frame, is similar to Earth frame except that it is
fixed against an object. In Figure 3.2, it is fixed against the ship and is denoted bn. In
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Chapter 3. Theory

Figure 3.2 Picture showing different types of reference frames and motions [Perez and
Fossen, 2007].

this thesis, however, the sensor frame is fixed against the sensors inside the search-
light. NED-orientation applies to this frame as well, where xb is pointed towards the
prow of the ship, yb in the starboard direction and zb is pointed downwards.

The aforementioned frames were used and compared against each other. The sensor
measurements, given in sensor frame, were rotated into Earth frame to determine
the tilt and elevation of the ship. To do this rotation, each rotation along x-, y- and
z-axis, denoted as φ , θ and ψ respectively, was used. The rotation from one frame
to another can be done using different methods, two of which are described below.

Euler angles
A rotation around an axis is defined by its own rotation matrix, see Equations 3.6 -
3.8, by using the Euler angles φ , θ and ψ . To get the resulting rotation, i.e., rota-
tion from sensor to Earth frame, one has to multiply each rotation matrix together.
However, care has to be taken when rotating using this methods since matrix mul-
tiplication is not commutative, that is in general, A ·B 6= B ·A [Dam et al., 1998].
Therefore, after defining the order of rotation, here chosen as the aerospace rotation
sequence, one has to maintain this order. The aerospace rotation sequence, defined
as Rxyz, is shown in Equation 3.9. In the equation, c(X) and s(X) is short for cosine
and sine respectively [Pedley, 2013][Diebel, 2006].

Rx(φ) =

1 0 0
0 cos(φ) sin(φ)
0 −sin(φ) cos(φ)

 (3.6)
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3.3 Coordinate systems

Ry(θ) =

cos(θ) 0 −sin(θ)
0 1 0

sin(θ) 0 cos(θ)

 (3.7)

Rz(ψ) =

 cos(ψ) sin(ψ) 0
−sin(ψ) cos(ψ) 0

0 0 1

 (3.8)

Rx(ψ)Ry(θ)Rz(φ) = c(θ)c(ψ) c(θ)s(φ) −s(θ)
c(ψ)s(θ)s(φ)− c(φ)s(ψ) c(φ)c(ψ)+ s(θ)s(φ)s(ψ) c(θ)s(φ)

c(φ)c(ψ)s(θ) c(φ)s(θ)s(ψ) c(θ)c(φ)

 (3.9)

The main advantage with using Euler angles for rotation is that it is quite easy to
understand the mathematics behind it and it is possible to represent the angles in an
easy way for users, which facilitates troubleshooting and visualization. Euler angles
for rotation also have a lot of support and is used in a lot of applications. However,
trigonometric functions require a fair amount of computations, thus making Equa-
tion 3.9 computationally expensive. The rotation matrix also suffers from gimbal
lock, which occurs when one axis coincides with another axis, meaning one loses a
degree of freedom in the rotation matrix [Dam et al., 1998].

Quaternion
Quaternions are not as well known as Euler angles, since they are not included in the
standard curriculum in modern mathematics. This is a disadvantage since it causes
a lack of understanding [Dam et al., 1998].

Quaternions try to generalize complex numbers in three dimensions. To describe a
rotation, four variables are needed - one for scaling, one for the degree of rotation
and two to describe the plane in which the vector should be rotated [Hamilton,
2000]. The reason for only using two variables to describe the plane is because a
plane xy can be rotated to any plane in xyz space through the origin by the rotation
about the x and y axes [Sparr, 1997]. Furthermore, the complex numbers can be
written as ix + jy + kz where i2 = j2 = k2 = i jk = −1 and x,y,z ∈ R3 [Diebel,
2006]. Another way of describing quaternions is to define it as Q = q0 +q, where
q0 is the scalar value mentioned above and q is a vector that describes the rotation
and the plane.

An advantage with using quaternions is that it does not depend on the convention of
rotation, making quaternions more fool-proof. It also requires storing less numbers
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than Euler angles when computing the rotation. Furthermore, quaternions are also
more immune to accumulated computational error, which is good for the stability
[Salamin, 1979].

In this thesis, quaternions were used in an algorithm developed by Madgwick in
[Madgwick, 2010]. To represent an arbitrary orientation through rotation of angle θ

from a frame B to frame A around an axis, A
Bq̂ will henceforth be used. The quater-

nion representing this orientation is defined in Equation 3.10, where rx, ry and rz
are the components of the unit vector Ar̂ in frame A. The quaternion conjugate,
denoted by *, can be used to swap the relative frames, as in Equation 3.11. Fur-
thermore, the quaternion product ⊗ is used for describing compound orientations,
e.g., A

Cq̂ =A
B q̂⊗B

C q̂. As with matrix multiplication, quaternion multiplication is not
commutive, i.e., a⊗b 6= b⊗a [Sparr, 1997].

A
Bq̂ =

[
q1 q2 q3 q4

]
=
[
cos θ

2 −rxsin θ

2 −rysin θ

2 −rzsin θ

2

]
(3.10)

A
Bq̂∗ =B

A q̂ =
[
q1 −q2 −q3 −q4

]
(3.11)

To rotate a three dimensional vector by quaternions, Equation 3.12 can be used.
The vectors Av and Bv are the same vectors described in frame A and frame B,
respectively, where each vector contains a zero as the first element. This is done
so the vectors are four element row vectors. Furthermore, the orientation described
by A

Bq̂ can be represented as a rotation matrix A
BR, as in Equation 3.13 [Kuiper,

2002][Salamin, 1979]. Thus, by using the rotation matrix A
BR one can easily rotate

from one frame to another.

Bv =A
B q̂⊗A v⊗A

B q̂∗ (3.12)

A
BR =

q2
1 +q2

2−q2
3−q2

4 2(q2q3−q1q4) 2(q2q4 +q1q3)
2(q2q3 +q1q4) q2

1−q2
2 +q2

3−q2
4 2(q3q4−q1q2)

2(q2q4−q1q3) 2(q3q4 +q1q2) q2
1−q2

2−q2
3 +q2

4

 (3.13)

Quaternions can also be transformed back to Euler angles. This was used for trou-
bleshooting, since Euler angles are much easier to interpret than quaternions. Since
the aerospace sequence was used for describing the orientation from sensor frame to
Earth frame, the conversion from quaternions to Euler angles had to be done in the
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3.4 Sources of disturbance

same order. In Equation 3.15, the rotations φ , θ , ψ correspond to rotation around
x-, y-, and z-axis [Madgwick, 2010]. The function atan2 is the four-quadrant inverse
tangent, which describes a rotation in the closed interval [−π , π], compared to the
ordinary inverse tangent which only returns values within [−π/2, π/2] [MathWorks
a][MathWorks b].

φ = atan2(2q3q4−2q1q2,2q2
1 +2q2

4−1)
θ =−asin(2q2q4 +2q1q3)

ψ = atan2(2q2q3−2q1q4,2q2
1 +2q2

2−1)

(3.15)

In summary, a rotation matrix of some kind was necessary so that sensor measure-
ments could, for instance, be used for orientation. Both methods presented above
were used in different parts throughout this thesis.

3.4 Sources of disturbance

To understand what is causing the image to the operator to deviate, one most under-
stand the sources of disturbance. The sources which affect the image the most are
presented in this section.

When the ship is at equilibrium, as in Figure 3.3, the thermal camera will be pointed
at point A on the surface of the sea with tilt α set by the operator. If the ship were
to be tilted by γ and the elevation stayed the same, the thermal camera would then
be pointing at point B in Figure 3.3. In other words, the direction is deviated by γ .

Many disturbances, such as waves, are unpredictable while others, such as vibration
caused by propeller and engine, are periodic [Jegaden, 2013a]. Furthermore, vibra-
tions on a ship can be divided into different groups: very low frequencies ranging
from 0-2Hz, low frequencies ranging from 2-20Hz and high frequencies ranging
from 20-1000+Hz. Meanwhile, the accelerations are generally quite low, between
0.006-0.6m/s2 along each axis depending on sea condition, wind direction and so
forth. Moreover, according to [Asmussen et al., 2001], disturbances present on a
ship are usually less than about 300Hz, whereas the maximum acceleration is gen-
erally less than 1g.

The swell causes random very low frequency vibrations on the whole ship, both in
pitching and rolling, and are typically between 0.01-1.5Hz depending on sea condi-
tions. Ship girder vibrations caused by sea conditions, on the contrary, are usually
considered to be one of two types, whipping and slamming. Whipping usually oc-
curs when the ship is traveling and the velocity is great enough to cause the front
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Figure 3.3 Illustration of a ship being tilted by γ while having the same height above water.

of the ship to impact against waves ahead, while slamming causes vibrations in the
hull when the prow slams into a wave, making the ship suddenly stop in its motion.

There is also slapping, which occurs when there are impacts on the flat surface of
the stem when the ship has not yet emerged from the water. And finally springing,
which occurs by excitation caused by hydrodynamic forces created by the swell that
causes a ship’s girder to vibrate freely [Jegaden, 2013b].

The above vibrations, as small as they may be, will be induced not only in the image
but also into the sensors which causes errors in the measurements. It is therefore
important to take the aforementioned vibrations into consideration when estimating
values such as the tilt of the ship. Although vibrations will cause some errors in
the measurements, which will be seen as some deviation from point A, it still is the
elevation and tilt of a ship that is causing the greater part of deviation. The vibrations
had to be considered when performing calculations using sensor measurements. The
values found here, such as the range for frequencies and accelerations, are used in
latter chapters when deciding the range of measurements for the sensors.

3.5 Model of system and error calculation

Using Figure 3.3, one can use trigonometry for a right-angled triangle to solve the
deviation γ . For example, the deviation γ in Figure 3.3 is equal to γ = β −α , where
β is how much the ship is tilted from horizontal axis and α is the tilt set by the
operator.

In the original work, α is the only known parameter. Solving for the unknown pa-
rameters, such as distance to point A or height of the thermal camera above water,
in a right triangle requires knowing at least two parameters. One way of solving this
is to set a fixed length on the hypotenuse and use this to solve for the unknowns.
However, the estimated point will depend on the tilt α , where only one exact angle
corresponds to the point being on the surface of the sea. A larger tilt will put the
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3.6 Sensors

point below the surface, point B in Figure 3.4. On the contrary, a smaller tilt will
put the point above the surface as point C. This of course, is bad for the operator.

Instead, a far more superior way is to measure the height above water for the thermal
camera when the searchlight is installed on a ship. The height above water can then
be used for solving other parameters such as the distance to point A, which can be
computed as distance = H · tan(α). Therefore, in the rest of this thesis it will be
assumed that the height above water for the searchlight is known beforehand.

y

x
A

B

CH

Figure 3.4 Estimation to a point on the surface of the sea using a fixed hypotenuse. Point
A corresponds to the perfect value on α where the point is estimated on the surface. Point B
and point C corresponds to tilt which is larger and smaller respectively.

3.6 Sensors

A total of three different sensors were used, each explained in its own section. A
lot of time was put in this section of the thesis since the final control of the stepper
motor relies heavily on the measurements and estimations done using the sensors.
Therefore, the sensors were made to be as reliable as possible.

Inertia Measurement Unit - IMU
To get good and stable readings from the sensors it is important to remove as much
measurement noise as possible, and the measurement noise is generally of high
frequencies [Glad and Ljung, 2007]. Furthermore, as explained in Section 3.4, dis-
turbances found on a ship is generally less than 300Hz. This gives a good indication
of the frequencies which should be removed.

The IMU used in this thesis came with a Digital Low Pass Filter (DLPF) that was
set to 44Hz, thus removing as much measurement noise and other disturbances as
possible [MPU-9150 2012].
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Each sensor, as mentioned in Section 2.1, has a full-scale range which determines
the range of values that can be expressed. The range for each sensor was set high
enough to ensure not saturating the measurements, and sufficiently low to get the
highest possible resolution.

Accelerometer
In Section 3.4 it was shown that the accelerations on a ship are mostly less than
1g. Therefore, the full-scale range was set to the lowest possible, i.e., ±2g. With a
16-bit ADC and using two’s-complement, the measurement are represented in the
range [-32768, 32767] [Brorsson, 2011].

While stationary, an ideal accelerometer would only register the static acceleration.
Since 2g is represented as 32767, 1g is simply half this value, i.e., 16384. The value
is rounded, since only integer values are valid. However, accelerometers are not per-
fect and the measurements will be affected by errors which need to be compensated
for. According to the the standard [IEEE, 2008], the complete error model is given
by Equation 3.17 where

E/K1 = accelerometer voltage output divided by scale factor K1
ai,ap,ao = applied accelerations along Input Axis (IA), Pendulous Axis (PA) and
Output Axis (OA)
K0 = the bias expressed in g
K′0 = the bias asymmetry in g
K2 = non linearity expressed in g/g2

K3 = non linearity expressed in g/g3

∂o, ∂p = IA misalignment with respect to OA and PA
Kip, Kio = cross coupling coefficients expressed in g/g2

Kpp, Koo = cross coupling non linearity coefficients expressed in g/cross−g2

Kspin = spin correction factor expressed as g/(rad/s)2

Kang.accel = angular acceleration coefficient expressed in g/(rad/s2)
wi, wp, wo = angular velocity components along IA, PA and OA expressed in rad/s
ẇi, ẇp, ẇo = angular acceleration components along IA, PA and OA expressed in
rad/s2.

E
K1

= K0 +
K′0
2

sign(ai)+(1+
K′1
2

sign(ai))ai +Koqai|ai|+K2a2
i +K3a3

i ∑
i≥4

Knan
i

+∂0ap−∂pa0 +Kipaiap +Kioaiao +Kpoapao +Kppa2
p +Kooa2

o +Kspinwiwp

+Kang.accelw0 + ε

(3.17)
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Although the equation seems large, some errors can be assumed to be negligible
[Lele, 2010]. MEMS accelerometers typically show errors due to both dynamic and
static errors, where dynamic errors include measurement noise. Static errors include
characteristics and imperfections in the accelerometer where, according to the IEEE
standard, the salient errors are due to scale factor, setup misalignment, and bias drift.

Bias and offset error
There are a number of ways for estimating this type of error, such as described in
[Liu and Pang, 2001] where a robot arm was used to move the accelerometer back
and forward and manually computing the thermal bias drift, or as in [Park, 2004]
where a rotating wheel was used to calibrate the accelerometer over 360°. In many
cases, calibrations with an accelerometer are carried out by having it lying perfectly
horizontal, thus measuring only the static acceleration, also called zero-g. If this was
done with the current accelerometer and assuming it was perfect, zero-g would be
displayed as the integer value 16384. However, due to the errors in Equation 3.17,
zero-g will deviate from this value. This is referred to as the zero-g offset and is
not a constant value, but rather depends on factors such as thermal changes and self
heating.

The magnitude of the errors vary depending on the grade of the sensor, see Table 3.1,
and this is discussed further in [Vector Nav]. If one were to estimate the position over
t seconds using only the accelerometer measurement, Equation 3.19 can be used. If,
for example, an accelerometer is kept stationary only errors will be registered in the
measurements. Furthermore, both the starting position and velocity is zero since the
accelerometer is stationary, thus follows the second equation. As seen in Figure 3.6,
the position estimation escalates over time, why it is of great importance to lower
the errors. It was clear that using only the accelerometer measurements without
compensating for errors would not suffice.

position = position0 + velocity0 · t +
a
2
· t2

position =
a
2
· t2

(3.19)

Scale factor error
The scale factor is the sensitivity which converts the accelerometer measurements
to something useful for the user. In this case, the IMU outputs the measurements as
integer values, and the scale factor converts this value to acceleration in g. A per-
fect accelerometer with a full-scale range of ±2g would represent zero-g as 16384.
Thus, to convert this value into 1g, one simply divides the output by the very same
value. However, due to bias and zero-g offset, and the fact that the accelerometer
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time(s)

position(m)

Figure 3.5 Position estimation using accelerometer measurements when the accelerometer
is stationary.

Table 3.1 The errors which contributes to the bias error highly depends on the grade of the
accelerometer [Vector Nav].

Grade Accelerometer
bias errors (mg)

Horizontal position error
1 sec 10 sec 1 min 1 hr.

Navigation 0.025 0.13 mm 0.12 mm 0.44 m 1.6 km
Tactical 0.3 1.5 mm 150 mm 5.3 m 19 km

Industrial 3.0 15 mm 1.5 m 53 m 190 km
Automotive 125 620 mm 60 m 2.2 km 7900 km

representation of acceleration is not linear, the scale factor is not 16384. Instead,
the scale factor needs to be established so that the measurements are converted cor-
rectly. It is recommended in [IEEE, 2008] that four- or six-point tumble calibration
is performed to find a better scale factor.

Due to an aforementioned lack of sophisticated equipment for extensive calibra-
tion, such as a robotic arm or a rotating disk, a six-point tumble calibration was
performed. This was done by placing the accelerometer as horizontally as possible
against a surface, and then the axis pointed towards Earth was measured. The sensor
was then turned up-side-down, measuring the same axis. This was repeated for each
axis.

Mechanical vibrations and initial misalignment error
Mechanical vibrations in the accelerometer can be observed in the measurements
as measurement noise. Vibrations will be a major cause of noise, hence DLPF was
used. Another way of minimizing this error is to prevent the vibrations from prop-
agating to the accelerometer. This could be as simple as keeping it mechanically
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isolated from the structure of the ship, thus making the module more resistant to
vibrations.

The misalignment error is caused by the tilt of which the accelerometer is soldered
on the circuit board. However, in this case the misalignment error also depends on
how the IMU itself is installed, both inside the searchlight and on a ship. This error
will also affects calibrations of the sensor since it is almost impossible to have it
perfectly flat against the horizontal plane. Thus, misalignment should be taken into
consideration during calibration, installation in the searchlight and when mounting
the searchlight on a ship.

Again, looking at Equation 3.17, there are a lot of errors affecting an accelerome-
ter and its measurements. However, [Lele, 2010] considers the bias drift and scale
factor to be palpable error contributors for an accelerometer. Thus, the equation can
be simplified to Equation 3.20, where A is the measured output from one axis, K0
is the bias and offset error, K1 is the scale factor error and ε is the random error
residual of the other errors. The result, E, is the total acceleration measured by the
accelerometer in g.

E = (A+K0)(K1)+ ε (3.20)

Calibration of accelerometer
Calibration of the accelerometer was done to minimize the errors, mainly for the
zero-g offset and the scale factor. Although the misalignment error will be a factor
during calibration, the goal of calibration is to minimize this error using the six-
point calibration.

Zero-g offset was computed by measuring each axis twice - once having the axis
pointing up and once pointing down. The difference between the two measurements
was then divided by two to get the zero-g offset. This method was used for each axis
by averaging 100 samples for each test. The result is given in Table 3.2.

Table 3.2 Calibration for each axis using the six-point calibration to get the new zero-g
offset and sensitivity.

Axis Pointed
downwards

Pointed
upwards Sum Zero-G

offset Scale factor

Z -16914 15862 32776 -526 16388
X -16197 16500 32697 303 16349
Y -16593 16457 33050 -68 16525

Example

33



Chapter 3. Theory

When pointing upwards, the measured static acceleration is 14745, and 18021 when
pointing downwards. The difference is 3276, and half this value gives the zero-g
offset as 1638. 4

As seen in Table 3.2, the static acceleration differs between each measurement. To
compute the scale factor, the two tests for each axis were averaged, and the result is
seen as the last column in Table 3.2.

The calibrated output from each axis can now be expressed by Equation 3.21 below.

ax =
x−K0x

K1x
, ay =

y−K0y

K1y
, az =

z−K0z

K1z
(3.21)

When stationary, the squared sum of each axis measurement should after the cal-
ibration be approximately 1g, i.e., (ax)

2 + (ay)
2 + (az)

2 = 1, independent of the
orientation. Substituting this into Equation 3.21 results in Equation 3.22.

(
x−K0x

K1x

)2

+

(
y−K0y

K1y

)2

+

(
z−K0z

K1z

)2

= 1, (3.22)

Furthermore, due to the residual errors ε in Equation 3.20 which is not constant, the
static acceleration will not be perfectly represented. In latter chapters of this thesis, ε

is modeled as a random bias error and estimated so that the resulting measurements
from the accelerometer contained as few errors as possible.

Estimating pitch and roll using accelerometer
An accelerometer can be used for computing the horizontal tilt of the sensor, as in
e.g., [Pedley, 2013] where a Cartesian coordinate system is used. Furthermore, the
output from each axis is summarized in a vector SA=

(
Ax,Ay,Az

)T
, where Ax, Ay

and Az represent the measured outputs of x-, y- and z-axis respectively.

To get the orientation of the accelerometer with respect to Earth frame, the mea-
surements are rotated as described in Section 3.3. Euler angles were used for the
rotation matrix, and the rotation was defined as the aerospace rotation sequence,
that is, Rxyz. To rotate from sensor to Earth frame, the rotation matrix was multi-
plied with the vector A. Setting up an equation system for vector A and the rotation
matrix made it possible to solve for the roll φ and pitch θ . However, this is done
by assuming that the accelerometer is stationary, hence one can normalize vector A
and set it as equal to the rotation matrix Rxyz.
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A
||A||

= Rxyz⇒
1√

A2
x +A2

y +A2
z

Ax
Ay
Az

= Rxyz

The intermediate calculations are omitted here since they are tedious, and the full
derivation can be found in e.g., [Pedley, 2013].

Solving for the roll φ gives the equation as

tan(φ) =

(
−Ax√
A2

y +A2
z

)
⇐⇒ φ = arctan

(
−Ax√
A2

y +A2
z

)
, (3.23)

where a range restriction of tilt is needed, otherwise an unambiguous answer cannot
be found. This is due to roll and pitch having an infinite number of solutions with
multiples of 360°. Therefore, different applications use different conventions for the
range restriction, e.g., ±90°. In this thesis, however, there is no need for restricting
the range of either roll or pitch since it was found in Section 3.2 that the maximum
tilt of a ship is usually less than 50°. The only time the tilt might exceed this value
is when the ship has capsized, in which the control of the thermal camera is not
needed for obvious reasons.

By the same approach, the pitch θ can be expressed as

tan(φ) =

(
−Ay√
A2

x +A2
z

)
⇐⇒ φ = arctan

(
−Ay√
A2

x +A2
z

)
, (3.24)

A problem with computing the tilt using this method is that the accelerometer is
assumed to be stationary. As long as this assumption holds, the tilt will be correctly
calculated using Equations 3.24 and 3.23. However, if the accelerometer is exposed
to a linear acceleration along one axis, Equations 3.24 and 3.24 will no longer show
the true tilt. Therefore, any linear acceleration will introduce errors in the orienta-
tion.

Gyroscope
The gyroscope was used for calculating the roll and pitch. Finding the appropriate
full-scale range for the gyroscope is not as trivial as for the accelerometer, this due
to a lack of research of the angular velocity present on a ship. To ensure adequate
range, the full-scale range was set to the largest possible, ±2000°/s.
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From [Freescale, 2015], as well as [Cao et al., 2015], it was found that the typ-
ical MEMS gyroscope usually contains five basic error terms: quantization, angle
random walk, bias instability, rate random walk and rate ramp. These terms are gen-
erally measured using Allen Variance, as defined in [IEEE, 2014]. The total variance
is defined in Equation 3.25, where

σ2
A(τ) = Total error variance on the average time τ

N = Angle random walk coefficient
B = Bias instability coefficient
R = Rate ramp coefficient
Q = Quantum noise coefficient
K = Rate random walk coefficient

σ
2
A(τ) = R2 τ2

2
+K2 τ

3
+B2 2

π
ln(2)+N2 1

τ
+Q2 3

τ2 (3.25)

According to [Cao et al., 2015], the exceeding errors for a MEMS gyroscope are
angle random walk and rate ramp, where the primary target in this thesis was to
minimize the angle random walk.

Angle random walk
A MEMS gyroscope suffers from mechanical imperfections, such as cross axis sen-
sitivity, which affect the output of the gyroscope with white noise, that is, a zero-
mean uncorrelated random variable [Glad and Ljung, 2007][Woodman, 2007]. The
output of the gyroscope was given as angular velocity, so to yield the angle, or tilt,
the value had to be integrated. However, numerical integration is only an approxi-
mation and will bring some errors, depending on what type of method is used. In
this part, it was chosen as rectangular rule for its simplicity [Sauer, 2011]. More-
over, the noise introduces a zero-mean random walk error into the integrated signal,
where the standard deviation

σθ (t) = σ
√

∆t · t

can be seen to grow proportionally to the square root of time, with ∆t being the time
between two successive samples. Thus, during a specified time period t the tilt will
increase even if the gyroscope is stationary. This is what is called angle random
walk [Woodman, 2007].
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Bias instability
Due to noise, such as temperature and flickering in the electronics, the bias often
changes over time [Vukmirica et al., 2010]. One way of minimizing this bias is to
average samples over a long time period which will give a rough estimate about the
bias. Although the tilt error caused by bias instability will be similar to the error
caused by angle random walk, it differs in the way that bias instability has a range
in which it affects the output, unlike angle random walk which can grow to infinity
[Woodman, 2007].

Bias instability refers to the change in the bias measurement, and measurement
of the bias instability is done at different times to see this change [Bias Stability
Measurement: Allan Variance]. When tests were performed for the gyroscope it
was found that it measured 2-3 bits of rotation even though it was stationary. This
corresponds to a rotation of∼0.17°/s. Uncompensated, this bias will cause problems
when using it to estimate tilt. This is handled more in later chapters.

Pressure sensor
The pressure sensor used, BMP085, did not have a dedicated microprocessor and
could not collect and save data to a buffer continuously. Instead the MCU, which
is taking measurements from the IMU with a sampling time of 10ms, had to start
and collect pressure and temperature measurements separately. Pressure and tem-
perature measurements are saved in the same register, hence only one measurement
should be started at a time to prevent overwriting a value [BMP180 2013].

The sequence for starting and collecting data can be seen in the flow chart in Figure
3.6. Before altitude could be computed, the MCU had to first collect calibration
coefficients, which consists of 11 coefficients. These were used for converting the
measured temperature data to °C and pressure data to hPa. How this is done can be
seen in detail in Appendix A. Since the pressure sensor is calibrated with unique
coefficients at the factory, there was no need for extra calibration.

After the calibration coefficients were read, a temperature measurement had to be
started, collected and calculated so that one more calibration coefficient was given.
This coefficient was used for calculating the actual pressure, hence the temperature
had to be read once before pressure.

Both temperature and pressure have a conversion time, i.e., a time delay after a
measurement is started before a value can be collected. For temperature, this delay
is 4.5ms. Moreover, since temperature vary at a slow rate it is sufficient to read the
temperature once every second, or once every 100th sample [BMP180 2013]. The
time delay for a pressure measurement, however, depends on the current mode in
which the pressure sensor is running in, see Table 3.3. A more accurate measure-
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Figure 3.6 Flow chart showing the progress of the pressure sensor. The upper part is when
the pressure sensor is started and the lower part shows a loop to emulate the scheduler.

ment is achieved by averaging more samples which in turn increases the conversion
time. This has to be considered when creating a scheduling method, such as Figure
3.7.

Table 3.3 How different modes affect conversion time and noise.

Mode
Oversample
parameter

Internal
number of
samples

Conversion
time

max. [ms]

RMS noise
typ. [hPa]

RMS noise
typ. [m]

Ultra low
power 0 1 4.5 0.06 0.5

Standard 1 2 7.5 0.05 0.4
High

resolution 2 4 13.5 0.04 0.3

Ultra high
resolution 3 8 25.5 0.03 0.25

Picking the right mode for the pressure sensor is a trade-off between faster mea-
surements versus more accurate measurements. When taken into account that the
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Figure 3.7 Time line for temperature and pressure reading. The symbol X means that the
MCU reads the value from the register. An arrow pointing down/up means a measurement is
started/finished.

pressure sensor will be used for estimating the elevation and the fact that waves
have a period time of several seconds, one can easily see that even the longest con-
version time, 25.5ms, is sufficiently fast and also gives the most accurate result.
Therefore, the mode was set to ultra high resolution. To make sure that the MCU
did not try to retrieve a value before conversion was done, the MCU needed to wait
at least 25.5ms. Since the MCU uses a sample time of 10ms, one can by waiting
three samples (30ms) after a pressure measurement is started guarantee that the
pressure sensor will finish the conversion in time.

The requirements on the scheduling was that temperature had to be started and read
first, and then once every 100th sample. This was implemented using a counter
which kept track of the samples. How the counter was used can be seen in the lower
part of Figure 3.6. A measurement had to be collected before a new measurement
was started, and a measurement could not be started or collected at the same time.
This is marked with an X and arrow pointing down in Figure 3.7. Furthermore, the
MCU had to wait 3 samples after a pressure measurement was started before the
measurement was retrieved. With this setup, the pressure sensor had a sample rate
of 40ms (25Hz) which is considered adequate for this thesis.

Altitude estimation
Altitude estimation can be represented as relative or absolute, where the relative
altitude is the elevation from equilibrium and the absolute altitude is the true height
above water. To convert pressure into altitude, Equation 3.26 was used. However,
the pressure at sea level, p0, had to be defined before altitude was computed. There
are basically two ways in which this is done.

altitude = 44330
(

1−
( p

p0

) 1
5.255
)

(3.26)

One way is to use 1013.25hPa, which is the standard pressure at sea level, [SMHI,
2015]. But this is only the average pressure, while the true pressure normally varies
between 950-1050hPa, or 540m above sea level to 301m below sea level. This can
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be seen in Figure 3.8, which is plotted using 3.26 with p0 set to the standard pressure
at sea level. Thus, on a good average day the corresponding altitude estimation will
be very accurate. But for the rest of the year, the ship could either be estimated to
be flying above water or submerged under water. The advantage using the standard
pressure, however, is that the pressure at sea level does not require recalculation
since the pressure is considered to be constant.

Figure 3.8 Altitude as a function of pressure. As the pressure increases, the altitude de-
creases.

The other way is to estimate the current pressure above sea level using Equation
3.27. This requires that the height above water for the searchlight, lightHeight, is
known beforehand. This can, for example, be measured when the searchlight is
installed on a ship. Using Equation 3.27, the current pressure above sea level is
estimated which then can be used in Equation 3.26 to get the current altitude above
water, i.e., the absolute altitude. To get the relative altitude, one simply subtracts the
absolute altitude from the known starting point, lightHeight.

p0 =
p

(1− lightHeight
44330 )5.255

(3.27)

3.7 Sensor fusion

Sensor fusion was done to give more accurate, stable and reliable measurements
compared to using each sensor on its own. In this thesis, two filters were investi-
gated, complementary filter and Kalman filter, both of which are widely used today
[Gui et al., 2015].
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Complementary filter
This simple, yet powerful, filter requires little computation and is easy to imple-
ment. This is why it has gained so much in popularity compared to Kalman filter,
especially in embedded systems [Gui et al., 2015]. The complementary filter works
by combining a High-Pass Filter (HPF), used for the gyroscope measurement, and
a Low-Pass Filter (LPF), used for the accelerometer measurement as seen in Figure
3.9 [Higgins, 1975].

Accelerometer

Gyroscope

LPF

∫
HPF

∑ Angle

Angular
velocity

θa θ ′a θ

θ̇g θg

θ ′g

θ̇g

Figure 3.9 Tilt estimation using a complementary filter which combines a low- and high-
pass filter for the accelerometer and gyroscope.

Studying the figure, one can see that the tilt θa is computed using the accelerometer.
However, this signal contains high frequency noise which is filtered out using a LPF.
This yields the filtered tilt θ ′a. In other words, the LPF ensures that only long-term
changes are passed through, thus filtering out quick fluctuations.

The gyroscope measurement, θ̇g, is measured as degrees per second. By integrating
this value, one gets the tilt θg. This value is then passed through a HPF to remove
low frequency noise from the gyroscope so that the filtered signal θ ′g is computed.
Using a HPF, short-term fluctuations are passed through while long-term signals are
filtered out. The long-term signals are typically the angle random walk.

The output from each filter, θ ′a and θ ′g, is combined to form the combined estimated
tilt, θ . In the short term, the value from the gyroscope will dominate and the esti-
mated tilt will adapt to quick changes in the real environment, whereas in the longer
run the accelerometer will have a bigger impact which will suppress the angle ran-
dom walk from the gyroscope [Higgins, 1975].

The complementary filter is defined in Equation 3.28, where α is the filter coef-
ficient. The value on α determines how fast the filter converges to changes in the
input signals. Furthermore, the sum of α and 1−α has to be 1 so that the output
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of the filter is accurate and with the right units [Gui et al., 2015]. As seen in the
equation, the complementary filter works by using only one equation, thus requir-
ing very little computation which is excellent for embedded systems. Furthermore,
this filter is easily tuned empirically by simply changing the value of α .

θk+1 = α(θk + θ̇gk ·∆t)+(1−α) ·θak (3.28)

Kalman filter
Kalman filter, known as a linear quadratic estimation, is an iterative linear filter
which efficiently estimates the desired output [Higgins, 1975]. It takes noise in both
processes and measurements into account by using covariance matrices and updates
the matrices at every time interval, as well as using a model of the system to estimate
the state based on both the current and previous state [Hägglund, 2012]. Although
this does give tremendous results, there are some drawbacks. Due to it being an
iterative filter, it requires high computational complexity which is computationally
expensive, especially for larger systems [Higgins, 1975]. Furthermore, the accu-
racy of the mathematical model also determines how accurate the estimations are
[Simon, 2001].

Since Kalman filter was used in an embedded system, the following is described in
discrete time. A linear discrete model is described in Equation 3.30, where vk is the
process noise, wk is the measurement noise and A, B and C are matrices describing
the system [Glad and Ljung, 2007][Hägglund, 2012].

xk+1 = Axk +Buk +vk

yk = Cxk +wk
(3.30)

The disturbances are usually modeled as white noise, i.e., uncorrelated zero-mean
Gaussian noise, with the process noise as vk ∼ N(0,Qk) and measurement noise
as wk ∼ N(0,Rk). Moreover, Qk is the process noise covariance matrix and Rk
is the measurement covariance matrix defined in Equation 3.32 [Glad and Ljung,
2007][Simon, 2001][TKJ Electronics].

Qk = E[vkvT
k ]

Rk = E[wkwT
k ]

(3.32)

To calculate the variance one first has to compute the average value, µ , and then the
standard deviation, σ , as defined in Equation 3.34. The average value is computed

42



3.8 Image processing for absolute tracking

from the acquired samples xi, where i = 1,2, . . . ,N. The value of µ is then used for
the standard deviation, which in turn is used for the variance which is defined as the
square of the standard deviation, i.e., σ2 [Blom, 2004].

µ =
1
N
(x1 + x2 + · · ·+ xN)

σ =

√
1
N

(
(x1−µ)2 +(x2−µ)2 + . . .(xN−µ)2

) (3.34)

A Kalman filter can be divided into two steps - prediction and update. In the first
step, the predicted state estimation vector x̂k and the predicted estimated covariance
matrix P̂k is computed as in Equation 3.36. This is done using the updated estimated
covariance Pk−1 and the updated state estimation xk−1.

x̂k = Axk−1 +Buk−1

P̂k = APk−1AT +Qk
(3.36)

In the update step described in Equation 3.38, the Kalman filter calculates the
Kalman gain matrix, Kk, which is used for updating the state vector xk and co-
variance matrix Pk [Simon, 2001][Glad and Ljung, 2007]. The Kalman gain de-
termines how much weight is put into the measured outputs, where a measurement
with a high certainty corresponds to a greater weight on the Kalman gain [Gui et al.,
2015]. Furthermore, the value of K is a trade-off between how fast the estimation
converges to the true value and how sensitive the filter is to disturbances and model
errors [Glad and Ljung, 2007][Hägglund, 2012].

Kk = P̂kCT (CP̂kCT +Rk)
−1

xk = x̂k +Kk(yk−Cx̂k)

Pk = (I−KkC)P̂k

(3.38)

3.8 Image processing for absolute tracking

In this thesis it was investigated if image processing was possible and how it could
be used. The idea of using image processing is to be able to do absolute tracking
of an object present on the screen. One might, for example, want to keep an object
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fixed in the middle of the screen, and if said object is below the middle then the
thermal camera needs to be lowered and vice versa.

Image processing can be done using OpenCV, which has a lot of support and can op-
erate on embedded systems [Shah, 2014][OpenCV]. Mainly two types of problems
were investigated - memory storage and processing time.

The thermal camera uses different color pallets to represent temperature differences.
The least amount of bits needed is achieved by using grey scale which uses 8 bits,
or 1 byte, per pixel. The thermal camera has a resolution of 336x256, or 86016
pixels. Since 1 byte is needed for grey scale per pixel, one image needs 86016 bytes,
corresponding to 84kB [FLIR 2015]. Therefore, storing a single image needs 84kB
of memory storage. Since the MCU has a total of 64kB data memory, storing an
image with the current hardware is not possible. It gets worse considering the fact
that the thermal camera also supports colors which requires even more memory.
This could be solved by using an external storage unit, such as an SD-card, together
with a custom hardware such as ThermalCapture [ThermalCapture].

The speed of which an image can be processed also has a huge impact on the overall
system. If the image processing is too slow, the object on the screen might move
very far between samples, potentially going out of screen. There is research, for
instance [Shah, 2014] and [Coombs and Prabhu, 2011], where image processing
was performed on embedded systems. However, the CPU speed in those studies
were generally higher than for the CPU in this thesis and it still took a fairly long
time to process an image. Considering the fact that the current CPU has a lower
speed, one can expect the processing time to increase. A possible solution would
be using a Digital Signal Processing (DSP) unit, as in [Coombs and Prabhu, 2011],
which performs the heavy computations and sends the computed result to the MCU.

There are also practical problems to consider, such as an object disappearing behind
a wave or more than one object being present on the screen. Furthermore, absolute
tracking is not always wanted or needed, e.g., when searching for an object. During
a search, keeping the image stable is much more important.

Due to insufficient hardware, one cannot expect image processing to work in this
application as is. A lot of additional work is needed for absolute tracking using
image processing which is outside the scope of this thesis. Thus, image processing
for absolute tracking was not implemented in this work.
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To be able to control the direction of the thermal camera using the stepper motor,
one has to know the error. In this case, the error is the deviation from the point at
the surface of the sea which the operator wants to look at. To be able to calculate
this error, one needs to estimate the tilt and elevation of the ship.

4.1 Tilt estimation

A Kalman filter was used for fusing together the accelerometer and gyroscope mea-
surements. This filter was mainly chosen due to having an error model which when
used correctly makes it more robust and less sensitive to disturbances.

As shown in previous sections, the tilt computed using a gyroscope suffers from ran-
dom angle walk due to bias errors, and to reduce the random angle walk one ought
to remove the bias error. This is done in Equation 4.1, where θk is the current tilt,
θk−1 is the previously calculated tilt, (θ̇g)k is the current gyroscope measurement,
(θ̇b)k is the current gyroscope bias and ∆t is the sample time. Since the gyroscope
measurement and bias is in the unit of degrees per second, the tilt in degrees is
simply computed by multiplying with ∆t.

θk = θk−1 +(θ̇g)k ·∆t− (θ̇b)k ·∆t (4.1)

The equation above could be represented as state space, where the state vector xk
contains variables which are to be estimated, in this case the tilt and gyroscope bias.

xk =

(
θ

θ̇b

)
k

45



Chapter 4. Estimation

The state space representation can be seen in Equation 4.2.

xk =Axk−1+Buk+vk ⇐⇒
(

θ

θ̇b

)
k
=

(
1 −∆t
0 1

)(
θ

θ̇b

)
k−1

+

(
∆t
0

)
θ̇k+vk (4.2)

The process noise was assumed to be uncorrelated zero-mean Gaussian, i.e. vk ∼
N(0,Qk), and Qk is the process noise covariance matrix which in this case is the
state estimation of the accelerometer and gyroscope bias. Since the process noise
was assumed to be uncorrelated, which it is in many cases, Qk only contains values
in its diagonal [Glad and Ljung, 2007]. In other words, there was no correlation
between the gyroscope bias and the accelerometer measurements of the tilt. Observe
that the matrix is multiplied by ∆t, since Q is time based [TKJ Electronics]. And
since ∆t is a constant, Q will also be constant. Thus, the resulting Q-matrix is given
in Equation 4.4.

R = E[wkwT
k ] = var(wk) = var(w)

Q =

(
Qθ 0
0 Q

θ̇b

)
·∆t

(4.4)

The measurement matrix y is defined as yk = Cxk−1 +wk, where C is the observa-
tion model and wk is the measurement noise. The state vector x contained the tilt and
the gyroscope bias, but only the tilt was measured directly using the accelerometer.
Thus, C =

(
1 0

)
. Furthermore, the measurement noise wk was assumed to be un-

correlated zero-mean Gaussian with the covariance matrix R, so that wk ∼ N(0,R).
Additionally, only the tilt was measured directly, hence R only contained the vari-
ance of the accelerometer measurement noise [TKJ Electronics]. Since the covari-
ance of the same variable is equal to the variance, R is defined as in Equation 4.4
[Blom, 2004]. Moreover, the measurement noise was also assumed to be constant,
although this is not fully true due to small errors such as thermal self-heating in an
accelerometer. But as stated in the section about accelerometers, those errors are
negligible.

In summary, Kalman filter for estimating the tilt uses three variables that can be
tuned, Qθ , Q

θ̇b
and the measurement noise of the accelerometer, R. To find the

correct values, simulations were first performed before doing empirical experiments
to fine tune it for the real process [TKJ Electronics].
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4.2 Gravity compensation for linear acceleration

In Section 3.3, two frames of references were presented - sensor frame S and Earth
frame E. In this section, the static acceleration is removed from the accelerome-
ter measurements, leaving only the linear acceleration. Before removing the static
acceleration, however, the measurements need to be rotated from sensor to Earth
frame.

Rotation and gravity compensation was based on Madgwick’s algorithm, where
rotation was performed using quaternion. This algorithm was chosen because it
is computationally inexpensive while still being effective at low sampling rates.
Madgwick’s algorithm is based on an optimized gradient-descent algorithm and
utilizes both gyroscope and accelerometer measurements [Madgwick, 2010].

Orientation from gyroscope
The orientation of the sensors were calculated using quaternions together with the
angular velocity measured from the gyroscope, where each axis was represented
as ωx, ωy and ωz. Each axis was then arranged into the quaternion vector Sωωω =[
0 ωx ωy ωz

]
.

Using the quaternion arithmetic, one can describe the rate of change of orientation
of the Earth frame relative to the sensor frame as S

E q̇ = 1
2

S
E q̂⊗ Sωωω . By numerically

integrating this value, i.e., multiplying with the sample time ∆t and adding that to
the previously quaternion orientation estimate S

E q̂est,t−1 as in Equation 4.6, one gets
the orientation of the Earth frame relative to the sensor frame at time t [Madgwick,
2010].

S
E q̇ω,t =

1
2

S
E q̂est,t−1⊗ S

ωωω t

S
Eqω,t =

S
E q̂est,t−1 +

S
E q̇ω,t ·∆t

(4.6)

Orientation from accelerometer
To get the magnitude and direction of the static acceleration, the measurements
from the accelerometer were used. To represent this using quaternions, Madgwick
showed that the orientation of the accelerometer, S

E q̂, could be optimized as in Equa-
tion 4.7 with the objective function as Equation 4.8. In these equations, E d̂ is a
predefined reference direction of the field in Earth frame1 and Sŝ is the measured
direction of the field in the sensor frame. The components of the three vectors are
defined in Equation 4.10.

1 In Earth frame, static acceleration only exist in the z-axis.
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min
S
E q̂∈ℜ4

f(S
E q̂,E d̂,Sŝ) (4.7)

subject to
f
(S

E q̂,E d̂,Sŝ
)
=S

E q̂∗⊗ E d̂⊗ S
E q̂− Sŝ (4.8)

where

S
E q̂ =

[
q1 q2 q3 q4

]
E d̂ =

[
0 dx dy dz

]
Sŝ =

[
0 sx sy sz

] (4.10)

There are a number of ways for solving the minimization problem, where Madg-
wick uses the gradient descent algorithm because of its simplicity and efficiency
[Böiers, 2010]. Equation 4.11 shows the gradient descent algorithm for n iterations
which computes the orientation estimation S

E q̂n+1 based on an initial guess, S
E q̂0, and

a constant step-size µ [Madgwick, 2010]. The step-size µ determines how fast the
result converges, but might converge to the wrong value if the value is too large.
One could make µ time dependent and changed by each iteration, but this increases
the work load significantly since it has to use the second derivative of the objec-
tive function, also called Hessian [Böiers, 2010]. However, if the convergence rate
governed by µ is equal or greater than the rate of change of orientation in the real
process, it is sufficient to use a constant µ [Madgwick, 2010]. Since the rate of
change of a ship is fairly slow, it is acceptable for µ to be constant in this thesis.

Equation 4.11 is solved by computing the gradient, ∇, of the objective function. The
gradient of the objective function is defined in Equation 4.12, which uses the Jaco-
bian J(S

E q̂k,
E d̂) and the objective function f(S

E q̂k,
E d̂,Sŝ) itself [Böiers, 2010][Madg-

wick, 2010]. However, the Jacobian and the objective function are expressed in the
general form without a predefined direction of field. Since Earth frame is consid-
ered, one can set the direction of field E d̂ to E ĝ=

[
0 0 0 1

]
by using the gravity

field. Furthermore, the normalized accelerometer measurements can be written as
Sâ =

[
0 ax ay az

]
. Substituting E ĝ and Sâ for E d̂ and Sŝ, one gets the new and

simplified Jacobian and objective function as Equation 4.13 and 4.14.

S
Eqk+1 =

S
E q̂−µ

∇f
(S

E q̂k,
E d̂,Sŝ

)
‖∇f
(

S
E q̂k,

E d̂,Sŝ
)
‖
,k = 0,1,2, . . . ,n (4.11)

∇f
(S

E q̂k,
E d̂,Sŝ

)
= JT (S

E q̂k,
E d̂
)
f
(S

E q̂k,
E d̂,Sŝ

)
(4.12)
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J(S
E q̂) =

2q3 2q4 −2q1 2q2
2q2 2q1 2q4 2q3
0 −4q2 −4q3 0

 (4.13)

f
(S

E q̂,Sâ
)
=

2(q2q4−q1q3)−ax
2(q1q2 +q3q4)−ay
2( 1

2 −q2
2−q2

3)−az

 (4.14)

Equation 4.11 can now be rewritten as Equation 4.15, which computes the estimated
orientation, S

Eq∇,t , at the current time t based on the previous orientation estimation
S
E q̂est,t−1 and the objective function gradient ∇f sampled at time t. The value of µt

has to be big enough so that the convergence rate of S
Eq∇,t is faster than the rate of

change of the real process, but small enough to avoid overshooting due to larger
step size. According to Madgwick, µt can be calculated by Equation 4.16, where
S
E q̇ω,t is the angular velocity from the gyroscope and β is an augmentation of µ to
account for noise in accelerometer measurements [Madgwick, 2010].

S
Eq∇,t =

S
E q̂est,t−1−µt

JT (S
E q̂est,t−1)f(S

E q̂est,t−1,
Sât)

‖JT (S
E q̂est,t−1)f(S

E q̂est,t−1,
Sât)‖

(4.15)

µt = β‖S
E q̇ω,t‖∆t,β > 1 (4.16)

Sensor fusion
So far, the estimated orientation has been presented for the gyroscope, S

Eqω,t and the
accelerometer, S

Eq∇,t separately. In this section the estimations are fused together to
obtain a better estimated orientation of the sensors relative the Earth frame, S

Eqest,t .
This is done using the simple, yet powerful, complementary filter as described in
Section 3.7 and defined in Equation 4.17.

S
Eqest,t = α t

S
Eq∇,t +(1−αt)

S
Eqω,t (4.17)

The optimal value for αt is when the weighted divergence of S
Eqω is equal to the

weighted convergence of S
Eq∇, as in Equation 4.18. The variable γ is the divergence

rate of S
Eqω expressed as the magnitude of a quaternion derivative corresponding to

the gyroscope measurement error, and µt
∆t is the convergence rate of S

Eq∇ as defined
in Equation 4.16.
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(1−αt)γ = αt
µt

∆t
⇐⇒ αt =

γ

µt
∆t + γ

(4.18)

As seen in Equation 4.16, the value of µt depends on the value of β . Since the
orientation changes slowly in the process, β can be set to be very large, thus making
µt very large as well. And if µt is very large, then the first term in Equation 4.15,
S
E q̂est,t−1, becomes negligible. Therefore, Equation 4.15 can be rewritten to Equation
4.19.

S
Eq∇,t ≈−µt

∇f
‖∇f‖

(4.19)

The value of αt in Equation 4.18 also depends on µt . Since ∆t → 0 for a shorter
sample period, then µt

∆t → ∞, hence γ in the denominator becomes negligible and
the equation can be simplified to Equation 4.20. Moreover, µt � γ∆t means αt ≈ 0.

αt ≈
γ∆t
µt

(4.20)

Substituting the angle estimation S
Eqω,t from Equation 4.6 and Equations 4.19-4.20

into the complementary filter above results in Equation 4.21, where αt is substituted
both as Equation 4.20 and αt ≈ 0.

S
Eqest,t =

γ∆t
µt

(
−µt

∇f
‖∇f‖

)
+(1−0)

(S
E q̂est,t−1 +

S
E q̇ω,t∆t

)
= S

E q̂est,t−1 +
S
E q̇ω,t∆t

(4.21)

The second term in the equation above can be rewritten as Equation 4.22, where
S
E

˙̂qε,t is the direction of the error of S
E q̇est,t defined in Equation 4.23.

S
E q̇est,t =

S
E q̇ω,t −η

S
E

˙̂qε,t (4.22)

S
E

˙̂qε,t =
∇f
‖∇f‖

(4.23)
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In summary, the proposed filter calculates the orientation S
Eqest by numerically inte-

grating the estimated orientation rate S
E q̇est . Furthermore, the filter calculates the rate

of change of orientation measured by the gyroscope S
E q̇est , where the magnitude of

the gyroscope measurement error, η , is removed in the direction of the estimated er-
ror, S

E
˙̂qε , computed from the accelerometer. The practical use for this feedback, i.e.,

subtracting with ηS
E

˙̂qε,t , is to estimate and remove the bias errors which otherwise
would contribute to angle random walk.

The resulting vector S
Eqest is the rotation needed to rotate from sensor to Earth frame.

It was also mentioned earlier that the static acceleration in Earth frame acts in the
vertical z axis, i.e. Eg =

[
0 0 1

]T . Before removing the static acceleration, the
accelerometer values are mapped from sensor to Earth frame as in Equation 4.25.
To extract the vertical acceleration, one takes the sum of z components in the Earth
frame vector Ea, as in 4.26 [Madgwick, 2010][Nair, 2014].

Ea = q⊗ Sa⊗q∗ = S
ERS ·a =q2

1 +q2
2−q2

3−q2
4 2(q2q3−q1q4) 2q2q4 +2q1q3

2q2q3 +2q1q4 q2
1−q2

2 +q2
3−q2

4 2q3q4−2q1q2
2q2q4−2q1q3 2q3q4 +2q1q2 q2

1−q2
2−q2

3 +q2
4

ax
ay
az

 (4.25)

Eaz = (2q2q4−2q1q3)ax +(2q3q4 +2q1q2)ay +(q2
1−q2

2−q2
3 +q2

4)az (4.26)

The resulting scalar Eaz is the total vertical acceleration - that is, the sum of both
static and linear acceleration - measured on all axis. Since all is measured in g, one
can remove the static acceleration by subtracting by 1 from the resulting scalar, thus
giving the total vertical linear acceleration as Eazlinear =

Eaz−1 [Nair, 2014][Vare-
sano, 2011].

4.3 Elevation estimation methods

Different methods, such as Kalman filter, were investigated to estimate the elevation
of the searchlight using only the IMU. However, the best approach for finding the
elevation was found not by using a filter, but instead using the characteristics of a
ship at sea.

In latter parts, a pressure sensor was brought in to see how much better estimations
one could get when using a Kalman filter to fuse together both accelerometer and
pressure measurements.
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Elevation estimation using accelerometer
The easiest, and also the worst, method for estimating the position using only the
accelerometer is by integrating the acceleration after it has been compensated for
gravity. Due to errors in both the measurements and integration, the position estima-
tion will drift over time. However, by using limitations and characteristics of ships,
one can reduce the errors. For example, a ship cannot be infinitely high above wa-
ter, but will rather stay within a range of ±30m from its equilibrium, 30m being the
highest possible wave that a ship might encounter. This can be used when removing
the position drift.

To get the position, the acceleration was integrated numerically. Since the sample
time was very small, the acceleration between two samples was assumed to be con-
stant. Due to this, the equations of motion were used [Seifert and Camacho, 2007].
The velocity was computed by integrating the acceleration as Equation 4.28. The
velocity was then integrated to yield the position, see Equation 4.30.

a =
dv
dt

dv = a ·dt
v∫

v0

dv =
∆t∫

0

a dt

v− v0 = a ·∆t ⇐⇒ v = v0 +a ·∆t

(4.28)

v =
d p
dt

d p = v ·dt = (v0 +a ·∆t)dt
p∫

p0

d p =

∆t∫
0

(v0 +a ·∆t) dt

p− p0 = v0 ·∆t +
1
2

a ·∆t2 ⇐⇒ p = p0 + v0 ·∆t +
1
2

a ·∆t2

(4.30)

The simple form of integration is visualized in Figure 4.1, where ∆t is the difference
between two successive samples, e.g. ∆t = x1− x0. To reduce the error, one would
like ∆t → 0, which is not feasible. The integration of the true acceleration, f(x), is
simply the sum of every sample, also called Riemann sum, as defined in Equation
4.31, where ∆x = b−a

n and n is the number of samples [Persson and Böiers, 2010].
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a = x0 x1 xn−1 b = xn
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Figure 4.1 Function for the acceleration and the sampled measurements, where the red area
is the integrated value using Riemann sum.

b∫
a

f (x)dx = lim
n→∞

n

∑
i=1

f (xi)∆x (4.31)

It is obvious from the plot in Figure 4.1 that there will be errors when integrat-
ing, and the errors can be minimized by lowering the sample period. However,
the sample period is a fixed value, in this case 10ms, and so errors will be intro-
duced. Since it is of great importance that errors are reduced to minimize drift, the
integration error needs to be reduced. This is done using trapezoidal integration,
as seen in Figure 4.2, which clearly reduced the total error. One could use other
methods, such as Simpson’s rule, to further improve integration, but trapezoidal in-
tegration was deemed adequate for this application since more accurate methods
require more computations. Unlike the previous method, which simply takes each
measurement and multiplies it with the sample period, the trapezoidal integration
uses a first order interpolation to compute the area. Therefore, the integrated sum is
equal to ∑

n
i=1 areai, where areai is defined in Equation 4.32 [Sauer, 2011][Seifert

and Camacho, 2007].

arean = samplen +
samplen− samplen−1

2
·∆t (4.32)

A first approach to see how good the aforementioned method works for estimating
the position is by moving the accelerometer sideways along a y-axis from one po-
sition to another. If this motion is plotted, the acceleration would look like picture
(A) in Figure 4.3 and the integrated acceleration would give the velocity as picture
(B). Note that since errors are present in the integration, the velocity will not return
to zero even though the accelerometer is stationary in the end. Looking at picture
(C), which plots the position by integrating the velocity, the position can be seen to
increase even though the accelerometer is not moving.
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Figure 4.2 Function for the acceleration and the sampled measurements. The red area is
the integrated value using trapezoidal rule.

Figure 4.3 Three plots showing the acceleration (A), the integrated acceleration (B), and
the integrated velocity (C). Due to errors when integrating, the position will drift [Seifert and
Camacho, 2007].

An Exponential Moving Average (EMA) filter, defined in Equation 4.33, was used
for reducing the errors in the accelerometer measurements [Moving Average Filter].
As seen in the equation, the current filtered measurement yt is computed from a
portion of the current unfiltered measurement xt with a portion of the previously
filtered measurement yt−1. Thus, a bigger α will use a bigger portion of the current
measurement, making the filter respond quicker to changes but more sensitive to
disturbances, and vice versa.

yt = α · xt +(1−α) · yt−1 (4.33)

By using an EMA filter, errors were reduced but not eliminated. Without any re-
strictions or constrains on the position, the drift due to the errors will still increase
to infinity. As aforementioned, elevation cannot go to infinity since the ship would
then be flying in space. Even if a ship were to encounter a monster wave, which is
extremely rare, the elevation would not exceed 30m. Therefore, one can assume that
elevation cannot possibly reach more than 30m. By this assumption, one can use a
feedback to bring the elevation estimation back down to equilibrium.
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4.3 Elevation estimation methods

Elevation estimation using accelerometer and pressure sensor
A pressure sensor was used as an auxiliary sensor to the IMU. The idea was to
see how one could combine an accelerometer and a pressure sensor to estimate the
elevation and examine if it was better than the previous method, and in such case
how much better. This was done using a Kalman filter.

To be able to use the Kalman filter, a dynamic model of the system was set up in
state space, where three states were introduced: xk (elevation), ẋk (elevation rate)
and ẍbk (accelerometer bias). To get the elevation, the equations of motion were
used as below.

x = x0 + ẋ0 ·∆t +
a
2
·∆t

ẋ = ẋ0 +a ·∆t
(4.35)

The acceleration a is the vertical linear acceleration against Earth frame, Eazlinear,
as calculated in Section 4.2 using an accelerometer. However, the measured acceler-
ation still contains a bias error that should be removed for a more accurate elevation
estimation. In other words, to get the true acceleration without the bias, one has
to subtracts the accelerometer bias from the measured acceleration, i.e. a = ẍ− ẍb
where ẍ is the vertical linear acceleration in Earth frame. Substituting this expres-
sion for the variable a in Equation 4.35 gives Equation 4.37.

x = x0 + ẋ0 ·∆t +
(ẍ− ẍb)

2
·∆t2

ẋ = ẋ0 +(ẍ− ẍb) ·∆t
(4.37)

Since it was implemented on an embedded system, the equations of motion were
converted to a discrete system as in Equation 4.39, where the last state is the ac-
celerometer bias with added random noise ε [Nair, 2014].

xk = xk−1 + ẋk−1 ·∆t +
(ẍk−1− ẍbk−1)

2
·∆t2

ẋk = ẋk−1 +((ẍk−1− ẍbk−1)) ·∆t

ẍbk = ẍbk−1 + ε

(4.39)
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The equations above were represented in a state space as below. Note that the input
matrix B is zero since no signal is used as an input.

xk = Axk−1 +Buk + vk = xk
ẋk

ẍbk


︸ ︷︷ ︸

xk

=

1 ∆t −∆t2

2
0 1 −∆t
0 0 1


︸ ︷︷ ︸

A

 xk−1
ẋk−1

ẍbk−1


︸ ︷︷ ︸

xk−1

+

∆t2

2 · ẍbk−1
∆t · ẍbk−1

ε


︸ ︷︷ ︸

vk

It was only the elevation, xk, that could be measured directly using the pressure
sensor. Due to this, the measurement vector y only contains a scalar value as in
Equation 4.40, i.e, yk = xk +wk, where wk is the random scalar measurement noise
for the pressure sensor.

yk = CxT
k +wk =

[
1 0 0

] xk
ẋk

ẍbk

+wk (4.40)

The next step is calculating the process noise covariance matrix, Qk as defined be-
low, where the vector vk represents the perturbation of the model from the above
state space. It is the variables σacc and σ2

accbias in the Qk-matrix that were tuned to
get a good response from the filter.

Qk = E
(
vkvT

k
)

= E

 ∆t2

2 ẍk−1
∆t · ẍk−1

ε

[∆t2

2 ẍk−1 ∆t · ẍk−1 ε

]
=

∆t4

4 σ2
acc

∆t3

2 σ2
acc 0

∆t3

2 σ2
acc ∆t2 ·σ2

acc 0
0 0 σ2

accbias


(4.42)

The measurement noise R also had to be estimated. Since only the elevation was
measured directly, the measurement noise was simply a scalar defined as

R = E[wkwT
k ] = var(wk) = var(w),
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4.4 Error estimation to a point on the sea surface

where w once again was assumed to be constant. The value of w was calculated by
keeping the sensor stationary and then calculating the variance as in Section 3.7.

4.4 Error estimation to a point on the sea surface

Previous sections have made it possible to estimate two sources - tilt and elevation
- which make the thermal camera direction deviate from the direction in which the
operator has set.

In Figure 4.4, a ship is at its equilibrium. Initially, the operator is looking at point A
on the surface of the sea with tilt α on the thermal camera. In this thesis, three cases
in which disturbances are acting on the ship were investigated: 1) elevated, 2) tilted
or 3) elevated and tilted. Below are the two latter cases presented since the first one
is covered in the last case.

Height(m)

Distance(m)

α

A

H

D

Figure 4.4 Illustration for the case when a ship is at its equilibrium. The searchlight is at
height H above water and the operator has tilted the thermal camera by α , thus looking at
point A located at a distance D from the ship.

The objective is to always keep the camera pointed at point A and to do this, one
has to estimate the distance D along x-axis from the searchlight to point A. This
was done using trigonometric functions, since the height above water of which the
searchlight is mounted, H, was assumed to be known beforehand. One can then use
tangent to determine the distance, since

tan(α) =
H
D
⇐⇒ D =

H
tan(α)

The following sections will estimate the deviation from this point, either from tilt
alone or the tilt and elevation.
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Error estimation to a point (tilt compensation)
When only compensating for tilt, the elevation was assumed to be at its equilibrium
as in Figure 4.5. The idea is simple. If the ship is tilted by β , which is computed
using the Kalman filter in Section 4.1, then the stepper motor has to compensate by
turning in the opposite direction to keep the thermal camera directed at point A.

Height(m)

Distance(m)

α

α

β

AB

Figure 4.5 A ship is tilted by β and the tilt angle for the thermal camera, α , stays the same.
If the tilt is not compensated for, the thermal camera would be looking at point B, whereas it
should compensate and look at point A.

Error estimation to a point (tilt and elevation)
In this section, both tilt and elevation will be considered when calculating the error,
as in Figure 4.6.

Before computing the error to point A, the distance to said point is estimated as

Height(m)

Distance(m)

α
E

α

β

AB

Figure 4.6 Ship is both tilted by β and elevated by E, while the tilt of the thermal camera,
α , stays the same. Unless the disturbances are compensated for, the thermal camera will be
looking at point B.
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4.4 Error estimation to a point on the sea surface

D =
H

tan(α)

where D is the length from the ship to point A along the x-axis - or rather, along the
surface of the sea - H is the height above water for the searchlight at equilibrium
and α is the tilt of the thermal camera.

Example:
The searchlight is mounted 32m up and the operator sets α = 4°. According to the
equation above, D≈ 457.62m. 4

The elevation of a ship can be compensated for by using the distance computed
above. One can again make use of the trigonometric function for tangent as in Equa-
tion 4.43, where the new tilt needed, αnew, to look at point A when elevated by a
distance E is computed.

tan(αnew) =
H +E

L
⇐⇒ αnew = atan

(
H +E

L

)
(4.43)

Example (continued):
From equilibrium, a ship is risen 2m. The new desired tilt of the thermal camera is
αnew = atan

( 32+2
457.62

)
≈ 4.25°. Therefore, the thermal camera needs to have a tilt of

4.25° to still look at point A when elevated. 4

However, the calculations above does not compensate for tilt. To compensate for
tilting, one simply compensates the thermal camera in the opposite direction of the
tilt. Thus, the tilt needed for the thermal camera, γ , to compensate for both elevation
and tilt was done by subtracting the new desired tilt, αnew with the tilt of the ship,
β , as Equation 4.44.

γ = αnew−β (4.44)

Examle (continued):
A ship is assumed at one instant to tilt by −5°. Since the new desired tilt is αnew =
−4.25°, the final tilt of the thermal camera is computed as γ = αnew−β =−4.25°−
(−5°) = 0.75°. Therefore, for the thermal camera to look at point A when both
elevated and tilted, it has to have a tilt of 0.75°. 4
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In summary, the algorithm for computing the error of which the thermal camera is
deviating from point A with regards to both elevation and tilt is done in following
order:

1. Read the tilt α set by the operator.
2. Calculate distance D to point A by using D = H

tan(α) .
3. Read the elevation E.
4. Calculate the new desired tilt, αnew = atan

(H+E
D

)
.

5. Read the tilt of the ship β .
6. Calculate needed tilt of thermal camera, γ = αnew−β .

The value of γ was used for finding the error e, defined as the difference between the
needed tilt γ and the current tilt of the stepper motor, αstepper. However, the output
from the algorithm is in degrees while the stepper motor calculates the tilt as number
of steps. Thus, one has to convert the tilt into integer values. Conversion from steps
to tilt is done in Equation 4.45, which comes from the stepper motor being able to
turn from -20° to +20° which corresponds to 0 and 600 steps respectively.

αstepper =−20+ steps · 40
600

(4.45)

The equation below was used for converting the needed tilt from degrees to steps.
As seen in the equation, the second term is rounded since steps has to be expressed
as an integer value. However, rounding means there will be quantization error.

steps = 300+ round
(

γ · 600
40

)
(4.46)

In Figure 4.7, the black line is the tilt in degrees and the blue line is the converted
value of steps, and the quantization error is the difference between the two lines.
In this application, a step is equal to 40

600 ≈ 0.067° and the quantization error will
be equal or less than half of this value, i.e., 0.033°. One can see that the quantiza-
tion error is very small and not noticeable for the operator. Considering the other
errors mentioned so far in this thesis, the quantization error can be considered to be
negligible.

Summary for the estimations
In Figure 4.8, all previous sections are combined in a flow chart to get an overview
of the whole system which combines all sensor measurements.
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Figure 4.7 Illustration of the quantization error (blue line) caused when converting the
needed tilt into discrete values.

Two Kalman filters are working parallel with each other, where one estimates the
tilt using accelerometer and gyroscope measurements and the other estimates the
elevation using accelerometer and pressure measurements.

The measurements from accelerometer and gyroscope are also used in Madgwick’s
algorithm to yield the orientation so one can extract the vertical linear acceleration
from the accelerometer.

The tilt and elevation estimations are sent to the PID control which includes the
error estimation in this section.

Figure 4.8 System overview over the system.
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5
Control

The control of the stepper motor was done by comparing the desired tilt of the
thermal camera and the current tilt of the stepper motor. This produced the error e,
which was then used for computing the control output u. The control output in this
thesis controlled the step time of the stepper motor, i.e. the time between two steps.

A bigger error usually leads to a larger output, e.g., a greater voltage for a DC-motor
that has to run quicker. In this thesis, however, the step time needs to decrease as
the error increases for the stepper motor to run faster with a bigger error.

5.1 Theory

The proposed controller, Proportional Integral Derivative (PID), is one of the most
used controller today thanks to its simplicity while still functioning great for many
processes. The idea is to minimize the error e, which is the difference between
the setpoint r and the measured output y, i.e. e(t) = r(t)− y(t). In this thesis, the
setpoint was the desired tilt while the measured output was the current tilt of the
stepper motor, both of which were expressed as integer values [Hägglund, 2012].
The whole system is shown in Figure 5.1, and the PID controller is described in
more details below.

PID Process
ur e y

−

Figure 5.1 PID control which is used for controlling a process. In this case, the process is
the stepper motor and the control signal determines the step time of the stepper motor.
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Proportional, P
This term uses a scalar gain Kp on the error and is defined as below.

P = Kp · e(t)

A smaller value on Kp will lead to a larger steady-state error and in general a slower
convergence rate. On the other hand, if Kp → ∞ then the controller will act as an
on/off-controller, which in this case means the stepper motor will always be in run-
ning mode with shortest possible step time. This will wear out the stepper motor
quicker, as well as generating a lot of heat. Therefore, too high a value of Kp is not
desirable [Wittenmark et al., 2012][Hägglund, 2012].

Integral, I
This term uses an integral to compute the accumulated error over a set time t as

I = Ki

t∫
0

e(τ)dτ

where the sum is multiplied by the integral constant Ki. By using the I-term together
with P, one can eliminate the steady-state error as well as making the output reach
the setpoint faster. However, the error might accumulate and become very large over
time which will cause a delay in the output, causing it to overshoot. This can easily
be prevented by implementing an anti-windup [Wittenmark et al., 2012][Hägglund,
2012].

The integral term was not used in this thesis since there was no feedback from the
stepper motor. Furthermore, since the stepper motor worked with integer values and
the fact that it was assumed that the stepper motor did not miss a step, there was no
steady-state error to eliminate in the first place, making the integral term otiose.

Derivative, D
This term uses the derivative of the error as

D = KD ·
d
dt

e(t)

with the constant derivative gain KD. By using the derivative of the error one can
prevent overshooting, thus increasing the stability of the controller. However, this
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term might amplify noise which can cause some problems if filtering is not used
correctly on the signal. Moreover, it can in some cases slow down the process since
this term suppresses fast changes, resulting in a slower converge to a setpoint than
it would without the D-term [Hägglund, 2012][Wittenmark et al., 2012].

PID-controller
Combining each term into one controller, one can compute the output u as the equa-
tion below. However, any combination of the three terms can be chosen to fit a
process, e.g., PI or PD.

u(t) = Kpe(t)︸ ︷︷ ︸
P

+Ki

∫ t

0
e(τ)dτ︸ ︷︷ ︸
I

+KD
d
dt

e(t)︸ ︷︷ ︸
D

(5.1)

5.2 Additional controller implementation

In theory, a PID-controller can be implemented directly in code. However, some
aspects have to be considered when implementing a controller, such as saturation,
integral windup and derivative filtering [Wittenmark et al., 2012].

Saturation
The output of a controller is generally assumed to be unbounded, i.e., u(t) =
(−∞,+∞). However, real actuators are almost always limited in some way. Such
is the case in this thesis, where the stepper motor is the actuator and the output is
the step time. A stepper motor becomes unreliable at high speed, and to ensure that
the stepper motor did not miss a step the shortest step time was set to 1ms [28SH32-
0674A]. Furthermore, the upper limit was set to the sample time of the estimations
for tilt, i.e., 10ms. Therefore, the output signal is saturated as u(t) = [1,10].

Integral windup
When the output signal is saturated the integral term will accumulate, causing a
large overshoot once the output signal is unsaturated. To avoid this problem, an
anti-windup method has to be used, such as in [Wittenmark et al., 2012] or [Passino
and Quij, 2002]. In this thesis, however, anti-windup is not needed since the step-
per motor works in absolute values with no error in the position, unless a step is
missed. But since no feedback is involved, there is no way of knowing if, when and
how many steps the stepper motor has missed. Still, an anti-windup method was
implemented if an encoder is used for feedback in the future.
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5.2 Additional controller implementation

Derivative filtering
A problem with using the derivative term is that the term can become very large due
to quick changes, both from high frequency noise and large setpoint changes. One
can avoid using the derivative term on high frequency noise by applying a first order
LPF as in e.g., [Passino and Quij, 2002], where high frequencies are suppressed.

Furthermore, large setpoint changes can also be suppressed by using a scale fac-
tor on the setpoint so that only a fraction of the signal acts on the control signal
[Wittenmark et al., 2012].

PID on discrete form
The above PID-controller had to be converted into a discrete controller since it was
used in an embedded system. This was done by transforming the system in Equation
5.1 into the Laplace domain as in Equation 5.2, where a first order LPF was used
on the derivative term to avoid applying derivation on high frequency noise. The
LPF depends on the variable N, called the maximum derivative gain, which often is
chosen as a value between 3-20 [Wittenmark et al., 2012].

U(s) =
(

Kp︸︷︷︸
P

+ Ki
1
s︸︷︷︸

I

+KD
N

N 1
s︸ ︷︷ ︸

D

)
E(s) (5.2)

Each term was approximated using the sampling time h, with the P-term already
represented in discrete form.

To approximate the I-term, Forward-Euler was used - that is, s≈ z−1
h - which when

inserted in the I-term gives the new term as Kih 1
z−1 .

The last term was approximated using Backward-Euler, which was done by us-
ing s ≈ z−1

hz . Thus, the new D-term is KD
N

1+Nh z
z−1

. Combining the three discrete
terms above forms the discrete PID-controller as in Equation 5.3 [Wittenmark et
al., 2012].

U(z) =
(

Kp︸︷︷︸
P

+Kih
1

z−1︸ ︷︷ ︸
I

+KD
N

1+Nh z
z−1︸ ︷︷ ︸

D

)
E(z) (5.3)
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6
Simulation

Simulations were performed using Simulink, which is an extension of MATLAB,
due to having plenty of tool-boxes that could be used. In this chapter, each section
will explain each part of the simulation such as waves, ship and stepper motor.
Furthermore, models and assumptions previously made are tested and verified in
this chapter. The performance of the elevation and tilt estimation, as well as the
control of the stepper motor, was also tested and verified.

6.1 Waves

As described in Section 3.1, some assumptions about the waves were made and used
for the purpose of simulation. During simulations, the sea was considered to either
contain a single sine wave or two sine waves with different speed and amplitude.
Furthermore, the following was assumed:

1. The height of the wave(s), A, was known.
2. The wave length, λ , was computed so that A/λ � 1.

3. The speed of a wave was calculated as c =
√

g·λ
2π

.

4. Elevation was given as a sine wave, y = A · sin( 2πc
λ

t).
5. Velocity was given as ẏ = 2πc

λ
A · cos( 2πc

λ
t).

6. Acceleration was given as ÿ = 4π2c2

λ 2 A · sin( 2πc
λ

t).

The height of a wave was set manually before a simulation using the significant
wave height, Hs, which differs depending on where in the world one is looking
and what the conditions are at that place [Ainsworth, 2006][Ocean Wather Inc.]
By using and evaluating the data from [Ocean Wather Inc.] the wave height was
decided to range from 0m ≤ A ≤ 8m.
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6.2 Ship

6.2 Ship

According to [Perez, 2005], it can be hard to model a ship due to many different
parameters of both the sea and the ship itself. To simplify simulations, a ship was
modeled in such a way that it follows the motion of the sea, meaning a ship was
modeled to have the same elevation, velocity and acceleration as the waves defined
in above section.

Moreover, the tilt of the ship was needed. This was computed by looking at the
derivative of the height of the wave at one instant and then use a fraction of the
derivative to form the tilt. Thus, at a crest/trough of a wave the ship will not be tilt-
ing, while halfway up/down a wave the tilt of the ship is at its maximum/minimum.

6.3 Sensors

When simulating the accelerometer measurements, the acceleration ÿ of the ship
was used but with added noise. The noise added to the measurements were both
to simulate the measurement noise from the accelerometer itself and the vibrations
from the ship acting on the accelerometer.

Simulation of the pressure sensor measurements was done in the same way, and
uses the elevation y of the ship. As for the accelerometer, the pressure sensor mea-
surements include added noise to simulate e.g., measurement errors.

The noise for each sensor was based on the variance of the measurements, which
was found by taking a number of samples and then computing the variance for each
sensor when stationary. This variance was the baseline needed for simulation. In
addition to this, some noises were added to simulate errors such as vibrations.

6.4 Stepper motor

There was a predefined model of a stepper motor in the Simulink library which
used a number of parameters, most of which were described in the datasheet of
the stepper motor. However, some parameters were not included, such as maximum
detent torque, maximum flux linkage, total inertia and total friction. Those had to
be approximated, which was done by performing empiric experiments on the real
stepper motor and then tune the parameters in the model until the simulated stepper
motor matched the performance of the real stepper motor [Stepper motor model].

The rotational speed of the stepper motor was computed as v= vmax
T , where vmax was

the maximum rotation speed defined as the maximum number of steps each second
and T was the step time. Since the shortest step time was 0.001s and each step was
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equal to 40
600 °, the maximum rotation speed for the stepper motor was approximately

66.67°/s. Thus, if the tilt rate of a ship is greater than the maximum rotation speed,
then the stepper motor will be saturated.

6.5 Simulink blocks

The figure below shows the idea of the simulation process. Waves, either a single
sine wave or two sine waves, are generated in the Wave(s)-block. The output of this
block is the elevation, velocity and acceleration of the waves.

Wave(s) Ship TiltSensors

Operator Control

Stepper

Figure 6.1 Overview of the simulation process in Simulink. Thick arrow means more than
one value is passed to the next block.

The output from the Wave(s)-block was the input to the Ship-block. The ship was
set to follow the motion of the waves proportionally, i.e., the ship had the same
elevation, velocity and acceleration as the waves. Furthermore, the tilt of the ship
was computed as a fraction of the derivative of the elevation at each instant.

The Sensors-block took three variables as its inputs: elevation, acceleration and tilt.
In this block, noises were added to each variable to simulate errors in the measure-
ments, such as vibrations.

The desired tilt for the thermal camera was computed in the Tilt-block using the
sensor measurements together with the setpoint from the operator. The desired tilt
was then sent to the Control-block which calculated the error between the desired
tilt and the current tilt of the stepper motor. In this block the direction, either up
or down, and the step time of the stepper motor was set. These two variables were
then set to the Stepper-block, where a step was taken in the direction set by previous
block. The current tilt of the stepper motor was then sent back to the Control-block,
thus creating a loop between the Control- and Stepper-block.
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7
Experiments

Experiments presented in this and following chapters are divided into two groups;
one for simulations and one for the real process.

7.1 Simulations

The idea of doing simulations was to be able to validate, verify, tune and evaluate
the system before doing tests on the real system. In this thesis, simulations were run
and tested for two scenarios - calm and rough sea. Furthermore, each scenario was
performed using either one wave or two waves.

Simulations were done to test for both tilt and elevation estimation. Elevation es-
timation was done for both methods presented earlier, i.e., either using only the
accelerometer or a Kalman filter for both accelerometer and pressure sensor.

Finally, the control of the stepper motor was tested to see how well it performed.
Two cases were evaluated - one where only tilt was compensated for and one where
both tilt and elevation was compensated for.

7.2 Real system

To test the real system, all sensors were attached to one end of a long stick as seen
in Figure 7.1. The stick could then be raised and lowered to mimic waves with a
wave height of up to 2m.
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Figure 7.1 Sensors are mounted at the top of the stick. The stick is approximately 2m long.
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8
Result

In this chapter, the results from the experiments, both from simulation and real
process, are presented.

8.1 Simulations

Four types of tests were simulated, and those are:

1. Kalman filter for tilt estimation.
2. Elevation estimation with only accelerometer.
3. Kalman filter for elevation estimation.
4. Control loop for stepper motor.

Kalman filter for tilt estimation
In this part, the accelerometer measurements θ ′a were modeled to have quite high
noise. This was done to mimic vibrations and the distortion in the measurements
due to the linear accelerations acting on it and the fact that rotation from sensor to
Earth frame is not perfect.

The gyroscope, on the other hand, does not have as much noise since it is not as
sensitive to vibrations. However, the gyroscope suffers from angle random walk,
thus a bias was added to simulate this error.

The measurements from the sensors were fused together using a Kalman filter, and
the resulting estimation of the tilt can be seen in Figure 8.1. This test was done
to see how well the tilt estimation could follow a reference signal. As seen in the
figure, the estimation overshoots but with merely one degree. Furthermore, over
time the estimation follows the reference signal well and deviates with less than
half a degree.
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Figure 8.1 Tilt estimation based on accelerometer and gyroscope measurements using a
Kalman filter.

Elevation estimation with only accelerometer
The values from the accelerometer were assumed to be given as vertical linear ac-
celeration as computed in Section 4.2. Furthermore, the vertical linear acceleration
was also assumed to be equal to the acceleration of the waves. Below are the results
from simulations using both one and two sine waves, where both calm and rough
sea were tested for in both cases.

One sine wave
Simulations for calm sea were performed with a wave height of 0.5m, while for
rough sea the wave height was set to 4m.

The height estimation for calm sea can be seen in Figure 8.2, where the estimation
error can be seen to be less than 0.1m. However, the elevation estimation started
to drift after some time, as in Figure 8.3. Luckily, the drift decreased when simu-
lated for an even longer period, which was due to the feedback which brought the
estimation back to equilibrium.

For rough sea, the estimations are as in Figures 8.4 and 8.5, where the estimation
error was approximately 1m. As seen in Figure 8.5, the estimation did not drift even
after it had been running for a while. However, the elevation was instead underesti-
mated.

Two sine waves
To simulate two sine waves during calm sea, one wave was set with a wave height
of 0.25m and the other was set to 0.5m. As seen in Figure 8.6, the elevation was
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Figure 8.2 Estimation using only accelerometer at calm sea with 0.5m wave height. The
elevation estimation is somewhat underestimated.

Figure 8.3 Estimation using only accelerometer at calm sea with 0.5m wave height. Drift
causes the elevation estimation to deviate from the true elevation.

Figure 8.4 Estimation using only accelerometer during rough sea with 4m wave height.
The estimation is underestimated by approximately 1m.
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Figure 8.5 Estimation using only accelerometer during rough sea with 4m wave height.
There is no drift in the estimations. However, the elevation is underestimated.

estimated fairly good with minor errors at the crest and through. However, as seen
in Figure 8.7, the estimation started to drift as time progressed. Although returning
to the equilibrium eventually, this drift might still cause problems when stabilizing
the thermal camera.

To simulate rough sea, one wave was set with a wave height of 3m and the other to
5m. The resulting simulation is shown below in Figures 8.8 and 8.9. From the first
figure, one can see that the estimation at crest and trough is off by as much as 2m.
While the elevation was underestimated during the whole simulation, it did not drift
at all as seen in Figure 8.9.

Figure 8.6 Estimation using only accelerometer during calm sea. It is simulated using two
waves with wave height 0.25m and 0.5m respectively.
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Figure 8.7 Estimation using only accelerometer during calm sea. It is simulated using two
waves with wave height 0.25m and 0.5m respectively. Drift causes the elevation estimation
to deviate from the true elevation.

Figure 8.8 Estimation using only accelerometer during rough sea. It is simulated using two
waves with wave height 3m and 5m respectively. The elevation is underestimated.
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Figure 8.9 Estimation using only accelerometer during rough sea. It is simulated using two
waves with wave height 3m and 5m respectively. The elevation is still underestimated.

In summary, the elevation estimation highly depended on how much feedback was
used to bring the estimation back to equilibrium. The feedback was implemented
as a constant value and the value for the feedback was a trade-off between how
much drift to suppress against how accurate the elevation was estimated. As seen
in the above figures, the chosen feedback did a fairly good job at estimating the
elevation for small waves, but was prone to drift. Even though drift was reduced
over time, it might still cause problems for the control of the stepper motor if the
estimation is too far off. For larger waves, the drift was eliminated but at the cost of
underestimating the elevation.

Kalman filter for elevation estimation
The Kalman filter in this section used the measurements from both the pressure
sensor and accelerometer to estimate the elevation of the ship. The acceleration
measurements from the accelerometer were assumed to be given as vertical linear
acceleration in Earth frame. Furthermore, the same tests were performed as in pre-
vious section.

One sine wave
The resulting simulation for calm sea using only one sine wave with a wave height
of 0.5m can be seen in Figure 8.10. It took the Kalman filter a few seconds before
the estimation converged to the true elevation. Once it had converged the filter did
a fair job at estimating the elevation, considering the high variance of the pressure
sensor measurements. As time progressed, the estimation error for the crest and
trough was still present and were both over- and underestimated, as in Figure 8.11.
However, unlike the previous method using only the accelerometer, this method did
not drift.
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Figure 8.10 Estimation using Kalman filter for one sine wave with a 0.5m wave height.

Figure 8.11 Estimation using Kalman filter for one sine wave with a 0.5m wave height
after 600 seconds.
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Simulation for rough sea was done with a wave height of 4m, and is shown in
Figure 8.12. Again, it took the Kalman filter a few seconds in the beginning before
converging to the true elevation. When run for a longer period, as in Figure 8.13,
it was clear that the estimated elevation was much more accurate during rough sea
than calm sea.

Figure 8.12 Estimation using Kalman filter for one sine wave with 4m wave height.

Figure 8.13 Estimation using Kalman filter for one sine wave with 4m waves after 600s.
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Two sine waves
At calm sea, one wave was set to 0.5m and the other to 0.25m. Simulation with
this setup can be seen in Figure 8.14 below. The estimation during calm sea still
contained errors at crest and trough. Even after a few minutes, see Figure 8.15, the
estimations at the crest and trough were still a bit off.

Figure 8.14 Estimation using Kalman filter during calm sea with two waves of 0.25m and
0.5m wave height respectively.

Figure 8.15 Estimation using Kalman filter during calm sea with two waves of 0.25m and
0.5m wave height respectively, after 600s.

When rough sea was simulated with two sine waves, the wave height was set to 3m
and 5m respectively. As seen in Figure 8.16, the estimation converged fairly quickly
to the true elevation and did a very good job at estimating the true elevation. Even
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after the simulation had been run for a couple of minutes, the estimated elevation
was very close to the true elevation, as seen in Figure 8.17.

Figure 8.16 Estimation using Kalman filter during rough sea with two waves of 3m and
5m wave height respectively.

Figure 8.17 Estimation using Kalman filter during rough sea with two waves of 3m and
5m wave height respectively, after 600s.

In summary, the Kalman filter did a better job at determining the elevation during
rough sea with bigger waves compared to calm sea with smaller waves. This is due
to the trade-off for the Kalman filter, which is to either be robust to disturbances
but having a slow convergence rate or a fast convergence rate but more sensitive to
disturbances. For this thesis, more emphasis was put into a more robust filter.
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8.1 Simulations

Control loop for stepper motor
The previous sections show how well the estimation was for tilt and elevation, both
of which were needed for controlling the stepper motor. In this section, the control
of the stepper motor was simulated for two cases: compensation for tilt alone or
compensation for both tilt and elevation. The ship was modeled to follow the motion
of the sea proportionally.

Tilt compensation
Tilt compensation is merely about comparing how much the ship is tilting and com-
pensating by turning the stepper motor in the opposite direction of the tilt. For exam-
ple, if the ship at one instant is tilting -10°, the stepper motor needs to compensate
by having a tilt of +10°.

In Figure 8.18 below, the simulation was performed for a ship where the searchlight
was set at a height of 5m above water and the tilt set by the operator was 0°. As
seen in the figure, the stepper motor could not handle quick and large changes on
the desired tilt. For example, at 1s the desired tilt changed from about 440 steps
(∼29.3°) to 160 steps (∼10.7°), which the stepper motor could not compensate per-
fectly for. However, one has to consider the fact that the tilt varies as approximately
±9°, which is a fairly high value.

Figure 8.18 Comparison between the current step tilt (blue) and the desired step tilt (or-
ange). The stepper motor was not fast enough to compensate for swift tilt changes.

Tilt and elevation compensation
In this case, the searchlight was again mounted 5m above water. Moreover, the tilt
set by the operator was changed to -5° to more clearly see how elevation affects the
desired step tilt. Elevation was modeled using two sine waves with wave height of
1m and 2m respectively. As seen in Figure 8.19, the desired step tilt looks different
than Figure 8.18 since elevation was taken into consideration when calculating how

81



Chapter 8. Result

much the thermal camera had deviated. One can see that the stepper motor followed
the desired step tilt well, except when the value of the desired step tilt changed
rapidly.

Figure 8.19 Comparison between the current step tilt and the desired step tilt. The stepper
motor follows the desired step tilt well, except when the tilt changed rapidly.

8.2 The real system

To mimic the motion of waves for the real system, the sensors were mounted on top
of a long stick, see Figure 7.1. The end of the stick was then moved up and down
to simulate the wave motion. At stationary, it sat on top of a desk 0.8m above the
floor. This was the reference height which was used to see if and by how much the
elevation estimation deviated from a known height. Furthermore, the distance from
desktop to ceiling was approximately 1.5m.

Elevation estimation was performed for both methods presented in this thesis, i.e.,
accelerometer only and Kalman filter, to see the differences between said methods.
As seen in Figure 8.20, the elevation estimation using only an accelerometer con-
tained a bias which the Kalman filter did not suffer from. One can also see that the
Kalman filter was able to estimate the elevation from desktop to ceiling satisfacto-
rily, as well as from desktop to floor. During the first 40s, the sensors were moved in
such a way to simulate larger waves. From 40s and further, the sensors were moved
slightly up and down to see how well the estimations were for smaller waves.

Since the Kalman filter was able to estimate the elevation without any bias, this
method was chosen when testing the performance for the control of the stepper
motor. The control signal, which determines the time for succeeding step, of the
stepper motor was set to have an upper limit of 20ms and a lower limit of 1ms.
The upper limit is an arbitrary value, and was chosen as twice the update time from
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Figure 8.20 Elevation estimation using both estimation methods. The elevation has its max-
imum against the ceiling (1.5m) and its minimum against the floor (-0.8m).

the sensors, while the lower limit was set to ensure a step was not missed while
still maintaining highest possible speed. Moreover, a bigger error corresponded to a
smaller step time.

The tilt set by the operator was set to -0.5° to simulate looking for an object at sea.
The result from the real test is shown in Figure 8.21. During the first 10s, the whole
system was initialized.

From 10s-30s, a rolling motion of the ship from side to side was mimicked while
the thermal camera was assumed to be pointed perpendicular to a ship. As seen
in the figure, the control signal was saturated most of the time and did not quite
compensate for the rolling motion.

From 40s-65s, a ship traveling alongside waves was mimicked, which means having
a steady ascend and descend. The stepper motor was once again saturated most of
the time.

In the final phase, from 70s to the end of the test, a ship traveling against waves was
mimicked. Traveling against waves means a slow ascend and quick descent, result-
ing in slamming of a ship. Looking at the difference between the desired and actual
tilt of the thermal camera, one can see that this was the worst case since the stepper
motor was not quick enough to compensate for the rapid changes. Furthermore, the
control signal was saturated at 1ms most of the time meaning the stepper motor was
almost never in standby mode.
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Figure 8.21 Control of a stepper motor. The elevation had its maximum against the ceiling
(1.5m) and its minimum against the floor (-0.8m).

As a proof of concept, the step time was reduced from 1ms to 0ms, i.e., the stepper
motor turned continuously. Furthermore, the step size was increased so that the
stepper motor took 300 steps within 40°, thus reducing the resolution per step from
0.067°/step to 0.13°/step. Running the same test again gave the result in Figure
8.22. Comparing this result with Figure 8.22, it is clear that the stepper motor could
follow the desired tilt much better than previously. However, the problem with this
new approach is that stepper motor was running continuously, hence there is a risk
of missing a step. Without any feedback of the position for the stepper motor, there
is no way of telling if, when and how many steps that have been missed. The control
of the stepper motor will still function, but the operator will notice that the thermal
camera is not looking in the direction set by said operator. Furthermore, the operator
might notice that the image is not quite smooth when the stepper motor is moving
due to the increased step size.
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Figure 8.22 Control of a stepper motor. The elevation had its maximum against the ceiling
(1.5m) and its minimum against the floor (-0.8m).
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9
Discussion

The work done in this thesis was tried out on a real searchlight to see if there was
any improvements for the operator. This test was, however, not included in the result
since it was hard to document the visual result. Although only tilt was compensated
for during the test, it was clear that the image was much better than previously. This
was mostly due to the operator needing to manually tilt the stepper motor up and
down to compensate for disturbances. Not only is this tedious work, but the stepper
motor in the original work had a fairly large step time (5ms), thus making it turn
slowly. Therefore, simply by compensating for the tilt of the ship the performance
was increased significantly.

Stabilization of the thermal camera was improved further by also taking into account
the elevation. Two methods to estimate the elevation has been presented in this the-
sis - one which only used an accelerometer, and one which used both an accelerom-
eter and an auxiliary pressure sensor in a Kalman filter. Both methods worked to
some extent, but the elevation estimation seemed to work better when using the sec-
ond method, especially for eliminating drift caused by integrating the accelerometer
measurements to yield the position. The two methods, however, could not estimate
the elevation equally good between the cases studied, where the biggest difference
seemed to be between calm and rough sea. When estimating using a Kalman filter,
the estimations were much better for rough sea compared to calm sea. This was
partly due to making the Kalman filter more robust to disturbances, which makes
the filter converge at a slower rate. One would prefer the estimations to be good
for all cases, but since it is more crucial for stabilization to work during rough sea
rather than calm, more effort was put into the former.

Adding to this, one can see that during calm sea the deviation of the thermal camera
caused by tilt exceeds that which was caused by elevation itself. Therefore, the
estimation error for elevation is not as important during calm sea as it is during
rough sea.
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9.1 Estimation

Elevation estimation for calm sea using only an accelerometer was shown to be
good in a short period of time before it started to drift. However, as the wave height
increased, the drift itself decrease. Once the wave height reached a certain value, the
drift was eliminated but instead the elevation was underestimated. To prevent the
elevation from being underestimated, the value of the feedback should be reduced.
However, reducing the feedback will cause the estimation to drift even more during
calm sea. Choosing the correct value is therefore a trade-off for when one would
want the estimations to work well or poorly. This method does indeed give a rough
estimation, and arguably it is better than no estimation at all.

Looking back to the sections about the sensors and the result of fusing the sensor
measurements together, one can see that the noise from the sensors were fairly low,
despite the sensors being in the very low price range. Since this application relies
heavily on those sensors, one could argue that it would benefit to choose sensors
that cost a bit more but comes with less noise. Another option is to buy two cheaper
sensors and fuse the measurements together using e.g., a Kalman filter. This would
yield much more accurate measurements, rather than relying on a single measure-
ment unit.

The calibration method for the accelerometer in this thesis was done to estimate the
zero-g offset and the scale factor for each axis. However, the way it was performed
was not optimal. First of all, the accelerometer was placed on top of a desk which
might not be perfectly flat. Furthermore, the accelerometer was held in place by
hand, and by doing so some vibrations might have been induced, thus causing some
errors in the calibration. This could have easily been improved by using a stand to
keep the sensors perfectly still.

9.1 Estimation

A couple of different methods were developed and tried in this thesis for different
estimations, such as tilt and elevation. One could argue that such an approach is
not optimal (author agrees), but in the purpose of learning it is. For example, both
Kalman and complementary filter were investigated, but Kalman filter was chosen
for both tilt and elevation estimation. Instead, the complementary filter was indi-
rectly used in the rotation of the sensor values.

Two different methods, Euler angles and quaternions, were also investigated for the
rotation from sensor to Earth frame. Quaternions, although seemingly complex and
hard to use, performed surprisingly well while being computationally inexpensive.
This was not the case for Euler angles, since it uses computationally expensive
trigonometric functions.
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Chapter 9. Discussion

Studying the elevation estimation using Kalman filter, both in the simulation and the
real process, it seemed as if the values jumped up and down by a few decimeters at
crest and trough. This is due to the pressure sensor which contains very high noise.
However, the jumping does not seem to be causing too much trouble when using
elevation to control the stepper motor. This is partly due to the fact that elevation
does not affect the deviation of the thermal camera as much as tilt. Moreover, the
stepper motor itself is not quick enough to handle those quick changes in elevation.

Estimating the elevation using only the accelerometer was seen as a challenge early
on, since numerical integration causes errors which leads to drift. Even though quite
a few different methods were investigated, as well as using limitations and bound-
aries of a ship, they all fell short due to not having any external method to compen-
sate for the drift. In the end, the drift was handled using a feedback on the position
as aforementioned.

9.2 Control

As long as the value of the desired tilt did not change too quickly, the control of the
stepper motor did a good job at following it. If the rate of change of the desired tilt
exceeded the maximum rotational speed of the stepper motor, the control became
saturated. This thesis has shown that even though the stepper motor moves more
quickly than originally, it was still not sufficient to compensate for all cases one
might encounter at sea. Even as the step size was increased as a proof of concept,
as well as decreasing the step time to 0ms, there were still a few times where the
stepper motor could not follow the desired tilt. However, the overall performance of
the stepper motor far exceeded previous work and did make a huge difference for
the operator.

The control of the stepper motor was performed using a simple P-regulator. Differ-
ent regulators were investigated, such as PI, PD, and PID, but the P-regulator was
deemed sufficient since the control was saturated most of the time. It was noticed
that using the derivative term made the control slower than without it, but this term
might be useful if the stepper motor is made to rotate faster. The derivative term
would then make the stepper motor turn more smoothly, thus giving a better image
to the operator. The reason for not using the integral term was because the stepper
motor worked in absolute values and with no error in the position. Due to this, there
was no steady state error for the integral to remove, thus making it obsolete.
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10
Conclusions and
improvements

In the original work, the control of the stepper motor was done by the operator.
If, for example, the ship was tilted one way, the operator had to manually tilt the
thermal camera in the other direction to compensate for this. Therefore, simply
by making the thermal camera compensate for the tilt of the ship, much has been
improved for the operator. This was improved further by taking into account the
elevation of a ship as well.

Previously, the stepper motor could run in two modes, standby and running. If the
stepper motor needed to take a number of steps, the mode was set to running before
taking the required steps with a step time of 5ms. When it had reached the desired
position the mode was changed back to standby. In this thesis, the aforementioned
way of taking steps was changed so that the mode was only in running when a
step actually was taken, otherwise it was set to standby. This was done to minimize
the heat generated by the stepper motor while maintaining a short step time. As a
result of this change, one could hold the stepper motor by hand without any pain
due to heat, even during the real test when the stepper motor was saturated most of
the time, thus generating the most amount of heat. This was not possible when the
stepper motor was always kept in running between steps.

Regarding the elevation estimations and the differences between the two methods
presented in this thesis, the author argues that the improved estimation from using
a pressure sensor and an accelerometer in a Kalman filter was worth it for the extra
compensation.

Overall, the stabilization of the thermal camera worked fairly well and did make a
huge difference for the operator when comparing the performance from an uncom-
pensated thermal camera. However, some things could be improved in future works,
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such as implementing image processing for absolute tracking of an object. While
stabilizing the thermal camera is great when e.g., searching for an item, one could
use tracking for when said item is found. Such is the case during search-and-rescue
of a human. The limitations of current hardware, however, prevents the use of image
processing since it requires both storage capacity for images and processing power
to process each image. In future works, one could try to look into applying an ex-
ternal Secure Digital card (SD-card) together with an external DSP unit to do the
pre-computations for the MCU.

RAO, which is a ship’s transfer function, was defined but was not used due to lack of
time. On the other hand, it could still be used in future work to improve simulations
or be used as a model for adaptive control. Adaptive control could also be used
to estimate the parameters of the ship, which may improve the response from the
stepper motor. The control of the stepper motor could also be improved by looking
into an Extended Kalman filter for prediction of waves, or use Model Predictive
Control for the motion of a ship to improve the overall performance.

Calibrations of the sensors can also be improved in future work. While the six-point
calibration used in this thesis seemed to have reduced a lot of errors, one could
still use other methods, such as Gauss-Newton or auto regression, to get an even
better calibration. One could also use the methods developed in e.g., [Liu and Pang,
2001] and [Park, 2004]. Furthermore, one could also try to calibrate the gyroscope
to reduce the angle random walk when integrating the measurements.

One thing that was not tested for was placing the sensors inside the module. The
space inside the module is limited and the sensors might end up very close to the
stepper motor, which could cause problems due to the magnetic field generated
by the stepper motor. Therefore, in future works it needs to be tested if errors are
induced when the sensors are mounted inside the module and the stepper motor is
running. Furthermore, if a pressure sensor is used it might act differently if it is
mounted inside the module.

If elevation estimation is desired but without a pressure sensor, one should con-
sider improving the method using only an accelerometer. Such improvements in-
clude, among other, changing the current constant variable for the feedback to a
variable that adapts to the sea condition. One could also use a higher order integra-
tion method to reduce integration errors, and look into filtering after integration to
reduce the drift in position.

As for the stepper motor, it was clear that it was not sufficiently fast to be able to
compensate fully for tilt and elevation. While it was possible to make the stepper
motor rotate faster by setting the step time to 0ms, it was not recommended since
there was a risk of missing steps. This could, however, be fixed by using some type
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of feedback, such as an encoder. One could also look into upgrading the stepper
motor into a quicker one, or change the gear ratio between the thermal camera and
the stepper motor. If the gear ration is changed, one has to make sure that enough
holding torque is available so that the stepper motor can withstand disturbances.
Changing the gear ratio would be almost the same as increasing the step size of
the stepper motor, as was shown as a proof of concept in the results. Increasing the
step size showed that it was possible to compensate much better for both tilt and
elevation, but the image to the operator was not as good since the rotation of the
thermal camera was not as smooth.
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A
Pressure sensor conversion

When the pressure sensor is started, 11 calibration coefficients are collected. These
as called AC1, AC2, AC3, AC4, AC5, AC6, B1, B2, MB, MC and MD. One last
calibration coefficient is needed, which is computer by computing the true temper-
ature. This is done as below.

X1 =
(UT −AC6) ·AC5

215

X2 =
MC ·211

X1+MD
B5 = X1+X2

T =
B5+8

24

The last calibration coefficient, B5, can then be used to calculate the true pressure.
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Appendix A. Pressure sensor conversion

B6 = B5−4000

X1 =
B2 · B6·B6

212

211

X2 =
AC2 ·B6

211

X3 = X1+X2

B3 =
AC1 ·4+X3 << oss+2

4

X1 = AC3 · B6
213

X2 =
B1 · B6·B6

216

216

X3 =
X1+X2+2

22

B4 = AC4 · X3+32768
215

B7 = (UP−B3) · (50000 >> oss)

where « is the logical right shift and oss is the oversampling setting which determine
the mode of the pressure sensor. If B7 is less than 214748364, then the true pressure
p is set to

p =
(B7 ·2)

B4

If B7 is equal or greater than 214748364, then the variable is set to

p = 2 ·

(
B7
B4

)

The final steps for computing the true pressure is then defined as
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Appendix A. Pressure sensor conversion

X1 =
p
28 ·

p
28

X1 =
X1 ·3038

216

X2 =
−7357 · p

s16

p = p+
X1+X2+3791

24
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