
LLVM-Based Fortification for Kernel
Drivers

Caroline Brandberg

MASTER’S THESIS | LUND UNIVERSITY 2016

Department of Computer Science
Faculty of Engineering LTH

ISSN 1650-2884
LU-CS-EX 2016-28

LLVM-Based Fortification for Kernel
Drivers

Caroline Brandberg

August 8, 2016

Master’s thesis work carried out at SYSGO AG, Germany.

Supervisor: Dr. Jonas Skeppstedt
Dr.-Ing. Henrik Theiling

Examiner: Asst. Prof. Flavius Gruian

Abstract

In today’s operating systems, drivers are linked with the kernel where handling
pointers and performingmemory accessesmust be consideredwithmuchmore
care than in application user space.

This thesis focuses on two issues. First, memory access to user space must
never be done directly, because the access may fault due to insufficient access
permissions or unmapped pages. Second, pointers entering via system calls
must be checked prior to their use to prevent a malevolent user from exploiting
kernel drivers to access kernel space for them.

The proposed solution uses the type system of Clang combined with ana-
lyzes on the generated LLVM intermediate representation, both in the purpose
of performing static analyzes to produce valuable messages to developers dur-
ing compile time, but also to insert robustness assertions and perform code
transformations. With these precautions we were able to identify four bugs in
a single device driver.

Keywords: LLVM, Device Drivers, Kernel Memory Access, Pointer bugs

2

Acknowledgements

First, I would like to thank Henrik Theiling for giving me the opportunity to write my
Master’s Thesis in such an inspiring topic. I’m grateful for his sincere support, knowledge,
enthusiasm and professionalism that he constantly provided me with during my time.

I would also like to thank SYSGO for the opportunity to work in an inspiring workplace
with such high competent employees. I especially want to thank Andrea Bastoni, Marco
Kosinski, Andreas Schik, Konstantin Tarandevich and Andreas Betz.

My main supervisor, Jonas Skeppstedt, for being an inspiring person, both during my
Master education as my teacher and during my thesis as my main supervisor. Also, thank
you Flavius Gruian for being my examiner.

Finally, I would like to thank my family, Jan Brandberg, Marita Brandberg, Fredrik
Brandberg and Johan Dahlgren for always being my biggest support and for proof-reading
my work and providing me with valuable hints.

3

4

Contents

1 Introduction 11
1.1 Related work . 12

1.1.1 Pointer bugs in Kernel Drivers 12
1.1.2 LLVM . 13

1.2 Structure . 13

2 Background 15
2.1 Types in C language . 15

2.1.1 Pointers . 15
2.1.2 Structures . 16
2.1.3 Unions . 17
2.1.4 Type Conversions . 17

2.2 Operating System concepts . 17
2.2.1 Terminology . 18
2.2.2 Address spaces . 18
2.2.3 Device Drivers . 19
2.2.4 System calls . 20
2.2.5 Security issues . 21

2.3 LLVM . 25
2.3.1 LLVM Overview . 26
2.3.2 LLVM Intermediate Representation 27

3 Train of Thoughts 31

4 Dynamic runtime checks 35
4.1 Direct memory access to user space . 35
4.2 Implementations . 36

4.2.1 Call external function . 36
4.2.2 Inline instructions . 39

4.3 Measurements . 41

5

CONTENTS

4.4 Result . 43

5 Static analyzes 47
5.1 Accessing kernel space on behalf of user space 47

5.1.1 Introducing new pointer types 48
5.1.2 Introducing new functions . 50
5.1.3 LLVM Pass . 52

5.2 Implementations . 56
5.2.1 Introducing the LLVM-based fortification into PikeOS 56
5.2.2 LLVM Passes . 56
5.2.3 Using the extension . 58

5.3 Code examples . 59
5.3.1 Correct usage . 59
5.3.2 Limitation of providing the wrong aggregated variable 61
5.3.3 Limitations of cast operations 62
5.3.4 Limitation of unions . 63
5.3.5 Limitation of function pointer 64

6 Discussions 67
6.1 Dynamic runtime checks . 67
6.2 Static analyzes . 68

7 Conclusions and Future work 71
7.1 Conclusions . 71
7.2 Future work . 72

Appendix A Data from measurements 79

Appendix B CODEO extensions 83
B.1 Call external function . 83
B.2 Inline instructions . 84
B.3 Changing type through dedicated functions 85
B.4 Members are marked unchecked . 86

B.4.1 Insert checks automatically . 88
B.5 Direct memory access . 89
B.6 Integer to pointer . 90

6

List of Figures

2.1 Pointer illustration where a pointer z is pointing variable x 16
2.2 User- and kernel virtual address space 19
2.3 PikeOS kernel driver API . 19
2.4 Overview of how user space can enter data as parameters to system calls,

which can later be accessed by the kernel 21
2.5 Simplified call graph for the PikeOS function drv_memcpy_in 24
2.6 Copy data from user- to kernel space . 25
2.7 The LLVM compiler steps . 26

3.1 This works main concerns with a flow chart of the founded threats and the
proposed countermeasures . 32

4.1 Inserting LLVM instructions which will generate a call to an external func-
tion, which in return will ensure that there are no direct accesses to user
space. 38

4.2 Creating Basic Block A and B . 39
4.3 The final created block situation . 40
4.4 Difference between various techniques used for the external method . . . 43
4.5 Performance increase of the two different techniques: inlining instruc-

tions, and performing the check in an external function on x86 44
4.6 The impact of excluding checks of local- and global variables 44
4.7 Performance increase of the two different techniques: inlining instructions

and performing the check in an external function on ARM 45

5.1 Division of different pointer types, illustrated in a tree structure 48
5.2 Pointer flow in PikeOS kernel drivers . 50
5.3 Data provided via a system call . 52
5.4 Data provided from another device driver 52

B.1 Enable LLVM pass which fully prevents direct accesses to user space by
invoking an external function . 84

7

LIST OF FIGURES

B.2 Example code which performs a direct access to user space 84
B.3 Generated runtime error that prevent direct access to user space, that is

prevented by invoking an external function 84
B.4 Enable LLVM pass which fully prevents direct accesses to user space by

inlining LLVM instructions . 85
B.5 Generated runtime error that prevent direct access to user space, that is

prevented by inlining LLVM instructions 85
B.6 Enable LLVM pass which checks that changes between the introduced

types are done through the introduced functions 86
B.7 Example code which changes the introduced types by performing simple

cast operations, i.e. not through the introduced functions 86
B.8 Enable LLVM pass which checks that all members are marked unchecked

when data is copied in . 87
B.9 Example code which copies in data that contains members that are not

marked unchecked . 87
B.10 Enable LLVM pass which automatically perform proper checks on all

members that are marked unchecked when data is copied in 88
B.11 Example code which access members which have not yet been checked . . 89
B.12 Generated runtime error that prevent accessing data which is incorrect . . 89
B.13 Enable LLVM pass which checks that direct memory accesses are only

performed with pointers marked kernel 90
B.14 Example code which performs a direct access to user space 90
B.15 Enable LLVM pass which checks that cast from integer to pointer is only

performed if the pointer are marked unchecked 91
B.16 Example code which performs cast operation from an integer to a pointer,

where the pointer is not marked unchecked 91

8

List of Tables

2.1 Generated LLVM IR information from struct and union types 30

4.1 Overview of the different features for the conducted measurements on the
external function . 42

4.2 Overview of the two dynamic techniques used to prevent direct accesses
to user space . 42

4.3 Increase in time, measured as percentage of a single queueing port read-
and write operation with various message sizes (2 – 2048 bytes) on x86 . 45

4.4 Increase in time, measured as percentage of a single queueing port read-
and write operation with various message sizes (2 – 2048 bytes) on ARM 46

4.5 Size of the executables, number of inserted instructions and global vari-
ables in LLVM IR . 46

5.1 Overview of the operations which can be performed on the three different
variables created in the code example presented in this section. The table
illustrates which operations are valid, which are prevented by the C type
system, which are prevented with created analyzes and where there still
are limitations . 63

A.1 Measured time, in nanoseconds [ns], of a single queuing port read- and
write operation on x86 with different message sizes, in bytes. 80

A.2 Measured time, in nanoseconds [ns], of a single queuing port read- and
write operation on ARM with different message sizes, in bytes. 81

9

LIST OF TABLES

10

Chapter 1
Introduction

Research at Stanford University presents that 50-65% of the security defects in the Linux
kernel are in the drivers [3]. Since approximately 70% of the kernel is drivers, it’s rea-
sonable that most bugs appear in them. But, even when looking at the relative error, i.e.
dividing the error rate in the drivers with the error rate in the rest of the kernel, drivers
have up to 7 times higher error rate [4] which shows that drivers need extra concern.

These concerns are of special importance when dealing with domains which require a
high level of safety and security, such as aerospace, defense and automotive. Amongst oth-
ers, these domains are the marketing target of the microkernel-based Real Time Operating
System PikeOS [24] [29], which is used as a proof of concept in this work.

There have been several attempts to secure the kernel from vulnerable drivers where
one of the earliest is the micro-kernel design, where drivers are extracted from kernel to
user space. However, the increase in the security came with a decrease in the performance
[10, 12]. Because of that, many drivers were kept in kernel space which is still the case
today.

In case of implementing a driver in the kernel space, one must take certain precau-
tions. Especially since this implementation means that additional code is introduced into
supervisor mode, where handling pointers and performing memory accesses must be con-
sidered with much more care than in application user space. The kernel has no easy means
to protect kernel driver developers against common bugs, and some bugs are unexpected to
unexperienced developers, because the programming environment can be quite different.
In particular, pointers passed in from user space via system calls need very special care.

There are the following concerns:

• Memory access to user space must never be done directly, because the access may
fault due to unmapped pages or insufficient access permissions.

• Memory addresses must be checked for actually pointing to user space to prevent
malevolent users from exploiting kernel drivers to access kernel space for them.

11

1. Introduction

An unexpectedmemory fault in the kernel will in most operating systems cause the sys-
tem to panic, because there is no way to know how to handle such situation safely. Use of
dedicated access functions is thus mandatory. The problem is even more important when
dealing with fully preemptive operating system also in the kernel, where no check prior
to a memory access can ever guarantee that the actual access will be fault-free, because
memory mappings may change in between the check and the actual access.

Especially for the first concern, drivers will seemingly work correctly even without the
special precautions, but silently have very serious bugs that the kernel is unable to detect.
A requirement-based functional testing may not detect the bugs we are concerned with,
because to trigger a problem, applications would have to explicitly pass illegal pointers into
the kernel. This may lead to low-quality code to be assumed correct. Due to the special
programming environment in the kernel and the very easy ways to do memory accesses in
C, even in code reviews, such lapses of care might not be spotted. Also, since unmapping
and remapping is time critical, if the poor code crashes due to map accesses, it is highly
likely to be in corner case situations that are very difficult to debug.

The proposed solution uses the type system of Clang combined with analyzes and
code transformations on the generated LLVM intermediate representation to prevent the
presented concerns. The prevention will be both in form of inserting robustness assertions
as well as performing static analyzes to generate valuable information during compile time.

The main questions focusing on in this work are the following:

• How will the device drivers be affected by these precautions, especially in terms of
performance overhead?

• Is it possible to provide a watertight solution?

1.1 Related work
1.1.1 Pointer bugs in Kernel Drivers
Several attempts have been conducted to prevent bugs related to user/kernel space point-
ers. Some of these approaches propose to identify them through type qualifiers [9, 14,
32, 31]. Johnson and Wagner [14] present a technique using CQUAL [11] which found
17 user/kernel pointer bugs in the Linux kernel. This technique was later applied to the
FreeBSD 5.3 kernel, identifying 5 user/kernel pointer bugs [9]. Another approach is the
famous Sparse which is a semantic parser for the C language initially stated by Torvalds
[31]. Sparse distinguishes user and kernel pointers by attaching an attribute, relating them
to different address spaces, which is an inspiration for the static analyzess part of this work.

Other techniques have also been applied. Bugrara and Aiken present a static analyzing
technique to find bugs also related to the problem, namely unchecked user pointer deref-
erences [2]. S. Peiró et. al. [23] also use a static analyze technique to detect information
leaks of the kernel. Further, the tool Coccinelle [20], which is a control-flow based tool,
which also has been applied to the Linux kernel to prevent these kind of bugs.

12

1.2 Structure

All of the known approaches have been contributing to making the drivers more se-
cure. Although, to our knowledge, these approaches either separate kernel/user pointers
or unchecked/checked user pointers. Both of these separations are of huge importance and
therefore, a combination would be ideal.

1.1.2 LLVM
The LLVM [18] project has been used for a wide area of different code transformations,
analyzes, etc., also for security [5, 8, 7, 33].

D. Dhurjati et al. [8, 7] uses LLVM to provide memory security without runtime
checks, annotations or garbage collection. Although, the novel approaches presented in
both papers are only applicable for programs using a restricted subset of the C language.

Another work is Emscripten [33], which translates LLVM Intermediate representation
into JavaScript. The aim of the work is to enable code for the web initially written in vari-
ous languages. The translation is especially to asm.js [13], which is a subset of JavaScript.
The browser which will then run this code also needs to fortify it and virtualize all mem-
ory accesses in software, so that distinct browser windows will be unable to overwrite each
other or the browser code or data. This shows that running fortified native code is feasible
also in the presence of security concerns.

This work applies the LLVM technique to memory protection in the special situation
in supervisor code, i.e. where there are no security net as for user space code, which to
our knowledge has never been done before.

1.2 Structure
The conducted approaches are different for the two concerns. The approach for the first
concern, i.e. Memory access to user space must never be done directly, because the ac-
cess may fault due to unmapped pages or insufficient access permissions, is to extend all
memory accesses with dynamic runtime checks, whereas the second concern, i.e. Mem-
ory addresses must be checked for actually pointing to user space to prevent malevolent
users from exploiting kernel drivers to access kernel space for them, focuses on perform-
ing static analyzes to ensure the correctness of the code. Consequently, the document will
be divided into two main chapters, where a background that concerns both chapters will
be shared. The structure of this work will be the following:

Background introduces basic concepts and terms used in the following chapters.

Types in C language introduces types in C language with focus on its aggregated
types. This section is provided since it’s the language most drivers are written
in, thus some language knowledge is needed to understand the problematics
treated in this work.

Operating system introduces basic concept about drivers, system calls and safety
and security issues related to pointers.

LLVM introduces the LLVM project with focus on its intermediate representation,
which is the representation the introduced analyzes will be performed on.

13

1. Introduction

Train of Thought presents an overview of how this work countermeasure the different
threats.

Dynamic runtime checks contains sections that describe the precautions performed to
prevent the first concern, i.e. Memory access to user space must never be done
directly, because the access may fault due to unmapped pages or insufficient access
permissions.

Direct memory access to user space describes how to prevent the concern from a
theoretical aspect.

Implementations describes how the precautions are implemented.
Measurements presents measurements of the above mentioned implementations

of these checks.
Result presents the result from the conducted measurements.

Static analyzes contains sections that describes the precautions performed to prevent the
second concern, i.e. Memory addresses must be checked for actually pointing to user
space to prevent malevolent users from exploiting kernel drivers to access kernel
space for them.

Accessing kernel space on behalf of user space describes how to prevent the con-
cern form a theoretical aspect.

Implementations describes how the precautions are implemented.
Code examples illustrates with code examples how the different extensions and an-

alyzes work together to secure the drivers.

Discussions contains the evaluation of my work

Conclusions and Future work presents conclusions mywork and propositions for future
work.

14

Chapter 2
Background

This chapter will introduce basic concepts and terms used in the following chapters. First,
section 2.1 will present the language in which most operating systems, including their
device drivers, are written in, namely C, with focus on types. The following section 2.2
will present concepts of operating systems followed by the last section 2.3 which will
introduce the LLVM project with focus on its intermediate representation.

2.1 Types in C language
This section introduces some aggregated types of the C language. Most of the types in C,
such as int and double, are common to other programming languages. But there are
some aggregated types that may be new to programmers using another language, such as
Java. The following will provide a short introduction of these types, as well as a section
about type conversions. A more detailed description can be found in [27].

2.1.1 Pointers
In C, it’s possible to get the address where the data is stored. The type for holding an
address is referred to as a pointer.

The operator & is used to access the address of data, which can be assigned to the
pointer. That way, the pointer is pointing to that data. To later access that data the operator
* is used, which is called the dereferencing or indirection operator.

1 int x = 1;
2 int y = 2;
3 int *z; /* a pointer to an integer */
4

5 z = &x; /* z is pointing the integer x */
6 y = *z; /* y = 1 */
7 *z = 3; /* x = 3 */

15

2. Background

Above presents how to declare, assign and access the variable of a pointer. The first
assignment takes the address of the variable x, and assign it to the pointer z. The situation
after that assignment can be illustrated as in figure 2.1.

	

0x0801afbc

1

2

0x0801afb4

0x0801afb8

0x0801afbc

x

y

z

Figure 2.1: Pointer illustration where a pointer z is pointing vari-
able x

The second assignment accesses the data where the pointer is pointing to. In this case,
z is currently pointing to the address where the integer x is stored, which has the value 1.
Therefore, y will be assigned value 1.

The third assignment accesses the data the pointer is pointing to, int x, and assigns it
to 3.

This example only present pointers handling integer types. Pointers can also be used to
hold addresses of all other types, such as double, float, functions and even pointers.

2.1.2 Structures
The aggregated type struct is used to hold types, which can be of the same- or of
different types. The types within a structure is referred to as the members of the structure.
A structure can be used as a convenient way to group variables that are related.

An example of such situation is if one wants to declare a two dimensional point. De-
sired attributes for such point are its x- and y coordinates. To make these two coordinates
as one unit, instead of two separate variables, one could use a structure:

1 struct point {
2 int x;
3 int y;
4 };

When later accessing the members of the structure, i.e. the x- and y-coordinate, there
will be no doubt that they belong to the same point:

1 struct point my_point;
2 my_point.x = 10;
3 my_point.y = 20;

A structure can also have members that is of the derived type struct, i.e. it can be
nested. This feature could be used for example when creating a linked list.

16

2.2 Operating System concepts

2.1.3 Unions
A union can, such as a struct, be used to hold a set of variables which can be of the
same- or different type. Unlike a struct, the members of the union can not be accessed
simultaneously, since they occupy the same space. Only one member can be accessed at
a time. Below present how a union can be declared in C:

1 union {
2 char *string;
3 void *pointer;
4 int ival;
5 float fval;
6 } value;

The reason only one member can be accessed a time is because the memory area of
a union is as large as its largest member. That means that all members of the union
above have the offset zero from the base. Since it will be large enough to hold its largest
member, it can be interpreted as all of its members.

A union can be used in situations where one needs to represent a value, which is of
an unknown type. This can be useful for example when implementing a stack.

2.1.4 Type Conversions
The type assigned to a variable, can later be converted into another type. The general
rule is that an automatic type conversion is allowed if the type conversion is to a new type
that will not lose any information from the old type, such as when adding an int with a
double, the integer will be converted to a double precision before the operation. That
way, no information will be lost.

It is allowed to convert the other way, i.e. to convert a type into a "narrower" type. One
example is if a double is converted to an int, then some precision of the data will be
lost. Such situations may produce warnings.

Common situation to perform type conversion is when passing arguments to a func-
tion. The arguments of the function will automatically force a conversion for the passed
arguments:

1 double sqrt(double d) { ... }
2 double x = sqrt(2); /* convert into double value 2.0 */

Conversions can also be forced with an operator called a cast. A cast is done by spec-
ifying the new type, surrounded in parenthesis, in front of an expression:

(new type) expression

2.2 Operating System concepts
This section will present operating system concepts. The first section presents the ter-
minology used throughout the thesis followed by a description of virtual address space.
Thereafter, device drivers as well as system calls will be presented briefly. The sec-
tion about device drivers will present benefits and drawbacks of implementing a driver

17

2. Background

in kernel- or user space, with the intention of providing a description of why there are
still drivers implemented in kernel space as well as why it’s beneficial. Finally, the last
sections will focus on security concerns when developing a kernel driver, especially con-
cerning pointers. More detailed presentation of the topics can be found in several books,
such as [1, 25].

2.2.1 Terminology
The terminology used in different operating systems is slightly different. To prevent con-
fusion, this thesis will use the same terminology used within PikeOS, since that is the
operating system used as a proof of concept in this work.

The Real-Time Operating System PikeOS enables safe execution of applications with
different safety levels concurrently by providing different partitions. A partition is a set of
resources (memory, CPU time and I/O access rights) where one or many applications can
run within. An application is in PikeOS referred to as a process, which from the kernel
point of view is a PikeOS task. Each PikeOS task is provided with its own set of virtual
addresses within user space, and each task can contain a set of schedulable entities, referred
to as threads, which all belongs to the same address space as the task.

Partition a defined set of resources (memory region, CPU time and I/O access rights)
which is allocated statically at configuration time.

Task an entity allocated from its enclosing partition dynamically at runtime, where each
specific task is provided with its own set of virtual addresses. All tasks within a
partition share the available resources of that particular partition.

Thread a data structure for storing a full execution context. A thread belongs to a specific
task, and shares the task’s address space and resources with all threads that belong
to that task.

Compared to Linux terminology a PikeOS task is roughly the same as a Linux process,
and a PikeOS thread is roughly the same as a Linux thread.

2.2.2 Address spaces
The virtual address space is divided into two areas: user and kernel space. Kernel space
is the set of addresses which holds the memory of the kernel. The code that runs in kernel
space should then manage the different applications, each provided with its own set of vir-
tual addresses, which run within user space. The kernel may access all memory, whereas
the user task may only access its provided region.

The virtual addresses are typically 32 or 64 bits, depending on the architecture it runs
on. A 32 bit address provides 4 GB addressable memory.

The division between the total amount of addresses depends on the operating system.
As an example, the Linux kernel provides 3 GB to user- and 1 GB to kernel space as its
default configuration for the x86 32-bit architecture. This division is often configurable,
which means that there is no default separation used for all purposes. For example, another
common approach is to divide equally 2 GB to user and kernel space. Also, the assignment

18

2.2 Operating System concepts

of which space should be given the higher or lower addresses differs from various operating
system, where three examples of common configurations are illustrated in figure 2.2.

Throughout this work addresses or address will be used as a synonym for virtual ad-
dresses or virtual address, see [25] for a description of different address types.

	
	

	
	
	
	
	
	
	
	
	
	
	
	

KERNEL SPACE

USER SPACE

USER SPACE

KERNEL SPACE

KERNEL SPACE

USER SPACE

0xffffffff

0xc0000000

0x80000000

0x40000000

0x00000000

Figure 2.2: User- and kernel virtual address space

2.2.3 Device Drivers
Device Drivers are the system software which act as the interface between the operating
system and the device. The connected devices can then be requested for their services
from the kernel via I/O requests, such as sending/receiving network packages and read-
ing/writing to disk.

An application which wants to request a service from a device will do so via a system
call. The kernel will then be entered, and if the application has permissions, handle the
communication to the device. The device may then return a result to the kernel, which will
be sent back to the application. Device driversmay also be requested for their services from
another device driver, where the two different ways to enter a driver is illustrated in figure
2.3.

	
	
	
	
	
	
	

	
Kernel Driver Kernel Driver

Framework Application

KERNEL SPACE USER SPACE

Application Application Kernel Driver Kernel Driver

Figure 2.3: PikeOS kernel driver API

Most of today’s operating systems offer a possibility to implement device drivers ei-
ther in kernel- or in user space. Drivers implemented in kernel space will then be linked
statically or dynamically with the kernel, depending on the specific operating system.

Whenwriting a device driver that shall be linkedwith the kernel, the programmer needs
to be careful and pay specific care. Since this introduced code will run in supervisor mode,

19

2. Background

there will be no security net, such as for accessing memory. Because of its criticality, it
may be wise for some device code to be implemented in user space. Drivers implemented
in user space are often referred to as user-space device drivers.

There are benefits and drawbacks to both user- and kernel space device drivers, which
does not always make the decision of where to implement a driver trivial. Some of these
aspects are presented below.

Advantages of kernel device drivers are:
Interrupts Handling interrupts with sufficiently low latency may only be possible

in supervisor mode. Some actions like resetting an interrupt request bit in
hardware may only be possible in supervisor mode.

Access Drivers can access memory as well as I/O ports directly.
Performance If the driver is implemented in user space, a request of a service will

imply a context switch between the application issuing the request and the de-
vice driver who serves the request. This is needed for every communication to
transfer data, whereas kernel device driver can manage the service directly.

Drawbacks of kernel device drivers are:
Safety and Security There are a lot of safety and security related issues because

there is no strict hardware protection. This needs care, such as when perform-
ing memory accesses.

Debugging Debugging a kernel driver is not easy since it cannot easily, as for user
space task, be executed under a debugger. Tracing the errors is also complex
since they do not belong to a specific task. Further, an error may break the
entire system, which could imply losing the evidence of why it occurred.

These are just some of the benefits and drawbacks for the different implementations. The
typical dilemma is that you want to achieve the security benefits of implementing it in user
space, as well as the performance benefits of implementing the driver in kernel space.

2.2.4 System calls
A task running in user mode can request services from the kernel via system calls. Because
of this, developers of user applications do not have to study the different hardware devices
to be able to use their services. The request only has to be according to the API. It also
has security benefits, since the kernel can control the request before serving it. A brief
presentation of some of the most common system calls follows:

read retrieves a given number of bytes from a device to a buffer. The number of bytes
as well as a pointer to the buffer where data should be written to is provided as a
parameter to the function.

write sends a given number of bytes to a device from a buffer. The number of bytes as
well as a pointer to the buffer where data should be retrieved from is provided as a
parameter to the function.

20

2.2 Operating System concepts

ioctl issue specific operations which can be customized to specific services offered by a
device. This function is typically provided with a command to choose between the
different functionalities, as well as a pointer which could be used to read or write
data from/to.

The exact parameters and the types for the above presented system calls differ for various
operating systems, and are also irrelevant in this context. The important thing with these
is that they provide a way for a user to pass information from user- to kernel space via the
parameters.

When a user application issues a system call, the request will enter the kernel where
the mode is switched from user to kernel. The request will then be served in the same
task context as the application issuing it. Since it will run in the same context, the user
can provide a pointer to data within the application to the kernel. This data can then be
accessed from the kernel, since the user virtual addresses are still represented by the task
issuing the request. An simplified overview of how user space can enter data as parameters
to system calls, which can later be accessed by the kernel is presented in figure 2.4.

	

	
	

	

	 	

	

	

Virtual	memory	

RAM	

Disk	

Page	tables	

Kernel	
space	

User	
space	

copy_from/to_user	

Kernel	space	User	space	

ioctl(cmd,	ptr,	size) *ptr

Figure 2.4: Overview of how user space can enter data as param-
eters to system calls, which can later be accessed by the kernel

2.2.5 Security issues
When writing a kernel driver, there are a lot of safety and security issues to think about.
One is how to access pointers provided via a system call. Since the operations are han-
dled in kernel mode, providing protection against common bugs from the kernel and the
compiler is difficult, as stated in 2.2.3. There are the following concerns

Handling pointers Pointers must be handled with much care in kernel space. There are
especially two types of pointers which must be distinguished, user- and kernel point-
ers, because the different pointers imply different safety measures.

Direct memory access Memory access to user spacemust never be done directly, because
the access may fault due to unmapped pages or insufficient access permissions.

21

2. Background

Accessing kernel space on behalf of user space Pointers passed in from user spacemust
be checked for actually pointing to user space. A failure to do so may result in re-
vealing or destroying memory that belongs to the kernel.

2.2.5.1 Handling pointers
Kernel drivers must handle data which comes from untrusted sources. This data must be
handled with much care, since a single bug can introduce serious security vulnerabilities
into the system. One common weakness is handling pointers which are passed from user
space via system calls. Such system calls include read, write and ioctl, where ioctl is the
most critical. The ioctl often copies additional data structures from user space, so that
pointers may enter kernel space by an additional channel, supplementary to the system
call. Therefore, ioctl is more error prone to mishandling pointers from user space.

Pointers handled in kernel drivers are typically distinguished into two types, user- and
kernel pointers.

User pointer A pointer which comes from user space and should therefore be considered
as unsafe.

Kernel pointer A pointer which is created in kernel mode and can thereby be considered
as safe.

The importance to distinguish the two pointer types cannot be stressed enough, since
the different types imply different safety measure. The distinction is not so clear, since
both these pointers are declared in the same way. Since they cannot be distinguished by
a simple look, it’s very easy for developers to mix them. Also, in dedicated code reviews
such bugs can be hard to find.

The safety measure for user pointers are especially important. These pointers are cre-
ated in user space, and shall therefore only point to their restricted areas. They shall not
be trusted, and should always be checked for their correctness prior to their use.

A pointer created in user space may be assigned an address in kernel space by a malev-
olent user. If this pointer later enters the kernel via a system call, a failure to check its cor-
rectness before dereferencing it may reveal or destroy information in kernel space. [14]

An additional problem is that kernel drivers often are implemented by third parties.
Therefore, although using a safety critical operating system, introduction of kernel drivers
with such bugs can break the entire system.

2.2.5.2 Direct memory access
When an application running in user space needs a service from some hardware, it will
request the service by issuing a system call. The request will then be handled by a function
running in kernel mode. This will be in the same context as the task requesting the service,
i.e. the user address space will be mapped to the requesting task during the service of the
system call. Since the operation is handled in kernel mode, it is able to access the whole
memory area, i.e. both the area related to the user task as well as the kernel memory area.

Even though the kernelmay access thewholememory, it shall not do so directly. Deref-
erencing user pointers may lead to unexpected memory faults due to unmapped pages or

22

2.2 Operating System concepts

insufficient access permissions. There is no way to know how to handle an unexpected
memory fault safely, hence most operating system will result in the kernel causing the
system to panic. Therefore, all accesses to user space must be done through dedicated
functions, which perform this in a controlled way.

One problem with this concern is that such bugs are very hard to find. The difference
between dereferencing of a user- or kernel pointer cannot be distinguished directly by the
eye, since both will be written exactly the same way, as explained in previous sections.
The only way to distinguishing these two is to follow the pointer to gain knowledge about
from where it may enter.

Drivers written in user space does not share the same problematic since they simply
cannot access addresses they have no permission for. In the kernel however, such per-
mission checks must be done manually if user space pointers are handled, hence, kernel
drivers are more error prone.

A driver without the special precautions will seemingly work correctly, but silently
have very serious bugs that the kernel is unable to detect. Also, since unmapping and
remapping are time critical, if the poor code crashes due to map accesses, it is highly
likely to be in corner case situations that are very difficult to debug. This may lead to
low-quality code that is assumed to be correct.

2.2.5.3 Dedicated access functions
The kernel may access user space addresses, but should do so with much care. There
are two dedicated access functions in PikeOS, drv_memcpy_in and drv_memcpy_out that
should always be used for this purpose. The first one copies a given number of bytes from
a location which may potentially be located in user space to a location in kernel space,
and the second copies a given number of bytes from kernel space to a location which may
potentially be located in user space.

• drv_memcpy_in(dst, src, size)

• drv_memcpy_out(dst, src, size)

Both functions are architecture dependent and quite similar, hence the following will only
explain the drv_memcpy_in in detail, where a simplified control flow is presented in figure
2.5. The following description will expect the source to be located in user space.

Before invoking the given function, onemust first ensure that the source, src, belongs to
user space, if that is the expected situation. A verification of the source must be performed
prior to this function, otherwise safety and security vulnerabilities will be introduced.

After performing the proper checks to ensure the correctness of the source location
drv_memcpy_in can be entered. This function will invoke yet another function to ensure
that the destination, dst, is located in kernel space. When the correctness of the destination
is ensured, an architecture dependent function will be entered where the actual work will
be done.

In case the architecture dependent function fails, an error codewill be generated. When
this operation is performed, the error is known and can thereby be handled in a controlled
manner. Since PikeOS is preemptive also in the kernel, there is no check prior to the access
that can guarantee that it will be fault-free, because the mappings may change in between

23

2. Background

the check and the actual access. Thereby, this results in an implementation which will
perform the access, and in case of failing result in a state where the situation is handled
safely.

If these functions are not used and the access fails, the reason will be unknown. Since
this will then be an unexpected memory fault, there is no way to handle such situation
safely, hence the PikeOS will cause the system to panic. Therefore, pointers potentially
pointing to user space must be accessed via these dedicated functions.

		

drv_memcpy_in(dst, src, size)

is_kernel(dst)

arch_drv_memcpy_in(dst, src, size)

genarete_error_code() /* Copy operation succeeded */

/* Error */

YES		 NO	

YES		 NO	

Figure 2.5: Simplified call graph for the PikeOS function
drv_memcpy_in

There are similar functions in other operating systems, for example Linux use
copy_from_user and copy_to_user which should also be used when performing access to
user space [15].

2.2.5.4 Accessing kernel space on behalf of user space
Programmers writing kernel drivers must be careful when using data provided from user
space. One particular consideration is that pointers passed from user spacemust be checked
for actually pointing to user space.

Since kernel drivers may request services from other drivers, the check is even more
complex. Namely, these functions may be entered by another kernel driver, where data is
considered safe, or via a system call where data is provided from user space and should
therefore be considered as unsafe data.

The unsafe data should be checked for actually pointing to user space whereas the safe
data would not need to be checked. This makes a check of the data complex, since you
need to know from where the data was provided from to be able to perform the check in a
correct way.

One function, commonly implemented in drivers, that takes pointers as its parameters
is the read function. This function is provided with a pointer to a buffer and the number
of bytes it’s supposed to read. Therefore, it is critical to check that the pointer is pointing
to a buffer that resides in user space. These checks are in PikeOS performed by the kernel
driver framework, which is the first entering point in the kernel when a system call is issued.
This means that when the pointer is verified by the framework, the requested driver will

24

2.3 LLVM

be invoked. That driver can thereafter use this pointer safely, i.e. since it’s verified, as a
user pointer.

Another situation when the check gets even more complicated is when the data is of
an aggregated type, such as an array, struct or union. When using such types, the
members will also need to be checked for actually pointing to the right memory area.

Aggregated types are often used in the system call ioctl. Ioctl may contain differ-
ent functionalities, where the different functionalities will be given different numbers.
Thereby, the user can choose which functionality is desired, by providing its number as
one of the parameters. This means the pointer that is passed in to an I/O control may be
interpreted as different types, depending on the desired service. Therefore, there is no easy
way to perform a check that fits all these services, except in the driver itself.

Lets assume a function of a kernel driver that takes a pointer to a structure as a pa-
rameter, where this function is then entered via a system call where the user provides a
pointer to the data. The structure will then need to be checked so that it belongs to user
space, which is in PikeOS done by the kernel driver framework. If the structure passes
that check, then it’s safe to copy the structure into kernel space.

Now the structure belongs to kernel space, were there are higher privileges. If one
of the structures members is a pointer, it may point to kernel space. Since it is operating
in kernel mode there will be no safety net, i.e. that access is now allowed. Although the
access is allowed, it’s requested from user space and must therefore be prevented. This can
cause huge problems and therefore it’s important that also the members of an aggregated
type are checked, see figure 2.6.

	 USER	SPACE			 KERNEL	SPACE	

struct	x	{	
				int	a;	
				int	*b;	
};	

struct	y	{	
				int	a;	
				int	*b;	
};	

Copy	data	

Figure 2.6: Copy data from user- to kernel space

The situation can be evenmore complex. Imagine that the structure contains a structure
itself, where that structure contains an array of pointers. Then the pointers that belong to
the array will also need to be checked at runtime for actually pointing to user space prior
to their use.

2.3 LLVM
This section will present an overview of the LLVM project with focus on its intermedi-
ate representation. This work will compile kernel drivers into the LLVM intermediate

25

2. Background

representation, where this representation will be used to conduct analyzes and code trans-
formations in order to make the drivers more secure. The drivers will then be compiled
into ELF object files and linked with the PikeOS kernel.

2.3.1 LLVM Overview
LLVM is a C/C++/Objective-C compiler which started as a research project by Chris Lat-
tner. The project is open source and today widely used for creating sub-projects in both
scientific research contexts as well as in industry. An overview of the projects different
components is illustrated in figure 2.7.

	
	
	
	

	
	
	

	

…	

Front-end,

Clang

Middle -

part

Back-end

	
LLVM	IR		

LLVM IR

LLVM

pass 1

LLVM

pass 2

LLVM

pass N

C

C++

Objective C

X86

PowerPC

ARM

Figure 2.7: The LLVM compiler steps

The project can be divided into three parts, the front-end, the middle-part and the
back-end. LLVMs front-end is called Clang and it takes the source code as input and
produces the LLVM Intermediate Representation (IR) as output. This part is dependent
on the language of the source code, e.g. C, C++ or Objective C.

The Intermediate Representation is then handled by the middle-part. The middle-part
will use the same language for its input and output. This part is independent of the language
of the source code as well as of the machine it will run on. The input can be transformed
with so-called LLVM Passes, which can be several or none. For example, when enabling
optimization in Clang, such as with the -O3 flag, the codewill run several passes to perform
the optimization. While if no optimization is enable, then it will not run through any of
these LLVM passes. The order of the passes depends on the order one declare its flag,
i.e. -pass1 -pass2 will first run the LLVM pass related to "pass1" and thereafter the pass
related to "pass2".

The LLVM IR will then be the input to the back-end which will generate assembly
code as its output. This part is dependent on the machine running the code. In this work,
we will use LLVM version 3.6.

2.3.1.1 Debug Information
The LLVM front-end Clang is able to produce debug information. The debug information
is a way to provide information of what the compiler optimized away or restructured. For
example, a function that is marked as an inline function, may be inlined in the front-end.

26

2.3 LLVM

Since the inline keyword is only a suggestion to the compiler, there is no guarantee
that it will indeed be inlined. But if it were, then by enabling debug information, one can
trace that this code was inlined. Such information can be very valuable when conducting
analyzes.

The generated debug information in LLVM IR will be attached to the instruction it
belongs to. In the intermediate representation will this be indicated by the string "!dbg"
followed by the location to the debug information in the end of the instruction. Typical
information tagged to an instruction is the name of the file it belongs to and the line in the
source code that it’s related to.

There are different levels of which/how much information should be generated by
Clang, such as no debug information, only information about the line number, all informa-
tion supported by the front-end, etc. In this work, the debug information will be used to
enable useful debugmessages for the static analyzes part, where we will request generating
all debug information supported by Clang.

2.3.2 LLVM Intermediate Representation
There are three different forms of the LLVM Intermediate Representation, each suitable
for different situations. One of these is the human readable representation, which is the
representation we focus on throughout the thesis.

In LLVM, the structure of a program will be divided into functions, basic blocks and
instructions.

2.3.2.1 Program, Functions and Instructions
A program contains a finite set of functions where exactly one is the entry point of the
program. The functions of a program are defined and/or called within the program. All
functions contain a sequence of LLVM instructions. These instructions are classified into
different subclasses; memory instructions, terminator instructions, binary instructions, bit-
wise binary instructions and others. Further description of the instructions can be found
in the LLVM Language Reference Manual [19].

2.3.2.2 Basic block
The control flow of a function divides its instructions into a set of basic blocks, where the
instructions within a basic block are ordered into a straight-line sequence. A basic block
has:

• exactly one entry point

• maximally one exit point

This means that there is no way to enter a basic block except from the first instruction of the
block or exit at any instruction except the last one, which is referred to as the terminating
instruction. Also, when the first instruction is executed, then the following instructions
will also be executed in their respective order.

27

2. Background

2.3.2.3 C example
The following C code will illustrate the program structure generated in LLVM:

1 int main(void)
2 {
3 int i;
4

5 for(i = 0; i <= 10; i++)
6 printf("i: %d\n", i);
7

8 return 0;
9 }

In the LLVM human readable IR, this will be represented as:
1 @.str = private unnamed_addr constant [7 x i8] c"i: %d\0A\00",
2 align 1
3

4 ; Function Attrs: nounwind uwtable
5 define i32 @main() #0 {
6 %1 = alloca i32, align 4
7 %i = alloca i32, align 4
8 store i32 0, i32* %1
9 store i32 0, i32* %i, align 4

10 br label %2
11

12 ; <label>:2 ; preds = %8, %0
13 %3 = load i32* %i, align 4
14 %4 = icmp sle i32 %3, 10
15 br i1 %4, label %5, label %11
16

17 ; <label>:5 ; preds = %2
18 %6 = load i32* %i, align 4
19 %6 = call i32 (i8*, ...)* @printf(i8* getelementptr inbounds
20 ([7 x i8]* @.str, i32 0, i32 0), i32 %6)
21 br label %8
22

23 ; <label>:8 ; preds = %5
24 %9 = load i32* %i, align 4
25 %10 = add nsw i32 %9, 1
26 store i32 %10, i32* %i, align 4
27 br label %2
28

29 ; <label>:11 ; preds = %2
30 return i32 0
31 }
32

33 declare i32 @printf(i8*, ...) #1

In this example, the module contains one function, i.e. the main function. The function
contains five basic blocks, where each basic block is identified with a label and contains
exactly one terminating instruction.

The basic blocks contain one or several instructions. The first basic block, which is
provided when calling the main function, contains instructions that allocate space for the
return value, in this example denoted as "%1", and the integer i, that later will be used in the

28

2.3 LLVM

for-loop. Note how the local variable i is identified with the beginning of a "percentage"
sign, % and the global data with the beginning of an "at" sign, @. This basic block ends
with a branch instruction to the basic block identified as "<label>:2".

Basic block "<label>:2" will load the value of i, and compare if it’s less or equal than
10. Depending on the result of the comparison, it will cause control flow to either the basic
block "<label>:5" or "<label>:11".

Basic block "<label>:5" will load the value of i. This value will then be used as a pa-
rameter, combined with the string "i: %d\n" that is identified as @.str, to the printf func-
tion. The printf function is declared, with its return type as well as its parameters types.
The block ends with a branch instruction causing control flow to basic block "<label>:8".

Basic block "<label>:8" loads the value of i, add one to it, and store the new value in
the space allocated for variable i. The block ends with a branch instruction causing control
flow to the basic block "<label>:2".

Basic block "<label>:11" will simply return the return value for the function main, in
this example 0. As can be seen from this example, LLVM is Static Single Assignment
(SSA) which means that a variable is assigned exactly once.

Program analyzes can be performed on the generated intermediate representation. One
area of analyzes is optimizations which typically reduce the number of instructions or
structure/change them in a more efficient way. Another area of program analyzes is to
ensure the correctness of the code. These analyzes are typically based either on functions
or on the whole program. The work in this report focuses on improving the correctness of
a program, where the analyzes and code transformations will be function based.

2.3.2.4 Aggregate Types
Aggregate Types are types that can hold one or several types, such as struct, union
and array.

An array hold a sequence of variables, referred to as its members, which are of the
same type. In LLVM IR is an array represented as

[<number of members> x <type>]

For example, [7 x i8] is an array with 7 members of 8-bit integer type.
A struct have members which can be of different types. In LLVM IR is a struct

represented as

{ <list of member types> }

For example, { i32, float, i32 } is a structwith two 32-bit integer values and one floating
point value as its members.

LLVM IR 3.6 does not support union types as one of its aggregated types. The only
aggregated types supported is vectors, structures and arrays. But, not to be confused,
the whole C language is supported and can be translated into the LLVM intermediate
representation. For example:

1 union Foo {
2 int a;
3 int *b;
4 double c;
5 };

29

2. Background

Becomes in LLVM IR version 3.6
1 %union.Foo = type { double }

That means that it’s fully supported in terms of generating the intermediate representation
from source code which includes union, but when looking at the generated intermediate
representation, data is lost. Only one member of the union is presented as a visible type,
and, when changing type from one of the members into another, simply a cast between
the two member types will be presented in the intermediate representation. Also, the type
in the LLVM IR language will not be a union type, because there is no such type in the
language. Instead, it will be created as a struct type with only one of its members. But,
by looking at the generated characters, it could be distinguished if the structure type is
generated from a union, i.e. a union will in the LLVM IR be a struct type which
is declared "%union.Foo", whereas a struct will in the LLVM IR be a struct type
which is declared "%struct.Foo", see table 2.1.

C LLVM IR Type visible indication visible members
union struct %union.<name> 1
struct struct %struct.<name> all

Table 2.1: Generated LLVM IR information from struct and
union types

Further, it’s also not possible to insert LLVM IR instructions to create a union type,
because of the same reason, there is simply no such type. Therefore, if that is desired,
one have to create a structure that contain one of the members, and insert cast instructions
whenever the type needs to be changed.

2.3.2.5 Address space
The LLVM type system provides an optional address space for pointers, which can be
provided as an attribute. This attribute will precede the other attributes that are assigned.
The meaning of the address space is target-specific, where the default address space for all
pointers is address space 0.

A pointer can be provided with an address space in the following way
1 void __attribute__((address_space(N))) *a;

This will assign the attribute address space N, where N is an integer, to the pointer a. This
attribute will be presented in the LLVM Intermediate Representation:

1 %a = alloca i8 addrspace(N)*

The address space attribute only belongs to the pointer it is assigned to, i.e. in case of
assigning an address space to a pointer that points to an aggregate type, all members of
pointer type will still be assigned the default address space 0. The address space of the
members can be changed in the same way the aggregated type was assigned its attribute.

30

Chapter 3
Train of Thoughts

In the following, the problems as well as the countermeasures will be presented to provide
an overview of the work. This will be illustrated with a flow chart, see figure 3.1, together
with a description. The purpose of this chapter is to provide a guidance of the different
parts and how they work together to provide a solid solution.

31

3. Train of Thoughts

	
	
	

	
	
	

Pointers copied in

Direct access to user space
Access to kernel space based on

pointer from user space

Insert assertions
for each critical

instruction

Problem
completely
covered

dynamically

Use the type system
of Clang to attach
information about

pointers

Pointers entering
via system calls

Compile
kernel

with Clang

Correct usage of
pointer types

Compile
drivers

with Clang

Copy-operation may
introduce new

pointers

Check recursively
that all pointers

are marked correctly

All pointers will be
checked before their use

Members must be
checked with the right
aggregated variable

Invalidate pointers
that are incorrect

All pointers are
checked correctly

Correct
usage of
pointer
types in
driver

framework

Problem
covered

statically

Only allow
kernel

pointers to
be

dereferenced

Figure 3.1: This works main concerns with a flow chart of the
founded threats and the proposed countermeasures

32

Direct access to user space: One of the two major problems treated in this work is that
direct dereferences of pointers to user space should in all situations be prevented.

One of the approaches to prevent this problem is to extend kernel drivers with dynamic
runtime-checks. This is enabled by compiling the drivers into the LLVM intermediate rep-
resentation where the robustness assertions will be inserted prior to all critical instructions
4.1. The very few instructions to perform an access to memory, also compared to the RISC
instruction set [6], enables complete coverage against this concern.

Access to kernel space based on pointer from user space: The second major problem
treated in this work is to prevent users from exploiting kernel drivers to access kernel
space for them. Because of the easy way to do memory access in C with a combination
of running in supervisor mode where there is no safety net, these bugs are unfortunately
easy to introduce into the system.

This security vulnerability starts with the system calls that allows the user to enter data
from user- to kernel space via pointers, such as read and ioctl 2.2.4. These pointers must
point to their restricted area, and must be checked for that fact before using them. Since
drivers can also be requested for their services by other drivers, these functions may as
well be entered from kernel space, where the entering pointers may point to kernel space
in a correct manner.

The problem is two fold:

• Make it easier for the developer to distinguish which data has been checked, and
which has not.

• Make it easier for the developer to distinguish if a pointer belongs to user or kernel
space.

This problem can be prevented with the use of the compiler Clangs type system. The
front-end Clang provides a way for the developer to introduce new types which can be
attached to pointers by assigning them to different address spaces 2.3.2.5.

By introducing new types, Clang will automatically help the developer to separate the
usage of a specific type for a specific situation, i.e. prevent one from mixing them up.
Further, these types are also a visible indication if a pointer is checked/unchecked or a
user/kernel pointer 5.1.1.

This does not provide a watertight solution. Especially since it puts a lot of respon-
sibilities on the developer to provide casts between these new types in a correct manner.
Correct in a sense that a type is only changed when the pointer indeed corresponds to the
new type, i.e. casting an unchecked user pointer to a checked user pointer is only done
if it has been checked. By introducing new functions which perform checks as well as
providing a new type to the pointer, this would be handled correctly 5.1.2. Although, the
introduction of the new functions does not prevent a developer from ignoring them and
simply perform their own casts.

Another benefit by differentiate the pointers by assigning them to different address
spaces is that this attribute will be visible also in the LLVM intermediate representation
2.3.2.5. Thereby, analyzes can be inserted in form of LLVM passes to enable a correct
usage of the types, i.e. to be able to verify the correctness of the program.

In this situation, a verification that casts between two pointer types is only performed
in the introduced dedicated functions is necessary 5.1.3.1. By enabling such analyze, one

33

3. Train of Thoughts

can be sure that all pointers, initially marked with the right type, will be checked before
being assigned a new type. The transformation from the old type to the new type then
enables that the pointer can be used in another context, as approved.

Pointers copied in: Since this relies on that pointers are initially provided with the
right address space, it is critical to differentiate which pointers should initially be provided
with what address space. By extending the API for kernel drivers with the new types, the
developers would simply have to follow this to get it right 5.2.1. Also other parts of the
kernel would need to be extended, such as performing checks with the new functions in the
driver framework as well as providing the extended types to some service functions, such
as the critical copy-function 2.2.5.3. With these extensions, a compilation with Clang of
the kernel would then verify that pointers are used correctly also in the driver framework,
which in fact is as a bonus of this extension.

Pointer entering via system calls: Pointers which have been verified for their correct-
ness by the framework will then enter the drivers. These entering pointers are still user
pointers, and should thus not be mistaken for kernel pointers. By simply following the
extended API, all entering pointers will be assigned the right type and a compilation of
the driver will thereby provide a correct usage of the introduced pointer types, e.g. prevent
one from mixing the different pointer types.

Copy-operating may introduce new pointers: Since the framework has verified the
correctness of the pointers, it is safe to copy their data from user to kernel space. A copy
operation of this kind may introduce new pointers, entering as members of aggregated
types. These introduced pointers have not been checked for their correctness and should
thereby not be trusted. They are neither covered by the extension of the API to be ensured
to have been assigned the right type, nor controlled by the framework, hence these must be
checked. By providing a static check that can verify that all data copied in is marked with
the right type, it can be stated that all pointers will be checked before their use 5.1.3.2.

Members must be checked with the right aggregated variable: To check amember of an
aggregated type, information about where it entered from must be known. An aggregated
type which enters from kernel space with an invocation from another driver may contain
pointers which points to kernel space in a correct manner. On the contrary, data entered
from user space via system calls must only contain pointers that point to their restricted
area. To be able to decide whether the members may point to kernel space or not, the
aggregated variable must be provided. This is a critical point of the construction, since the
check is based on the aggregated variable, thus an incorrect aggregated variable is enough
for an introduction of a safety and security whole in the system.

To prevent this from occur, an additional feature is provided. This feature checks all
member data, that has not yet been checked, directly when it is copied in. If some of these
members are incorrectly pointing to the wrong area, an insertion of an assignment to an
invalid address will be provided. That way, in case these pointers are later accessed, it will
fail, and if not, there will be no complications 5.1.3.4. This extension will enable a kernel
driver where all entered data is checked correctly.

Direct access to user space: With the introduction of differentiating user from kernel
pointers, another analyze was extended to provide a static approach to prevent direct ac-
cesses to user space 5.1.3.5. This analyze will compare to the dynamic approach enables
a faster technique identifying the critical parts of the code.

34

Chapter 4
Dynamic runtime checks

This chapter will present sections related to the first concern, i.e. memory access to user
space must never be done directly, because the access may fault due to unmapped pages
or insufficient access permissions. The first section 4.1 presents the precautions from a
theoretical aspect. The precautions will be implemented in two different ways, both pre-
sented in section 4.2. Last, the measurements conducted on the different implementations
will be presented in section 4.3 with their result in section 4.4

4.1 Direct memory access to user space
Handling pointers in kernel drivers must be done with care, especially considering the
separation between user and kernel pointers. When dealing with user pointers one must
consider them as untrusted and should always check their validity. Even after correct
checks are performed on user pointers to ensure their validity, it’s crucial to use dedicated
access functions to access their data, see section 2.2.5.3.

To ensure that all accesses to user space will be through the dedicated access functions,
assertions prior to all memory accesses can be inserted. These assertions will then perform
checks which will ensure that the memory access will only be performed in case it’s about
to perform an access to kernel space.

The LLVM Intermediate representation can be exploited for this purpose. The re-
stricted number of instructions which can perform a memory access, enables a sound
check. If this would be performed on the C source code, one would need to parse the
code and search for sequences which performs accesses. Since you then must treat the
whole C lanugage, the possibility to miss some corner case situations is more likely.

LLVM IR provides sevenmemory access and addressing instructions; alloca, load,
store, fence, cmpxchg, atomicrmw and getelementptr. Of these instructions,
cmpxchg, atomicrmw, load and store will perform memory access. The first two
instructions are used for atomic operations, which is operations where the processor can

35

4. Dynamic runtime checks

read and write in the same bus operation, i.e. either both operations or non of them will
be performed. Instruction cmpxchg loads a value A from a memory address, compares it
with a value B, and stores back another value C if A and B are equal. Atomicrmw, loads
a value and stores back the sum of that value combined with another. The third and the
fourth memory access instructions, load and store, which as their name indicate either
load or store a value from/to memory and those are the instructions that will be generated
in most situations. Further information about these instructions can be found in LLVM
Language Reference Manual [19].

Aside from these operations, a direct access to user space can also occur via a function
pointer. To distinguish accessing functions in user space, one needs to perform checks
prior to instructions which will perform calls to other functions. In LLVM, this is done
with the call and invoke instructions, where we will only focus on the call instruction since
invoke is not used for C.

Prior to these instructions, a check should be inserted, which shall ensure that the
access is allowed. To be able to check if the access is allowed, one needs to check if
the address about to be accessed belongs to kernel or user space. If the memory is an
address that is within user space, the execution shall not continue, preventing the access
from actually occurring, which in this work will be performed by raising an assert-failure.
In contrast to that, if the check provides information that it’s about to access an address
within kernel space, the execution may proceed.

By inserting these checks which will prevent the execution in case its about to access
user space, critical points in the source code will be found during runtime. These should
then be changed into proper accesses via dedicated functions, making the source code
more secure.

There are especially two things needed to perform the check:

• The address which needs to be checked

• Which addresses belong to which address space

These critical instructions will also be generated when reading or writing to global
and local variables. These checks always will always result in approving that the address
relies in kernel space, therefore to reduce the number of inserted checks one could exclude
checking accesses to values which are local or global without jeopardizing the soundness
of the check.

4.2 Implementations
4.2.1 Call external function
One approach to implement the check which should be inserted prior to all critical in-
structions is to insert a call to an external function. This function will then perform the
actual check as well as preventing the execution in case it’s about to access user space. We
implemented the check function in an external source code file, written in C.

The first information needed to be able to perform the check is the address which is
about to be accessed. This information was retrieved from the critical instructions per-

36

4.2 Implementations

forming the access, since all instructions which may perform an access to user space hold
information about which address it’s about to access.

By implementing the check in C, information from other sources could be retrieved.
This is especially advantageously to retrieve the second information needed to be able to
perform the check, namely which addresses belong to which address space. To check if an
address belongs to user or kernel space is most likely implemented within the OS, where
this approach use PikeOS address space check functions. These functions will in PikeOS
"adapt" to the current configuration, i.e. if its 32- or 64-bit and how the addresses are
divided to user- and kernel-space.

The performed check as well as the prevention of execution in case of accessing user
space was implemented in four ways. The check as well as the prevention of the execution
was implemented in two ways.

Both implementations, which perform the control, took advantage of known informa-
tion from other source files. The first one check if the address is in user space and the
second if the address is within kernel space. Both of these approaches need the same ex-
ternal information to be able to perform the check, namely the address it should perform
the check on. When inserting a call to the check-function in the LLVM IR, this information
was retrieved from the critical instruction and entered the check-function as a parameter.
Since LLVM is very strict about types, a cast to the proper parameter type is also needed.
This results in two inserted instructions per check, a cast- and a call instruction.

If the check shows that it’s about to perform an access to user space, the execution shall
not proceed. This was implemented by raising an assert failure, in two different ways:

1 #define assert(x) ((x) ? ((void)0) : assert_failure(__FUNCTION__,
2 __FILE__,
3 __LINE__,
4 ""))
5

6 void assert_failure(char *function,
7 char *file,
8 int line,
9 char *message);

The first implementation raises an assert failure by invoking the function via macro
expansion. The assert failure function takes four parameters: the function, file, line and
a message. When invoking it via the macro expansion, the first parameters is a defined
macro within PikeOS, and the following two will be provided by predefined macros. This
is a macro used to debug within PikeOS, there the reason that the assertion fails can vary
widely. Therefor, there will be no informative error message. The result will be an unin-
formative message to the user. Also, the provided information about the function and line
will lead to the check-function, which is of course true, since that is indeed the place where
the assert failure was raised. But, the reason for raising the failure will have to be traced
back to the instruction after it was invoked. This can be somehow misleading, especially
if you are using these insertions for the first time.

The other approach will give an informative message to the user, as well as valuable
tracing information about the actual error. When inserting a check, the instruction that is
about to be checked for its access is known. By enabling debug information, data will be
attached to this instruction. This data was then used to obtain information about which line
and file this instruction was generated from. The intermediate representation also holds

37

4. Dynamic runtime checks

information about which function the instruction belongs to. Thereby, this information can
be passed to the check-function along with a valuable message. This led to an informa-
tive error message, containing the typical information you need, the file, function and the
line number where the critical point is with a valuable message informing why the error
occurred.

The number of inserted instructions varies with which error generating approach is
preferred. The first approach needs no extra information from the intermediate represen-
tation, since it will basically raise an assert failure and retrieve information via predefined
macros. The second approach needs four additional parameters from the LLVM IR. When
a module runs through the created LLVM pass, the error message as well as the file name
will be created once as global variables. The function and the line number will change
throughout the pass, hence these needs to be created for the specific instruction which is
currently checked.

An overview of the different approaches is presented below:
1 /* Approach 1 */
2 if(is_user(address)) {
3 assert_failure(function, file, line, message);
4 }
5

6 /* Approach 2 */
7 if(is_user(address)) {
8 assert(0);
9 }

10

11 /* Approach 3 */
12 if(!is_kernel(address)) {
13 assert_failure(function, file, line, message);
14 }
15

16 /* Approach 4 */
17 if(!is_kernel(address)) {
18 assert(0);
19 }

The situation when inserting a call to the external function which follows approach 2
can be illustrated according to figure 4.1. This figure illustrates a kernel driver, which have
been compiled into LLVM intermediate representation. The generated code is thereafter
used to search for critical instructions, which in this case was found, i.e. the load instruc-
tion. To ensure that this is not a direct access to user space, the address that is about to be
accessed is checked by inserting a call to an external function, in this case called check_ptr.

	

	<label>:2 ; preds = %8, %0

 %3 = load i32* %i, align 4
 %4 = icmp sle i32 %3, 10
 br i1 %4, label %5, label %11

%2 = addrspacecast i32* %i to i8*
call void @check_ptr(i8* %2)

Figure 4.1: Inserting LLVM instructions which will generate a
call to an external function, which in return will ensure that there
are no direct accesses to user space.

38

4.2 Implementations

4.2.2 Inline instructions
The check prior to memory access instructions was also implemented by inlining LLVM
instructions instead of inserting a call to an external function. The inserted LLVM instruc-
tions is both performing the check as well as preventing execution in case the instruction
is about to perform an access to user space. The idea with this approach was to implement
a check which was more efficient than the previous approach.

The previous approach inserted a call to an external function, where the actual job was
performed. This approach will instead insert similar LLVM IR instructions to the ones
generated from the separate source file. That way, instructions will be reduced, like the
call to the external function.

The check was implemented for a 32-bit architecture that divides the total amount of
addresses equally between the two spaces, which is a common configuration. By imple-
menting a check for a configuration where the addresses are divided equally between the
two spaces, the address can naively be compared if its less than the middle address value.
The result from that comparison can then be used to decide whether to continue the execu-
tion or not. This will result in three inserted LLVM IR instructions, one to perform a cast
to the proper type, one comparison instruction and a branch instruction which depends on
the result from the comparison instruction.

Since this insertion contains a terminating instruction, i.e. the branch instruction, the
basic block where the check is inserted will need to be separated into two blocks. One
block will then contain the instructions until the memory access, referred to as block A.
The rest of the block will then be moved to a new block, which also contains the memory
access instruction, referred to as block B. The situation after the separation of the block is
illustrated in figure 4.2.

	

	
A
	

Store
A

B

A

Store
A

B

A

Store
A

B

Cast
A

Compare
A

Branch
A

Error

Figure 4.2: Creating Basic Block A and B

The instructions which will perform the check will then be inserted at the end of block
A. The terminating instruction of this block will be the branch instruction which depends
on the comparison. Depending on the result, the execution will either continue, i.e. at
block B, or the execution will be prevented by causing control flow to another block, re-
ferred to as the error block. The situation after inserting the instructions is illustrated in

39

4. Dynamic runtime checks

figure 4.3. Both figures illustrate the situation of a store instruction, but the same procedure
goes for the other memory access instructions.

	

	
A
	

Store
A

B

A

Store
A

B

A

Store
A

B

Cast
A

Compare
A

Branch
A

Error

Figure 4.3: The final created block situation

The error block prevents further execution by issuing an assert failure, described in
section 4.2.1 as the informative error, which takes four parameters, the file, function, line
and a message.

The filename as well as the message is created when a file is entered in the created
LLVM pass as global variables, since it’s common to all functions. The function needs
to be created for each function analyzed, and the line number for each line where a check
is inserted. Since these parameters depend on the current instructions which need to be
checked, the call instruction cannot be generic to all purposes. This means that since the
parameters to the function raising an assert failure are different, there has to be a new error
block created for all checks.

Below present an overview of the created LLVM IR code for two error blocks. The first
three global variables, the filename, error message and function, will be used to generate
an informative error message. The first error block, referred to as "error_block" in the
example, will use all these variables when invoking the assert_fail function followed by
an instruction that can not be reached, since the assert_failure function will terminate the
program. The following error block, referred to as "error_block3", will also use these
three variables. The difference between these two is the third parameter, namely the line
number. The first error block has the line number 8 whereas the second error block has
number 10 as its parameter. Also, since the code transformation is function based, the
function may vary between the different error blocks. Therefore, there have to be new
blocks created for every possible function and line number where an error can occur.

40

4.3 Measurements

1 @filename = private unnamed_addr constant [12 x i8]
2 c"llvm_test.c\00"
3 @error_msg = private constant [28 x i8]
4 c"Direct access to user space\00"
5 @function = private unnamed_addr constant [5 x i8] c"main\00"
6

7 error_block: ; preds = %0
8 call void (i8*, i8*, i32, i8*, ...)*
9 @assert_fail(i8* getelementptr inbounds ([5 x i8]* @function,
10 i32 0,
11 i32 0),
12 i8* getelementptr inbounds ([12 x i8]* @filename,
13 i32 0,
14 i32 0),
15 i32 8,
16 i8* getelementptr inbounds ([28 x i8]* @error_msg,
17 i32 0,
18 i32 0))
19 unreachable
20

21 error_block3: ; preds = %split_block
22 call void (i8*, i8*, i32, i8*, ...)*
23 @assert_fail(i8* getelementptr inbounds ([5 x i8]* @function,
24 i32 0,
25 i32 0),
26 i8* getelementptr inbounds ([12 x i8]* @filename,
27 i32 0,
28 i32 0),
29 i32 10,
30 i8* getelementptr inbounds ([28 x i8]* @error_msg,
31 i32 0,
32 i32 0))
33 unreachable
34

35 declare void @assert_fail(i8*, i8*, i32, i8*)

This error blockwas createdwith twoLLVM instructions: one call instruction to the assert-
failure function and one terminating instruction, in this case the unreachable instruction,
as illustrated in the code example above.

4.3 Measurements
A queuing port driver, running on both x86 and ARM 32-bit architectures, was used to
conduct measurements on the different implementations.

The usage of a queuing port driver is to pass messages between a source and a desti-
nation point. The source can pass a message, of preferred size, which the queuing driver
will put into a queue. The message can then be retrieved via the driver from this queue
by the destination point. The performance of this driver is very memory intensive, since
it will retrieve and write as a service, without impact from hardware, i.e. the overhead of
performing checks prior to memory accesses is measured well.

The performed measurements were calling a queuing port driver from an application

41

4. Dynamic runtime checks

in user space to perform both a read and a write operation with different message sizes.
To measure the performance decrease of the driver, exclusion of as much time as possible
which was not effected by our implementation was performed.

The first measurement was done calling an empty function N times, denoted X. Sec-
ondly, wemeasured the time it took to invoke a system call N times with an empty function,
denoted Y. Finally, the time for invoking the read and write operations to the queuing port
driver N times were performed, denoted Z. This resulted in the time spent in driver, Tdriver ,
being equal to:

Tdriver =
Z − Y − X

N

There were seven measurements performed on x86 and three on ARM, were the distinct
measurements have been labeled with a character from ’a’ to ’f’. An overview of the
various measurements are presented in table 4.1 and table 4.2.

1 2 3 4
a
b X X
c X X
d X X
e X X

1 Check if address belongs to user space

2 Check if address belongs to kernel space

3 Provide an informative error message

4 Provide an uninformative error message

Table 4.1: Overview of the different features for the conducted
measurements on the external function

1 2
a
e X
f X

1 Perform check in external function

2 Inline instructions

Table 4.2: Overview of the two dynamic techniques used to pre-
vent direct accesses to user space

For all these measurements we used the optimization flag -O2 which is a speed optimiza-
tion that can be enabled in Clang. Measurements labeled ’b’-’f’ did not check global or
local variables. To see the impact of excluding the checks for local- and global variables,
a measurement of implementation ’f’ was performed where these checks were included.
Also, the size was measured by retrieving the information from the section header of the
generated ELF file [22].

42

4.4 Result

4.4 Result
The results from the conducted measurements are presented below. For the used queuing
port driver, we found 130 critical instructions, hence all LLVMpasses inserted 130 checks.
The first three figures present data performed on x86 and the last figure present data per-
formed on ARM. In the following, we present data under the name a which represent the
unaffected data for a single queuing port read- and write operation.

Figure 4.4, present the difference between the various features for the external method
where an overview of them can be found in table 4.1. From this figure it is clear that
implementation e is the fastest of arbitrarily different techniques. Therefore, we will only
use this implementation in the following comparisons.

28

29

210

22 24 26 28 210

Time [ns]

Message size [bytes]

x86 - Writing and Reading to queuing port

a

+ + + + + + +
+

+

+

+

+
b

× × × × × × × ×
×

×

××
c

∗ ∗ ∗ ∗ ∗ ∗ ∗
∗

∗

∗

∗∗
d

� � � � � � � �
�

�

�
�e

� � � � � � � �
�

�

�
�

Figure 4.4: Difference between various techniques used for the
external method

Figure 4.5 present the performance increase of the two different techniques, inlining
instructions, f, and performing the check in an external function, e, where an overview
of the different measurements can be found in table 4.2. The impact from the external
function is quite high compared to the inline technique where the impact is extremely low.
The low impact was expected since asm.js[13] showed that its feasible in their context.

43

4. Dynamic runtime checks

28

29

210

22 24 26 28 210

Time [ns]

Message size [bytes]

x86 - Writing and Reading to queuing port

a

+ + + + + + +
+

+

+

+

+
e

× × × × × × ×
×

×

×

×

×
f

∗ ∗ ∗ ∗ ∗ ∗ ∗
∗

∗

∗

∗

∗

Figure 4.5: Performance increase of the two different techniques:
inlining instructions, and performing the check in an external func-
tion on x86

The impact of excluding checks of local- and global variables is presented in figure
4.6. The difference is not noticeable in this driver, because it contains only few global and
local variables.

28

29

210

22 24 26 28 210

Time [ns]

Message size [bytes]

x86 - Writing and Reading to queuing port

f, including checks for global- and local variables

+ + + + + + +
+

+

+

+

+
f

× × × × × × ×
×

×

×

×

×

Figure 4.6: The impact of excluding checks of local- and global
variables

The data collected on ARM is presented in figure 4.7, where we measured the per-
formance increase of the two different techniques: inlining instructions and performing
the check in an external function. The result is similar to the ones conducted on x86,
i.e. inlining instructions has extremely low impact whereas the external function in quite
noticeable.

44

4.4 Result

211

212

213

214

22 24 26 28 210 212 214

Time [ns]

Message size [bytes]

ARM - Writing and Reading to queuing port

a

+ + + + + + + + + + +
+

+

+

+
e

× × × × × × × × × × ×
×

×

×
×

f

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗

∗

∗∗

Figure 4.7: Performance increase of the two different techniques:
inlining instructions and performing the check in an external func-
tion on ARM

Table 4.3 present the increase in time, measured as percentage, of a single queueing
port read- and write operation with various message sizes (2 – 2048 bytes) on x86. The
various techniques used for the implementation of the external methods, all appear to have
a major impact on the performance, compared to the technique of inlining instructions.
Inlinine instructions has a really low overhead, where the maximum impact is only 4.1%.
The same illustration for the data conducted on ARM is presented in table 4.4, which also
show a low overhead of only 9.2% for the inlining technique.

Message size [bytes]
2 4 8 16 32 64 128 256 512 1024 2048

b 60.2 62.2 62.0 59.3 59.4 57.6 56.1 53.2 48.7 41.3 31.0
c 46.7 47.6 47.5 44.6 44.5 42.7 42.1 41.0 36.9 30.2 23.0
d 45.4 45.7 45.6 42.5 42.7 41.2 40.3 39.3 34.9 29.8 22.9
e 33.1 32.7 32.6 30.3 30.2 28.6 28.6 27.4 24.4 21.2 16.2
f 3.8 4.1 4.1 3.7 3.6 2.9 2.3 2.8 2.5 2.4 1.9

Table 4.3: Increase in time, measured as percentage of a sin-
gle queueing port read- and write operation with various message
sizes (2 – 2048 bytes) on x86

45

4. Dynamic runtime checks

Message size [bytes]
2 4 8 16 32 64 128 256 512 1024 2048

e 27.8 25.7 24.4 27.7 27.0 27.5 25.0 26.0 24.5 23.6 23.4
f 8.6 8.5 7.8 9.2 8.7 8.5 7.6 8.8 6.8 6.5 6.4

Table 4.4: Increase in time, measured as percentage of a sin-
gle queueing port read- and write operation with various message
sizes (2 – 2048 bytes) on ARM

Table 4.5 present the size of the executables (retrieved from the files section header),
the number of inserted instructions as well as global variables in LLVM IR. The field .text
describes the size of the executable instructions of the program and the global variables
hold text characters for function, file and message which will be used in case of generating
an error.

.text [bytes] # LLVM instructions # global variables
a 6183 0 0
b 11833 260 13
c 7641 260 0
d 11833 260 13
e 7641 260 0
f 9363 780 13

Table 4.5: Size of the executables, number of inserted instructions
and global variables in LLVM IR

See appendix A for the measured raw data.

46

Chapter 5
Static analyzes

This chapter will present sections related to the second concern, i.e. Memory addresses
must be checked for actually pointing to user space to prevent malevolent users to exploit
the kernel driver to access kernel space for them. The first section 5.1 presents the precau-
tions from a theoretical aspect followed by section 5.2 which presents the implementations.
Last, an illustrative code example will present how the different analyzes and extensions
will countermeasure and work together to contribute to securing kernel drivers.

5.1 Accessing kernel space on behalf of user
space

To prevent a malevolent user from exploiting a kernel driver to access kernel space for
them, pointers must be used in a correct manner. In particular, pointers entered via system
calls from user space must be checked before accessing their memory. A miss to do so
may introduce serious security bugs into the system, as explained in section 2.2.5.4. After
correctly performing checks on a pointer which is entered from user space, there are still
some restrictions, recall the restriction explained in section 4.1. This work presents a
solution which exploits the type system of Clang to attach information about pointers, in
order to ensure correct behavior. The correctness of the behavior will, except from the
pre-benefits from assigning different address spaces, conduct analyzes on the generated
LLVM intermediate representation.

This approach can be divided into three main branches:

• introduction of new pointer types to differentiate pointers

• introduction of new functions which performs proper checks as well as cast between
the introduced types

47

5. Static analyzes

• LLVM analyzes and code transformations which verifies the correctness of the pro-
gram

5.1.1 Introducing new pointer types
The need to introduce new types is twofold:

• distinguish checked- and unchecked user pointers

• distinguish user- and kernel pointers

This intuitively leads to three new types, where a pointer can be divided into a kernel-
or a user pointer, and the user pointer can further be divided into a checked or an unchecked
user pointer. This division can be illustrated with a tree construction, see figure 5.1.

	 Pointer

Kernel Pointer User Pointer

Unchecked
User Pointer

Checked
User Pointer

Figure 5.1: Division of different pointer types, illustrated in a tree
structure

The problematic with this distinction is that drivers may be entered either from user
space via system calls with user pointer or by another driver with kernel pointers. That
means, that there need to be a common type such that both of these can enter.

In PikeOS, an invocation of a driver is always redirected through a kernel driver frame-
work. That means that data entered from user space, will first enter the framework, see
figure 5.2. All pointers which enters from user space, hence called User Pointers, to the
framework must be distinguished from other pointers, since they are entered from an un-
trusted source.

When the pointers enter the kernel driver framework, they will be verified for their
correctness. This means that the pointer will be verified so that it is pointing to its restricted
area, i.e. to user space. Thereby, the pointers enter the framework as Unchecked User
Pointers and after the verification they can be considered as Checked User Pointers. After
that correctness is ensured, the invocation of the driver is performed, which is referred to
as Kernel Driver B in figure 5.2.

On the other hand, if Kernel Driver B is requested for its service from another driver, in
the same figure, figure 5.2, referred to as Kernel Driver A, the data flow is different. When
a driver invokes another driver, it will as well go via the kernel driver framework. But,
since these pointers will be passed from kernel space to kernel space, there is no need for
the framework to check the pointers for their validity since they are entered from a trusted
source. Thereby, the framework will only redirect the request to the correct driver.

That means, that Kernel Driver B can either be invoked from user space via a system
call, where the pointers shall be considered as checked user pointers, or from another

48

5.1 Accessing kernel space on behalf of user space

driver, where the pointers shall be considered as kernel pointers. This means that there
need to be a new type which can be either a Unsafe User Pointer or Kernel Pointer, which
we will call an Unsafe Pointer.

The pointer flow is even more complex. Since a pointer may enter drivers where the
pointer is pointing to a data which in the driver will be interpret as an aggregated type,
new pointers can enter as members, which is a very common situations for the system call
ioctl.

If that is the case, when a user application invokes such call, then the kernel driver
framework will check that the aggregated type itself relies in user space. The pointer to
the aggregated type will then enter the driver. When that type is later copied in, from user-
to kernel space, new data types may enter as members. If these members are of pointer
type, it’s critical to check their validity before its use. Since they have been copied in, they
will now be pointers that relies in kernel space, but must point to user space. That means,
they must be checked for pointing to user space, and after verification still be considered
as user pointers.

Since the same function can be entered from another driver, the members may, in a
correct way, point to kernel space. Thereby, pointers which are introduced after a copy
operation can be a user- or a kernel pointer. This leads to a new type which ca be either
an Unchecked User Pointer or a Kernel Pointer which we will refer to as an Unchecked
Pointer

To conclude, the criticality of the pointer flow is especially two points. The first critical
point is when data enters the kernel driver framework from user space via a system call,
marked as Security Boundary in figure 5.2. User space shall never be trusted and thereby,
all data must be handled carefully. It is thereby critical that the kernel driver framework
performs proper checks on these pointers. The other critical point is when data is copied
in, from user- to kernel space, since this operationmay introduce new pointers as members.
Compared with the first critical point, this is a bit more complex. At this point, it is not
so clear how to perform proper checks, since the driver is unknown if it was invoked from
user- or kernel space. Since it is a critical point if it’s entered from user space, and not if
it’s entered from kernel space, we marked it as Potential Security Boundary in figure 5.2.

Because of the pointer flow, the initial pointer division, i.e. kernel pointer, unchecked
user pointer and checked user pointer, is not possible. Instead, three new pointer types
were introduced:

unchecked a pointer that is either pointing to user space or kernel space, that has not been
checked for pointing to the expected place

unsafe a pointer that has been checked for either pointing to user space or kernel space

kernel a pointer which is created in kernel mode

Where the above rank the introduced types after how safe the pointers can be con-
sidered, starting with the least safe type. To introduce the three new types, we used the
attribute address space where the different pointer types were assigned different address
space. By using this approach, Clang will automatically distinguish the different types
such that they are not mixed. Further, this attribute is visible also in the LLVM interme-
diate representation, which enables creation of analyzes based on them.

49

5. Static analyzes

	 User	Application	
	
	
	
	
	

User	Pointers	

Kernel	Driver	A	
	
	
	
	
	

Kernel	Pointers	

Kernel	Driver	Framework	
	
	
	
	
	
	
	

	
Kernel	Driver	B	

	
	
	
	
	
	
	
	

Unchecked	
Pointers	

Unsafe	Pointers	

Kernel	Pointers	

Unchecked	User	
Pointers	

Checked	User	
Pointers	

								call	 																			call	

					syscall	 	 	 																call	

check	

copy	in	
Potential	Security	Boundary	

Security	Boundary	

Figure 5.2: Pointer flow in PikeOS kernel drivers

5.1.2 Introducing new functions
The introduced pointer types can in some sense be seen as a state of a pointer. This means
that a pointer assigned a specific type, it will most likely change its type throughout its life
time.

Since the type of the pointer is essential for its permissions, the change of a type needs
to be done in a controlled way. That means if a pointer is about to change its type to another
type, then it needs to be checked that it is allowed to convert to the new type. There are
four permitted type conversions:

1. unchecked→ unsafe

2. kernel→ unsafe

3. kernel→ unchecked

4. unsafe→ kernel

Type conversion number 1 is allowed for a pointer that is pointing to its expected mem-
ory area. An example for using this conversion is when a pointer is entered from user

50

5.1 Accessing kernel space on behalf of user space

space via system call. That pointer would then have the type unchecked. For that pointer
to change type, it needs to be checked for pointing to user space. If that is the case, then
the pointer is allowed to be assigned from type unchecked to the new type unsafe.

A kernel pointer used in the same context a user pointer may be used, needs to convert
to a lower safety type. This situation would apply to type conversions 2 and 3. If the same
pointer later is used in a context where only kernel pointers are allowed, the type conver-
sions number 1 and/or 4 would apply. For that to occur, a check needs to be performed.

For a pointer to be allowed to convert according to type conversion 4 the pointer will
need to be checked to point to the memory area of the kernel. This may be a trivial check
if the pointer earlier was typed kernel. But since the type unsafe is applicable for both
pointers that come from user space and from kernel space, the check needs to be done.

The controlled way to convert between the different types can be implemented with
four different functions.

The function for conversion 1 will need to be implemented in such way that if it’s called
with a pointer, provided from user space, it will check that it is pointing to user space. On
the other hand, if it’s called with a pointer that was provided from another kernel driver,
the pointer is safe and no check is needed. If this test succeeds, then the pointer is allowed
the new type, i.e. unsafe. To reduce instructions, the convert functions will be marked as
an inline. The same goes for the other three type of convert functions.

Since the functions implementing conversion 2 and 3 will handle casts from a kernel
type to a lower safety type, no check needs to be done. This will simply be a cast between
two types. By making the function as an inline function, a call to this function will simply
be represented as a cast between two address spaces in LLVM IR, which will later not
result in any machine instruction.

The function implementing conversion 4, similarly to the function implementing con-
version 1, will need to check the provided pointer before assigning it with the new type.
The check needs to make sure that the pointer is pointing to kernel space.

5.1.2.1 Perform proper check
Since the function implementing the type conversion numbered 1 will need to know if the
driver was entered from user space via a system call or from kernel space by another driver
to be able to perform a proper check, it needs more consideration than the other three type
convert functions.

When an application needs a service from a driver, it will invoke a system call. This
will then enter a function in kernel mode. This function can then control that pointers
passed in from user space actually point to user space. In those situations, one will use
the function implementing the conversion 1, from unchecked to unsafe. This check will is
PikeOS be performed in the kernel driver framework, see figure 2.3.

After performing the check, the data may enter the actual driver to perform the re-
quested service. The function entered in the driver will then take an unsafe pointer to
some data in user space. Since the data is checked, it is safe to copy it from user into
kernel space. If that data is interpreted as an aggregated type in the driver, checks on its
members are needed.

The members shall be marked with the type unchecked, since these are not checked
by the framework as the aggregated type. To perform a proper check on these, one should

51

5. Static analyzes

also use the function implementing the conversion 1.
The function entered in the driver may as well be invoked by another driver. To invoke

another driver which may also be entered via system calls, a need to change the type of the
pointer to the data from kernel to unsafe is needed. When then entering the other driver,
the same step as for the system call will be performed. Thereby, data will be copied in and
checks will be performed if the data contains members of pointer type.

All pointers of type unchecked will be member pointers in the drivers. Since their
aggregated type will either provided from user space or kernel space, one can use that
information to perform a proper check. The aggregated type which points to user space
shall only contain members which point to user space, and an aggregated type from kernel
space is considered safe, hence no check is needed. With this information, proper checks
can be performed. Figure 5.3 illustrates the case when data is provided via a system call
from user space and figure 5.4 when a driver is invoked by another driver.

	
	
	
	
	
	
	

	

	

KERNEL SPACE USER SPACE

Application Kernel Driver

struct y {
 int a;
 int __unchecked *b;
};

struct y {
 int a;
 int __unchecked *b;
};

Check member

Copy data
Kernel
Driver

Framework

Check struct

Figure 5.3: Data provided via a system call
	
	
	
	
	
	
	

	

	
	

KERNEL SPACE

Kernel Driver

Kernel Driver

struct y {
 int a;
 int __unchecked *b;
};

struct y {
 int a;
 int __unchecked *b;
};

Check member

Copy data
Kernel
Driver

Framework

Check struct

Figure 5.4: Data provided from another device driver

5.1.3 LLVM Pass
By providing different address spaces to the differentiate pointers, analyzes can be enabled
to extend the verification Clang enables. This is possible since the address space attribute
is a visible type also in the LLVM intermediate representation. There are especially five
things that is desired to check the correctness of:

52

5.1 Accessing kernel space on behalf of user space

• Check that the type of a pointer only is changed in the introduced functions. This is
important to be able to ensure that proper checks are performed, see section 5.1.3.1.

• Check that members of pointer types is assigned with the right type, since these
pointers will be introduced into kernel space after a copy operation, see section
5.1.3.2.

• Check that the right aggregated pointer is provided when checking a member of an
aggregated type.

– statically during compile time, see section 5.1.3.3.
– insert checks for unchecked data automatically, see section 5.1.3.4.

• Check that there are no direct accesses to user space, see section 5.1.3.5.

• Check cast operations that introduces new pointers, see section 5.1.3.6.

5.1.3.1 Changing type through dedicated functions
The address space attribute assigned to a pointer will most likely change throughout its
lifetime. But, when doing so, proper checks needs to be performed such that the new
assigned type is indeed deserved. This is critical since the type of the pointer is the main
thing deciding which operations that is allowed to be performed on this data.

It is therefore critical to verify, by analyzing the generated intermediate representation,
that changes between the new types are only performed in the dedicated functions.

5.1.3.2 Members are marked unchecked
Pointers can be provided to a driver in three arbitrary ways. First, pointers can be provided
as parameter to functions. Second, pointers can be introduced when cast operation are
performed. Last, introduction can occur when pointers to aggregated types are provided
as parameters to functions. If that type is later used in a copy operation, new pointer types
may be introduced as members.

A system call, such as the ioctl, that takes a pointer to some data, will when it’s declared
assign the correct type of this pointer. Thereby, data provided via that function will be
ensured to be assigned that type. This can be regulated in terms of an API.

If that pointer is interpret to point to a structure, it is critical to not forget to check its
members. The members of aggregated types are neither checked by the framework nor
ensured to be assigned the right, as the aggregated type that can be regulated by an API.

To ensure that all members are checked, an LLVM pass can be extended. This analyze
would then check recursively that all pointer types within an aggregated type is assigned
with the right type. By verifying that they are assigned with the correct type, it can also
be stated that they will indeed be checked.

5.1.3.3 Analyze the parameters
There is one problemwith the convert function that takes an unchecked pointer and verifies
that it can be assigned the unsafe type. The problem is that it puts responsibility on the

53

5. Static analyzes

developer to provide the right aggregated type for the member they want to check. If the
aggregated type is not the right one, but is from the same space as the actual aggregated
type, there will be no problem. But if the developer provides an aggregated type that
belongs to kernel space, whereas the actual aggregated type belongs to user space, things
may end badly. It would therefore be helpful to analyze the intermediate representation to
help the developer to use this function in the right way.

This could be done by creating a mapping of the member with its aggregated type
when data is copied in. One problem with this approach is how to map these. Let’s use
the situation from figure 5.3 as an example. When the struct is copied in, a map of the
member and the aggregated type should be created. In this case, the struct only contains
one pointer type which should be mapped, i.e. the aggregated type of int *b is struct y.
That means, later when using the dedicated convert function, see section 5.1.2, to check
the pointer, one could check that it is providing struct y as its aggregated type.

Another situation could be that there are two different structs, structure A and struc-
ture B, both of type struct y. If one of those structures was passed in as a parameter, struc-
ture A, and the other was created in the function, structure B, then such simple mapping
would fail. Structure A will then be copied in, and a mapping will be created. Later when
using the two different types, the naive mapping will tell no difference between structure A
and structure B, and therefore provide wrong warnings.

Another problem with such an easy mapping approach is if the developer uses a func-
tion call as the argument, which returns a pointer to the aggregated type. The return value
from this call is then the necessary information which needs more complex non-function
based analyzes. Those situations will also not work with the naive approach.

To summarize, providing such analyze is quite complex, and cannot be function based.
A naive approach is not enough and further work is needed to provide accurate help in these
situations for the developer.

5.1.3.4 Insert checks automatically
As described in section 5.1.3.3, pointers can be introduced after copy operations. To ensure
that all these members are checked, a code transformation was created. This transforma-
tion automatically insert checks for all pointer members, that have not yet been checked,
in the same point as the copy operation is performed. By doing so, it can be stated that all
member pointers will be checked in a proper manner.

When data is copied in, all information that is needed to perform a check is available.
I.e., the source of the copy as well as the pointers copied in are both available, so the
new pointers can be verified to only point to user space if the source of the copy is user
space. Thereby, one could directly check the data at that point. Such checks could then
invalidate data that is violating their restrictions. By invalidating the data, it would then
fail when an access later is done, and if no access is done to that data, then there will be
no complications.

This approach should be easy to enable and disable for the kernel driver developer,
since this will insert instructions into the code. If this is always enabled, then it may
confuse the developer more than it would help. Confuse in the sense that the invalidation
part is not in his power. It would not be a plain analysis of the code, it would in fact change
it, but with the purpose to make it more secure. Also, this insertion would not be visible

54

5.1 Accessing kernel space on behalf of user space

in the source code, since it’s inserted in the intermediate representation. Hence, it can be
deceptive, and may even lead to increasing the time to find the actual problem of the code.

5.1.3.5 Direct memory access
The first part, section 4.1, of the thesis presents a way to check all addresses prior to
accessing them. This prevents all direct accesses to user space. By using the introduced
types, one could only allow direct accesses to pointers which are marked kernel. Since
this would be based on the new types, the developer could get valuable information during
compile time, which is of course very valuable since the approaches for the first part must
run to find the critical code.

5.1.3.6 Performing cast operations
In C, casts between different types are frequently used. Some of these casts can introduce
problems that will not be tackled by the type system explained above. One example of
such situation is if an integer, which is assigned in user space, enters the kernel, where it’s
later interpreted as a pointer. Since it’s not of pointer type when entering kernel space, it
will not be checked.

The integer may then be used in the kernel driver in several ways. Some of these may
introduce serious vulnerabilities:

1 /* Provided via a system call form user space */
2 int value = 0x80000000;
3

4 /* Later use in kernel driver */
5 int *a = &value; /* OK */
6 int *b = (int*)value; /* NOT OK */
7 int **c = (int**)value; /* NOT OK */

The first assignment will create a pointer a to the address of the value. Apart from not
using the introduced types in a correct way, this is valid. The introduced types are not used
in either of the assignments, and should be ignored.

The second assignment will interpret the integer as a pointer. The integer is assigned
a value which if interpreted as an address, will point to an address. Thereby, the user can
create a pointer to the desired address via an integer.

The third assignment will dereference the value twice, which in this example means
that it will load the value at address 0x80000000. Thereby, the user can pass in integers to
exploit or destroy kernel memory.

These are just a fraction of casts which may introduce serious security bugs. By using
the type system in LLVM IR, casts can be found and prevented, where we will only focus
on casts from integer to pointers.

55

5. Static analyzes

5.2 Implementations
5.2.1 Introducing the LLVM-based fortification into

PikeOS
The operating system PikeOS was used to implement the new types (by assigning them to
different address spaces) as well as the described functions. These were introduced into
the existing API.

All pointers passed in from user space to kernel space should be marked unchecked.
When invoking a system call, the first function entered in the kernel belongs to the kernel
driver framework. Those functions were extended in the framework which handles calls
from user space, to only take unchecked pointers. The current checks were also changed
such that the new convert function was used, see section 5.1.2. The check performed in
the framework is not exhaustive, i.e. there are no checks for members if the pointer points
to an aggregate type because the framework does not know the structure a driver uses for
that aggregated type. Checks of those pointers must be done by the driver using our new
technique.

Further, the API handling communication between the kernel drivers and the frame-
work was extended with pointer types unsafe and kernel. This extension was not that
trivial and also needed care since this is a base to the distinction between user- and kernel
pointers in the driver.

Apart from the API, extension of the types to some existing service functions were
performed, such as the functions performing the copy operations from/to user space.

5.2.2 LLVM Passes
The following LLVM Passes were implemented

• Changing type through dedicated functions

• Members are marked unchecked

• Insert a check automatically

• Direct memory access

• Integer to pointer

5.2.2.1 Changing type through dedicated functions
An LLVM pass which controlled that all conversions between address spaces were re-
stricted to the four introduced functions was implemented.

Since the convert functions were implemented with a notation that makes a suggestion
to the compiler to inline the instructions, a check for both situations where the instructions
within the function was inlined and for situations were the instructions were not inlined,
were needed.

56

5.2 Implementations

The second situation will result in an address cast instruction which belongs to one of
the functions. This enables an easy way to distinguish if it’s performed in the dedicated
functions or not. The implementation of the first situation was a little harder, since inlined
instructions would result in an address space cast which could now belong to all functions.

The implementation of the first situation will therefore check if the instruction was
inlined from the dedicated functions. This information was retrieved by enabling Clang
to generate debug information, which resulted in a check that relies on that the debug
information is enabled and that it will correctly generate information for all address space
cast instructions.

Another approach would be to implement the convert functions without making the
suggestion to the compiler to inline the instructions. This would imply only implementing
the check for the second situation, i.e. no implementation which relies on the generated
debug information. Although, the result of inlining the instructions may exclude instruc-
tions, which is the reason why we choose the implementation that relies on the debug
information.

5.2.2.2 Members are marked unchecked
A pass was implemented to verify recursively that all members of type pointer are marked
unchecked when an aggregated type is copied in from user- to kernel space.

The implementation includes the following aggregated types:

• Structure

• Array

• Pointer

To handle aggregated types which contain pointers to themselves, we verify that an aggre-
gated type is only checked once. I.e., if the struct list_t in the code example presented
below is used in a copy operation, the LLVM pass will recursively check its members. The
aggregated type contains two members, both of type pointer and both correctly marked
unchecked. Since the aggregated type contains an aggregated type itself, the LLVM pass
will recursively check this as well to look for further pointer types. Since this member
has already been checked, i.e. since it is also a struct list_t, the LLVM pass will not
"unpack" it, preventing an infinite loop.

1 typedef struct list_t list_t;
2

3 struct list_t {
4 int __unchecked *a;
5 list_t __unchecked *next;
6 };

One limitation with this implementation is that it does not include unions. As shown
in section 2.3.2.4, unions are not supported in such way that they could be analyzed. Since
a union is only presented in the intermediate representation with one of its members, there
is no way to "unpack" such type to exploit all the members, because that information is
simply not visible. This means that pointers in a union will not be checked to have the
right type. This implies that if the developer is handling data of type union, one should

57

5. Static analyzes

pay extra attention to ensure that the data is used in a correct way and is not used in a
context which could be exploited by a malevolent user to harm the system.

5.2.2.3 Insert a check automatically
The LLVM pass explained in section 5.2.2.2, that is verifying that all members are marked
unchecked, was implemented with an optional extension.

That check unpacks all aggregate types and checks that members of pointer type are
marked unchecked. The extension will also insert a check of that data at that point. This
could be done since all data needed to perform the check is present, i.e. the aggregated
variable and the data to be checked. The check uses, of course, the dedicated function to
perform the check. If that function fails, it means that the member contains a pointer which
does not point to the expected area, and shall therefore not be dereferenced. They shall not
be dereferenced since they might have been assigned with a kernel address by a malevolent
user. The result of dereferencing such pointer would be to access kernel space on behalf
of user space, which must never be done. To prevent the developer from using the data, an
assignment to an invalid address was inserted. On the other hand, if the convert function
succeeds, the execution shall continue without any assignment.

5.2.2.4 Direct memory access
Prevention of direct memory accesses to user space was implemented by searching for
memory access instructions. When finding such instruction, we checked that the address
which will be accessed was related to a pointer assigned with the address space of a kernel
type. If that was not the case, the user will be informed via a warning.

The limitation with this implementation is that it does not handle pointers to functions.
In LLVM a pointer to a function is represented as a function type, and address spaces can
only be assigned to pointer types.

5.2.2.5 Integer to pointer
A full analysis of whether a cast can be used by a malevolent user or not is not covered in
this thesis. But, one check of such kind was introduced.

An LLVM pass which searches for casts from integer to pointer type was implemented.
If a developer wants to perform such a cast, it should give the pointer the type unchecked.
By providing it with the unchecked type, it will have to be checked prior to its use, which
will result in preventing bugs.

5.2.3 Using the extension
An existing driver was adapted to the new types as well as the new functions. By doing this,
we gained experience of how the proposed solution was to work with. All LLVM passes
were enabled to help us extending the driver with the introduced types and functions. Apart
from putting ourselves in the perspective of using the new features, this resulted in finding 4
bugs in the driver. Three of these were points where members within a structure were used
before they were checked for their correctness to be a pointer to a location in user space.

58

5.3 Code examples

Two of these were found in the error prone ioctl and one in the read function. The fourth
bug was also found in the ioctl. This specific ioctl was implementing one command which
should be used for requests from other drivers, where the bugs were a miss to check that the
pointer was pointing to kernel space. Although this specific command was only supposed
to be entered by another driver, it could as well have been entered via a system call from
user space. Other from the filed bugs, we found that all generated warning messages were
correct, i.e. verified by internal SYSGO developers, hence no false positives.

5.3 Code examples
Below illustrates different situations which can be found in an I/O control. The first ex-
ample presents how the extensions are used correctly along with how the different static
analyzes will verify the correctness, and for which row the different analyzes will focus
on. Thereafter, code examples of limitations will be presented.

All example uses the introduced pointer types, which are provided with different ad-
dress space, see section 5.1.1.

1 #define __unchecked __attribute__((address_space(1)))
2 #define __unsafe __attribute__((address_space(2)))
3 #define __kernel __attribute__((address_space(0)))

All the examples presented that belongs to this section uses a configuration of 32-bit ad-
dresses, divided equally between user and kernel space. The addresses below 0x80000000
will herein belong to user space, and the addresses above, including the address itself, will
belong to kernel space.

5.3.1 Correct usage
1 struct s {
2 int __unchecked *x_a;
3 };

1 /* Simplified PikeOS code */
2 int my_ioctl(..., void __unsafe *u_data)
3 {
4 /**
5 * Since the default address space is 0,
6 * below is equal to "int __kernel *i" */
7 int *i;
8

9 /* Cast void to struct, i.e. the right interpretation of the data */
10 struct s __unsafe *u_my_struct = (struct s __unsafe *)u_data;
11

12 /**
13 * The struct has already been checked by the kernel driver
14 * framework, and shall thereby not be checked again.
15 * Since proper checks have been performed, it is safe to
16 * copy the data from user to kernel space */
17 struct s my_struct;
18 if(drv_memcpy_in(&my_struct, u_my_struct, sizeof(my_struct))) {

59

5. Static analyzes

19 /* Error: copy operation failed */
20 }
21

22 /**
23 * The members have not yet been checked,
24 * hence proper checks needs to be done before their use */
25 int __unsafe *u_a;
26 if(!drv_ptr_get_unsafe(&u_a,
27 my_struct.x_a,
28 sizeof(my_struct.x_a),
29 u_my_struct)) {
30 /* Error: member is incorrect */
31 }
32

33 ...
34 /* print integer */
35 drv_put_d(*i);
36

37 ...
38 }

Row 2: API extension The created I/O control is following the extended API, where the
pointer is provided with the unsafe type, since proper checks have been performed
by the framework. See section 5.2.1.

Row 10: Changing type through dedicated functions Perform checks that there is no
cast between the introduced types, which is not the case in this situation. The unsafe
void pointer is correctly casted to an unsafe struct pointer. See section 5.1.3.1.

Row 18: Members are marked unchecked Check recursively that all members aremarked
correctly, i.e. are provided with the unchecked attribute. See section 5.1.3.2.

Row 18: Insert checks automatically Insert proper checks automatically for all pointer
members. In case the function was entered from user space, check that the members
are not provided with addresses that belongs to kernel space, and if so, assign them
to invalid addresses. Thereby it will fail if they are later accessed, and if not there
will be no complications. See section 5.1.3.4.

Row 26: Dedicated functions Using the dedicated functions correctly, which performs
proper checks as well as convert to the new desired type. Verified with the analyze
described in section 5.1.3.1.

Row 35: Direct memory access Accessing kernel space. Verified with static analyze de-
scribed in section 5.1.3.5, i.e. that direct accesses are only performed on kernel
pointers.

60

5.3 Code examples

5.3.2 Limitation of providing the wrong aggregated
variable

1 struct s {
2 int __unchecked *x_a;
3 };

1 /* Simplified PikeOS code */
2 int my_ioctl(..., void __unsafe *u_data)
3 {
4 /**
5 * Since the default address space is 0,
6 * below is equal to int __kernel *i */
7 int *i;
8

9 /* Cast void to struct, i.e. the right interpretation of the data */
10 struct s __unsafe *u_my_struct = (struct s __unsafe *)u_data;
11

12 /**
13 * The struct has already been checked by the kernel driver
14 * framework, and shall thereby not be checked again.
15 * Since proper checks have been performed, it is safe to
16 * copy the data from user to kernel space */
17 struct s my_struct;
18 if(drv_memcpy_in(&my_struct, u_my_struct, sizeof(my_struct))) {
19 /* Error: copy operation failed */
20 }
21

22 /**
23 * The members have not yet been checked,
24 * hence proper checks needs to be done before their use */
25 int __unsafe *u_a;
26 if(!drv_ptr_get_unsafe(&u_a,
27 my_struct.x_a,
28 sizeof(my_struct.x_a),
29 &my_struct)) {
30 /* Error: member is incorrect */
31 }

The source code example presented above illustrates a situation where the convert function
which will check the member of the structure is provided with the wrong aggregated vari-
able as its parameter. The right aggregated variable for this member is u_my_struct,
as shown in section 5.3.1.

The aggregated variable provided in this case, is created in kernel space. Thereby, the
check will trust the members which should never be done in case the function was invoked
from user space via a system call.

By activating the LLVM pass which will automatically insert controls of all unchecked
members directly when data is copied in, this will be prevented 5.1.3.4. That code trans-
formation will directly at line 18 control if the member, in this case pointer x_a, is assigned
to an address in user space if the function was entered from user space via a system call.

61

5. Static analyzes

5.3.3 Limitations of cast operations
1 struct s {
2 int b;
3 };

1 /* User space application */
2 struct s my_struct;
3 my_struct.b = 0x80000000;
4 ioctl(..., &my_struct);

1 /* Simplified PikeOS code */
2 int my_ioctl(..., void __unsafe *u_data)
3 {
4 /**
5 * Since the default address space is 0,
6 * below is equal to int __kernel *i */
7 int *i;
8

9 /* Cast void to struct, i.e. the right interpretation of the data */
10 struct s __unsafe *u_my_struct = (struct s __unsafe *)u_data;
11

12 /**
13 * The struct has already been checked by the kernel driver
14 * framework, and shall thereby not be checked again.
15 * Since proper checks have been performed, it is safe to
16 * copy the data from user to kernel space */
17 struct s my_struct;
18 if(drv_memcpy_in(&my_struct, u_my_struct, sizeof(my_struct))) {
19 /* Error: copy operation failed */
20 }
21

22 int *p = (int *)my_struct.b;
23 int **q = (int **)&my_struct.b;
24 }

Cast operations are frequently used in C, where some of those might introduce major prob-
lems. At line 22, from the example presented above, a cast operation from an integer to a
pointer is performed.

The integer member b of the structure was prior to the enter of this function assigned
to the value 0x80000000 in user space by a malevolent user. Thereby, the assignment of
the pointer pwill imply an assignment to an address in kernel space, which was performed
on behalf of a request invoked by a user. If this pointer is later dereferenced, the mem-
ory located at that specific address will be accessed. This situation can be prevented by
activating the created LLVM pass presented in section 5.2.2.5.

Although, row 23 also present a cast operation, which are perfectly valid by the C
standard but can imply complications. As presented in table 5.1, if the variable q is later
dereferenced twice, memory in kernel space will be accessed. This is a limitation of the
analyze and will not be prevented by this work.

Table 5.1 present an overview of the different operations which can be performed on
the three created variables, used in the above example.

62

5.3 Code examples

variable &variable variable *variable **variable
my_struct.b 0x0801EF34 0x80000000 � �

p 0x805AFCE4 0x80000000 √ �
q 0x805AFCE0 0x0801EF34 0x80000000 E

Table 5.1: Overview of the operations which can be performed on
the three different variables created in the code example presented
in this section. The table illustrates which operations are valid,
which are prevented by the C type system, which are prevented
with created analyzes and where there still are limitations

Description of symbols used in table 5.1

� Not allowed, prevented by the C type system

√ Prevented by the LLVM pass Integer to pointer

E Limitation of the static analyzes

5.3.4 Limitation of unions
1 struct s {
2 int __unchecked *a;
3 union {
4 int b;
5 int *c;
6 float d;
7 } u;
8 };

1 /* Simplified PikeOS code */
2 int my_ioctl(..., void __unsafe *u_data)
3 {
4 /* Cast void to struct, i.e. the right interpretation of the data */
5 struct s __unsafe *u_my_struct = (struct s __unsafe *)u_data;
6

7 /**
8 * The struct has already been checked by the kernel driver
9 * framework, and shall thereby not be checked again.
10 * Since proper checks have been performed, it is safe to
11 * copy the data from user to kernel space */
12 struct s my_struct;
13 if(drv_memcpy_in(&my_struct, u_my_struct, sizeof(my_struct))) {
14 /* Error: copy operation failed */
15 }
16 ...
17 }

Members of a structure have not been checked by the framework, and must therefor be
checked in the respective driver. For the situation above, a structure enters which contains
members of pointer type.

63

5. Static analyzes

The LLVM pass described in section 5.1.3.2 will recursively verify that members
within the structure only contains pointers that are correctly assigned with the attribute
representing an unchecked type. The pass will correctly verify that the pointer a is as-
signed the right type, but no analyze will be performed on the union. Thereby, the devel-
oper will not be informed that the pointer member c is not assigned the correct type. Since
only one member of a union is shown in the LLVM intermediate representation, there
is no way to analyze such constructions, hence the result of the limitation of union usage.
Although, it could be the case that it’s the pointer member of the union that is the visible
member in the intermediate representation, which in that case would result in informing
the developer that the right type is not assigned.

5.3.5 Limitation of function pointer
1 struct s {
2 void (*f)(void);
3 };

1 /* User space application */
2 void call_function();
3 ...
4 int main()
5 {
6 struct s my_struct;
7 my_struct.f = call_function;
8 ioctl(..., &my_struct);
9 ...

10 }

1 /* Simplified PikeOS code */
2 int my_ioctl(..., void __unsafe *u_data)
3 {
4 /* Cast void to struct, i.e. the right interpretation of the data */
5 struct s __unsafe *u_my_struct = (struct s __unsafe *)u_data;
6

7 /**
8 * The struct has already been checked by the kernel driver
9 * framework, and shall thereby not be checked again.

10 * Since proper checks have been performed, it is safe to
11 * copy the data from user to kernel space */
12 struct s my_struct;
13 if(drv_memcpy_in(&my_struct, u_my_struct, sizeof(my_struct))) {
14 /* Error: copy operation failed */
15 }
16

17 my_struct.f();
18 ...
19 }

The example above presents code where a structure entered from user space to kernel
space via a system call. The structure in question contains a member which is a pointer
to a function. Before invoking the system call, this members was assigned to point to a
function located in the application user space.

64

5.3 Code examples

As presented on line 17, this function is later invoked from kernel space, which will
imply a direct access from kernel space to user space. Since there is no possibility to assign
the attribute address space to function pointers, this can not be prevented by the static
analyze prevention, see section 5.1.3.2. To be able to catch such accesses, the dynamic
approach needs do be enabled, see chapter 4.

65

5. Static analyzes

66

Chapter 6
Discussions

This chapter is divided into two parts, where the first part presents the discussion related
to the first concern and the second part relating the second concern.

6.1 Dynamic runtime checks
The first part shows how LLVM IR can be used to insert robustness assertions prior to
accessing memory. This can be done in various ways, where two approaches were imple-
mented. The measurements conducted on these implementations show that the practical
implementation, all resulting in the same prevention, is important, see section 4.3 and 4.4.

From figure 4.5 conclusions can be drawn that inlining instructions to perform the
check have significantly less impact on performance then performing it in an external file.
This was expected, since it does exclude instructions and the check is only a few instruc-
tions. Table 4.3 shows that inlining of instructions only increases the execution time with
a maximum of 4.1% while performing an external check increases the execution time with
a maximum between 62.2 - 33.1%, depending on the C-implementation of the check.

The measured difference between the external functions is also noticeable. The dif-
ference between the two error messages can be explained by the overhead of passing pa-
rameters. The overhead of checking if the address belongs to user space instead of kernel
space also shows that that there is a difference of how the check is performed. This can be
due to how the compiler can optimize the check, cache-effects etc. The conclusion is that
even though there are tiny differences in the C source code, it may have impact and should
be considered if you want to achieve the least possible impact.

When looking at the difference from an implementation perspective, the external check
is an easier approach. This only requires insertion of a call, with propitiated parameters, in
the LLVM intermediate representation. The rest will then be performed in code written in
C. The inlining approach needs more consideration when implementing, such as creating
various blocks and causing right control flow between them. The implementation for the

67

6. Discussions

inlining approach was constructed to compare the address with a single value, to see if it
belonged to the lower or upper part of the address space. This could be changed into an
approach fitting both 32- and 64-bit architectures, dividing the addresses equally between
the two spaces. By retrieving the highest bit of the address that is about to be accessed, that
bit could be compared if it’s equal to 0 or 1, which would provide the answer if it belongs
to the upper or lower part. It is also important to think about the maintenance. LLVM is a
project that is currently developed, and we are not even using the latest released version at
the moment. Maintenance of inserting a call (and cast operation to get correct type of the
parameters) does not seem to be much work. But, since the inlining approach uses more
instructions, are splitting and creating basic blocks etc. it is more likely to need more
maintenance. But, from looking at the fairly noticeable impact it had, we still prefer and
recommend this approach over the external call.

It is also important to emphasize that the measurements are presenting the actual de-
crease of the execution time spent in the driver. That means that the impact when including
the other factors, such as the time to perform a system call, is not that significant.

Figure 4.6 shows that for the queuing port driver, exclusion of performing checks on
global- and local variables did not affect performance noticeably. The impact may be more
significant on other drivers, and there is no reason to not exclude these checks.

The measured size and inserted code in LLVM IR of the kernel driver are presented in
table 4.5. The comparison of the size and the increased time indicates that these are not
always in relation to each other, i.e. a decreased code size does not always imply decreased
execution time.

6.2 Static analyzes
This work shows that only a combination of the type system of Clang and the LLVM IR
provides a safety net for kernel driver developers.

Some of the benefits with this approach is that it does not put pressure on the developer
when adapting to the new types and functions, and that is is very easy to use. The procedure
of adapting the types will be guided by just following the API as well as enabling the
different analyzes. The same goes for the new functions. Also, the new functions shall not
imply more code. Previously, there were check procedures similar to the ones introduced.
The difference is that the new functions perform the check procedure as well as converting
the pointers to correct introduced type. The cast between the introduced types will later
not produce any machine instructions, i.e. there will be no additional code compared to
the previous procedure.

The naive approach presented in section 5.1.3.3, is also interesting. It shows the lim-
itations of function based analyzes. To compensate for this limitation, the invalidation
approach were inserted 5.1.3.4. The compensation will handle misuse of the dedicated
function, hence is a valuable safety net. However, we believe that it’s more valuable to try
to inform the developer during compile time. Those analyzes will directly inform where
an error might occur, which means that you hopefully get more insight in where things
might go wrong and also to prevent introducing such bugs later, thereby learning from
your mistakes.

Performing casts in C is in many situations very helpful, but may also introduce serious

68

6.2 Static analyzes

vulnerabilities. The combination of allowing memory accesses through pointers makes it
even more interesting. We believe that providing a completely watertight solution when
using C is very complicated. One could always warn the developer when writing code
which may later be used by a malevolent user, such as cast. But the problem is that many
of these situations are frequently used. Therefore, warning for every possible C language
vulnerability might result in to many warnings, which often result in losing the more im-
portant ones. Also, these kinds of problems are more related to a malevolent kernel driver
developer than a malevolent user. To prevent the developer from themselves is a whole
new area and is not treated in this thesis.

The limitations of LLVM 3.6 not supporting unions are of course noteworthy. This
must of course be presented clearly to the developer using the tool.

69

6. Discussions

70

Chapter 7
Conclusions and Future work

This chapter is divided into two sections. The first section will draw conclusions of the
thesis and the last section presents our suggestions for future work.

7.1 Conclusions
This work fortifies kernel drivers with focus on two concerns.

The first concern is that there should never be a direct memory access from kernel- to
user space. We propose a solution which prevent this by inserting robustness assertions
prior to accessing memory in the LLVM intermediate representation. The inserted asser-
tions were implemented in two ways, by inlining instructions and by invoking an external
function which performed the check. The inlining of instructions was found to influence
performance significantly smaller, in fact only with a maximum increase of 4.1%, and was
implemented in a manner that generated valuable error messages. This shows that the dy-
namic runtime checks are indeed a feasible approach to be able to guarantee that there are
no direct accesses to user space.

The second concern is preventing malevolent user from exploiting kernel drivers to
access kernel space for them. We propose a solution which uses the type system of Clang
combined with analyzes and code transformations on the generated LLVM IR code. The
result was three new types and four introduced functions which we extended the PikeOS
kernel driver API whichwe also implemented four static analyzes in form of LLVMpasses,
and one LLVM pass which inserted code to provide robustness. The LLVM passes were
implemented as a tool which we extended SYSGOs IDE CODEO with. The provided tool
is easy to use, has not shown any false positives, and uses a combination of techniques
which provides a watertight solution in most cases. Most cases since it prevents malevo-
lent users but is not a protection against malevolent driver developers. The result of this
extension were that we were able to identify four bugs in a single driver.

71

7. Conclusions and Future work

7.2 Future work
To improve the second part of the thesis, one could explore later versions of LLVM. There
may be an improvement concerning supporting unions. If so, this could be extended to the
other passes. The current passes would then need to be explicitly tested so that they work
correctly with the newer version.

There could also be more work to enable a pass which helps the developer provide the
right aggregated variable, see section 5.1.3.3. This work would need deeper knowledge of
control flows as well as more careful analyzes of how this could be written in C. We only
presented a short introduction of how it can be complicated, for example in cases where
the aggregated variable is returned from a function call.

This work is also restricted to pointers. It would be interesting to find approaches
to extend the analyzes to more types, such as function pointers. We are limited in our
approach since we are using the address space type, which only applies to data pointers. It
would be interesting to find a way to trace also function pointers, and looking further into
how other types may cause vulnerabilities in the kernel.

Further tests would also need to be conducted. Currently, we have concentrated on the
x86 and ARM 32-bit architectures. This could be extended to support especially 64-bit
architectures but also for others than x86 and ARM, such as the Power PC.

72

Bibliography

[1] D. P. Bovet andM. Cesati.Understanding the Linux kernel. " O’Reilly Media, Inc.",
2005.

[2] S. Bugrara and A. Aiken. “Verifying the safety of user pointer dereferences”. In:
Security and Privacy, 2008. SP 2008. IEEE Symposium on. IEEE. 2008, pp. 325–
338.

[3] A. Chou, B. Fulton, and S. Hallem. Linux Kernel. Security Report. http : / /
www.coverity.com/library/pdf/coverity_ linuxsecurity.
pdf. [Online; accessed 6-May-2016]. 2005.

[4] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler. An empirical study of oper-
ating systems errors. Vol. 35. 5. ACM, 2001.

[5] T. Coudray, A. Fontaine, and P. Chifflier. “Picon: Control Flow Integrity on LLVM
IR”. In: (2015).

[6] S. P. Dandamudi.Guide to RISC processors: for programmers and engineers. Springer
Science & Business Media, 2005.

[7] D. Dhurjati, S. Kowshik, V. Adve, and C. Lattner. “Memory safety without garbage
collection for embedded applications”. In: ACM Transactions on Embedded Com-
puting Systems (TECS) 4.1 (2005), pp. 73–111.

[8] D. Dhurjati, S. Kowshik, V. Adve, and C. Lattner. “Memory safety without runtime
checks or garbage collection”. In: ACM SIGPLAN Notices 38.7 (2003), pp. 69–80.

[9] S. Engle and S.Whalen. “FindingUser/Kernel Pointer Bugs in FreeBSD”. In: (2005).
[10] A. Forin, D. Golub, and B. N. Bershad. An I/O system for Mach 3.0. Carnegie-

Mellon University. Department of Computer Science, 1991.
[11] J. Foster. CQUAL: A tool for adding type qualifiers to C. http://www.cs.

umd.edu/~jfoster/cqual/.. [Online; accessed 6-May-2016].
[12] H. Härtig, M. Hohmuth, J. Liedtke, J. Wolter, and S. Schönberg. The performance

of µ-kernel-based systems. Vol. 31. 5. ACM, 1997.

73

http://www.coverity.com/library/pdf/coverity_linuxsecurity.pdf
http://www.coverity.com/library/pdf/coverity_linuxsecurity.pdf
http://www.coverity.com/library/pdf/coverity_linuxsecurity.pdf
http://www.cs.umd.edu/~jfoster/cqual/.
http://www.cs.umd.edu/~jfoster/cqual/.

BIBLIOGRAPHY

[13] D. Herman, L. Wagner, and A. Zakai. asm.js. http://asmjs.org/spec/
latest/. [Online; accessed 6-May-2016].

[14] R. Johnson and D. Wagner. “Finding User/Kernel Pointer Bugs with Type Infer-
ence.” In: USENIX Security Symposium. Vol. 2. 2004,

[15] T. Jones. User space memory access from the Linux kernel. http://www.ibm.
com/developerworks/library/l-kernel-memory-access/. [On-
line; accessed 6-May-2016]. 2010.

[16] B. W. Kernighan, D. M. Ritchie, and P. Ejeklint. The C programming language.
Vol. 2. prentice-Hall Englewood Cliffs, 1988.

[17] C. Lattner and V. Adve. “Architecture for a next-generation gcc”. In: GCC Devel-
opers Summit. Citeseer. 2003, p. 121.

[18] C. Lattner and V. Adve. “LLVM: A compilation framework for lifelong program
analysis & transformation”. In: Code Generation and Optimization, 2004. CGO
2004. International Symposium on. IEEE. 2004, pp. 75–86.

[19] C. Lattner and V. Adve. LLVM Language Reference Manual. http://llvm.
cs.uiuc.edu/docs/LangRef.html.. [Online; accessed 6-May-2016].

[20] J. L. Lawall, J. Brunel, N. Palix, R. R. Hansen, H. Stuart, and G. Muller. “WYSI-
WIB: A declarative approach to finding API protocols and bugs in Linux code”. In:
Dependable Systems & Networks, 2009. DSN’09. IEEE/IFIP International Confer-
ence on. IEEE. 2009, pp. 43–52.

[21] B. C. Lopes and R. Auler. Getting Started with LLVM Core Libraries. Packt Pub-
lishing Ltd, 2014.

[22] W. Nishida. Executable and Linkable Format (ELF). http://www.skyfree.
org/linux/references/ELF_Format.pdf. [Online; accessed 7-May-
2016].

[23] S. Peiró, M.Muñoz, M.Masmano, and A. Crespo. “Detecting stack based kernel in-
formation leaks”. In: International Joint Conference SOCO’14-CISIS’14-ICEUTE’14.
Springer. 2014, pp. 321–331.

[24] Pike OS. https://en.wikipedia.org/wiki/PikeOS. [Online; accessed
7-May-2016].

[25] A. Rubini and J. Corbet. Linux device drivers. " O’Reilly Media, Inc.", 2001.
[26] O. O. Ruwase. “Improving Device Driver Reliability through Decoupled Dynamic

Binary Analyses”. In: (2013).
[27] J. Skeppstedt and C. Söderberg. Writing efficient C code: a thorough introduction

for Java programmers: covers C99, the Standard C library and the new CIX draft.
Skeppberg, 2011.

[28] SYSGO. PikeOS User Manual (Fundamentals).
[29] SYSGO.Products: PikeOSHypervisor.https://www.sysgo.com/products/

pikeos-rtos-and-virtualization-concept/. [Online; accessed 7-
May-2016].

74

http://asmjs.org/spec/latest/
http://asmjs.org/spec/latest/
http://www.ibm.com/developerworks/library/l-kernel-memory-access/
http://www.ibm.com/developerworks/library/l-kernel-memory-access/
http://llvm.cs.uiuc.edu/docs/LangRef.html.
http://llvm.cs.uiuc.edu/docs/LangRef.html.
http://www.skyfree.org/linux/references/ELF_Format.pdf
http://www.skyfree.org/linux/references/ELF_Format.pdf
https://en.wikipedia.org/wiki/PikeOS
https://www.sysgo.com/products/pikeos-rtos-and-virtualization-concept/
https://www.sysgo.com/products/pikeos-rtos-and-virtualization-concept/

BIBLIOGRAPHY

[30] T. C. Team. Clang 3.6 documentation: Clang Compiler User’s Manual. http:
//llvm.org/releases/3.6.2/tools/docs/UsersManual.html.
[Online; accessed 6-May-2016].

[31] L. Torvalds. Sparse: A semantic parser for C.http://sparse.wiki.kernel.
org.. [Online; accessed 7-May-2016]. 2006.

[32] J. Yang, T. Kremenek, Y. Xie, and D. Engler. “MECA: an extensible, expressive
system and language for statically checking security properties”. In: Proceedings of
the 10th ACM conference on Computer and communications security. ACM. 2003,
pp. 321–334.

[33] A. Zakai. “Emscripten: an LLVM-to-JavaScript compiler”. In: Proceedings of the
ACM international conference companion onObject oriented programming systems
languages and applications companion. ACM. 2011, pp. 301–312.

75

http://llvm.org/releases/3.6.2/tools/docs/UsersManual.html
http://llvm.org/releases/3.6.2/tools/docs/UsersManual.html
http://sparse.wiki.kernel.org.
http://sparse.wiki.kernel.org.

BIBLIOGRAPHY

76

Appendices

77

Appendix A
Data from measurements

This appendix holds the raw measured data of a single queuing port read and write oper-
ation. The tables and figures in section 4.4 are constructed from this data.

79

A. Data from measurements

Size [bytes] a [ns] b [ns] c [ns] d [ns] e [ns] f [ns]
2 317 508 465 461 422 329
4 315 511 465 459 418 328
8 316 512 466 460 419 329
16 327 521 473 466 426 339
32 328 523 473 468 427 340
64 335 528 478 473 431 345
128 342 534 486 480 440 350
256 361 553 509 503 460 371
512 398 592 545 537 495 408
1024 486 687 633 631 589 498
2048 641 840 789 788 745 653
4096 951 1150 1101 1098 1057 966
8192 1582 1785 1732 1731 1688 1597
16384 3258 3437 3386 3371 3341 3265
32768 6444 6630 6583 6573 6539 6458
65536 12618 12812 12770 12748 12705 12631
131072 26334 26566 26469 26486 26432 26329
262144 52639 52866 52807 52825 52765 52684
524288 104870 105110 105038 105058 105002 104908

Table A.1: Measured time, in nanoseconds [ns], of a single queu-
ing port read- and write operation on x86 with different message
sizes, in bytes.

80

Size [bytes] a [ns] e [ns] f [ns]
2 4103 5245 4455
4 4088 5139 4435
8 4111 5113 4431
16 4082 5214 4456
32 4128 5242 4488
64 4152 5293 4507
128 4218 5273 4539
256 4286 5402 4664
512 4440 5529 4742
1024 4605 5691 4904
2048 4922 6072 5238
4096 5655 6787 5998
8192 7026 8143 7522
16384 10150 11432 10629
32768 24313 25448 24710
65536 44623 45775 45008
131072 85004 86199 85338
262144 165785 166953 165987
524288 327448 328459 327173

Table A.2: Measured time, in nanoseconds [ns], of a single queu-
ing port read- and write operation on ARMwith different message
sizes, in bytes.

81

A. Data from measurements

82

Appendix B
CODEO extensions

The different implementations presented in this work is integrated into SYSGOs Eclipse
based IDE, CODEO. When creating a new kernel driver, the various analyzes and code
transformations can easily be enabled and disabled in the configuration file that is auto-
matically provided.

B.1 Call external function
The code transformation presented in 4.2.1 can be enabled by checking the ’Check with
external function’, which is present in the created configuration file for kernel drivers,
see figure B.1. To illustrate how this code transformation works for developers, the code
example in figure B.2 will be used. In this example, a structure enters from user- to kernel
space which has an integer pointer as its member. If this pointer has been assigned, in user
space, to point to some integer that relies in the application, the dereferencing will imply
a direct access to user space. This driver will dereference it by printing the integer that the
member is pointing to, which is performed by the PikeOS function drv_put_d.

By enabling the created LLVM pass, this access will fail during runtime, causing the
presented error message in figure B.3. As seen from this message, it will present that the
error occurred in check_function.c on line 20, which is the location to where the check is
performed, i.e. not the actual memory access that is on line 146.

83

B. CODEO extensions

Figure B.1: Enable LLVM pass which fully prevents direct ac-
cesses to user space by invoking an external function

Figure B.2: Example code which performs a direct access to user
space

Figure B.3: Generated runtime error that prevent direct access to
user space, that is prevented by invoking an external function

B.2 Inline instructions
To prevent direct accesses to user space by inlining LLVM instructions, recall section
4.2.2, ’Check by inserting instructions’ can be enabled, see figure B.4. When using the
same code example as the one presented in section B.1, then the error message presented
in figure B.5 would occur. As can bee seen from this figure, the error leads to the correct
line, i.e. to line 146, which is where the actual access occurs. Although, the file is not
correct, which is the intention of this approach. This leads to the file where the PikeOS
function drv_put_d is implemented and not to the driver itself.

84

B.3 Changing type through dedicated functions

Figure B.4: Enable LLVM pass which fully prevents direct ac-
cesses to user space by inlining LLVM instructions

Figure B.5: Generated runtime error that prevent direct access to
user space, that is prevented by inlining LLVM instructions

B.3 Changing type through dedicated func-
tions

Changes between the introduced types should only be done through the dedicated func-
tions which also performs proper checks, recall section 5.2.2.1. This can be prevented by
enabling the option ’Change of types’ in CODEO, see figure B.6. An example of a situ-
ation where this may occur is presented in figure B.7. The driver takes a pointer to some
data, which is here interpreted as a structure. To interpret the entered data as a pointer to
a structure instead of a void pointer, a cast is performed. Although, this cast operation im-
plies that the new pointer type, i.e. unsafe, that is provided to the entered void data would
be changed in to the kernel type, since this type is provided with the default address space.
Therefore, this will change from a potential user space pointer to a kernel pointer, which
may imply serious problems. For example, if it’s later accessed directly. By enabling the
created LLVM pass, this would during compile time inform the developer via a warning
that the dedicated functions should be used, as can be seen in figure B.7.

85

B. CODEO extensions

Figure B.6: Enable LLVM pass which checks that changes be-
tween the introduced types are done through the introduced func-
tions

Figure B.7: Example code which changes the introduced types by
performing simple cast operations, i.e. not through the introduced
functions

B.4 Members are marked unchecked
New pointers can be introduced in the kernel drivers when a copy operation is performed.
These pointers have not been checked, and should therefore be providedwith the unchecked
attribute, as explained in section 5.2.2.2. To enable a static analyze that vefifies that this
is indeed correct, the option ’Data copied in’ can be enabled, see figure B.8. Consider the

86

B.4 Members are marked unchecked

example presented in figure B.9 where a structure is copied in from user- to kernel space
with the PikeOS function drv_memcpy_in. This structure has been checked by the kernel
driver framework and may therefore correctly be copied in. The member of this structure
is a pointer, which is provided with the kernel type, since that type is provided with the
default address space. If this function was invoked via a system call, then it’s crucial to
check that all members also point to user space, otherwise the user may use the driver
to access kernel space for them. As can be seen in this figure, a warning is generated to
inform the developer that data is copied in which is marked with the wrong type, i.e. in
this case kernel.

Figure B.8: Enable LLVM pass which checks that all members
are marked unchecked when data is copied in

Figure B.9: Example code which copies in data that contains
members that are not marked unchecked

87

B. CODEO extensions

B.4.1 Insert checks automatically
The option ’Data copied in’ comeswith an additional option ’Invalidate pointer’ whichwill
directly check all pointer members that are unchecked when data is copied in, see figure
B.10. To illustrate an example of how this will prevent users from accessing kernel space,
the code example presented in figure B.11 will be used. The example present two views,
the top view present a user application where a structure is created. The structure contains
a pointer to an integer, as can be seen in the right corner of the bottom view. The application
assigns this pointer to the address 0x80000000 which in the current configuration is an
address that belongs to kernel space. This pointer then enter as a member to the ioctl. The
driver invoked is presented in the bottom view of the same figure. Since the structure is
checked by the framework, it can correctly be copied in from user- to kernel space by the
PikeOS function drv_memcpy_in. Since the ’Invalidate pointer’ is enabled, the created
LLVM pass will insert checks for all unchecked member pointers when data is copied in.
In case the check fails, then the pointer will be assigned to an invalid address, see section
5.2.2.3, which is the case for the presented example. Therefore, when that pointer is later
dereferenced, in the drv_put_d function, the access will fail, resulting in the runtime error
presented in figure B.12.

Figure B.10: Enable LLVM pass which automatically perform
proper checks on all members that are marked unchecked when
data is copied in

88

B.5 Direct memory access

Figure B.11: Example code which access members which have
not yet been checked

Figure B.12: Generated runtime error that prevent accessing data
which is incorrect

B.5 Direct memory access
To prevent direct accesses to user space, the option ’Direct memory access’ can be enabled,
see figure B.13. This option will enable a static analyze which will verify that dereferences
of pointers are only performed on those marked kernel, see section 5.2.2.4. With the same
code example as presented for the dynamic approach, i.e. section B.1, would this option
provide warnings during compile time, see figure B.14.

89

B. CODEO extensions

Figure B.13: Enable LLVM pass which checks that direct mem-
ory accesses are only performed with pointers marked kernel

Figure B.14: Example code which performs a direct access to
user space

B.6 Integer to pointer
To prevent pointers from being introduced into drivers via cast operations from integers
can the option ’Integer to pointer’ be enabled, see figure B.15. To illustrate how this will
be prevented, the code example presented in figure B.16 will be used. In this figure, a
structure that contains an integer enters via a parameter. The structure is then copied in
to kernel space, using the PikeOS function drv_memcpy_in. Thereafter, the member of
the structure is casted from an integer to a void pointer, i.e. introducing a new pointer
to the kernel. Since this may introduce serious problems, as explained in section 5.2.2.5,

90

B.6 Integer to pointer

this will generate a warning. If this is desired, then the pointer may be provided with the
unchecked type which will inform the developer that a new pointer has been introduced
that must be checked before its use.

Figure B.15: Enable LLVM pass which checks that cast from
integer to pointer is only performed if the pointer are marked
unchecked

Figure B.16: Example code which performs cast operation from
an integer to a pointer, where the pointer is not marked unchecked

91

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTATIONSDAG 2016-06-03

EXAMENSARBETE LLVM-Based Fortification for Kernel Drivers
STUDENT Caroline Brandberg
HANDLEDARE Jonas Skeppstedt (LTH), Henrik Theiling (SYSGO AG, Germany)
EXAMINATOR Flavius Gruian (LTH)

Securing Device Drivers

POPULÄRVETENSKAPLIG SAMMANFATTNING Caroline Brandberg

Today’s operating systems that are used in highly safety and security critical do-
mains struggle with serious vulnerabilities. This requires new technology, especially
concerning the highest error prone software of the operating system, in particular
its device drivers.

We live today in a society where it is hard to find
anything which is not dependent on technology. To-
day’s cars, trains, airplanes and health-care is highly
dependent on software where security and safety are
of highest concern.

To be able to ensure people’s safety and security
one needs a good foundation, namely the operating
system. The operating system acts as the layer be-
tween the applications and the hardware, hence con-
trolling that everything is done in a correct manner.

Therefore, when dealing with highly safety and se-
curity critical domains it is very important to have a
certified operating system which can ensure the best
base to build from. One problem is that the system
can be extended with new software by a third party,
where the extended software is referred to as device
drivers. These extensions will then be a part of the
critical layer, and must therefore be of the same qual-
ity as the rest of the system. An extension which does
not follow the same standard may introduce serious
problems which may crash the whole system.

Device drivers have been shown to have an extraor-
dinarily higher error rate compared to the rest of
the system. Since they are integrated to such crit-
ical parts of the system it requires a new technology
that can prevent these vulnerabilities from being in-
troduced into the system.

There are especially two problems concerning
pointers. The first concern is securing the drivers
against malevolent users. Pointers received from a
destination where a malevolent user can occur must
be checked properly. A failure to do so might re-
veal or destroy critical parts of the system which can
cause serious problems. The second concern is secur-
ing the extensions from performing memory accesses
in a incorrect manner. These problems are very hard
to find and test for, hence an introduction of these
problems is unfortunately very easy.

To be able to prevent these kinds of problems, we
propose a tool which the extended software can use to
achieve a high level quality. The tool uses a combina-
tion of successful techniques, where we show that only
a combination of those can ensure protection against
these vulnerabilities. We propose both static anal-
ysis and dynamic runtime checks which both have
been extended to the Real Time Operating System
PikeOS. The statically part of the extension was
proven to provide a highly safety net for driver de-
velopers, providing valuable information during com-
pile time, whereas the dynamic parts provide almost
full error coverage and only showed a very low over-
head.

	Introduction
	Related work
	Pointer bugs in Kernel Drivers
	LLVM

	Structure

	Background
	Types in C language
	Pointers
	Structures
	Unions
	Type Conversions

	Operating System concepts
	Terminology
	Address spaces
	Device Drivers
	System calls
	Security issues

	LLVM
	LLVM Overview
	LLVM Intermediate Representation

	Train of Thoughts
	Dynamic runtime checks
	Direct memory access to user space
	Implementations
	Call external function
	Inline instructions

	Measurements
	Result

	Static analyzes
	Accessing kernel space on behalf of user space
	Introducing new pointer types
	Introducing new functions
	LLVM Pass

	Implementations
	Introducing the LLVM-based fortification into PikeOS
	LLVM Passes
	Using the extension

	Code examples
	Correct usage
	Limitation of providing the wrong aggregated variable
	Limitations of cast operations
	Limitation of unions
	Limitation of function pointer

	Discussions
	Dynamic runtime checks
	Static analyzes

	Conclusions and Future work
	Conclusions
	Future work

	Appendix Data from measurements
	Appendix CODEO extensions
	Call external function
	Inline instructions
	Changing type through dedicated functions
	Members are marked unchecked
	Insert checks automatically

	Direct memory access
	Integer to pointer

