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Abstract 

Sagem Défense et Sécurité (now Safran Electronics & Defense), a French space 

and defense company of the SAFRAN group, is working on the next generation of 

Unmanned Aerial System (UAS). This UAS features a fully automatic Unmanned 

Aerial Vehicle (UAV) equipped with a state-of-the-art navigation system. This 

navigation system relies mainly on a high-accuracy Inertial Measurement Unit 

(IMU) coupled with a GPS receiver. But the GPS is known to be easy to jam, 

either naturally (solar flare for example) or intentionally. In the event of a loss of 

GPS signal, the navigation system is not able anymore to provide accurate 

position and speed information to the Flight Controller (FC). Deprived of reliable 

position and speed information the FC is not able to guide the UAV safely to the 

ground.  

So the goal of the project detailed in this report is to add to the existing UAS the 

ability to land safely in case of a GPS loss. At the core of the solution described in 

this report is a sensor fusion algorithm taking as input inertial, vision based, 

barometric, laser and azimuthal measurements. The filter is using all these 

measurements to establish reliable position and speed estimates. 

Even if very reliable systems enabling automatic landing without GPS exist today; 

they all require heavy and expensive ground equipment. This is why SAGEM 

decided to develop its own solution using more embedded sensors and less ground 

equipment. This is a first step toward a fully embedded automatic landing system 

nondependent on GPS availability, a very active field of research today. All the 

tests done during the thesis and presented in this report shows the efficiency and 

robustness of this solution. 
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 AWC 
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 PVAT 

Touch Down Point  TDP 



8  

 

 

Unmanned Aerial System 

 

 UAS 

Unmanned Aerial Vehicle 

 

 UAV 

World Geodetic System 1984 

 

 WGS84 



 

 

9 

   

Contents 

1. Introduction ............................................................................................... 11 

1.1 Context of the Thesis .......................................................................... 11 

1.2 Goals and Specifications ..................................................................... 14 

1.3 Outline ................................................................................................ 16 

2. State of the Art .......................................................................................... 17 

2.1 Navigation ........................................................................................... 17 

2.2 Normal Operation Mode ..................................................................... 23 

2.3 Suggested Solution.............................................................................. 26 

3. Mathematical Model ................................................................................. 31 

3.1 Aircraft and Environment ................................................................... 31 

3.2 Sensors ................................................................................................ 38 

3.3 Aircraft Dynamics ............................................................................... 43 

4. The Filter .................................................................................................. 44 

4.1 Mathematical Formulation .................................................................. 44 

4.2 Implementation ................................................................................... 49 

4.3 Tuning ................................................................................................. 50 

5. Simulation Environment ........................................................................... 52 

5.1 Architecture ........................................................................................ 52 

5.2 Open-Loop Simulation ........................................................................ 53 

5.3 Monte Carlo ........................................................................................ 54 



10  

 

6. Performance Study .................................................................................... 55 

6.1 Terrain Elevation ................................................................................ 55 

6.2 Angular Harmonization of the Camera ............................................... 74 

6.3 Position Harmonization of the Camera ............................................... 77 

6.4 Latencies ............................................................................................. 81 

6.5 Fly Back Performance ......................................................................... 86 

6.6 Global Performance ............................................................................ 87 

7. Future Work and Conclusion .................................................................... 93 

Appendix A ................................................................................................... 95 

UAV Dynamic Model ............................................................................... 95 

Flight Controller Model ............................................................................ 95 

References ..................................................................................................... 97 

 

  



 

 

11 

   

1.  Introduction 

This master thesis is part of the Master in Engineering Physics of Lund University. 

It is attached to the Automatic Control Department. Prof. Rolf Johansson, Lund 

University, has been supervising this thesis and provided me great help during the 

different stages of the project and Prof. Karl-Erik Arzén is the examiner. This 

thesis started on January 2016 at SAGEM facilities near Paris, France, and lasted 

6 months, until the end of June 2016.  

This section starts with an introduction on the context of the project that will 

lead to the presentation of the main goals of the project along with the expected 

results. The section ends by the outline of the report.   

1.1   Context of the Thesis 

Safran Electronics & Defense 

This master’s thesis has been conducted at the Unmanned Aerial System (UAS) 

department of SAGEM in France. In this department SAGEM has been 

developing UASs for more than 20 years.  

Part of the French group SAFRAN, SAGEM is also known worldwide as the 

European leader in Inertial Navigation System (INS) for aeronautical, nautical and 

terrestrial applications, as the world leader in helicopter flight control and as the 

European leader in optronic and tactical UAS. 

 It has been a great opportunity to work at SAGEM and I received help from 

people with a deep knowledge of inertial navigation and navigation filters.  

UAS Project 

This thesis took part in a UAS development project. SAGEM is developing an 

Unmanned Aerial Vehicle (UAV), fully automatic, able to perform a broad panel 
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of missions thanks to various payloads and long flight endurance. It is a fixed 

wing aircraft, looking like a conventional general aviation aircraft as it can be seen 

on Fig. 1. More information can be found about this project in documents [1] [2] 

available on SAGEM’s website. 

 

 
Fig. 1 - SAGEM's UAV 

This UAV is always connected to a ground station, as visible in Fig. 2, from 

which it is operated. Inside a ground station there is a UAV operator who can 

monitor the aircraft and send high level commands while a payload operator is 

controlling the embedded payload.  

 

 
Fig. 2 - Ground Station, on the left the UAV operator and on the right the 

payload operator 



 

 

13 

   

The UAV is navigating using high technology inertial sensors developed by 

SAGEM but the GPS is a key part of the navigation system. It is well known that a 

GPS receiver is very easy to jam, either intentionally or even naturally by an 

intense solar activity, for example, as warned in research paper [3]. Such an event 

resulting in a loss of GPS signal for a long period of time could have catastrophic 

consequences for the UAV that would not be able to land safely on the runway. So 

in order to make the product more robust it must be able to land safely without 

using the GPS, in a degraded mode operation. The development and test of this 

feature is the subject of this thesis. 

Thesis’s Scope and Organization 

Scope 
Before the beginning of this thesis another student, also doing a master’s thesis, 

worked on this subject entitled “automatic landing without GPS” here at SAGEM. 

As the report made at this time is not publicly available there will not be any 

reference to it.  

The scope of the thesis presented in this report extends from design of the 

solution to simulation tests and performance assessment. The design itself was 

already in a quite advanced stage when this thesis started and some simulations 

had already been done in order to measure the performances. That means that the 

tasks associated with the thesis were to understand the solution proposed for the 

landing without GPS problem, then to test it more widely than it had previously 

been tested and finally to improve it in order to reach the expected level of 

performance.   

The Automatic Landing System (ALS), understood automatic landing system 

without GPS, has to be implemented on the UAS in the coming years. Therefore it 

was a truly operational thesis. That means that along with the research and testing 

work came a few operational problems which were a bit out of the scope of the 

thesis; only a few of them will be briefly mentioned in this report. This was a great 

opportunity since flight test data were available in order to improve the models 

and perform open loop testing.  

The integration of the solution on the real system and the flight tests are not 

in the scope of the thesis, but a test plan should be handed out at the end.  
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Organization 
So as suggested by the scope of the thesis, the first step was to go through what 

had previously been done on the subject. The study was focused on the previous 

master’s thesis done on the subject and also on the literature on inertial and vision 

based navigation and landing. After this first step it was possible to start doing 

simulations with the code already available in order to reproduce the results of the 

previous thesis. By doing so it started to appear where the models had to be 

improved, where the solution could be improved and what had not been tested yet. 

So the models and the simulator were improved in order to test the solution in 

conditions closer to reality, this led to a few improvements in the filter which will 

be detailed in this report.  

Tools 
The main tool used during this thesis was Matlab [rev 2015a] with the Simulink 

environment. Please refer to [4] if an introduction to this software is needed. For 

some rendering task the computer vision toolbox was used but it is not necessary 

to reproduce the algorithms presented in this report. 

 

1.2   Goals and Specifications 

Goals 

The main goal of the thesis is to test and improve a solution to safely bring the 

UAV back on the ground in case of GPS loss. As the project did not start from 

scratch and because the feature will be implemented on a UAS already able to 

perform automatic landings when the GPS is active, this goal has been redefined 

as: establish a reliable position and speed estimate without using the GPS. This 

position and speed information is then sent to the flight controller (FC) so it can 

control an automatic landing. That means that for the flight control system there 

will not be any significant differences between the normal operation mode and the 

degraded mode as it will be provided with a position and speed information in 

both modes. 

In order to land safely, the position provided to the flight control systems has 

to respect accuracy constraints. As those data are confidential they will be 

mentioned as 𝐿𝑎𝑡𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 and 𝐿𝑜𝑛𝑔𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦. The accuracy that has to be 

achieved in the position estimate is 𝐿𝑎𝑡𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 in the lateral axis (perpendicular 

to the runway), and 𝐿𝑜𝑛𝑔𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 in the longitudinal axis. Those specifications 
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had been determined prior to the beginning of the thesis and they result from the 

flight control system, aircraft dynamics and runway size specifications. It is 

important to understand that it is not the accuracy of the landing but only the 

accuracy of the position estimate, to which the guidance error will be added to 

give the landing accuracy. Fig. 3 shows how these accuracy constraints look like. 

 

 
Fig. 3 - An illustration of what the position estimate looks like: more accuracy 

has to be achieved on the lateral axis than on the longitudinal axis in order to stay on 

the runway 

Constraints 

As the solution designed for the automatic landing without GPS is made to be 

integrated on an existing UAS, there are a few constraints inherent to this existing 

system. The goal is to implement the solution with the least modifications of the 

existing system. That means that: 

 No kind of ground equipment not already used for normal 

operations can be added 

 Only a limited computing power is available  

 No sensor or equipment can be added to the UAV 

Those constraints are due to the fact that it is a commercial product and the 

cost or the complexity of the product cannot increase because of this safety 

feature. How those constraints bounded and guided the thesis will be stressed 

through the report.  

 



16  

 

1.3   Outline 

In this first section the general context of the thesis has been defined along with an 

overview of the goals and constraints defining the project. In the next section the 

state of the art of inertial and vision based navigation will be presented in order to 

introduce the solution studied by this master’s thesis. Then the mathematical 

details will be introduced, first with a section about the mathematical models and 

then with a section presenting the sensor fusion filter at the core of the proposed 

solution. Then the simulation environment and test protocols will be defined 

before going into a few tests and performance assessments. Finally, I will give my 

point on view on what needs to be done before having a fully operational and 

integrated solution.     

Many of the results and data presented in this report will be given in 

percentage or arbitrary unit as they are confidential and cannot be made publicly 

available.  
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2.  State of the Art 

2.1   Navigation 

Navigation is the science of “knowing where you are relative to where you want to 

be” as explained in the book Global Positioning Systems, Inertial Navigation, and 

Integration [5]. This book is giving a good overview on the state-of-the-art of 

inertial navigation and it divides navigation into 5 basic types: 

1. Pilotage, knowing where you are by recognizing landmarks 

2. Dead Reckoning, knowing where you are by knowing initial position 

and, at any time, heading and speed  

3. Celestial Navigation, knowing where you are by using angles between 

celestial bodies and local verticals 

4. Radio Navigation, knowing where you are by using radio signals sent by 

known stations 

5. Inertial Navigation, knowing where you are by knowing initial Position 

Velocity Attitude Time (PVAT) vector and, at any time, attitude rates and 

accelerations 

Type n°5 is the only method fully free of external references or devices. The 

second one could also be free of external references but not for aerial navigation 

because an external reference, such as GPS, is needed to measure the ground 

speed. But, as detailed further in the report, inertial navigation has its limitations 

and therefore a mix of several types of navigation is often used to get an accurate 

and reliable navigation system.  

Inertial Navigation 

A detailed explanation of inertial navigation can be found in [5]. Just a few 

characteristics and typical behaviors of inertial navigation necessary to understand 
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the rest of the report are described here. This description is only valid for a 

strapdown inertial measurement unit (IMU) using accelerometers and gyrometers.  

Principle 
An IMU is keeping track of the PVAT vector of a body in an inertial reference 

frame, i.e., a coordinate frame in which Newton’s law of motion is valid [5]. 

Measuring the acceleration of the body in the inertial reference frame and 

integrating it once gives the speed and twice gives the position. To be able to do 

this integration the initial position and velocity need to be known.  

In a strapdown IMU, the acceleration of the body, given by the sensors in the 

body reference frame, is computed in the inertial reference frame by using the 

attitude of the body. The attitude of the body is obtained by measuring and 

integrating the angular rotation speed of the body in its reference. To be able to do 

this integration the initial attitude needs to be known.  

So the IMU is using two kinds of sensors: accelerometers and gyrometers. A 

flow chart summarizing the architecture of a strapdown IMU is available in Fig. 4. 

 

Project 
Acceleration 

Gyrometers Signal

Accelerometers Signal

Initial Attitude

Initial Speed Initial Position

Attitude

Position

 

Fig. 4 - Strapdown IMU flowchart 

Sensors 
There are 3 orthogonally mounted accelerometers in an IMU. They measure the 

specific acceleration, each on one axis of the body frame, and as they are 

orthogonally mounted the specific acceleration vector of the body is obtained by 

summing the measurement of each accelerometer. 

Moreover, there are three gyrometers orthogonally mounted and each of them 

gives the rotation rate around one axis of the body frame. 
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Error and Performances 
An IMU is using multiple integrations and is therefore very sensitive to 

measurement noise. In the type of IMU used nowadays for aircraft navigation, 

laser gyros are used. They are very accurate but in an IMU the error is coming 

principally from gyrometer bias as explained in the technical report [6]. 

Description of the errors can be found in [5] and a model is derived in 

Section 3 of this report, but what is important here is that the velocity estimation 

error is bounded thanks to the Schuler oscillation phenomenon explained in [7]. 

For a good aircraft IMU a typical shape for the estimation error is a sinus 

oscillating at the Schuler frequency with a 2 m/s amplitude resulting in a drift in 

position estimation of around 2 nm/h as illustrated below. 

 
Fig. 5 - Drift in position (Longitude and Latitude) and error in speed (on 

North/East coordinates) of an IMU. Simulation done by GPSoftNav.com 

As said before, a way to improve this accuracy is to combine IMU with 

another type of navigation. This combination gives a navigation system, mainly 

based on inertial measurements, called Inertial Navigation System (INS).  
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Sensor Fusion for Navigation 

The most commonly used combination is the GPS/IMU, the high accuracy of the 

IMU during short period compensates the noisy GPS measurements and the drift 

of the IMU is compensated by the high accuracy of GPS over long period. The 

fusion of the IMU measurements with the GPS measurements is often done with a 

Kalman filter or one of its derivatives [8] [5]. But in the thesis’s case, combination 

with the GPS is not possible since the UAV is in a scenario where GPS signal is 

not available. But another source of radio navigation or even landmarks can be 

considered and combined with the inertial measurements. 

Directional Antenna 
A directional antenna can give the azimuth and elevation of the aircraft to the 

antenna. By knowing the position of the antenna this gives information on the 

position of the aircraft. This information is not complete and only the azimuth and 

elevation are known but not the distance from the antenna to the drone. As 

illustrated in Fig. 6, the directional antenna can give the same measurement while 

the aircraft is at two different positions. So it is not very accurate, maybe sufficient 

to bring the aircraft close to the runway but clearly not enough to perform a 

landing. A way to improve accuracy and use this technique for landing is 

described in [8], a Thales patent, but it requires more equipment than available as 

it uses a locating device able to perform distance calculation.  

Ground Station

North

Azimuth 

Ground Station

Azimuth 

North

A) B)

 

Fig. 6 - In situations A and B the directional antenna is giving the same 

information while the aircraft is clearly not at the same position 
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Image Aided Navigation 
[9] is a very complete book giving an overview on all the methods studied so far 

to perform vision aided navigation and landing. Those methods fall into a few 

categories but many of them are only suitable for navigation in a known 

environment because they require a data base of images of the environment that 

the computer uses to find the position of the aircraft. In unknown environments it 

is possible to use image analysis in order to recognize the runway by comparing it 

to a stack of runway images for example as done in the research [10]. It requires a 

lot of computational resources and, it is therefore not suitable for our application 

since a very limited computational resource is available. So a new way of using 

vision, or a tradeoff, is to compensate the lack of information and computational 

resources with small and sparse inputs from a ground operator. 

Terrain Matching  
Terrain matching consists of using a map of an area and try to match what the 

aircraft is sensing with this map in order to know its position. An example of this 

approach using an elevation map and a height sensor is described in [11]. This is 

very efficient and widely used for high precision low height flying, but it requires 

a map in the data base of the UAV and is therefore not suitable since there is no 

such data base onboard SAGEM’s UAV.  

ILS and MLS  
The Instrument Landing System (ILS) and the Microwave Landing System (MLS) 

are widely used (ILS mainly) to guide aircraft to the runway. Since the end of the 

‘60s Airliners can perform auto landing using an ILS [12]. But the main drawback 

of such technique is that it requires equipment on the airport which is not 

compatible with the expressed need. VOR and other radio navigations techniques 

commonly used in aviation fall in the same category.  

 

After studying all those methods it seems that the most suitable for the 

intended application are the hybridization using vision and using a directional 

antenna. Before giving an overview of the considered solution an overview of how 

the UAV is working when GPS is available will be presented. 
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2.2   Normal Operation Mode 

 

Control Chain Architecture  

The architecture of the UAV is typical and can be found in many UAVs. As any 

automatic vehicle and as an aerial vehicle, an UAV has many sensors. They are all 

connected to a flight controller (FC) which is responsible for calculating and 

sending the control commands to all the actuators. As said in the first section, one 

constraint of the project is to modify the FC as little as possible. Therefore the 

solution will be interfaced between the sensors and the FC as shown in Fig. 7. 

That is why it is necessary to first have a look at how the UAV is working when 

GPS is available. 

  

Sensors

Flight Controller
(FC)

Aircraft Dynamic

Automatic Landing 
System

(without GPS)

+
-

Postion & Speed estimates

Reference Trajectory

 
Fig. 7 – Simplified vision of the Control Chain Architecture, the Automatic 

Landing System is introduced between the sensors and the flight controller. 

Sensors  
The UAV is equipped with a complete set of sensors. All the sensor measurements 

are sent to the FC which is performing a sensor fusion in order to know the 

Position Velocity Attitude Time (PVAT) vector of the drone which is the base 

used by any FC to calculate the control commands. In this section each sensor is 

briefly described and more details will be found in the next section while deriving 

a mathematical model for each of them.  

Air Data 

As any aircraft, the UAV is equipped with air data sensors giving static and 

dynamic pressure. Air speed (CAS) and barometric altitude (AMSL) are 
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calculated from that. Air data are also sent to the navigation system which is using 

them in a sensor fusion algorithm.  

Magnetic Heading 

Again as any aircraft, the UAV is equipped with a compass. An electric compass 

in this case, which is giving the heading of the drone, i.e., the angle between the 

axis of the drone and the magnetic north.  

Navigation system 

The navigation system, as explained in Section 2.1, is using different 

measurements and performs sensor fusion in order to calculate the PVAT vector 

of the UAV. In normal operation mode the navigation system is using the IMU, 

the GPS and the altitude given by air data.  

Laser Height Sensor 

The laser height sensor is mounted under the body of the drone, facing toward the 

ground. It calculates the height, the altitude above the ground (AGL), of the drone 

using the laser ranging and the attitude information.   

Communication with the Ground Station  

In normal operation mode, the UAV is always connected to a ground station 

thanks to a high bandwidth wireless connection. The ground station is 

continuously receiving data from the UAV and displays an intuitive representation 

of them to the drone and payload operators.  

The operators can send commands to the drone using controls available in the 

ground station. But none of the operators in the station know how to fly the drone: 

they are only able to provide very high-level orders. This has to be taken into 

account in the design of the algorithms: if an operator input is required it must be 

very basic and high level. The communication with the ground station is way more 

robust than the GPS signal and it is therefore considered that in case of GPS loss 

there is still a connection between the UAV and the GS. 

Trajectories 

It is very interesting to look at the kind of trajectories the UAV is following during 

different parts of the flight. The phases which are interesting for this thesis are the 

cruise phase, the approach phase, the landing and braking phases since they are 

the four phases in which the UAV will have to fly during a landing without GPS 

scenario.  
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En-Route Trajectory 
An en-route trajectory is defined using waypoints. A waypoint is composed of : 

 A geographical point, defined by its latitude and longitude 

 An altitude, defined AMSL 

 A speed 

 A set of actions 

 An order number 

The flight controller (FC) is guiding the UAV straight from waypoint to 

waypoint respecting the target velocity and climbing/descending linearly between 

two waypoints in order to be at the required altitude when passing a waypoint. 

This is a very simplified description but there is no need to go into the details for 

this report.   

Approach Trajectory 
The goal of the approach trajectory is to bring the UAV aligned with the runway 

at a certain distance of the planned touch down point (TDP). It is still using the 

waypoint concept but those waypoints are respecting constraints to be sure that 

they will lead the UAV to the desired position at the desired speed and aligned 

with the runway. 

Landing Trajectory 
The landing trajectory is the one followed by the drone from the end of the 

approach trajectory to the TDP. This trajectory is not composed of waypoints. 

From an horizontal point of view it is a straight line aligned with the middle of the 

runway. And from the vertical point of view it has a vertical profile which is 

compatible with a landing: if the slope is too steep the UAV will gain too much 

speed to be able to land and if it is too shallow there is a high risk of collision with 

obstacles. Moreover, it cannot be a straight trajectory as the UAV must decrease 

its vertical speed before touching down in order to preserve the landing gear and 

avoid bouncing. An illustration of a landing trajectory can be seen in the figure 

below. 
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Fig. 8 - 3D plot of a typical landing trajectory at Le-Havre airport, the 

explanation on how the terrain was modeled can be found in Section 3.2.  

Braking Trajectory 
The braking phase starts once the UAV is on the runway and ends once the UAV 

is rolling at a suitable speed for taxiing. During this phase the UAV must follow 

the center line of the runway. 

GPS Loss 

In the scenario studied during the thesis, the GPS loss occurs while following an 

en-route trajectory. In order to land, the UAV has to fly an en-route trajectory to 

join an approach trajectory followed by a landing trajectory and the landing will 

be considered as successful when the UAV will stop, still on the runway, after the 

braking phase.  

But, due to the GPS loss, the navigation system is not able anymore to 

perform sensor fusion and is therefore sending drifting position and speed 

information to the FC. So the FC is fed with very unreliable information and 

cannot guide the drone along the expected trajectories. That is why a system, 

which is estimating, without GPS signal, the drone’s position and velocity and 

sending it to the FC, is suggested in order to land safely in case of GPS loss. The 

next subsection provides more details about the suggested solution.  

2.3   Suggested Solution 

As already mentioned the global solution for the automatic landing without GPS 

problem is based on the existing control algorithm and existing sensors which 

already enable the UAV to land automatically when the GPS signal is available. 
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Only the navigation algorithms are changed. Instead of using the inertial/GPS 

sensor fusion presented before, the navigation algorithm is using an inertial/radio 

measurement sensor fusion and an inertial/vision sensor fusion depending on the 

phase. Indeed, the landing has been decomposed in four phases. 

Four Phases 

During the different four phases the sensors available are different. The four 

phases are: 

 Return 

 Final 

 Short Final 

 Braking    

This decomposition is very close to the trajectory decomposition seen in 

Section 2.2. The only difference is that the landing trajectory is decomposed here 

in two phases: the final and the short final phases. This is due to vision sensor 

considerations. Each phase will be described: when it starts, when it stops and 

what the navigation strategy is. 

Return 
The return phase is starting when the Automatic Landing System (ALS) engages. 

It is not clear yet what will be the conditions required to enter this mode, but the 

GPS loss will be at the origin. The goal of this phase is to navigate along the 

return trajectory. That means that it ends when the UAV is at a certain distance of 

the runway, aligned with the runway. This phase is the longest of the four phases, 

thus the one during which the IMU drift will have the largest value, but it is also 

the one with the lowest requirement in positioning accuracy.  

During this phase the navigation algorithm will use the azimuth from the 

UAV to the ground station (GS) as described in Section 2.1. This information is 

sent to the UAV by the GS itself thanks to the directional antenna mounted on it 

and used for data transmission. As seen in Section 2.1 this radio equipment/IMU 

sensor fusion is not complete and permits only a good estimation of the position 

along the axis perpendicular to the GS/UAV axis. So in case of GPS loss the 

return trajectory is modified to do a complete turn around the GS, this enables to 

drastically improve the positon and speed estimate as explained later on. An 

example of a return trajectory is shown in Fig. 9. 
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Fig. 9 - In red the reference trajectory, the turn around the GS (a square) can be 

seen. In green the actual trajectory followed by the UAV during a closed loop 

simulation, the green track stops when the UAV switches to the final phase 

Once the turn around the GS is completed, the UAV is joining the axis of the 

runway at the desired distance in order to start the next phase. 

Final 
During final and short final the UAV is following the landing trajectory which is 

exactly the same in the GPS loss degraded mode and in the normal operation 

mode. The final phase is ending a few meters before the planned touch down point 

(TDP). During this phase the navigation is done using vision/IMU/laser fusion.  

A computer vision algorithm is tracking the TDP in the image of an “all 

weather camera” (AWC). But as stated in Section 2.1, an input from the operator 

is required in order to compensate the lack of data and computing power. The 

operator has to point on his screen where the desired touch down point is in the 

camera view. It must be repeated two or three times because as the UAV is getting 

closer to the runway a better accuracy can be achieved. This action is very simple 

thanks to an ergonomic user interface. The view of the operator can be seen in Fig. 

10. The vision algorithm is keeping track of this designated point. This algorithm 

is not in the scope of this thesis and has been provided by another SAGEM 

department.  
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Fig. 10 - Tracking Algorithm view, the red cross is the tracked point, the TDP, 

and the yellow square delimits the image analysis area 

Once the UAV gets very close to the runway this vision algorithm is not able 

to keep track of the TDP anymore so the final phase stops and the UAV is 

switching to the short final phase which is just using IMU and will drift freely as 

described in Section 2.1. So the final phase is critical and requires a high accuracy 

in both position and ground speed (GS) estimates as it will determine how 

accurately the TDP will be reached.    

Short Final  
As already said, during this phase, navigation is done only by using inertial 

measurements that means that it is subject to the drift of the IMU. This phase is 

very short, it lasts only a few seconds, it ends when the landing gears touch the 

ground. The accuracy of this phase is only dependent on the accuracy of the 

position and speed estimate at the end of the final if the drift of the IMU over a 

few seconds is considered as negligible. 

Braking 
Finally, once the UAV is on the ground it must brake and stop, staying on the 

runway. This phase is still unclear but it might use wheel encoder/IMU/magnetic 

heading sensor fusion to follow the center line of the runway. 
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Sensor Fusion   

As just seen, during all the phases, sensor fusion is used. The sensor fusion is done 

in all the cases using an extended Kalman filter [19] [20]. The extended Kalman 

filter has been selected due to the non-linearity of the system. The filter will be 

described in Section 4. The sensors used for each phase are summarized in Table 

2. 

 

Phase Sensors 

Return IMU Barometer Directional Antenna 

Final IMU Barometer Laser Camera 

Short Final IMU Laser 

Braking IMU Compass Wheel Encoder 

Table 2 - Phases and sensors available 

The context, the problem and the solution being globally defined, the next 

section will give more details and start with the mathematical model of the 

problem.   
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3.  Mathematical Model 

3.1   Aircraft and Environment 

Many coordinate systems are used in this report. All of them are introduced here 

along with the relationship between them. A more complete description and some 

calculation details can be found in [13].  

Earth coordinate system 

Four kinds of coordinate system linked to the earth have been considered. They 

are used for navigation, control, flight dynamic simulation and data analysis.  

ECEF 
The first one is named ECEF, for earth-centered earth-fixed. This classical 

Cartesian coordinate system is spinning with the earth. Its axis can be seen in the 

figure below. 

 
 

Fig. 11 - ECEF axes 

A vector expressed in this coordinate system will have the subscript e. 
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WGS 84 
The second one is the World Geodetic System 1984 (WGS84) [14]. It is the 

coordinate system used by the GPS. This coordinate system is earth-centered and 

uses earth-fixed axes, the same as the ECEF. It is based on parameters used to 

model Earth's size, shape, and gravity [16]. More information on how WGS84’s 

axes are defined can be found in [16] [15]. 

The Navigation System of the UAV is using this coordinate system. This is 

the reference frame as defined in Section 2.1. But as it is earth-fixed it is not really 

an inertial reference frame, therefore the IMU is performing some corrections, 

which will not be described here, to compensate for rotation of the earth and 

gravity. It is not a classical Cartesian coordinate system [13], a point is described 

with two angles (latitude, longitude) and one distance (altitude). Coordinates 

expressed in this coordinate system will have the subscript g. 

 

For a point P with the coordinates 𝑃𝑒 = (𝑋, 𝑌, 𝑍)𝑒 in ECEF and 𝑃𝑔 =

(𝜆, 𝜑, ℎ)𝑔 in WGS84 the relationships are: 

 

 

ECEFWGS84 

 

𝜆 = arctan (
𝑌

𝑋
) 

𝜑 = arctan (
𝑍 + 𝑒′2𝑏𝑠𝑖𝑛3(𝜃)

𝑝 − 𝑒2𝑎 ⋅ 𝑐𝑜𝑠3(𝜃)
) 

ℎ =  
𝑝

cos (𝜑)
− 𝑁 

 

 

 

(1) 

 

WGS84ECEF 

 

𝑋 = (𝑁 + ℎ) cos(𝜑) cos(𝜆) 

 
𝑌 = (𝑁 + ℎ) cos(𝜑) sin(𝜆) 

 

𝑍 = (
𝑎2

𝑏2
𝑁 + ℎ) sin (𝜑) 

 

 

(2) 
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with: 

𝑝 =  √𝑋2 + 𝑌2 

𝜃 = arctan (
𝑍 𝑎

𝑝 𝑏
) 

𝑎 = 6378137 𝑚 
𝑏 = 6356752.31424518 𝑚 

𝑒 =  √
𝑎2 − 𝑏2

𝑎2
  

𝑒′ = √
𝑎2 − 𝑏2

𝑏2
   

𝑁 =  
𝑎

√1 − 𝑒2𝑠𝑖𝑛²(𝜑)
 

 

 

 

NED 
A North East Down (NED) coordinate system is centered on a point at the earth’s 

surface, it is earth-fixed. It uses the WGS84 ellipsoid model as the WGS84 

coordinate system. A vector expressed in this coordinate system will have the 

subscript n. This coordinate system is very convenient for landing and navigation 

in local area. The TDP can be used as the center for example.  

 

Considering a TPD with the coordinates 𝑃𝑒
𝑟𝑒𝑓

 in ECEF and  

𝑃𝑔
𝑟𝑒𝑓

= (𝜆𝑟𝑒𝑓 , 𝜑𝑟𝑒𝑓 , ℎ𝑟𝑒𝑓)𝑔
 in WGS84. For a point P with the coordinates  

𝑃𝑒 = (𝑋, 𝑌, 𝑍)𝑒 in ECEF and 𝑃𝑛 = (𝑋, 𝑌, 𝑍)𝑛  in NED, the relationships are: 

 

 

ECEFNED 

 

𝑃𝑛 = 𝑅𝑛 𝑒⁄ (𝑃𝑒 − 𝑃𝑒
𝑟𝑒𝑓

 
) 

 

(3) 

 

NEDECEF 

 

𝑃𝑒 = 𝑅𝑛 𝑒⁄
−1 𝑃𝑛 + 𝑃𝑒

𝑟𝑒𝑓

 
 

 

(4) 

 



34  

 

 

with:  

𝑅𝑛 𝑒⁄ = [

− sin(𝜑𝑟𝑒𝑓) cos (𝜆𝑟𝑒𝑓) − sin(𝜑𝑟𝑒𝑓) sin (𝜆𝑟𝑒𝑓) cos ()

−sin (𝜆𝑟𝑒𝑓) cos (𝜆𝑟𝑒𝑓) 0

− cos(𝜑𝑟𝑒𝑓) cos (𝜆𝑟𝑒𝑓) − cos(𝜑𝑟𝑒𝑓) sin (𝜆𝑟𝑒𝑓) −sin ()

] 

 

The ECEF, WGS84 and NED coordinate systems are summarized in 

the picture below. 

 

 

 

 

 

 
Fig. 12 - ECEF, WGS84 and NED coordinate [14] 

Runway  
The last coordinate system, which will be mainly used for results analysis, is 

obtained by rotation, around Zn axis, of a NED coordinate system: it is centered at 

a TDP and has Y axis aligned with the runway as illustrated by Fig. 13. A vector 

expressed in this coordinate system will have the subscript r. 

 

Considering a runway with the orientation 𝜃 as illustrated in Fig. 13. For a 

point P with the coordinates 𝑃𝑟 = (𝑋, 𝑌, 𝑍)𝑟 in runway coordinate and 𝑃𝑛 =

(𝑋, 𝑌, 𝑍)𝑛  in NED, the relationships are: 
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RunwayNED 

 

𝑃𝑛 = 𝑅𝑛 𝑟⁄ 𝑃𝑟 

 

(5) 

 

NEDRunway 

 

𝑃𝑟 = 𝑅𝑛 𝑟⁄
−1  𝑃𝑛 

 

(6) 

 

with:  

𝑅𝑛 𝑟⁄ = [
sin (𝜃) cos (𝜃) 0

cos (𝜃) −𝑠𝑖𝑛 (𝜃) 0
0 0 1

] 

 

 

TDP

Xn

Yn

YrXr

Runway Orientation

 
Fig. 13 - NED and Runway coordinate systems 
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Aircraft coordinate system  

In the aircraft each sensor has its own reference frame, but for this report only two 

are of interest: the one used by the navigation system and the one used by the 

camera.  

Body Reference Frame  
There is a reference coordinate system named the body reference frame (BRF). 

The center is the center of gravity of the aircraft and the axes of this reference 

frame are the one used by the navigation system to describe the attitude of the 

plane, they are defined relative to geometric considerations [13]. This is the body 

reference frame defined in Section 2.1.  

The axes of the body coordinate system can be obtained from the ECEF or 

NED axes by three successive rotations. The three rotation angles, known as Euler 

angles, are the pitch, roll and yaw angles and are illustrated by Fig. 14. More 

information about Euler angles can be found in [14]. One thing important is that 

those three rotations are not commutative so an order which will be used every 

time had to be defined: 

Yaw  Pitch  Roll  

(𝜓, 𝜃, 𝜑) = (𝑌𝑎𝑤, 𝑃𝑖𝑡𝑐ℎ, 𝑅𝑜𝑙𝑙) 

 

A vector expressed in this coordinate system will have the subscript b. 

 
Fig. 14 - Attitude angles illustration  
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Considering an UAV with the position 𝑃𝑛
𝑏𝑜𝑑𝑦

 in NED and the attitude 

(𝜓, 𝜃, 𝜑). For a point P with the coordinates 𝑃𝑏 = (𝑋, 𝑌, 𝑍)𝑏 in the body 

coordinates and 𝑃𝑛 = (𝑋, 𝑌, 𝑍)𝑛 in NED, the relationships are: 

 

 

NEDBRF 

 

𝑃𝑏 = 𝑅𝑏 𝑛⁄  (𝑃𝑛 − 𝑃𝑛
𝑏𝑜𝑑𝑦

 
) 

 

(7) 

 

BRFNED 

 

𝑃𝑛 = 𝑅𝑏 𝑒⁄
−1 𝑃𝑏 + 𝑃𝑛

𝑏𝑜𝑑𝑦

 
 

 

(8) 

 

with:  

𝑅𝑏 𝑛⁄ = 𝑅𝜓𝑅𝜃𝑅𝜑 

 

𝑅𝜓 = [
cos(𝜓) − sin(𝜓) 0

sin(𝜓) cos(𝜓) 0
0 0 1

] 

 

𝑅𝜃 = [
cos(𝜃) 0 sin (𝜃)

0 1 0
−sin (𝜃) 0 cos (𝜃)

] 

 

𝑅𝜑 = [

1 0 0
0 cos (𝜑) −sin (𝜑)

0 sin (𝜑) cos (𝜑)
] 

 

 

Camera 
The camera is mounted on the plane and has its own coordinate system. It can be 

obtained by translation and rotation of the body reference. A vector expressed in 

this coordinate system will have the subscript c. 

 

Considering a camera with the position 𝑃𝑏
𝑐𝑎𝑚𝑒𝑟𝑎 in the body coodrinate and 

the mounting angles (𝜓, 𝜃, 𝜑). For a point P with the coordinates 𝑃𝑏 =

(𝑋, 𝑌, 𝑍)𝑏 in the body coordinates and 𝑃𝑐 = (𝑋, 𝑌, 𝑍)𝑐 in the camera coordinates, 

the relationships are: 



38  

 

 

 

 

BRFCamera 

 

𝑃𝑐 = 𝑅𝑐 𝑏⁄  (𝑃𝑏 − 𝑃𝑏
𝑐𝑎𝑚𝑒𝑟𝑎

 
) 

 

(9) 

 

CameraBRF 

 

𝑃𝑏 = 𝑅𝑐 𝑏⁄
−1 𝑃𝑐 + 𝑃𝑏

𝑐𝑎𝑚𝑒𝑟𝑎
 
 

 

(10) 

 

with:  

𝑅𝑐 𝑏⁄ = 𝑅𝜓𝑅𝜃𝑅𝜑 

 

𝑅𝜓 = [
cos(𝜓) − sin(𝜓) 0

sin(𝜓) cos(𝜓) 0
0 0 1

] 

 

𝑅𝜃 = [
cos(𝜃) 0 sin (𝜃)

0 1 0
−sin (𝜃) 0 cos (𝜃)

] 

 

𝑅𝜑 = [

1 0 0
0 cos (𝜑) −sin (𝜑)

0 sin (𝜑) cos (𝜑)
] 

 

 

3.2   Sensors 

In this subsection the model used for each sensor are described. These models are 

the one used by the simulator that will be described in Section 5. All these models 

are parametric.  

IMU 

The IMU has been described in Section 2.1, and as said in this section the main 

source of error is the bias of the gyro. So a discrete-time model for a time step 𝑑𝑡 

and considering the gyro drift has been derived: 

 



 

 

39 

   

𝜖𝜑𝑘+1 = 𝜖𝜑𝑘 +
𝜖𝑉𝑘

𝑅𝑇

. 𝑑𝑡 + 𝐷 ⋅ 𝑑𝑡 

 
𝜖𝑉𝑘+1 = 𝜖𝑉𝑘 − 𝜖𝜑𝑘+1𝑔 ⋅ 𝑑𝑡 

 
𝜖𝑃𝑘+1  = 𝜖𝑃𝑘 + 𝜖𝑉𝑘+1 ∙ 𝑑𝑡 

 

(11) 

 

with:  

𝜖𝜑𝑘The attitude error at step k  
𝜖𝑉𝑘The speed error at step k in NE  
𝜖𝑃𝑘The position error at step k in NED 
𝑅𝑇Earth’s radius 

𝐷 = (
cos(𝜓) −𝑠𝑖𝑛(𝜓)

sin(𝜓) cos(𝜓)
) ⋅ (

𝐷𝑋

𝐷𝑌
) 

𝜓 UAV heading 
𝐷𝑋Gyro drift on Xb 
𝐷𝑌Gyro drift on Yb  

 

 As shown in Fig. 15, this model gives the expected behavior, i.e., a drift in 

position and an oscillation in speed. The simulation was done for a standstill 

UAV, so a perfect IMU would have given a speed equal to 0 m/s and a still 

position.  
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Fig. 15 - a) Speed error and b) Position drift along Xb axis with the IMU model 

Laser Height Sensor  

The model for the laser height sensor is very basic and soon-coming data from 

flight tests will help to derive a more realistic model. For now the laser height 

sensor measurement 𝐻𝑘
𝐿𝑎𝑠𝑒𝑟  is calculated from the real height of the aircraft with a 

bias (𝑏) and a white noise (n). The bias is very small and is given by the 

manufacturer as being of a few centimeters. Moreover the laser height sensor 

features a low pass filter filtering obstacles (trees, houses…), therefore the model 

implements a time delay (𝜏) and the terrain model will be considered as free of 

obstacles.  

 

𝐻𝑘
𝐿𝑎𝑠𝑒𝑟 = 𝐻𝑘−𝜏

𝐴𝐺𝐿 + 𝑏 + n𝑘 
 

(12) 

 

Height and altitude are not to be mistaken. The difference between height and 

altitude is the ground elevation as illustrated by Fig. 16. How the ground elevation 

is represented in the simulator will be explained in Section 5.  
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Sea Level

Terrain Elevation

AltitudeHeight

 

Fig. 16 - Altitude vs Height 

Barometer 

A very basic model has been selected for the barometer, returning the measured 

altitude at time step k 𝐻𝑘
𝐵𝑎𝑟𝑜. Actually it is a model for the baro-inertial altitude 

measurement, i.e., the altitude measurement established by a sensor fusion 

between the barometer and the IMU measurements. The altimeter is simply 

considered as returning the true altitude of the UAV affected by a scale factor (𝑠𝑓) 

and a bias (𝑏). The bias represents an error in the altimeter reference (QNH) [16]. 

The scale factor models the error due to the difference between the real 

atmosphere and the model used to calibrate the barometer (ISA model) [16]. In a 

real barometer there is also an important time delay but this time delay is almost 

canceled thanks to the baro-inertial sensor fusion. Only a fraction of this time 

delay remains (𝜏) and is taken into account in the model.  

 

𝐻𝑘
𝐵𝑎𝑟𝑜 = 𝑍𝑘−𝜏

𝑁𝐸𝐷 + 𝑏 + 𝑠𝑓 ⋅ 𝑍𝑘−𝜏
𝑁𝐸𝐷 

 

(13) 

 

Camera 

The classic pinhole model is used for the camera. Education paper [17] describes 

this model and how the position of a real object in the camera image can be 

calculated. 
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A point P with the coordinate 𝑃𝑐 = (𝑋, 𝑌, 𝑍)𝑐 in the camera coordinate has for 

coordinates in the picture (with top left corner as (0,0)): 

 

 

(
𝐵𝑒𝑎𝑟𝑖𝑛𝑔 +

𝐹𝑂𝑉𝐻

2
𝐼𝐹𝑂𝑉𝐻

,
𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 +

𝐹𝑂𝑉𝑣
2

𝐼𝐹𝑂𝑉𝑣
) 

 

(14) 

 

with:   

𝐷 = |(X, Y, Z)c|  
𝐵𝑒𝑎𝑟𝑖𝑛𝑔 = 𝑎𝑡𝑎𝑛2(𝑌, 𝑋) 

𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 = asin (
𝑍

𝐷
) 

𝐹𝑂𝑉 The field of view 
𝐼𝐹𝑂𝑉 The field of view per pixel 

 

 

Harmonization error and time delay introduced by the camera are also taken 

into account. 

Computer Vision  

The computer vision algorithm is not a sensor in itself but it will be presented here 

as a sensor returning the position 𝑃𝑇𝑟𝑎𝑐𝑘𝑖𝑛𝑔 𝑘
𝑇𝐷𝑃 of the tracker in the picture. The 

model for the computer vision takes into account the time delay (τ) introduced by 

image compression and image processing, the error (n) of the tracking algorithm 

considered as a white noise and the error in the tracked position considered as a 

bias (b) on the real position of the tracked point.  

 

𝑃𝑇𝑟𝑎𝑐𝑘𝑖𝑛𝑔 𝑘
𝑇𝐷𝑃 = P𝑃𝑖𝑐𝑡𝑢𝑟𝑒 𝑘−τ

𝑇𝐷𝑃 + b𝑘 + n𝑘 

 

(15) 

 

 

Directional Antenna  

The model of the directional antenna is calculating the measured azimuth 𝛼𝑘 from 

the real azimuth 𝛼𝑟𝑒𝑎𝑙considering the error in the harmonization of the antenna, 



 

 

43 

   

i.e., a bias (𝑏), the noise (𝑛) in the tracking modeled as a white noise and a delay 

(𝜏).  

 

𝛼𝑘 = 𝛼𝑘−𝜏
𝑟𝑒𝑎𝑙 + 𝑏 + 𝑛𝑘 

 

(16) 

Sensors Frequency  

Every sensor is working at its own frequency. These different frequencies are part 

of the models and all sensors are considered to run at a fixed frequency.  

 

Sensor Frequency 

IMU Attitude 100 Hz 

IMU Other 50 Hz 

Baro 50 Hz 

Laser 10 Hz 

Directional Antenna 2 Hz 

Camera 25 Hz 

Table 3 - Range of order of the different frequencies 

3.3   Aircraft Dynamics  

This model describes how the aircraft is moving. It includes both the dynamics of 

the aircraft and the guidance done by the Flight Controller (FC). The hypotheses 

made are that: 

 The aircraft is following the roll and the vertical speed commands sent by 

the FC 

 The ground speed is constant  

 The plane is at equilibrium on the pitch axis 

This is a very coarse approximation but it will not have any impact on the 

behavior of the filter. Nevertheless, in order to assess the global performance of 

the system, in closed loop simulation, a better model will be required. The 

equations of this model can be found in Appendix A.  

 

The real algorithm of the FC will be used when the aircraft’s dynamic model 

will be improved but so far a basic autopilot is implemented in the simulator.  
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4.  The Filter 

4.1   Mathematical Formulation 

The filter is used to estimate the position and velocity errors of the IMU. Then the 

IMU measurement is corrected of this error and sent to the FC. That means that 

the filter is not working on states but on state errors, which is typical for 

navigation filter as explained in the book [6]. The selected filter is an Extended 

Kalman Filter (EKF) because of the non-linearity of the system [19] [20]. 

State-Space Representation 

The states considered are the error made by the IMU in the position (𝑋, 𝑌, 𝑍)𝑛 in 

NED and the error made by the IMU in the horizontal speed (𝑉𝑁, 𝑉𝐸)𝑛  also in the 

NED. As the Z value calculated by the IMU is coming from a sensor fusion 

between the barometric and the inertial measurements, there is no need of 

considering the error on the vertical velocity.  

 

 

𝑥 =  

[
 
 
 
 
𝜖𝑋
𝜖𝑌
𝜖𝑍

𝜖𝑉𝑁
𝜖𝑉𝐸

 

]
 
 
 
 

=

[
 
 
 
 

𝑋𝐼𝑀𝑈

𝑌𝐼𝑀𝑈

𝑍𝐼𝑀𝑈

𝑉𝑁𝐼𝑀𝑈

𝑉𝐸𝐼𝑀𝑈 ]
 
 
 
 

−

[
 
 
 
 

𝑋𝑟𝑒𝑎𝑙

𝑌𝑟𝑒𝑎𝑙

𝑍𝑟𝑒𝑎𝑙

𝑉𝑁𝑟𝑒𝑎𝑙

𝑉𝐸𝑟𝑒𝑎𝑙 ]
 
 
 
 

 

 

 

[
 
 
 
 

𝜖𝑋
𝜖𝑌
𝜖𝑍

𝜖𝑉𝑁
𝜖𝑉𝐸

 

]
 
 
 
 

=

[
 
 
 
 
𝐼𝑀𝑈 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝐸𝑟𝑟𝑜𝑟 𝑜𝑛 𝑋𝑛 𝑎𝑥𝑖𝑠
𝐼𝑀𝑈 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝐸𝑟𝑟𝑜𝑟 𝑜𝑛 𝑌𝑛 𝑎𝑥𝑖𝑠
𝐼𝑀𝑈 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝐸𝑟𝑟𝑜𝑟 𝑜𝑛 𝑍𝑛 𝑎𝑥𝑖𝑠
𝐼𝑀𝑈 𝑆𝑝𝑒𝑒𝑑 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝐸𝑟𝑟𝑜𝑟 𝑜𝑛 𝑋𝑛 𝑎𝑥𝑖𝑠
𝐼𝑀𝑈 𝑆𝑝𝑒𝑒𝑑 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝐸𝑟𝑟𝑜𝑟 𝑜𝑛 𝑌𝑛 𝑎𝑥𝑖𝑠 ]

 
 
 
 

 

 

(17) 

 



 

 

45 

   

A discrete-time nonlinear stochastic model has been derived: 

 

𝑥𝑘+1|𝑘 = 𝐹𝑥𝑘 + 𝑣𝑘   

𝑦𝑘 = ℎ(𝑥𝑘) + 𝑒𝑘 

 

𝐹 =

[
 
 
 
 
1 0 0 𝑑𝑡 0
0 1 0 0 𝑑𝑡
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1 ]

 
 
 
 

 

 

(18) 

with:  

𝑥𝑘  State Vector at step 𝑘 
𝑥𝑘+1|𝑘 State Vector at step 𝑘 + 1 

𝑣𝑘  Process Noise at step 𝑘 
𝑑𝑡 The time step 

 

 

In this model the speed estimation error is considered as constant, which is 

not the case as seen in Section 2.1. Therefore the speed estimation error variation 

will be included as a noise, but it is not a Gaussian noise, so the EKF filter will not 

be optimal and this will be a limit of the solution.  

 

The propagation of the filter is done as explained in book [19] 

 

 

𝑥̂𝑘+1|𝑘 = 𝐹𝑥̂𝑘|𝑘  

𝑥̂𝑘|𝑘 = 𝑥𝑘|𝑘−1 + 𝐾𝑘 (𝑦𝑘 − ℎ(𝑥̂𝑘|𝑘−1)) 

𝐾𝑘 = 𝑃𝑘|𝑘−1𝐻𝑘
𝑇(𝐻𝑘 . 𝑃𝑘|𝑘−1𝐻𝑘

𝑇 + 𝑅)−1 

𝑃𝑘|𝑘 = (𝐼 − 𝐾𝑘𝐻𝑘) 𝑃𝑘| 𝑘−1 

𝑃𝑘+1|𝑘 = 𝐹𝑘𝑃𝑘|𝑘𝐹𝑘
𝑇 + 𝑄𝑘  

𝐻𝑘 = (
𝛿ℎ(𝑥)

𝛿𝑥
)

𝑥=𝑥𝑘|𝑘−1

 

 

(19) 

 

with R and hk being different for each phase, they are given in the next 

paragraphs. 
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Process Noise Matrix 

The process noise is considered uncorrelated and therefore the process noise 

matrix is diagonal: 

𝑄𝑘 =

[
 
 
 
 
𝑞1 0 0 0 0
0 𝑞2 0 0 0
0 0 𝑞3 0 0
0 0 0 𝑞4 0
0 0 0 0 𝑞5]

 
 
 
 

 

 

Return 

During the return phase, only the azimuth from the directional antenna is 

available.  

 

 

ℎ𝑘(𝑥) =
1

𝐷𝐸𝑠𝑡𝑘

[−𝑋𝑒𝑠𝑡

−𝑌𝑒𝑠𝑡]
𝑘
 

 

[𝑋
𝑒𝑠𝑡

𝑌𝑒𝑠𝑡]
𝑘

= [𝑋
𝐼𝑀𝑈

𝑌𝐼𝑀𝑈]
𝑘

− [
1 0 0 0 0
0 1 0 0 0

] 𝑥 − (𝑋
𝐺𝑆

𝑌𝐺𝑆)
𝑛

 

 

𝐷𝐸𝑠𝑡𝑘
= √𝑋𝑒𝑠𝑡2 + 𝑌𝑒𝑠𝑡2

 

 

(20) 

 

with 𝑋𝐺𝑆and 𝑌𝐺𝑆 the coordinates of the ground station in the NED coordinate 

system centered at the TDP. And the sensor noise matrix associated to this 

measurement is: 

𝑅𝑟𝑒𝑡𝑢𝑟𝑛 = [
𝑟1 0
0 𝑟2

] 

Final 

During the final the vision is always available and the laser height measurement is 

available once the UAV gets close enough to the ground.  
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Without Laser 
 

ℎ𝑘(𝑥) = 𝑓 (
1

𝐷𝐸𝑠𝑡𝑘

− [
𝑋𝑒𝑠𝑡

𝑌𝑒𝑠𝑡

 𝑍𝑒𝑠𝑡

]

𝑘

) 

 

(
𝑋𝑒𝑠𝑡

𝑌𝑒𝑠𝑡

 𝑍𝑒𝑠𝑡

) = (
𝑋𝐼𝑁𝑆

𝑌𝐼𝑁𝑆

 𝑍𝐼𝑁𝑆

)

𝑘

− [
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

] 𝑥 

 

𝐷𝐸𝑠𝑡 = √𝑋𝑒𝑠𝑡2 + 𝑌𝑒𝑠𝑡2 + 𝑍𝑒𝑠𝑡2
 

 

(21) 

 

with 𝑓the relationship between NED and camera coordinates as seen in 

Section 3.2. 

 

The sensor noise matrix associated with this measurement is: 

𝑅𝐹𝑖𝑛𝑎𝑙 = [
𝑟1 0
0 𝑟2

] 

 

With Laser 
 

ℎ𝑘(𝑥) =

[
 
 
 
𝑓 (

1

𝐷𝐸𝑠𝑡𝑘

− [
𝑋𝑒𝑠𝑡

𝑌𝑒𝑠𝑡

 𝑍𝑒𝑠𝑡

]

𝑘

)

𝑍𝑒𝑠𝑡 ]
 
 
 

 

 

[
𝑋𝑒𝑠𝑡

𝑌𝑒𝑠𝑡

 𝑍𝑒𝑠𝑡

] = [
𝑋𝐼𝑁𝑆

𝑌𝐼𝑁𝑆

 𝑍𝐼𝑁𝑆

]

𝑘

− [
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

] 𝑥 

 

𝐷𝐸𝑠𝑡 = √𝑋𝑒𝑠𝑡2 + 𝑌𝑒𝑠𝑡2 + 𝑍𝑒𝑠𝑡2
 

 

(22) 
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with 𝑓the relationship between NED and camera coordinates as seen in 

Section 3.2. 

 

The sensor noise matrix associated with this measurement is: 

𝑅𝐹𝑖𝑛𝑎𝑙/𝐿𝑎𝑠𝑒𝑟 = [

𝑟1 0 0
0 𝑟2 0
0 0 𝑟3

] 

 

Short Final 

On short final the filter runs without any measurement so: 

 

ℎ𝑘(𝑥) = 0 
 

(23) 

 

The sensor noise matrix associated with this measurement is: 

𝑅𝑆ℎ𝑜𝑟𝑡 𝐹𝑖𝑛𝑎𝑙 = [0] 

Braking 

The behavior of the filter during this phase is still to be determined. 

Standby Mode 

The standby mode has not been mentioned yet, it is the mode in which the filter is 

running when the UAV is working in normal operation mode. As the GPS is 

available it is used to estimate in real time the state of the filter so when the GPS is 

lost the filter starts with a good estimate and initial covariance matrix. In this 

mode: 

 

𝐻 = 𝐼(5,5) 
 

(24) 

 

The sensor noise matrix 𝑅 associated with this measurement is given by the 

GPS module. 
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4.2   Implementation 

MatLab & Real System 

The filter has been implemented under MatLab Simulink for testing purpose. It is 

implemented in Simulink using a MatLab function.  

On the real system, the code of the filter will have to run on the FC. One way 

of generating it could have been to use MatLab code generation feature, but it is 

not very efficient when a MatLab function is used in a Simulink model. Another 

possibility is to write the code again, being careful to the real time constraints 

inherent to this filter. The code is quite short so this solution is conceivable. This 

is out of the scope of this thesis and will be mentioned in the future work section.  

Sensors Frequency 

As exposed in Section 3.2, each sensor is working at its own frequency. The filter 

is running at the frequency of the IMU Position and Speed data and every time 

another measurement arrives it is taken into account by the filter with the next 

IMU attitude data. There is no synchronization between the sensors. Except for the 

IMU attitude data and computer vision data, they are synchronized with 

timestamps. The impact of the desynchronization is exposed in Section 6.4. 

Transition between Phases 

The transition between two phases must be smooth and must occur at the right 

moment. The first transition is triggered when the GPS loss is confirmed. The 

filter is leaving the standby mode and starts to take into account the measurements 

from the directional antenna. At the beginning of the return phase the estimation 

of the error of the IMU is very good since it was done using the GPS signal. And 

the initial covariance for this phase is taken as the last covariance matrix 

calculated in standby mode. 

The return phase stops when the UAV passes the last waypoint of the return 

trajectory. The filter starts to take into account the vision measurement and does 

not use the directional measurement any more. This transition is done without any 

change in the covariance matrix.  

The next transition is when the laser height sensor is activated. At this point 

either an increase of the covariance on the altitude axis or a reset of the altitude 

estimate is necessary. Both have been tested and in case of steep terrain the 
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increase of the covariance matrix works better but it is the opposite when the 

terrain is almost flat. A mix between the two techniques is a good compromise. 

The criteria for the last two transitions are still to be determined.  

4.3   Tuning 

Calculation of initial parameters 

A first estimate of a suitable set of parameters for the filter was calculated using 

the specification of the sensors. As they are confidential they are given arbitrarily 

scaled. The hand tuned parameters will be scaled the same way in order to make 

comparison possible but unfortunately, due to the scaling, a R and Q value 

comparison cannot be done.  

𝑄𝑡ℎ𝑒𝑜 =

[
 
 
 
 
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 2𝐸−11 0
0 0 0 0 2𝐸−11]

 
 
 
 

 

 

𝑅𝑡ℎ𝑒𝑜
𝑟𝑒𝑡𝑢𝑟𝑛 = [5𝐸−4 0

0 5𝐸−4] 

 

𝑅𝑡ℎ𝑒𝑜
𝐹𝑖𝑛𝑎𝑙 = [5.8𝐸−9 0

0 5.8𝐸−9] 

 

𝑅𝑡ℎ𝑒𝑜
𝐹𝑖𝑛𝑎𝑙/𝐿𝑎𝑠𝑒𝑟

= [
29𝐸−9 0 0

0 29𝐸−9 0
0 0 2𝐸−5

] 

Hand Tuning  

From this initial set of parameters the parameters were tuned by doing many 

simulations. It led to a new set of parameters reported here using the same scaling 

as for the previous values: 

 

𝑄𝑡𝑢𝑛𝑒𝑑 = 2.25𝑄𝑡ℎ𝑒𝑜 

 

𝑅𝑡𝑢𝑛𝑒𝑑
𝑅𝑒𝑡𝑢𝑟𝑛 = 400𝑅𝑡ℎ𝑒𝑜

𝑟𝑒𝑡𝑢𝑟𝑛 

 

𝑅𝑡𝑢𝑛𝑒𝑑
𝐹𝑖𝑛𝑎𝑙 = 100𝑅𝑡ℎ𝑒𝑜

𝐹𝑖𝑛𝑎𝑙 
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𝑅𝑡𝑢𝑛𝑒𝑑
𝐹𝑖𝑛𝑎𝑙/𝐿𝑎𝑠𝑒𝑟

= [
100 0 0
0 100 0
0 0 400

] 𝑅𝑡ℎ𝑒𝑜
𝐹𝑖𝑛𝑎𝑙/𝐿𝑎𝑠𝑒𝑟

 

 

One can notice the increase in the noise on the sensor process matrices. This 

was expected as the noise models in the EKF are Gaussian which is not the case of 

the noise in the system. But the increase is way larger than expected. For the laser 

sensor it can be explained by the fact that the theoretical calculation was done 

taking into account the sensor accuracy only, and not the error introduced by the 

terrain elevation.  

Another step of tuning will be necessary once the code is implemented on the real 

process.  
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5.  Simulation Environment 

5.1   Architecture  

The simulator is implemented in MatLab using the Simulink environment. It has 4 

main parts as shown in Fig. 17: 

 Aircraft Dynamics 

 Sensor Models 

 Filter 

 Data  Log 

 

Aircraft 
Dynamics

Sensors Filter

Data Log

Real Situation

Measured Attitude

Estimated Position and Speed

Reference 
Trajectory

Terrain
Model

Sensor Simulation
Parameters

Filter
Parameters

 

Fig. 17 - Simulator Architecture 
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Aircraft Dynamics 

The aircraft dynamics block computes the control commands according to Section 

3.3 and it simulates the flight dynamics of the aircraft according to the equations 

in Section 3.3.  

The terrain model taken as input by this block is used to calculate the real 

height of the aircraft. The terrain is modeled by a grid of points at which the 

ground elevation is known, a linear interpolation is used to calculate the ground 

elevation at the UAV’s position. The grid of elevation can be made either using 

real data from Google API, or by using formulas to generate a particular terrain. It 

will be used in Section 6.1 to analyze the impact of the terrain on the behavior of 

the filter.   

Sensor Models 

The sensor models block includes all the sensor models presented in Section 3.2 

except the computer vision part which is included in the filter block because the 

filter block is the part containing everything that will have to be implemented on 

the real UAV.  

Filter 

The filter is the part estimating the IMU error. Then it corrects the IMU 

measurement with the estimated error and sends the measurements to the Aircraft 

Dynamic block where the FC will compare it to the reference trajectory in order to 

calculate the control commands.  

Data Log 

The data log block is simply gathering and saving information for post simulation 

analysis.   

5.2   Open-Loop Simulation 

It is also possible to do open-loop simulation. Data from real flights can be sent to 

the simulator and used instead of the models. The simulator needs at least the real 

position/speed of the aircraft to run in open loop. It is possible to add data from 

the computer vision algorithm run on a real video, the directional antenna data, the 

IMU data, the laser height and barometric measurements.   
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5.3   Monte Carlo  

As the simulator has many parameters, it is possible to run Monte Carlo 

simulations in order to assess the filter’s performance. For each simulation a set of 

parameters is randomly chosen according to a normal or uniform law. This 

permits to distribute all the parameters associated with the sensor models seen in 

Section 3.2. 
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6.  Performance Study 

In this section are presented the results of all the performances studies done during 

this thesis. This section ends by a global conclusion on the performances of the 

filter.  

The different studies are: 

 Impact of the terrain elevation 

 Impact of the angular harmonization of the camera 

 Impact of the position harmonization of the camera 

 Impact of latencies and desynchronization 

 Performance of the “Fly Back” 

6.1   Terrain Elevation   

The previous thesis done on the “landing without GPS” subject only considered a 

flat terrain. This particular case showed the interest of using the laser height sensor 

in order to compensate for the bias of the altimeter. The purpose of this subsection 

is to study if it is still the case for non-flat terrains and what the impact of the 

terrain elevation on the filter is. 

Data, Parameters and Protocol 

For this study, 4 different terrains, plotted in Fig. 18 and Fig. 19, were used: 

 A flat terrain 

 A terrain with a 3% slope until 300m before the TDP and then flat 

(yellow plot) 

 A terrain with a 20m cliff 300m before the TDP (blue plot) 

 A terrain with a 15m x 10m obstacle 300m before the TDP (orange 

plot). 
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Fig. 18 - Vertical cut along runway’s axis. The TDP is at 89m AMSL 
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Fig. 19 - 3D plot of the 4 terrains 

Flight data are issued from a real flight for which a video recording on which 

the tracking algorithm can be run is available. For each terrain the laser 

measurements are simulated according to the model presented in Section 3.2 and 

the four terrain models. 

 

For each terrain 1500 Monte-Carlo simulations were launched, randomly 

choosing the following parameters: 

  

 

IMU Parameters 

Parameter Law 

Gyro Bias X (°/h) Normal 

Gyro Bias Y (°/h) Normal 

Time since last reset Uniform 

Roll Bias (°) Normal 

Pitch Bias (°) Normal 

Heading Bias (°) Normal 

Altimeters Parameters 

Parameter Law 

Baro Bias (m) Normal 

Laser Bias (m) Normal 

Baro Scale Factor (m) Normal 

Laser Noise (m) Normal 

Laser Activation Height (m) Normal 
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Vision Parameters (Harmonization Error) 

Parameter Law 

Rotation X Sensor (°) Normal 

Rotation Y Sensor (°) Normal 

Rotation Z Sensor (°) Normal 

Filter’s Initial Parameters* 

Parameter Law 

Erreur en X NED (m) Normal 

Erreur en Y NED (m) Normal 

*The initial estimate errors are a bit optimistic, especially on the speed but 

that will not affect the qualitative conclusion of this section.  

 

The mean value and standard deviation used cannot be given here as they 

would give confidential information on the sensors used by SAGEM on its UAV. 

Filter Reference Performance 

The reference for the study is the performance of the filter without using the laser 

height sensor.  
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Fig. 20 - Result of the Monte Carlo Simulations for the reference scenario 

Diagrams in Fig. 20 are to be read from left to right: the simulations start 

3 000m away from the TDP and end at the TDP. The first plot shows the mean 

value, over 1500 simulations, of the error between the lateral position of the UAV 

(axis 𝑋𝑟) and the actual lateral position of the UAV. The second plot shows the 

same error along the runway axis (𝑌𝑟). So this is the plot of the mean error of the 

filter made on the position estimation projected on the runway coordinates. 

 

This Monte Carlo simulation is the reference and the performance will be 

compared using Table 4, looking only at the longitudinal axis because the impact 

of the terrain elevation is focused on this axis: 

 

Distance to TDP Mean Error Standard Deviation % Valid Simulations 

300m -0.12 1.19 63 % 

150m -0.17 1.21 56 % 

100m -0.33 1.23 47 % 

Table 4 - This table summarizes the mean error, the standard deviation of the 

error and the percentage of simulations within the limit 𝑳𝒐𝒏𝒈𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚, at different 

distances from the TDP, along the runway axis. 
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Measurement after 100m are not taken into account because it is 

approximately the distance at which the system will switch to the short final mode, 

so only the performance up to 100m before the TDP are interesting here. 

 

It is also interesting to look at the histogram of the errors, for example in Fig. 

21 with the initial distribution of the longitudinal error.  

 

 
Fig. 21 - Histogram of the longitudinal error at 3000m to the TDP 

In order to improve the performance of the filter, it is first of all necessary to 

understand the impact of an altitude estimation error.   

Impact of an Altitude Estimation Error 

On the longitudinal axis (𝑌𝑟), the filter is using the height above the TDP and the 

elevation with which the TDP is viewed by the camera. In the case of an error in 

the height estimation (barometer error, non-flat terrain…) the filter will look for 

the best way to see the TDP with the measured elevation at the measured height as 

illustrated by Fig. 22. 



 

 

61 

   

Real Position

Position Estimate
Real Height

Measured Height

TDP

Height Underestimated
Position estimate ahead 

of the actual position

 

Fig. 22 - Illustration of height underestimation consequence 

So according to Fig. 22, when the height of the UAV is underestimated, the 

position estimate is ahead of the actual position along the longitudinal axis (𝑌𝑟). 

The same way, if the height of the UAV is overestimated then the position 

estimate is behind the actual position.  

So a good height estimate is mandatory for a good behavior of the filter. 

Therefore the bias of the barometer (actually baro-inertial) must be compensated 

and that is what the laser height sensor is used for. 

 

One must also look at what happens when both the height and the elevation 

measurements are correct but the estimated position is false. This can happen if 

the filter previously received measurements with too much noise to make a good 

estimation. The analysis is always made for the actual position of the UAV at a 

fixed distance to the TDP. Open and closed loop must be distinguished because in 

open loop the real position of the UAV is on the approach slope while in closed 

loop the estimated position is on the approach slope (open-loop data come from a 

real flight when real position, acquired with GPS, were provided to the FC while 

in closed loop the estimated position is provided to the FC).  

 

 

. 
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Open Loop 
In the open-loop case, Fig. 23 illustrates what happens when the position estimate 

is ahead of the actual position. 

Real Position Position Estimate

Real Height

=

Measured Height

TDP

Innovation

 
Fig. 23 - In open loop the real position is on the glide slope (red) 

And Fig. 24 illustrates what happens when the position estimate is behind the 

actual position, considering that it is behind of the same distance as it was ahead in 

the previous case: 

 

Real PositionPosition Estimate

Real Height

=

Measured Height

TDP

Innovation

 
Fig. 24 - In open loop the real position is on glide slope (red). The distance 

between the real and actual position is the same as in the previous case and the real 

position is at the same distance to TDP than in the previous case 

So for the same estimation error in norm, if the estimate is ahead then the 

innovation is larger. This can be confirmed by the plot in Fig. 25 showing the 

innovation vs the estimation error (calculated geometrically in the case of a perfect 

guidance along a 6° slope).  
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Fig. 25 - Innovation as a function of the longitudinal estimation error at 350 to 

the TDP 

It is clearly not linear. Even if an EKF is used, this non-linearity is too strong 

to disappear. So in open loop an estimate that is ahead of the actual position will 

be easier to correct for the filter. This phenomenon will be stressed in the 

simulations results.  

Closed Loop 
In closed loop, the situation when the estimate is ahead of the actual position is 

illustrated by Fig. 26. 
Real Position Position Estimate

Real Height 

=

Measured Height

TDP

Innovation

 
Fig. 26 - In closed loop the position estimate is on the glide slope (red) 

And Fig. 27 illustrates the situation when the estimate is behind the actual 

position, considering the real position as being at the same position as previously 

(because the plots in this report are showing in abscise the actual distance to the 

TDP and not the estimated distance to the TDP) and considering that the 

estimation error has the same norm as for the previous case: 
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Real Position
Position Estimate

Real Height

=

Measured Height

TDP

Innovation

 
Fig. 27 - In closed loop the position estimate is on the glide slope (red). The real 

position is at the same distance to the TDP than in the previous case and the distance 

between the position estimate and the real position is also the same 

So the phenomenon seen in open loop seems absent in closed loop, the 

innovation has the same norm in both cases. This can be confirmed by the same 

plot as before, Fig. 28, which is now linear:  

 
Fig. 28 - Innovation as function of the longitudinal estimation error at 350 to the 

TDP 



 

 

65 

   

Adding Laser Height Measurement  

The conclusion of the previous Master’s thesis was that adding the laser height 

measurement, in the flat terrain case, enables the filter to compensate for the 

barometer bias and therefore improves performances. It must first of all be 

verified. Result from the Monte Carlo simulations can be seen below and Table 5 

does the comparison with the reference case.  

 
Fig. 29 - Result of the Monte Carlo Simulations 

 

Distance to TDP Mean Error Standard Deviation % Valid Simulations |var. 

300m -0.68 0.61 73 % |+ 10 % 

150m -0.81 0.53 70 % |+ 14 % 

100m -0.99 0.52 59 % |+ 12 % 

Table 5 - This table summarizes the mean error, the standard deviation of the 

error and the percentage of simulations within the 𝑳𝒐𝒏𝒈𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 limit (with the 

evolution from the reference case), at different distances from the TDP, along the 

runway axis. 



66  

 

 
Fig. 30 - Estimation on Z axis for one simulation. The laser activation occurs 

around 1000m to the TDP and we can see the effect it has on the state estimation 

So the laser height sensor activation is, as expected, improving by more than 

10% the performance in the flat terrain scenario. This can be explained by the fact 

that it greatly improves the height estimation as it can be seen in Fig. 30 where the 

state estimation, the covariance of the filter for this state and the actual state are 

plotted.  

The negative mean value of the error in Table 5 can be explained by the fact 

explained in the beginning of this subsection: estimates ahead of the actual 

position are easier to correct than estimates behind. This can be seen on the 

histogram Fig. 31: 100m away from the TDP the estimates in advance (positive 

error) were corrected by the filter.  
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Fig. 31 – The right part of the histogram is cut because the simulations with a 

positive error have been corrected by the filter. 

But if this phenomenon was the only one, an increase in the rate of 

simulations in the +/-𝐿𝑜𝑛𝑔𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 limit is expected as the UAV gets closer to 

the TDP. But it is not the case because as seen in Table 5, it goes from 73% at 

300m to 59% at 100m. So added to the phenomenon described in the beginning of 

this subsection, there is something else, which already appeared in the reference 

case, but will not appear in closed loop. One way of explaining it is that the open-

loop data are not very accurate, especially the altitude data. There is probably a 

bias in the altitude considered as the “real altitude” that introduces an error with 

what is seen in the video by the computer vision algorithm. The estimate seems to 

be behind the actual position. So as seen in the beginning of this subsection, this 

may be caused by an overestimation of the altitude.  

To check this hypothesis some simulations applying a correction of a few 

meters to the altitude data were run. This was done later in the project and at this 

point different parameters were used for the filter. The results are reported in the 

table below. 
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Distance to TDP % Valid Simulations Initial/Corrected 

300m 83 % / 80 % 

150m 80 % / 95 % 

100m 74 % / 96 % 

Table 6 - Table comparing the performance with the initial altitude data and 

with a 4m correction 

Thanks to the small correction the expected behavior is obtained: the 

percentage of simulations within the limits increases as the UAV gets closer to the 

TDP. Moreover the new parameters suggested for the filter greatly improve the 

performances.  

So it is confirmed that in the case of a flat terrain the laser height sensor 

greatly improves the performance of the filter, but is it still the case for non-flat 

terrains?  

Obstacle 

The results of the simulations done on the obstacle terrain are presented in Fig. 32 

and Table 7. 

 
Fig. 32 - Result of 1500 Monte Carlo Simulations 
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Distance to TDP Mean Error Standard Deviation % Valid Simulations |var. 

300m -0.65 0.58 77 %| + 14 % 

150m -0.77 0.51 72 %| + 16 % 

100m -0.95 0.50 60 %| + 13% 

Table 7 - This table summarizes the mean error, the standard deviation of the 

error and the percentage of simulations within the 𝑳𝒐𝒏𝒈𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 limit (with the 

evolution from the reference case), at different distances from the TDP, along the 

runway axis 

This obstacle leads to a very small improvement in the performance 

compared to the flat terrain with laser sensor case (~2%). This can be explained by 

the fact that above the obstacle the laser height sensor is underestimating the 

height of the UAV as it can be seen on Fig. 33. This will, as seen previously in 

this subsection, lead to an estimate ahead of the real position and that is easier to 

correct for the filter.  

 

Terrain 

Real Height above TDPMeasured Height

Obstacle

 
Fig. 33 - The obstacle leads to an underestimated height 

The conclusion is that the impact of the obstacle is negligible.  

Slope 

The results of the simulations done on the slope terrain are presented in Fig. 34 

and Table 8. 
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Fig. 34 - Results of 1500 Monte Carlo Simulations 

 

Distance to TDP Mean Error Standard Deviation % Valid Simulations |var. 

300m 0.37 0.22 100 %| + 37 % 

150m -0.66 0.19 95 % |+ 39 % 

100m -1.02 0.19 49 %| + 2 % 

Table 8 - This table summarizes the mean error, the standard deviation of the 

error and the percentage of simulations within the 𝑳𝒐𝒏𝒈𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 limit (with the 

evolution from the reference case), at different distances from the TDP, along the 

runway axis 

The slope has a huge impact on the longitudinal axis. The increase in the 

number of valid simulation is only due to the phenomenon explained in the 

beginning of this subsection. Moreover, the maximum value of the error is close to 

5.5 (that means 5.5 times the expected accuracy). This will imply large trajectory 

corrections and that is not acceptable. In view of this result the relevance of the 

laser height sensor is in doubt. It may be possible to activate the laser sensor later 

during the approach once the UAV gets closer to the TDP because normally close 

to the TDP the terrain is flat and free of obstacles.  
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Cliff 

The results of the simulations done on the cliff terrain are presented in Fig. 34 and 

Table 9. 

 
Fig. 35 - Results of 1500 Monte Carlo Simulations 

 

Distance to TDP Mean Error Standard Deviation % Valid Simulations |var. 

300m -3.39 0.81 0 %| - 63 % 

150m -3.35 0.82 0 %| - 56 % 

100m -3.36 0.84 0 %| - 47 % 

Table 9 - This table summarizes the mean error, the standard deviation of the 

error and the percentage of simulations within the 𝑳𝒐𝒏𝒈𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 limit (with the 

evolution from the reference case), at different distances from the TDP, along the 

runway axis 

The cliff scenario is the one with the largest impact on the filter, more than 

the slope. The relevance of the laser sensor activation is even more in doubt. 

The effect of the cliff is that the laser height sensor overestimates the height 

of the UAV as it can be seen on Fig. 36. As explained in the beginning of this 

subsection, this leads to an estimate behind the actual position and that is harder to 

correct for the filter. So a reversed cliff should give better results. It has been 

verified through simulations.  
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Terrain (TDP)

Real Height above TDP Measured Height

 

Fig. 36 - The cliff leads to an overestimated height 

 

In Table 10, as in Table 7 the comparison was done later on with the new 

filter parameters.   

 

Distance to TDP % Valid Simulations Case 1/2 

300m 13 % / 1 % 

150m 2 % / 34 % 

100m 0 % / 87 % 

Table 10 - Table comparing the performances in the case of a cliff (case 1) and in 

the case of a plateau (case 2) 

In Table 10, comparing the results in the case of a cliff and the case of a 

plateau, the expected results are obtained. That confirms the hypothesis and those 

simulations show one more time that the new parameters of the filter give better 

performances than the previous one.  

Delayed Laser Activation  

The idea of delaying the laser activation, in order to obtain better performances 

when the terrain is not flat, had to be tested. It had been tested in the flat terrain 

and slope scenarios, keeping the same protocol as before. The laser was set to 

activate at 50m or 20m (AGL) while previously it was at 100m (AGL). 
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Flat Terrain 
The results of the simulations at 100m to the TDP in the flat terrain scenario are 

reported in Table 11. 

 

Activation 

Height 

Mean 

Error 

Standard 

Deviation 

%Valid 

Simulations 

Error max 

1σ 

100m -0.99 0.52 59 % 2.2 

50m -0.80 0.54 70 % 1.7 

25m -0.54 0.44 86 % 2.1 

Without LASER -0.33 1.23 47 % 2.2 

Table 11 - Table comparing the performances for different height of laser 

activation 

Even if the mean value is worse in the 25m case than without the laser, the 

standard deviation is way smaller so the performance is way better. This is again 

explained by the phenomenon stressed in the first part of this subsection.  

Slope 
The results of the simulations at 100m to the TDP in the slope terrain scenario are 

reported in Table 12. 

 

Activation 

Height 

Mean 

Error 

Standard 

Deviation 

% Valid 

Simulations 

Error 

max 1σ 

100m -1.02 0.19 49 % 6.5 

50m -0.39 0.33 95 % 3.1 

25m -0.36 0.41 94 % 2.2 

Without LASER -0.33 1.23 47 % 2.2 

Table 12 - Table comparing the performances for different height of laser 

activation 

The best performance is achieved with an activation at 50m even if the 

maximal value of the error is a bit worse in this case. Anyway, with 25m or 50m 

the performance is greatly improved.  

It can also be noticed that the slope gives better performances than the flat 

terrain. This is also due to the phenomenon explained in the beginning of this 

subsection as the laser height sensor underestimates the height of the UAV 

because of the slope.  

So the late activation of the laser brings better performances but it has some 

limits. If the laser activation occurs too late the UAV and the filter will not have 

time to correct previous error. This error must be corrected before switching to the 
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short final phase. An optimal height for the laser activation will have to be 

determined during more realistic simulations and test flights. A good first guess, 

could be, say, 50m. 

Conclusion  

The results of those simulations are only qualitative, since at this point the filter 

did not have its definitive design and tuning. The conclusion is that the terrain will 

not be a problem for the filter. It will have an impact on it but nothing that will 

prevent a good landing to happen if the laser is not activated too early. The impact 

of the terrain is mainly on the longitudinal axis, it will add to all the other factors 

which have an impact on this axis such as the camera harmonization as exposed in 

the next subsection. 

6.2   Angular Harmonization of the Camera 

Protocol  

For every scenario 1000 Monte-Carlo simulations were run in open loop randomly 

choosing the following parameters: 

 

IMU Parameters 

Parameter Law 

Gyro Bias X (°/h) Normal 

Gyro Bias Y (°/h) Normal 

Time since last reset Uniform 

Roll Bias (°) Normal 

Pitch Bias (°) Normal 

Heading Bias (°) Normal 

Altimeters Parameters 

Parameter Law 

Baro Bias (m) Normal 

Laser Bias (m) Normal 

Baro Scale Factor (m) Normal 

Laser Noise (m) Normal 

Laser Activation Height (m) Normal 
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Vision Parameters (Harmonization Error) 

Parameter Law 

Rotation X Sensor (°) Normal 

Rotation Y Sensor (°) Normal 

Rotation Z Sensor (°) Normal 

Filter’s Initial Parameters* 

Parameter Law 

Erreur en X NED (m) Normal 

Erreur en Y NED (m) Normal 

Erreur en Z NED (m) Normal 

Erreur en VX NED (m/s) Normal 

Erreur en VY NED (m/s) Normal 

 

The computer vision is supposed perfect and the terrain is flat in order to 

avoid any error compensation. For the yaw and pitch axis 8 scenario were used, 4 

for each axis, with harmonization errors of 0.3° 0.5° 0.7° and 0.9°. And for the roll 

axis 4 scenario were used with harmonization errors of 0.5° 1.0° 1.5° and 2.0°. An 

harmonization error means that the camera is not mounted at the theoretical angle 

and this will introduce an error when comparing the position of the TDP in the 

picture with the theoretical position of the TDP in the picture (innovation of the 

filter in the final phase). 

Pitch 

The results of the simulations done for the pitch harmonization error are reported 

in Table 13 and Table 14. 

 

Distance TDP | Harmonization Error 0° 0.3 ° 0.5° 0.7° 0.9° 

300m 68% 60% 55% 49% 49% 

150m 75% 66% 64% 62% 59% 

100m - 69% 71% 63% 52% 

Table 13 - Table of results showing the percentage of simulation within the limit 

𝑳𝒐𝒏𝒈𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 at different distance to the TDP 

Distance TDP | Harmonization Error 0° 0.3 ° 0.5° 0.7° 0.9° 

300m 1.02 1.22 1.35 1.46 1.53 

150m 0.91 1.10 1.17 1.20 1.21 

100m - - - - - 

Table 14 - Table of results showing the standard deviation of the estimation error 

(scaled with 𝑳𝒐𝒏𝒈𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚) on the longitudinal axis at different distance to the TDP 
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The pitch harmonization error has the expected impact on the performances 

but it remains reasonable for small harmonization errors. The impact on the lateral 

axis is not reported since during the landing the UAV has its wings leveled most 

of the time so the impact of a pitch harmonization error is very small. 

Yaw 

The results of the simulations done for the yaw harmonization error are reported in 

Table 15 and Table 16. 

 

Distance TDP | Harmonization Error 0° 0.3 ° 0.5° 0.7° 0.9° 

300m 94% 85% 75% 64% 53% 

150m 77% 91% 85% 79% 73% 

Table 15 - Table of results showing the percentage of simulation within the limit 

𝑳𝒂𝒕𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 at different distances to the TDP 

Distance TDP | Harmonization Error 0° 0.3 ° 0.5° 0.7° 0.9° 

300m 0.56 0.64 0.72 0.78 0.86 

150m 0.46 0.54 0.60 0.68 0.74 

Table 16 - Table of results showing the standard deviation (scaled with 

𝑳𝒂𝒕𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚) of the lateral estimation error at different distances to the TDP 

Same as for the pitch error, for the yaw harmonization error only the impact 

on the lateral axis is reported since it has a very limited impact on the longitudinal 

axis, even null when the wings are leveled. Again the impact is limited for a 

reasonable harmonization error.  

Roll 

The results of the simulations done for the roll harmonization error are reported in 

Table 17, Table 18, Table 19 and Table 20. 

 

Distance TDP | Harmonization Error 0° 0.5 ° 1° 1.5° 2° 

300m 94% 94% 94% 94% 94% 

150m 77% 77% 77% 77% 77% 

Table 17 - Table of results showing the percentage of simulation within the 

𝑳𝒂𝒕𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 limit at different distance to the TDP 
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Distance TDP | Harmonization Error 0° 0.5 ° 1° 1.5° 2° 

300m 0.56 0.54 0.54 0.54 0.54 

150m 0.46 0.44 0.44 0.46 0.46 

Table 18 - Table of results showing the standard deviation of the Lateral 

estimation error at different distance to the TDP 

Distance TDP | Harmonization Error 0° 0.5 ° 1° 1.5° 2° 

300m 68% 70% 70% 70% 69% 

150m 75% 76% 77% 77% 77% 

Table 19 - Table of results showing the percentage of simulation out of the 

𝑳𝒐𝒏𝒈𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 limit at different distance to the TDP 

Distance TDP | Harmonization Error 0° 0.5 ° 1° 1.5° 2° 

300m 1.02 1.01 1.01 1.00 1.00 

150m 0.91 0.90 0.90 0.90 0.89 

Table 20 - Table of results showing the standard deviation of the Longitudinal 

estimation error at different distance to the TDP 

Unlike for the pitch and yaw harmonization error, the roll harmonization has 

an impact on both the lateral and longitudinal estimations. But this impact is very 

limited and this can be explained by the fact that the tracked point, the TDP, is 

almost in the center of the picture. 

Conclusions 

The axis on which the impact is the greatest is the pitch. The harmonization on the 

roll axis is not critical since the TDP is in the center region of the picture. 

It is important to know that those simulations were done in the ideal scenario 

of a flat terrain and perfect computer vision tracking. A non-flat terrain would add 

to the harmonization error on the longitudinal axis and therefore reduce even more 

the tolerance on the pitch harmonization. 

It is still not possible to look at the absolute performances of the filter since it 

still does not have a definitive architecture and tuning. But by looking at the 

relative decrease in performances due to harmonization error it seems that an error 

of 0.5° on the yaw axis reduces the rate of success by 15%, it is a reasonable limit 

according to the persons responsible for the harmonization.  

6.3   Position Harmonization of the Camera 

The position of the camera in the body reference frame cannot be perfectly known. 

So the impact of an error in the position harmonization had to be studied. Only a 
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geometric study, illustrated in Fig. 38, has been conducted in order to convert the 

position error in an angular error, and the angular error impact has already been 

studied in the previous subsection.  

Impact at 100m to the TDP 

Yaw and Pitch harmonization errors are studied, Fig. 37, at 100m to the TDP in 

the worst case scenario in which the position error add along each axis adds.  

 
Fig. 37 - Equivalent angular error for different position errors at 100m to the 

TDP 
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As at 100m to the TDP the equivalent angular harmonization error due to the 

position error must be less than to 0.1° then, according to Fig. 37, the error in 

position harmonization must be below 16cm. It seems an achievable goal and this 

constraint has been transmitted to the person responsible for the harmonization 

procedure.  

Impact during Landing 

In Fig. 39, the equivalent angular harmonization error for a position harmonization 

error of 16cm is calculated and plotted, still in the worst case scenario. For the 

previous plot in Fig. 37, the distance to the TDP was fixed and the position 

harmonization error was the variable. But now the harmonization error is set to 

16cm and the distance to the TDP is the variable. This shows what would be the 

impact of a 16cm error during the whole landing phase. 

 

Equivalent Angular Error

Theoretical Camera
Position

Actual Camera 
Position

Position Harmonization Error

TDP

Distance to TDP

 
Fig. 38 - The equivalent angular error depends on the position harmonisation 

error and distance to TDP, that is why two analysis were conducted. One by fixing the 

distance to the TDP and one by fixing the position error 
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Fig. 39 - Equivalent angular error at different distance to the TDP for a 16cm 

position error 

The impact of the error position becomes significant only in the last 500m. 
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6.4   Latencies  

So far the simulator was not implementing the different frequencies and latencies 

of the sensors. So once added to the simulator it was possible to study the impact 

of the latencies in order to determine if synchronization is needed. The reference 

scenario is without desynchronization but with each sensor working at its own 

frequency as given in Table 21. 

 

Sensor Frequency 

IMU Attitude 100 Hz 

IMU Other 50 Hz 

Baro 50 Hz 

Laser 10 Hz 

Directionnal Antenna 1 Hz 

Camera 25 Hz 

Table 21 - Frequencies used for simulation 

As explained in Section 4.2 the filter is running at the IMU Other data rate 

and any other measurement is sent to the filter with the next incoming IMU 

attitude measurement. This study is again done using Monte Carlo simulations, in 

open and closed loops.  

Reference Scenario 

Performance, reported in Table 22 and Table 23, has assessed by looking at the 

percentage of simulation within the limits (both 𝐿𝑎𝑡𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 and 

𝐿𝑜𝑛𝑔𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦) over 1000 Monte-Carlo simulations.  

Closed Loop 
 
Distance to TDP 300 m 150 m 100 m 

Longitudinal axis 71% 72% 78% 

Lateral axis 74% 82% 84% 

Table 22 - Percentage of simulations within the limits in closed loop for the 

reference case  
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Open Loop 
 
Distance to TDP 300 m 150 m 100 m 

Longitudinal axis 90% 90% 90% 

Lateral axis 86% 91% 94% 

Table 23 - Percentage of simulations within the limits in open loop for the 

reference case 

Even if the Monte Carlo parameters are very pessimistic the performance are 

very good when there is no delay.  Table 22 and Table 23 will be used as the 

reference for the next simulations.  

AWC Camera 

The first latency studied was the one introduced by the camera. The camera is 

introducing a delay 𝐿𝑡𝑖  between the real world and its output. And this delay 

cannot be corrected as the timestamp on the camera data is put at its output. A 

typical camera in the considered category has a latency smaller than 100ms. The 

impact of this delay has been studied using the same protocol as for the other 

studies: Monte Carlo simulations in open and closed loop with 1000 simulations 

for every delay: 0ms, 50 ms, 100ms and 500ms.  The results are reported along 

with a comparison with the reference scenario in Table 24-27. 

Closed Loop 
 

Lti / Distance to 

TDP 

300 m 150 m 100 m 

0 ms 71% 72% 78% 

50 ms 72% (+1%) 72% (+0%) 77% (-1%) 

100 ms 75% (+4%) 74% (+2%) 79% (+1%) 

500 ms 61% (-10%) 59% (-13%) 66% (-12%) 

Table 24 - Percentage of simulations within the 𝑳𝒐𝒏𝒈𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 limit in closed 

loop and comparison with the reference case 

Lti / Distance to 

TDP 

300 m 150 m 100 m 

0 ms 74% 82% 84% 

50 ms 76% (+2%) 82% (+0%) 84% (+0%) 

100 ms 76% (+2%) 82% (+0%) 84% (+0%) 

500 ms 70% (-4%) 74% (-8%) 74% (-10%) 

Table 25 - Percentage of simulations within the 𝑳𝒂𝒕𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 limit in closed 

loop and comparison with the reference case 
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In closed loop there is no real impact on the performance if the delay is 

smaller than 100ms. But the result is not the same in open loop.   

Open Loop 
 

Lti / Distance 

to TDP 

300 m 150 m 100 m 

0 ms 90%  90% 90% 

40 ms 73% (-7%) 78% (-12%) 78% (-12%) 

100 ms 74% (-6%) 77% (-13%) 77% (-13%) 

Table 26 - Percentage of simulations within the 𝑳𝒐𝒏𝒈𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 limit in open 

loop and comparison with the reference case 

Lti / Distance 

to TDP 

300 m 150 m 100 m 

0 ms 86% 91% 94%  

40 ms 79% (-7%) 85% (-6%) 90% (-4%) 

100 ms 81% (-5%) 86% (-5%) 91% (-3%) 

Table 27 - Percentage of simulations within the 𝑳𝒂𝒕𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 limit in open loop 

and comparison with the reference case. 

There is a larger impact in open loop than in closed loop. The decrease in 

success rate is in this case around 10%, this is still acceptable if the global 

performance is increased in order to reach a 90% success rate. This latency affects 

more the longitudinal axis than the lateral axis and this can be explained by 

looking at the pitch and roll dynamic: the pitch dynamic is stronger than the roll 

dynamic as shown in Fig. 40.  

 
Fig. 40- Comparison between the error introduced by the delay in the pitch and 

yaw axes 
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Moreover, in order to explain the difference between the close and open loop 

results the pitch dynamic has been plotted in both cases in the figure below.  

 

 
Fig. 41 - a) Open loop pitch dynamic b) Closed loop pitch dynamic 

It is clear that it is not the same dynamic and that the pitch dynamic in open 

loop is 10 times larger (in norm) than in closed loop. This explains why the delay 

more affects the open loop than the closed loop. This also shows that a better 

model of the dynamic of the UAV is needed to go further in performances 
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assessment in closed loop. The hypothesizes made in Section 3.3 are too strong for 

this kind of analysis.  

So even if the impact of the delay introduced by the camera is not negligible, 

it seems reasonable if the AWC latency is kept below 100ms. An analysis of this 

delay must be conducted to see if it is possible to model it and account for it in the 

filter.   

Computer Vision 

After studying the effect of the latency introduced by the camera the effect of the 

latency introduced by the whole computer vision chain has been studied. The 

hypothesis is that thanks to timestamping the attitude data and video data are 

synchronized at 40ms (only the delay introduced by the camera cannot be 

corrected by timestamping). The delay of the computer vision chain is estimated 

to be around 200ms, this includes compression and image analysis.  

Open Loop 
In Table 28 and Table 29, the results of the Monte Carlo simulations are reported 

along with a comparison with the reference performance.   

 

Lci / Distance to 

TDP 

300 m 150 m 100 m 

0 ms 73%  78%  78%  

150 ms 72% (-1%) 78% (+0%) 77% (-1%) 

200 ms 73% (+0%) 79% (+1%) 78% (+0%) 

250 ms 76% (+3%) 82% (+4%) 82% (+4%) 

Table 28 - Percentage of simulations within the 𝑳𝒐𝒏𝒈𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 limit in opened 

loop and comparison with the reference case 

Lci / Distance to 

TDP 

300 m 150 m 100 m 

0 ms 79%  85%  90%  

150 ms 78% (-1%) 86% (+1%) 89% (-1%) 

200 ms 79% (+0%) 84% (-1%) 89% (-1%) 

250 ms 79% (+0%) 87% (+2%) 93% (+3%) 

Table 29 - Percentage of simulations within the 𝑳𝒂𝒕𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 limit in opened 

loop and comparison with the reference case. 

The delay seems to improve the performance; it might come from the poor 

synchronization of the open loop data. Nevertheless, the conclusion that this delay 

will have a negligible impact can be drawn. This is compatible with the fact that 



86  

 

the UAV has a relatively slow dynamics. The effect of this delay has not been 

studied in closed loop since the previous part showed that a better model of the 

UAV is needed for this kind of closed-loop simulation.   

6.5   Fly Back Performance  

 
Fig. 42 – Plot of the trajectories followed by the UAV during Monte Carlo 

simulations. The runway is oriented vertically, on the bottom of the picture 

Many simulations were done for the fly back, showing that the proposed solution 

is working. In Fig. 42 a few simulations from a Monte Carlo simulation have been 

plotted. It is a closed loop simulation with a real terrain model. The airfield is in 

north of France on a cliff, the part in blue is actually water and another view is 

available in Fig. 8. This terrain was chosen because of this cliff and its impact on 

the laser height sensor. The simulations were full procedures, it means that they 

were starting from the loss of GPS signal and ended at the touch down. The 

runway is in the bottom of the picture in black and oriented vertically. The ground 

station is situated to the left of the runway. 

For each simulation the UAV starts with different initial conditions and 

sensors parameters. It can be seen that every simulation is following the planned 

trajectory describing a large square around the GS before joining the final. The 

turns before reaching the GS pattern are due to a problem in the autopilot model. 

On the top of the picture, after the 180° to head back toward the runway, the UAV 

is following a track doing a 30° interception angle with the axis of the runway. 

The UAV turns onto final as soon as it intercepts the runway axis, this is why it 

seems to zig-zag a bit.  
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It is clear that all the simulations are converging and the UAV is nicely 

following the planned trajectory. There is no data available yet to do open-loop 

simulation for the flight back but the closed loop validated the solution.  

6.6   Global Performance   

Scenario 

In this subsection a few more details on the filter and its behavior are given. An 

open loop simulation using as much real data as possible has been done. Using a 

flight recording for which the video, the PVAT and the laser sensor data are 

available. As there is not any data available for open loop analysis of the fly back 

this subsection will just focus on the landing phase. The data start 5km away from 

the TDP, aligned with the runway. The approach lasts around 2min30s.  

Estimation 

Lateral Position Estimation 
The lateral position estimation made by the filter during this approach is 

plotted in Fig. 43 and the error made by the filter in Fig. 44. 

 
Fig. 43 - Position estimation on the lateral axis (Xr). In green the actual state, in 

blue the estimate and in red the 3σ envelope 

It can be seen that the filter is consistent and it seems to converge quite well. 
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Fig. 44 - Estimation error (LatAccuracy ratio) on the lateral axis. In blue the 

estimation error, in red the 3 σ envelope and in green the +/- LatAccuracy limit 

The good behavior of the filter is confirmed and the +/- 𝐿𝑎𝑡𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 is 

reached and not left at 850m to the TDP, more than 20s before switching to the 

short final phase. At the beginning the filter seems to diverge, this is because at 

this point the tracking algorithm was not locked on the TDP yet. 

Longitudinal Position Estimation 
The longitudinal position estimation made by the filter during this approach 

is plotted in Fig. 43 and the error made by the filter in Fig. 46. 

 

 
Fig. 45 - Position estimation on the lateral axis (Yr). In green the actual state, in 

blue the estimate and in red the 3σ envelope 
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The behavior of the filter seems to be almost as good on the lateral axis. 

During the first hundreds meters the covariance is increasing, this is probably due 

to the fact that the UAV is very far from the TDP and a very small error in the 

measurement would lead in a huge error in longitudinal position estimation. This 

is carried by the Jacobian of the function h(k) in the filter. 

 
Fig. 46 - Estimation error on the longitudinal axis. In blue the estimation error, 

in red the 3 σ envelope and in green the +/- LongAccuracy limit 

The +/-𝐿𝑜𝑛𝑔𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 limit is reached 1km before the TDP, which is also 

very good. The effect of the laser activation can be seen around 1km to the TDP in 

Fig. 45 and Fig. 46. 

Lateral Speed Estimation 
The lateral speed estimation made by the filter during this approach is plotted 

in Fig. 47. 

 
Fig. 47 - Speed estimation on the lateral axis (Xr). In green the actual state, in 

blue the estimate and in red the 3σ envelope 
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The behavior of the filter is correct but has to be improved as it is not 

consistent at the end.  

Longitudinal Speed Estimation 
The lateral speed estimation made by the filter during this approach is plotted 

in Fig. 48. 

 

 
Fig. 48 - Speed estimation on the longitudinal axis (Yr). In green the actual state, 

in blue the estimate and in red the 3σ envelope 

The filter is again not consistent at the end, and the estimate is not as good as 

it should be so it has to be improved, but the behavior of the filter is correct.  

It is very important to get a good speed estimate because in the short final 

mode there will not be any way to improve the estimate and the plane will just 

drift at the speed estimation error. 

Innovation 

It is also very interesting to look at the innovation of the filter, i.e., the difference 

between the measurement and the predicted measurement made by the filter. It 

gives hints on the behavior of the filter and it is an easy way to detect errors like 

faulty measurement. A faulty measurement detection could even be added to the 

filter using the innovation and its covariance. 
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Camera Lateral Axis 

 
Fig. 49 - Vision measurement innovation on the lateral axis (blue) with the 3σ 

envelope (red) 

The innovation plotted in Fig. 49 is quite small compared to the 3σ envelope. 

This is compatible with what was said in Section 4.3, when tuning the parameters, 

about the increase of the R coefficient for the vision based measurements. 

Camera Longitudinal Axis 

 
Fig. 50 - Vision measurement innovation on the longitudinal axis (blue) with the 

3σ envelope (red) 

The innovation plotted in Fig. 50 is again quite small compared to the 3σ 

envelope, as for the lateral axis. 
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Laser 

 
Fig. 51 - Laser measurement innovation (blue) with the 3σ envelope (red) 

It can be seen in Fig. 51 that the laser sensor is not active until around 1000m 

to the TDP. Once it is active the innovation seems in a good range of order 

compared with the covariance. The terrain is not flat and this contributes a lot to 

the innovation. 

 

Regarding this simulation the filter seems to be well tuned but the tuning 

could probably still be improved a bit in order to improve the estimation of the 

velocity errors. This will be mentioned in the next section about future work. 
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7.  Future Work and 
Conclusion 

First of all, the filter algorithm must be improved to include faulty 

measurement detection. It is necessary to have an even more robust solution.  

Moreover, the wind and the magnetic declination have to be taken into 

account. The wind should not be a problem regarding the way the algorithm works 

but the magnetic declination has not been taken into account yet which would 

probably lead to huge errors is certain part of the world. This has to be thought 

through before implementing the algorithm on the UAV. 

Some tests remains to be done, especially in closed loop. But for that there is 

first of all the need to improve the models as stated in Section 6.4.  

The ground phase, from the touch down until the UAV stops, has to be 

developed. A suggested solution has been drawn during this thesis but has not 

been tested yet. This is why there is no result or explanation about the ground 

phase in this report. 

Too late during this project, it appeared that the directional antenna of the 

ground station is not measuring only the azimuth but also the elevation to the 

UAV. This elevation measurement has to be added to the filter and it will improve 

the performance of the fly back.  

Finally, the code will be generated for test and tuning on the real system and 

the test flights will validate the solution studied during this thesis.  

 

The solution studied during this thesis is not fully automatic as it requires a 

sparse input from the UAV operator. Of course it could be automated by adding a 

more advanced computer vision algorithm able to recognize the runway and the 

touch down point in the picture. This was not the goal of the thesis and was not in 

the scope either, but everything developed and tested during this thesis can be 



94  

 

used along with a more advanced computer vision algorithm. This would lead to a 

fully automatic landing without GPS solution which is robust and easy to 

implement on SAGEM’s UAV. It could also be implemented on other UAVs but 

the main drawback of this solution is that it uses a ground station equipped with a 

directional antenna able to track the UAV. This was not a problem for this project 

since this antenna was already a part of the UAS. 

Many tests were done during this thesis and the tens of thousands simulations 

done proved that the solution is working and is robust. State-of-the-art 

technologies free of ground equipment, presented in Section 2, are using more 

complex computer vision algorithm and/or large databases of the overflown areas. 

This is also very promising and, with all those solutions, fixed-wing UAVs will be 

able to perform landing without GPS without ground equipment in the near future.  

 

 

. 
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Appendix A 

UAV Dynamic Model  

As stated in Section 3.3, the model used for the dynamic of the UAV is quite 

basic. It is based on 4 hypotheses: 

 The ground speed is constant  𝑉𝑛(𝑘). (1,1,0)𝑡 = 𝑉𝑔𝑟𝑜𝑢𝑛𝑑 

 The vertical speed follows the consign  𝑉𝑍(𝑘)  = 𝑉𝑍
𝐶𝑚𝑑(𝑘) 

 The roll follows the roll consign  𝜑(𝑘)  = 𝜑𝑐𝑚𝑑(𝑘) 

 The UAV is at equilibrium on the pitch axis     

𝜃(𝑘)  =
𝐴

𝑉𝑛(𝑘)2
− 𝐵 + tan (−

𝑉𝑍(𝑘)

𝑉𝑔𝑟𝑜𝑢𝑛𝑑
) with A and B some 

parameters characterizing our UAV 

And we also have: 

𝑃𝑛(𝑘) = 𝑃𝑛(𝑘 − 1) + 𝑉𝑛(𝑘). 𝑑𝑡 

𝜓(𝑘)  = 𝜓(𝑘) +
𝑔

𝑉𝑆𝑜𝑙

. tan(𝜃(𝑘)) . 𝑑𝑡 

With:  

(𝑌𝑎𝑤, 𝑃𝑖𝑡𝑐ℎ, 𝑅𝑜𝑙𝑙) = (𝜓, 𝜃, 𝜑) 

𝑃𝑛 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑈𝐴𝑉 𝑖𝑛 𝑁𝐸𝐷 

𝑉𝑛 𝑆𝑝𝑒𝑒𝑑 𝑖𝑓 𝑡ℎ𝑒 𝑈𝐴𝑉 𝑖𝑛 𝑁𝐸𝐷 

Flight Controller Model  

As stated in Section 3.3, the model used for the Flight Controller is not based on 

the real algorithm of the real FC. But it use simplified algorithm to reproduce 

almost the same behavior. There is no need of improving this part while the UAV 

dynamic model has not been improved.  
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The FC is computing a roll and a vertical speed commands. 

The roll command is established using helmsman’s law as illustrated in Fig. 

52. As for a boat autopilot the command is calculated from the cross track and 

heading errors, a saturation is applied to avoid rolling the UAV. 

 

 
Fig. 52 - Roll control 

For the vertical speed control a simple PI controller with ant windup is used. 

There is some saturation to constrain the pitch angle. With the appropriate tuning, 

which will not be described here, it gives the expected behavior on the altitude 

control as it can be seen on the figure below. But as seen in Section 6.4 it gives a 

very bad pitch dynamics. 

 
Fig. 53 - Altitude step command, simulation compared with real data 
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