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Abstract

A growing environmental issue today is the amount plastic pollution in
the ocean. To investigate how it might affect marine life, an important as-
pect is to study how plastics are transported by ocean currents and where
it ends up. This can be done by use of Lagrangian simulation of plastic
particles in computer ocean models. To improve the quality of the output
from such simulations the number of simulated particles is continuously
increased, and grid resolutions are refined. This puts increasing pressure
on the simulation programs to perform the computations as efficiently as
possible.

In the main part of this project the numerical time stepping schemes
used in a Lagrangian ocean simulator, and their influence on the efficiency
and accuracy of the simulations, were studied. The currently used 4th
order Runge-Kutta method (RK4) was compared to the Runge-Kutta—
Fehlberg method (RKF45) to assess the potential performance gain by
switching to a more advanced scheme. The Explicit Euler method was
included in initial tests to illustrate the benefit of using a higher order
method. Error testing was performed on an idealized test case based on
the Stommel equations, and time testing was performed on model data
from the Agulhas region off the coast of South Africa. RKF45 was found
to produce less accurate results than RK4 in very similar computation
time. However, it used less function evaluations, which means it might
still be useful in the future if more advanced interpolation schemes are
introduced.

Another numerical aspect was targeted in the secondary part of the
project, namely the effect of the boundary conditions between land and
sea on the particle trajectories. Simple conditions, such as the currently
used no—normal flow partial slip condition, include slowing particles as
they approach land to prevent them from accidentally beaching. To allow
them to flow freely even along shorelines, a free—slip condition was intro-
duced and evaluated. The two different methods were compared using
the Agulhas data. With partial slip, many particles beached along the
shorelines, but with free—slip not a single one of the 300 particles used got
stuck.



Popular scientific summary

The plastic pollution in the ocean is a growing issue for the marine environment.
To determine how and where the pollution affects marine life, an important step
is to map the spread of this pollution. This project concerns the numerical
aspects of a computer program developed to simulate the distribution of plastics
in the ocean.

Each year millions of tons of plastics enter our oceans around the world. With
time the larger plastic debris is broken down into smaller pieces by the sunlight
and grinding movements of the waves. These smaller pieces can easily get in-
gested by marine animals, and thus harm them. To evaluate the extent of this
threat to marine life, it is important to map the spread of plastics in the ocean.
This can be done with the help of computer simulations of the ocean currents.

One method of simulating the flow of objects in the ocean is by tracking in-
dividual particles, in this case pieces of plastic. In an ocean model, the ocean
currents are given as velocity fields that define the currents at discrete points in
space. The velocity of a particle is calculated by interpolating the velocities at
its nearest grid points, and then the particle is transported by taking discrete
steps of a predefined time length. In practice, millions of particles are tracked
simultaneously. This way of using particles to simulate transportation in a fluid
is known as Lagrangian simulation.

PARCELS is a computer program that is currently being developed to not only
track plastics in the oceans, but also other particles such as oil droplets or tuna.
In the main part of this project, different methods for stepping a particle forward
in time are compared, to evaluate whether PARCELS would benefit from using
a more advanced scheme than it currently does. The current method is known as
the 4th order Runge-Kutta method (RK4). To take a step of length dt in time,
it uses the velocity at not only the starting point, but also at three intermediate
points. This produces a 4th order approximation, i.e. it reproduces polynomials
up to the 4th degree exactly.

The method that I implemented in this project is known as the Runge-Kutta—
Fehlberg method (RKF45). In addition to the 4th order step, it also calculates a
5th order step, and takes the difference between these two as an approximation
of the local error. By putting a tolerance on this error the step size can then
be varied to take longer steps where the tracked path is nice, and shorter steps
only where necessary.

In the secondary part of the project, the boundary conditions that determine
how a particle behaves close to land were considered. The currently used con-
ditions are no—normal flow partial slip. This effectively means that the velocity
perpendicular to land goes to 0 as the particle approaches the boundary, and
velocities along a beach are slowed, but not quite to 0. To allow particles to flow
near a beach without getting slowed, I implemented a free—slip condition. By



mirroring the closest ocean velocities onto land when the particle is close, the
particle can be transported without getting slowed even close to boundaries.

To compare the methods used for time stepping, two different test cases were
used. The first one used the Stommel equations to simulate a periodic trajectory
in a rectangular region. The velocities along the western edge of this region were
very large compared to the rest. This test case was used to get a correlation
between the number of steps used and the error produced by RK4 and RKF45.

The second test case used real simulated currents from the Agulhas region, off
the coast of South Africa. Here the correlation found in the Stommel test was
used in an attempt to produce runs with RK4 and RKF45 that gave rise to
similar errors, and compare the computation time of these runs.

The boundary conditions were also evaluated using the Agulhas data. 300
particles were released along the coastline, using first the partial slip condition,
and then the free—slip condition. The number of particles getting stuck along
the shore in both runs were counted.

In the Stommel test, RKF45 was found to produce more accurate results in far
fewer steps than RK4. However, the correlation found did not translate well to
the Agulhas region. The timed runs took 934.4 s in RK4 and 935.2 s in RKF45,
i.e. almost exactly the same. However, the errors produced by the RKF45 run
in the Agulhas region were found to be larger than those produced by RK4,
meaning RK4 produced more accurate results in the same computation time.

The part of the time stepping that was expected to be most computationally
expensive was the function evaluations, i.e. interpolating the grid points to
calculate the velocity of the particle. RKF45 was indeed found to use fewer
function evaluations than RK4, but was still slower, which implies that other
overhead computation was relatively more expensive in RKF45. However, the
current method for calculating velocities is by using bilinear interpolation of the
grid points. This method is cheap, but might not be very accurate. Thus as the
development of PARCELS continues, it might be switched to a more advanced
method which would make function evaluations more expensive, and possibly
also make RKF45 perform better than RK4.

The free—slip condition proved to be very successful in the testing in the Agulhas
region. With partial slip, 95 particles, i.e. more than a third, got stuck along the
shoreline. With free—slip, however, not a single particle got stuck. Theoretically,
there are still ways for particles to get stuck even with the free—slip conditions,
but this is highly unlikely and will probably not cause problems in simulations
that use millions of particles.

To conclude, even though RKF45 used less function evaluations than RK4, they
ran at very similar computation times. RKF45 produced larger errors in this
test, but if function evaluations are made more advanced and computationally
expensive in the future, it might still prove useful. The new free—slip boundary
conditions prevented particles from getting stuck along the boundaries between



land and ocean, and were thus very successful.
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1 Introduction

A growing issue for the world’s oceans is the amount of plastic pollution in
them. Several attempts have been made to estimate both how much plastics
is currently in the ocean, and also how much enters the oceans every year.
According to a recent report an estimated 150 million metric tons of plastics
are currently in the ocean [1]. Another study by Jambeck et al. [2] estimates
that between 4.8 and 12.7 million metric tons of plastics entered the ocean in
2010, which is a significant annual increase. This number is also expected to
continue to grow rapidly. Most of the plastics used today and in the past are not
biodegradable, which means that it will not disappear from the ocean anytime
soon if nothing is done about it.

Most plastics that enter the ocean eventually break down into smaller pieces.
This is an effect of the sunlight that it is exposed to, combined with the motions
of waves, which eventually grinds it down [1]. The smaller plastic pieces can
easily get ingested by marine animals. To study more closely what effects this
has on marine life, and where the harm is done, an important aspect is to map
the spread of the plastics. This includes questions like where does it come from,
how does it spread and where does it end up. This information can then be used
to, among other things, compare plastic distribution in the ocean to information
about where marine life is most prevalent.

For decades studies have been carried out to answer where our plastics end up
[3, 4]. Many observations have been made on the currents of the ocean using a
range of different methods, including tracking drifter buoys and using satellite
observations. To expand on information obtained from these observations, com-
puter programs have been developed to simulate how plastics spread throughout
the sea. One such piece of software called PARCELS is currently being devel-
oped at Imperial College London, and the development of this program is the
subject of this thesis.

PARCELS will be a framework to numerically simulate the trajectories of not
only plastics, but a range of different materia in the ocean. These include ice-
bergs, pumice, jellyfish, tuna, oil droplets etc. The various objects are differenti-
ated by giving them distinct properties that define them and their distribution
throughout the ocean. Plastics can e.g. be given the ability to sink or fragment
into smaller pieces. Also certain properties of the ocean water can be simulated,
such as temperature or salinity distribution. [5]

This thesis targets two numerical aspects of the simulations that are carried out
in PARCELS, namely the numerical algorithm used for tracking the particles,
and the boundary conditions between land and ocean. The objective of the first
and major part is to evaluate the potential performance increase by switching to
a more advanced time stepping scheme. In the secondary part, a set of boundary
conditions that allow particles to flow freely along a beach without getting stuck
is to be implemented and evaluated.



2 Theory

2.1 Lagrangian ocean analysis

A powerful tool for analyzing fluid motion is to consider the movements of fluid
parcels, with the accumulation of parcel motion representing the fluid motion
[6]. A fluid parcel is defined as an infinitesimal part of the fluid being analyzed
[5]. It has constant mass but can be distorted with time and change its volume.
When analyzing a fluid this way parcels can be followed and used as the frame
of reference, i.e. each individual parcel is tracked in space and time. Describing
a fluid as individual parcels like this is know as the Lagrangian description.
A motivation for this can be to think of the fluid as a collection of individual
molecules, and solving the equations of motion for each molecule [7]. It is also
a very intuitive way to simulate how objects are advected in the fluid, since the
path of each individual object can be tracked. Many observations of flows are
also made in a Lagrangian way, e.g. observing winds by tracking balloons or
ocean flows by tracking drifter buoys [6].

In practice, we approximate fluid parcels discretely as points within the fluid,
and analyze the fluid by solving the equations of motion for a limited number of
points [7]. These points are known as particles. A particle can be a discretization
of a fluid parcel, but it can also be an object being advected by the fluid, such
as a piece of plastic or pumice [5].

To simulate different particles they can be given certain properties to describe
each specific type in detail. A plastic particle can be given properties such as
density and volume, as well as the ability to e.g. fragment into smaller pieces or
get ingested by marine animals. It could also be given certain properties that
affect how it interacts with beaches or the bottom of the ocean, e.g. probabilities
to beach or get stuck at the bottom. These parameters can also be varied to
examine their individual impacts on simulations. The types of particles that
can be simulated cover a wide range, including plastics, pumice, jellyfish, oil
droplets, icebergs, tuna etc. all with their unique properties [5].

Another way to simulate a fluid is by using an Fulerian description. Here,
instead of following individual particles, a reference frame fixed in space is used
[7]. Essentially the model domain is divided in grid cells, and at each point in
time the flow of fluid through each individual grid cell is calculated. A common
analogy to explain the difference between the Lagrangian and Eulerian frames
of reference is by considering the flow of a river. The Lagrangian way to study
it is by sitting in a canoe in the river and tracking your path. The Eulerian way
is standing on the river bank observing the river flowing past you.

In PARCELS, and many other ocean simulators, a combination of these frames
of reference is used [5]. Grids are used to give the full description of the domain.
Flow velocities are given as fields with values given at the discrete grid points,
but also properties like temperature, pressure or density can be given as fields,



and used to compute the path of the particles. The individual fields are com-
bined to form the grid. Particles are released in the domain at specific times and
positions. They are then advected within the domain. Each particle’s velocity
at a given time point is calculated by interpolating the velocities at the nearest
grid points. Thus, the velocities are originally given at fixed points (Eulerian),
but the velocities used are the ones interpolated at the positions of the moving
particles (Lagrangian).

2.2 PARCELS

There is already a number of programs available for Lagrangian ocean analysis
and particle simulation [5]. Several of them have been around for quite a few
years. To improve the quality of the simulations, grid sizes are pushed to finer
resolutions and the number of particles used is increased. Thus, as the amount
of data being analyzed keeps increasing at rapid speeds, this puts increasing
pressure on the efficiency and scalability of these programs. There is a growing
need for Lagrangian ocean simulators that are able to handle this evolution
of the field. The aim of PARCELS is to be able to do exactly this. The
framework and interface of the program is written in Python, while the actual
computation kernels are generated and compiled in C code during runtime using
Just-In-Time (JIT) computing. It is completely open—source and can be found
at https://github.com/OceanPARCELS/.

Another aspect that PARCELS targets is that many current programs were
developed with specific goals in mind. They might use a specific model with
specific solvers to solve a specific particle tracking problem. In contrast to this,
PARCELS is being implemented as a much more generalized program with
as few restrictions as possible. It is aimed toward oceanographers who want
to simulate their own systems without having to write their own code from
scratch. They should be able to specify their own particle types, grids, boundary
conditions etc. and use PARCELS to perform the simulations efficiently.

The data is supplied by the user in NetCDF format directly as velocity grids,
or other grids that describe parameters like sea surface heights or water density,
depending on the problem the user wants to solve. This way PARCELS can
interpolate the grids to get the velocities or values needed for each particle and
use this to track them by numerical time stepping.

The data is expected to be mainly from two distinctive sources (or a combi-
nation of the two), namely mathematical Ocean General Circulation Models
(OGCM), or observational data. An example of a widely used ocean modelling
software is NEMO (Nucleus for European Modelling of the Ocean) [8]. NEMO
comprises several different engines and includes both pre— and post—processing
tools. It can be used for a number of different modelling applications, such as
simulating salinity or temperature gradients in the ocean. The main model is
based on the Navier-Stokes equations [8], which are commonly used for fluid



dynamics applications. It also includes an extra nonlinear equation to couple
the temperature and salinity of the ocean to fluid velocities, along with several
approximations and assumptions to simplify its mathematical description of the
ocean.

GlobCurrent [9], on the other hand, is an example of a system that supplies
oceanographic data based on satellite observations. This is complemented by
a number of other observational techniques using e.g. drifter buoys, ships or
gliders, all with their own specific strengths and limitations.

The data from NEMO, GlobCurrent or other sources that is to be used by
PARCELS is given as grids. Thus the equations that PARCELS solve are not
directly the complex equation systems that NEMO or other models are based
upon. Instead, consider an initial value problem given by

y(t)=f(t.y@®), vy(to)=yo (1)

where the particle position at a given time ¢, is given by y(¢,) = (Tpn, Yn, 2n)- In
the case of velocity fields, the function f is the velocity v of the particle, given
as a vector where each element is the velocity in one dimension. The particle is
tracked by integrating the expression in time [5]:

t+At

Y(¥o,t + At = y(yo.t) + / v(y, 7)dr. 2)

The solution to this equation is approximated in PARCELS by numerical time
stepping. In addition to the equation given here there may also be other terms
that should be included, depending on the problem. Say, for example, that the
user wants to study the transportation of passive particles from a certain starting
position, and study how they get distributed. Then an element of randomness
in the simulation might be useful, to make particles take slightly different paths
that may deviate over time. This randomness could be introduced by adding
a stochastic term to equation (2) that perturbs the particle position slightly in
each step.

Other particles, such as tuna, are not only advected by currents, but also swim
consciously in certain directions. As particles, they may be given a desire to
stay close to other fish to form schools, or stay close to favorable habitats. To
include this, expressions that simulate such behavior have to be added to the
equation.

2.3 Time stepping

PARCELS computes particle trajectories by using numerical time stepping.
Given the initial value problem in equation (1), an approximation of f at a
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given time ¢, with corresponding position y(t,) = (Zn, yYn, 2n) can be used to
approximate the position of the particle at time t,,41 = t, + h, where h is the
time step size [10]. To take such a time step there are a range of different meth-
ods available. In this project, three different methods are used and compared.
The first, and perhaps most intuitive one, is the explicit Fuler method (EE). In
this method the finite difference approximation of the derivative,

F(tyn) = ¥ e TR, (3)

is used. From this we get the approximate solution of y at time ¢ + h given by

Ynt+1 =¥n + hf(tnayn)' (4)

It can be shown that this method is accurate to the first order, i.e. it reconstructs
a polynomial of the first degree exactly, but when applied to a polynomial of
higher degree an error will be introduced [10]. For most applications, first order
accuracy is not very satisfactory, as they tend produce relatively large local
errors. In an attempt to improve accuracy, one could also use an approximation
of the derivative at an intermediate point, say at ¢,,/2. This would give

Ynt1 =Yn +hf(tng1/2, Ynt1/2)- (5)

To approximate y, 1,2 in the expression above we use an explicit Euler step
and get

kl = f(tnaYn)
kng(twg,yﬁgkl) (6)

Yn+1 = ¥Yn + hk2

This can be further generalized by using more intermediate steps of different
lengths to give the s—stage explicit Runge—Kutta (ERK) method [10]:

kl = f(tnayn)
ko = f(tn + c2h,yn + haziky)
ks = f(tn + cah,yn + h(azik: + aszks))

ks = f(tn + Csh7Yn + h(aslkl +-- as,sflksfl))
Yn+1 =Yn + h(biki + -+ bsks).

An ERK method is often represented by its Butcher tableau [10], in the s—stage
case:
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In the Butcher tableau, a;; scales hk; in the expression to compute k; in equa-
tion (7), ¢;h is the size of the intermediate step 7 in time, and b; scales k; in the
expression to calculate y, 4.

The explicit 4th order Runge-Kutta method (RK4), also known as ”the classical
Runge-Kutta method” or simply ”the Runge-Kutta method”, is widely used in
particle tracking OGCM’s today, and is already implemented in PARCELS as
well. It is given by the Butcher tableau

N N O

oo O N
W= | O =

Wl | =

ol

In the RK4 method the time step size h is fixed. However, in many applications
the velocities may vary a lot in magnitude, or the velocity field may curve sharply
in some areas while being smoother in other. To produce accurate results, i.e.
with small global errors, h must then be small enough to approximate the sharp
changes accurately. This comes at the cost of longer computation time, as the
steps must be the same size where the solution is nice as well. This motivates
the use of methods with variable step sizes, such as the Runge-Kutta—Fehlberg
method (RKF45) [10]. This method is based on a 4th order Runge-Kutta
method, although it uses 5 stages for it. In addition to the 4th order solution
however, it also calculates a 5th order 6-stage Runge-Kutta step. Theoretically
this comes at the cost of just one more function evaluation, as ki — k5 for this
step are the same as the ones used in the 4th order solution. The reason why
the method uses 5— and 6-stage solutions is that even though it is possible to
make a 4-stage 4th order solution, a 5th order solution needs at least 6 stages.
The proof for this is quite complicated [11], and is thus excluded here.

The difference x between the RK5 and the RK4 step,

K= ||Y751T1 - y;ﬁ'l B (8)
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is then taken as an approximation of the local error at the point n + 1. The
local error is defined as the error introduced by the last step taken to reach the
current position. The global error on the other hand is defined as the difference
between the current position and the exact solution at the same point in time.

Depending on the magnitude of the estimated local error x the step size can
then be adjusted as needed. If it is below a certain error tolerance T' the step
is accepted, and if kK < 107, say, the step size h is doubled before the next step
is taken. The factor 10 can be changed to suit different applications, but here
10 is used simply because it is the value given in Hairer et al. [10]. If K > T, on
the other hand, the step is rejected, h is halved, and a new step with the new
step size is calculated. This is repeated until K < T and the step is accepted.
The reason why the tolerance for doubling the step size is so much larger than
for halving a step is that the risk of having to reduce the step size soon after
doubling it should be low. When the step size is reduced the attempted step
is rejected and has to be recalculated, which takes time and shouldn’t be done
unnecessarily often.

Schemes that use this way of calculating two different solutions to estimate the
error are called embedded Runge—Kutta methods. The Butcher tableau for the
RKF45 method, with the two bottom rows representing the 5th (top) and 4th
(bottom) order solutions respectively, is

0

1 1

1 1

3 3 9

8 32 32

12 | 1932 7200 7296

13 | 2197 2197 2197

1 439 8 3680 _ 845
216 513 1104

1| _8 9 3544 1859 1

2 27 2565 4104 10
16 0 6656 28561 9 2
135 12825 56430 50 55
25 0 1408 2197 1 0
216 2565 4104 5

2.4 Interpolation

To calculate the velocity (or other grid data; henceforth only velocities will be
considered, but most methodology translates directly to other field types too)
of a particle at a certain point in space the velocities at the closest grid points
are interpolated. The grids may also change in time in discrete steps, so the
velocities are also interpolated (linearly for now) in time. At this stage of de-
velopment the grid cells are assumed to be two—dimensional and rectangular.
The interpolation currently used is bilinear interpolation [12], which is an ex-
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tension of linear interpolation to two dimensions. Let the velocities be denoted
by v = (u,v), where v and v are velocities in the zonal (z) and meridional
(y) directions respectively. To calculate an approximation of v(x,y), say, where
z € (zi,Zit1), ¥ € (Yj,yj+1) (see figure 1) we first perform linear interpolation
in the y—direction:

(T4, Y) (i1 — @) + v(@it1,y5) (@ — 74)

v(z,y;) ~ p—
(] 3
o _ o _ (9)
(@i Y1) (@i — ) +o(@ig, Y1) (@ — 24)
v(T, yj41) & Tt — T
3 3

Then these acquired values are interpolated in the y—direction:

o(z, y5) (Y41 — y) +o(@, y541) (Y — Y5) (10)
Yj+1 — Yj

v(z,y) ~

In a three—dimensional grid this is easily generalized by interpolating linearly in
the z—direction. The interpolation is performed separately in each dimension,
i.e. for the u and v velocities.

06-¥54) (% 41:¥42)

{x'|+1 rJ"'j}'

Figure 1: Bilinear interpolation performed on meridional velocities.

There are several different options available for the choice of grid type. In
oceanography, it is common to use a staggered grid, i.e. a grid where the
different data fields are not all defined on the same positions. Advantages of
this include simplified capturing of smaller scale eddies, i.e. vortices, but details
on this will not be further described here. For more information, please refer to
Griffies [13].

Figure 2 shows the five Arakawa grids [14] that are commonly used for oceano-
graphic and meteorological applications. Although there are many different
arguments for choosing one grid type over another, the most commonly used

14



ones in OGCM’s are either the staggered C— or B—grids [13]. In open water all
grid types can be interpolated in similar fashion, since each field is interpolated
separately. To implement the boundary conditions, however, the grids may have
to be treated differently.

U, v, g U, v, g q q q 4
(4, 5) w'v uy  (4,5)
U, U, q u,v,q q q q v
(A) (B) (€)
q u q u,v q thv
v (4, 4) v ¢ Ut 4
q U q u,v q u,v

Figure 2: The five Arakawa grids in two dimensions [14]. v and v
denote zonal and meridional velocities respectively, and ¢ denotes
other grid parameters such as e.g. temperature or surface height.

2.5 Boundary conditions

When carrying out simulations of particles in the ocean there may be a number
of different boundaries that have to be considered. In a 2—dimensional case
there may be boundaries between land and sea, and also at the edge of the
simulation domain. When including a third dimension (depth) there are also
boundaries between sea and bottom, and sea and surface. There may be a great
number of different conditions applicable to these boundaries, depending on the
experiments the user wants to conduct. For example different particles should
probably behave differently on the edge towards land. A plastic particle may
be allowed to be washed ashore and beach, i.e. get stuck, but this should never
happen when the particle considered is a fish. In this thesis we only consider
boundaries between land and ocean, and restrict ourselves to the 2-dimensional
case.

15



While the user should be able to define and implement their own boundary
conditions based on their own application, this part of the thesis is mainly con-
cerned with implementing a specific condition between sea and land. This is
to have an example to use for other testing and development of PARCELS,
and hopefully to use for some real application. It is for now restricted to two
dimensions, but the same conditions could be applicable to the boundary be-
tween sea and bottom. The grid is assumed to be an Arakawa C—grid [14] with
velocities for each grid cell defined on the east and north edge of each cell as
per NEMO convention [8]. In NEMO the grid is also masked by setting the
v (u) velocities on edge cells with land to the north (east) to 0, which is the
value that is given to all land grid points. The purpose of this is to always have
north/south (east/west) edges defined by v (u) points. This is also assumed to
have been done in this application. In PARCELS, however, the border and land
grid points are instead given the value NaN.

The objective of the conditions is to make particles flow freely along edges
without risking beaching, i.e. getting stuck. A simple way to prevent particles
from being advected onto land grid cells is to simply let all land points have the
value 0, as NEMO does [8]. On an Arakawa C-grid, this effectively results in
no—normal flow combined with a partial slip condition [15], see figure 3 (a). The
no—-normal flow condition means, as the name implies, that a particle’s velocity
perpendicular to the boundary goes to 0 as the particle approaches the edge.
This holds both for velocities toward the boundary and away from it, meaning
that it does not only slow particles approaching the beach, but also makes it
harder for them to drift back to open water.

The partial slip condition slows the particle velocities parallel to the boundary
when they are close to it, but the velocity doesn’t go to 0. (If the velocity goes
to 0 it is known as a no—slip condition.) In many fluid dynamics applications
no-slip and partial slip conditions are widely used, as it can be shown that the
velocity of a fluid reduces to 0 near boundaries at very small scales [16]. However,
these scales are far too small to be accurately represented in today’s OGCM’s
[15]. This might motivate the use of another type of condition, such as the free—
slip condition [15]. The free-slip condition is defined as letting the gradient of
the velocity perpendicular to the boundary go to 0 when the particle is close.
This condition is also used in combination with a no-normal flow condition,
but does not slow velocities along a boundary, effectively reducing the risk for
unwanted deceleration of particles.

In practice there are a few different ways to implement a free—slip condition.
One of these is by making use of ghost points [15]. A ghost point is essentially
a land grid point which is temporarily given the same value as a neighboring
sea grid point. Consider the v velocities of a particle at (z,y) flowing along a
western boundary (figure 3 (b), 1 for notation). The values on the land points in
PARCELS are originally v(x;,y;) = v(zi, yj+1) = NaN, but for the interpolation
to calculate v(z,y) the sea velocities v(z;11,y;) and v(2;41,yj+1) are mirrored
onto the corresponding land points, i.e. v(x;,y;) and v(z;, yj4+1) respectively.
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In figure 3 these ghost point velocities are light red. This effectively collapses
the interpolation equations 9 and 10 to

o(z.y) = 0(@ig1, Y)W —y) +o(@ir1, yie) (Y — y;) "
’ Yi+1 — Y :
{a) ° (b) J t
® ° .t .—)I . | : HI
® s t ® t t
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® 3 5 ! s
¢ ? -* o <]> —e

Figure 3: Illustration of the original partial slip condition (a) and
the newly implemented free—slip condition (b) on an Arakawa C-
grid. In (a), land grid points simply have the value 0, resulting
in slower velocities for nearby particles. In (b), land grid point
values are NaN, until a particle (green) is adjacent to them. At
this stage the nearest ocean velocities are mirrored onto the land
points to force the particle away from land and also allow it to
have an unslowed velocity parallel the beach.

The no—normal flow condition considered thus far does not only slows particles’
velocities toward boundaries, but also away from them. A possible remedy for
this could be to only have the normal velocities on the boundaries be 0 when the
closest sea velocities are directed toward the boundary, and otherwise mirror the
sea velocities. To force particles away from the coastlines even more strongly,
and thus reduce the risk of unwanted beaching, we instead use ghost pointing
for perpendicular velocities too by mirroring the closest velocities and adjusting
the sign to make the ghost point velocity point away from the boundary. These
are also slightly scaled to make velocities away from a boundary larger than
toward them.
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Figure 4: Sketch showing how a particle with the free—slip bound-
ary conditions might end up on ”land”, i.e. all its closest grid
points in either the u or the v velocity field are NaN. The light
green particle is advected west since both of the u grid points north
of it can be used for ghost pointing velocities along the boundary,
and thus no beaching threat is detected. If the particle does get
advected onto land, i.e. where the dark green particle is, the ve-
locities marked with green are ghost pointed onto all four v points
surrounding it, pointing southward and scaled to force the particle
back to sea.

With these boundary conditions in place there is still a way for particles to reach
areas where all the nearest grid points of one field are NaN. This is illustrated
in figure 4. Consider a corner with land to the north—west and velocities in the
surrounding sea points pointing west (u) and slightly north (v). As the light
green particle in figure 4 moves westward it will not detect a western boundary
hindering it since both its southern w field points will always be sea points,
which may be mirrored onto the land points to the north of them. Thus if
the light green particle keeps moving westward it may end up at the position
marked with dark green in figure 4, where all its four closest v grid points are
land points. It is a (fairly) safe assumption® that the particle will still be closer
to its southern v grid points in this case. Thus if a particle is on land in the v
field and closer to its southern v points than its northern ones, the grid points

IThe exception would be if a particle moves out of bounds in both the z and y directions
in the same time step, resulting in it being surrounded by only NaN points in both u and v,
which is quite unlikely. In case this actually does occur the particle simply gets stuck, at least
at this stage of development, which is expected to be a minimal loss considering the great
number of particles used in most simulations.
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another step to the south of it (green velocities in figure 4) are mirrored onto
the points surrounding the particle, all pointing south to force the particle back
to sea. These mirrored velocities are scaled to speed up the returning of the
particle to sea.

2.6 Summary of aims and restrictions

The main part of the thesis concerns the efficiency of the numerical time step-
ping scheme used in the computations. Rather than determining the ultimate
method, it should be viewed as an evaluation of the improvements that can be
made by switching to another scheme than the current RK4. If the improve-
ments when using RKF45 prove to be significant, the benefit of putting more
effort into finding a better method might be worthwhile, but if not it might
be better to prioritize efforts in other aspects of the program. EE will also be
included in initial testing, hopefully displaying benefits of using a higher order
method. The project is restricted to using these three methods only.

It is difficult to say beforehand what improvements can be made by switching
to another numerical scheme. At the very least RK4 is expected to perform
better than a EE because of its higher order. An embedded Runge—Kutta
method should be able to improve performance even further by taking larger
steps where the solution is nice, even though each individual step it calculated
at a greater computational cost.

In the secondary part of the project the boundary conditions between land
and ocean are considered. While PARCELS should be a very general program
which allows the user to specify their own boundary conditions, the objective
of this part was to implement a specific type of condition, to be used for early
applications and further development. With these conditions, particles should
be able to travel close to beaches without getting slowed in any direction, and
without getting stuck.

To simplify the formulation of these conditions some additional constraints are
assumed. The grid type may play a significant part in how the boundary condi-
tions are implemented, so for the time being, the commonly used Arakawa C—
grid [14] is assumed. This grid is assumed to be 2-dimensional. As the boundary
conditions are implemented by considering a number of different cases that may
occur, i.e. the particle may be in a grid cell with 0—4 land points placed in differ-
ent ways, the interpolation algorithm used is restricted to bilinear interpolation
[12].
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3 Methodology

In the main part of the thesis, the ultimate goal of the testing was to run a
time test on a case where RK4 and RKF45 produced similar results in terms of
accuracy. To do this two different test cases were used. The first one is based
on the Stommel equation, which describes an idealized periodic current along
a western boundary. This was used to get a correlation between the number of
steps taken and the error of the solution. For the actual time testing a data set
from NEMO was used. The data set approximates currents around the coast of
South Africa. This data set was also used for the evaluation of the boundary
conditions.

3.1 The Stommel test case

To compare the numerical methods they were initially applied to the (periodic)
steady—state solution of the Stommel equation, as described by Fabbroni [17].
The equation describes a periodic velocity field in a rectangular region, with
large magnitudes along the western boundary. Further background details are
given in Pedlosky [18].

The analytical steady—state solution for the stream function v is given by

Y= (1- e v/ — x)msin(my) (12)

where €, the thickness of the western boundary layer, is defined as e, = r/(a).
Here r is the inverse time scaling caused by bottom friction, 3 is the latitudinal
variation of the Coriolis parameter f, i.e. 8 = df/dy, and a is related to the
width of the field. The parameter values used in this implementation are the
same as the ones used by Fabbroni, except for a scaling of a by 100 to widen
the field:

a = 2000000,

B=2-10"" (ms)™ (13)
1 -1
r=—"T""—""""""=°S8
11.6 - 86400

The velocity field is given by

— Y _ (1 —x/es _ 2
u By (1—e x)m* cos(my),
_ (14)
_ () rsin(ey)
= = o 7 sin(my).
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Figure 5 shows a quiver plot of the velocity field. To test the numerical methods
only the trajectory of one particle was studied, with starting position (z,y) =
(10,50). The simulation time was 2387334 s, which allowed the particle to make
approximately one full lap. To implement the velocity field a 1000 x 1000 A—
grid was used with bilinear interpolation. While a more exact solution could in
this case probably be achieved by using the analytical solution to equation (14),
instead of interpolating a discretized vector field, a grid is used here to make
the test case more similar to real applications.

Stommel velocity field
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Figure 5: Quiver plot showing the Stommel velocity field. A par-
ticle placed in the field will have a periodic trajectory, i.e. it will
return to its starting point after making a full lap.

As ground truth an RK4 run with 100000 time steps was used. The error
examined was defined as the distance between the end point of the simulation
and the end point of the ”ground truth”, taken with an accuracy of 1076. The
unit of distance and the error here is a little bit abstract, since positions are
given in degrees, but the grid cells are uniform squares, i.e. no correction for
the deformation of the grid closer to the poles has been used. Thus the unit of
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positions and error should rather be considered general length units.

The Stommel test case was used to get a correlation between the number of
time steps used and the resulting error for the different numerical schemes. To
do this, first a set of runs using RKF45 with tolerances » ranging from 10719
to 10782 in 200 steps evenly spaced on a logarithmic scale was performed. To
allow RKF45 to set its starting time step size implicitly, the step size was initially
given as the full execution time, and was then scaled down in the time stepping
algorithm by rejecting steps that did not fulfil the tolerance. The number of
steps used by these runs were saved, and two additional sets of runs, one with
RK4 and one with EE, with these same numbers of steps were performed. The
errors for all runs were examined to get a correlation between the number of
steps and the error for RK4 and RKF45. This correlation was then used in
the Agulhas test case to perform the time measurements. Since the purpose of
including EE was to show the benefits of using a higher order method in terms
of accuracy, it was omitted from the time testing.

3.2 The Agulhas current

The test case used to perform the actual time tests was based on NEMO data
on currents in the Agulhas region, off the coast of South Africa. The region
used here spans approximately from 4°E 44°S to 38°E 24°S. Figure 6 shows
a map of the velocity fields for one time point in the region. The region is
interesting from an oceanographic perspective because of the different currents
that converge and cause turbulence here [19]. The narrow and swift Agulhas
Current flows southwestward along the southeast coast of Africa, transporting
warm water from the Indian ocean. In the southern part of the region the
Antarctic Circumpolar Current, flowing eastward around Antarctica, causes the
Agulhas current to retroflect, resulting in an eastward flow back toward the
Indian Ocean. In the western part of the region the colder Benguela current
transports water north along the southwest coast of Africa. There is also a
limited leakage of warm water from the Agulhas current to the western part of
the region.
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Figure 6: The zonal (u, left) and meridional (v, right) velocity
fields at the starting time of the Agulhas data.

The data is given as zonal and meridional velocities on a C—grid with dimensions
402 x 302, varying in time in discrete steps. The time span is from 2012-01-05
to 2012-02-29, with data given every 5 days, i.e. at 12 time points. To perform
the tests of the numerical schemes, 200 particles were released evenly spaced
along a straight line from 10°E 40°S to 28°E 40°S, to flow freely for 55 days,
i.e. the full time span of the data set. Particles reaching the outer edge of the
region within the run time were discarded, since no boundary conditions were
defined for this yet.

Before running the time tests an approximate calculation of the errors was
performed, to assess whether the correlation found in the Stommel test would
hold even for this less idealized test case. The error was once again defined as
the deviation of a solution from a more exact ”"ground truth” run, this time
using RK4 with 10000 time steps. Since the Agulhas case is based on real
currents, however, it is of a more chaotic nature than the Stommel test. Thus
a small deviation early in a particle trajectory might end up making it follow
a significantly different trajectory, making the size of the errors a less precise
metric. This is the motivation for including the Stommel test to study errors.

To examine the error, an RKF45 run with a tolerance of 1.06 - 1072 was per-
formed. The same starting positions as in the time test were used. The number
of steps used in each particle trajectory was saved, scaled according to the cor-
relation found in the Stommel test, and then an RK4 run with the correspond-
ing number of steps for each particle was performed. To assess whether there
was any significant difference between the errors, a two—sample Kolmogorov—-
Smirnov (KS) test [20] was performed. The two—sample KS test uses the the
empirical distribution functions of two test samples to determine if they are
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from the same distributions. The KS statistic D, ,, is defined as
Dy = sup [Fin(z) — Fo,m(2)], (15)

where Fi ,,(z) and F,,(z) are the empirical distribution functions of the two
test samples respectively. The two samples are determined to not be from the
same distribution with a certainty level of « if

n—+m
Dy, m > c(a) —— (16)

where n and m are the sizes of the two samples respectively. For o = 0.05,
which is the level used here, ¢(a) = 1.36.

To perform the time tests, 50000 particles were released at each starting position,
and the simulation was carried out for 55 days. RK4 was used with 1000 time
steps.

To test the boundary conditions, the Agulhas test case was used again. The
evaluation was done by releasing 300 particles in grid cells adjacent to land all
along the coastline, and counting the number of particles that got stuck. A
particle was defined as stuck if, by the end of the run time, it was in a grid cell
on or just next to land, and it didn’t travel more than 10~3 degrees in the last
5 time steps (i.e. 0.275 days). The run time used was again 55 days. Particles
that reached the edge of the region within the run time were not discarded from
this test. Instead their velocities were set to 0 for the remainder of the test run.
These were not counted as stuck, since they were not in grid cells adjacent to
land. For the tests included in this report only RK4 was used, but the boundary
conditions were confirmed to work with RKF45 as well.
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4 Results

4.1 Performance of the numerical methods

The global error for each run at the end point of the Stommel test is plotted in
figure 7 against the number of steps used in each run. The EE error appears to
have a more or less steady logarithmic decline with increasing number of steps,
although the error is in the order of 10'-102 for almost all step sizes used here,
which is well above any useful level for practical applications. The error also
appears to follow a slightly wavy pattern for lower number of steps.

For RK4, the error also appears to follow a logarithmic decline with increased
number of steps, but with a wavy pattern along the "mean” decline. This
wavy pattern, most clearly visible around 10? steps, is however dampened with
increased number of steps.

The errors for the RKF45 runs appear to be on almost constant levels for many
runs with different numbers of steps, with some jumps between these levels.
Increasing the number of steps by a large enough amount leads to a decrease
in the error, although there is no clear correlation between the error and the
number of steps used.
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Figure 7: The global error at the end point of RKF45, RK4 and
EE, all using bilinear interpolation, for 200 different runs on the
Stommel test using different numbers of steps. The numbers of
steps used were picked by running RKF45 first with tolerances
evenly spaced on a logarithmic scale from 1073° to 10710, and
then using the number of steps used in these runs for RK4 and
EE. A line is fit to each data set using the least squares method,
purely for visualization purposes.

To scale the numbers of steps to be used in the Agulhas test case one of the
RKF45 runs that produced an error of 7.4 - 1073 was used. This choice was
rather arbitrary, only motivated by the fact that the wavy pattern of the RK4
error looks to have stabilized at this point. No further investigation of the
sensitivity to this value on the end results has been made.

Specifically, the tolerance used was 1.06 - 107, which produced a trajectory
with 65 steps in the Stommel test. Several RK4 runs achieved errors very
close to this, the closest one using 156 steps. Thus the scaling parameter used
to make RK4 and RKF45 achieve similar error levels in the Agulhas test was
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v = 156/65 = 2.4.

The ground truth trajectories of the particles in the Agulhas test case are dis-
played in figure 8, with the u field at the starting time (2012-01-05) as the
background. Figure 9 displays the empirical distribution functions for the er-
rors of the RK4 and RKF45 methods when applied to the Agulhas case. The
Kolmogorov—-Smirnov test yielded a statistic of D,, ,,, = 0.225. 54 particles were
discarded since they reached the outer boundary of the simulation region, leav-
ing 146 particles. This means that the null hypothesis that the two error sets
were from the same distribution is rejected on a level a = 0.05, since

/146 4 146

In other words, the errors produced by RKF45 and RK4 in the Agulhas test
were from different distributions. Figure 9 shows that the RK4 curve lies above
the RKF45 one, at least for lower error levels, meaning that the results from
RK4 are more accurate than those from RKF45.

The results from the time measurements in the Agulhas test with 50000 particles
released at each starting position are displayed in table 1 below.

Table 1: Computation time used by RK4 and RKF45 in the time
testing in the Agulhas region.

RK4 (s) | RKF45 (s)
9344 | 9352
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Figure 8: Ground truth trajectories used for testing the numeri-
cal integration schemes in the Agulhas region. 200 particles were
released evenly spaced along a line from 10°E 40°S to 28°E 40°S.
Particles that reached the outer boundary of the region were dis-
carded from tests and are not shown here. The background shows
the u velocity field at the starting time. Colors of the trajecto-
ries are only to distinguish separate paths, and have no further
meaning.

28

35



1.0

Cumulative probability

0.8 i
0.6 g
0.4} 1
0.2} i
— RK4
— RK45
00 ! ! ! !
0 2 4 6 8 10

Error

Figure 9: Empirical distribution functions of the errors, defined as
the normed distance in degrees from the end points of the ground
truth trajectories, for RK4 and RKF45 when applied to the Agul-
has test.

4.2 Boundary conditions

Figure 10 shows the trajectories of particles released along the coastline, both
with simple no—normal flow partial slip condition and with the new free—slip
implementation. There is a visible increase in particles being advected away
from the coastlines when free—slip is used. More particles released along the east
coast actually get caught in the Agulhas Current and follow it for a considerable
distance, even through the retroflection in the south and back toward the Indian
ocean. In the north eastern corner of the region, in the Maputo Bay area, very
few particles actually leave the coastline when partial slip is used. With free—
slip, however, many of them eventually get caught in eddying motions off the
coast.

Along the west coast the difference is not quite as visually obvious, but there
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appears to be some increase in the number of particles leaving the coastline
and being caught in the Benguela Current. There also appears to be a slight
increase in the distance covered by some of them, implying that the partial slip
condition slows them down at the beginning of their journey.

To quantify the difference, the number of stuck particles and mean distance
covered by the particles of the two different runs are displayed in table 2 below.

Table 2: Number of stuck particles and mean distance covered by
particles released along the coastline in the Agulhas region when
using no—normal flow with partial slip and free—slip respectively.

‘ Partial slip Free-slip
# particles stuck 95 0
Mean distance traveled [deg.] 5.11 9.55
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Figure 10: Trajectories for particles released off the coast in the
Agulhas region using the partial slip (left) and free—slip (right)
boundary conditions. The two bottom plots show detailed views
of the section marked with red squares in the top figures. The
background shows the u velocity field at the starting time. Some
particles appear to be on land in the detailed views. This is because
all four grid points of a cell need to have a strictly non—-NaN value
to color the cell correctly, but with the use of ghost points the
particles can still flow through cells with one or more NaN grid
points.
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5 Discussion

5.1 Performance of the numerical methods

The errors produced in the Stommel test, displayed in figure 7, show many
interesting traits. Not surprisingly, the errors produced by EE are significantly
larger than the ones produced by the other methods, and its slope appears
smaller. In magnitude the errors are quite large, only just reaching below 10
degrees when more than 100 steps are used. A quick look at an EE trajectory
using 39 steps, displayed in figure 11, shows that the large errors are because the
trajectory goes out of bounds at the western edge. This makes the test results
rather unfair to EE, as it would probably be able to produce smaller errors if
the test region were larger. However, even before going out of bounds the error
is visibly quite large.
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Figure 11: Trajectory using 39 steps produced with the EE method
in the Stommel test. The dashed grey line shows the ground truth
trajectory.

The EE errors also display a strange, almost wave shaped pattern. The RK4
errors also appear to vary in a similar fashion. These seem to follow a quite clear
logarithmic slope with decreasing time step sizes, but especially for larger step
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sizes the wavy pattern appears along the slope. Figure 12 shows a more detailed
view of this, with more closely spaced data points. To examine the cause of the
wavy pattern, the western part of three trajectories with 63, 66 and 69 steps
respectively are shown in detail in figure 13. Their produced errors are marked
with colored dots in figure 12. In figure 13, we see that all three trajectories seem
to track similar curves until they get close to the western edge, where velocities
are much larger than in the rest of the region. The large velocities appear quite
problematic, as a visible error is introduced in both the green (66 steps) and blue
(63 steps) trajectories. The red one, however, happens to take steps that don’t
deviate much from the ground truth, for no obvious reason. The wavy error
pattern in figure 7 seems to depend on where the steps along the western edge
are placed. However, as the number of steps increase, so does the amplitude of
this pattern and the error in general, which is of bigger importance.

1.2 T T T T T T T

60 65 70 75 80 85 90 95 100
steps

Figure 12: A detailed view of the errors produced by RK4 on the
Stommel test with number of steps ranging from 60 to 100. Here
both axes are linear, as opposed to the logarithmic axes in figure
7. The colored dots correspond to the colors of the trajectories in
figure 13.
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Figure 13: Detailed view of three trajectories produced by RK4
runs using 63 (blue), 66 (green) and 69 (red) steps respectively
in the Stommel test. All trajectories trace a similar curve until
they reach close to the western edge, whereupon different errors are
introduced by the large velocity shift. The ground truth trajectory
is shown as a dashed grey line.
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Not surprisingly, the errors of the RKF45 method prove to be significantly lower
than for the other methods in most cases. More surprising, however, is the
pattern it yields with almost constant error levels for several different numbers
of steps, followed by a jump to another almost constant level. A closer look at
the trajectories and the step sizes of two runs using 42 and 65 steps respectively
is shown in figure 14. In figure 7 these runs can be seen to have very similar
global errors at the end point, namely 7.498 - 102 and 7.428 - 10~2 respectively.
As can be seen in figure 14, the step sizes prove to be exactly the same from
the first through the ninth step, which is equivalent to approximately 71% of
the total trajectory distance. Hence it appears that differences between the two
trajectories introduced after this point are too late and too small to lead to a
large difference in the global error at the end point.

Looking instead at the RKF45 trajectories and step sizes from two runs with
very similar number of steps but different errors (figure 15) reveals an impor-
tant difference. The studied runs are one taking 65 steps and one taking 67,
producing global errors of 7.428 - 1072 and 1.729 - 10~2 respectively at the end
point. Figure 15 reveals that the first step in the trajectory with 67 steps is half
as long as the first step of the 65 step trajectory. This introduces a difference of
1.00 - 103 between the two solutions already at the second point of the 65 step
trajectory and the third point of the 67 step trajectory. This difference then
propagates throughout the solutions and eventually grows to a significant global
error difference, despite the overall similarity of the step size distributions.

The size of the first step in these experiments is not explicitly set. Instead,
it is picked by setting the step size equal to the entire run time, and letting
the RKF45 try to take steps and reject them, effectively halving the step size
until a step is accepted. The purpose of this technique is to not explicitly
affect the efficiency of the different runs by giving them step sizes so small that
they have to double them repeatedly to reach a more stable level. Since the first
step appears to affect the global error at the end point so significantly though, it
might be a good idea to set the starting step size to something moderately small
in practice. Depending on the length of the run it might not play as big a role,
but delaying the introduction of errors could certainly be impactful since local
numerical errors accumulate and can lead to large deviations of the trajectories.
It also comes at a low computational cost, unless the seeded starting step is
set incredibly small. One way of seeding the starting step size could be to put
a stricter tolerance for accepting the starting step, say 7'/5, thus making sure
that it is relatively small while still not forcing repeated doubling of it for the
first few steps of a simulation.

Another visible difference between the trajectories in figure 15 are the positions
of the steps along the eastern edge. Although they appear to trace out roughly
the same curve, the data points are spaced out on different positions. This could
possibly have an impact on the end result, depending on how fine the grid is
and how it is interpolated, which would further increase the difference between
the end results of the two solutions.
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Figure 14: Trajectories (top) and step size distributions (bottom)
for two runs on the Stommel test, producing very similar end re-
sults while using significantly different numbers of steps. The green
trajectory uses 42 steps and produces a global error of 7.498-10~3
at the end point, whereas the blue trajectory uses 65 steps and
produces an error of 7.428 - 1073.
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Figure 15: Trajectories (top) and step size distributions (bottom)
for two runs on the Stommel test, producing very different end
results while using very similar numbers of steps. The green tra-
jectory uses 67 steps and produces a global error of 1.729 - 1073
at the end point, whereas the blue trajectory uses 65 steps and
produces an error of 7.428 - 1073.
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Bilinear interpolation was used in the Stommel test to compute the velocities
of the particles. This is the method currently used by PARCELS to interpolate
grids in JIT mode, but to examine the impact of this interpolation on the errors
and see if it could explain some of the strange patterns in figure 7, another test
was conducted on the Stommel case. This time around, the particle velocities
were computed analytically by solving equation (14).

Using the same tolerances as described above, the errors displayed in figure 16
were achieved. Similar patterns to those found in figure 7 appear again, but
the difference in number of steps used by RKF45 for the same tolerances is
remarkable, as is its steeper slope. When using bilinear interpolation more than
100 steps were needed to achieve errors below 10~%, and only a few runs did
this. Using the analytical velocities, however, this level of accuracy was reached
in 54 steps. This shows that RKF45 could potentially benefit greatly from a
more accurate interpolation scheme than the currently used bilinear one.

Running the test again with tolerances ranging from 1078 to 107! instead,
displayed in figure 17, shows a stabilization in the slope of the errors for both
RKF45 and RK4 (as well as EE) with smaller time steps. The performance
of RK4 is similar to the results in figure 7, but RKF45 again shows significant
improvements even for smaller time steps. The slope for both of them are about
-4, which is the expected slope from a 4th order method.
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Figure 16: Global error at the end point of RKF45, RK4 and
EE using analytically calculated velocities in the Stommel test.
200 runs were performed, with the number of steps used picked by
running RKF45 first with tolerances evenly spaced on a logarithmic
scale from 10732 to 1071°, and then using the number of steps used
in these runs for RK4 and EE.
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Figure 17: Global error at the end point of RKF45, RK4 and
EE using analytically calculated velocities in the Stommel test.
200 runs were performed, with the number of steps used picked by
running RKF45 first with tolerances evenly spaced on a logarithmic
scale from 1078 to 1072, and then using the number of steps used
in these runs for RK4 and EE.
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Another aspect of the design of the Stommel tests used here that could affect
the results is the choice of starting position. In the above experiments, the
trajectories start by tracing the slower parts of the region and reach the trou-
blesome western part towards the end. Starting instead at (x,y) = (10,7.296),
in the southwestern part of the region, could benefit RKF45 by restricting the
time step size in the beginning of the trajectory, thus limiting the local error
introduced early. It might also be beneficial for RK4 and EE, by minimizing
the accumulated global error at the start of the problematic western region.

Figure 18 displays the error achieved when the starting position is switched
to (x,y) = (10,7.296), using bilinear interpolation to compute velocities. The
errors produced by EE are generally smaller here than in figure 7. This is likely
because it goes out of bounds closer to the starting position, which means that
it still fails quite badly.

The RK4 errors don’t follow an obvious pattern for the longer time steps any-
more, but at around 120 steps it reaches a fairly consistent slope similar to the
one in figure 7. The magnitude is a bit larger here, however, implying that RK4
benefits from starting with the nicer parts of the trajectory.

The RKF45 errors in figure 18 do not recreate the level pattern from figure 7.
Instead the errors appear more randomly scattered, but still with a slight slope
as step sizes decrease. The error magnitudes and number of steps used are still
quite similar to the ones achieved in figure 7, implying that the overall results
for RKF45 are not greatly affected by switching starting position.
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Figure 18: Global error at the end point of RKF45, RK4 and EE
using bilinearly interpolated velocities in the Stommel test, with
starting point at (z,y) = (10,7.296). 200 runs were performed,
with the number of steps used picked by running RKF45 first
with tolerances evenly spaced on a logarithmic scale from 1078
to 1071°, and then using the number of steps used in these runs
for RK4 and EE.

Even though the RKF45 and RK4 runs in the Stommel test yield similar errors
when the tolerance for RKF45 is 1.06 - 1072 and the number of steps used by
RK4 is v = 2.4 times more than with RKF45, this is not true in the Agulhas
test. The two—sample KS test shows that the errors yielded by RK4 and RKF45
in the Agulhas test are from different distributions, and looking at figure 9 shows
that the errors from the RK4 run are smaller than those from the RKF45 run.

The reason why RKF45 gives a more accurate solution in so much fewer steps
in the Stommel test is likely because it is a typical example of a function where
RK4 would be expected to perform poorly compared to RKF45. The velocity in
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the Stommel test along the ground truth trajectory ranges from 0.039 to 9.006,
whereas in the Agulhas test it ranges from 7.325-107° to 2.385. From the earlier
discussion about figure 14 we know that the RKF45 run using 45 steps in the
Stommel test covers the first 71% of its entire path in just 9 steps, leaving 36
steps for the last 29% of the path. RK4, on the other hand, uses 37 steps to
cover the first 71% of the path, leaving just 8 steps for the last 29%. In the
Agulhas test the smaller range and nicer distribution of the velocities spaces the
RK4 steps more evenly, and thus doesn’t ”waste” as many steps on the nicer
parts of the solution only to perform poorly and inaccurately at other parts.

Not only do the RK4 runs in the Agulhas test produce smaller errors than the
RKF45 runs, they do it in very similar computation times. Theoretically, the
computation times are expected to be strongly linked to the number of function
evaluations used, since this is the computationally ”expensive” part of the time
steps. RKF45 is a 6-stage method, which means that in every step 12 function
evaluations are performed, i.e. 6 in each dimension. RK4 is a 4-stage method,
and thus uses 8 function evaluations per step. This means that an RKF45 step is
expected to take roughly 1.5 times as long as an RK4 step. In addition to this, an
RKF45 step has a chance to be rejected, thus having to be recalculated. In the
current implementation the step is recalculated from scratch, i.e. no velocities
from the rejected step are saved and used in the recalculation. Since RK4 uses
approximately 2.4 times as many (accepted) steps as RKF45, assuming RK4
and RKF45 take the same time (see table 1) and time is directly proportional
to number of function evaluations used, RKF45 would have to reject every
2.4/1.5 = 1.6 steps, which is unlikely.

Running a similar test, but with all calculations performed directly in Python
instead of using JIT compilation, yields the results displayed in table 3. For
this particular test only three different particle trajectories were used. It is
not enough to make any statements about the actual ratio between function
evaluations used by Python and JIT, but table 3 does show that in Python the
ratio between computation time and number of function evaluations for RK4
and RKF45 is about the same. This implies a correlation between the two. In
JIT, however, the computation times are again quite similar for both methods,
with RK4 even being slightly faster than RKF45. This adds credibility to the
hypothesis that there should be a strong correlation between the number of
function evaluations and computation time, but that the function evaluations in
JIT are relatively cheap, thus making overhead computation in RKF45 relatively
more expensive.
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Table 3: Comparison between Python and JIT time results, using
three different particle trajectories in the Agulhas region. The
ratio column shows the RK4 result divided by the RKF45 result,
to illustrate the connection between computation time and number
of function evaluations. The ratio between number of steps used
is excluded since it is irrelevant.

| RK4 (s) RKF45 (s) | ratio

Python time (300 part.) 36.5 30.8 1.19
JIT time (300000 part.) 42.1 44.7 0.94
# steps computed 405 225 -

# function evaluations 3240 2700 1.20

The function evaluations might not continue to be this cheap as the develop-
ment of PARCELS continues, however. The argument for the current usage of
bilinear interpolation of the grids is mainly simplicity. Bilinear interpolation
only requires values from the four closest grid points, but to increase the degree
of the interpolation, it also needs to consider grid points further away. This ef-
fectively makes the interpolation algorithm more advanced and time consuming
in itself, and also requires a more advanced strategy for the boundary condition
implementation. It may however provide a more accurate solution than the cur-
rent bilinear interpolation. Thus, if each function evaluation is more expensive,
RKF45 could benefit more from using less function evaluations than RK4. There
might also be ways to make RKF45 more efficient by making a more in—depth
analysis of its overhead computation time. Also, nifty tricks such as saving the
velocities from the starting point of a step, thus not having to recalculate them
if the step is rejected, could be utilized to increase its speed slightly. However,
the current results don’t imply any great performance improvements gained by
switching from RK4, so efforts to improve the performance of PARCELS might
be better applied in other areas.

5.2 Boundary conditions

The objective for the boundary conditions was to prevent particles from getting
stuck along the coastlines, and a quick look at table 2 confirms that the new
conditions are indeed very successful in the Agulhas test case.

As mentioned, there is still a way, albeit unlikely, for particles to get stuck if
they cross onto land in two directions simultaneously, e.g. if the dark green
particle in figure 4 ends up north of the two blue land grid points. From the
results in the Agulhas region this is not expected to happen very frequently,
and it is thus considered an acceptable loss. In most real simulations millions of
particles will be used, and losing a tiny fraction of them will almost certainly not
affect results much. However, it is possible to prevent even this beaching risk by
changing the conditions slightly. Consider again the light green particle in figure
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4. The function to interpolate a velocity field can only be called on one field at
a time, i.e. information about the w field cannot be used in the interpolation
of the v field. However, the light green particle in figure 4 has two NaN u field
points just north of it (although with ghost point velocities displayed in figure
4). A northern boundary will always be marked by NaN v grid points. Thus,
by checking the u grid points just east (not NaN) and west (NaN) of the NaN
u points just north of the light green particle, it can be determined that the
northwestern quadrant of the ”cell” spanned by the four blue points in figure 4 is
land. Using this information, instead of simply ghost pointing the two southern
u points as shown in figure 4, they can be mirrored to point east away from the
boundary, effectively preventing the light green particle from ending up at the
dark green spot.

There are two obvious arguments for using this method instead of the one I
have implemented: the boundary between land and sea becomes more well-
defined (i.e. no particles have to be pushed back into the sea like the dark green
particle in figure 4), and the slight risk of particles beaching is diminished. The
two main arguments for my conditions, however, are that the conditions that I
have implemented already prevents the majority of particles from beaching, and
that they are simpler. The latter of these arguments is actually quite important.
This is because of the early state that the implementation is currently in. The
conditions I have implemented assume a 2D Arakawa C—grid, and is applicable
to the very specific case that the user simply wants particles to flow freely and
not get stuck along coastlines. There is a lot more work to be done on the
implementation of boundary conditions in general in PARCELS, and this work
will not be done by me. Thus there is a great benefit in keeping the conditions
relatively simple to make it easier for another programmer to pick up the work
where I have finished.

There is also work left to be done on the way these conditions are implemented.
Ideally, the time stepping should be divided into two separate cases: the ”com-
mon” case, where the particle is in open water away from the shore, and the
”special” case, where the particle is close to a boundary. The point of keeping
these cases separate is that a large majority of particles are expected to be well
away from the boundaries during most of the simulation time, so this case should
ideally be made as fast as possible. Only when a particle is close to a boundary,
special functions are called to handle this. In the current implementation, this
check is done by explicitly determining that none of the particle’s nearest grid
points are NaN. To speed it up, one could instead e.g. utilise a predefined map
that quickly determines when the particle is in the ”common” open water case,
and when boundary conditions have to be considered. This separation is also
something that will not be done by me, which further motivates the desire to
keep the boundary conditions simpler and comprehensible.

45



6 Conclusions

In the idealized Stommel test case, RKF45 needs significantly fewer steps than
RK4 to produce results with similar accuracy for most tolerances. In the Agul-
has test case however, the correlation found in the Stommel test doesn’t hold.
This is probably because of the extreme variations in velocity in the Stommel
test, which favors a method with adaptive step size.

Despite the higher number of steps used by RK4 in the time test, both methods
run at similar computation times, meaning that RK4 outperforms RKF45 since
it produces a smaller error. However, the number of function evaluations, which
is expected to be closesly related to the computation time, used by RKF45 seems
to be smaller. This implies that other overhead calculations in RKF45 is what
causes the delay compared to RK4. The method currently used for interpo-
lating the grids is linear interpolation, which is a cheap but perhaps not very
accurate method. As the development of PARCELS continues, maybe a more
advanced and accurate interpolation method will be implemented, making each
function evaluation more computationally expensive. This could in turn mean
that RKF45 might be able to compete with RK4, especially since it performs
so much better in the Stommel test when an analytical solution is used. In any
case, the potential benefit of switching from RK4 to an embedded RK method
currently seems to be quite limited, and will thus probably not be a major focus
in the further development of PARCELS.

The new free—slip boundary conditions, on the other hand, were more successful.
They successfully prevented particles from getting stuck along the shorelines in
the Agulhas region. There is still a very slight risk of particles getting stuck, but
this risk is accepted to keep the boundary conditions simple and comprehensible.
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