
Faculty of engineering, LTH

Centre for mathematical sciences

Master Thesis

Fingerprint matching - hard cases

Johan Hagel Alexander Karlsson
nek06jha@student.lu.se dat11aka@student.lu.se

Supervisor

Magnus Oskarsson

magnuso@maths.lth.se

Examiner

Carl Olsson

calle@maths.lth.se

August 2016

Abstract

Today fingerprint matching software is widely used in applications such as mobile phones.
Software for enrollment and verification of fingerprints is usually designed to work for ”good”
fingerprints, meaning that the fingerprint matching algorithms use minutiae locations. When
such information is scarce due to scars, blisters or other damages, the algorithms do not work
very well. In this work we demonstrate that gray scale matchers based on interest point detection
and extracted local information can be used for matching fingerprints in such cases. Matchers
with eigenvalue corner detection such as the Harris- and Shi and Tomasi- corner detectors
has resulted in a matching performance of 5.92% false reject rate (FRR), which is a 0.97%
improvement on the given database. Combining a gray scale matcher with an ordinary matcher
can further reduce the FRR down to 2.54% and suggests that combining algorithms will result
in a more secure system.

Keywords. Interest point, descriptor, matching, gray scale matcher, false reject rate.

Acknowledgements

We would like to thank Precise Biometrics for providing us with material, guidance, and for
making this project possible. Special thanks to Fredrik Rosqvist for superb guidance and to
Rutger Petersson for taking us on board. We further thank the R&D team at Precise Biometrics
for helping us with technical struggle. We would also like to thank Magnus Oskarsson at LTH
for great feedback and academic guidance.

Contents

1 Introduction 3
1.1 General background . 3
1.2 Biometrics and biometric systems . 3
1.3 Outlines of fingerprint recognition . 4
1.4 Computer vision . 6
1.5 Problem formulation . 7
1.6 Related work . 7

2 Theory 9
2.1 Image processing . 9

2.1.1 Histogram equalization . 9
2.1.2 Image smoothing . 10
2.1.3 Image sharpening . 11
2.1.4 Integral images . 11

2.2 Interest point detection and description of regions 12
2.2.1 SIFT: Scale Invariant Feature transform 13
2.2.2 SURF: Speeded Up Robust Features . 16
2.2.3 CenSurE: Center Surround Extremas detector 18
2.2.4 MSER: Maximally Stable Extremal Regions 18
2.2.5 Harris corner detector . 20
2.2.6 Shi and Tomasi corner detector . 21
2.2.7 FAST: Features from accelerated segment test 22
2.2.8 Dense interest points . 23
2.2.9 The BRIEF descriptor: Binary Robust Independent Elementary Features 23
2.2.10 ORB: Oriented FAST and Rotated BRIEF 24
2.2.11 BRISK: Binary Robust Invariant Scalable Keypoints 25
2.2.12 FREAK: Fast Retina Keypoint descriptor 26

2.3 Matching descriptors . 27
2.3.1 Introduction . 27
2.3.2 RANSAC . 30
2.3.3 Efficiency of RANSAC . 33
2.3.4 Alternatives to RANSAC . 35
2.3.5 Feature vectors and decision . 37

2.4 Introduction to biometric performance . 37

3 Technical framework and Experimental setup 40
3.1 Introduction to the BioMatch Framework . 40
3.2 The PerformanceEvaluationController and PerfEval 41

1

CONTENTS 2

3.3 Our code . 41
3.4 Note about Enrollers . 43
3.5 More about PerfEval . 44
3.6 Analyses after running PerfEval . 45

4 Results 48
4.1 Preprocessing results . 48
4.2 Interest point detection results . 48

4.2.1 SIFT interest point detection . 49
4.2.2 SURF interest point detection . 50
4.2.3 GFTT interest point detection . 50
4.2.4 Harris interest point detection . 50
4.2.5 MSER interest point detection . 51
4.2.6 CenSurE interest point detection . 52
4.2.7 Dense interest point detection . 52
4.2.8 BRISK interest point detection . 52
4.2.9 FAST interest point detection . 53
4.2.10 ORB interest point detection . 53

4.3 Matching result . 53
4.3.1 False Reject Rate performance . 54
4.3.2 Template extraction- and verification-time performance 56
4.3.3 Induvidual descriptor comments . 57

4.4 Combinations of gray scale- and minutia- matchers 60

5 Future work & discussion 63
5.1 Future work . 63

5.1.1 Further preprocessing . 63
5.1.2 Interest point detectors and region descriptors 63
5.1.3 RANSAC . 64
5.1.4 Combining grayscale matchers . 64
5.1.5 Investigate rotation- and scale-invariance in detail 65

5.2 Discussion . 66
5.2.1 Choice of methodology . 66
5.2.2 Experimental setup . 66
5.2.3 Results . 67

5.3 Conclusion . 68

Chapter 1

Introduction

1.1 General background

In the end of the 19th century it was discovered that no two individiuals share the same fin-
gerprint. Fingerprints where first used for “booking” criminals and for other areas within law
enforcement [26, p. 13]. But since then the use of fingerprints for recognition has become
widely spread also to non-forensic areas. An example from recent years is the replacement of
PINs for mobile phones. This development has been fueled by a general technology progres-
sion and therewith intertwined need for security and protection of data together with increased
availability of computing power and less expensive fingerprint sensing hardware.

Precise Biometrics AB (in the following called ”PB”) develops technology for secure fingerprint
identification that can be integrated in fingerprint sensors or hardware platforms. The company
has developed fingerprint algorithms that have been implemented in over 160 million devices
worldwide. PB’s algorithm has achieved top results in various evaluations, such as the MINEX
test evaluations.1 However, the algorithm is less efficient if a finger is damaged so that the
fingerprint partially has different features than a normal fingerprint. It would therefore be
interesting to try to improve the algorithm for such cases.

1.2 Biometrics and biometric systems

The term Biometrics used in PB’s name refers to the use of physiological and behavioral char-
acteristics - called biometric identifiers or simply biometrics - for automatically recognizing a
person. [26, p. IX]. Fingerprints is one of many such biometrics.

A biometric system is a recognition system that recognizes a person by determining the au-
thenticity of a specific characteristic of that person, in our case the fingerprint. There are two
basic modes of a biometric system, it may either be a verification or an identification system
[26, p. 3].2 A verification system authenticates a person’s identity by comparing the captured
fingerprint with the person’s own previously stored template. It is a one-to-one comparison to
determine whether the person is who he claims to be. A identification system searches a whole
template database for a match. It’s a one-to-many comparison that tries to decide the identity

1http://www.nist.gov/itl/iad/ig/minex.cfm
2https://en.wikipedia.org/wiki/Biometrics

3

http://www.nist.gov/itl/iad/ig/minex.cfm
https://en.wikipedia.org/wiki/Biometrics

CHAPTER 1. INTRODUCTION 4

of an unknown individual. Thus, systems for accessing mobile phones are verification systems.
If the distinction is unimportant, the generic term recognition can be used [26, p. 3].

The first time an individual uses a biometric system is called the enrollment phase. During
enrollment the fingerprint of a person is registered and, after some processing, stored as a
template. When a person subsequently tries to access the system during the so called verification
phase, a fingerprint matching algorithm compares the fingerprint with the template. If the
fingerprint and the template are deemed to be similar enough the person is accepted as the one
he or she claims to be.

As will be explained in the following section, fingerprint matching may be a harder or easier
problem depending on the quality of the fingerprint and its representation.

1.3 Outlines of fingerprint recognition

A fingerprint is produced when a finger is pressed against a smooth surface. The most evident
structural characteristic of a fingerprint is the pattern with ridges and valleys, that sometimes
bifurcate and sometimes terminate (end) [26, p. 83]. See figure 1.1 for an illustration. Termi-
nations and bifurcations (and some other similar local details) are called minutiae (from latin
minutia ’smallness’).

(a) Ridges and valleys (b) Bifurcations and terminations

Figure 1.1: From [26, p. 97,99]

Beside minutiae, fingerprints may also be represented by local ridge orientation and frequency.
The local ridge orientation at [x,y] is the angle θxy that the fingerprint ridges crossing through
an arbitrary small neighbourhood centered at [x,y] form with the horisontal axis. An orientation
image may be produced, showing the orientation at discrete points, see figure 1.2.

The local ridge frequency fxy is simply the number of ridges per unit length along a hypothetical
segment centered at [x,y] and orthogonal to the local ridge orientation θxy [26, p. 91]. The local
ridge frequency varies across different fingers, and may also noticeably vary across different
regions of the same fingerprint [26, p. 91].

CHAPTER 1. INTRODUCTION 5

Figure 1.2: A fingerprint image faded into the corresponding orientation image. Each element
denotes the local orientation of the fingerprint ridges; the element length is proportional to its
reliability. (From [26, p. 88])

A fingerprint recognition algorithm may use both minutiae and spectral information to match
two images. As pointed out previously, raw images have to be processed for the matching
algorithms to work. The performance of fingerprint recognition techniques depends heavily
on the quality of the input fingerprint images [26, p. 91]. If the image quality is insufficient
ridges cannot be easily detected and minutiae cannot be precisely located. Therefore different
enhancement-techniques are used. This includes contextual filters for 1) low-pass effect along
edges in order to link small gaps and fill impurities and 2) bandpass effect orthogonal to ridges
in order to increase discrimination between ridges and valleys [26, p. 91]. For example Gabor
filters may be used. Most - but not all - methods do also require the gray scale images to be
binarized. The binary image is often submitted to a thinning stage, which allows for the ridge
line thickness to be reduced to one pixel. Next, an image scan allows detection of minutiae [26,
p. 91]. After extracting the minutiae (features), a post-processing stage for removal of spurious
minutiae is often a good idea. False minutiae are distinguished from real minutiae because they
often have a different structure [26, p. 125], see figure 1.3.

Figure 1.3: The most common false-minutiae structures (on the top row) and the structural
changes resulting from their removal (bottom row)From [26, p. 125]

As previously indicated, in the matching stage two fingerprints are compared and the matching
algorithm returns either a degree of similarity or a binary decision (matched/not matched). The
vast majority of matching methods are minutia-based. The extracted minutiae are stored as a
set of points in the 2D-plane. The matching then essentially consists of finding the alignment
between the template and the input minutiae feature sets that results in the maximum number of
minutiae pairings [26, p. 135]. The second most prevalent matching methods are ridge feature-

CHAPTER 1. INTRODUCTION 6

based methods. Such methods compare features of the ridge pattern (e.g. local orientation and
frequency).

If fingerprints were of sufficiently good quality, there would be no incitement to use anything
else but minutiae-based methods. But for parts of the fingerprint where the ridge pattern
is damaged due to e.g. injuries or manual work, neither minutia based nor frequency based
methods will work. See figure 1.4 for some examples of such fingerprints. Due to such cases
(and also due to the difficulty in matching low-quality and partial latent fingerprints) fingerprint
matching is still considered to be a challenging problem [26, p. 134].

Fingerpring matching is a computer vision problem, and methods from that field is used. We
will therefore give a short overview of the parts that are important for this thesis.

Figure 1.4

1.4 Computer vision

Computer vision, image analysis, image processing and machine vision are closely related fields
and there is a significant overlap in the range of techniques and applications that these cover.
The basic techniques that are used and developed in these fields are more or less identical,
so one could interpret it as if there is only one field with different names. Computer vision
includes methods for acquiring, processing, analyzing, and understanding images in order to
produce numerical or symbolic information in form of e.g. decisions.3

Recognition is maybe the most typical and classical problem in computer vision. As the name
suggests, it aims at recognizing objects in images [37, p. 1]. The number of techniques that can
be used for recognition is a rather diverse area. As previously indicated fingerprint recognition
is one recognition problem where computers have been successful [34, p. 588].

Not only fingerprint recognition, but recognition in general usually depends on various more
or less basic image processing measures to improve the image in different ways before it can
be used. Other examples than the ones already given are filtering in order to smoothen or
sharpen a picture, detection of edges, binarization or segmentation of image parts. After such
processing, various more or less specialized recognition methods may be used. Most recognition

3https://en.wikipedia.org/wiki/Image_analysis#Techniques

https://en.wikipedia.org/wiki/Image_analysis#Techniques

CHAPTER 1. INTRODUCTION 7

algorithms require a descriptor, i.e. a vector that represent the image by numerical description
of certain features in the image. Such features may be edges, corners, blobs or other information
and are detected by a feature detector. Which detector one should choose depend on the type
of data. If for example, the images contain round bacteria cells, a blob detector should be used
rather than corner detectors. If on the other hand the image is an aerial view of a city, a corner
detector may be useful to find man-made structures. It is also important to consider the type
of distortion present in the images and choose a detector and descriptor that addresses that
distortion. For example, if there is no scale change present, a detector that does not handle
scale should be considered. If the data contains a higher level of distortion, such as scale and
rotation, then more computationally intensive feature detectors and descriptors should be used.
Furthermore, performance requirements should be taken into account. Binary descriptors are
generally faster but less accurate than gradient-based descriptors. For greater accuracy, it is
also a good idea to use several detectors and descriptors at the same time.4

The matching process and the therefore necessary construction of descriptors will be further
described in the theory chapter.

1.5 Problem formulation

Against the now presented background, the problem we want to investigate in this thesis may be
formulated as follows: Conventional fingerprint recognition algorithms use minutiae information
and spectral information when matching fingerprints. Neither of the methods is good at using
information from parts of fingerprints where the ridge pattern is damaged or otherwise altered.
How may the matching be improved in such ”hard cases”?

1.6 Related work

This section introduces previous work on fingerprint matching for damaged fingerprints.

In [39] we are presented to fingerprint matching based on SIFT features [25]. Instead of com-
paring only minutiae keypoints, the SIFT descriptors are compared. The SIFT information is
also combined with the minutiae-keypoints detection. In the pre-processing stage, the input
image is high-pass filtered for brightness calibration and low-pass filtered for noise reduction.
For ridge-enhancements a Gabor filter is used. Compared with only using the minutiae infor-
mation, the proposed algorithm performed at 10-20% lower error rates.

It was shown in [40] that combining minutiae keypoints with a SIFT-descriptor performs well
on various kinds of fingerprints, even those with a lot of cuts. Experiments showed that the
proposed detector/descriptor combination improved the performance.

In [30], a number of fingerprint matching algorithms are compared. Among the algorithms,
the locally binary pattern (LBP) [21] descriptor and the histogram of oriented gradients (HoG)
[17] descriptor are evaluated and according to [30] showing promising results.

Above resources should imply that SIFT-like detectors/descriptors and binary descriptors such

4http://se.mathworks.com/help/vision/ug/local-feature-detection-and-extraction.html

http://se.mathworks.com/help/vision/ug/local-feature-detection-and-extraction.html

CHAPTER 1. INTRODUCTION 8

as LBP would be interesting to look further into. It should also be interesting to study all kinds
of interest point detectors and descriptors. It is important to note that the above resources
base their studies on much larger fingerprint images than those that are provided for our work.
The fingerprints used in [40, 39, 30] are images of either full or at least nearly full fingerprints,
therefore it will be interesting to see how such algorithms will perform on smaller images.

Chapter 2

Theory

In this chapter we present the main theory that is needed for the experiments. The theory
chapter is organized as follows. First a short overview of image processing techniques that
often occur in the theory. Then an account for various methods for detection and description
of interest points. Next we discuss matching of descriptors and in connection thereto the
principles of RANSAC. Finally an introduction to biometric performance measuring with the
details needed for evaluating the performance of biometric authentication.

2.1 Image processing

For improving the image quality a number of image enhancement algorithms were studied.
Enhancing the images can imply a better foundation for the algorithms that will search for
local features and extraction of region information. In this project, the studied algorithms are
histogram equalization and image sharpening.
This section will also cover image processing algorithms such as integral images that allow for
fast computations in rectangular windows. The concepts in the image processing theory will
reoccur in the interest point detection and extraction of region descriptor theory.

2.1.1 Histogram equalization

A common way to make images easier to compare described in [28, p. 53ff] and [12, p. 59-62]
is to distribute the image intensities in the same intensity span, for instance [0, 255]. The goal
of histogram equalization is to find an image operation such that the image intensities maps to
a (approximated) uniform distribution. It is an approximation since a histogram is a discrete
distribution. The image operation is based on the cumulative histogram defintion. A cumulative
histogram counts the content of each bin in the original histogram up to a specified bin j

C[j] =

j∑
i=0

H[i]. (2.1)

The goal is now to find the operation that maps the image intensities in the orginal histogram
to a linear cumulative histogram. Mathematically the mapping operation feq(a) is expressed
as

feq(j) =

⌊
C[j] · K − 1

MN

⌋
(2.2)

9

CHAPTER 2. THEORY 10

where M and N are the image height and width respectively and K denotes the intentity range
[0,K − 1]. A special case is when an image is already uniformly distributed, equation (2.2) will
not change the image content. An example of a mapping is depicted in figure 2.1.

Mapping to linear histogram

0 50 100 150 200 250 300

N
u

m
b

e
r

o
f

o
c
c
u

re
n

c
e

s

×10 4

0

1

2

3

4

5

6

7

Intinsity level

0 50 100 150 200 250 300

×10 4

0

1

2

3

4

5

6

7

Figure 2.1: The mapping relationship from an ordinary to a linear histogram (right).

2.1.2 Image smoothing

Two common tools for image smoothing have been studied in [22, p. 56] and [22, p. 57], box
filters and the Gaussian function respectively.

Box Filter

Box filters are square kernels of size (2k+1)×(2k+1) and can serve as a way to smooth images.
A common box filter is

1

9

1 1 1
1 1 1
1 1 1

 . (2.3)

Image convolving with 2.3 will assign the center pixel with the mean of the eight neighbors.

Gaussian Function

This filter function is a convolution in (x, y) and is defined by sampling from the two-dimensional
Gaussian function

G(x, y, σ) =
1

2πσ2
exp

(
−x

2 + y2

2σ2

)
(2.4)

where σ is the standard deviation, also called radius of the Gauss function. An example of a
Gaussian kernel of size 20× 20 and radius σ = 3 is shown in figure 2.2.

CHAPTER 2. THEORY 11

Figure 2.2: A Gaussian kernel of size 20×20 and σ = 3. The image was generated with python.

2.1.3 Image sharpening

For image sharpening the following method was proposed in [22, p. 44]. The method to
sharpen an image will increase contrast of edges without adding noise in homogeneous areas.
An unsharpening mask will be used to obtain the sharper image. Taking the difference of the
smoothed image S of the image I will result in a residual image R = I − S. R is added to I
and the sum is the sharper image J

J = I + λ[I − S] = [1 + λ]I − λS (2.5)

where λ is a scaling factor.

2.1.4 Integral images

Discovering integral images in [18][37, p. 60f] and [22, p. 52] we learned that these image
can improve speed when computing rectangular windows. This is also the main reason for
using integral images. When the integral image is calculated, there is no longer need for costly
multiplications, only two subtraction and one addition. To obtain the integral image Iint the
procedure is to sum all values from I(0, 0) up to I(x, y), for each location the current sum is
saved (see leftfigure 2.3)

S(p) =

x∑
i=0

y∑
j=0

I(i, j). (2.6)

Let W be a rectangular window and the pixels p, q, r and s, where p = (x, y) is the lower right
corner of W and q, r and s is one pixel outside of the window, see right figure in 2.3. The
following expression will sum all the intensities in W

SW = Iint(p)− Iint(r)− Iint(s) + Iint(q). (2.7)

CHAPTER 2. THEORY 12

x

y

1

1

1

1

Figure 2.3: An illustration of integral image. The left image shows which pixels that will be
summed with equation (2.6), and the right part shows which pixels will be used p, q, r and s
in equation (2.7). Figure inspiration from [22].

2.2 Interest point detection and description of regions

In Computer Vision, interest point detectors and region descriptors are applied in recognition,
tracking and matching of objects in images and for 3D scene reconstruction of 2D images. In
[23] we learned that there is a large number of algorithms at hand in situations like these. The
studied interest point detectors and region descriptors in this project will by customized for
fingerprint matching. In litterature intereset points are often denoted keypoints, both are used
in this report. Feature point is also commonly used, that is a word for both the detected point
with its descriptor.

Interest point detectors are usually designed to find locations with special propterites. No-
tably the Harris corner detector [20] and local the local extrema detector/scale space descriptor
SIFT [25]. In [23] important features of detectors are presented. One is repeatability, the same
interest points should be detected under varying conditions such as when images are noisy or
vary in illumination. In other words, the detection of interest points needs to be robust to
any kind of image transformation. It is also desierable to find the best possible interest points.
Furthermore, interest point detectors often have a time constraint; the interest points have to
be detected quickly. It is hard to fullfil both robust interest points and fast computations, if
fast computations is fulfilled it often implies weaker matching performance, and the other way
around. Instead a proper balance is sought.

What is meant by finding the best possible interest points is to find local points rich in contrast,
see figure 2.4. Point a is impossible to localize, it can be found anywhere in the sky (bad point),
b can only be localized in one direction, along the edge (bad point), c and d have a lot of texture
and are hopefully good points [2].

Region descriptors are utilized for saving information extracted in the neighborhood around
an interest point. Descriptors save information so that it is possible to discriminate images

CHAPTER 2. THEORY 13

Figure 2.4: Lund cathedral with four mock interest points. See text for description of a − d.
Figure inspiration from [2].

and objects, and hence it can be possible to match points by comparing the descriptors. The
usual procedure of interest point detection and region description listed and described below is
presented in detail in [11][37, p. 145ff] and [22, p. 344f].

1. Insert image for extraction of interest points and region descriptors.

2. Detect interest points.

3. Extract information for description in the neighbourhood of the interest points in a de-
scriptor.

The descriptors studied in this project are either based on a histogram model or on a binary
sampling pattern. A typical histogram descriptor saves information from a patch around the
interest point in a heuristic way such as gradient analysis and then store the number of occur-
rences of a particular orientation in a predefined bin in the histogram. The binary sampling
pattern is usually a circular pattern around the interest point, and by comparing pairs of sam-
pling points in the pattern the descriptor can be constructed. Each comparison will assign one
bit in the descriptor string.

Matching and recognition are possible through comparison of the extracted descriptors. The
usual manner is to extract and save the descriptors at some training stage for later matching
and recognition of the descriptors.

2.2.1 SIFT: Scale Invariant Feature transform

The SIFT algorithm was proposed by David G. Lowe in 2004 [25] for extraction of rotation-
and scale-invariant features. SIFT consists of a scale-space extrema detector and a histogram
descriptor.

CHAPTER 2. THEORY 14

Difference of Gaussians and the scale-space pyramid

To find scale-space extrema locations Lowe [25] proposed to find them with a difference of Gaus-
sian (DoG) function that is convolved with the image. By taking the difference of two images
in nearby scale, only separated by a constant factor k the DoG is mathematically expressed
as

D(x, y, σ) = (G(x, y, kσ)−G(x, y, σ)) ∗ I(x, y) (2.8)

where G(x, y, σ) is given in (2.4) and ∗ is the convolution operator. D(x, y, σ) is efficient to
compute since only an image subtraction is required, it is also a good approximation of the
Laplacian of Gaussian, which has been shown to produce very stable image features. The stage
of constructing D(x, y, σ) is given in figure 2.5a, the left stack depicts an incremental convolution

(a) (b)

Figure 2.5: (a) Gaussian pyramids (purple) with two octaves and difference of Gaussians (green).
(b) detection of extrema. Figure inspiration [25].

with Gaussian functions that differ with k. Two adjacent layers in the left stack are subtracted
to produce one layer in the right stack. A purple stack in the left stacks is called an octave and
contains s+ 3 images, therefore they differ by k = 21/s in scale. When an octave is completed,
the second image from the top of the stack is re-sampled (half the image resolution) and the
next octave can be produced. Examples of the smoothed images in the left stacks are shown in
2.6a and the corresponding DoG images in 2.6b.

Detection of local extrema

To find the extrema locations of D(x, y, σ), Lowe [25] presents a comparison procedure where a
sample location is compared to its eight neighbors in same scale, and nine neighbors one layer
below and nine neighbors one layer above. If the sample is either smaller than all its neighbors
or larger than all its neighbors it is marked as a candidate keypoint. Since many of the samples
will fail the test early in the test process the overall cost is rather low. See figure 2.5b for an
illustration.

CHAPTER 2. THEORY 15

(a) (b)

Figure 2.6: (a): Images smoothed by the Gaussian function. Each row corresponds to one
octave in the pyramid. (b): The DoG images of the left figure. The figure was created with a
python-script and the butterfly image is public domain.

Localization of keypoint

Localization of a keypoint is carried out in order to eliminate bad keypoints such as those that
are sensitive to noise or poorly localized along an edge in the image. Keypoints with low contrast
will also be removed. The essence of the localization stage is to compare the candidate keypoint
with its neighbors and fit it to the nearby data of the keypoint location, scale and rotation of
principal curvature. For a fully mathematical model, please refer to the articles [25, 24].

Assignment of orientation

If the orientation of each keypoint can be extracted, it is possible to use the orientation when
constructing the region descriptor and that in turn will make the descriptor rotation invariant.
The computations are carried out in the same scale as the keypoint was found in, thus the
smoothed image L is used for computation of the magnitude m(x, y) and the orientation θ(x, y)
of the image sample L(x, y)

m(x, y) =
√

(L(x+ 1, y)− L(x− 1, y))2 + (L(x, y + 1)− L(x, y − 1))2

θ(x, y) = tan−1
L(x, y + 1)− L(x, y − 1)

L(x+ 1, y)− L(x− 1, y)
.

(2.9)

This information is extracted in a small neighborhood of the keypoint, which will construct a
360◦ orientation histogram of 36 bins. The samples are weighted by the magnitudes. When
the orientation histogram is computed, the highest peak is selected for orientation assignment
of the keypoint. If there is a peak that is within 80% of the highest peak, an extra keypoint is
created with that orientation. Creating more keypoints contributes to the stability of matching.
The theory is presented in detail in [25].

Keypoint description

In the SIFT paper [25] the descriptor extraction procedure is presented as following. The
keypoint descriptor is extracted in the same scale as the keypoint was found. A SIFT descriptor

CHAPTER 2. THEORY 16

is extracted by first sampling the magnitudes and orientation around the keypoint. Rotation
invariance is achieved by rotating the gradient with the calculated orientation for the keypoint.
For efficient computation of this step, the gradients are pre-computed for the entire image-
pyramid. It is proposed to give less emphasis for the gradients that are far from the center,
this is achieved by weighting the gradient window with σ = one half of the descriptor window.
In figure 2.7 this step is marked with an orange circle around the gradient. The descriptor is
now constructed by taking 4× 4 sub-windows (red squares in 2.7) and computing an eight-bin
orientation histogram, where each bin corresponds to the lengths of the arrows (see 2.7) and then
concatenate all histograms resulting in the final 128 length descriptor. A Final modification to
avoid sensitivity to illumination changes is to normalize the vector.

Figure 2.7: Construction of the SIFT-descriptor. SIFT extracts the descriptor in the same scale
as the keypoint was detected, then rotated by the keypoint orientation, gradient (precomputed
and Gaussian weighted) extraction, then extraction of 4 × 4 8-bin orientation histograms that
are concatenated. The butterfly image is public domain.

2.2.2 SURF: Speeded Up Robust Features

Similar to SIFT, SURF is both an interest point detector and a descriptor. SURF was presented
in 2006 by M. Bay et al. [11] as a faster way to compute interest points while also being scale-and
rotation-invariant.

Interest point detection

The recipe of extracting SURF features in [11] suggests a number of ingredients for fast compu-
tations such as using integral images (equation (2.6)). Furthermore, SURF has a detector that

CHAPTER 2. THEORY 17

is based on the Hessian matrix, which can be efficiently and accurately computed. At p = (x, y)
with scale σ, the Hessian in SURF is given by

H(p, σ) =

[
Lxx (p, σ) Lxy (p, σ)
Lxy (p, σ) Lyy (p, σ)

]
. (2.10)

where Lxx(p, σ), Lyy(p, σ) and Lxy(p, σ) are the Gaussian second order derivatives. SURF use
this as an extension of the SIFT way of approximating a Gaussian by using box filters. Box
filters can approximate the second order derivatives with integral images. The approximations
are Dxx, Dxy and Dyy. To find the interest points, the determinant of the Hessian is computed
and is a measure of change around a local point. An interest point is selected where the
determinant is maximal. With approximations the determinant is calculated with

det(H) ≈ DxxDyy − (0.9Dxy)
2. (2.11)

SURF descriptor

When the keypoints are found Bay [11] demonstrates how the SURF region descriptor is ex-
tracted. To be invariant to rotation the SURF algorithm uses Haar wavelets, which has response
in both x- and y-directions. The calculation of the responses is in a neighborhood of 6s at the
interest point location, where the s indicates the scale where the point was found. s is defined
by the filter size chosen for smoothing the image. The smallest filter is of size 9× 9 and yields
s = 1.2, a 27×27 filter will then give s = 3.6. Next, the responses are weighted with a Gaussian
function and the dominant orientation is found by summing all responses, but only for responses
within an orientation window of size π/3. This will result in a local orientation vector and the
longest vector overall will be used as orientation. See figure 2.8 where the main orientation is
found in the right-most plot. It is now possible to extract the descriptor. Consider figure 2.9, a

Figure 2.8: Haar wavelet responses in x- and y- direction. Here the orientation is computed,
the window (gray) is of π/3 width.

square window of 20s×20s around a keypoint is selected and rotated by the main rotation that
was found earlier. Then the window is divided into 4×4 sub-windows, where each window con-
tains 25 sample points. For each of the sample points the Haar wavelet response is computed,
the x, y, |x| and |y| components are summed, and for each of them stored in an array of four
elements, thus the descriptor will contain 64 elements when it is fully extracted.

CHAPTER 2. THEORY 18

Figure 2.9: Construction of the SURF-descriptor, the main-direction of the descriptor is the
blue arrow, which was computed in figure 2.8.

2.2.3 CenSurE: Center Surround Extremas detector

CenSurE was proposed in 2008 by M. Agrawal et al. [8] and was promised to outperform the
traditional detectors. Further the CenSurE detector also supports faster computations, and
can be used in real-time applications. Two features that are highly desirable when designing a
detector is stability and accuracy. CenSure aimed to achieve both.

The difference of Gaussians was implemented in SIFT [25] for approximation of the Gaus-
sians. In CenSurE [8] a simple method is implemented; the difference of boxes (CenSurE-DOB),
which results in a Haar Wavelet. The DOB-filter can be found in figure 2.10. Block sizes of
n = {1, 2, 3, 4, 5, 6, 7} are altered at different scales for scale invariance. For this it is important
that zero DC response is fulfilled. If In and On are the inner and outer weights of the DOB
respectively, zero DC response will occur if

On(4n+ 1)2 = In(2n+ 1)2 (2.12)

and after normalizing due to different area at the scales

In(2n+ 1)2 = In+1(2(n+ 1) + 1)2. (2.13)

CenSurE-DOB is not rotation invariant. On the other hand, if the approximation is imple-
mented with octagon shaped filters instead, rotation invariance can be achieved. Still, the DC
response has to be zero, and the filters have to be normalized. The octagon shaped filter is
characterized by m and n, see the right image in figure 2.10. Integral images are used for fast
computations, see equation (2.6).

2.2.4 MSER: Maximally Stable Extremal Regions

MSER detects blobs in images, a blob is a coherent set of pixels. The algorithm is proposed in
the paper from 2002 by J. Matas et al. [27] for finding reliable correspondences in images taken

CHAPTER 2. THEORY 19

Figure 2.10: (Left) CenSurE-DOB filter. (Right) octagonal filter.

from different viewpoints, possibly with different cameras and with varying illumination. A
new way of finding distinguishing objects is presented, which is called extremal regions. Those
regions posses desirable features when e g. transforming image coordinates. Furthermore, a
fast and (almost) linear complexity algorithm is presented for finding the (maximum stable)
extremal regions, which yields the name “MSER”, The proposed algorithm is presented as very
robust, since the features are very discriminative. That is motivated by that two regions are
rarely equal in size.

Lets informally define what a region is. A region is defined by its intensity and the boundary
of the region. An intuitive way to understand regions is to think in terms of thresholding and
binarization of an image I. Let I have 256 intensity levels, then Ii is a thresholded and binarized
image, i ∈ [0 255]. The first image I0 is a complete black image, and as i is incremented white
regions will emerge in the binary image. At some i white regions will merge into larger regions,
and at the last thresholding level, the final image I255 is white. The connected components
of all levels forms the set of maximal regions. In figure 2.11 the process is depicted, the first
image is transformed into gray scale and then thresholded at i = {0, 40, 80, 120, 160, 200, 240}.
Here, each image is threshold at levels that differ 40 in intensity, that difference is called the
δ-parameter and determines how many steps the detector will use for testing the stability.
For some images, binarization will reveal regions that are stable over several levels. Finding
such regions are desirable since those regions have nice properties. They are, e g. multi-scale
detectable, invariant to affine transformations, stable over a number of binarization levels. The
Matlab MSER documentation [3] and the MSER paper [27] have extensive documentation of
MSER regions and features, if deeper understanding is needed.

Figure 2.11: Example for graphically showing binarization over levels i =
{0, 40, 80, 120, 160, 200, 240}. This example is binarized at very coarse levels, but they
concept should be clear. We see that some parts are stable over multiple intensity levels and
how some regions merge. The figure was generated with Matlab.

CHAPTER 2. THEORY 20

The procedure follows by enumeration of the extremal regions and construction of a data struc-
ture. Computing the data structure takes O(log log n) time and its content is the area of each
component. To access the components, the intensity level is used. When the process is finished
the output (an MSER region) is represented by its position of a threshold value and the local
intensity minimum [27].

2.2.5 Harris corner detector

In 1988 C. Harris and M. Stephens [20] proposed a combined edge and corner detector. What
Harris and Stephens mean with a combined edge and corner detector is to find the junctions,
where lines cross, thus corners. The Harris corner detector is based on the Moravec’s corner
detector 1 and finds the corners in the image I by maximizing

E (x, y) =
∑
u,

∑
v

w (u, v) (I(u+ x, v + y)− I(u, v))2 (2.14)

where w is the image window and (x, y) is the shift. Harris and Stephens express it as: “Look
for local maxima in E above some threshold value”. The concept of computing (2.14) is to
examine the change in I over a small patch (u, v), see figure 2.12 where there is an illustration
of the conceptual idea of the Harris Corner detector; it detects locations where there is change
in all directions. Harris and Stephens mention a few problems with Moravec’s algorithm such
as too sensitive to noise and edges and too few shifts in (2.14). After an extensive mathematical

Figure 2.12: Conceputal idea of the Harris corner detector. Left: flat area, no change. Middle:
Edge, no change along the edge. Right: Corner, change in all directions. Image inspiration [35].

analysis, Harris and Stephens presents the Harris matrix M. Please refer to [20] for a complete
mathematical deduction of M. M is computed from the image derivatives:

M =
∑
x,y

w(x, y)

[
I2x IxIy
IxIy I2y

]
(2.15)

where Ix and Iy are the first order derivatives of I. Let λ1 and λ2 be the two eigenvalues of M.
The eigenvalues represent change in the intensities in the orthogonal direction in I(p). There is a
more effective way than computing the eigenvalues which need costly square root computations,

1https://en.wikipedia.org/wiki/Corner_detection#Moravec_corner_detection_algorithm

https://en.wikipedia.org/wiki/Corner_detection#Moravec_corner_detection_algorithm

CHAPTER 2. THEORY 21

and that is to calculate the cornerness measure or response function [22, p. 67f][20]. It is derived
from matrix diagonalizing:

M = V

[
λ1 0
0 λ2

]
VT . (2.16)

Where V is a rotation matrix. Now the response function can be computed:

R = det(M)− κ · tr(M)2 = λ1λ2 − κ · (λ1 + λ2)
2. (2.17)

where κ is a small constant and

tr(M) = λ1 + λ2

det(M) = λ1λ2.
(2.18)

If the eigenvalues are large and λ1 ∼ λ2, a corner is found. An edge is found if one eigenvalue
is small and one is large. If both eigenvalues are small, a flat surface is found.
If R > 0 then a corner is found, if R < 0 an edge is found and finally a flat surface is found
if R is small. In [16] an intuitive model to map eigenvalues to corners is presented, see figure
2.13. By looking at the shape of the ellipse, we can find out what is found. The case when the
eigenvalues are large then we will have a large circle and that indicatess change in all directions,
so that maps to a corner. Having one large and one small eigenvalue will indicate that an edge
is found. Finally, when two small eigenvalues are found, we have found nothing interesting.

Figure 2.13: An ellipse depicting the relationship between eigenvalues and the structure at a
location in the image. Large eigenvalues and λ1 ∼ λ2 indicate change in all directions, thus a
corner.

2.2.6 Shi and Tomasi corner detector

J. Shi and C. Tomasi at the Cornell University and Stanford University respectively published
a paper in 1994 [33] on “Good Features to Track”. GFTT is a second name for this detector.
Good Features are connected to features that make the feature tracker work best during the
tracking process of an object. To achieve this Shi and Tomasi present a new corner detector
algorithm. Mathematical details and deduction of them could be read in detail in [33]. We
restrict our findings in the paper to the new response function that exploits eigenvalues to find
corners. The response function in the Harris detector was given by

R = det(M)− κ · tr(M)2. (2.19)

CHAPTER 2. THEORY 22

Shi and Tomasi modified the response function a little and it is given by

R = min(λ1, λ2). (2.20)

If R is greater than a given threshold, a corner is found. In the original paper [33] equation
(2.20) is written as min(λ1, λ2) > λ, other notations are borrowed from [4].

2.2.7 FAST: Features from accelerated segment test

E. Rosten et al. [31] proposed in 2006 a corner detector that exploits machine learning algo-
rithms. FAST was intended to be used in real-time applications that require fast computations,
especially in video applications with high frame rates, without sacrificing quality in the detected
features.

A FAST interest point is detected in the following manner. Assume that we have a candi-
date pixel I(p), a threshold value t and 16 neighborhood pixels around I(p) in a circular shape.
There is an example in figure 2.14 of how that pattern looks like, the candidate pixel is p. If
12 contiguous pixels are brighter than I(p) + t or darker than I(p) − t, then I(p) is a corner.
An improvement in time is feasible if instead pixels 1, 5, 9 and 13 are considered, then at least
three of them have to be brighter than I(p) + t or darker than I(p) − t in order to mark I(p)
a corner. However the second alternative is less accurate. [31] suggests to train a decision tree

Figure 2.14: An example of finding FAST features. A candidate pixel is marked p in the right
image part. 12 contiguous pixels have to be brighter or darker than the candidate in order to
mark it as a corner.

for faster computations. In implementations such as OpenCV [22, p. 68], decision trees have
been replace with SIMD (Single Instruction, Multiple Data)2 instructions, which are supposed
to be faster than decision trees. FAST also includes non-maxima suppression3 for reducing the
amount of detected features.

2https://en.wikipedia.org/wiki/SIMD
3http://users.ecs.soton.ac.uk/msn/book/new_demo/nonmax/

https://en.wikipedia.org/wiki/SIMD
http://users.ecs.soton.ac.uk/msn/book/new_demo/nonmax/

CHAPTER 2. THEORY 23

2.2.8 Dense interest points

When this kind of feature detection algorithm was developed, the inventor and author of the
Dense paper [38] T. Tuytelaars stated that the “best of two worlds” was adopted: a combination
of interest points and dense sampling over image patches. The interest points are there for
repeatability and the dense sampling is implemented because of the high variation in the number
if interest points extracted; the number is highly dependent on the image information. When
implementing the dense sampling algorithm, it allows for a large quantity coverage of the image
while it also outputs a constant number of interest points. It has a weakness: dense sampling
does not allow for as good repeatability as the interest points can yield. Dense interest points
are the combination of interest points and a dense sampler. To find these points the first step
is to apply the dense sampler over a number of patches and scales, see Figure 2.15 smaller scale
require a finer sampler grid. The sampled patches are then refined in scale and location and
is done by finding a local maximum within a patch. According to the Dense paper [38], this
allows for freedom to adopt to the image content while simultaneously preserving the structure
of the sampling grid.

Figure 2.15: A dense sampling grid over a test image.

2.2.9 The BRIEF descriptor: Binary Robust Independent Elementary Fea-
tures

The BRIEF descriptor algorithm was proposed in 2011 by M. Calonder et al.[13] as highly
discriminative and can be computed with a small amount of intensity difference tests. For better
evaluation performance, the Hamming distance can be used instead of the L2 norm. BRIEF is
proposed to be fast when matching. In [22, p. 344f] the simple procedure of constructing the
BRIEF descriptor is presented. After minor Gaussian smoothing of the input image I, n pixel
pairs (p, q) are selected randomly in a (2k + 1) × (2k + 1) neighborhood, see figure 2.16 for a
visualization. The resulting descriptor is not ration- or scale-invariant. Each pixel pair is tested
with the formula

s(p, q) =

{
1 if I(p)− I(q) > 0

0 otherwise
(2.21)

And the binary descriptor string F will for n selected pairs be constructed as

F =
n−1∑
i=0

s(pi, qi) · 2i. (2.22)

CHAPTER 2. THEORY 24

Figure 2.16: An example of selecting four pixel pairs randomly. Image inspiration: [22].

2.2.10 ORB: Oriented FAST and Rotated BRIEF

The algorithm for detection of ORB interest points was presented in 2011 by E. Rublee et al.
[32] at the Willow Garage, California. ORB is in the original paper promised to be “two orders
of magnitudes” faster than the SIFT detector. ORB was also shon to be eqaul in matching
performance to SIFT. ORB was invented to save energy in smart phones when e.g. stitching
panorama images.

Interest point detection

[32] suggests FAST interest point detection as a base of the ORB detector, the only difference
is that an orientation component is added. FAST is used as is, setting the threshold for the
center pixel in the ring (see Figure 2.14), and implements support for multi-scale features. At
each level in the scale-pyramid, FAST features are computed.

The corner orientation is calculated with the intensity centroid which is calculated with, as-
suming that the corner intensity is unbalanced from the center

C =

(
m10

m00
,
m01

m00

)
(2.23)

where mij is the moment

mpq =
∑
x,y

xpyqI(x, y) (2.24)

of the pixel location (x, y). If a vector
→
OC is constructed, where O is the corner center, the

orientation is then
θ = arctan

m01

m10
. (2.25)

CHAPTER 2. THEORY 25

ORB descriptor

In [32] we learn that ORB uses a slightly modified BRIEF descriptor. The orientations of the
interest points will be used to calculate a dominant direction. ORB will use this information
for rotation invariance. What ORB does in addition is to learn which sampling pairs that are
best to use. The key properties, uncorrelated and discriminative pairs are desirable. To achieve
this, ORB suggests a searching algorithm that will reduce 205590 tests (Equation 2.21) to 256
tests.

2.2.11 BRISK: Binary Robust Invariant Scalable Keypoints

BRISK was proposed in 2011 by S. Leutenegger et al. [23] as an alternative to the state-of-
the-art detectors/descriptors SIFT and SURF. Using a scale-space FAST detector and a binary
descriptor made BRISK even faster than SURF.

Keypoint detection

In [23], the FAST detector is extended to meet scale-space and rotation-invariance, which is
needed for high quality keypoints. The extension is an image pyramid. At each level of the
pyramid, BRISK runs a FAST detector in a neighbourhood of 16 pixels, with the requirement
that at least 9 consecutive pixels are either darker or brighter than the center pixel.

Keypoint description

The descriptor implementation proposed in [23] makes use of a sampling pattern such as that in
figure 2.17. The magenta locations indicate sampling points, and the green circles have radius
σ that is the standard deviation of the Gaussian kernel, for smoothing at the sampling points.
Aliasing effects are also avoided when using the Gaussian kernel. N(N − 1)/2 sampling pairs
(p1,pj) are selected, and the smoothed intensity at these locations are I(pi, σi) and I(pj , σj),
they are in turn used for gradient estimation

g(pi,pj) = (pj − pi) ·
I(pj , σj)− I(pi, σi)

||pj − pi||2
. (2.26)

All pairs are divided in two groups (S,L), short and long distance pairs respectively, divided by
choosing a threshold of the length. L is then used for estimating the direction of a keypoint

g =

(
gx
gy

)
=

1

L
·
∑

(pi,pj)∈L

g(pi,pj) (2.27)

where L is the size of the number of pairs in L. Now the descriptor can be constructed.
The descriptor string is assembled by rotating, α = arctan(gy/gx), the sampling pattern and
comparing (pαi ,p

α
j) ∈ S. A bit b in the descriptor string is assigned the value

b =

{
1 if I(pαj , σj) > I(pαi , σi)

0 otherwise.
(2.28)

CHAPTER 2. THEORY 26

Figure 2.17: The BRISK sampling pattern, magenta points are the sampling points, the size of
the green circle indicate the std of the Gaussian kernel used for smoothing. Image inspiration:
[23].

2.2.12 FREAK: Fast Retina Keypoint descriptor

The FREAK algorithm was proposed by A. Alahi et al. [9] in 2012. FREAK consists of a binary
descriptor and the sampling pattern is similar to the human retina and the fovea, the closer
the center of the fovea the more receptors are found. Aside from this, FREAK is similar to the
BRISK and ORB descriptors. The pattern reminds of the BRISK pattern, and has adopted the
machine learning tools for finding optimal set of sampling pairs. The FREAK descriptor has
implemented a circular sampling grid, it is constructed in such a way that more sampling points
are located closer to the center of the grid and a less amount of samples are located at the rim
of the grid. All points sampled, are smoothed with a Gaussian kernel. The kernel’s standard
deviation is smaller closer to the center of the sampling grid. This pattern reminds of an eye’s
retina; The fovea has a larger quantity of receptors closer to the center, see figure 2.18a and the
how the sampling pattern reminds of the distribution of the receptors in figure 2.18b. For more
details on the FREAK descriptor please refer to the FREAK paper [9] and the guide [1].

Now, the descriptor F of size N is constructed as a binary string containing a sequence of
one-bit DoG:

F =

N−1∑
0≤a<N

T (Pa)2
a (2.29)

where Pa is a pair of receptor fields (a green circle), and also

T (Pa) =

{
1 if I(P r1a)− I(P r2a) > 0

0 otherwise.
(2.30)

Where r1 and r2 indicate receptive field one and two respectively. However, a large amount of
pairs will be produced and some will not effectively describe the image content. A solution to
this problem is to use an ORB approach in order to get the best pairs. The orientation invariance
is achieved by using an approach similar to BRISK, but instead of selecting long pairs, FREAK
selects the pairs that have symmetric receptive fields with respect to the center.

CHAPTER 2. THEORY 27

(a) (b)

Figure 2.18: (a): Human retina and its fovea. (b): the FREAK sampling pattern. Image
inspiration (b): [9].

2.3 Matching descriptors

2.3.1 Introduction

After having found interest points in an image and calculated their descriptors, the descriptors
may be ”compared” with descriptors of points in another image in order to determine whether
an object in the first image is depicted in the second image. See for example figure 2.19a-b,
where the first image depicts a box and the second image a cluttered scene containing the box.
Finding the object in the image with the cluttered scene is the same problem as matching two
fingerprint images.

(a) Image of object (b) Image of cluttered scene containing the object

Figure 2.19: The images are taken from the matlab example Object Detection in a Cluttered
Scene Using Point Feature Matching

Descriptors are numerical vectors and one way to compare them is to calculate the euclidean

CHAPTER 2. THEORY 28

distance between them. If two descriptors describe the same point in two different images, the
distance should be relatively small. (The absolute values may depend inter alia on how noisy
the images are.) For example, let im11 be a vector describing point 1 in im1 and let im23 and
im24 be the vectors describing points number 3 and number 4 in im2, with for example the
values

im11 =

4
2
2

 , im23 =

3
2
1

 and im24 =

1
0
3

 .

Then the distance between im11 and im23 is

√√√√√∑(4
2
2

−
3

2
1

)2

= 2.

And the distance between im11 and im24 is

√√√√√∑(4
2
2

−
1

0
3

)2

= 14.

Since the first distance is smaller, the descriptors im11 and im23 are more likely to describe the
same point in the two images, than are the descriptors im11 and im24.

The L2-norm (which gives the Euclidean distance) is not the only norm that can be used. A
faster (but less exact) way is to calculate hamming norm, i.e. bitwise XOR, followed by bit
count. For example, bitwise XOR of1

1
0

 and

1
0
1

 is

0
1
1

 .

Thus, summing the two ones in the resulting vector gives that the hamming distance is 2. A
prerequisite for using the hamming norm and calculating the hamming distance is of of course
that the descriptors are binary. This applies inter alia to descriptors such as BRISK or FREAK,
that rely on pairs of local intensity differences.

By comparing each descriptor from im1 with each descriptor from im2 (so called brute force-
matching) the best maches are found. When the distance between two descriptors is small
enough - smaller than some predefined ε - they are deemed to be a ”match”. The matches are
collected in an n-by-2 matrix, where n is the number of matches and the two entries in each
row are the indices of the keypoints in respective image. Example:

keypoints im1 =



1 2
4 7

3 9
8 12

3 5
9 13

, keypoints im2 =



3 1

2 6

4 10
12 13
8 7

12 17

, matches =

 1 2

3 3

5 6

,

CHAPTER 2. THEORY 29

Thus, in the example the point with index 1 (and coordinates (1,2)) in im1 has been deemed
to match the point with index 2 (and coordinates (2,6)) in im2, etcetera. The uncolored points
in the images have been deemed not to have any matches in the other image.

If there are many keypoints, it may be expensive to try all the possibilities to find the best
matches. If the images contain around 1000 keypoints each, it would mean 1 000 000 compar-
isons. An alternative is to use a Flannmatcher, an approximative method that finds good - but
not necessarily the best - matches [29].

Some of the found matches will be wrong, namely if the distance between two descriptors is
smaller than ε even though they describe different points. This may happen if the neighborhood
of two keypoints is similar. An example is shown in figure 2.20a-b. Consider for example the
keypoints in the forehead of each face. Since the neighborhoods of the keypoints are similar
(or identical if the radius of the neighborhood isn’t choosen to big), the descriptors should be
to. This applies to other keypoints in the faces as well. Therefore a matching algorithm will
match keypoints in the face in the left image not only to keypoints in the correct face in the
right image, but also to keypoints in the face in the lower right corner of the right image.

(a) Found keypoints in stylized image 1 (b) Found keypoints in stylized image 2

Figure 2.20

Indeed, after running the matcher we get the result in figure 2.21 (a sift-matcher is used.) As
foreseen there is a number of false matches between the face in im1 and the lower face of im2.
But there are also many correct matches. As for example the center of the star in im1 is
correctly matched to the center of the star in im2, and the center of the arrowhead in im1 is
correctly matched to the center of the arrowhead in im2. To remove the false matches we use
the so called RANSAC algorithm (explained in the section below). After running RANSAC we
get the result in figure 2.22, were the false matches are removed.

Comparing this with fingerprints, the second image can be thought of as an imposter that looks
much like the genuine, but with a slightly different trait (the second face). However, it may also
be two images of the same fingerprint, except that the second image contains a larger portion
of the fingerprint.

CHAPTER 2. THEORY 30

Figure 2.21: Matches before RANAC

Figure 2.22: Matches after RANAC

2.3.2 RANSAC

General

RANSAC (RANdom SAmple Consensus) [19] is an iterative method for estimating the param-
eters of a model from a data set that contains outliers. The algorithm works by identifying
the outliers in the data set and estimating the desired model using data that does not contain
outliers.4 Thus, RANSAC may also be seen as an outlier detection method, and is often used
in the correspondence problem, i.e. the problem of finding a set of points in one image which
can be identified as the same points in another image.5

This is done in the following steps:

1. Randomly select a subset of the data set, and call the set the hypothetical inliers.

2. Fit a model to the selected subset.

3. Determine the number of inliers.

4. Repeat steps 1-3 for a prescribed number of iterations and keep track of the maximum
number of inliers (and/or the model that gives the most inliers).

The procedure is most easily exemplified with the problem of fitting a line to a dataset that
includes outliers, see figure 2.23. In that case the subset is two random points, and the model
fitted to the subset consists of a and b in the equation y = ax+b. Next, each x-coordinate is put
into the model (which means that it will be on the line) and it is checked whether the distance
between this modelled value and the real y-value is smaller than some predefined distance δ. In
that case the point is deemed to be an inlier. In figure 2.23 there are seven inliers.6

4http://se.mathworks.com/discovery/ransac.html
5https://en.wikipedia.org/wiki/Correspondence_problem
6 One way to calculate the distance is to check only the y-direction, the so called total least squares method.

http://se.mathworks.com/discovery/ransac.html
https://en.wikipedia.org/wiki/Correspondence_problem

CHAPTER 2. THEORY 31

Figure 2.23: Illustration of RANSAC

If this is the best run so far, the number of inliers will be saved as max nbr of inliers before the
procedure is repeated. (If one instead was interested in the model rather than the number of
inliers, the model would be saved instead of the maximum number of inliers.)

The principle is the same when it comes to images, but instead of a and b the model consists
of the transformation matrix T , which in its turn consists of the rotation matrix R and the
translation vector t. The variables in the model are the rotation angle θ and the translations
tx and ty in the x- and y-directions respectively. The matrix looks as follows:

T =

cosθ −sinθ tx
sinθ cosθ ty

0 0 1

, or more compactly: T =

[
R t
0 1

]
.

Afterwards the model may be further refined by using all inliers from the best iteration to rees-
timate the model parameters using singular value decomposition. That is however of greater
interest if the purpose of using RANSAC is to find the model rather than just removing out-
liers.

There is always a possiblity that RANSAC is unlucky in all iterations and doesn’t find a subset
that only contains inliers. In that case the model will not be anyway near the reality and it is
likely that the only inliers are the subset used to calculate the model (and maybe a couple more
points (or point pairs) that are ”lucky” and mapped close to where they would be with a more
accurate model).

This case may be dealt with in the code. If the number of inliers is smaller than some predefined
value, it may be assumed that RANSAC failed and treat that case as if no inliers were found.
(However, in practice it won’t matter in most cases anyway because if there are to few matches
it will be deemed not to be a match anyway.) For example the following values could be possible
to choose as predefined values:

But in the example the total least squares method is used. There is more than one possible choice of distance
function.

CHAPTER 2. THEORY 32

Model Point pairs needed Min number of inliers ac-
cepted

Euclidean 2 5

Similarity 2 6

Affine 3 7

Projective 4 10

Even if RANSAC finds subsets containing inliers, the best subsets from two different runs may
be different and thus the model may be slightly altered if the best runs doesn’t contain exactly
the same inliers. In the fingerprint matching case it could mean the difference between granted
and denied access if the score is close to the threshold. Why this is not a problem will be
discussed later.

Alternative models

Above we have discussed a model with three degrees of freedom, i.e. the rotation θ and the
translation tx and ty. This is called a Euclidean transformation, and it preserves distances
between points. Other 2D-models than Euclidean transformation may be considered. See
figure 2.24 for an overview of such models.7

Figure 2.24: Illustration of 2D-transformations

An seen from the figure, an even simpler model than euclidean transformation is plain trans-
lation, a model with only two degrees of freedom and thus only one point pair is necessary to
find the parameters of the model.

The next step after Euclidean transform is to allow scaling, while still preserving all angles
- the similarity transform. This adds another degree of freedom compared to the Euclidean
transform. Thus, four points, or two pointpairs, are needed to determine the model. The
matrix of the transform is simply the same as for the euclidean transform, but with an added
s for scale:

T =

[
sR t
0 1

]
.

Still two more degree of freedom is added if using the affine transform as model. The affine
transform preserve parallell lines, but do not require preservation of angles. Thus the R for

7Image from http://www.math.louisville.edu/~pksaho01/teaching/Lecture3.pdf

http://www.math.louisville.edu/~pksaho01/teaching/Lecture3.pdf

CHAPTER 2. THEORY 33

rotation is replaced with an A, where A is an arbitrary invertible matrix. In this transform
the scale may be different in the x- and y-directions. Furthermore, skew, is added as another
degree of freedom.

T =

[
sA t
0 1

]
.

The now discussed transforms are all special cases of a more general class of transforms, the
projective transformations or - with another name - homographies. In the matrix representing
the homographies the last row is arbitrary, meaning that the transformation may change also
the z-coordinate and thus the effect will be as if the image is seen from different angles and
distances (see figure 2.24).

T =

h11 h12 h13
h21 h22 h23
h31 h32 h33

 .
Accordingly, parallel lines will not necessarily be mapped to parallel lines. There are nine
element in the matrix, but the scale doesn’t matter (i.e. T and λT represents the same element)
and there are therefore only eight degrees of freedom.

It is not obvious which transform is the best for comparing fingerprint images. One thought is
the projective transformation since it gives the most freedom to match two fingerprint images
even if they are distorted in different ways. However, more ways to match two fingerprints also
mean more ways to get false matches. Limiting the degrees of freedom also mean that some
unrealistic matches will be prohibited.

We have used the projective transformation in all our calculations, mostly because then we
could use prewritten code from the OpenCV-library and we have limited time for this thesis.
But if we had more time next step would be to try Euclidean and similarity transforms. As will
be shown in the section below, this also makes life easier for RANSAC.

2.3.3 Efficiency of RANSAC

The probability that RANSAC finds at least one set of only inliers depend on 1) the number of
outliers in the set, 2) the numbers of point pairs that have to be picked out in each iteration and
3) the number of iterations that the algorithm is run. By knowing any two of these parameters,
a third parameter can be calculated.

When the model is an Euclidean transform, RANSAC only has to pick out two point pairs in
each iteration, while four pairs are needed when using the homograpy/projective transformation.
Of course the probability for RANSAC to pick out only inlier pairs is higher when only two
pairs are picked than when picking four pairs. This means that RANSAC needs fewer iterations
if using Euclidean transform as model, than if using the projective transform.

So how many iterations should RANSAC be set to? It depends on the required probability that
RANSAC finds at least one inlier set.

Assume for example that there is a set with 10% outliers and we want a 99% probability that
RANSAC finds an inlier set. Also assume also that we use the euclidean transform as a model
so that two point pairs need to be picked out in every iteration.

CHAPTER 2. THEORY 34

The number of iterations needed may be calculated in the following way:

0.92 = 0.81 Probability that all points are inliers in one iteration
1− 0.92 = 0.19 Probability that some point is an outlier in one iteration
0.19x Probility that some point is an outlier in each of x iterations.

We want this probability to be smaller than 0.01, i.e.:
0.19x < 0.01

Taking the logaritm and solving for x gives
x · ln(0.19) < ln(0.01)⇒ x > 2.7730

Thus, RANSAC needs three iterations to achieve the required probability. If the set instead
contained 60% outliers RANSAC would need 27 iterations. If in addition four point pairs were
needed, RANSAC would require 178 iterations.

In reality the inlier ratio varies very much, i.e. some images many false matches and others
only very few false matches. This depends on inter alia the characteristics of the fingerprint.
For a fingerprint with a repetitive pattern and many similar features there may be many false
matches (as in the case with a brick wall). If the fingerprint is more varied due to for example
scars or other damages one could expect less false matches. What to do about that?

One idea is to check a large number of images and calculate the mean and standard deviation
of the inlier ratios (where inlier ratio is inliers/number of matches). N.B. that this demands
that the inlier ratio is normally distributed. If for example the mean is 0.7 and the
standard deviation is 0.3, then 84% percent (corresponding to one standard deviation) of the
matches will have an inlier ratio over 0.4 and almost 98% (corresponding to two standard
deviations) of the matches will have an inlier ratio over 0.1. Or put another way, almost 98 %
of the matches contain less than 90% outliers.

For these 98% we can calculate the number of iterations needed to get a 99% probability
that RANSAC finds an inlier set in the same way as in the example above if the outlier ratio
is changed to 90% instead of 10%. (It can be mentioned that it is a little sloppy to say that
the probability will be 99% for this whole set. Since RANSAC is run with the same number of
iterations every time, the probability will actually be 99% only for the matches with the lowest
inlier ratios, for all other inlier ratios it will be higher. It would therefore more correct to say
that it is a lower limit for the probability. To calculate the total probability one would instead
integrate or sum over the probabilities for all inlier ratios greater than 0.1.)

For the other 2% of the matches that contain less inliers, RANSAC would need more iterations
to reach 99% probability that at least one inlier set is randomly selected during the iterations.
Thus, for those matches the probability will be lower than 99% (and thus 99% is an upper limit)
with the same number of iterations. The more outliers, the lower the probability will be. As
said earlier, if no inlier set is found, the best model will be bad and only the randomly selected
points and maybe a few more ”lucky” will be inliers.

In this example we did exactly the same thing as in the first example and found the number
of iterations needed from 1) the number of outliers and 2) the required probability. But we
could also have decided beforehand on the number of iterations that we can afford and used
that information and information about the number of outliers to calculate the probability that
RANSAC finds an inlier set.

However, one cannot assume for sure that the inlier ratios are normally distributed and that
standard deviation can be used! To get a picture of the distribution it may therefore be necessary

CHAPTER 2. THEORY 35

to do a histogram of the inlier ratios.

Let’s say that for at least 95% of the matches we want a at least 99% probability that RANSAC
finds an inlier set. Then we check the histogram (from the right) an find the area corresponding
to 95% of the histogram. We then check what inlier ratio this corresponds to, maybe for example
0.08. We can then calculate the number of iterations needed by RANSAC in the same way as
the first example above. Thus the question would be: ”Assume there is a set with 92% outliers
and we want a 99% probability that RANSAC finds an inlier set. Also assume also that we
use the euclidean transform as a model so that two point pairs need to be picked out in every
iteration. How many iterations would be needed?”

Alternative RANSAC models

The RANSAC algorithm was first published in 1981 and has since then become a fundamental
robust tool in the computer vision and image processing community.8

Because of the great importance of RANSAC there is a variety of contributions and variations to
the original algorithm, mostly meant to improve the speed of the algorithm, the robustness and
accuracy of the estimated solution and to decrease the dependency from user defined constants.
Those RANSAC-modifications all have different names and usually when reading a paper one
does not have to take much notice of the characteristics of the method used in a particular case.
However, if using RANSAC is a central part of an algorithm that one is working on, it may be
a good idea to investigate different alternatives to see if the algorithm may be improved with
some other RANSAC-alternative. Below we shortly mention a couple of alternatives.

In [36] MLESAC is presented as a generalization of RANSAC; it samples in the same way as
RANSAC but instead of maximizing the number of inliers it chooses the points that maximizes
the likelihood. Experiments have shown to perform better than RANSAC [36].

PROSAC implements a different sampling function. Instead of sampling uniformly, PROSAC
samples from a set of top-ranked correspondences. PROSAC is proposed as faster than RANSAC
and it also has better matching performance, in worst case, PROSAC converges to the perfor-
mance of RANSAC [15].

R-RANSAC is a randomized version of RANSAC created to reduce the computational burden
to identify a good consensus set. The basic idea is to initially evaluate the goodness of the
currently instantiated model using only a reduced set of points instead of the entire dataset,
[14].

2.3.4 Alternatives to RANSAC

What alternatives are there to count the number of inliers when trying to find the best model?

One could imagine using something like −number of inliers or −1/number of inliers and
calling it an error function. But it would be directly linked to the number of inliers, so it is in
principal the same thing as counting the number of inliers.

What about calculating the sum of distances between the modeled values (Tx) and the corre-
sponding inliers (y). That would lead to a larger error the more inliers that is found, and that
is not what we want. Even if we divided by the number of inliers this would often be the case,

8https://en.wikipedia.org/wiki/RANSAC

https://en.wikipedia.org/wiki/RANSAC

CHAPTER 2. THEORY 36

since the mean of many inliers will be higher than the mean of only two or three inliers which
are all close to the line, see figure 2.25 for an illustration. As is seen from the figure, the red
line would be chosen as the best model since the two inliers really close to the line, although it
is obvious that the blue line is a better model. However, one could imagine using this technique
as a complement when choosing between two models with the same number of inliers.

Figure 2.25: Two possible models, one good and one bad

So what about moving away from RANSAC completely and use some error function g not
connected to the number of inliers? One may think about using the squared distance to the all
the points, i.e. g(‖Tx−y‖) = ‖Tx−y‖22. But we don’t want that because then the algorithm will
adapt T to the outliers and make T a bad model for the transform. Since the error function will
be of the form as is shown in figure 2.26a, outliers will have more influence than inliers.

Then one may instead think of using some error function that looks as in figure 2.26b. With such
function the outliers will only have a constant influence on the model even when the distance
is big. This means that they will not really have any influence at all, just as any constant does
not have any effect when minimizing an arbitrary function. The outlier error must however
still be bigger than the inlier error, because otherwise the optimal solution would be to find
a real bad model - i.e. a T - that makes everything outliers. The problem with this function
and other similar functions is however that they are hard to solve and not convex. Due to
the non-convexity it is possible to get stuck in local minima and local optimization may be
necessary.

Thus, calculating inliers is the easiest robust alternative. But it may also be interesting to look
at other alternatives, even if it may be harder to use and local optimization may be necessary.
There is a lot of literature about robust error norms, robust penalty functions etc. for the
interested!

CHAPTER 2. THEORY 37

(a) An error function (b) Another error function

Figure 2.26

2.3.5 Feature vectors and decision

After applying RANAC the remaining matches are used to decide whether the images shall be
deemed to represent the same fingerprint or not. This is done in the following steps.

1. Choose some relevant features. Features may include for example number of matches
(feature 1), strength of the matches (feature 2) and the convex hull of the matches (feature
3).

2. add a weight to each feature and sum the elements to get a similarity measure, the total
score. The total score will then be: total score = w1 · f1 + w2 · f2 + w3 · f3.. Here w1, w2

and w3 are the weights.

3. Compare the total score to a threshold value. If the score is higher than the threshold the
images are deemed to represent the same scene or - in the case of fingerprint recognition
- the same fingerprint. Otherwise the images will be deemed to represent different scenes.

2.4 Introduction to biometric performance

Let’s formalize to some extent what we wrote in the end of the previous section about scores
and threshold values. Let T1 be the previously saved template and T2 the input template. Then,
with terminology from statistics and communication theory, the fingerprint verification problem
may be formulated as follows [26, p. 13].
H0 : T2 6= T1, i.e. T2 and T1 do not come from the same person.
H1 : T2 = T1, i.e. T2 and T1 come from the same person.
The associated decisions are:
D0 : The person is not who she claims to be.
D1 : The person is who she claims to be.

The decision is based on the previously discussed total score - a similarity score - and a prede-
termined threshold. If the score is higher than the threshold the input is accepted as coming
from the same finger as the previously saved template. If the total score is lower, the fingerprint
is deemed to not come from the same person. From this it is clear that fingerprint verification
systems can commit two types of errors:

CHAPTER 2. THEORY 38

Type 1: False accepts (D1 is decided when H0 is true).
Type 2: False rejects (D0 is decided when H1 is true).

The rate of these errors are called FAR (false acceptance rate) and FRR (false rejection
rate). [26, p. 13]. To evaluate the accuracy of the verification system one has to run tests
and collect scores both from templates representing the same finger - the genuine distribution
p(s|H1 = true) - and from templates representing different fingers - the impostor distribution
p(s|H0 = true).

An example of impostor and genuine distributions are shown in figure 2.27. The figure also
contain a graphical illustration of FAR and FRR for a threshold t.

Figure 2.27: FRR and FAR for a treshold t, compare [26, p. 14]

As can be seen from the figure, FRR will be bigger and FAR smaller if the threshold is moved to
the right, and the opposite if the threshold is moved to the left. Thus, if it is extremely important
that no unauthorized person is accepted the threshold is set higher, and if it is more important
that authorized persons are accepted and it is not a very big deal if some unauthorized persons
slip through, then the threshold is set lower. Since FRR and FAR as shown are dependent of
t, they can be written FRR(t) and FAR(t). An example of FRR(t) and FAR(t) are shown in
figure 2.28.

Figure 2.28: FRR and FAR for a treshold t. Also showing Equal-Error Rate EER (where
FAR=FRR), the zeroFRR (the lowest FAR at which no false rejects occur) and zeroFAR (the
lowest FRR at which no false accepts occur) compare [26, p. 17]

To check the system performance (i.e. FRR and FAR) for different thresholds one can plot a
ROC-curve (Receiver Operating Characteristic. A ROC curve is a graphical plot that illustrates

CHAPTER 2. THEORY 39

the performance of a binary classifier system as its discrimination threshold is varied.9 The ROC
curve was first developed during World War II for detecting enemy objects in battlefields. ROC
analysis since then has been used in medicine, radiology, biometrics, and other areas and is
increasingly used in machine learning.

The ROC curve is a plot of FAR versus 1-FRR for various decision thresholds, which gives
a positive correlation. However it is also common to use FRR directly, and get a negative
correlation between FAR and FRR. An example of the latter is shown in figure 2.29.

Figure 2.29: Example of ROC curve

As accounted for above, we can see that if false accepts decrease then false rejects will increase.
A high FAR may be ok for applications such as medical screenings, where a false accept indicates
risk of a disease - which is later confirmed or refuted by a doctor. But if the application is a
launch control for nuclear arms, the false accept rate should be low because of the damage a
random person could cause.

Of course, the ideal case is the lower left corner: No false accepts and no false rejects. Different
systems have different performance, but no system can achieve that.

One can decide on an acceptable FAR and try to get the FRR as low as possible. For a
fingerprint verification system in a mobile phone one could for example accept a FAR of 10−4.
This corresponds to the probability of finding the right four digit code when randomly choosing
four numbers. Then 0.05 maybe could be an acceptable FRR level, i.e. in one try out of 20 a
genuine is rejected and has to try again.

9https://en.wikipedia.org/wiki/Receiver_operating_characteristic

https://en.wikipedia.org/wiki/Receiver_operating_characteristic

Chapter 3

Technical framework and
Experimental setup

3.1 Introduction to the BioMatch Framework

PB has developed the BioMatch Framework (BMF), a collection of code for biometric appli-
cations such as physical access solutions.1 It is implemented in the C programming language
and follows the ANSI C standard. The framework can be used both for embedded systems and
more powerful operating environments. One purpose of the framework is to separate different
aspects of a biometric system into reusable and exchangeable components.2 Some of the main
components of the framework are:

• Objects

• Modules

• Algorithms

• Controllers

Objects are mainly data containers with only few operations such as a create()-function and
access to it’s data. Examples are Template and Image. A Template is a compact representation
of a fingerprint and is used when matching fingerprints. An Image object holds a fingerprint
image and has some basic image transformations.

Modules perform specific tasks such as fingerprint template extraction (Extractors), enrollment
(Enrollers) and matching (Verifiers). An Extractor takes an image sample as input, perform
feature extraction and creates a template. An Enroller takes one or several templates created
by the extractor and creates the best possible representation of the finger. A Verifier takes two
templates and generates a similarity score. The first template is called gallery and the second
is called probe.

Controllers are the business logic and process of operations, such as the complete flow of en-
rollment. Controllers uses Modules and Objects.

1The information is this section is mainly gathered from PB’s guides and references.
2Precise BioMatch Mobile/Embedded Developer’s Guide

40

CHAPTER 3. TECHNICAL FRAMEWORK AND EXPERIMENTAL SETUP 41

An Algorithm is both an Object and a Module. Components such as different extractors,
verifiers, templates and certain parameters may be combined in many different ways. In order
to relieve developers from having to do that, the Algorithm concept was created. An Algorithm
contains combinations of extractor, verifier, etc. and therefore the developer only has to select
an Algorithm.

BMM/BME is a set of objects, modules and controllers that implement interfaces from BMF.
It provides a framework to support fingerprint template extraction and fingerprint verifica-
tion.

3.2 The PerformanceEvaluationController and PerfEval

For biometric performance evaluations, PB has developed a Controller called PerformanceEval-
uationController. The PerformanceEvaluationController provides the framework for evaluations
and does all the work, but it need to be configured with Extractor, Enroller, Verifier and some
other options for controlling how the evaluation is made. The controller can be used by an ap-
plication called PerfEval (as in Performance Evaluation, discussed below). During evaluation
the PerformanceEvaluationController will create gallery and probe templates and send them to
the verifier to produce a similarity score. The principles for performance evaluation processes
have been described before, but an illustration of the performance evaluation process is shown
in figure 3.1.

Figure 3.1: Outlines of performance evalutation process

In each evaluation information from the run is saved in text-files. Information about the sim-
ilarity scores is divided between the files genuines.txt and impostors.txt. There is also a
file named scores.txt that contain all performed verifications with the score and the number
of genuine and impostor matches that resulted in the score. The files are stored in a separate
directory, which is named by the caller. As will be seen below, these text-files are used for
analyzing the results.

3.3 Our code

In our work we have used the framework from BMM/BME that implements BMF, specifically
the Extractor and Verifier interfaces. Extractors and Verifiers are structs that contain pointers
to its member functions. (One effect of putting pointers to the members instead of the members
themselves within the struct is that the size of the struct is known beforehand.) One central
member function of the Extractor interface is extract template which takes an image of a
fingerprint and returns a template representing a fingerprint. The corresponding function in
the Verifier interface is extract feature scores that takes two such templates and returns a
vector with feature scores. This function is however not called directly but through the function
external verify template which after extract feature scores returns assigns a weight to

CHAPTER 3. TECHNICAL FRAMEWORK AND EXPERIMENTAL SETUP 42

each feature in the feature vector and returns a total score and a decision as to whether the two
templates shall be deemed to represent the same finger print.

PB has provided implementations of the extractor as the struct external extractor, and the
verifier as the function external verifier. We have also been provided with the function
external verify template as an implementation of verify template.

Furthermore, we have been provided with stubs to the functions external extract template

and extract feature scores. Those functions are the framework within which we have im-
plemented the object recognition methods described in the theory chapter. Thus, what the
templates shall contain, and how this content is transformed to a vector of feature scores is
what we have spent this thesis on. In external extract template the detection and descrip-
tion of keypoints is performed, and the resulting data from the keypoint descriptors is saved
in a template. If two such templates are sent to the external verify template function it
will match the descriptors, remove bad matches with RANSAC and then create a vector with
feature scores.

After doing this for two different images, the verifier may be used to match the templates and
get a decision as to whether the templates represent the same fingerprint or not. In order to do
this the verifier member method external verify template is called with (inter alia) pointers
to the two templates as parameters. This function in its turn calls another function - which one
depends on whether the gallery template is a multitemplate or not. In the case of single (1-1)
verification as described here, the method external extract feature scores is called.

So, how did we implement external extract template and extract feature scores?

We decided to use the OpenCV (Open Source Computer Vision) [5] library, a library of pro-
gramming functions for computer vision. OpenCV is written in C++ and its primary interface
is in C++. OpenCV contain functions for inter alia detection, description and matching of
keypoints.

Since it is not possible to write C++-code in the C-functions external extract template

and extract feature scores, we let these functions call two C++-functions that we named
extract feature data and matcher. These, are the only C++-functions that are called from
the C-code framework, and they are written in the same .cc-file.

To be able to return the key points and descriptors from the C++-function extract feature data

to the calling C-function external extract template the data is ”packed” in a C-array and
a pointer to the data is returned. Then the template is created (with a BMM/BME function
called pb template create). The data is later ”unpacked” in the matcher.

The main steps of our code follow tutorial code from Matlab3 and OpenCV4 and can be sum-
marized:

Step 1: Detect keypoints.
Step 2: Calculate descriptors (feature vectors).
Step 3: Match descriptor vectors using FLANN or BRUTE FORCE matcher.
Step 4: Quick calculation of max and min distances between keypoints to remove ”worst
matches”.
Step 5: Use RANSAC to remove outliers.

3se.mathworks.com/help/vision/examples/object-detection-in-a-cluttered-scene-using-point-feature-matching.

html
4docs.opencv.org/2.4/doc/tutorials/features2d/feature_homography/feature_homography.html#

feature-homography

se.mathworks.com/help/vision/examples/object-detection-in-a-cluttered-scene-using-point-feature-matching.html
se.mathworks.com/help/vision/examples/object-detection-in-a-cluttered-scene-using-point-feature-matching.html
docs.opencv.org/2.4/doc/tutorials/features2d/feature_homography/feature_homography.html# feature-homography
docs.opencv.org/2.4/doc/tutorials/features2d/feature_homography/feature_homography.html# feature-homography

CHAPTER 3. TECHNICAL FRAMEWORK AND EXPERIMENTAL SETUP 43

With OpenCV the detection and descripton using for example SIFT is easy and reduces to
essentially the following code:

SiftFeatureDetector detector;

detector.detect(image, keypoints);

SiftDescriptorExtractor extractor;

extractor.compute(image, keypoints, descriptors);

Accordingly, the essential part of the matching is the following:

BFMatcher matcher;

matcher.match(descriptors_1, descriptors_2, matches);

remove_outliers_ransac(keypoints_1, keypoints_2, matches, inliers);

Between the second and third row, it is a good idea to add code for sorting out the worst
matches, i.e. the matches with greatest distance between the descriptors. One can for example
keep matches if the distance ≤ 2.5 · meandistance.

To test our code during the implementation we used a test function. The function reads two
images from file. It then calls extract template for the two images so that two templates
are created. Finally, verify template is called. The main parts of the function is shown
here:

//testfunction

int main()

{

image1 = read_image_from_file("file1.bmp");

image2 = read_image_from_file("file2.bmp");

external_extractor.extract_template(image1, &template1);

external_extractor.extract_template(image2, &template2);

external_verifier.verify_template(template1, template2, &score, &decision);

}

To be able to perform evaluations at all, one first needs a dataset. We have been using a
database with ”bad” fingerprints. Here ”bad” means scars or other damages. The database
consists of 160·160-pixel images of the thumbs, index fingers and middle fingers of 19 persons.
There are 26 images of each finger. Thus, the database contains 19·6·26 = 2964 images.

3.4 Note about Enrollers

Now we have only talked about single (1-1) verification, i.e. when each sample in the database
is used as both a single gallery template and a single probe template. That is the simplest
case.

However, for very small sensors multiple samples need to be combined into one gallery template
representation in order to get an acceptable biometric performance. Otherwise it will often
happen that the probe template will come from a different part of the fingerprint than the
gallery template, and thus will not match even if it they represent the same fingerprint.

The process of creating a single template from multiple fingerprint image samples from the same
finger is called ”enrollment training”, and is done by the enroller.

CHAPTER 3. TECHNICAL FRAMEWORK AND EXPERIMENTAL SETUP 44

When using enrollment training the samples in the database can be divided in several different
ways for training and verification. One example of enrollment parameter is enr num which
is the maximum number of samples to train each gallery template with. Another example is
enr enr that specifies the number of samples that should be part of initial enrollment phase.
(This value must of course always be ≤ enr num.) The default value is equal to enr num. A
third example is enr dyn whic specifies the number of samples that should be part of a dynamic
update.

We have not had to implement any Enroller ourselves, since we have been able to use existing
from BMM/BME.

3.5 More about PerfEval

As said above the application PerfEval is used to run the PerformanceEvaluationController.
PerfEval is an executable that can be built from a certain directory. It is composed of the
file perf eval.c and linked to the BMF library. Specifically, it depends on the Performance
Evaluation Controller and Extractor and Verifier Modules. The main() function in perf eval.c
first parses the command line for a number of parameters that sets the options to be used
by the PerformanceEvaluationController. Second, it calls the PerformanceEvaluationController
and the evaluation is performed.

An example of a typical command for running PerfEval with our code is:

./PerfEval -algo=algo_alex_johan_1 -scorefiles=1

-db_idrange=13-16//1-6:13-16//7-12 -enr_num=6 -threads=8 -n

../../EVALUATIONS/gftt_sift_5 ../../HW_db_20160119/index.txt

The most important parts are the following:

-algo=algo alex johan 1 The Algorithm to be used during the evaluation. Since we have
developed our own Extractors and Verifiers we need one Algorithm for each combination of
Extractor and Verifier. Alternatively we can use the same Algorithm and replace the Extractor
and/or Verifier.

-scorefiles=1 This is added in order to create the scorefiles for later analysis of genuines and
imposters.

-db idrange=13-16/1-6/1-6:13-16/1-6/7-12 The part before the colon regards enrollment
and the part after colon regards verification. The three range values correspond to personID,
fingerID and transactionID. Thus, person 13-16, fingers 1-6, and images number 1-6 of each
finger will be used for enrollment (gallery templates), while the same persons and fingers but
images 7-12 will be used for verification (probe templates). If any range is left out it means all
values. Thus, specifying fingers 1-6 is not necessary since that is the whole range of fingers.

-enr num=6 The maximum number of samples to train each gallery template with (as explained
above).

../../EVALUATIONS/gftt sift 5 ../ Here EVALUATIONS is the previously mentioned “run-
name” directory, and gftt sift 5 is the name of the run. Since the run has 5 as ending suffix
one may suspect that previous evaluation runs gftt sift 1 ... gftt sift 4 have been saved
in the directory before.

CHAPTER 3. TECHNICAL FRAMEWORK AND EXPERIMENTAL SETUP 45

../../HW db 20160119/index.txt The PerformanceEvaluationController indentifies samples
in the database based on the three numbers personId, fingerId and transactionId. (The transac-
tionID is in the range 0-25 and identify images of the same finger). The information is contained
in an (arbitrarily named) index file that is placed in the root directory of the database. This
part of the command specifies the path to the index file.

3.6 Analyses after running PerfEval

After running PerfeVal we want to analyze the results with the help of the previously mentioned
text files. This is done mainly with the help of Matlab (or Octave).

First of all a DET graph may be created for the database.5 The graph is created with the func-
tion pef compare runs. Parameter to the function is the path to a folder containing information
about a finished run (i.e. a number of text-files where the most important are genuines.txt,
impostors.txt and scores.txt). Example of a DET graph is shown in figure 3.2.

Figure 3.2: Example of DET graph

If more than one run evaluation has been saved, two runs may - as previously mentioned - be
included in the DET graph for easy comparison. Then the function pef combine runs is used.
Parameters to the function are the paths to the folders containing information about the two
finished runs. Example of a graph with combined runs is shown in figure 3.3. As seen in the
graph two different runs may also be combined to get at lower FRR.

Furthermore, there are functions for analyzing genuines and impostors, namely the functions
pef analyze genuines and pef analyze impostors.

5A DET graph is in principle the same AS a ROC curve, but at least one of the x- and y-axes are scaled
non-linearly by by logarithmic transformation and thereby yielding tradeoff curves that are more linear than
ROC curves.

CHAPTER 3. TECHNICAL FRAMEWORK AND EXPERIMENTAL SETUP 46

Figure 3.3: Example of combined runs

The first function gives information about the genuine scores in the form of a table on the
following form:

Lowest 100 genuine scores

Person Finger Attempt Person Finger Attempt Score

11 6 1 11 6 21 7

2 1 1 12 1 25 7

.

.

The 20 most common persons among the lowest genuine scores was:

Person Part

14 28.00

13 14.00

. .

. .

CHAPTER 3. TECHNICAL FRAMEWORK AND EXPERIMENTAL SETUP 47

The 20 most common fingers among the lowest genuine scores was:

Person Finger Part

14 5 11

14 4 9

. . .

. . .

The 6 most common fingers among the lowest genuine scores was:

Finger Part

Right Little (5) 30.00

Left Thumb (6) 23.00

. .

. .

The first table means person 11 finger 6 has matched person 11 finger 6, thus it is a genuine.
Attempt 1 and Attempt 21 refers to the transactionId (as explained previously). The score
was 7. When running the function there is also plot of the fingerprints in the table. The two
first are shown in figure 3.4. This gives the possibility to visually investigate what could be the
reason for a low score. From the figure it seems as if ”good” fingerprints without scars etc. do
not give a good score, which may not be a big problem if the minutiae matcher perform well
for such prints. The rest of the information is self explanatory. The information received when
running pef analyze impostors is similar, and we do not account for it here. There is a lot of
other functions for analyzing the results, but these are the ones that we have been using.

Figure 3.4: Lowest 2 genuine scores

Chapter 4

Results

In this chapter the experimental results will be presented. The result is presented as following.
First, we present a brief section about the preprocessing and image enhancement stage. That
section is followed by a presentation of the interest point detection, principally by showing
examples of how the various detectors perform and additional comments. Then the main results
of matching are presented. It will be presented with the biometric performance data and time
consumptions for extraction and verification. Further it will also show matching examples
in order to demonstrate how well the detectors and interest points are suited for matching
fingerprints. The last section will display how well our algorithms can be combined with a
traditional matcher such as one based on minutiae detection.

4.1 Preprocessing results

In figure 4.1 there are two examples of preprocessing techniques used in this work. The first
column in 4.1 shows the original fingerprint image, the second column shows the result of image
sharpening, which is a bit hard to see on paper. Finally, the third column shows the result of
histogram equalizing two fingerprints. An empirical study was carried out to find out which en-
hancement techniques were best suited for each detector. In some cases a combination of image
sharpening and histogram equalization worked the best. The algorithm or combination that
contributed to the best FRR at 1/10000 was kept. On average, the preprocessing stage lowered
the FRR about 1-2%. Below, in table 4.1 the preprocessing algorithm or the combination of
algorithms that worked the best for each interest point detector is listed.

4.2 Interest point detection results

In this section illustrative examples of finding interest points in partial fingerprints will be
shown. The results will be based on a set of selected fingerprints in order to see how well the
individual algorithms perform. Selected fingerprints for these experiments are typical for the
database. It is important to note that experiments summarized in tables and commented in
general are based on full tests containing all fingerprints. The chosen example fingerprints for
interest point detection are shown in figure 4.2. For the various test images with interest points
included the preprocessing is activated.

48

CHAPTER 4. RESULTS 49

Figure 4.1: Examples showing how preprocessing images can enhance the images.

Detector Image sharpening Histogram equalization

SIFT ×
SURF × ×
CenSurE ×
MSER ×
Harris × ×
GFTT ×
FAST ×
Dense × ×
ORB ×
BRISK × ×

Table 4.1: The preprossesing algorithm or combination of algorithms that worked best for each
interest point detector.

Figure 4.2: Chosen fingerprints for presenting results of interest point detection.

4.2.1 SIFT interest point detection

In figure 4.3 the detected keypoints of the example images are shown. Accordingly to 4.3 SIFT
detects keypoints rather uniformly except for the brighter parts of the fingerprint image. The
parameters for the SIFT detector are given in table 4.2. n keypoints are selected, and in SIFT
the keypoints are sorted by some quality measure and the n keypoints with the highest quality
are returned. It is recommended in [25] to use 4 octave layers.

SIFT Number of keypoints selected octave layers

500 4

Table 4.2: SIFT detector parameters.

CHAPTER 4. RESULTS 50

Figure 4.3: SIFT keypoints.

4.2.2 SURF interest point detection

Examples of detected keypoints are shown in figure 4.4. It is noticed that the keypoints are
located mostly at locations that seem to be very discriminative for the fingerprints. By trial
and error, the best possible parameters for our data set were found and are shown in table
4.3. The set Hessian threshold is rather high compared to recommendations in [11] (600-2500)
and OpenCV (300-500). However, it is likely that fingerprint images were not the target when
developing SURF.

SURF Hessian treshold Octave layers

3500 4

Table 4.3: Parameters for the SURF detector.

Figure 4.4: SURF interest points.

4.2.3 GFTT interest point detection

The detected interest points returned by the GFTT detector were distributed such that more
points are located where more information is available such as in the vicinity of blobs (scars from
blisters) and large edges (scars). However, many interest points are located in the border regions
of the image of the fingerprint that can cause alarm, these points can possibly be matched with
other fingerprints with such interest points. The foremost important parameter when tuning
the GFTT detector is the maximum number of corners n. GFTT returns the first n corners,
sorted by some quality measure. For our database, n = 319. For examples see figure 4.5.

4.2.4 Harris interest point detection

Not surprisingly, the resulting output of the Harris corner detector are similar to the GFTT
detector since they are both very similar algorithms. The small differences between GFTT
and Harris are different preprocessing approaches and a small change in the number of selected

CHAPTER 4. RESULTS 51

Figure 4.5: Examples of detected GFTT interest points.

corners n. In table 4.4 the parameters for GFTT and Harris are presented. Harris example
corners are presented in figure 4.6.

Preprocessing n

GFTT Sharpening 319

Harris Sharpening & histogram eq. 330

Table 4.4: Parameters for GFTT and Harris.

Figure 4.6: Harris corners.

4.2.5 MSER interest point detection

By examining the example interest points in figure 4.7 it is hard to distinguish any particular
pattern. What can be said is that only one point is located for a coherent set of pixels IC , which
makes sense if MSER approximates an ellipse around IC and set the center of the ellipse to the
interest point location. After tuning the MSER algorithm, it found the interest points with the
parameters in table 4.5.

Minimum size of IC Maximum size of IC
5 2000

Table 4.5: MSER parameters.

Figure 4.7: MSER interest points.

CHAPTER 4. RESULTS 52

4.2.6 CenSurE interest point detection

CenSurE does not find any interest points near the borders of the image, which can both be
good and bad. The bad point is that we loose valuable interest points if there is a highly
discriminative location here. The good point is that we do not get points that are affected by
a shadow at the edges or corners of the image. Example interest points in figure 4.8.

Figure 4.8: CenSurE interest points.

4.2.7 Dense interest point detection

As we can see in the example fingerprints in figure 4.9, there is a fine regular pattern of interest
points produced by using the sampling grid. It is hard to judge the quality of using these kind
of interest point detection, therefore the biometric performance will expose if this detection
algorithm is useful or not. There are a few parameters available for tuning, the most useful is
the size between the sampling points, and has been set to 3 and 6, depending on descriptor.

Figure 4.9: Dense interest points.

4.2.8 BRISK interest point detection

The example interest points in figure 4.10 seem to be highly discriminative. What is perplexing
is the density of the points, they are very densely located near the center of the example images,
but very sparsely or not at all in the outer regions of the images. Thus loss of discriminative
information and biometric performance should be expected.

Figure 4.10: BRISK interest points.

CHAPTER 4. RESULTS 53

4.2.9 FAST interest point detection

FAST has clearly found a lot of corners in the example fingerprints, see figure 4.11. Apparently,
the testing of finding a number of consecutive pixels that are either lower or higher than a
center pixel has produced the large number of corners. Looking closer to a fingerprint image,
many locations have a structure that probably would pass the test. The best possible biometric
performance using the settings returned this number of interest points.

Figure 4.11: FAST interest points.

4.2.10 ORB interest point detection

As we already know, the ORB detector is a modified FAST detector with orientation and scale.
Theoretically this algorithm should return better corners than FAST. By comparing the figure
4.11 and 4.14, ORB clearly has detected points that by at least visually are more discriminative
than FAST.

Figure 4.12: ORB intereset points.

4.3 Matching result

In this section we present the main results of matching fingerprints in our database. Each
descriptor is given its own section where the result is presented and commented. The descriptors
will also be provided with sample matching image pairs, which can be seen in figure 4.13 without
matching data. In this figure, the left-most pair is considered as easy to match, which means
that it contains a lot of discriminative information. The middle pair is considered harder to
match since it is heavily translated in location, the same goes for the last matching pair but it
has less corresponding locations. It is important to note that no preprocessing information is
shown in the matching pairs, but the matching is carried out with preprocessing. The overall
matching result is presented below. We will begin by presenting the False Reject Rate (FRR)1

performance in table 4.6. Further in table 4.9 the template (interest points + descriptor)
extraction times are presented. Finally in table 4.10 the verification (matching time) times are
presented. All time measurements are presented in ms.

1Measured in %.

CHAPTER 4. RESULTS 54

Figure 4.13: Sample images for matching.

4.3.1 False Reject Rate performance

The lowest (better) results for each descriptor row is colored green. Collecting the result was
made at a False Acceptance Rate (FAR) of 1/10000. No average value per descriptor is pre-
sented. A strong belief is that detectors/descriptors delivering results over 80% are plainly not
meant to be used for matching fingerprints. Displayed average values would be contaminated.
A gray scale matcher is lightly regarded as well performing if the resulting FRR is under 30%
that was set as an overall goal to reach when the project was planned. The best performing

DES/DET SIFT SURF GFTT Harris MSER CenSurE Dense BRISK FAST ORB

SIFT 9.87 99.47 5.92 6.97 100 16.23 87.85 100 99.78 15.31

SURF 62.50 31.62 98.60 97.50 99.87 99.52 100 78.42 100 92.24

BRIEF 24.08 24.08 21.62 38.51 33.46 64.30 23.68 87.63 18.11 22.24

ORB DNF DNF 47.54 24.87 32.54 58.07 28.99 57.11 16.05 54.08

BRISK 14.61 14.61 14.12 11.58 17.32 100 75.66 89.82 100 35.22

FREAK 25.22 25.22 19.82 22.28 25.79 57.59 99.74 90.92 100 20.18

Table 4.6: FRR resuls for all detector/descriptor combinations. The lowest performance result
for each descriptor is marked green. Horizontally we see descriptors and vertically the detectors.

algorithm is the GFTT corner detector in combination with a SIFT descriptor. It performs
at 5.92%, which is an -0.97% improvement over the conventional minutiae matcher. It is sur-
prising that some non rotational interest point detectors perform better than those that have
implementation for rotation invariance. However it is believed that the database may be scant
on rotation so it is not very fair to discuss rotation impact in detail. It may be interesting to
investigate this matter in future work. On the other hand, the tests are carried out in the same
manner as when evaluating the minutiae matcher. It should be noted that eigenvalue detectors
are rotational invariant, however they do not compute an angle at the keypoint detection stage
which is needed by a few region descriptors for descriptor rotation. This implies that eigenvalue
detectors do not support for rotational invariant descriptors.

Scale and rotation dependency

Table 4.7 shows whether a GS-matcher is rotational- or/and scale-invariant. α and β indicate
if the combination is rotation or scale invariant respectively. It was not obvious to distinguish
if rotation and scale have an impact on the test results. By studying table 4.8 we see similar
mean values of the α, β, α+ β and - groups. We see that scale (β) has lower FRR on average
than matchers without scale and rotation invariance protection. The result should be taken
with a grain of salt since it is affected by many combinations near 100%.

CHAPTER 4. RESULTS 55

Figure 4.14: Results for the GFTT-SIFT combo (green) and the result for the minutiae matcher
(blue).

DES/DET SIFT SURF GFTT Harris MSER CenSurE Dense BRISK FAST ORB

SIFT α,β α,β - - - - - α,β - α,β
SURF α,β α,β - - - - - α,β - α,β
BRIEF β β - - - - - β - β
ORB DNF DNF - - - - - α,β - α,β
BRISK α,β α,β - - - - - α,β - α,β
FREAK α,β α,β - - - - - α,β - α,β

Table 4.7: Rotation- and scale-invariance experiment.

α β α+ β -

50.91 48.84 50.91 54.55

Table 4.8: Comparison.

Brute-Force- and RANSAC-matching evaluation

In pursuit of finding the presented results, Brute-Force (BF) matching was used for coarsely
removing false matches. Tests on Flann matching were also carried out. With Flann, a small
time boost was experienced, but instead Flann caused a drop in biometric performance. BF
matching is slower than Flann matching but BF outperforms Flann in Biometric performance.
Since the focus was set on biometric performance, BF was retained for all experiments. For
lack of similar algorithms, RANSAC was the only algorithm that was tested for removing false
matches returned from the BF-matcher. Matching by comparing points that were indicated as
matches after BF-matching was also tested but did not exceed the performance of RANSAC.
However finding such an approach will hopefully result in a boost in time performance. It is
left for future work to discuss more alternatives to RANSAC.
Determining a score for a pair of fingerprints was difficult. Several models were tested without

CHAPTER 4. RESULTS 56

any luck. For instance, adding the difference of convex hulls of the inlier points of each finger-
print in tandem with the total number of matches. In the end it was decided that the number
of matches was the only score that was distinct enough to base a decision on. One reason why
the convex hull area is a poor score is that it can fluctuate extremely between the fingerprints
and may ruin the score.

To understand if the percentage of the matched points after BF- and RANSAC-matching was
correlated to the FRR results 1000 fingerprint matchings were sampled and the average of the
BF-matches/number-of-points and RANSAC-matches/number-of-points was calculated respec-
tively. Of course, the number of inliers after RANSAC must be correlated to the FRR since
this is the true matching score. This can be seen in the right plot of figure 4.15. We can see
a tendency that the lower FRR the higher RANSAC percentage. Considering the left part of
4.15 there is a slight tendency that for a low FRR we want a BF percentage of around 50%.
One point in each plot maps to a gray scale matcher.

0 20 40 60 80 100 120

False reject rate FRR

−20

0

20

40

60

80

100

120

%
 o

f
p
o
in

ts
 a

ft
e
r

B
F

BF/FRR

0 20 40 60 80 100 120

False reject rate FRR

−5

0

5

10

15

20

25

%
 o

f
p
o
in

ts
 a

ft
e
r

R
A

N
S
A

C

RANSAC/FRR

Figure 4.15: The ratio of points regarded as matches.

4.3.2 Template extraction- and verification-time performance

Even though this result is not as important as the FRR result, it is a hint if the gray scale
matcher can be implemented in a real application. By that it is meant that extraction and
matching of templates should not take too long. Verification time should be considered as more
important since this is the time the user will experience when claiming access. Extraction is
made once but it is important in a real application that the extraction is not too slow. It could
potentially irritate the user. On the other hand, faster extraction and verification may result in
poor FRR results. The time performance of extracting templates is presented in table 4.9 and
the verification times in table 4.10 .

CHAPTER 4. RESULTS 57

DES/DET SIFT SURF GFTT Harris MSER CenSurE Dense BRISK FAST ORB Mean

SIFT 61 77 18 20 149 17 35 412 130 34 95

SURF 55 34 39 40 60 45 35 491 70 37 90

BRIEF 27 23 13 14 24 2 16 410 17 16 56

ORB DNF DNF 18 15 26 2 22 23 21 22 19

BRISK 407 423 405 393 418 409 430 883 498 481 472

FREAK 71 71 58 59 74 46 78 428 71 60 102

Table 4.9: Time for extraction of templates.

DES/DET SIFT SURF GFTT Harris MSER CenSurE Dense BRISK FAST ORB Mean

SIFT 256 197 240 241 262 48 299 218 487 282 253

SURF 286 240 269 279 256 295 79 279 299 279 256

BRIEF 225 206 187 193 211 5 207 182 232 221 187

ORB DNF DNF 230 215 228 4 246 231 234 255 205

BRISK 251 247 226 256 243 14 268 223 267 297 229

FREAK 324 241 230 243 248 11 278 249 296 233 236

Table 4.10: Time for matching of templates.

4.3.3 Induvidual descriptor comments

SIFT-descriptor

SIFT- and CenSurE-detectors seem to find local extrema with higher descriptive information
than the SURF- and Dense-descriptors did. Approximating the Gaussian function with less
accurate methods can have an impact on the performance. A blob detector such as MSER may
also output locations where the SIFT-descriptor extracts less descriptive information than at
extrema locations. The best detectors for SIFT are the eigenvalue corner detectors. It is likely
that these detectors find locations where the cornerness value is high and thus makes it a good
location for the SIFT descriptor to collect the neighborhood data.

Using the SIFT-descriptor in a real application, poor extraction times will likely not to be
experienced, it performs in the midrange. The verification process is on par with other descrip-
tors. Slow verification time is expected when the number of interest points is large, such as
when the FAST-detector is used.

Figure 4.16: SIFT matching sample pairs. No indication of crossing lines, thus no false matches.
The interest points were detected with GFTT. This combination has shown to be the best
combination.

CHAPTER 4. RESULTS 58

SURF-descriptor

By studying the FRR result table it should be clear not to recommend any use of the SURF-
descriptor when matching fingerprints. There is no gray scale matcher with a SURF descriptor
performing under 30%. The relatively high FRR-scores are believed to be a consequence of
scaling floating point numbers to and from 8-bit integers. The SURF algorithm in OpenCV
is implemented with floating point numbers. Further the local data structures for storing
fingerprint templates are written in C-code. For optimization floating point numbers are not
supported. A loss of performance was noted when converting the floating point values. This
may cause loss of important description information. In figure 4.17 we observe that not a single
pair of points has been correctly matched. Yet the plot shows the lowest SURF combination.

Figure 4.17: SURF matching sample pairs. It is hard to find a correct match.

BRIEF-descriptor

BRIEF was presented as the first binary descriptor in the theory chapter. It was followed by the
ORB-algorithm that was an improvement of BRIEF. We observe in the FRR performance that
the ORB-descriptor indeed has a lower min-value than BRIEF, but interestingly, the matching
results with the BRIEF-descriptor show lower results on average than ORB. If only the min-
values of the binary descriptors are compared, BRIEF is on par with the other descriptors. In
figure 4.18 we notice that a number of false matches have not been filtered, yet it should not
be concluded by studying only the images whether BRIEF is better than any other descriptor.
We see that the time of verifying two templates is the lowest on average. We believe that the
low matching time is a consequence of the random binary pattern that presumably compare a
lower number of points.

Figure 4.18: BRIEF matching sample pairs. The FAST detector is used.

ORB-descriptor

Matching with the ORB-descriptor was a bit problematic. Two detectors in combination with
ORB did not even compile, therefore no FRR-result. Something interesting observed in the

CHAPTER 4. RESULTS 59

result is that FAST-detection in combination with the ORB-descriptor outperformed the ORB-
detector/ORB-descriptor. The latter was to compensate for non-rotational invariance. However,
our database may have too little rotation, so it may be unfair to conclude whether the FAST
algorithm is better than ORB.

On the upside in using the ORB-descriptor is the template extraction time. ORB has a search-
ing algorithm for reducing the number of comparisons when sampling point-pairs. This may
have resulted in low extraction time. It can be observed in figure 4.19 that matching with ORB
handles the two first image pairs with no false matches, but fails on matching the last pair.

Figure 4.19: ORB sample matching pairs. Left-most matching pair perform similar to other
descriptors. Te two remaining matching pairs contain a number of false matches.

BRISK-descriptor

In the theory chapter the BRISK descriptor was proposed as a fast and robust interest point
detector and descriptor. It is shown in the result that this is not the case. Using any BRISK de-
tector or descriptor often implies several magnitudes slower template extraction time, often close
to half a second. This implies that enrolling fingerprints with any kind of BRISK involvement
will be slow. What is positive is that four detectors in combination with the BRISK-descriptor
perform under 15% FRR, more than twice as low as the overall goal. Rather surprising is that
the eigenvalue corner detectors perform better than the original BRISK detector. Better local
information at eigenvalue corner-locations may better be suited for extraction of descriptor-
information after all.

Figure 4.20: Matching with the BRISK-descriptor.

FREAK-descriptor

FREAK’s proposed sampling pattern that reminds of the fovea in the human retina may not
be the best sampling pattern for fingerprints. In table 4.6 it can be seen when matching with
FREAK-descriptors the second highest (19.82%) FRR minimum value is obtained, only the
SURF-descriptor produces a higher minimum. The rather poor result is perhaps a consequence

CHAPTER 4. RESULTS 60

of using the sampling pattern FREAK is proposed to use. Since the intensities around an
interest point are rather uniform, important information can be lost if the sample points are
too aggressively blurred.

Figure 4.21: Matching with the FREAK-descriptor.

4.4 Combinations of gray scale- and minutia- matchers

The top result presented in table 4.6 were promising. However there was still a belief that an
improvement could be made on the FRR scores. Consider the fingerprint pairs in figure 4.22.
These fingerprint pairs are a few examples of false matches, they were found by executing a
Matlab-script that analyses the performance of an individual benchmark test (C-code). Even
though there seem to be structure in the image that could be described sufficiently good with a
descriptor there are quite many fingerprints with minutiae information. This motivated experi-
menting on a combined gray scale- and a conventional minutiae-matcher. Experimenting on the
combinations was carried out with an expectation of reduction in FRR-percentage, since the
two parts detects separate information. The gray scale matchers explored in this work detects
interest points such as corners or local extrema, and matching based on this information will
result in a score that can be compared to the score produced by the minutiae matcher. This can
be good in a situation when either of the two parts are uncertain whether a match is present
or not. Then we can ask the second algorithm of its score and base a decision on this. The
fingerprint pairs in figure 4.22 are collected with the best performing algorithm; a GFTT corner
detector with a SIFT-descriptor.

It was discovered that 28 out of 60 gray scale matcherss combined with the minutiae matcher
reduced the FRR performance. It should be noted that the minutiae matcher resulted in a
6.89% FRR on the givem database. In table 4.11 a TOP-5 table is presented. Notably, the best
combination showed to be 4.35% better than the minutiae matcher alone.

Detector-descriptor with minutiae matcher FRR 1/10k Improvement

GFTT-SIFT 2.54 -4.35

Harris-SIFT 3.51 -3.38

Harris-BRISK 4.17 -2.72

SIFT-BRISK 5.00 -1.89

SURF-BRISK 5.00 -1.89

Table 4.11: The top-5 best performing gray scale matchers combined with a minutiae matcher.
About 47% of the combinations resulted in a FRR reduction that was better than the minutiae
matcher’s FRR performance.

In figure 4.23 the result of the GFTT-SIFT combined with the minutiae matcher is plotted.

CHAPTER 4. RESULTS 61

Figure 4.22: A few examples of false matches with the GFTT-SIFT combination. These images
presumably contain information that could be found by the minutiae matcher.

4.23 contains four plots:

1. Minutiae matcher result: run1.

2. GFTT-SIFT result: run2.

3. (Cyan) Scores balanced with: max(minutiae,GFTT-SIFT)

4. (Magenta) Scores balanced with: 0.5*GFTT-SIFT + minutiae.

CHAPTER 4. RESULTS 62

10 -5 10 -4 10 -3 10 -2 10 -1 10 0

FAR

0

1

2

3

4

5

6

7

F
R

R

Combined runs

run1

run2

max (run1, run2)

0.5 * run1 + run2

Figure 4.23: Plots for GFTT-SIFT matcher (green), minutiae-matcher (blue), combination of
them (cyan and magenta).

Chapter 5

Future work & discussion

In this chapter we discuss possible future work, i.e. additional work that maybe could improve
performance. We also discuss the experimental results.

5.1 Future work

5.1.1 Further preprocessing

The implemented image enhancements in this project are based on image sharpening and his-
togram equalization. It was mentioned that pre-preprocessing introduced an improvement of
1-2%. It is believed that the enhancement of the fingerprint images can be improved further for
a reduction in FRR. It is suggested in [39] that a filter structure depicted in figure 5.1 will result
in more detectable (SIFT) features. Hopefully this imply that more or better interest points are
detectable by all tested detectors in this work. Implementing ridge enhancement was discussed
but was feared to remove image information that could be used by the detectors.

Highpass

lter

Lowpass

lter

Ridge

Direction

Detection

Ridge

enhancement

Input

image

Output

image

Figure 5.1: Proposed image enhancement filter structure in [39].

5.1.2 Interest point detectors and region descriptors

The OpenCV library offers multiple algorithms for interest point detection and descriptor im-
plementations. All detectors and descriptors found in OpenCV 2.4 are tested in this project.
It was mainly used because SIFT and SURF were available. In OpenCV 3.X, these algorithms
are moved to a separate library that must be built with Cmake/Makefile differently than with
OpenCV 2.4. It was therefore more convenient to use OpenCV 2.4. Unfortunately, rater late in
the experimenting phase, new algorithms were found in OpenCV 3.X. It should be interesting
to experiment on these algorithms such as KAZE [10] in future work.

It would also be interesting to investigate other computer vision libraries other than OpenCV

63

CHAPTER 5. FUTURE WORK & DISCUSSION 64

such as VLFeat1. It has both an API for Matlab and C. Dlib2 is a second library that includes
computer vision algorithms implemented in C++.

KAZE features

KAZE (P. Alcantarilla et al. [10]) is a Japanese word for wind. The main point of KAZE
features is to, unlike many other detectors, not to use Gaussian blurring. Natural boundaries
in images are not respected by Gaussian blurring. With KAZE, interest points and descriptors
are found in nonlinear scale space. This makes it possible of an adaptive blurr of image data
and will reduce noise and respect object boundaries, “obtaining superior localization accuracy
and distinctiveness”.

Fingerprint matching using neural networks

It could be worth the effort to try fingerprint matching based on neural networks (NN). Un-
fortunately, literature on matching damaged fingerprints are scarce. Fortunately, literature on
matching ordinary fingerprints is plenty. The question is whether it is possible to adapt NN
designed for ordinary fingerprints to a system designed for damaged fingerprints.
A successful fingerprint system was implemented based on artificial NN in [7]. 140 images of
right index finger of 90 individuals were scanned in the research, which is roughly 4.5 times
more images than the database in this work. An average FRR of 0.0022 was presented.

5.1.3 RANSAC

RANSAC is a good algorithm for to removing false matches, but it is also time consuming.
Depending on the number of interest points and outliers, RANSAC is responsible for about 70-
90% of the verification time. Time performance has never been the most important aspect when
experimenting, but none the less it is important. As stated previously it would be interesting to
try out different RANSAC transforms. The current implementation has a homography-model
which allows for more degrees of freedom than may be needed. Other transforms that may
be tested are Euclidean, similarity and affine transforms. It would also be interesting to look
deeper into different modifications of RANSAC, or any of the alternatives to RANSAC presented
previously.

5.1.4 Combining grayscale matchers

It was presented in the results chapter that combining algorithms can reduce the biometric
performance quite significantly. Combining the matching scores of the GFTT-SIFT matcher and
that of the minutia matcher resulted in a decrease of 4.35% in FRR compared to the minutiae
matcher alone. Finding the promising results introduced a discussion about combining the gray
scale matchers and if it could be implemented. Due to lack of time this was unfortunately not
implemented. However, with Matlab the scores of the different matchers were combined, and it
was possible to find out if an FRR reduction would occur it was implemented. In table 5.2 the
top five combinations are presented, and it can be seen that the FRR can be reduced further.

1http://www.vlfeat.org/sandbox/index.html
2http://dlib.net/imaging.html

http://www.vlfeat.org/sandbox/index.html
http://dlib.net/imaging.html

CHAPTER 5. FUTURE WORK & DISCUSSION 65

The top performing algorithm is plotted in figure 5.2. It may not be surprising that combining
the GFTT-SIFT and SIFT-SIFT matchers would result in an FRR reduction since the detectors
search for different kinds of points. Further questions to be answered is if this combination can
be combined with the minutia matcher to reduce the FRR even more.
It is with hope that combining gray scale matchers can be implemented, then more in depth
analysis can be made of live results. A last question that needs to be answered if it is feasible
to have any kind of combination in a real application, concerning the time consumption.

Combinaion FRR (%)

GFTT-SIFT & SIFT-SIFT 3.42

GFTT-SIFT & ORB-SIFT 4.08

GFTT-SIFT & SIFT-BRISK 4.08

GFTT-SIFT & FAST-BRIEF 5.75

GFTT-SIFT & Harris-SIFT 5.83

Table 5.1: The top five results of combining gray scale matchers.

10 -5 10 -4 10 -3 10 -2 10 -1 10 0

FAR

0

1

2

3

4

5

6

7

8

9

10

F
R

R

Combined runs

SIFT-SIFT

GFTT-SIFT

max (run1, run2)

run1 + run2

Figure 5.2: Plots for FRR/FAR when combining gray scale matchers.

5.1.5 Investigate rotation- and scale-invariance in detail

A future project is to remove the C++- and OpenCV dependency and implement the best
performing system, the GFFT-SIFT gray scale matcher, completely in C-code.

CHAPTER 5. FUTURE WORK & DISCUSSION 66

It should be recommended to fully investigate the rotation- and scale-invariance before im-
plementation. This may be carried out by simulating rotation and scale in the performance
benchmarks. Then the new test results can be compared with the results without the rotation
and scale simulations. It is believed that it is not a big problem, the performance benchmarks
are executed with exactly the same preconditions as when the minutiae matcher (rotation in-
variant) is tested. If it will be a problem, hopefully it will suffice that most mobile users don’t
add rotation or scale that differ too much from the enrolled images.
The reason why this cause attention is that a eigenvalue detector does not calculate an angle,
which SIFT use to rotate the neighborhood when extracting the descriptor.

5.2 Discussion

As mentioned earlier this section will mainly consist of a discussion about the main parts of the
project and how it could be improved.

5.2.1 Choice of methodology

The choice has shown to be successful and this is motivated by the fact that the best found
algorithm in this project delivered better biometric performance than current state-of-the-art
fingerprint matcher on the given database. It is further motivated by the fact that many of the
gray scale matchers perform under the the project goal of 30% FRR.
Something that can be improved is image preprocessing. It is assumed that if a few gray scale
matchers were sacrificed, that time could have been invested in image enhancement work, and
in turn that could have introduced even better FRR performance. On the other hand, what
if the eigenvalues detectors were sacrificed? In that case, we would not experience the results
of that matcher. After all, we did not know the upcoming biometric performance of each gray
scale matcher, so then we would not know which to sacrifice anyway.
A portion of time invested in interest point detection and region descriptors could also have
been invested in a second method, for instance deep neural networks. In the end though, we
strongly believe that doing a project in this subject in the given time frame, we sooner or later
had to choose either a detector-descriptor-matching approach or a neural network matching
approach. Any approach is believed to be time consuming, especially when training networks.
Moreover, we did not possess the computer power that may be necessary for training neural
networks.

5.2.2 Experimental setup

It should be pointed out that combining all the detectors and descriptors was very time con-
suming. A testing session of 20-40 minutes does not sound very much, but one has to remember
that every combination depends on a number of different parameter settings such as a RANSAC
threshold, Brute-Force threshold, number of corners to collect from the Harris detector and
etcetera. The point is that every tweak often needs a complete performance run to understand
if the tweak did improve the results or not. In the end, finding the (probably) best parameters
could take a couple of working days. The current version of the GFTT-SIFT matcher took
more than a week to tune. To save a little time, a small subset of fingerprints can be evaluated
against each other. It is hard to choose such a subset since the fingerprints vary greatly. So

CHAPTER 5. FUTURE WORK & DISCUSSION 67

only testing on a third could potentially show completely different figures than testing on the
full set of fingerprints. What could have been done differently is to collect a small subset of
fingers that were harder to match than the average fingerprint, and run performance tests on
this subset. Most certainly, testing time will be saved and hopefully, knowing the FRR of the
new subset, then the FRR of the full superset should not exceed.

5.2.3 Results

Detectors and descriptors

A number of interest point detectors has been tested with various results. The detector that
accordingly to the test results is the best choice for fingerprints is an eigenvalue corner detector,
the Shi and Tomasi corner detector. The reason is believed to be connected to the cornerness
value that is connected to eigenvalue corners. A high cornerness value is proportional to how a
pixel in the image is connected to a structure [6]. Comparing the Shi and Tomasi- and Harris-
detectors both show relatively low results, this supports the claim that eigenvalue detectors
perform well for matching fingerprints such as those in the given database.

The FAST-detector is another corner detector. Any FAST/descriptor combination does not
perform nearly as good as the eigenvalue corner detectors. In the result chapter it can be seen
that FAST finds plenty of corners. Harris and GFTT also find plenty of corners. The key to
failure for the FAST detector is that it returns all points that are found, and many of them may
be of poor cornerness quality. It is possible to decide how many corners that the eigenvalue cor-
ner detectors shall return, and the returned corners are the best ranked corners. It is very likely
that combining n best ranked eigenvalue corners are superior to combining m FAST-corners of
varying quality. Implementing a similar quality measure in the FAST detector may improve the
algorithm.

A decently good detector is the SIFT-detector. The ordinary SIFT algorithm showed a re-
sult under 10%, and combining extrema locations with GFTT corners in matlab-tests gave an
FRR rate of 3.42%. This reduction is likely caused by the detector implementations. SIFT
detects extrema location points and GFTT detects eigenvalue corners. Investing further time
in selecting better extrema points could perhaps lower the FRR rate.

Blob detection showed poor results when combining it with a SIFT- or SURF-descriptor. A
reason for this can be that putting a point in the middle of a set of coherent pixels, will result
in a “coherent” descriptor. Matching such descriptors would presumably match to other similar
descriptors.

SURF was presented as a faster algorithm than SIFT to compute interest points. Compar-
ing only the SIFT-SIFT and SURF-SURF matchers, it is true that SURF is faster, though
combining SURF with other detectors and descriptors showed no significant improvement. In
fact, combining any detector with the SURF descriptor showed poor overall results. It is believed
to be caused by an implementation issue. The SURF-descriptor is a floating point descriptor
and needs extra time for conversion to integer representation. SURF also needs time for tak-
ing care of negative values, a byte has to be inserted in the descriptor vector that indicates
whether the descriptor value at vector position i is positive or negative. Furthermore, precious
information is lost when converting a 64-bit floating point number to and from an 8-bit inte-

CHAPTER 5. FUTURE WORK & DISCUSSION 68

ger, thus loss in information may have contributed to the overall poor FRR results of SURF.
Further improvements that would most certainly result in better performance is an alternative
fingerprint-template implementation that supports ± floating point numbers.

Binary descriptors were also scrutinized in this project. Comparing the min-values for BRIEF,
ORB, BRISK and FREAK showed lower FRR results than SURF. However, the binary de-
scriptors do not reach as low as GFTT-SIFT. Description of local information with a binary
descriptor may after all not be the best choice. Further optimizing of these algorithms may
however result in lower FRR performance.

Matching interest points and descriptors

Overall the Brute Force- and RANSAC matchers work well. There is room for testing other
algorithms such as PROSAC and MLESAC in order to hopefully obtain lower FRR rates and
faster computation times. However, to lower the FRR further, we think that the way the
matching score is computed must be revisited. As of now, the only score is the total num-
ber of correct matches returned from RANSAC. A score based on area or circumference of the
inliers could be added if that could be computed in a way that improves the current performance.

The RANSAC score has shown to deliver a distinct matching score and can be the difference
of granting access or not. As regards the randomness of RANSAC the following may be said.
RANSAC does not always find an inlier set. Even if RANSAC finds subsets containing inliers,
the best subsets from two different runs may be different and thus the model may be slightly
altered if the best runs doesn’t contain exactly the same inliers. In the fingerprint matching
case it could mean the difference between granted and denied access if the score is close the
the threshold. However, such cases would be very rare. First of all, most matches are either
high above or far below the threshold and in that case one match more or less has no effect.
(Remember that we talk about the threshold for descriptor matching. The score for minutiae
matching may very well be under the threshold for minutiae matching. In fact it probably is,
otherwise the descriptor matching wouldn’t be used to start with.) Only few cases are close to
the threshold. We know this since otherwise it would be impossible to reach the high discrim-
ination rates that we present in this thesis. In addition, many other other factors such as for
example coverage of the finger, moist, dirt etc. are much more important. To summarize, the
randomness of RANSAC does not really have any consequences in practice.

5.3 Conclusion

This project has resulted in a number of gray scale matchers, some of them performed better
and some worse. Achieving a best result of 5.92% FRR and 2.54% when combining with the
minutiae matcher at FAR 1/10000 is rather good. This result was achieved with the GFTT-
SIFT combination, and was even better on the given data set than the currently used matcher.
However, it is important not to misunderstand the result. The FRR on its own is perhaps too
high for a real application. It must be understood that any algorithm in this project has never
been intended to replace any existing algorithm. The gray scale matcher will rather assists
them. Most of the approximately 70 - 80 billion fingerprints are not similar to those in the data
set. So when such a fingerprint is detected in an application, the current algorithm can ask the
gray scale matcher for advice. We have seen that combining algorithms can achieve lower FRR

CHAPTER 5. FUTURE WORK & DISCUSSION 69

performance drastically and this should indicate that a gray scale matcher can be a secondary
algorithm intended to be used on special occasions.
Before implementing a system completely in C-code it is recommended to investigate if the addi-
tion of more orientation and scale will damage the current performance. It is also recommended
to experiment on RANSAC substitutes too see if verification time can be reduced. Moreover, a
reduction of the biometric performance can presumably be expected if further image enhance-
ment is implemented and also if a decision score with more dependency of the structure in the
interest points matched is implemented.

Bibliography

[1] Gil levi’s computer vision blog: A tutorial on binary descriptors –
part 5 – the freak descriptor. https://gilscvblog.com/2013/12/09/
a-tutorial-on-binary-descriptors-part-5-the-freak-descriptor/. Accessed: 2016-08-06.

[2] Lecture slides, computer vision course at lund institute of technology. http://www.ctr.
maths.lu.se/media/FMA270/2016/forelas4 1.pdf. Accessed: 2016-08-06.

[3] Matlab mser documentation. http://se.mathworks.com/help/vision/ref/
detectmserfeatures.html. Accessed: 2016-08-06.

[4] Opencv documentation: Shi-tomasi corner detector & good features to track. http://docs.
opencv.org/3.0-beta/doc/py tutorials/py feature2d/py shi tomasi/py shi tomasi.html.
Accessed: 2016-08-06.

[5] Opencv information. http://opencv.org/about.html. Accessed: 2016-08-06.

[6] Vlfeat documentation: Cornerness measures. http://www.vlfeat.org/api/
covdet-corner-types.html. Accessed: 2016-08-06.

[7] Mark Abernethy and Shri M Rai. An innovative fingerprint feature representation method
to facilitate authentication using neural networks. In International Conference on Neural
Information Processing, pages 689–696. Springer, 2013.

[8] Motilal Agrawal, Kurt Konolige, and Morten Rufus Blas. Censure: Center surround ex-
tremas for realtime feature detection and matching. In European Conference on Computer
Vision, pages 102–115. Springer, 2008.

[9] Alexandre Alahi, Raphael Ortiz, and Pierre Vandergheynst. Freak: Fast retina keypoint.
In Computer vision and pattern recognition (CVPR), 2012 IEEE conference on, pages
510–517. Ieee, 2012.

[10] Pablo Fernández Alcantarilla, Adrien Bartoli, and Andrew J Davison. Kaze features. In
European Conference on Computer Vision, pages 214–227. Springer, 2012.

[11] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. Surf: Speeded up robust features. In
European conference on computer vision, pages 404–417. Springer, 2006.

[12] Wilhelm Burger and Mark J Burge. Digital image processing: an algorithmic introduction
using Java. Springer, 2016.

[13] Michael Calonder, Vincent Lepetit, Christoph Strecha, and Pascal Fua. Brief: Binary
robust independent elementary features. In European conference on computer vision, pages
778–792. Springer, 2010.

70

https://gilscvblog.com/2013/12/09/a-tutorial-on-binary-descriptors-part-5-the-freak-descriptor/
https://gilscvblog.com/2013/12/09/a-tutorial-on-binary-descriptors-part-5-the-freak-descriptor/
http://www.ctr.maths.lu.se/media/FMA270/2016/forelas4_1.pdf
http://www.ctr.maths.lu.se/media/FMA270/2016/forelas4_1.pdf
http://se.mathworks.com/help/vision/ref/detectmserfeatures.html
http://se.mathworks.com/help/vision/ref/detectmserfeatures.html
http://docs.opencv.org/3.0-beta/doc/py_tutorials/py_feature2d/py_shi_tomasi/py_shi_tomasi.html
http://docs.opencv.org/3.0-beta/doc/py_tutorials/py_feature2d/py_shi_tomasi/py_shi_tomasi.html
http://opencv.org/about.html
http://www.vlfeat.org/api/covdet-corner-types.html
http://www.vlfeat.org/api/covdet-corner-types.html

BIBLIOGRAPHY 71

[14] Ondrej Chum and Jirı Matas. Randomized ransac with td, d test. In Proc. British Machine
Vision Conference, volume 2, pages 448–457, 2002.

[15] Ondrej Chum and Jiri Matas. Matching with prosac-progressive sample consensus. In
2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR’05), volume 1, pages 220–226. IEEE, 2005.

[16] Robert Collins. Lecture 06: Harris corner detector. http://www.cse.psu.edu/∼rtc12/
CSE486/lecture06.pdf. Accessed: 2016-08-06.

[17] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human detection. In
2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR’05), volume 1, pages 886–893. IEEE, 2005.

[18] Shoaib Ehsan, Adrian F Clark, Klaus D McDonald-Maier, et al. Integral images: Efficient
algorithms for their computation and storage in resource-constrained embedded vision sys-
tems. Sensors, 15(7):16804–16830, 2015.

[19] Martin A Fischler and Robert C Bolles. Random sample consensus: a paradigm for model
fitting with applications to image analysis and automated cartography. Communications
of the ACM, 24(6):381–395, 1981.

[20] Chris Harris and Mike Stephens. A combined corner and edge detector. In Alvey vision
conference, volume 15, page 50. Citeseer, 1988.

[21] Dong-Chen He and Li Wang. Texture unit, texture spectrum, and texture analysis. IEEE
transactions on Geoscience and Remote Sensing, 28(4):509–512, 1990.

[22] Reinhard Klette. Concise computer vision. Springer, 2014.

[23] Stefan Leutenegger, Margarita Chli, and Roland Y Siegwart. Brisk: Binary robust invariant
scalable keypoints. In 2011 International conference on computer vision, pages 2548–2555.
IEEE, 2011.

[24] David G Lowe. Object recognition from local scale-invariant features. In Computer vision,
1999. The proceedings of the seventh IEEE international conference on, volume 2, pages
1150–1157. Ieee, 1999.

[25] David G Lowe. Distinctive image features from scale-invariant keypoints. International
journal of computer vision, 60(2):91–110, 2004.

[26] Davide Maltoni, Dario Maio, Anil Jain, and Salil Prabhakar. Handbook of fingerprint
recognition. Springer Science & Business Media, 2009.

[27] Jiri Matas, Ondrej Chum, Martin Urban, and Tomás Pajdla. Robust wide-baseline stereo
from maximally stable extremal regions. Image and vision computing, 22(10):761–767,
2004.

[28] Thomas B Moeslund. Introduction to video and image processing: Building real systems
and applications. Springer Science & Business Media, 2012.

[29] Marius Muja and David G Lowe. Flann, fast library for approximate nearest neighbors.
In International Conference on Computer Vision Theory and Applications (VISAPP’09).
INSTICC Press, 2009.

[30] Loris Nanni and Alessandra Lumini. Descriptors for image-based fingerprint matchers.
Expert Systems with Applications, 36(10):12414–12422, 2009.

http://www.cse.psu.edu/~rtc12/CSE486/lecture06.pdf
http://www.cse.psu.edu/~rtc12/CSE486/lecture06.pdf

BIBLIOGRAPHY 72

[31] Edward Rosten and Tom Drummond. Machine learning for high-speed corner detection.
In European conference on computer vision, pages 430–443. Springer, 2006.

[32] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. Orb: An efficient
alternative to sift or surf. In 2011 International conference on computer vision, pages
2564–2571. IEEE, 2011.

[33] Jianbo Shi and Carlo Tomasi. Good features to track. In Computer Vision and Pattern
Recognition, 1994. Proceedings CVPR’94., 1994 IEEE Computer Society Conference on,
pages 593–600. IEEE, 1994.

[34] Richard Szeliski. Computer vision: algorithms and applications. Springer Science & Busi-
ness Media, 2010.

[35] Razieh Toony. Project 4: Image stitching. http://vision.gel.ulaval.ca/∼jflalonde/cours/
4105/h14/tps/results/tp4/raziehtoony/index.html. Accessed: 2016-08-06.

[36] Philip HS Torr and Andrew Zisserman. Mlesac: A new robust estimator with application
to estimating image geometry. Computer Vision and Image Understanding, 78(1):138–156,
2000.

[37] Marco Alexander Treiber. An introduction to object recognition: selected algorithms for a
wide variety of applications. Springer Science & Business Media, 2010.

[38] Tinne Tuytelaars. Dense interest points. In Computer Vision and Pattern Recognition
(CVPR), 2010 IEEE Conference on, pages 2281–2288. IEEE, 2010.

[39] Ru Zhou, SangWoo Sin, Dongju Li, Tsuyoshi Isshiki, and Hiroaki Kunieda. Adaptive sift-
based algorithm for specific fingerprint verification. In Hand-Based Biometrics (ICHB),
2011 International Conference on, pages 1–6. IEEE, 2011.

[40] Ru Zhou, Dexing Zhong, and Jiuqiang Han. Fingerprint identification using sift-based
minutia descriptors and improved all descriptor-pair matching. Sensors, 13(3):3142–3156,
2013.

http://vision.gel.ulaval.ca/~jflalonde/cours/4105/h14/tps/results/tp4/raziehtoony/index.html
http://vision.gel.ulaval.ca/~jflalonde/cours/4105/h14/tps/results/tp4/raziehtoony/index.html

	Introduction
	General background
	Biometrics and biometric systems
	Outlines of fingerprint recognition
	Computer vision
	Problem formulation
	Related work

	Theory
	Image processing
	Histogram equalization
	Image smoothing
	Image sharpening
	Integral images

	Interest point detection and description of regions
	SIFT: Scale Invariant Feature transform
	SURF: Speeded Up Robust Features
	CenSurE: Center Surround Extremas detector
	MSER: Maximally Stable Extremal Regions
	Harris corner detector
	Shi and Tomasi corner detector
	FAST: Features from accelerated segment test
	Dense interest points
	The BRIEF descriptor: Binary Robust Independent Elementary Features
	ORB: Oriented FAST and Rotated BRIEF
	BRISK: Binary Robust Invariant Scalable Keypoints
	FREAK: Fast Retina Keypoint descriptor

	Matching descriptors
	Introduction
	RANSAC
	Efficiency of RANSAC
	Alternatives to RANSAC
	Feature vectors and decision

	Introduction to biometric performance

	Technical framework and Experimental setup
	Introduction to the BioMatch Framework
	The PerformanceEvaluationController and PerfEval
	Our code
	Note about Enrollers
	More about PerfEval
	Analyses after running PerfEval

	Results
	Preprocessing results
	Interest point detection results
	SIFT interest point detection
	SURF interest point detection
	GFTT interest point detection
	Harris interest point detection
	MSER interest point detection
	CenSurE interest point detection
	Dense interest point detection
	BRISK interest point detection
	FAST interest point detection
	ORB interest point detection

	Matching result
	False Reject Rate performance
	Template extraction- and verification-time performance
	Induvidual descriptor comments

	Combinations of gray scale- and minutia- matchers

	Future work & discussion
	Future work
	Further preprocessing
	Interest point detectors and region descriptors
	RANSAC
	Combining grayscale matchers
	Investigate rotation- and scale-invariance in detail

	Discussion
	Choice of methodology
	Experimental setup
	Results

	Conclusion

