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Abstract 

Assessing the probability of rare and extreme events is an important issue in the risk 

management of financial portfolios. Extreme value theory provides the solid fundamentals 

needed for the statistical modelling of such events and the computation of extreme risk 

measures. The focus of the paper is on the use of the peak over threshold method under 

extreme value theory to compute right tail risk measures using Value at Risk and Expected 

Shortfall and to understand how models perform in different economic situations by back-

testing, applying it to the S&P 500 Index and one of the Index - Ford Motor Company. Both 

unconditional and conditional GARCH(1,1) models with zero or non-zero parametric 𝜉𝜉 are 

tested during different financial economical periods (2007-2011). Three different confidence 

levels with different thresholds are applied to two distributions. All models are evaluated by 

back-testing procedures. Extreme high confidence level or conditional models improve the 

results, thus conclude that the POT method does better at a higher confidence level and 

market volatility capturing is important in financial risk measurement. 

 

Keywords: Extreme Value Theory, Peak Over Threshold, Value at Risk, Expected Shortfall, 

Back-testing, GARCH(1,1) 
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1 Introduction  

It has been eight years since last global financial crisis and about twenty years since last Asia 

financial crisis. It is interesting to know: “If things go wrong again, how wrong can they go?” 

The problem is then how to model the rare phenomena that lie outside the range of available 

observations. Extreme value theory (EVT) provides a robust theoretical foundation on which 

we can build statistical models describing extreme events and absolutely it has been a well-

founded methodology since an interesting discussion about the potential of extreme value 

theory in risk management in Diebold et al. (1998). 

Extreme value theory is the term used to describe the science of estimating the tails of a 

distribution. EVT can be used to improve Value at Risk (VaR) and Expected Shortfall (ES) 

estimates and to help in situations where analysts want to estimate VaR with a very high 

confidence level. It is a way of smoothing and extrapolating the tails of an empirical 

distribution. 

The Generalized Pareto distribution (GPD) is the key distributions of EVT. The idea 

underlying EVT is to model the extreme outcomes rather than all outcomes because it is 

exactly these large losses that are relevant for estimating VaR and ES. However, the Peak 

Over Threshold (POT) has become the preferred extreme value approach in finance. By using 

all losses in a sample larger than some pre-specified threshold value, POT solves the problem 

of information loss that happens in traditional EVT. 

This paper focus on the use of the peak over threshold method to compute the right tail risk 

measures using VaR and ES at different confidence levels and attempts to understand which 

model perform better during different economic situations by comparing the back-testing 

results using Kupiec tests and the 2nd method proposed by Acerbi and Szekely (2015) 

respectively. Both unconditional and conditional GARCH(1,1) models are constructed. 

Furthermore, different threshold 𝑢𝑢 is tested instead of using the rule of thumb to set 

𝑢𝑢 approximately equal to the 95𝑡𝑡ℎ percentile of the empirical distribution, thus in order to 
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know how the choice of 𝑢𝑢 will impact the models. As a limitation, only right tail is considered 

in the paper. 

According to my research and application results, models perform better at high confidence 

levels - 99% or 99.9% and the estimation error is larger for ES than for VaR when fat-tailed 

distributions are used. The GARCH(1,1) models improve the test results, especially during 

financial crisis periods when there are more fluctuation log-returns. Moreover, the threshold 𝑢𝑢 

does impact on the results, but not significant. 

The paper continues as follows: Section 2 presents the definitions of the risk measures and 

empirical methods that applied in this paper. Section 3 introduces the data selection and the 

methodology of testing models. In Section 4, a practical application result is presented where 

data and models are analyzed and compared. Final, the conclusion and limitation is presented 

in Section 5.  
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2 Theoretical Review 

2.1 Value at Risk 

Value at Risk (VaR) measures the size of an amount at risk of underlying assets or liabilities 

at a specific probability α and within a certain time period T. In other words, we are interested 

in making a statement of the following form: 

 “We are 𝛼𝛼 percent certain that we will not lose more than 𝑙𝑙 dollars in time 𝑇𝑇.” 

The variable 𝐿𝐿 is the VaR of the portfolio. It is a function of two parameters: the time horizon, 

𝑇𝑇, and the confidence level, 𝛼𝛼 percent. It is the loss level during a time period of length 𝑇𝑇 that 

we are 𝛼𝛼% certain will not be exceeded. The following equation defines value-at-risk (VaR) 

mathematically:  

VaRα(L) = min{t: Pr(L > l) ≤ 1 − α}  (1) 

When estimating VaR, a time horizon must be stated, in which market-related losses of the 

assets or liabilities might occur. This horizon depends on different circumstances; for instance 

the firm’s tolerance in relation to actual risks, how often the underlying assets or liabilities 

require risk evaluations, and how easily the firm can liquidate or hedge large losses. One day, 

one week or quarterly are time horizons that are commonly used when calculating VaR. 

Furthermore, a relevant confidence level, 𝛼𝛼 must be assumed for the underlying assets or 

liabilities, given the probability of a loss. The confidence interval is equivalent to (1 − 𝛼𝛼)%, 

where 𝛼𝛼 is the probability of the left tail of a risk distribution, the normal distribution as an 

example. More specific, 𝛼𝛼 is called the VaR level or the critical probability, meaning that 

VaR should not be exceeded more than 𝛼𝛼% of the time period. The two most common 

confidence levels are 1 % and 5 %, depending on the probability in which losses occur. 
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2.2 Expected Shortfall 

A coherent risk measure satisfies certain requirements, which we may think as “desirable” 

properties. Not all risk measures are coherent. The properties are: 

1. Monotonicity: If a portfolio produces a worse result than another portfolio for every 

state of the world, its risk measure should be greater. 

2. Translation Invariance: If an amount of cash 𝐾𝐾 is added to a portfolio, its risk measure 

should go down by 𝐾𝐾. 

3. Homogeneity: Changing the size of a portfolio by a factor 𝜆𝜆 while keeping the relative 

amounts of different items in the portfolio the same, should result in the risk measure 

being multiplied by 𝜆𝜆. 

4. Subadditivity: The risk measure for two portfolios after they have been merged should 

be no greater than the sum of their risk measures before they were merged. 

VaR satisfies the first three conditions, but does not always satisfy the fourth one. Expected 

Shortfall (ES) is always coherent and it can produce better incentives for traders than VaR. 

This is also sometimes referred to as conditional value at risk, conditional tail expectation, or 

expected tail loss. Whereas VaR asks the question: “How bad can things get?” ES asks: “If 

things do get bad, what is the expected loss?” ES, like VaR, is a function of two parameters: 𝑇𝑇 

(the time horizon) and 𝛼𝛼 (the confidence level). It is the expected loss during time 𝑇𝑇 

conditional on the loss being greater than the 𝛼𝛼𝑡𝑡ℎ percentile of the loss distribution and it is 

mathematically defined as the average value-at-risk for confidence levels larger than or equal 

to α: 

𝐸𝐸𝐸𝐸𝛼𝛼(𝐿𝐿) = 1
1−𝛼𝛼 ∫ 𝑉𝑉𝑉𝑉𝑉𝑉𝑥𝑥

1
𝛼𝛼 (𝐿𝐿)𝑑𝑑𝑑𝑑 (2) 

If the loss distribution is continuous, the definition of expected shortfall may be written in the 

somewhat more intuitive form: 

𝐸𝐸𝐸𝐸𝛼𝛼(𝐿𝐿) = 𝐸𝐸[𝐿𝐿: 𝐿𝐿 > 𝑉𝑉𝑉𝑉𝑉𝑉𝛼𝛼(𝐿𝐿)] (3) 
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2.3 Extreme Value Theory 

Extreme value theory is a way of smoothing the tails of the probability distribution of 

portfolio daily changes calculated using historical simulation. It leads to estimates of VaR and 

ES that reflect the whole shape of the tail of the distribution, not just the positions of a few 

losses in the tails. Extreme value theory can also be used to estimate VaR and ES when the 

confidence level is very high. For example, even if we have only 500 days of data, it could be 

used to come up with an estimate of VaR or ES for a confidence level of 99.9%. 

The Generalized Pareto distribution (GPD) is the key distributions of Extreme Value Theory 

(EVT). The idea underlying EVT is to model the extreme outcomes rather than all outcomes 

because it is exactly these large losses that are relevant for estimating 𝑉𝑉𝑎𝑎𝑅𝑅 and 𝐸𝐸𝑆𝑆. However, 

the Peak Over Threshold model (POT) has become the preferred extreme value approach in 

finance. By using all losses in a sample larger than some pre-specified threshold value, POT 

solves the problem of information loss that happens in traditional EVT. 

2.3.1 Peak Over Threshold Method 

The Peak Over Threshold method (POT) has become the preferred extreme value approach in 

finance. Largely, the reason is the obvious and quite serious drawback of the traditional EVT 

that we are likely to throw away information by the block maxima method. Indeed, if there is 

more than one large loss in a given block, only the largest loss in the block is used in the 

subsequent analysis. Information loss of this kind is very likely to happen with financial data 

due to the well-known stylized fact of volatility clustering. This problem is “solved” in the 

POT model of extreme losses by using all losses in a sample larger than some pre-specified 

threshold value. Instead, of course, the problem of choosing the threshold is introduced. The 

threshold should be chosen such that all losses above the threshold are “extreme losses” in the 

sense of the underlying extreme value theory. This clearly leads to some arbitrariness in the 

choice of the threshold value and also to a non-trivial trade-off; for the underlying theory to 

go through we want to choose a high threshold, for the estimation of the parameters in the 

distribution of the extreme losses we want many observations above the threshold (i.e., we 

want to choose a low threshold).  
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The theory underlying the POT approach aims at modeling excess losses 𝐿𝐿 − 𝑢𝑢, where 𝑢𝑢 is 

the predetermined threshold value. Assume that 𝐿𝐿 is a stochastic loss variable with cumulative 

density function 𝐹𝐹, i.e., 𝑃𝑃𝑃𝑃(𝐿𝐿 ≤  𝑙𝑙)  =  𝐹𝐹(𝑙𝑙). We may then define a cumulative density 

function 𝐹𝐹𝐹𝐹(𝑙𝑙) for excess losses 𝐿𝐿 − 𝑢𝑢 given that 𝐿𝐿 > 𝑢𝑢: 

𝐹𝐹𝑢𝑢(𝑙𝑙) = Pr(𝐿𝐿 − 𝑢𝑢 ≤ 𝑙𝑙|𝐿𝐿 > 𝑢𝑢) = Pr (𝐿𝐿 ≤ 𝑙𝑙 + 𝑢𝑢|𝐿𝐿 > 𝑢𝑢) (4) 

Defining the events 𝐴𝐴: 𝐿𝐿 ≤ 1 + 𝑢𝑢 and 𝐵𝐵: 𝐿𝐿 > 𝑢𝑢 we can use the definition of a conditional 

probability 𝑃𝑃𝑃𝑃(𝐴𝐴|𝐵𝐵) to obtain an explicit expression for 𝐹𝐹𝐹𝐹(𝑙𝑙) which is the basis for the POT 

extreme value theory: 

𝐹𝐹𝑢𝑢(𝑙𝑙) = Pr(𝐴𝐴|𝐵𝐵) = Pr(𝐴𝐴∩𝐵𝐵)
Pr (𝐵𝐵)

= 𝐹𝐹(𝑙𝑙+𝑢𝑢)−𝐹𝐹(𝑢𝑢)
1−𝐹𝐹(𝑢𝑢)

  (5) 

Before proceeding we note that: 

𝐹𝐹𝑢𝑢(𝑙𝑙 − 𝑢𝑢) = 𝐹𝐹(𝑙𝑙)−𝐹𝐹(𝑢𝑢)
1−𝐹𝐹(𝑢𝑢)

    (6) 

an equality that contains 𝐹𝐹(𝑙𝑙). This is useful since by definition 𝐹𝐹(𝑙𝑙)  =  𝑃𝑃𝑃𝑃(𝐿𝐿 ≤  𝑙𝑙) and 

therefore putting 𝑙𝑙 =  𝑉𝑉𝑉𝑉𝑉𝑉𝛼𝛼 and solving the equation 𝐹𝐹 (𝑉𝑉𝑉𝑉𝑉𝑉𝛼𝛼)  =  𝛼𝛼 gives us an estimate of 

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 (because 𝑉𝑉𝑉𝑉𝑉𝑉𝛼𝛼 is the α-quantile). From here on our focus is for this reason on the 

expression for 𝐹𝐹𝐹𝐹(𝑙𝑙 −  𝑢𝑢). Solving for 𝐹𝐹 (𝑙𝑙) we find: 

𝐹𝐹(𝑙𝑙) = [1 − 𝐹𝐹(𝑢𝑢)]𝐹𝐹𝑢𝑢(𝑙𝑙 − 𝑢𝑢) + 𝐹𝐹(𝑢𝑢)   (7) 

The idea as explained above is now to put 𝐹𝐹(𝑉𝑉𝑉𝑉𝑉𝑉𝛼𝛼)  =  𝛼𝛼 and solve for the α-quantile 𝑉𝑉𝑉𝑉𝑉𝑉𝛼𝛼. 

The problem is that 𝐹𝐹𝐹𝐹(𝑙𝑙 −  𝑢𝑢) is an unknown distribution and therefore this is not 

immediately possible. This is where the so called Pickands-Balkema-deHaan extreme value 

theorem comes in. Their theorem says that we can approximate 𝐹𝐹𝐹𝐹(𝑙𝑙 − 𝑢𝑢) with a generalized 

Pareto distribution provided that u is a high enough threshold. Using this approximation we 

can explicitly and directly solve the equation 𝐹𝐹(𝑉𝑉𝑉𝑉𝑉𝑉𝛼𝛼)  =  𝛼𝛼. 

The limit theorem by Pickands-Balkema-deHaan essentially states that under certain (quite 

weak) assumptions the limiting distribution of 𝐹𝐹𝐹𝐹(𝑙𝑙 −  𝑢𝑢) as 𝑢𝑢 →  ∞ is a generalized Pareto 

distribution (GPD): 
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𝐺𝐺(𝑙𝑙 − 𝑢𝑢) = �
1 − �1 + 𝜉𝜉 𝑙𝑙−𝑢𝑢

𝛽𝛽
�
−1𝜉𝜉 , 𝜉𝜉 ≠ 0

1 − exp �− 𝑙𝑙−𝑢𝑢
𝛽𝛽
� ,            𝜉𝜉 = 0

 (8) 

which from a practical perspective implies that 𝐹𝐹𝐹𝐹(𝑙𝑙 −  𝑢𝑢)  ≈  𝐺𝐺(𝑙𝑙 −  𝑢𝑢) for high values of 

the threshold 𝑢𝑢. The shape parameter 𝜉𝜉 governs the tail behavior of the GPD distribution 

(similar, but not identical to the degrees of freedom parameter in the Student t-distribution. It 

has the opposite interpretation; higher values of 𝜉𝜉 mean more probability in the right tail). The 

parameter 𝛽𝛽 is a scale parameter (similar, but not identical to volatility). Note that the limit 

theorem makes no specific statement about the underlying (parent) distribution for the losses;  

A natural estimate of the probability 𝐹𝐹(𝑢𝑢)  =  𝑃𝑃𝑃𝑃(𝐿𝐿 ≤  𝑢𝑢) is the proportion of loss 

observationsnot exceeding u, i.e., 𝐹𝐹(𝑢𝑢)  =  (𝑁𝑁 −  𝑁𝑁𝑢𝑢)/𝑁𝑁, where 𝑁𝑁𝑢𝑢 is the number of 

observations exceeding u and N is the total number of observations. Using this empirical 

probability as the estimate of 𝐹𝐹(𝑢𝑢), the POT estimate of 𝑉𝑉𝑉𝑉𝑉𝑉𝛼𝛼 becomes (𝜉𝜉 ≠  0 case) 

𝑉𝑉𝑉𝑉𝑉𝑉𝛼𝛼 = 𝑢𝑢 + 𝛽𝛽
𝜉𝜉
�� 1−𝛼𝛼
1−𝐹𝐹(𝑢𝑢)�

−𝜉𝜉
− 1�  (9) 

and again estimating 𝐹𝐹(𝑢𝑢) with (𝑁𝑁 − 𝑁𝑁𝑢𝑢)/𝑁𝑁, the POT estimate of VaRα becomes (𝜉𝜉 =  0 

case): 

𝑉𝑉𝑉𝑉𝑉𝑉𝛼𝛼 = 𝑢𝑢 − 𝛽𝛽𝛽𝛽𝛽𝛽 � 𝑁𝑁
𝑁𝑁𝑢𝑢

(1 − 𝛼𝛼)�  (10) 

The parameters 𝛽𝛽 and 𝜉𝜉 can be estimated by Maximum likelihood (ML). Assume that we 

have observations of m losses above some threshold 𝑢𝑢. As already mentioned, the choice of 

threshold involves a non-trivial trade-off between “large u” and “large m”. Denoting the 

threshold loss observations by 𝑙𝑙𝑢𝑢1 , 𝑙𝑙𝑢𝑢2 , . . ., 𝑙𝑙𝑢𝑢𝑚𝑚, we can derive the log-likelihood functions as (the 

log of) the derivative of 𝐺𝐺(𝑙𝑙 − 𝑢𝑢); denote this derivative 𝑓𝑓(𝑙𝑙). The probability density 

functions for the GPD distributions are therefore: 

𝑓𝑓(𝑙𝑙) = 1
𝛽𝛽
�1 + 𝜉𝜉 𝑙𝑙−𝑢𝑢

𝛽𝛽
�
−�1+1𝜉𝜉�  (11) 

𝑓𝑓(𝑙𝑙) = 1
𝛽𝛽
𝑒𝑒𝑒𝑒𝑒𝑒 �− 𝑙𝑙−𝑢𝑢

𝛽𝛽
�   (12) 
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Taking logs of the respective probability density functions and summing over the m 

observations 𝑙𝑙𝑢𝑢1 , 𝑙𝑙𝑢𝑢2 , . . ., 𝑙𝑙𝑢𝑢𝑚𝑚, it follows that the corresponding log-likelihood functions are: 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝛽𝛽, 𝜉𝜉) = −𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − (1 + 1
𝜉𝜉
)∑ 𝑙𝑙𝑙𝑙 �1 + 𝜉𝜉 𝑙𝑙𝑢𝑢

𝑖𝑖 −𝑢𝑢
𝛽𝛽
�𝑚𝑚

𝑖𝑖=1    (13) 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝛽𝛽) = −𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 1
𝛽𝛽
∑ �𝑙𝑙𝑢𝑢𝑖𝑖 − 𝑢𝑢�𝑚𝑚
𝑖𝑖=1     (14) 

Maximizing the log-likelihood functions with a numerical maximizing algorithm (such as the 

Solver in Excel) with respect to the parameters, we obtain the ML estimates of the parameters 

𝛽𝛽 𝑎𝑎𝑎𝑎𝑎𝑎 𝜉𝜉; 

For both 𝜉𝜉 ≠  0 𝑎𝑎𝑎𝑎𝑎𝑎 𝜉𝜉 =  0, an analytical expression for 𝐸𝐸𝐸𝐸𝛼𝛼 can be derived using the 

definition of ES and the closed form expression for VaR derived: 

𝐸𝐸𝐸𝐸𝛼𝛼 = ∫ �𝑢𝑢 + 𝛽𝛽
𝜉𝜉
�� 𝑁𝑁

𝑁𝑁𝑢𝑢
(1 − 𝑥𝑥)�

−𝜉𝜉

− 1��1
𝛼𝛼 𝑑𝑑𝑑𝑑 = 𝑉𝑉𝑉𝑉𝑉𝑉𝛼𝛼+𝛽𝛽−𝑢𝑢𝑢𝑢

1−𝜉𝜉
 𝑓𝑓𝑓𝑓𝑓𝑓 𝜉𝜉 ≠ 0 (15) 

𝐸𝐸𝐸𝐸𝛼𝛼 = ∫ �𝑢𝑢 − 𝛽𝛽𝛽𝛽𝛽𝛽 � 𝑁𝑁
𝑁𝑁𝑢𝑢

(1 − 𝑥𝑥)��1
𝛼𝛼 𝑑𝑑𝑑𝑑 = 𝑉𝑉𝑉𝑉𝑉𝑉𝛼𝛼 + 𝛽𝛽 𝑓𝑓𝑓𝑓𝑓𝑓 𝜉𝜉 = 0  (16) 

 

2.3.2 Conditional POT 

One suggestion in the literature to make the POT model more “dynamic” to take current 

market conditions into account is to instead apply the POT analysis to the standardized loss 

residuals and combine this with the usual GARCH/EWMA volatility models. Note however 

that often POT is used to estimate 𝑉𝑉𝑉𝑉𝑉𝑉𝛼𝛼 at (very) high confidence levels 𝛼𝛼, with 

corresponding tail-events happening perhaps only once every 5 or every 10 years. In that 

situation is not obvious that making the POT more responsive to short run market conditions 

is logically meaningful. The α-quantile of the GPD distribution of the standardized residuals, 

denoted 𝑞𝑞𝛼𝛼, can then be used to estimate 𝑉𝑉𝑉𝑉𝑉𝑉𝛼𝛼  according to the “hybrid method” (it involves 

the POT quantile 𝑞𝑞𝛼𝛼 but the usual volatility 𝜎𝜎𝑇𝑇+1): 

𝑉𝑉𝑉𝑉𝑉𝑉𝛼𝛼 = 𝜇𝜇 + 𝜎𝜎𝑇𝑇+1𝑞𝑞𝛼𝛼     (17) 
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where 𝜎𝜎𝑇𝑇+1 denotes the GARCH/EWMA volatility estimate one day out-of-sample (for the 

day we want to estimate 𝑉𝑉𝑉𝑉𝑉𝑉𝛼𝛼).  

The standardized residuals to which we should apply the POT analysis are defined by: 

𝜀𝜀𝑖𝑖∗ = 𝑙𝑙𝑖𝑖−𝑙𝑙̅

𝜎𝜎𝑖𝑖
, 𝑖𝑖 = 1,2, … ,𝑇𝑇    (18) 

where 𝑙𝑙 ̅ denotes the sample average of the observed losses 𝑙𝑙1, 𝑙𝑙2, … , 𝑙𝑙𝑇𝑇 ,. The α-quantiles for 

the distribution of standardized residuals based on the POT model are given by the 

expressions already derived in equation (9) and (10): 

𝑞𝑞𝛼𝛼 = 𝑢𝑢∗ − 𝛽𝛽∗𝑙𝑙𝑙𝑙 � 𝑁𝑁
𝑁𝑁𝑢𝑢∗

(1 − 𝛼𝛼)�  𝑊𝑊ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝜉𝜉∗ = 0     (19) 

𝑞𝑞𝛼𝛼 = 𝑢𝑢∗ + 𝛽𝛽∗

𝜉𝜉∗
�� 𝑁𝑁

𝑁𝑁𝑢𝑢
(1 − 𝛼𝛼)�

−𝜉𝜉∗

− 1�  𝑊𝑊ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝜉𝜉∗ ≠ 0    (20) 

where the star-notation indicates that these parameter values and the threshold value are GPD 

parameters when the POT approach is applied to the standardized residuals 𝜀𝜀1∗, 𝜀𝜀2∗, … , 𝜀𝜀𝑇𝑇∗ , (not 

to the original loss data 𝑙𝑙1, 𝑙𝑙2, … , 𝑙𝑙𝑇𝑇 ). The volatility estimate for the “next day” can as usual be 

calculated from the GARCH or EWMA model directly: 

𝜎𝜎𝑇𝑇+12 = 𝛾𝛾0 + 𝛾𝛾1𝜀𝜀𝑇𝑇2 + 𝛾𝛾2𝜎𝜎𝑇𝑇2 (GARCH)   (21) 

𝜎𝜎𝑇𝑇+12 = (1 − 𝜆𝜆)𝜀𝜀𝑇𝑇2 + 𝜆𝜆𝜎𝜎𝑇𝑇2 (EWMA)   (22) 

Volatility Modeling GARCH(1,1) 

Conditional forecasts incorporate the information available at each period of time and 

therefore are superior to unconditional forecasts. A common finding in empirical studies of 

financial markets is that the variance of the returns is not constant over time. Specifically, 

there are periods when volatility is relatively high, and periods when price movements are 

quite small. To capture this “volatility clustering” effect, one approach is to use the 

Generalized Autoregressive Conditionally Heteroscedastic model (GARCH) of Bollerslev 

(1986), in which the conditional variance depends on past values of the squared errors and on 

past conditional variances. Usually, it is found that a GARCH(1,1) model is sufficient to 

capture the volatility dynamics. (See equation 21) 
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2.4 Back-testing 

When a risk model has been constructed and presented, it should be statistically evaluated. 

One important feature in this context is back-testing, which is a quantitative method of 

determining whether the estimated results of a model are correct given the assumptions of the 

model. 

2.4.1 Back-testing VaR 

Kupiec (1995) considered statistical techniques that can be used to quantify the accuracy of 

the tail values of the distribution of losses. The Kupiec frequency test is the most fundamental 

test, stating that the actual number of 𝑉𝑉𝑎𝑎𝑅𝑅 violations, calls it 𝑥𝑥, is significantly different from 

the expected number of 𝑉𝑉𝑎𝑎𝑅𝑅 violations, which is (1 − 𝛼𝛼)𝑁𝑁, where 𝑁𝑁 is the total number of 

observations. 

A 𝑉𝑉𝑎𝑎𝑅𝑅 violation is said to occur if the observed loss exceeds our 𝑉𝑉𝑎𝑎𝑅𝑅 estimate for a given 

day. The actual number of violations (𝑥𝑥) is binomially distributed: 

Pr(𝑋𝑋 = 𝑥𝑥) = �𝑁𝑁𝑥𝑥�𝑝𝑝
𝑥𝑥(1− 𝑝𝑝)𝑁𝑁−𝑥𝑥 (23) 

Where 𝑝𝑝 = 1 − 𝛼𝛼 

The cumulative probabilities are then: 

Pr(𝑋𝑋 ≤ 𝑥𝑥) = ∑ �𝑁𝑁𝑖𝑖 �𝑝𝑝
𝑖𝑖(1 − 𝑝𝑝)𝑁𝑁−𝑖𝑖𝑥𝑥

𝑖𝑖=0  (24) 

If the actual frequency of violations deviates too much from the predicted frequency of 

violations, the model underlying the 𝑉𝑉𝑎𝑎𝑅𝑅 estimator is statistically rejected. 

To apply the exact Kupiec test based on the binomial distribution, we proceed as follows: 

1. Calculate the expected number of 𝑉𝑉𝑉𝑉𝑉𝑉𝛼𝛼violations under the assumption of a correct 

VaR-model, which is (1 −  𝛼𝛼)𝑁𝑁. 

2. Count the actual number of violations, which we call 𝑥𝑥, and assume that we observe 

𝑥𝑥 ≥  (1 −  𝛼𝛼)𝑁𝑁 violations. 
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3. Calculate the probability of observing 𝑋𝑋 ≥  𝑥𝑥 violations under the assumption that the 

underlying model is correct; this is 𝑃𝑃𝑃𝑃 (𝑋𝑋 ≥  𝑥𝑥) in the above notation. 

4. Compare the probability calculated with the statistical significance level of interest; a 

standard level for statistical tests is 5%. If the probability calculated is less than the 

significance level of interest, the underlying VaR-model is rejected, otherwise the 

underlying model is ”accepted” (or, rather, not rejected). 

Note that this is a one-sided test, i.e., we test if the actual frequency of violations 𝑥𝑥 is ”too 

large” compared to the expected frequency of violations (1 −  𝛼𝛼)𝑁𝑁, for the underlying model 

to be accepted. This version of the test is based on the assumption that we found 𝑥𝑥 ≥  (1 −

 𝛼𝛼)𝑁𝑁 in the sample. 

If we instead observe fewer than expected violations, i.e., 𝑥𝑥 ≤  (1 −  𝛼𝛼)𝑁𝑁, we turn the test 

around and instead test if the actual frequency of violations is “too low” compared to the 

expected frequency of violations. In this case we reformulate the steps above as:  

1. Calculate the expected number of 𝑉𝑉𝑉𝑉𝑉𝑉𝛼𝛼 violations under the assumption of a correct 

VaR-model, which is (1 −  𝛼𝛼)𝑁𝑁. 

2. Count the actual number of violations, which we call 𝑥𝑥, and assume that we observe 

𝑥𝑥 ≤  (1 −  𝛼𝛼)𝑁𝑁 violations. 

3. Calculate the probability of observing 𝑋𝑋 ≤  𝑥𝑥 violations under the assumption that the 

underlying model is correct; this is 𝑃𝑃𝑃𝑃 (𝑋𝑋 ≤  𝑥𝑥) in the above notation. 

4. Compare the probability calculated with the statistical significance level of interest. If 

the probability calculated is less than the significance level of interest, the underlying 

VaR-model is rejected, otherwise the underlying model is “accepted”. 

Finally, a two-sided test may be implemented. This involves the construction of a confidence 

interval for the observed frequency of violations. If the actual number of violation falls 

outside the confidence interval, the underlying VaR-model is rejected. This test is slightly 

more complicated, since by definition, the two-sided test has two rejection regions; it rejects 

the underlying VaR-model if we observe ”too few” violations or if we observe ”too many” 

violations. We could use the above formula for the cumulative binomial probability to find 

the lower bound 𝑥𝑥𝑙𝑙𝑙𝑙𝑙𝑙 and the upper bound 𝑥𝑥ℎ𝑖𝑖𝑖𝑖ℎ for the number of violations (by trial and 

error). These bounds of the confidence interval are defined by the requirement that there 

should be an equal probability of observing fewer than 𝑥𝑥𝑙𝑙𝑙𝑙𝑙𝑙 violations and observing more 
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than 𝑥𝑥ℎ𝑖𝑖𝑖𝑖ℎ violations (for example 2.5% probabilities in each tail, at the standard statistical 

level of 5%). 

2.4.2 Back-testing ES 

ES measures something else than VaR; as we know it measures the average loss beyond VaR 

or the expected loss beyond VaR. The area of Back-testing ES is both empirically and 

theoretically much less developed than the area of Back-testing VaR, and has only very 

recently started to attract more attention from researchers. Presumably this increased interest 

is triggered by the proposed changes in the Basel regulation; the so called Fundamental 

Review of the Trading Book (FRTB) suggests a switch from VaR to ES for measuring market 

risk. Acerbi and Szekely (2015) proposed three back-testing methods for expected shortfall. 

Amongst these three, the second method—test statistic 𝑍𝑍2, which is referred to as “Testing 𝐸𝐸𝑆𝑆 

Directly”, is considered to be the most applicable one because the other two tests require 

Monte Carlo simulation of the distribution of the test statistic to compute the 𝑝𝑝 − 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 and 

therefore need to store predictive distributions. Moreover, based on fixed significance 

thresholds: 𝑍𝑍2 can be treated as a traffic-light system, in which it shows a remarkable stability 

of the significance thresholds across a wide range of tail index values, which spans over all 

financially realistic cases. Besides, calculating 𝑍𝑍2 only requires recording two numbers per 

day: one is the estimated 𝐸𝐸𝐸𝐸𝛼𝛼,𝑡𝑡 and the other one is the magnitude 𝐿𝐿𝑡𝑡𝐼𝐼𝑡𝑡 of an 𝑉𝑉𝑉𝑉𝑉𝑉𝛼𝛼,𝑡𝑡 

exception, where 𝐿𝐿𝑡𝑡 is the loss at time 𝑡𝑡 and 𝐼𝐼𝑡𝑡  is an indicator variable: 

𝐼𝐼𝑡𝑡 = �1,        𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝐿𝐿𝑡𝑡 > 𝑉𝑉𝑉𝑉𝑉𝑉𝛼𝛼,𝑡𝑡
0,                       𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (25) 

In reality, it is sufficient to only record the size of the 𝛼𝛼−tail of the model distribution, since 

𝐿𝐿𝑡𝑡𝐼𝐼𝑡𝑡 can be simulated because of 𝐼𝐼𝑡𝑡~𝐵𝐵𝑒𝑒𝑟𝑟𝑛𝑛𝑜𝑜𝑢𝑢𝑙𝑙𝑙𝑙𝑖𝑖. 

Similar to the previous notations, the independent profit loss is denoted as 𝐿𝐿𝑡𝑡, the true but 

unknown distribution of profit losses is 𝐹𝐹𝑡𝑡, and the model distribution is represented by 𝑃𝑃𝑡𝑡. 

Assume that the losses follow a continuous distribution. Then, the definition of 𝐸𝐸𝑆𝑆 can be 

written as: 

𝐸𝐸𝐸𝐸𝛼𝛼,𝑡𝑡 = 𝐸𝐸�𝐿𝐿𝑡𝑡|𝐿𝐿𝑡𝑡 > 𝑉𝑉𝑉𝑉𝑉𝑉𝛼𝛼,𝑡𝑡� (26) 
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where 𝛼𝛼 is the confidence level and the Basel governed 𝛼𝛼 = 0,975. 

We may rewrite the formula assuming that the model is correct: 

𝐸𝐸𝐸𝐸𝛼𝛼,𝑡𝑡 = 𝐸𝐸 �𝐿𝐿𝑡𝑡𝑙𝑙𝑡𝑡
1−𝛼𝛼

�  (27) 

Now, define the test statistic: 

𝑍𝑍2(𝐿𝐿) = −∑ 𝐿𝐿𝑡𝑡𝑙𝑙𝑡𝑡
𝑇𝑇(1−𝛼𝛼)𝐸𝐸𝐸𝐸𝛼𝛼,𝑡𝑡

𝑇𝑇
𝑡𝑡=1 + 1 (28) 

The null hypothesis states that the model is exact in the tail, while the alternative hypothesis 

states that 𝐸𝐸𝑆𝑆 is underestimated. They are mathematically written as: 

𝐻𝐻0: 𝑝𝑝𝑡𝑡
[𝛼𝛼] = 𝐹𝐹𝑡𝑡

[𝛼𝛼] 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡 

𝐻𝐻1: 𝐸𝐸𝐸𝐸𝛼𝛼,𝑡𝑡
𝑝𝑝 ≤ 𝐸𝐸𝐸𝐸𝛼𝛼,𝑡𝑡

𝐹𝐹  𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡 𝑎𝑎𝑎𝑎𝑎𝑎 < 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡 

𝑉𝑉𝑉𝑉𝑉𝑉𝛼𝛼,𝑡𝑡
𝑝𝑝 ≤ 𝑉𝑉𝑉𝑉𝑉𝑉𝛼𝛼,𝑡𝑡

𝐹𝐹  𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡  (29) 

Under the null hypothesis: 

𝐸𝐸𝐻𝐻0 [𝑍𝑍2(𝐿𝐿)] = 𝐸𝐸𝐻𝐻0 �−�
𝐿𝐿𝑡𝑡𝑙𝑙𝑡𝑡

𝑇𝑇(1 − 𝛼𝛼)𝐸𝐸𝐸𝐸𝛼𝛼,𝑡𝑡

𝑇𝑇

𝑡𝑡=1

+ 1� 

= −
1
𝑇𝑇
�𝐸𝐸 �

𝐿𝐿𝑡𝑡𝑙𝑙𝑡𝑡
(1 − 𝛼𝛼)�

1
𝐸𝐸𝐸𝐸𝛼𝛼,𝑡𝑡

𝑇𝑇

𝑡𝑡=1

+ 1 

= −
1
𝑇𝑇
�𝐸𝐸𝐸𝐸𝛼𝛼,𝑡𝑡

1
𝐸𝐸𝐸𝐸𝛼𝛼,𝑡𝑡

𝑇𝑇

𝑡𝑡=1

+ 1 

= − 1
𝑇𝑇
∑ 1𝑇𝑇
𝑡𝑡=1 + 1 = 0  (30) 

Then, we can conclude: 

𝐸𝐸𝐻𝐻0 [𝑍𝑍2] = 0  𝑎𝑎𝑎𝑎𝑎𝑎  𝐸𝐸𝐻𝐻1 [𝑍𝑍2] < 0 (31) 

Provided the critical values for different significance levels and different degree of freedom 

(see Table 1), which was published by Acerbi and Szekely (2015), it is clear that the 
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thresholds deviate significantly from −0,7 only for dramatically heavy tailed distribution, 

with 𝑣𝑣 closing to 3. As a result, 𝑍𝑍2 with fixed levels 𝑍𝑍2 = −0.7 (when significance level is 

5%) and 𝑍𝑍2 = −1.8  (when significance level is 0,01%) would perfectly be the traffic-light in 

all occasions, which implies that 𝑍𝑍2 lends itself to implementations that do not require the 

recording of the predictive distributions. The ±1 location shifts across an unrealistically large 

area for a real loss distribution, which is expected to converge around zero. 

Finally, compare the actual value of 𝑍𝑍2 to the critical value. If 𝑍𝑍2 is smaller than the 

corresponding critical value, then the underlying model is rejected. According to a "Basel 

type" traffic light system: 𝑍𝑍2 above -0.70 gives green light; 𝑍𝑍2 between -0.70 and -1.80 gives 

yellow light; 𝑍𝑍2 below -1.80 gives red light. 

Table 1: Acerbi and Szekely’s recommendation for potential future Basel regulation 

 

2.5 Previous research 

McNeil (1997), Jondeau and Rockinger (1999) and Da Silva and Mendez (2003) reported that 

during an extreme event, returns do not follow the normal distribution because its empirical 

distribution has heavier tails. Therefore, classical parametric approach that is based on the 

assumption of normal distribution is not suitable to estimate VaR during an extreme event like 

major financial crisis. Bollerslev (1986) proposed a conditional heteroscedasticity model, the 

GARCH model. From that on, the dynamic methods have gained much popularity, since they 

can capture the stylized facts, volatility clustering and leptokurtosis, within the financial data. 

However, according to a research conducted by Danielsson and de Vries (2000), financial 

institutions preferred unconditional models due to their simplicity, although these models are 

based on false assumption of independence and equal distribution of returns. Gilli and Këllezi 

5% 0,01%
Location (mean) Location (mean)

dgf(v) -1% 0% 1% -1% 0% 1%
3 -0,78 -0,82 -0,88 -3,9 -4,4 -5,5
5 -0,72 -0,74 -0,78 -1,9 -2 -2,3
10 -0,7 -0,71 -0,74 -1,8 -1,9 -1,9
100 -0,7 -0,7 -0,72 -1,8 -1,8 -1,9
∞ (Normal) -0,7 -0,7 -0,72 -1,8 -1,8 -1,9
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(2006) admitted that the choice between conditional and unconditional model should depend 

on the period for the analysis and risk measures, of which the researcher or manager wants to 

use. Echaust and Just (2013) found that conditional models perform better than unconditional 

models, and, the GARCH-EVT model enables to estimate the 𝑉𝑉𝑎𝑎𝑅𝑅 correctly regardless of the 

considered assets. 

The article The Peaks over Thresholds Method for Estimating High Quantiles of Loss 

Distributions, by Alexander J. McNeil & Thomas Saladin (1997), reviewed the POT method 

for modelling tails of loss severity distributions and discussed the use of this technique for 

estimating high quantiles and the possible relevance of this to excess of loss insurance in high 

layers. The authors concluded that the POT method is a theoretically well supported technique 

for fitting a parametric distribution to the tail of an unknown underlying distribution and 

reading off quantile estimates from the fitted curve. 

The article An Application of Extreme Value Theory for Measuring Financial Risk, by 

Manfred Gilli and Evis Kȅllezi (2006), applying EVT to compute tail risk measures and the 

related confidence intervals on six major stock market indices. They concluded that EVT can 

be useful for assessing the size of extreme events and the POT method proved superior as it 

better exploits the information in the data sample. Being interested in long term behavior 

rather than in short term forecasting, they favored an unconditional approach. 

The paper Extreme Value at Risk and Expected Shortfall during Financial Crisis, by Lanciné 

Kourouma, Denis Dupre, Gilles Sanfilippo and Ollivier Taramasco (2011), investigated VaR 

and ES based on EVT and historical simulation (HS) approach for CAC 40, S&P 500, Wheat 

and Crude Oil indexes during the 2008 financial crisis. The authors concluded an 

underestimation of the risk of loss for the unconditional VaR models as compared with the 

conditional models. The underestimation is stronger using the historical VaR approach than 

using the extreme values theory VaR model for both normal periods and 2008 financial crisis 

period. 

The study Extreme Value Theory and Peaks Over Threshold Model in the Russian Stock 

Market, by Vladimir O. Andreev, Sergey E. Tinykov, Oksana P. Ovchinnikova and Gennady 

P. Parahin (2012), applied EVT and POT techniques to a series of daily losses of the RTS 

index (RTSI) over a 15-year period (1995-2009). They also concluded that utilized POT 



 

 16 

model of EVT, and GPD distribution which can give more accurate description on tail 

distribution of financial returns or losses. 

The article Extreme Value Theory for Time Series using Peak-Over-Threshold method, by 

Gianluca Rosso (2015), summarized the chances offered by the Peak-Over-Threshold method, 

related with analysis of extremes. Identification of appropriate Value at Risk can be solved by 

fitting data with a Generalized Pareto Distribution. Also an estimation of value for the 

Expected Shortfall can be useful, and the application of these few concepts is valid for the 

widest range of risk analysis. 
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3 Methodology 

3.1 Data 

Two sets of data, daily stock price of Ford Motor Company (Ford) and index of the Standard 

& Poor's 500 (the S&P 500) in USD, are collected from Yahoo Finance, covers from January 

1st 2002 to December 31st 2011. The S&P 500 is an American stock market index based on 

the market capitalizations of 500 large companies having common stock listed on the NYSE 

or NASDAQ. The S&P 500 index components and their weightings are determined by S&P 

Dow Jones Indices. It differs from other U.S. stock market indices, such as the Dow Jones 

Industrial Average or the Nasdaq Composite index, because of its diverse constituency and 

weighting methodology. It is one of the most commonly followed equity indices, and many 

consider it one of the best representations of the U.S. stock market, and a bellwether for the 

U.S. economy. The National Bureau of Economic Research has classified common stocks as a 

leading indicator of business cycles.  Ford is an American multinational automotive company 

and one of the S&P 500 components.  

3.2 Method 

The losses are calculated as 100 times the daily log-return of each series. Five-year estimation 

windows are sampled for the next one-year VaR and ES forecast using POT model and 

evaluation using Kupiec test and Acebi & Szekely test at 5% critical value. Final, a total five-

year overall back-testing was performed to test whether the behavior of the models differs. 

The GARCH(1,1) model incorporates mean reversion whereas the EWMA model does not. 

GARCH(1,1) is, therefore, theoretically more appealing than the EWMA model and being 

used in the paper. In POT models, there are four scenarios set for the threshold 𝑢𝑢 (1%, 2%, 

3% and 4%), three scenarios set for the probability 𝛼𝛼 (95%, 99% and 99.9%) and one critical 

value set for the back-testing at 5%. Maximum Likelihood (ML) method is used to obtain the 
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estimates of parameters 𝜉𝜉 𝑎𝑎𝑎𝑎𝑎𝑎 𝛽𝛽 for both 𝜉𝜉 = 0 𝑎𝑎𝑎𝑎𝑎𝑎 𝜉𝜉 > 0 situations. Parameters are 

estimated “before" every new evaluation period starts. Considering the fact that EVT only 

focus on the large losses and these large losses are essentially the same before and after the 

estimation window is moved one day or one month forward, the estimates of EVT parameters 

would be almost the same, and consequently there is no reason to update parameters too 

often. EViews has been used for GARCH(1,1) parameters estimation, Solver in Excel has 

been used in ML method to estimate 𝛽𝛽, 𝜉𝜉 and verify GARCH(1,1) parameters’ estimation. 

To give a brief summary of the methodology as follows (repeating the following process for 

each threshold u - 1%, 2%, 3% and 4%) 

• Unconditional POT 

1. Five-year daily log returns are calculated at percentage level 

2. Count the losses that over the threshold u 

3. Estimate the parameters 𝜉𝜉 𝑎𝑎𝑎𝑎𝑎𝑎 𝛽𝛽 for both 𝜉𝜉 = 0 𝑎𝑎𝑎𝑎𝑎𝑎 𝜉𝜉 > 0 situations using Excel 

Solver function 

4. Compute the VaR at 95%, 99% and 99.9% confidence level 

5. Back-testing the VaR by both Kupiec one-sided and two-sided tests at 5% critical 

value 

6. Compute the ES at 95%, 99% and 99.9% confidence level 

7. Back-testing the ES by Acebi & Szekely test at 5% critical value 

8. When done the above process for each year, then total the five years violations and do 

the back-testing for five-year-overall for both VaR and ES at 5% critical value 

 

• Conditional POT 

1. Five-year daily log returns are calculated at percentage level 

2. Estimate the parameters of GARCH(1,1) model in EView and check in Excel using 

Solver function 

3. Compute the residual value for each 𝑡𝑡 by extracting the five-year mean of the daily log 

returns and standardized the residual for each 𝑡𝑡 by GARCH(1,1) model 

4. Count the standardized residuals that over the threshold u 

5. Estimate the parameters 𝜉𝜉 𝑎𝑎𝑎𝑎𝑎𝑎 𝛽𝛽 for both 𝜉𝜉 = 0 𝑎𝑎𝑎𝑎𝑎𝑎 𝜉𝜉 > 0 situations using Excel 

Solver function 

6. Calculate the quantile estimates at 95%, 99% and 99.9% confidence level 
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7. Compute the conditional daily VaR at 95%, 99% and 99.9% confidence levels 

8. Back-testing the VaR by both Kupiec one-sided and two-sided tests at 5% critical 

value 

9. Compute the conditional daily ES at 95%, 99% and 99.9% confidence levels 

10. Back-testing the ES by Acebi & Szekely test at 5% critical value 

11. When done the above process for each year, then total the five years violations and do 

the back-testing for five-year-overall for both VaR and ES at 5% critical value 
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4 Empirical Results 

In this chapter, the results are presented in the order of data analysis, back-testing results of 

Ford and of the S&P 500 separately. Furthermore, a comparison amongst different scenarios 

for each data stream is analyzed.   

4.1  Data Analysis 

Figure 1 & 2 present the loss observations from 2002 to 2011 for both datasets during the 

entire sample period. Huge fluctuations are both noticeable from mid-2008 to 2009, during 

which the financial crisis period was, such jumps increase the market risk of the portfolios. 

However, the S&P 500 is a diverse and weighted index, its losses obviously surge less than 

Ford’s. Such lower ups and downs impact the choices of thresholds for POT models. 

Thresholds 1%, 2%, 3% and 4% are chosen for Ford analysis, only 1% and 2% are chosen for 

the S&P 500 due to higher thresholds will cause zero observation over threshold under 

conditional POT model for most of the years in-sample. (Note: here the threshold is a fixed 

number used to compare with the losses or the standardized residuals, rather than a percentage 

of the total observations.) Otherwise, POT model could not be processed. However, there is 

one zero violation (𝑁𝑁𝑢𝑢) observed in Ford 2010 when threshold equal to 4%. In order to have a 

5-year overall picture, zero violations for final VaR back-testing and 𝑍𝑍2  =  1 for ES back-

testing are manually set for year 2010. 
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Figure 1: Ford daily losses during 2002 to 2011 

 

Figure 2: S&P 500 daily losses during 2002 to 2011 

 

Table 2 & 3 present the summary statistics for both daily losses over the entire sample period. 

These tables include five testing periods – 5-year-window for each, and the whole five-year 

evaluation period. Each distribution includes 2519 observations during the entire sample 

period. Statistics results show the same shape with line chart illustrated in Figure 1 & 2. 

Parameters 𝛽𝛽 𝑎𝑎𝑎𝑎𝑎𝑎 𝜉𝜉 are estimated once for each testing periods under different thresholds. 
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Table 2: Ford daily loss observations descriptive statistics 

 

Table 3: S&P 500 daily loss observations descriptive statistics 

 

Different threshold does not impact on GARCH(1,1) method, thus Appendix A present the 

EView estimates for 5 testing periods of Ford and Appendix B present for the S&P 500. With 

all GARCH items’ parameters close to 0,94, which is usually the number of λ used to 

captured the volatility under EWMA method, this study was thus continued with 

GARCH(1,1) method only. ML method is also used to estimate the parameters for 

GARCH(1,1) using Solver in Excel, results see Appendix C. There are slightly differences 

between EViews and Solver on parameters, mostly less than 1%, but no gap on sum 

maximum. Therefore, EViews results are captured for further calculation.  

Ford Evaluation Period
2002-2006 2003-2007 2004-2008 2005-2009 2006-2010 2007-2011

Mean -0,0587 -0,0257 -0,1544 -0,0303 0,0617 0,0285
Standard Error 0,0678 0,0600 0,0934 0,1055 0,1073 0,1078
Median -0,1226 -0,1169 -0,1404 -0,1226 0,0000 0,0000
Standard Deviation 2,4051 2,1295 3,3150 3,7420 3,8055 3,8280
Sample Variance 5,7844 4,5349 10,9892 14,0024 14,4819 14,6536
Kurtosis 4,7546 2,5883 18,4578 11,9225 10,9992 10,7677
Skewness 0,3504 0,2650 -0,1351 -0,0113 -0,0772 -0,0681
Range 28,4529 22,5434 54,6332 54,6332 54,6332 54,6332
Minimum -13,9413 -12,5236 -28,7682 -28,7682 -28,7682 -28,7682
Maximum 14,5117 10,0198 25,8650 25,8650 25,8650 25,8650
Sum -73,8698 -32,3439 -194,4037 -38,1172 77,6969 35,9600
Observations 1259 1258 1259 1259 1259 1260

Testing Periods

S&P500 Evaluation Period
2002-2006 2003-2007 2004-2008 2005-2009 2006-2010 2007-2011

Mean 0,0168 0,0407 -0,0165 -0,0066 0,0006 -0,0095
Standard Error 0,0286 0,0235 0,0379 0,0427 0,0443 0,0474
Median 0,0564 0,0813 0,0699 0,0817 0,0842 0,0840
Standard Deviation 1,0141 0,8332 1,3447 1,5168 1,5735 1,6810
Sample Variance 1,0284 0,6942 1,8082 2,3008 2,4758 2,8257
Kurtosis 3,1137 1,7745 15,7336 10,1431 8,6064 6,5646
Skewness 0,2385 -0,1350 -0,3581 -0,2379 -0,2330 -0,2454
Range 9,8168 7,0681 20,4267 20,4267 20,4267 20,4267
Minimum -4,2423 -3,5867 -9,4695 -9,4695 -9,4695 -9,4695
Maximum 5,5744 3,4814 10,9572 10,9572 10,9572 10,9572
Sum 21,1368 51,2184 -20,7844 -8,3262 0,7462 -12,0254
Observations 1259 1258 1259 1259 1259 1260

Testing Periods
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4.2 Results - Ford 

Table 4,5,6,7 show both one-sided and two-sided Kupiec test results for VaR back-testing at 

5% critical value under four different threshold scenarios in the order of 1%, 2%, 3% and 4%. 

The one-sided Kupiec test is used to check if the actual frequency of violations is “too large” 

or “too low” compared to the expected frequency of violations and the two-sided one focuses 

on an confidence interval, is used to check if the actual frequency of violations is “too many” 

or “too few” compared to the expected frequency of violations, so, the obvious difference 

between two tests are under extreme high confidence level. When we observe zero violations, 

mostly under  𝛼𝛼 = 99.9%,  the models are always rejected by one-sided Kupiec test but 

accepted by two-sided one. Therefore, the two-sided Kupiec test results are adopted to further 

discussion as the study focuses on the EVT, especially when there is an extreme high 

confidence α. 

When the threshold 𝑢𝑢 =  1%, all models are accepted in 2007, only unconditional models at 

95% confidence level are rejected in 2010 and 2011, and only conditional GARCH(1,1) 

models are accepted for 2008, 2009 and five-year overall. When the threshold 𝑢𝑢 =  2%, more 

models are rejected comparing to the results when 𝑢𝑢 =  1%. GARCH(1,1) models at 95% 

confidence level are rejected in 2008, no matter 𝜉𝜉 equals to zero or not. And  GARCH(1,1) 

models at 95% confidence level with 𝜉𝜉 = 0 is rejected for five-year overall. When increasing 

the threshold to 3% and 4%, fewer and fewer ‘accept’ observed at 95% confidence level, 

models’ performances are still worse in 2008 and 2009, during which were the financial crisis 

period with higher cluttering, than the other years. Moreover, unconditional models are all 

rejected for five-year overall. 

  



 

 24 

Table 4: Kupiec test results under threshold u = 1% 

 

Table 5: Kupiec test results under threshold u = 2% 

 

  

α

ξ = 0 ξ > 0 ξ = 0 ξ > 0 ξ = 0 ξ > 0 ξ = 0 ξ > 0 ξ = 0 ξ > 0 ξ = 0 ξ > 0

Yearly Confidence Interval 𝑋𝑋_𝑙𝑙𝑙𝑙𝑙𝑙 = 6 𝑋𝑋_ℎ𝑖𝑖𝑖𝑖ℎ = 20 𝑋𝑋_𝑙𝑙𝑙𝑙𝑙𝑙 = 0 𝑋𝑋_ℎ𝑖𝑖𝑖𝑖ℎ = 6 𝑋𝑋_𝑙𝑙𝑙𝑙𝑙𝑙 = 0 𝑋𝑋_ℎ𝑖𝑖𝑖𝑖ℎ = 2

2007 Nr. of Violations 12 12 15 15 1 0 4 3 0 0 0 0
Prob. 51,17% 51,17% 27,61% 27,61% 0,00% 0,00% 0,44% 0,12% 0,00% 0,00% 0,00% 0,00%

One-sided Test Result Accept Accept Accept Accept Reject Reject Reject Reject Reject Reject Reject Reject
Two-sided Test Result Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept

2008 Nr. of Violations 45 45 20 20 21 19 5 5 8 7 2 0
Prob. 0,00% 0,00% 3,03% 3,03% 1,68% 5,22% 1,18% 1,18% 11,07% 6,00% 0,02% 0,00%

One-sided Test Result Reject Reject Reject Reject Reject Accept Reject Reject Accept Accept Reject Reject
Two-sided Test Result Reject Reject Accept Accept Reject Reject Accept Accept Reject Reject Accept Accept

2009 Nr. of Violations 39 40 17 17 14 10 4 4 3 0 0 0
Prob. 0,00% 0,00% 13,14% 13,14% 38,19% 28,13% 0,42% 0,42% 0,12% 0,00% 0,00% 0,00%

One-sided Test Result Reject Reject Accept Accept Accept Accept Reject Reject Reject Reject Reject Reject
Two-sided Test Result Reject Reject Accept Accept Reject Reject Accept Accept Reject Accept Accept Accept

2010 Nr. of Violations 1 2 16 16 0 0 3 3 0 0 0 0
Prob. 0,00% 0,02% 19,70% 19,70% 0,00% 0,00% 0,12% 0,12% 0,00% 0,00% 0,00% 0,00%

One-sided Test Result Reject Reject Accept Accept Reject Reject Reject Reject Reject Reject Reject Reject
Two-sided Test Result Reject Reject Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept

2011 Nr. of Violations 3 3 6 6 0 0 0 0 0 0 0 0
Prob. 0,12% 0,12% 2,96% 2,96% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%

One-sided Test Result Reject Reject Reject Reject Reject Reject Reject Reject Reject Reject Reject Reject
Two-sided Test Result Reject Reject Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept

5-Year Confidence Interval 𝑋𝑋_𝑙𝑙𝑙𝑙𝑙𝑙 = 48 𝑋𝑋_ℎ𝑖𝑖𝑖𝑖ℎ = 79 𝑋𝑋_𝑙𝑙𝑙𝑙𝑙𝑙 = 6 𝑋𝑋_ℎ𝑖𝑖𝑖𝑖ℎ = 20 𝑋𝑋_𝑙𝑙𝑙𝑙𝑙𝑙 = 0 𝑋𝑋_ℎ𝑖𝑖𝑖𝑖ℎ = 4

Overall Nr. of Violations 100 102 74 74 36 29 16 15 11 7 2 0
Prob. 0,00% 0,00% 8,97% 8,97% 0,01% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%

One-sided Test Result Reject Reject Accept Accept Reject Reject Reject Reject Reject Reject Reject Reject
Two-sided Test Result Reject Reject Accept Accept Reject Reject Accept Accept Reject Reject Accept Accept

95% 99% 99,9%
Unconditional Conditional Unconditional Conditional Unconditional Conditional

α

ξ = 0 ξ > 0 ξ = 0 ξ > 0 ξ = 0 ξ > 0 ξ = 0 ξ > 0 ξ = 0 ξ > 0 ξ = 0 ξ > 0

Yearly Confidence Interval 𝑋𝑋_𝑙𝑙𝑙𝑙𝑙𝑙 = 6 𝑋𝑋_ℎ𝑖𝑖𝑖𝑖ℎ = 20 𝑋𝑋_𝑙𝑙𝑙𝑙𝑙𝑙 = 0 𝑋𝑋_ℎ𝑖𝑖𝑖𝑖ℎ = 6 𝑋𝑋_𝑙𝑙𝑙𝑙𝑙𝑙 = 0 𝑋𝑋_ℎ𝑖𝑖𝑖𝑖ℎ = 2

2007 Nr. of Violations 12 12 15 15 1 0 2 2 0 0 0 0
Prob. 51,17% 51,17% 27,61% 27,61% 0,00% 0,00% 0,03% 0,03% 0,00% 0,00% 0,00% 0,00%

One-sided Test Result Accept Accept Accept Accept Reject Reject Reject Reject Reject Reject Reject Reject
Two-sided Test Result Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept

2008 Nr. of Violations 45 47 22 22 20 19 5 5 8 7 1 1
Prob. 0,00% 0,00% 0,89% 0,89% 3,03% 5,22% 1,18% 1,18% 11,07% 6,00% 0,00% 0,00%

One-sided Test Result Reject Reject Reject Reject Reject Accept Reject Reject Accept Accept Reject Reject
Two-sided Test Result Reject Reject Reject Reject Reject Reject Accept Accept Reject Reject Accept Accept

2009 Nr. of Violations 38 41 19 17 10 10 3 3 2 0 0 0
Prob. 0,00% 0,00% 5,05% 13,14% 28,13% 28,13% 0,12% 0,12% 0,02% 0,00% 0,00% 0,00%

One-sided Test Result Reject Reject Accept Accept Accept Accept Reject Reject Reject Reject Reject Reject
Two-sided Test Result Reject Reject Accept Accept Reject Reject Accept Accept Accept Accept Accept Accept

2010 Nr. of Violations 1 2 17 17 0 0 3 3 0 0 0 0
Prob. 0,00% 0,02% 13,14% 13,14% 0,00% 0,00% 0,12% 0,12% 0,00% 0,00% 0,00% 0,00%

One-sided Test Result Reject Reject Accept Accept Reject Reject Reject Reject Reject Reject Reject Reject
Two-sided Test Result Reject Reject Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept

2011 Nr. of Violations 3 3 7 7 0 0 2 2 0 0 0 0
Prob. 0,12% 0,12% 6,16% 6,16% 0,00% 0,00% 0,02% 0,02% 0,00% 0,00% 0,00% 0,00%

One-sided Test Result Reject Reject Accept Accept Reject Reject Reject Reject Reject Reject Reject Reject
Two-sided Test Result Reject Reject Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept

5-Year Confidence Interval 𝑋𝑋_𝑙𝑙𝑙𝑙𝑙𝑙 = 48 𝑋𝑋_ℎ𝑖𝑖𝑖𝑖ℎ = 79 𝑋𝑋_𝑙𝑙𝑙𝑙𝑙𝑙 = 6 𝑋𝑋_ℎ𝑖𝑖𝑖𝑖ℎ = 20 𝑋𝑋_𝑙𝑙𝑙𝑙𝑙𝑙 = 0 𝑋𝑋_ℎ𝑖𝑖𝑖𝑖ℎ = 4

Overall Nr. of Violations 99 105 80 78 31 29 15 15 10 7 1 1
Prob. 0,00% 0,00% 1,91% 3,36% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%

One-sided Test Result Reject Reject Reject Reject Reject Reject Reject Reject Reject Reject Reject Reject
Two-sided Test Result Reject Reject Reject Accept Reject Reject Accept Accept Reject Reject Accept Accept

95% 99% 99,9%
Unconditional Conditional Unconditional Conditional Unconditional Conditional
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Table 6: Kupiec test results under threshold u = 3% 

 

Table 7: Kupiec test results under threshold u = 4% 

 

  

α

ξ = 0 ξ > 0 ξ = 0 ξ > 0 ξ = 0 ξ > 0 ξ = 0 ξ > 0 ξ = 0 ξ > 0 ξ = 0 ξ > 0

Yearly Confidence Interval 𝑋𝑋_𝑙𝑙𝑙𝑙𝑙𝑙 = 6 𝑋𝑋_ℎ𝑖𝑖𝑖𝑖ℎ = 20 𝑋𝑋_𝑙𝑙𝑙𝑙𝑙𝑙 = 0 𝑋𝑋_ℎ𝑖𝑖𝑖𝑖ℎ = 6 𝑋𝑋_𝑙𝑙𝑙𝑙𝑙𝑙 = 0 𝑋𝑋_ℎ𝑖𝑖𝑖𝑖ℎ = 2

2007 Nr. of Violations 12 12 32 32 0 0 3 3 0 0 0 0
Prob. 51,17% 51,17% 0,00% 0,00% 0,00% 0,00% 0,12% 0,12% 0,00% 0,00% 0,00% 0,00%

One-sided Test Result Accept Accept Reject Reject Reject Reject Reject Reject Reject Reject Reject Reject
Two-sided Test Result Accept Accept Reject Reject Accept Accept Accept Accept Accept Accept Accept Accept

2008 Nr. of Violations 47 47 25 25 18 18 4 4 7 7 0 0
Prob. 0,00% 0,00% 0,10% 0,10% 8,59% 8,59% 0,41% 0,41% 6,00% 6,00% 0,00% 0,00%

One-sided Test Result Reject Reject Reject Reject Accept Accept Reject Reject Accept Accept Reject Reject
Two-sided Test Result Reject Reject Reject Reject Reject Reject Accept Accept Reject Reject Accept Accept

2009 Nr. of Violations 38 42 25 25 9 10 4 4 0 0 0 0
Prob. 0,00% 0,00% 0,10% 0,10% 18,70% 28,13% 0,42% 0,42% 0,00% 0,00% 0,00% 0,00%

One-sided Test Result Reject Reject Reject Reject Accept Accept Reject Reject Reject Reject Reject Reject
Two-sided Test Result Reject Reject Reject Reject Reject Reject Accept Accept Accept Accept Accept Accept

2010 Nr. of Violations 1 2 11 11 0 0 3 3 0 0 0 0
Prob. 0,00% 0,02% 39,05% 39,05% 0,00% 0,00% 0,12% 0,12% 0,00% 0,00% 0,00% 0,00%

One-sided Test Result Reject Reject Accept Accept Reject Reject Reject Reject Reject Reject Reject Reject
Two-sided Test Result Reject Reject Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept

2011 Nr. of Violations 3 3 4 4 0 0 0 0 0 0 0 0
Prob. 0,12% 0,12% 0,42% 0,42% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%

One-sided Test Result Reject Reject Reject Reject Reject Reject Reject Reject Reject Reject Reject Reject
Two-sided Test Result Reject Reject Reject Reject Accept Accept Accept Accept Accept Accept Accept Accept

5-Year Confidence Interval 𝑋𝑋_𝑙𝑙𝑙𝑙𝑙𝑙 = 48 𝑋𝑋_ℎ𝑖𝑖𝑖𝑖ℎ = 79 𝑋𝑋_𝑙𝑙𝑙𝑙𝑙𝑙 = 6 𝑋𝑋_ℎ𝑖𝑖𝑖𝑖ℎ = 20 𝑋𝑋_𝑙𝑙𝑙𝑙𝑙𝑙 = 0 𝑋𝑋_ℎ𝑖𝑖𝑖𝑖ℎ = 4

Overall Nr. of Violations 101 106 97 97 27 28 14 14 7 7 0 0
Prob. 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%

One-sided Test Result Reject Reject Reject Reject Reject Reject Reject Reject Reject Reject Reject Reject
Two-sided Test Result Reject Reject Reject Reject Reject Reject Accept Accept Reject Reject Accept Accept

95% 99% 99,9%
Unconditional Conditional Unconditional Conditional Unconditional Conditional

α

ξ = 0 ξ > 0 ξ = 0 ξ > 0 ξ = 0 ξ > 0 ξ = 0 ξ > 0 ξ = 0 ξ > 0 ξ = 0 ξ > 0

Yearly Confidence Interval 𝑋𝑋_𝑙𝑙𝑙𝑙𝑙𝑙 = 6 𝑋𝑋_ℎ𝑖𝑖𝑖𝑖ℎ = 20 𝑋𝑋_𝑙𝑙𝑙𝑙𝑙𝑙 = 0 𝑋𝑋_ℎ𝑖𝑖𝑖𝑖ℎ = 6 𝑋𝑋_𝑙𝑙𝑙𝑙𝑙𝑙 = 0 𝑋𝑋_ℎ𝑖𝑖𝑖𝑖ℎ = 2

2007 Nr. of Violations 13 13 125 125 0 0 10 10 0 0 0 0
Prob. 48,83% 48,83% 0,00% 0,00% 0,00% 0,00% 28,61% 28,61% 0,00% 0,00% 0,00% 0,00%

One-sided Test Result Accept Accept Reject Reject Reject Reject Accept Accept Reject Reject Reject Reject
Two-sided Test Result Accept Accept Reject Reject Accept Accept Reject Reject Accept Accept Accept Accept

2008 Nr. of Violations 49 49 22 22 18 18 4 4 7 7 0 0
Prob. 0,00% 0,00% 0,89% 0,89% 8,59% 8,59% 0,41% 0,41% 6,00% 6,00% 0,00% 0,00%

One-sided Test Result Reject Reject Reject Reject Accept Accept Reject Reject Accept Accept Reject Reject
Two-sided Test Result Reject Reject Reject Reject Reject Reject Accept Accept Reject Reject Accept Accept

2009 Nr. of Violations 41 42 55 55 6 10 5 5 0 0 0 0
Prob. 0,00% 0,00% 0,00% 0,00% 2,96% 28,13% 1,22% 1,22% 0,00% 0,00% 0,00% 0,00%

One-sided Test Result Reject Reject Reject Reject Reject Accept Reject Reject Reject Reject Reject Reject
Two-sided Test Result Reject Reject Reject Reject Accept Reject Accept Accept Accept Accept Accept Accept

2010 Nr. of Violations 1 2 0 0 0 0 0 0 0 0 0 0
Prob. 0,00% 0,02% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%

One-sided Test Result Reject Reject Reject Reject Reject Reject Reject Reject Reject Reject Reject Reject
Two-sided Test Result Reject Reject Reject Reject Accept Accept Accept Accept Accept Accept Accept Accept

2011 Nr. of Violations 3 3 0 0 0 0 0 0 0 0 0 0
Prob. 0,12% 0,12% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%

One-sided Test Result Reject Reject Reject Reject Reject Reject Reject Reject Reject Reject Reject Reject
Two-sided Test Result Reject Reject Reject Reject Accept Accept Accept Accept Accept Accept Accept Accept

5-Year Confidence Interval 𝑋𝑋_𝑙𝑙𝑙𝑙𝑙𝑙 = 48 𝑋𝑋_ℎ𝑖𝑖𝑖𝑖ℎ = 79 𝑋𝑋_𝑙𝑙𝑙𝑙𝑙𝑙 = 6 𝑋𝑋_ℎ𝑖𝑖𝑖𝑖ℎ = 20 𝑋𝑋_𝑙𝑙𝑙𝑙𝑙𝑙 = 0 𝑋𝑋_ℎ𝑖𝑖𝑖𝑖ℎ = 4

Overall Nr. of Violations 107 109 202 202 24 28 19 19 7 7 0 0
Prob. 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%

One-sided Test Result Reject Reject Reject Reject Reject Reject Reject Reject Reject Reject Reject Reject
Two-sided Test Result Reject Reject Reject Reject Reject Reject Accept Accept Reject Reject Accept Accept

95% 99% 99,9%
Unconditional Conditional Unconditional Conditional Unconditional Conditional
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Table 8,9,10,11 illustrate the Acerbi and Szekely’s ES back-testing results and traffic light 

results at 5% and 0,01% critical level under four different threshold scenarios in the same 

order of 1%, 2%, 3% and 4%. According to ES back-testing formula (28), when 

−∑ 𝐿𝐿𝑡𝑡𝑙𝑙𝑡𝑡
𝑇𝑇(1−𝛼𝛼)𝐸𝐸𝐸𝐸𝛼𝛼,𝑡𝑡

𝑇𝑇
𝑡𝑡=1  equals to zero, 𝑍𝑍2  statistic test results will exactly equal to one. Only Green 

in the traffic light results will be considered as accept, thus the traffic light results will be 

discussed. For year 2010 and 2011, all models are Green, whatever assumptions are. When 

the threshold 𝑢𝑢 =  1% 𝑎𝑎𝑎𝑎𝑎𝑎 2%, all models are Green for year 2007. For 2008, all 

unconditional models are ‘Red’. One conditional model with 𝜉𝜉 > 0 at 99.9% confidence level 

turns ‘Green’, the other one with 𝜉𝜉 = 0 is ‘Red’, the rest conditional model are all ‘Yellow’, 

better than the unconditional ones. For 2009, most conditional models are ‘Red’ except the 

one at 99,9% confidence level, conditional models are either ‘Yellow’ or ‘Green’, still better 

than the unconditional ones. For five-years-overall, all conditional models are ‘Green’ while 

all unconditional ones are either ‘Yellow’ or ‘Red’. When increasing the threshold 𝑢𝑢 =  3%, 

for 2007, conditional models at 95% confidence level turns to ‘Yellow’ from ‘Green’. For 

2008, conditional models at 99,9% confidence level turns to ‘Green’ from ‘Red’. For 2009, 

conditional model at 95% confidence level with 𝜉𝜉 > 0 turns to ‘Yellow’ from ‘Green’ while 

unconditional model at 99,9% confidence level with 𝜉𝜉 = 0 turns to ‘Green’ from ‘Red’. 

Overall, conditional models at 95% confidence level turn to ‘Yellow’ from ‘Green’. Continue 

to increase the threshold 𝑢𝑢 =  4%, for 2007, conditional models at both 95% and 99% change 

to ‘Red’. No changes happened in 2008. For 2009, only conditional models at 99,9% 

confidence level are still ‘Green’. Five-years-overall, only conditional models at 99% and 

99.9% levels are remained as ‘Green’. Under ES back-testing, when increasing the threshold, 

the ‘Accept’ level is decreased, but the models are still doing well at 99% and 99.9% GARCH 

methods. 
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Table 8: ES Back-testing results under threshold u = 1% 

 

Table 9: ES Back-testing results under threshold u = 2% 

 

Table 10: ES Back-testing results under threshold u = 3% 

 

α

ξ = 0 ξ > 0 ξ = 0 ξ > 0 ξ = 0 ξ > 0 ξ = 0 ξ > 0 ξ = 0 ξ > 0 ξ = 0 ξ > 0
2007 Z (test statistic) 0,117 0,157 -0,372 -0,285 0,675 1,000 -0,534 -0,016 1,000 1,000 1,000 1,000

Test Result Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept
Traffic light Result Green Green Green Green Green Green Green Green Green Green Green Green

2008 Z (test statistic) -4,671 -4,564 -1,162 -0,973 -12,073 -10,839 -1,671 -1,279 -53,808 -45,430 -7,238 1,000
Test Result Reject Reject Reject Reject Reject Reject Reject Reject Reject Reject Reject Accept

Traffic light Result Red Red Yellow Yellow Red Red Yellow Yellow Red Red Red Green

2009 Z (test statistic) -2,579 -2,177 -0,609 -0,522 -4,889 -2,199 -0,581 -0,438 -10,555 1,000 1,000 1,000
Test Result Reject Reject Accept Accept Reject Reject Accept Accept Reject Accept Accept Accept

Traffic light Result Red Red Green Green Red Red Green Green Red Green Green Green

2010 Z (test statistic) 0,938 0,896 -0,406 -0,406 1,000 1,000 -0,175 -0,175 1,000 1,000 1,000 1,000
Test Result Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept

Traffic light Result Green Green Green Green Green Green Green Green Green Green Green Green

2011 Z (test statistic) 0,784 0,801 0,448 0,448 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
Test Result Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept

Traffic light Result Green Green Green Green Green Green Green Green Green Green Green Green

5-Year Z (test statistic) -1,086 -0,981 -0,421 -0,348 -2,868 -2,017 -0,393 -0,182 -12,316 -8,323 -0,654 1,000
Overall Test Result Reject Reject Accept Accept Reject Reject Accept Accept Reject Reject Accept Accept

Traffic light Result Yellow Yellow Green Green Red Red Green Green Red Red Green Green

95% 99% 99,9%
Unconditional Conditional Unconditional Conditional Unconditional Conditional

α

ξ = 0 ξ > 0 ξ = 0 ξ > 0 ξ = 0 ξ > 0 ξ = 0 ξ > 0 ξ = 0 ξ > 0 ξ = 0 ξ > 0
2007 Z (test statistic) 0,125 0,158 -0,371 -0,301 0,679 1,000 0,257 0,287 1,000 1,000 1,000 1,000

Test Result Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept
Traffic light Result Green Green Green Green Green Green Green Green Green Green Green Green

2008 Z (test statistic) -4,642 -4,670 -1,409 -1,409 -11,641 -10,562 -1,519 -1,519 -53,179 -42,270 -2,854 -2,854
Test Result Reject Reject Reject Reject Reject Reject Reject Reject Reject Reject Reject Reject

Traffic light Result Red Red Yellow Yellow Red Red Yellow Yellow Red Red Red Red

2009 Z (test statistic) -2,271 -2,195 -0,791 -0,553 -3,117 -2,085 -0,138 -0,097 -6,170 1,000 1,000 1,000
Test Result Reject Reject Reject Accept Reject Reject Accept Accept Reject Accept Accept Accept

Traffic light Result Red Red Yellow Green Red Red Green Green Red Green Green Green

2010 Z (test statistic) 0,941 0,895 -0,492 -0,492 1,000 1,000 -0,163 -0,163 1,000 1,000 1,000 1,000
Test Result Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept

Traffic light Result Green Green Green Green Green Green Green Green Green Green Green Green

2011 Z (test statistic) 0,788 0,801 0,363 0,363 1,000 1,000 0,263 0,263 1,000 1,000 1,000 1,000
Test Result Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept

Traffic light Result Green Green Green Green Green Green Green Green Green Green Green Green

5-Year Z (test statistic) -1,015 -1,006 -0,541 -0,479 -2,425 -1,939 -0,261 -0,247 -11,313 -7,688 0,226 0,226
Overall Test Result Reject Reject Accept Accept Reject Reject Accept Accept Reject Reject Accept Accept

Traffic light Result Yellow Yellow Green Green Red Red Green Green Red Red Green Green

95% 99% 99,9%
Unconditional Conditional Unconditional Conditional Unconditional Conditional

α

ξ = 0 ξ > 0 ξ = 0 ξ > 0 ξ = 0 ξ > 0 ξ = 0 ξ > 0 ξ = 0 ξ > 0 ξ = 0 ξ > 0
2007 Z (test statistic) 0,150 0,158 -1,719 -1,719 1,000 1,000 -0,077 -0,077 1,000 1,000 1,000 1,000

Test Result Accept Accept Reject Reject Accept Accept Accept Accept Accept Accept Accept Accept
Traffic light Result Green Green Yellow Yellow Green Green Green Green Green Green Green Green

2008 Z (test statistic) -4,613 -4,613 -1,650 -1,650 -10,253 -10,253 -1,149 -1,149 -45,255 -45,255 1,000 1,000
Test Result Reject Reject Reject Reject Reject Reject Reject Reject Reject Reject Accept Accept

Traffic light Result Red Red Yellow Yellow Red Red Yellow Yellow Red Red Green Green

2009 Z (test statistic) -2,122 -2,216 -1,627 -1,627 -2,459 -1,963 -0,549 -0,549 1,000 1,000 1,000 1,000
Test Result Reject Reject Reject Reject Reject Reject Accept Accept Accept Accept Accept Accept

Traffic light Result Red Red Yellow Yellow Red Red Green Green Green Green Green Green

2010 Z (test statistic) 0,942 0,895 -0,009 -0,009 1,000 1,000 -0,192 -0,192 1,000 1,000 1,000 1,000
Test Result Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept

Traffic light Result Green Green Green Green Green Green Green Green Green Green Green Green

2011 Z (test statistic) 0,792 0,801 0,616 0,616 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
Test Result Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept

Traffic light Result Green Green Green Green Green Green Green Green Green Green Green Green

5-Year Z (test statistic) -0,974 -0,999 -0,878 -0,878 -1,951 -1,852 -0,194 -0,194 -8,288 -8,288 1,000 1,000
Overall Test Result Reject Reject Reject Reject Reject Reject Accept Accept Reject Reject Accept Accept

Traffic light Result Yellow Yellow Yellow Yellow Red Red Green Green Red Red Green Green

95% 99% 99,9%
Unconditional Conditional Unconditional Conditional Unconditional Conditional
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Table 11: ES Back-testing results under threshold u = 4% 

 

4.3 Results - the S&P 500 

Table 12 and 13 show the Kupiec back-testing results for the S&P 500 under 1% and 2% 

threshold. There have been the same results for both thresholds under two-sided Kupiec test. 

All models are accepted for 2007, 2010 and 2011, only unconditional models are rejected at 

95% confidence level and year 2008 has the same result as five-year-overal with all 

conditional models accept but unconditional ones reject.  

  

α

ξ = 0 ξ > 0 ξ = 0 ξ > 0 ξ = 0 ξ > 0 ξ = 0 ξ > 0 ξ = 0 ξ > 0 ξ = 0 ξ > 0
2007 Z (test statistic) 0,106 0,107 -15,382 -15,385 1,000 1,000 -3,077 -3,077 1,000 1,000 1,000 1,000

Test Result Accept Accept Reject Reject Accept Accept Reject Reject Accept Accept Accept Accept
Traffic light Result Green Green Red Red Green Green Red Red Green Green Green Green

2008 Z (test statistic) -4,758 -4,758 -1,406 -1,406 -10,135 -10,135 -1,139 -1,139 -44,273 -44,273 1,000 1,000
Test Result Reject Reject Reject Reject Reject Reject Reject Reject Reject Reject Accept Accept

Traffic light Result Red Red Yellow Yellow Red Red Yellow Yellow Red Red Green Green

2009 Z (test statistic) -2,197 -2,218 -5,125 -5,125 -1,331 -1,967 -1,146 -1,146 1,000 1,000 1,000 1,000
Test Result Reject Reject Reject Reject Reject Reject Reject Reject Accept Accept Accept Accept

Traffic light Result Red Red Red Red Yellow Red Yellow Yellow Green Green Green Green

2010 Z (test statistic) 0,943 0,895 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
Test Result Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept

Traffic light Result Green Green Green Green Green Green Green Green Green Green Green Green

2011 Z (test statistic) 0,796 0,801 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
Test Result Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept

Traffic light Result Green Green Green Green Green Green Green Green Green Green Green Green

5-Year Z (test statistic) -1,026 -1,038 -3,972 -3,972 -1,702 -1,829 -0,671 -0,671 -8,091 -8,091 1,000 1,000
Overall Test Result Reject Reject Reject Reject Reject Reject Accept Accept Reject Reject Accept Accept

Traffic light Result Yellow Yellow Red Red Yellow Red Green Green Red Red Green Green

95% 99% 99,9%
Unconditional Conditional Unconditional Conditional Unconditional Conditional
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Table 12: the S&P500 Kupiec test results under threshold u = 1% 

 

Table 13: the S&P500 Kupiec test results under threshold u = 2% 

 

  

α

ξ = 0 ξ > 0 ξ = 0 ξ > 0 ξ = 0 ξ > 0 ξ = 0 ξ > 0 ξ = 0 ξ > 0 ξ = 0 ξ > 0

Yearly Confidence Interval 𝑋𝑋_𝑙𝑙𝑙𝑙𝑙𝑙 = 6 𝑋𝑋_ℎ𝑖𝑖𝑖𝑖ℎ = 20 𝑋𝑋_𝑙𝑙𝑙𝑙𝑙𝑙 = 0 𝑋𝑋_ℎ𝑖𝑖𝑖𝑖ℎ = 6 𝑋𝑋_𝑙𝑙𝑙𝑙𝑙𝑙 = 0 𝑋𝑋_ℎ𝑖𝑖𝑖𝑖ℎ = 2

2007 Nr. of Violations 10 10 10 10 1 0 0 0 0 0 0 0
Prob. 28,61% 28,61% 28,61% 28,61% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%

One-sided Test Result Accept Accept Accept Accept Reject Reject Reject Reject Reject Reject Reject Reject
Two-sided Test Result Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept

2008 Nr. of Violations 47 47 19 19 29 29 5 5 19 19 0 0
Prob. 0,00% 0,00% 5,22% 5,22% 0,00% 0,00% 1,18% 1,18% 5,22% 5,22% 0,00% 0,00%

One-sided Test Result Reject Reject Accept Accept Reject Reject Reject Reject Accept Accept Reject Reject
Two-sided Test Result Reject Reject Accept Accept Reject Reject Accept Accept Reject Reject Accept Accept

2009 Nr. of Violations 29 35 18 18 6 6 2 2 2 0 0 0
Prob. 0,00% 0,00% 8,35% 8,35% 2,96% 2,96% 0,02% 0,02% 0,02% 0,00% 0,00% 0,00%

One-sided Test Result Reject Reject Accept Accept Reject Reject Reject Reject Reject Reject Reject Reject
Two-sided Test Result Reject Reject Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept

2010 Nr. of Violations 8 12 18 18 1 1 3 3 0 0 0 0
Prob. 11,33% 50,59% 8,35% 8,35% 0,00% 0,00% 0,12% 0,12% 0,00% 0,00% 0,00% 0,00%

One-sided Test Result Accept Accept Accept Accept Reject Reject Reject Reject Reject Reject Reject Reject
Two-sided Test Result Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept

2011 Nr. of Violations 10 12 11 11 3 2 1 1 0 0 0 0
Prob. 28,13% 50,59% 39,05% 39,05% 0,12% 0,02% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%

One-sided Test Result Accept Accept Accept Accept Reject Reject Reject Reject Reject Reject Reject Reject
Two-sided Test Result Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept

5-Year Confidence Interval 𝑋𝑋_𝑙𝑙𝑙𝑙𝑙𝑙 = 48 𝑋𝑋_ℎ𝑖𝑖𝑖𝑖ℎ = 79 𝑋𝑋_𝑙𝑙𝑙𝑙𝑙𝑙 = 6 𝑋𝑋_ℎ𝑖𝑖𝑖𝑖ℎ = 20 𝑋𝑋_𝑙𝑙𝑙𝑙𝑙𝑙 = 0 𝑋𝑋_ℎ𝑖𝑖𝑖𝑖ℎ = 4

Overall Nr. of Violations 104 116 76 76 40 38 11 11 21 19 0 0
Prob. 0,00% 0,00% 5,62% 5,62% 0,10% 0,04% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%

One-sided Test Result Reject Reject Accept Accept Reject Reject Reject Reject Reject Reject Reject Reject
Two-sided Test Result Reject Reject Accept Accept Reject Reject Accept Accept Reject Reject Accept Accept

95% 99% 99,9%
Unconditional Conditional Unconditional Conditional Unconditional Conditional

α

ξ = 0 ξ > 0 ξ = 0 ξ > 0 ξ = 0 ξ > 0 ξ = 0 ξ > 0 ξ = 0 ξ > 0 ξ = 0 ξ > 0

Yearly Confidence Interval 𝑋𝑋_𝑙𝑙𝑙𝑙𝑙𝑙 = 6 𝑋𝑋_ℎ𝑖𝑖𝑖𝑖ℎ = 20 𝑋𝑋_𝑙𝑙𝑙𝑙𝑙𝑙 = 0 𝑋𝑋_ℎ𝑖𝑖𝑖𝑖ℎ = 6 𝑋𝑋_𝑙𝑙𝑙𝑙𝑙𝑙 = 0 𝑋𝑋_ℎ𝑖𝑖𝑖𝑖ℎ = 2

2007 Nr. of Violations 15 15 6 6 0 0 3 3 0 0 0 0
Prob. 27,61% 27,61% 3,05% 3,05% 0,00% 0,00% 0,12% 0,12% 0,00% 0,00% 0,00% 0,00%

One-sided Test Result Accept Accept Reject Reject Reject Reject Reject Reject Reject Reject Reject Reject
Two-sided Test Result Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept

2008 Nr. of Violations 50 49 17 17 29 29 6 6 19 19 1 1
Prob. 0,00% 0,00% 13,47% 13,47% 0,00% 0,00% 2,87% 2,87% 5,22% 5,22% 0,00% 0,00%

One-sided Test Result Reject Reject Accept Accept Reject Reject Reject Reject Accept Accept Reject Reject
Two-sided Test Result Reject Reject Accept Accept Reject Reject Accept Accept Reject Reject Accept Accept

2009 Nr. of Violations 52 46 10 10 4 5 2 2 0 0 0 0
Prob. 0,00% 0,00% 28,13% 28,13% 0,42% 1,22% 0,02% 0,02% 0,00% 0,00% 0,00% 0,00%

One-sided Test Result Reject Reject Accept Accept Reject Reject Reject Reject Reject Reject Reject Reject
Two-sided Test Result Reject Reject Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept

2010 Nr. of Violations 11 12 12 12 0 0 4 4 0 0 0 0
Prob. 39,05% 50,59% 50,59% 50,59% 0,00% 0,00% 0,42% 0,42% 0,00% 0,00% 0,00% 0,00%

One-sided Test Result Accept Accept Accept Accept Reject Reject Reject Reject Reject Reject Reject Reject
Two-sided Test Result Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept

2011 Nr. of Violations 11 11 11 11 2 2 1 1 0 0 0 0
Prob. 39,05% 39,05% 39,05% 39,05% 0,02% 0,02% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%

One-sided Test Result Accept Accept Accept Accept Reject Reject Reject Reject Reject Reject Reject Reject
Two-sided Test Result Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept

5-Year Confidence Interval 𝑋𝑋_𝑙𝑙𝑙𝑙𝑙𝑙 = 48 𝑋𝑋_ℎ𝑖𝑖𝑖𝑖ℎ = 79 𝑋𝑋_𝑙𝑙𝑙𝑙𝑙𝑙 = 6 𝑋𝑋_ℎ𝑖𝑖𝑖𝑖ℎ = 20 𝑋𝑋_𝑙𝑙𝑙𝑙𝑙𝑙 = 0 𝑋𝑋_ℎ𝑖𝑖𝑖𝑖ℎ = 4

Overall Nr. of Violations 139 133 56 56 35 36 16 16 19 19 1 1
Prob. 0,00% 0,00% 20,19% 20,19% 0,01% 0,01% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%

One-sided Test Result Reject Reject Accept Accept Reject Reject Reject Reject Reject Reject Reject Reject
Two-sided Test Result Reject Reject Accept Accept Reject Reject Accept Accept Reject Reject Accept Accept

95% 99% 99,9%
Unconditional Conditional Unconditional Conditional Unconditional Conditional
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Table 14 and 15 show the ES back-testing results for both thresholds. Like two-sided Kupiec 

test results, ES back-testing results shows all ‘Green’ for 2007, 2010 and 2011  and only 

conditional models are ‘Green’ for five-year-overal. There is some difference for 2008 and 

2009 between two thresholds. For 2008, only conditional models at 99.9% are ‘Green’ when 

𝑢𝑢 = 1%, but only conditional models at 95% confidence level are ‘Green’ when 𝑢𝑢 = 2%. For 

2009, conditional models are all ‘Green’ for both thresholds, when increasing the threshold 

from 1% to 2%, ES back-testing has the better results for unconditional models, besides the 

one at 95% confidence level. 

Table 14:the S&P500 ES Back-testing results under threshold u = 1% 

 

Table 15: ES Back-testing results under threshold u = 2% 

 

  

α

ξ = 0 ξ > 0 ξ = 0 ξ > 0 ξ = 0 ξ > 0 ξ = 0 ξ > 0 ξ = 0 ξ > 0 ξ = 0 ξ > 0
2007 Z (test statistic) 0,257 0,263 0,268 0,268 0,685 1,000 1,000 1,000 1,000 1,000 1,000 1,000

Test Result Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept
Traffic light Result Green Green Green Green Green Green Green Green Green Green Green Green

2008 Z (test statistic) -5,402 -5,401 -0,705 -0,705 -16,682 -16,678 -1,117 -1,117 -96,415 -96,392 1,000 1,000
Test Result Reject Reject Reject Reject Reject Reject Reject Reject Reject Reject Accept Accept

Traffic light Result Red Red Yellow Yellow Red Red Yellow Yellow Red Red Green Green

2009 Z (test statistic) -1,412 -1,513 -0,406 -0,406 -1,535 -0,804 0,184 0,184 -6,459 1,000 1,000 1,000
Test Result Reject Reject Accept Accept Reject Reject Accept Accept Reject Accept Accept Accept

Traffic light Result Yellow Yellow Green Green Yellow Yellow Green Green Red Green Green Green

2010 Z (test statistic) 0,442 0,287 -0,410 -0,410 0,671 0,743 -0,152 -0,152 1,000 1,000 1,000 1,000
Test Result Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept

Traffic light Result Green Green Green Green Green Green Green Green Green Green Green Green

2011 Z (test statistic) 0,196 0,144 0,143 0,143 -0,013 0,442 0,623 0,623 1,000 1,000 1,000 1,000
Test Result Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept

Traffic light Result Green Green Green Green Green Green Green Green Green Green Green Green

5-Year Z (test statistic) -1,188 -1,249 -0,223 -0,223 -3,388 -3,073 0,106 0,106 -20,052 -18,556 1,000 1,000
Overall Test Result Reject Reject Accept Accept Reject Reject Accept Accept Reject Reject Accept Accept

Traffic light Result Yellow Yellow Green Green Red Red Green Green Red Red Green Green

95% 99% 99,9%
Unconditional Conditional Unconditional Conditional Unconditional Conditional

α

ξ = 0 ξ > 0 ξ = 0 ξ > 0 ξ = 0 ξ > 0 ξ = 0 ξ > 0 ξ = 0 ξ > 0 ξ = 0 ξ > 0
2007 Z (test statistic) -0,010 -0,010 0,494 0,494 1,000 1,000 -0,159 -0,159 1,000 1,000 1,000 1,000

Test Result Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept
Traffic light Result Green Green Green Green Green Green Green Green Green Green Green Green

2008 Z (test statistic) -5,647 -5,581 -0,590 -0,590 -16,749 -16,849 -1,662 -1,662 -96,274 -97,301 -3,019 -3,019
Test Result Reject Reject Accept Accept Reject Reject Reject Reject Reject Reject Reject Reject

Traffic light Result Red Red Green Green Red Red Yellow Yellow Red Red Red Red

2009 Z (test statistic) -2,275 -2,039 0,173 0,173 -0,469 -0,682 0,130 0,125 1,000 1,000 1,000 1,000
Test Result Reject Reject Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept

Traffic light Result Red Red Green Green Green Green Green Green Green Green Green Green

2010 Z (test statistic) 0,330 0,285 -0,032 -0,032 1,000 1,000 -0,611 -0,611 1,000 1,000 1,000 1,000
Test Result Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept

Traffic light Result Green Green Green Green Green Green Green Green Green Green Green Green

2011 Z (test statistic) 0,189 0,192 0,149 0,149 0,376 0,429 0,598 0,598 1,000 1,000 1,000 1,000
Test Result Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept

Traffic light Result Green Green Green Green Green Green Green Green Green Green Green Green

5-Year Z (test statistic) -1,487 -1,435 0,038 0,038 -2,982 -3,035 -0,342 -0,343 -18,532 -18,738 0,193 0,193
Overall Test Result Reject Reject Accept Accept Reject Reject Accept Accept Reject Reject Accept Accept

Traffic light Result Yellow Yellow Green Green Red Red Green Green Red Red Green Green

95% 99% 99,9%
Unconditional Conditional Unconditional Conditional Unconditional Conditional
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4.4 Comparison 

Back-testing acceptance ratios are calculated and summarized in four categories: all models, 

models at 99% & 99.9% confidence levels, all GARCH models and GARCH models at 99% 

& 99.9% confidence levels.  Results are showed in table 16, 17, 18 & 19. The reason of no 

comparison for parametric 𝜉𝜉 in these tables is because only several differences figured in the 

results and both situations - 𝜉𝜉 > 0 is better or worse - are noticeable. 

Comparing table 16 with table 17 and table 18 with table 19, I find that at lower thresholds - 

1%,2% - there is no big difference between VaR models or ES models for both Ford and the 

S&P 500. However, when increasing the threshold to 3%, 4%, there is a higher rejection rate 

in both VaR and ES models when 𝛼𝛼 = 95%. Comparing table 16 with table 18 and table 17 

with table 19, I discover that conditional GARCH(1,1) models, captured the current market 

condition, perform better than unconditional ones.  

Furthermore, both ES and VaR models on average did worse in 2008 and 2009, the years with 

higher volatilities. For five-year-overall, the acceptance ratios are quite consistent when 

𝛼𝛼 = 99% 𝑜𝑜𝑜𝑜 𝛼𝛼 = 99.9%. Also, in GARCH(1,1) models at 99% and 99,9% confidence levels, 

nearly all models are passed back-testing, besides a few models: all ES models in 2008 and 

both VaR and ES models when 𝑢𝑢 = 4% for Ford in 2007 and 2009. 
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Table 16: Back-testing Acceptance Ratios – All models 

 

 

Table 17: Back-testing Acceptance Ratios – Models at 99% and 99,9% confidence levels 

 

 

Table 18: Back-testing Acceptance Ratios – All GARCH models 

 

 

Table 19: Back-testing Acceptance Ratios – GARCH models at 99% and 99,9% confidence levels 

 

  

Ford 1% 2% 3% 4% 1% 2% 3% 4% S&P 500 1% 2% 1% 2%
2007 100% 100% 83% 67% 100% 100% 83% 67% 2007 100% 100% 100% 100%
2008 50% 33% 33% 33% 8% 0% 17% 17% 2008 50% 50% 17% 17%
2009 58% 67% 50% 58% 58% 50% 50% 33% 2009 83% 83% 58% 83%
2010 83% 83% 83% 67% 100% 100% 100% 100% 2010 100% 100% 100% 100%
2011 83% 83% 67% 67% 100% 100% 100% 100% 2011 100% 100% 100% 100%

5-Year 50% 42% 33% 33% 50% 50% 33% 33% 5-Year 50% 50% 50% 50%
Total 71% 68% 58% 54% 69% 67% 64% 58% Total 81% 81% 71% 75%

VaR ES VaR ES

Ford 1% 2% 3% 4% 1% 2% 3% 4% S&P 500 1% 2% 1% 2%
2007 100% 100% 100% 75% 100% 100% 100% 75% 2007 100% 100% 100% 100%
2008 50% 50% 50% 50% 13% 0% 25% 25% 2008 50% 50% 25% 0%
2009 63% 75% 75% 88% 63% 63% 75% 50% 2009 100% 100% 63% 100%
2010 100% 100% 100% 100% 100% 100% 100% 100% 2010 100% 100% 100% 100%
2011 100% 100% 100% 100% 100% 100% 100% 100% 2011 100% 100% 100% 100%

5-Year 50% 50% 50% 50% 50% 50% 50% 50% 5-Year 50% 50% 50% 50%
Total 77% 79% 79% 77% 71% 69% 75% 67% Total 83% 83% 73% 75%

VaR ES VaR ES

Ford 1% 2% 3% 4% 1% 2% 3% 4% S&P 500 1% 2% 1% 2%
2007 100% 100% 67% 33% 100% 100% 67% 33% 2007 100% 100% 100% 100%
2008 100% 67% 67% 67% 17% 0% 33% 33% 2008 100% 100% 33% 33%
2009 100% 100% 67% 67% 100% 83% 67% 33% 2009 100% 100% 100% 100%
2010 100% 100% 100% 67% 100% 100% 100% 100% 2010 100% 100% 100% 100%
2011 100% 100% 67% 67% 100% 100% 100% 100% 2011 100% 100% 100% 100%

5-Year 100% 83% 67% 67% 100% 100% 67% 67% 5-Year 100% 100% 100% 100%
Total 100% 92% 72% 61% 86% 81% 72% 61% Total 100% 100% 89% 89%

VaR ES VaR ES

Ford 1% 2% 3% 4% 1% 2% 3% 4% S&P 500 1% 2% 1% 2%
2007 100% 100% 100% 50% 100% 100% 100% 50% 2007 100% 100% 100% 100%
2008 100% 100% 100% 100% 25% 0% 50% 50% 2008 100% 100% 50% 0%
2009 100% 100% 100% 100% 100% 100% 100% 50% 2009 100% 100% 100% 100%
2010 100% 100% 100% 100% 100% 100% 100% 100% 2010 100% 100% 100% 100%
2011 100% 100% 100% 100% 100% 100% 100% 100% 2011 100% 100% 100% 100%

5-Year 100% 100% 100% 100% 100% 100% 100% 100% 5-Year 100% 100% 100% 100%
Total 100% 100% 100% 92% 88% 83% 92% 75% Total 100% 100% 92% 83%

VaR ES VaR ES
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5  Conclusion 

Extreme value theory is a way of smoothing the tails of the probability distribution of 

portfolio daily changes calculated using historical simulation. It leads to estimates of VaR and 

ES that reflect the whole shape of the tail of the distribution, not just the positions of a few 

losses in the tails. In addition, EVT could focus on directly modeling the right tail of the loss 

distribution, in contrast to other parametric methods that models the whole distribution. As 

stated by previous researchers that EVT can be used to improve VaR and ES estimates and to 

help in situations where analysts want to estimate VaR or ES with a very high confidence 

level, my study shows the same result by both two distributions - models perform better at 

99% or 99.9% confidence levels. But according to the higher back-testing acceptance ratios in 

VaR than in ES, it should be noted that the estimation error is larger for ES than for VaR 

when fat-tailed distributions are used. 

In the GARCH(1,1) model, the weights assigned to observations decrease exponentially as the 

observations become older, the more recent an observation, the greater the weight assigned to 

it. The GARCH(1,1) model keeps track of the current level of volatility, it improve the test 

results, especially during financial crisis periods when there are more fluctuation log-returns. 

Thus, to capture the market volatilities is one of the most important methods in financial risk 

management. 

Moreover, the threshold 𝑢𝑢 does impact on the results, but not significant. We want 𝑢𝑢 to be 

sufficiently high that we are truly investigating the shape of the tail of the distribution, but 

sufficiently low that the number of data items included in the maximum likelihood calculation 

is not too low. It is worthwhile computing the models with different thresholds as I find that 

there must be at least one observation larger than 𝑢𝑢 in the conditional model in addition to the 

rule of thumb that 𝑢𝑢 should be approximately equal to the 95th percentile of the empirical 

distribution suggested by the book.   

Final, due to the limitation of the paper, suggestion for future studies would be to compute the 

left tail risk and apply to more portfolios. Also, more sophisticated ES back-testing processes 
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could be applied. (See, Paul Embrechts, Roger Kaufmann & Pierre Patie (2005) Strategic 

Long-Term Financial Risks: Single Risk Factors, Chapter 7,1 Backtesting) 
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Appendix A. GARCH(1,1) EView Results – Ford 

2007 Forecast 

 

2008 Forecast

 

2009 Forecast

 

2010 Forecast

 

2011 Forecast 
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Appendix B. GARCH(1,1) EView Results – the S&P 500 

2007 Forecast 

 

2008 Forecast 

 

2009 Forecast 

 

2010 Forecast 

 

2011 Forecast 
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Appendix C. GARCH(1,1) Solver Results comparing to EViews’ 
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