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Abstract

In this master’s thesis a model of algorithmic trading is constructed. The
model aims to create an optimal investment portfolio consisting of a risk-free
asset and a risky asset. The risky asset is in the form of a stock generated
using regime-switching parameters with a Markov chain explaining the state
of the economy. The optimization of the portfolio is carried out under cer-
tain assumptions and reasonable constraints on risk, transaction costs and
amount traded. The constraint on financial risk is implemented through
the recognized mean-variance criterion, balancing the expected value of the
portfolio against the variance of the portfolio after every time period. The al-
gorithm is implemented using quadratic programming techniques in Matlab.
By varying parameters of the model a sensitivity analysis is performed. Sim-
ulated scenarios and the behaviour of the algorithm is presented in graphs.
The algorithm is found to be rational and outperforms a static portfolio in
every scenario.

Keywords: financial engineering, algorithmic trading, portfolio optimiza-
tion, mean-variance criterion, regime-switching, quadratic programming, hid-
den markov model
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Chapter 1

Introduction

In modern financial markets mathematical models are used to arrive at, and
execute, investment decisions. Such automated technologies are referred
to as algorithmic trading. During recent years there has been increased
interest in algorithmic trading and large institutional investors tend to use
algorithmic trading technologies to e.g. sell large blocks of shares in small
tranches.

In this thesis a trading algorithm model have been constructed. The algo-
rithm aims to construct an optimal investment portfolio, i.e. the mathe-
matically optimal allocation among assets. An optimal investment portfolio
is a loose term. It is simply a choice of allocations combining the risk-
free asset (bank account, B) and the risky asset (stock, S), given certain
assumptions and necessary conditions. [Dombrovskii and Obyedko, 2015]
state that the portfolio management problem, with stochastic parameters
under constraints, is the key problem of financial engineering.

1.1 Purpose

The purpose of this thesis is to investigate whether the trading algorithm’s
resulting portfolio outperforms a static portfolio, i.e. a portfolio with pre-
determined weights allocated in the risky asset as well as the risk-free as-
set. The static portfolio is often used by a pension fund, as mentioned in
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[McNeil et al., 2005], where the time horizon is long and the end time often
known. This thesis’ results are particularly applicable at a pension fund
since it has a large responsibility to it’s investors.

The constructed algorithm is meant to be managed and updated regularly
when new information is gathered. For some preferences it might need
harder constraints in order to achieve a desirable result. By continuously
carrying out the optimization after every time period all information can be
incorporated and the planned trading behaviour updated.

1.2 Methodology

1.2.1 Trading algorithm

The constructed algorithm builds on a portfolio optimization model that
uses predicted values of the stock price, a certain number (k) of time-periods
ahead, as it’s input. It aims to maximize the value of a portfolio at the end of
a given time horizon. The algorithm is best used if updated after every time-
period, leading to a new planned trading strategy after every time period.
The maximization of the portfolio is carried out under certain constraints
on risk, transaction costs and amount allowed to be traded every day.

The constraints on risk are implemented through the mean-variance cri-
terion (will be referred to as MVC occasionally) and determined by the
risk-aversion of the investor, i.e. how the investor values risk in terms of ex-
pected future wealth. Recently several studies have been conducted in the
subject of mean-variance optimization problems, see e.g. [Li and Ng, 2000].
In [Costa and Araujo, 2008] the authors express that the main advantage of
the mean-variance criterion is that it has a simple and clear interpretation
in terms of individual portfolio choice and utility optimization. The model
of this thesis uses an intermediate mean-variance criterion as well, i.e. the
expected value of the portfolio is balanced against the variance after every
time period, which was introduced by [Costa and Nabholz, 2007].
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1.2.2 Stock values

The predicted values of the stock price will be generated using a regime-
switching strategy, i.e. the stock evolves differently depending on the regime,
or the state, of an economy. The regime-switching model should be inter-
preted as a momentum process where it is more likely to continue in the same
state than to transition into another. The Hidden Markov Model (HMM),
introduced in [Nystrup et al., 2015], incorporates new information as it is
available and evaluates what state the economy is in. By analyzing the be-
haviour of the risky asset the algorithm aims to take advantage of favourable
economic regimes, withstand adverse economic regimes and reduce potential
drawdowns. This type of strategy is suitable for non-stationary environ-
ments, which is usually the case for financial time series.

1.3 Challenges and performance

Because of the advanced nature of financial markets there are, of course,
limitations to the developed model. When creating models describing finan-
cial data one has to make assumptions, often very strong assumptions at
that. As a result, the final algorithm is not without faults. Depending on
constraints, together with transaction costs, the optimal allocation is found
to vary significantly. If the constraints are not strong enough one might
assume that the optimal portfolio is allocated 100% in the risky asset. This
is due to the assumption that over time the stock market converges to a
growing trend. However, due to risk aversion, transaction costs and before-
hand determined amount allowed to be traded this should not be the result.
An issue to keep in mind is that there is no “general” risky asset as used
in our model. There will always be company specific risk tied to a specific
stock.

Due to constraints and risk measures the algorithm shows to be rational
and it outperforms the static portfolio in every scenario. By applying the
results of this thesis to real-time data even more reliable stock values could
be generated. If the algorithm would still outperform the static portfolio is
left for further investigation.
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1.4 Contribution

The main contribution of this thesis is the constructed trading algorithm.
The behaviour and performance of the algorithm when applied to simulated
stock price values are the product of this thesis. The main focus of the works
of this thesis is on the mathematical optimization structure rather than the
statistical time-series model. To the knowledge of the author this type of
portfolio optimization using these constraints have not been studied before.

The representation of the portfolio value is uniquely derived by the au-
thor using basic financial knowledge and mathematical simplifications. The
generation of stock price values are not unique in itself, yet uniquely imple-
mented in the portfolio optimization carried out in this thesis.

In [Li and Ng, 2000] a multiperiod mean-variance portfolio optimization is
solved. The authors use several available risky assets and they constrain
the variance by implementing an upper bound on variance of the portfolio
wealth. In contrast, this thesis only have one asset available and minimize
variance of the portfolio rather than constraining it. In [Zhou and Yin, 2003]
a continuous mean-variance portfolio is determined. They do however not re-
strict non-negative wealth nor include transaction costs. In [Li et al., 2014]
and [Celikyurt and Özekici, 2007] the MV efficient frontier is presented us-
ing dynamic programming, recursively updating the mean and variance after
every time period. Neither [Li et al., 2014] or [Celikyurt and Özekici, 2007]
include transaction costs. In this thesis static quadratic programming is
used to optimize the portfolio leading to a simpler notation of portfolio
evolution. None of the above mentioned papers include the intermediate
mean-variance criterion making this thesis’ contribution clear in that re-
gard. However, the authors of [Costa and Nabholz, 2007] do consider the
intermediete mean and variance, but do not include any other constraints
or transaction costs.

In this thesis a trading algorithm, where portfolio optimization is carried out
using the mean-variance criterion, is constructed. The author of this thesis
implement an intermediate mean-variance criterion through minimizing the
variance part of the goal function. The remaining part of the goal function
is to maximize the end value of a portfolio, as well as intermediate excess
returns. The optimization is carried out using quadratic programming prin-
ciples, under constraints on amount allowed to be traded and subject to
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transaction costs. Stock price values are used as input to the portfolio value
and are generated using a regime switching strategy.

1.5 Outline

This thesis is organized as follows. In Chapter 2, Section 2.1, the theoretical
formulations of the algorithm, stock generations as well as constraints are
derived. Then in Section 2.2 the implementation in Matlab is explained,
the optimization problems are derived and choices are motivated. In Sec-
tion 2.3 a sensitivity analysis of the optimal solutions to the problems is
explained. The solutions are created by varying important parameters of
the model. Moving on to Chapter 3 the results of the sensitivity analysis of
the optimal portfolios are presented and explained. Resulting graphs show-
ing the behaviour of the algortithm in different scenarios are also presented.
In Chapter 4 the results of the sensitivity analysis are discussed and conclu-
sions are provided. Future studies and improvements of this thesis are also
proposed and discussed in this chapter.
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Chapter 2

Method

This chapter provides the theoretical basis of which this thesis is built on. It
also explains how the theory is implemented and how the sensitivity analysis
is performed. In the context of the purpose of this thesis this chapter aims
to provide the building blocks of the constructed trading algorithm.

The following chapters presents the results of the sensitivity analysis as well
as discuss the outcomes and choices of this thesis.

2.1 Theory

In this section the theoretical basis of which this thesis is based on is ex-
plained and formulations as well as equations are derived. In order to under-
stand how the trading algorithm is constructed and under which constraints
this section needs to be understood.

2.1.1 Trading algorithm

In order to optimize a portfolio the representation of portfolio value need
to be derived. In this section the evolution of the portfolio is derived and
presented. As mentioned in the introduction, the value of the portfolio is
comprised of the value of assets in the bank account and the value of assets
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in the stock. The portfolio is constructed to be self-financing. This means
there is no exogenous infusion or withdrawal of money, i.e a purchase of
a stock has to be financed by the current amount available in the bank
account, and the sale of a stock results in more wealth in the bank account
accordingly. This in turn lead to short selling of a stock not being allowed.
The evolution of the portfolio value is presented in Equation (2.1) and Figure
2.1 below.

Vt = αtBt + βtSt

↓ Evolve

V −
t+1 = αtBt+1 + βtSt+1

↓ Rebalance

V +
t+1 = αt+1Bt+1 + βt+1St+1

= αtBt+1 + βtSt+1 − λSt+1|βt+1 − βt|
↓ Evolve

V −
t+2 = αt+1Bt+2 + βt+1St+2

And so on...

(2.1)
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Figure 2.1: The evolution of the portfolio value presented in Equation (2.1)
above.

Here V is the total value of the portfolio, α the amount invested in the bank
account, β the number of stocks, Bt = 1, Bt+k = Bte

krf , St is the value
of the stock at time t and λ is the cost factor representing the transaction
cost of a trade. The reader should notice that the portfolio weights are
described in absolute terms as opposed to relative. This is due to the fact
that the practical interpretation is easier to understand and that the relative
portfolio weights could result in singularities in the algorithm. The amount
of wealth reallocated to, or from, the stock is represented by St+1|βt+1−βt|.
The process can be described in words as follows:

An initial portfolio is determined – the value of the stock (S) is evolved over
one period – depending on the expected evolution of the stock, the portfolio is
rebalanced. (The value of the portfolio is here reduced by the amount of the
transaction cost) – the value of the stock is evolved over yet another period
changing the value of the portfolio. The process is then repeated over several
periods.
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Mathematical representation

Now that the evolution of the portfolio has been presented, a mathematical
representation of the process is derived. As mentioned in the introduction,
the goal function of this thesis is to maximize the expected value of the port-
folio at the end time. To represent the value of the portfolio an expression
for future α:s is derived in Equation (2.2) below. From Equation (2.1) above
we have that:

αt+1Bt+1 = −βt+1St+1 + αtBt+1 + βtSt+1 − λSt+1|βt+1 − βt|
And

αt+2Bt+2 = αt+1Bt+2 − St+2(βt+2 − βt+1)− λSt+2|βt+2 − βt+1|
Where

Bt+2 = Bt+1e
rf

Inserting the first row:

αt+2Bt+2 = erf [αtBt+1 − St+1(βt+1 − βt)−t+1 |βt+1 − βt|]
− St+2(βt+2 − βt+1)− λSt+2|βt+2 − βt+1|
Leading to k steps ahead:

αt+kBt+k = αtBte
krf

−
k∑

i=1

St+ie
(k−i)rf [(βt+i − βt+i−1) + λ|βt+i − βt+i−1|]

(2.2)

This would in turn lead to an expression of the value of the portfolio at k+1
periods ahead (k + 1, not k, periods ahead since the last step is, of course,
not a rebalancing):

V −
t+k+1 = αt+kBt+k+1 + βt+kSt+k+1

= αtBte
rf (k+1)

−
k∑

i=1

St+ie
(k−i+1)rf [(βt+i − βt+i−1) + λ|βt+i − βt+i−1|]

+ βt+kSt+k+1

(2.3)

where the goal is to maximize the expected value of Equation (2.3). To be
able to do this in Matlab, we will need to represent the above expression in
matrices. This is quite complicated to do when there is an absolute value
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within the expression. A more detailed description of the implementation is
described in Section 2.2 below.

To fulfill the purpose of this thesis, i.e. finding an optimal portfolio, the
expected value of the portfolio need to be calculated for several scenarios.
To be able to calculate the expected value of the portfolio, the expected
value of the stock is needed.

2.1.2 Stock values

To calculate the expected value of the stock a time series model, rep-
resenting the financial data of the stock is needed. The technique used
in this thesis is a regime-switching time series model based on a Hidden
Markov Model (HMM), introduced in the works of [Nystrup et al., 2015]
and [Nystrup et al., 2016]. There has recently been increased interest in the
study of financial models where key parameters vary and are modulated by a
Markov chain, see e.g. [Bauerle and Rieder, 2004], [Çakmak and Özekici, 2006],
[Yin and Zhou, 2004], [Zhang, 2001] and [Zhou and Yin, 2003].

In a Hidden Markov Model (HMM) the probability distribution that gen-
erates an observation depends on the state of an unobserved Markov chain.
A sequence of discrete random variables {Xt : t ∈ N} is said to be a
first-order Markov chain if it, for all t ∈ N satisifies the Markov property
Pr(Xt+1|Xt, ..., X1) = Pr(Xt+1|Xt). The conditional probabilities Pr(Xt+1 =
j|Xt = i) = qij(t) are called the transition probabilities and are represented
by the Markov-Switching parameters in this thesis. In this thesis we con-
sider the two-state Markov model with Gaussian conditional distributions,
where Xt represents the state of the economy(1 is good and 2 is bad):

Yt ∼ N(µXt , σ
2
Xt

)

The geometric distribution is here without memory, implying that the time
until the next transition from the current state is independent of the time
spent in the state. The initial state of the economy can be represented by
p0 = [pgood pbad]. pgood is a parameter which is chosen as the probability that
we are in a good economic state, Xt = 1. pbad is, respectively, 1− pgood and
represent the probability that we are in a bad economic state, Xt = 2. These
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parameters represent our view of the current economic state. The Markov
switching parameters, qij represent the tendency to go to from state i to
state j. Together they create the matrix Q below.

Q =

[
q11 (1− q11)

(1− q22) q22

]
.

µ1, µ2, σ1 and σ2 represent the expected return and volatility respectively,
when the economy is in the good state or the bad state. These param-
eters can be interpreted as to represent the behaviour of the economy.
For further interest in the Hidden Markov Model, the reader is referred
to [Nystrup et al., 2016] and [Lindström et al., 2015].

In [Nystrup et al., 2016] the authors construct a Hidden Markov Model
(HMM) to model the daily returns and to infer the hidden states of the finan-
cial market. The states represent the dynamics of the market value of assets.
They refer to several studies showing the profitability of dynamic asset al-
location based on these classes of models, see e.g. [Bulla et al., 2011] and
[Nystrup et al., 2015]. One reason is due to the persistence of the volatility,
also known as Volatility Clustering. That is why it is important to ex-
plore the model’s ability to reproduce the long memory and forecast future
returns. Volatility clustering is explained further in [McNeil et al., 2005].
[Nystrup et al., 2016] present an adaptive estimation model which allow the
parameters of the estimated model to be time-varying, as opposed to fixed-
length forgetting factors. They found that the parameters vary quite signifi-
cantly over time and they argue that failure to account for the time-varying
behaviour is likely part of the reason why a simple random walk model
usually outperforms regime-switching models when used out-of-sample, as
discussed in [Dacco and Satchell, 1999]. However, the regime-based ap-
proach has the flexibility to adapt to changing economic conditions within
a benchmark-based investment policy, leading to a better result in their
case. The goal is not to predict regime shifts or future market movements,
but to identify when a regime shift has occurred and then benefit from the
persistence of returns and volatilities.

As proposed in [Costa and Araujo, 2008] such models based on HMMs can
better reflect the market environment, since the overall assets usually move
according to a major trend given by the state of the underlying economy, or
by the general mood of the investor. The benefits of models with regime-
switching parameters are illustrated in the results of [Costa and Araujo, 2008].
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In [Yiu et al., 2010] the authors also stress the fact that there can be sub-
stantial fluctuations in economic variables, which affect the dynamics of the
market values of the assets, over a long period of time. The authors state it is
of practical importance and relevance to incorporate the switching behavior
of the economic states in modeling the dynamics of the market values.

2.1.3 Constraints

The trading algorithm is implemented subject to certain constraints given
by the preferences of the investor. The constraints are incorporated as to
regulate the algorithm not to exceed risks or overuse resources. The following
constraints are implemented in the algorithm.

Mean-variance criterion

Maximizing the value of the portfolio is, of course, an important issue. How-
ever, an equally important one is to manage the risk the investor is taking.
Various methods of risk management have been proposed in literature, e.g.
in [McNeil et al., 2005]. In this thesis the financial risk is managed through
implementation of the mean-variance criterion. It is defined as the trade-off
between high expected value of the portfolio and low variance of the port-
folio. The following formula is used in the implementation of this problem:

maximize E[Vi]− γV ar[Vi] (2.4)

where γ ≥ 0 is called the risk-aversion parameter and represents the risk-
aversion of the investor, see e.g. [Boyd and Vandenberghe, 2004]. Risk aver-
sion represents the willingness to trade higher expected wealth for lower
variance. A large γ means that a larger emphasis is placed on the second
part of the maximized function, a very risk-averse investor. In this thesis
the notation E[Vi] is replaced with V −

k+1 from Equation (2.3) above.

In [Li and Ng, 2000], where an analytical optimal solution to the mean-
variance formulation in multiperiod portfolio selection is investigated, this
way of formulating the mean-variance portfolio selection problem is preferred
especially when the investor is able to specify it’s trade-off between expected
wealth and variance. According to [Jorion, 1992] an advantage of the MVC
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is the fact that it can uniquely incorporate portfolio objectives with pol-
icy constraints and efficient use of information. It’s ability to implement
investors’ constraints makes the criterion a flexible tool.

The multiperiod mean-variance selection problem was solved analytically in
[Li and Ng, 2000] with no Markovian jumps, and with Markovian jumps in
[Çakmak and Özekici, 2006] and [Zhou and Yin, 2003]. The mean-variance
criterion was used to develop a solution of a problem of investment portfolio
optimization with serially correlated returns using Model Predictive Con-
trol (MPC), or receeding horizon, in [Dombrovskii and Obyedko, 2015]. In
[Zhou and Yin, 2003] a continuous mean-variance portfolio selection prob-
lem with regime-switching parameters is solved, however without non-negative
constraints on terminal wealth and without transaction costs. In [Li et al., 2014]
the multiperiod investment model with self-financing constraints were stud-
ied and the time-consistent optimal investment policy and the resulting MV
efficient frontier was explicitly derived. In [Celikyurt and Özekici, 2007] sev-
eral multiperiod portfolio optimization models are considered. The stochas-
tic evolution is represented by a Markov-chain with perfectly observable
states and the objective functions depend only on the mean and the variance
of the final wealth. In both [Li et al., 2014] and [Celikyurt and Özekici, 2007]
the efficient frontier is generated using dynamic programming to identify op-
timal portfolio management policies.

Intermediate mean-variance criterion

In the above formulation of the mean-variance criterion, the variance at the
end time, k steps ahead, is considered. This in turn results in the initial vari-
ance not playing a large enough role in regulating the allocation decisions.
To regulate the intermediate variances, meaning the variances up to every
time step, a new intermediate mean-variance criterion is constructed. The
main advantage of implementing this intermediate mean-variance criterion
is the possibility to control the intermediate behaviour of a portfolio’s ex-
pected value and variance, as proposed by [Costa and Nabholz, 2007]. This
will in turn allow the investors to weight greater wealth at a price of lower
variance after every time period, by varying the risk-aversion parameter γ.
The new formulation will contain several covariance matrices, one for every
sequential time step.

This new formulation should result in more careful initial trades, since the
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variance up to every period is considered in the mean-variance criterion.
This means that large initial trades should be regulated even further.

Allocation constraint

To make sure that the portfolio is self-fincancing a constraint on the allo-
cation is needed. This is an upper bound, lower bound constraint. The
allocation constraint is constructed as to never trade beyond its limits, i.e.
the upper bound is constructed as if the algorithm were to sell every day
it would never run out of funds, and the lower to never sell more than cur-
rently owned. The resulting constraint will make sure that the investor only
use the resources available, and that only a certain amount per day can be
traded.

2.2 Implementation

The implementation of the problem at hand is done by creating an algo-
rithm in Matlab. The algorithm is formulated as to maximize the value of
the portfolio at a given number of time periods ahead. This is done using
mathematical optimization theory of Linear Programming and Quadratic
Programming, see [Boyd and Vandenberghe, 2004] for further explanation
of optimization theory. The optimization is carried out using the Matlab
programs linprog.m for the Linear Programming problem, and quadprog.m

for the Quadratic Programming problem.

2.2.1 Stock values

As explained above the expected values of the stock is determined through
the regime-based prediction strategy. The HMM will create several trajec-
tories of possible stock values over a k-period time series. The evolution of
the stock is generated as the mean value of the stock at every time step.
This is calculated as the expected value of the simulated sample trajectories
generated by the HMMs. For more details regarding the HMMs the reader
is again referred to [Nystrup et al., 2016] and [Lindström et al., 2015]. The
generated stock price values are represented in the vector S below.
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In Figure 2.2 below an illustration of 100 simulations of the stock value, as
well as the mean value of the stock, is presented.
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Figure 2.2: Seen in the graph are 100 generated simulations of the evolution
of the stock. The fat *-line in the middle is the expected value of the stock
used as input to the portfolio optimizing algorithm.

2.2.2 Optimization

Linear Programming

When the mean-variance criterion is not included the problem is a Linear
Programming problem (LP-problem). The LP-problem is of the form:

minimize fTx

Subject to: Ax ≤ b
Aeq · x = beq

lb ≤ x ≤ ub

(2.5)

where Aeq and beq are non-existent in the case of this thesis.
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Quadratic Programming

Once the mean-variance criterion is included in the algorithm the problem
is transformed to a quadratic programming problem (QP-problem):

minimize fTx+
1

2
xTHx

Subject to: Ax ≤ b
Aeq · x = beq

lb ≤ x ≤ ub

(2.6)

The constraints of the problem are all unchanged. The goal function, how-
ever, is updated to a quadratic function. Equation (2.4) above is changed
to:

minimize fTx+ γV ar(fTx)

where the problem is now to minimize the goal function as well as the vari-
ance simultaneously, where the prioritization between the two parts is rep-
resented by γ. γ can, as mentioned above, be qualitatively interpreted as the
level of risk-aversion of the investor, see e.g. [Boyd and Vandenberghe, 2004].
The reason why we are using the variance of the goal function, and not the
variance of the portfolio value is because they are the same.

Goal function

From now on we will assume Bi=1 for all i, i.e. rf=0, because of the current
economic environment. For simplicity, in the rest of this thesis the notation
of t+ k will be replaced by k, where just t will be replaced by 0. From here
on δβi = (βi − βi−1) as well. Equation (2.3) above will then be formulated
as:

V −
k+1 = αk + βkSk+1

= α0 −
k∑

i=1

Si[δβi + λ|δβi|] + βkSk+1

(2.7)

where we can see that β and α is updated recursively for every trading
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period from 1 to k. Every α and β can be represented in the following way:

αj = α0 −
j∑

i=1

Si[δβi + λ|δβi|]

βj = β0 +

j∑
i=1

δβi

for all j = 0, . . . , k. In matrix form this can be represented as:

α = α0 −XSm(δβ + λ|δβ|)
β = β0 +Xδβ

where

α=



α1
...
...
...
αk


, β=



β1
...
...
...
βk


, δβ=



δβ1
...
...
...
δβk


, |δβ|=



|δβ1|
...
...
...
|δβk|


, β0= β0



1
...
...
...
1


,

α0= α0



1
...
...
...
1


, X=



1 0 . . . . . . 0
...

. . .
...

... 1
...

...
. . . 0

1 . . . . . . . . . 1


, Sm=



S1 0 . . . . . . 0

0
. . .

...
...

. . .
...

...
. . . 0

0 . . . . . . 0 Sk


The function to be maximized is the one of Equation (2.7) above. This can
be reformulated as:

V −
k+1 = αk + βkSk+1

= α0 − (δβT + λ|δβ|T )S + βkSk+1

= α0 − (δβT + λ|δβ|T )S + δβTSk+11 + β0Sk+1

(2.8)

where
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S=



S1
...
...
...
Sk


, 1=



1
...
...
...
1


S and Sk+1 represent the stock prices, or expected stock prices, and the
only variables are δβi and |δβi|.

In Equation (2.5) above fTx represents the goal function. In the optimiza-
tion the goal function is represented by the non-constant part of Equation
(2.8) above. Since α0 and β0Sk+1 are constants, the only variable part is
represented by:

−(δβT + λ|δβT |)S + δβTSk+11

In the goal function there is a problem. |δβ| can not be expressed as δβ
in a simple way. Therefore a change of variables is performed by replacing
λ|δβ|iSi with ti and implementing it in the following manner:

λ|δβ|iSi ≤ ti
⇐⇒

λδβiSi ≤ ti
−λδβiSi ≤ ti
⇐⇒

λδβiSi − ti ≤ 0

−λδβiSi − ti ≤ 0

leading to the goal function:

maximize − (δβTS + t1 + ...+ tk) + δβTSk+11

⇐⇒
minimize δβTS + t1 + ...+ tk − δβTSk+11

⇐⇒
minimize [(S − Sk+11)T |1...1][δβ1...δβk|t1...tk]T

where

f = [(S − Sk+11)T |1...1]T

x = [δβ1...δβk|t1...tk]T
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which is now of the form as in Equation (2.5) above.

The constraint of the new variable is then represented in Matlab as to fit
the LP- and QP-problem in Equation (2.5), and Equation (2.6) above:

λδβiSi − ti ≤ 0

−λδβiSi − ti ≤ 0

which now creates a new constraint on x of the form Ax ≤ b where:

A =

[
λSm −I
−λSm −I

]
, b = 0

and I =



1 0 . . . . . . 0

0
. . .

...
... 1

...
...

. . . 0
0 . . . . . . 0 1


Sm=



S1 0 . . . . . . 0

0
. . .

...
...

. . .
...

...
. . . 0

0 . . . . . . 0 Sk



Mean-variance criterion

In order to implement the mean-variance criterion the variance of the goal
function need to be derived. This is done using the covariance matrix, Σ.
The goal function can be written as:

fTx = δβTS + t1 + ...+ tk − δβTSk+11

= δβTS − δβT1Sk+1 + [t1...tk]1

where the variance can be found as:

V ar(fTx) = V ar(δβTS) = δβTΣk
Sδβ = xTΣkx (2.9)

where

Σk
S =



σ21 Cov12 . . . . . . Cov1k

Cov21
. . .

...
...

. . .
...

...
. . .

...
Covk1 . . . . . . . . . σ2k


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Covi,j = Cov(Si, Sj), σ
2
i = V ar(Si) and Σk=

[
Σk
S 0k×k

0k×k 0k×k

]

which can be inserted into the form of the QP-problem in Equation (2.6)
above. In order to fit this into the form of the goal function in Equation
(2.6) above, the covariance matrix of the goal function, Σk, need to be
implemented as H = 2γΣk.

The new goal function is then represented by:

minimize fTx+ γxTΣkx (2.10)

which is solved using quadprog.m in Matlab. This is in line with the mean-
variance optimization problem proposed in [Boyd and Vandenberghe, 2004].

Intermediate mean-variance criterion

The implementation of the intermediate mean-variance criterion is inspired
by the motivation of [Costa and Nabholz, 2007]. In this thesis, however, we
will consider the mean-variance regulation as in the formula in Equation
(2.4) above, and not as constraints proposed in [Costa and Nabholz, 2007].

The final covariance matrix will be formulated as follows:

Σ = Σ1 + ...+ Σk

where Σi is constructed as Σk from Equation (2.9) above. The resulting
covariance matrix Σ is constructed using a simple for-loop in Matlab.

Hyperopic limit

To make sure the investor is not too hyperopic, meaning long-sighted, in
its investments maximization of intermediate excess returns is added to the
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goal function. This is implemented as follows:

(St+1 − St)
Tβt

=(St+1 − St)
T [Xδβt]

=[(St+1 − St)
TX]δβt

=Sdiffδβt

where Sdiff is added to f in the goal function above. This additional term
in the goal function should lead to additional trading to maximize every
excessive return. This will in turn lead to a higher variance, however a very
small addition, but is implemented because of the increased rationality of
maximizing excess returns.

Allocation Constraint

To make sure the algorithm will not buy more than the wealth allows the
upper bound is constructed as the inital wealth not invested in stock divided
by the intial stock price and the number of time-periods. The lower bound
is constructed as the initial amount of stocks divided by the number of
time-periods.

The upper- and lower bounds are constructed only to affect the first half of
the vector x, (δβi), since that is the only part where it is applicable. The
second part of x is, however, not constrained.

2.2.3 Choice of parameters

Mean-variance criterion:
Since there is not a unique value of γ representing a typical investor, the
parameter is varied over several values. The variation in end value of the
portfolio and variance, as well as the trading behaviour, are discussed below
for different values of γ. If γ were to be zero, the variance would not be
considered and it would simply be a LP-problem as in Equation (2.5) above.

Transaction cost, λ:
λ, representing the transaction costs of trading, is another variable that
impacts the resulting trading pattern. It is given several values in order to
compare the resulting trading pattern.
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Initial values:
The initial allocation of the portfolio will be chosen the same as the static
one. The reason is that they should be evaluated according to the same
starting point. If the algorithm were to start at a ”less favourable” allocation
it will be at a disadvantage due to the limit set on the amount traded.

Number of stocks, β:
β is not an integer. This is not a problem since the amount of money initially
invested is reasonable. Large enough initial investment makes the continous
aproximation of an integer number of stocks.

Risk-free rate, rf :
Because of the nature of the current economy, the decision was made not to
include the risk-free rate in the bank account.

2.3 Sensitivity analysis

To test the performance of the trading algorithm a sensitivity analysis is
conducted. Parameters are varied and several scenarios are created. First
the more obvious tests are performed to ensure the reliability and rationality
of the algorithm, then interesting scenarios are evaluated. During the sen-
sitivity analysis three portfolios will be compared, the static portfolio, the
mean-variance constrained MVC portfolio and the non-MVC portfolio. The
static portfolio has a set allocation ratio between the stock and the bank ac-
count, meaning there is no optimization carried out. The MVC portfolio is
constrained by all means possible and it is represented by a QP-problem as
described above. The non-MVC portfolio is the same as the MVC portfolio
but with the risk aversion paremeter, γ = 0, and is thereby not constrained
by the mean-variance criterion. The sensitivity analysis is conducted to
see how the MVC-portfolio behaves and performs compared to the other
portfolios, when parameters are changed.

2.3.1 Varying parameters

By varying different paramaters which have a constraining effect they will
regulate the algorithm in different ways. For example, if a low transaction
cost is set, but a high value for the risk aversion parameter, the transaction
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costs might have little effect on the MVC portfolio - because it is already
constrained. By varying the parameters simultaneously infliction points
might be reached where one constraint takes over from another.

By taking the parameters to extremes other infliction points should be no-
ticeable. The portfolio values of the three portfolios should converge to each
other once the constraining parameters are increased enough.

Risk aversion parameter, γ:
The risk aversion parameter, γ, defines the difference between the MVC
portfolio and the non-MVC portfolio. By increasing γ the portfolio will
be constrained until it reaches the infliction point of not trading at all - it
will converge to the static portfolio. By decreasing γ towards 0 the MVC
portfolio will converge towards the non-MVC portfolio.

Transaction cost, λ:
An obvious test is varying the transaction cost. This is done as to see that
the investor would trade less, or less often, when there is an increase in
transaction cost.

There should be an infliction point where the transaction cost is set high
enough to impose the algorithm not to trade at all. The reason is that this
parameter would constrain the algorithm not to gain enough by buying or
selling. This will result in the evolutions of the three portfolios to be the
same, i.e. static.

Number of periods ahead, k:
The intermediate mean-variance criterion explained above should be less
effective when k is small. When k is large, however, the trading behaviour
should be more stable over time.

By increasing the horizon, k, the determination of economic parameters will
be even more important. This means that the strategy for generating stock
values will be increasingly important.

Amount allowed to be traded:
As mentioned above the amount allowed to be traded is set not to use more
resources than available. Regardless, it would be interesting to see how the
trading strategies change when the amount allowed to be traded is increased
or decreased.
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2.3.2 Scenarios

By changing the parameters that represent the state and behaviour of the
economy, i.e. the investor’s view of the economy, scenarios are created.
The parameters representing the economy are the ones used to generate the
expected values of the stock, i.e. the parameters in the regime-switching
Markov chain explained above. These parameters will simulate interesting
scenarios when changed together.

The state of the economy, pgood & pbad:
By varying the state parameters the initial evolution of the stock should
change.

The Markov switching parameters, qii:
By varying the Markov switching parameters the tendency to switch between
the states of the economy changes. Because the economy converges to the
stationary time-series of a growing economy a reasonable scenario would be
that the economy has the highest probability of being in a bull market. It
would, however, be interesting to see the resulting trading behaviour when
we are in a bear market, or a crash, as well.

The behaviour of the economy, µ & σ:
By varying the behaviour parameters the volatility and the expected return
in the different states are changed. Changed behaviour parameters should
result in faster or slower change of the values of the stock.
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Chapter 3

Results

This chapter provides numerical results for the sensitivity analysis of the
optimal portfolio. Portfolio performance as well as trading behaviour of
the algorithm are presented in this chapter. The evolution of the portfolio
values, β-values as well as resulting variances are presented in plots below.

The results will be presented in a plot divided into four graphs. The top
left graph shows the evolution of the three portfolios’ values, the top right
the evolution of mean value of the stock and the bottom two shows the
evolution of the two βs, i.e. the number of owned stocks in the two non-static
portfolios. Here ROE (top left corner) refers to return on equity defined as

ROE = End value of portfolio - Starting value
Starting value

and represent a measure of performance of the portfolio. The variance above
the plot in the left bottom corner refers to the variance of the portfolio value.

The reader should keep in mind that the trading strategy seen in the graphs
below are set day one for the following k periods. Day two another prediction
and optimization should be carried out leading to a slightly different trading
strategy for the k periods following day two.
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3.1 Varying parameters

In this section parameters are varied as to show how the trading behaviour
changes when regulated differently.

3.1.1 Risk aversion parameter, γ

Below are three figures, Figure 3.1, Figure 3.2 and Figure 3.3, showing the
resulting graphs for three values of γ. Seen in the figures below are clear
changes in the MVC portfolio and the difference between it and the other
two portfolios. As expected when γ is very low the MVC portfolio value is
quite similar to the non-MVC one, and when increased it converges to the
static portfolio value. The amount of stocks (β) at the maximum peak of the
MVC portfolio is, however, still less than of the non-MVC portfolio. When
γ is increased the amount being traded in the MVC portfolio is significantly
more constrained. This, in turn, results in a lower end value of the portfolio.

Another clear change when γ is varied is the change in portfolio variance
- the purpose of the mean-variance criterion. Notice that even though the
end variance is constrained, the trading frequency is quite high.
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Figure 3.1: The resulting graphs with the risk aversion parameter, γ, in
focus. Here the risk aversion is very low: γ = 0.00005.
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Figure 3.2: The resulting graphs with the risk aversion parameter, γ, in
focus. Here γ = 0.0005.
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Figure 3.3: The resulting graphs with the risk aversion parameter, γ, in
focus. Here γ = 0.005.

3.1.2 Transaction cost, λ

Below are three figures, Figure 3.4, Figure 3.5 and Figure 3.6, showing the
resulting graphs for three values of λ. Seen below are the changes in trading
behaviour of the MVC portfolio and the non-MVC portfolio, due to changes
in the transaction cost. As expected, when the transaction cost is low,
significantly more and larger trades are carried out, especially noticeable for
the MVC portfolio.

An interesting result is the trading behaviour of the MVC-portfolio in Figure
3.6 below. Notice that the trading frequency is significantly constrained
when the transaction cost is high enough, here λ is 0.45%.
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Figure 3.4: The resulting graphs with the transaction cost, λ, in focus. Here
λ = 0.000045.
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Figure 3.5: The resulting graphs with the transaction cost, λ, in focus. Here
λ = 0.00045.
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Figure 3.6: The resulting graphs with the transaction cost, λ, in focus. Here
λ = 0.0045.

3.1.3 Amount allowed to be traded

Below are three figures, Figure 3.7, Figure 3.8 and Figure 3.9, showing the
resulting graphs for three values of the amount allowed to be traded. As
mentioned above the allocation constraint is set not to use more resources
than available, i.e. the reliability of this algorithm is violated when it is
changed. However, the results are interesting and are therefore presented
anyway.

As expected when the amount is increased the gap between the portfolio
values are increased. An interesting fact is that the maximum amount of
stocks in the MVC portfolio increases when the amount allowed is increased.
Notice that in Figure 3.9 the amount of stocks owned by the non-MVC
portfolio are above the amount of available stocks.

32



0 50 100 150

Periods ahead, k

1998

2000

2002

2004

2006

2008

2010

2012

P
o
rt

fo
lio

 V
a
lu

e

 ROE
MVC

=0.51%, ROE
no-MVC

=0.51%, ROE
Static

=0.49%

MVC
No MVC
Static

0 50 100 150

Time steps

14

14.2

14.4

14.6

14.8

15

N
u
m

b
e
r 

o
f 
s
to

c
k
s
, 
β

Variance
MVC

 =12.5, Variance
no-MVC

 =12.7

β
MVC

β
no MVC

0 50 100 150

Periods ahead, k

14

14.1

14.2

14.3

14.4

14.5

14.6

N
u
m

b
e
r 

o
f 
s
to

c
k
s
, 
β

β
MVC

 - values. γ=0.000500 λ=0.000450

0 50 100 150

Periods ahead, k

99.8

100

100.2

100.4

100.6

100.8

S
to

c
k
 v

a
lu

e
s

p
good

 =0.6 , p
bad

 =0.4

S

Figure 3.7: The resulting graphs with the amount allowed to be traded in
focus. Here the amount available are 5 stocks less than originally.
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Figure 3.8: The resulting graphs with the amount allowed to be traded in
focus. Here the amount available are 20 as originally.
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Figure 3.9: The resulting graphs with the amount allowed to be traded in
focus. Here the amount available are 5 additional stocks than originally.

3.2 Scenarios

In this section several scenarios have been constructed as to show different
reactions due to the properties of an economy. Initially a good, a middle
and a bad scenario are presented. Graphs representing the evolution of the
stock as well as the behaviour of the trading algorithm are presented for
every scenario below.

Secondly some interesting scenarios are presented as to show the behaviour
of the trading algorithm in different unique economic environments.

3.2.1 Good scenario

In Figure 3.10 and Figure 3.11 below the evolution of the stock as well as
the resulting behaviour of the trading algorithm are presented. Both the
MVC and the non-MVC portfolios behave as expected, increasing its stock
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exposure as much as possible. The MVC portfolio has lower share allocated
in the stock due to the MVC criterion.
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Figure 3.10: The evolution of the stock in a good economic state. A so
called bull market.
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Figure 3.11: The resulting graphs showing the resulting portfolio of a good
economic state. A so called bull market.

3.2.2 Middle scenario

In Figure 3.12 and Figure 3.13 below the evolution of the stock as well as
the resulting behaviour of the trading algorithm are presented. Here the
MVC and non-MVC portfolios barely outperform the static one. Notice the
behaviour of the non-MVC portfolio, it increasies it’s position in the stock
even though there is no clear trend upwards. This is due to the end value
of the stock being higher than the starting value.
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Figure 3.12: The evolution of the stock in a normal economic state.
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Figure 3.13: The resulting graphs showing the resulting portfolio of a normal
economic state.

3.2.3 Bad scenario

In Figure 3.14 and Figure 3.15 below the evolution of the stock as well
as the resulting behaviour of the trading algorithm are presented. The
non-MVC portfolio is clearly outperforming the other two. Notice that the
MVC portfolio has a higher final variance than the non-MVC one. This
is due to the sharp downward evolution of the stock which the non-MVC
portfolio eliminates exposure to, while the MVC portfolio is bound by the
intermediate mean-variance criterion.
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Figure 3.14: The evolution of the stock in a bad economic state. A so called
bear market.
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Figure 3.15: The resulting graphs showing the resulting portfolio of a bad
economic state. A so called bear market.

3.2.4 Shifting scenario

In Figure 3.16 and Figure 3.17 below the resulting behaviour of the trading
algorithm is presented when the market starts falling as in a bear market
then bottoms and turns into a bull market. The resulting behaviours of the
algorithms are very interesting. They both react rationally by first selling as
much as possible and then buying it back. As usual the non-MVC portfolio’s
behaviour is more significant due to the mean-variance criterion.
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Figure 3.16: The evolution of the stock in a shifting economic state.
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Figure 3.17: The resulting graphs showing the resulting portfolio of a shifting
economic state.

3.2.5 Technical scenario: Questionable trading behaviour

Due to the limitations of a quadratic goal function and linear constraints
in the optimization, the algorithm is not perfect. An example where the
trading behaviour is questionable is the following presented in Figure 3.18
and Figure 3.19 below.

Notice that the non-MVC portfolio reacts by buying as much as possible even
though the stock is initially falling. The MVC-portfolio, however, seems to
follow a more reasonable trading pattern. An important fact to notice is
that the non-MVC still outperforms the two other portfolios.
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Figure 3.18: The evolution of the stock in a questionable scenario.
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Figure 3.19: The resulting portfolio showing a questionable trading be-
haviour.
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3.2.6 Technical scenario: Simulated stockvalues

In a perfect world an infinite amount of sample values would be gener-
ated and the mean value would be highly reliable. However, due to limited
computer power only up to 100 000 simulations are reasonable to generate.
During this sensitivity analysis 1000 samples have been used. An illustration
of the changes due to variations in number of samples is presented in Fig-
ure 3.20, Figure 3.21 and Figure 3.22 below, representing 1000, 10 000 and
100 000 simulations respectively. Both the evolution of the stock as well as
the resulting trading behaviour experience a ”smoothing” effect when more
samples are generated.

Notice especially the change in trading behaviour of the MVC portfolio.
When the number of simulations increase, the stock values are more reliable
and the resulting frequency of daily trading is decreased leading to reduced
variance of the portfolio value. Notice that the constraining effect of high
amount of simulations is similar to that of higher transaction cost.

In Figure 3.23 & Figure 3.24 as well as Figure 3.25 & Figure 3.26 we see
the effect of changing the parameters γ and λ using 100 000 simulations. As
expected the changing trading behaviour is the same as when the parameters
are varied above, when 1000 simulations are used. When the parameters are
increased trades are carried out less often and in smaller sizes. Notice in
Figure 3.26 where the trading behaviour of the MVC-portfolio is as close to
constant as possible due to increased transaction costs.
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Figure 3.20: The resulting trading when 1000 simulations are used to cal-
culate the expected value of the stock.
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Figure 3.21: The resulting trading when 10 000 simulations are used to
calculate the expected value of the stock.
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Figure 3.22: The resulting trading when 100 000 simulations are used to
calculate the expected value of the stock.
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Figure 3.23: The resulting trading when 100 000 simulations are used to
calculate the expected value of the stock. Here the risk aversion paremeter
is low, γ = 0.00005.
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Figure 3.24: The resulting trading when 100 000 simulations are used to
calculate the expected value of the stock. Here the risk aversion paremeter
is high, γ = 0.005.
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Figure 3.25: The resulting trading when 100 000 simulations are used to
calculate the expected value of the stock. Here the transaction costs are
low, λ = 0.000045.
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Figure 3.26: The resulting trading when 100 000 simulations are used to
calculate the expected value of the stock. Here the transaction costs are
high, λ = 0.0045.

3.2.7 1 year scenario

The figure seen below, Figure 3.27, presents the trading behavior of the
algorithm 1 year ahead of time. Due to the long time horizon the MVC
portfolio trades close to the initial amount of stocks. The reason is simply
the fact that the end variance is constrained.
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Figure 3.27: The behaviour of the algorithm 1 year (365 days) ahead.
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Chapter 4

Discussion

A desirable behaviour of the trading algorithm would be one where few
reallocations are made during the time horizon, i.e. the trading frequency
is low. This is due to the uncertainty involved, which is increased with
the trading frequency. The uncertainty mentioned is whether the algorithm
trades because of the actual stock movement or because of the limitations of
the HMM. In most of the results presented above non-desirable high trading
frequencies are present. However, these results lead to different insights and
test other functions in the algorithm. After all the main product of this
thesis is the behaviour of the algorithm. Contributing results and how to
achieve desirable results are discussed below.

In the following section the limitations of this thesis are presented and dis-
cussed. Later the results presented above are discussed and future studies
are proposed. At last a short summary of the main conclusions is presented.

4.1 Limitations

This thesis would be significantly improved if real-time data applications
were available. The parameter switching stock value generation could then
be implemented with more reliable parameters. By analyzing real-time data
the algorithm could be tested in a real environment. An interesting result
would be to see whether the algorithm would still outperform the static
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portfolio.

4.1.1 Allocation constraint

A desirable allocation constraint would be to set the share of wealth allo-
cated in stocks between two values, e.g. minimum 10% and maximum 90%.
However, this would make the constraint dependant on the stock values and
the number of stocks, β. Due to the fact that our goal function is dependant
on δβ rather than β it is complicated to construct the constraint as linear,
which it needs to be to fit the LP- or QP-problem presented above. If ap-
plicable non-linear constraints can be seen as more general than the linear
ones. Implementation of non-linear constraints could result in a model that
is applicable in a more practical environment.

Ignoring the problems related to making the constraint non-linear, there
is another trade off in this case. If we were to switch from δβ to β the
allocation constraint would be more desirable, but the goal function would
change as well. This would mean that implementing the transaction cost
would not be possible in the way it is done in this thesis. This creates a
trade-off where this thesis emphasize the consideration of transaction costs,
rather than a different allocation constraint.

The formulation of the allocation constraint can also be motivated by that it
is unusual that the share of wealth allocated in the stock is a hard constraint.
A fund are more probable to have a vision of a certain maximum or minimum
share invested in the stock. If they were to exceed these limits they would
probably try to rebalance within a few days, rather than strictly every day.
They would not want a ”buy-action” or ”sell-action” to launch just as the
limit is crossed.

4.1.2 Market liquidity

A phenomenon not implicitly incorporated in this thesis, but important to
keep in mind, is market liquidity. The market liquidity is the availability of
buyers and sellers of a stock. If an investor sells large enough amounts of
a stock the seller will need to find several buyers willing to buy at different
prices. Another example of an illiquid market is the case when an investor
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is unable to sell a stock because there is no buyer available. This is called
the cost of liquidation, meaning that if a large amount of stocks is to be sold
at an illiquid market the price will decrease. Further explanation on this
subject is presented in [McNeil et al., 2005]. The stock used in this thesis is
simply assumed to be of a sufficiently traded stock on a liquid market. By
implementing the constraint of maximum amount of stocks allowed to be
traded this thesis reduces some effects of the market liquidity. However, a
large enough initial amount of wealth should still imply a cost of liquidation.
Implementation of a cost of liquidiation is left for further investigation. The
results are imagined to be the same as an exponential or quadratic term
added to the transaction cost.

4.2 Varying parameters

4.2.1 Risk aversion parameter, γ

One could argue that the risktaking investor, represented by the non-MVC
portfolio, buys in the early time periods to have maximum exposure in the
long term because the overall trend is upwards.

An interesting discussion point is the fact that the MVC-portfolio trades a
lot more both up and down. This is due to the MVC-criterion; because it
is bound by the end variance not being too large it is profitable to buy and
sell during the ups and downs of the stock. It is, however, important to
keep in mind that the transaction cost, λ, is here quite low resulting in a
high trading frequency, which is an undesirable result. This can be seen in
Figure 3.3 above.

4.2.2 Transaction cost, λ

An interesting result is the fact that the behaviour of the non-MVC portfolio
barely changes until the transaction cost is very high. In Figure 3.6 a desir-
able constraining effect can be seen. Here the transaction costs are 0.45%
which can be seen as unreasonable. However, this does not matter since
the point is only to constrain the algorithm to achieve a desirable trading
behaviour. Without a doubt high transaction cost has the best constraining
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effect among the parameters of this model. However, in this case the trans-
action cost is so high that the non-MVC portfolio barely ends up with the
highest portfolio value.

4.2.3 Amount allowed to be traded

The amount allowed to be traded has a clear constraining effect on the
behaviour of the algorithm. This is shown in Figure 3.7, Figure 3.8 and
Figure 3.9, as well as in Figure 3.19 above. This is an unfortunate result of
the trade-off in Section 4.1.1 above.

The explanation behind that the maximum amount of stocks owned by the
MVC portfolio increases is due to the fact that the portfolio has time to sell
back shares. This can be done without increasing the end variance above
the trade-off limit the mean-variance criterion creates.

4.3 Scenarios

4.3.1 Bad scenario

This scenario could be seen as to represent when the economy is facing a
crash. Imagine a scenario where the investor has been through a bull market
allocating 70% in the stock, then a crash hits. As expected the algorithm
will sell as much as possible as fast as possible - a desirable result.

A limitation here is the fact that the mean-variance constrained portfolio has
higher variance than the non constrained one when the market is in a crash
or a downward trend. This could be motivated as a precaution implemented
in the MVC-portfolio. The MVC constrains the end variance of δβS since
that is the goal function implemented in Equation (2.10) above, leading to
the algorithm being constructed not to make drastic moves. This result is,
however, not an undesirable result because of the constraining effects on
trading of the MVC-portfolio.
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4.3.2 Shifting scenario

As seen in Figure 3.17 above the resulting trading behaviour is reasonable.
Firstly the non-MVC portfolio sells as much as possible then buys as much
possible, while the MVC portfolio is restricted. The MVC portfolio then
prioritizes to buy and sell small shares, during the selling and buying trend,
to maximize the short-term portfolio values.

4.3.3 Technical scenario: Questionable trading behaviour

The trading behaviour shown by the non-MVC portfolio in Figure 3.19 above
can be explained by the goal function representation. The most weight is
allocated to maximizing the end value of the portfolio. Due to transaction
costs and end value focus the non-MVC portfolio will maximize it’s amount
of stocks in the end.

Another reason is the effect of the maximum trade constraint. Because of
it the trading algorithm does not have time to sell all stocks and then buy
them back. The algorithm then simply prioritizes having a lot of stocks in
the end.

4.3.4 Technical scenario: Simulated stock values

Even though the trading behaviour change the strategy and the reactions do
not. The algorithm simply reacts differently when the evolution of the stock
is less volatile. Important to point out is that the high trading frequency in
Figure 3.20 might be a result of the limitations of the Markov chain. The
generated stock values are simply not as reliable as in the case of Figure
3.21 and Figure 3.22.

As can be seen in Figure 3.23, Figure 3.24, Figure 3.25 and Figure 3.26 the
reactions to varying parameters are as expected and the same as in Section
3.1 above. This shows that the only change when increasing number of
simulations is the reliability of the mean value of the stock. However, as
mentioned above the point is to regulate the algorithm to react as desirable
as possible. By increasing the simulations the trading behaviour converge
toward less frequency - which is desirable. A significantly desirable result
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is seen in Figure 3.26 where the number of simulations are high and the
transaction costs are high - leading to an almost constant allocation of the
MVC-portfolio.

As mentioned above an optimal amount of generated simulations would be
infinity, but that is not possible. In a real application this algorithm would be
used with significantly more simulations using a faster computer, resulting
in a better model. However, as seen above a similar result can be achieved
by increasing the transaction costs - constraining the algorithm to desirable
low frequency trading. One might argue that the only way to constrain the
algorithm enough to achieve a desirable result is to set unreasonably high
transaction costs.

4.4 Future Studies

This section proposes future works which can build upon this thesis. This
includes e.g. more advanced tests, theories outside the scope of this thesis
or simply changes to assumptions made in this thesis.

4.4.1 Risk management

An arguably even better risk management application might be to imple-
ment a Value-at-Risk (VaR) constraint. It is widely adopted in the finance
industries and describes the maximum losses a portfolio could suffer at a
certain probability level, under distributional assumptions. A method us-
ing VaR as a constraint is presented in [Yiu et al., 2010]. They introduce a
Maximum Value-at-Risk (MVaR) constraint and argue that the traditional
log-normal variance model can not catch the extreme movements of the
stock. They, however, consider a dynamic programming approach and con-
sumption as well as investment as their optimization problem. This makes
their approach outside of the scope of this thesis where quadratic- and linear
programming problems are considered.
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4.4.2 Several assets

An interesting development of this thesis would be to implement several risky
assets in the mean-variance portfolio optimization problem described above.
This is carried out in e.g. [Costa and Araujo, 2008], [Costa and Nabholz, 2007]
and [Li and Ng, 2000]. This approach would be a more realistic scenario
than in my case and would result in a better portfolio mix. However, it
might be less illustrative as to the behaviour of the trading algorithm. It
would simply result in more plots of βs with different evolutions depending
on that stock’s evolution.

Other complications would arise if several assets were to be implemented.
The covariance-matrix would have to represent the covariances between
all assets as well as between the asset values themselves, resulting in a
(k + n)×(k + n) dimensional matrix. When predicting the stock price val-
ues several periods ahead, multivariate correlations between the inputs (old
stock price values) would need to be analysed. The values of β would also
have to be represented by a matrix instead of a vector.

4.4.3 Short selling

By incorporating short selling in the model an even more realistic model
could be created. This is carried out in e.g. [Dombrovskii and Obyedko, 2015].
However, this should only give a result as if there were more resources avail-
able to the investor. The behaviour of the trading algorithm would thereby
be the same as in the model where short selling is not allowed.

4.4.4 Risk-free rate

In the case of this thesis the risk-free rate is, as mentioned above, set to be 0.
To evaluate this algorithm in a more academic environment a risk-free bank
account with a small interest rate could be incorporated. By varying the
risk-free rate of the bank account interesting results might have appeared.
This should in turn lead to the stock being more or less desirable. The result
would be an algorithm allocating more in the bank account instead of in the
risky asset.
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4.4.5 Goal function

The goal function used in this thesis could obviously be changed in several
ways. Depending on the investor’s preferences different changes could be
made. The possible changes explained below is not carried out in this thesis
because the focus is elsewhere; this thesis assumes knowledge of the stocks
up to time t + k and wants to maximize the end value of the portfolio and
the intermediate excess returns.

One interesting test would be to weight the different stock values higher
when they are closer to current time, or equivalently adding a punishment
factor increasing with time. This means that the investor would rely more
on values predicted close to today. This should result in higher frequency in
initial trades and lower frequency further ahead. How this can be reasonably
implemented is left for further studies on the subject.

Another change could be to maximize all end values after every time period.
This would mean that the goal is to maximize the portfolio value every day
instead of the end value. Alternatively the goal function could be changed
as to maximize only the excess returns every day. These two approaches
should have a similar result as they maximize value every day, leading to
the appearance of the undesirable result of high trading frequency.

4.5 Conclusions

In this thesis an alternative approach to algorithmic trading by portfolio
optimization is proposed. The optimization is carried out using quadratic
programming principles subject to an intermediate mean-variance criterion,
transaction costs and restrictions on trading amounts. The main product is
the trading algorithm and the resulting behaviour in different scenarios. In
every case the end value of the MVC portfolio is equal or higher than the
static portfolio. The trading behaviour of the algorithm shows rationality
and reacts as expected when constraining parameters are varied as well as
in different scenarios. Even though several results show undesirable high
trading frequencies, ways to regulate that are found. When transaction
costs and number of simulations are increased the trading behaviour shows
a desirable result of less frequency. The model constructed in this thesis
could be applied as a supporting tool to recognize different states of the
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economy and then automatically reallocate resources to maximize portfolio
value. With real-time data and unlimited computer power an even more
refined model could be constructed. The trading strategy could then be
updated after every time period, using e.g. model predictive control, leading
to updated long term trading strategies.
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