
Parallelization Of The GMRES
Method

Morgan Görtz

Centre for Mathematical Sciences
Numerical Analysis

C
E

N
T

R
U

M
SC

IE
N

T
IA

R
U

M
M

A
T

H
E

M
A

T
IC

A
R

U
M

Abstract

In this thesis a GMRES method is constructed and tested. The method is implemented
in a C++ program with the MPI protocol to make it parallel. The parallel parts of this
program are discussed in detail, especially the communication and the partitioning of the
data between the processes. In the tests that were conducted we come to three important
conclusions: the method works as expected, a substantial improvement is observed when
more processes are introduced, and the method seems to be stable for very large systems.

2

Contents

1 List of terms 5

2 Introduction 6

3 Preliminaries 7
3.1 Cayleigh-Hamilton Theorem . 7
3.2 The Krylov Space . 7
3.3 GMRES . 7
3.4 Householder transformations . 9
3.5 Givens Rotations . 10
3.6 MPI . 11
3.7 A parallel vector class . 12

3.7.1 Partitioning . 12
3.7.2 The main structure of the class . 14

3.8 CSV documents . 16

4 The GMRES method we implement 17
4.1 General GMRES . 17
4.2 Elements of this implementation . 17
4.3 The method . 18

4.3.1 The iterative part of the GMRES implementation 18
4.3.2 The least-squares part of the GMRES implementation 19

4.4 A comment about how this works . 19

5 The components of the GMRES implementation 22
5.1 Data structure . 22
5.2 The serial variables . 23

5.2.1 Parallelized Householder functions 23

6 Test: Does the method work 25
6.1 Method . 26
6.2 Presentation . 26
6.3 Conclusion . 26

7 Test: Improvements 27
7.1 Main questions we wish to answer . 27
7.2 Method . 27
7.3 Presentation . 29
7.4 Validity discussion . 31
7.5 Discussion . 31
7.6 Conclusions . 32

8 Test: Consistency for very large systems 32
8.1 Main questions we wish to answer . 32
8.2 Method . 32
8.3 Presentation . 34
8.4 Discussion . 35
8.5 Conclusion . 37

3

9 Continued work 37

10 Conclusion 38

A Appendices 39
A.1 The code for the GMRES method . 39

4

1 List of terms

Parallel method A method that utilizes multiple simultaneous
processes.

Serial method A method that only utilizes one process.

Local index The index of a cell of a partition.

Global index The index of a partitioned vector.

Local communication Communication within one process.

Global communication Communication between active processes.

5

2 Introduction

Solving linear systems is necessary for many numeric topics. It is for example, essential
for solving stiff differential equations, solving several approximation problems, and run-
ning most advanced simulations. Construction of fast linear solvers is necessary because
linear solvers are often an integral part of numerical methods. For example, the implicit
Runge-Kutta methods, which construct and solve multiple different linear systems.

The linear solver implemented in this paper is the Generalized Minimal RESidual (GM-
RES) method. It is an iterative solver that finds approximations within the Krylov sub-
space, a subspace of Rn, of the system. The GMRES method works with approximations
to a problem and allows the user to provide an initial approximation that the solver can
start from. This is useful if you have an idea of what the solution to the system is, for
example with linear multistep methods. The tests here were inspired by the implicit Euler
method which fits well with the GMRES method.

Efforts were concentrated on making the GMRES method faster and hence more effi-
cient. One way of doing this is to parallelize the method. Most modern computers have
multiple processing cores that allow multiple programs to run simultaneously or allow
one program to use multiple cores. For the latter you need a protocol that handles the
communication between the cores. It was decided to use the most common protocol, MPI,
within the C++ programming language. Although the protocol allows communication,
it should not be used in abundance because communication is costly due to finite signal
speed and hardware protocols. Due to this fact, a serial method can be very different
from its parallel counterpart in terms of data handling. In this paper, the way the data
and communication are handled is discussed in detail, as well as how the method was
constructed.

6

3 Preliminaries

In this thesis, a set of theorems and mathematical concepts are introduced. These are
necessary for the theoretical part of the GMRES method. Part of the implementation
will also be discussed. First a brief introduction to the MPI protocol will be presented
along with a couple of examples to clarify how the protocol is implemented. Lastly, a fully
functioning MPI-parallelized vector class, in C++, is constructed, created, and discussed.

3.1 Cayleigh-Hamilton Theorem

The Cayleigh-Hamilton Theorem [1]:

Given an arbitrary matrix A ∈ Rn×n, the characteristic polynomial defined as:

p(x) = det(A− Ix)

has the property:
p(A) = 0.

3.2 The Krylov Space

The Krylov space [2] Km(A, y) is defined as the space spanned by the vectors:

(y,Ay, . . . , Am−1y), A ∈ Rn×n, y ∈ Rn.

3.3 GMRES

The GMRES method [2] is an iterative solver that solves:

Ax = b⇔ b−Ax = 0,

where a non-singular matrix A ∈ Rn×n and a vector y ∈ Rn is given. An initial guess, say
x0 ∈ Rn, to the system is also given.

The main idea of the GMRES method is using a set of linearly independent vectors,
(v1, . . . , vn) ∈ Rn, spanning a specific subspace of Rn, to reduce the normed residual,
‖rk‖2 over k. This is done by solving the following recursive least-squares problem:b−Ax0 = r0, k = 0

min
ẋ∈ span(v1,...,vk)

‖b−A(xk−1 + ẋ)‖2 = ‖b−Axk‖2 = ‖rk‖2, k = 1, . . . , n.

We also note that if the basis (v1, . . . , vn) is orthogonal, the recursive step may be simplified
to:

min
α∈R
‖b−A(xk−1 + αvk)‖2 = ‖b−Axk‖2 = ‖rk‖2.

The subspace that is used in the GMRES method is not necessarily defined as orthog-
onal, but in most implementations an orthogonal basis is found to make calculations easier.

The subspace that is used in GMRES method is always the Krylov space:

Km(A, r0) = span(r0, Ar0, . . . , A
k−1r0).

7

This specific subspace is chosen so that the residual rk converges to 0 very quickly for
diagonalizable matrices. In most cases, for such matrices, very few iterations have to be
performed before the residual is negligible. Such fast convergence is greatly welcomed,
especially in massive linear systems where a satisfying solution might be found within the
first couple of iterations and thereby saving a great amount of computation time.

Convergence

We will show that if A is non-singular then x can be found within n iterations. Assume
we are on the n:th iteration. Then xn can be written as:

xn = x0 − α1r0 − α2Ar0 − . . .− αnAn−1r0.

If we put this into the least-squares problem we get:

min
αi∈C, i∈{1,...,n}

‖b−Ax0 +A
n∑
i=1

αiA
i−1r0‖2 = min

αi∈C, i∈{1,...,n}
‖r0 +

n∑
i=1

αiA
ir0‖2 =

min
αi∈C, i∈{1,...,n}

‖
n∑
i=1

αiA
i‖2‖r0‖2 = min

p∈Pn,p(0)=1
‖p(A)‖2‖r0‖2.

Now to show that this is equal to zero and hence x = xn, all we need is to find a polynomial
of degree n that has the property:

p(A) = 0 ∧ p(0) = 1.

Because A is non-singular, the characteristic polynomial p(x) = det(A− Ix) ∈ Pn is non
vanishing in 0 and hence we can create the polynomial:

p̄(x) =
p(x)

p(0)
∈ Pn

with the property:
p̄(0) = 1.

Together with the Cayleigh Hamilton theorem we have:

p̄(A) =
p(A)

p(0)
= 0

Hence there exists a polynomial with the required properties.

Rate of convergence

Say ‖rk‖2 is the normed residual of the k:th iteration and that A is non-singular. Then
we can write:

‖rk‖2 = min
p∈Pk,p(0)=1

‖p(A)‖2‖r0‖2 ⇔

‖rk‖2
‖r0‖2

= ‖p̄k(A)‖2

if:
p̄k = min

p∈Pk,p(0)=1
‖p(A)‖2.

8

Assuming A is also diagonalizable and that A = V ΛV −1 then:

‖rk‖2
‖r0‖2

= ‖V p̄k(Λ)V −1‖2 ⇒

‖rk‖2
‖r0‖2

≤ κ2(V)‖p̄k(Λ)‖2.

If the matrix A is diagonalizable, we note that the rate of convergence is directly linked to
the largest diagonal entry of p̄k(Λ), say σk, and at what rate |σk| tends to zero as k → n.

3.4 Householder transformations

Householder Transformations [3]:

To find the reflection of a point x with respect to the hyperplane orthogonal to a vec-
tor v, we have the following equation:

ẋ = x− 2(x, v)v = x− 2v(vH , x) = (I − 2vvH)x.

The matrix I − 2vvH is the householder transformation. By construction the matrix is
symmetric and if v is normal, it is also orthogonal.

Triangulation with Householder transformations

One use of Householder transformations is to transform a non singular linear system to a
triangular one. To do this a set of orthogonal Householder transformations P1, . . . , Pn−1 ∈
Rn×n are constructed with respect to a system, A ∈ Rn×n, b ∈ R. With theses transfor-
mations we can transform the system

Ax = b

to:
Pn−1 . . . P1Ax = Pn−1 . . . P1b⇔

Rx = Pn−1 . . . P1b, R upper triangular.

The construction of Householder transformations for triangularization

Say you have a non-singular matrix A ∈ Rn×n. Then by taking the first column, say A1,
we construct a vector v1 by:

α = −sgn(A11)

√√√√ n∑
i=1

(A1i)2,

r =

√
1

2
(α2 −A11α),

v11 =
A11 − α

2r
, and v1i =

A1i

2r

where A1i and v1i are the i:th index of the corresponding vector. The vector vi by construc-
tion is a a unit vector. Using the vector v1, we produce the first orthogonal Householder

9

transformation P1. Applying the transformation P1 to A produces a matrix, say A1, with
the property A1

1 = (α1, 0 . . . , 0), α1 ∈ R. Because the first column of A1 is of the form we
want, the next Householder transformation P2 will be on the form:

P2 :=

1 0 . . . 0
0
... P̂2

0

 .
To get P̂2 ∈ R(n−1)×(n−1), we generate a vector v̂2 ∈ Rn−1 with the equation from before,
but now with respect to A1 and offset by one:

α = −sgn(A1
22)

√√√√n−1∑
i=1

(A1
2i)

2,

r =

√
1

2
(α2 −A1

22α),

v̂21 =
A1

22 − α
2r

, and v̂2i =
A1

1i

2r
.

Now constructing the orthogonal transformation P̂2 from the unit vector v̂2 we get the
orthogonal transformation P2 as previously defined. Applying P2 to A1 gives a matrix,
say A2, with the same property as A1, but also has the second column of the form:

A2
2 = (α21, α22, 0, . . . , 0), α21, α22 ∈ R.

Continuing this pattern by offsetting the equations and using the equations to construct
Householder transformations that only effect the last i columns and rows, by defining them
as:

Pi =

[
Ii−1 0

0 P̂i

]
, Ii is the identity matrix of dimension i,

we end up with the orthogonal transformations P1, . . . , Pn−1. These transformations when
applied to the matrix A gives us the desired result:

Pn−1 . . . P1A = R, R, upper triangular.

3.5 Givens Rotations

A givens rotation [4] Ji is an orthogonal linear transformation that only acts on positions
i and i + 1. The rotation is given by replacing the i:th and i + 1:th row of the identity
matrix to:

J =

1
. . . 0

c s
−s c

0
. . .

1

where s = sin(θ) and c = cos(θ) for some θ ∈ R.

10

3.6 MPI

MPI [5] is a protocol that handles communication between processes. A MPI code works
by having all processors run the code at the same time in different instances with different
memory. In the beginning of each program the separate processes are given separate
ID’s and groups. These ID’s can be used to identify and distribute work on the separate
processes. A very simple setup would be:

Begin MPI
Get ID

Print ID
End MPI.

#include <mpi.h>
#include <iostream>

using namespace MPI;
using namespace std;

int main(){
 Init();
 int id = COMM_WORLD.Get_rank();
 cout<<"Hello from process: "<<id<<endl;
 Finalize();
 }

Figure 1: A C++ implementation of the simple program

In this code, the processes would each be assigned an ID and then simply print it.
Communication is the next step because we wish to distribute work and MPI
implements a broad set of communication types, for example:

Broadcast, send something from one process to all others
Send and receive, send something from one process to anther

Reduce, do a reduction operation on all processes entries and return it to a processes
(for example summation)

Reduce All, do a reduction operation on all processes’ entries and return it to all
processes

In the method we intend to parallelize, we use vectors. The easiest way to combine MPI
with vectors and vector operations is to split the vectors into parts:

v = (v1, . . . , vn)

v = (v̂1, . . . , v̂k).

Assuming we have k processes, we handle v̂i on the separate processes.

Say we have a vector v that is partitioned on the different processes as vectors v̂i. A way
to get the norm of the vector v on all processes would be:

11

Begin MPI
entry=Sum of the squared entries of v̂i

Reduce All(summation,entry,result)
norm=square root(result)

End MPI.

#include <mpi.h>
#include <math.h>

using namespace MPI;

int main(){
 Init();
 //Generate an example vector
 double vector[5]={1,2,3,4,5};
 //Calculate the local summs
 double sum=0;
 for(int i=0;i<5;i++){
 sum=vector[i]*vector[i];
 }
 //Calculate the global norm
 double norm=0;
 MPI_Allreduce(&sum,&norm,1,DOUBLE,SUM,COMM_WORLD);
 norm=sqrt(norm);
 Finalize();
 }

Figure 2: A C++ implementation of the norm program

Note that we do not need the ID of the processes in this method because we only use
global communication.

3.7 A parallel vector class

For the parallelized vectors in this thesis, a special vector class, in C++, was written.
This vector class utilizes a partition protocol that distributes the vector into cells among
the active processes. It also handles basic arithmetic operations between vectors.

3.7.1 Partitioning

Normally a partition scheme is given by the user for specific problems and computer
set-ups. Because no scheme was given, one had to be created. To partition a vector you
need two parameters: the size of the vector, say n, and the number of processes, say k.
Because this program is assumed to be run on identical processors within one computer,
we can assume an equal distribution is optimal. When talking about the partitioned
vector and the partitions themselves, the vectors’ indices are referred to as global and the
cells are referred to as local. The partition scheme that was used was that of Figure 3.

12

The first process: Lfirst = n− (k − 1)floor(nk)

The other processes: Lrest = floor(nk)

Figure 3: The partition scheme

To verify that this is a valid partition, we sum all the cells lengths

n− (k − 1)floor(
n

k
) +

k∑
i=2

floor(
n

k
) = n,

to validate that all elements of the vector are accounted for. In my method, I call this
function segment length(n), where the number of processes is a global variable in MPI.

Mapping the partitions

With the length of all the separate partitions defined, we need to map theses partitions
to the global vector. This is done by having the first process handle the first set of
indices, the second process the second set and so on. To keep track of these positions, we
define the variable li as the first global index of the partitioned vector on the current
process i and ui as the one after the last. These variables are defined as follows:

i ∈ {1, . . . , k}

li =

{
0, i = 1

Lfirst + (i− 2) ∗ Lrest, else

ui = Lfirst + (i− 1) ∗ Lrest.

Theses variables are defined as functions segment lower(n) and segment upper(n) in my
program, where n is the dimension of the vector and the active process is determined by
the process that calls it. These variables are used to easily identify what interval of the
global vector a process is active in.

Utility functions

To work more easily with the defined protocol, two extra utility functions were created.
The first get process(n,i) returns an integer that represents the process that handles the
global index i of a partitioned vector of dimension n. As well as a function get index(n,i)
that returns the local index to the local cell for the the global index i if n is the
dimension.

Example

Given a vector v ∈ Rn and k processors, the vector v is partitioned as follows:

v = (v1, . . . , vn)

v = (v̂1, . . . , v̂k)

13

where #v̂1 = Lfirst and #v̂i = Lrest, i = 2, . . . , k.

Say we wish to work with vj , then we can use the utility function get process(j,n) to get
the v̂i that this entry is partitioned to and then use the get index(j,n) to get the index of
the cell v̂i that corresponds to vj .

3.7.2 The main structure of the class

The following functions are defined in my vector class:

1. len(): Get the length of the vector

2. li(),ui(): where [li(), ui()) is the acting range of the global indices for the current
process.

3. ([]): Get a single entry

4. (*=): Multiplication with scalar

5. (+,-,=,+=,-=): Vector operations

6. (*): Vector dot product.

7. (==,!=): Boolean operators.

Constructor

When an instance of this class is created, the only variable that is needed is the
dimension of the global vector. All processors allocate a vector segment according to the
partition scheme above (segment length(n)) and store the length of the global vector in a
variable length.

 //Constructor
 mpi_doubleVector(int n){
 length=n;
 segment=segment_lenght(n);

 //Get the lower and upper intervall of the active process
 LI=segment_lower(n);
 UI=segment_upper(n);

 //Get a vector segment accoringly
 vector=(double*)calloc(segment,sizeof(double));
 //Just a placeholder
 tmp=(double*)calloc(1,sizeof(double));

 };

 //Create the += operation
 void operator+=(mpi_doubleVector in){
 //If they don't have the same length then throw an exception
 if(length!=in.len()){
 cout<<"Vectors has different lenght"<<endl;
 throw;
 }else{
 for(int i =LI;i<UI;i++){
 vector_at_index(i)+=in[i];
 }
 }
 }

 //Create a dot product
 double operator*(mpi_doubleVector in){
 //If they don't have the same length then throw an exception
 if(length!=in.len()){
 cout<<"Vectors has different lenght"<<endl;
 throw;
 }else{
 double tmp1=0,out=0;
 for(int i =LI;i<UI;i++){
 tmp1+=in[i]*vector_at_index(i);
 }
 MPI_Allreduce(&tmp1,&out,1,MPI_DOUBLE,MPI_SUM,COMM_WORLD);
 return out;
 }
 }

Figure 4: The constructor of my mpi doubleVector class

14

Single indicies

To make this class versatile, global indicies are used when modifying the vector. This is
handled by using a dump variable and it works as follows:

Say I have a vector v and I want to set:

v[i] = 10.

If the process that has the global index tries this operation, it will succeed in changing
the variable that corresponds to that index. But if another process tries to call this
operation, it will only change a dump variable and hence do nothing. The way it is
implemented is show in figure 5

 //Get a single entry to the process that contains that entry
 double& operator[](int i){
 if(i>=length){
 cout<<endl<<"Indentation error"<<endl;
 }
 const int id =COMM_WORLD.Get_rank();
 //Is index allocated in the current process
 if(get_process(length,i)==id){
 return vector[get_index(length,i)];
 }
 //If not return a dump varible
 return tmp[0];
 }

Figure 5: Overloading the [] operation using a dump variable

Creating parallel operations

With this setup, we could construct parallel independent operations, such as addition
and subtraction, as is usually done with a loop for each index. This however would be
counterproductive as it would involve a ton of meaningless operations being performed
(so many that we might as well work in serial). Instead, the local variables li and ui are
used to isolate the relevant intervals for the local cells to bypass that problem. This is
done and is implemented for example in overloaded += operation in figure 6.

15

 //Constructor
 mpi_doubleVector(int n){
 length=n;
 segment=segment_lenght(n);

 //Get the lower and upper intervall of the active process
 LI=segment_lower(n);
 UI=segment_upper(n);

 //Get a vector segment accoringly
 vector=(double*)calloc(segment,sizeof(double));
 //Just a placeholder
 tmp=(double*)calloc(1,sizeof(double));

 };

 //Create the += operation
 void operator+=(mpi_doubleVector in){
 //If they don't have the same length then throw an exception
 if(length!=in.len()){
 cout<<"Vectors has different lenght"<<endl;
 throw;
 }else{
 for(int i =LI;i<UI;i++){
 vector_at_index(i)+=in[i];
 }
 }
 }

 //Create a dot product
 double operator*(mpi_doubleVector in){
 //If they don't have the same length then throw an exception
 if(length!=in.len()){
 cout<<"Vectors has different lenght"<<endl;
 throw;
 }else{
 double tmp1=0,out=0;
 for(int i =LI;i<UI;i++){
 tmp1+=in[i]*vector_at_index(i);
 }
 MPI_Allreduce(&tmp1,&out,1,MPI_DOUBLE,MPI_SUM,COMM_WORLD);
 return out;
 }
 }

Figure 6: Overloading the += operation using local restriction variables li = LI, ui = UI

Creating the parallel dot product

The only method in this class (not counting the Boolean operators) that requires
communication between processes is the dot product. This is simple and very similar to
the previous example in Figure 6. The only difference is that we perform an Allreduce at
the end. The code for the dot product is presented in Figure 7.

 //Constructor
 mpi_doubleVector(int n){
 length=n;
 segment=segment_lenght(n);

 //Get the lower and upper intervall of the active process
 LI=segment_lower(n);
 UI=segment_upper(n);

 //Get a vector segment accoringly
 vector=(double*)calloc(segment,sizeof(double));
 //Just a placeholder
 tmp=(double*)calloc(1,sizeof(double));

 };

 //Create the += operation
 void operator+=(mpi_doubleVector in){
 //If they don't have the same length then throw an exception
 if(length!=in.len()){
 cout<<"Vectors has different lenght"<<endl;
 throw;
 }else{
 for(int i =LI;i<UI;i++){
 vector_at_index(i)+=in[i];
 }
 }
 }

 //Create a dot product
 double operator*(mpi_doubleVector in){
 //If they don't have the same length then throw an exception
 if(length!=in.len()){
 cout<<"Vectors has different lenght"<<endl;
 throw;
 }else{
 double tmp1=0,out=0;
 for(int i =LI;i<UI;i++){
 tmp1+=in[i]*vector_at_index(i);
 }
 MPI_Allreduce(&tmp1,&out,1,MPI_DOUBLE,MPI_SUM,COMM_WORLD);
 return out;
 }
 }

Figure 7: Overloading the * operation to get the dot product

3.8 CSV documents

I will use different programming languages when handling the data from all the tests.
For the programs to work with the data generated and/or modified, some form of file to
export the data needs to be generated. One of the easiest formats for this job is a csv
(comma separated values) document [6]. This document has a set of values separated
with commas and line breaks. The structure of the document is that of a table so, for
example, Table 1 is written to a file as shown in Figure 8.

16

Table 1: The table we wish to express as an csv document.

Number data1 data2

1 0.1 0.2
2 0.2 0.3
3 0.3 0.4

Number,data1,data2
1,0.1,0.2
2,0.2,0.3
3,0.3,0.4

Figure 8: Table 1 expressed as an csv document.

4 The GMRES method we implement

The implementation of the GMRES method that we are using was constructed and
presented by Homer F. Walker in the paper Implementation of the GMRES Method
Using Householder Transformations [7].

4.1 General GMRES

The system we wish to solve is:

Ax = b⇔ b−Ax = 0

where a non-singular matrix A ∈ Rn×n, b ∈ Rn, and an initial guess x0 ∈ Rn are given.
We also define the initial residual as:

r0 = b−Ax0.

4.2 Elements of this implementation

In this implementation we are satisfied with a residual rj such that:

‖b−Axj‖2 = ‖rj‖2 < tol

where tol is a tolerance parameter given by the user. We also restart the GMRES
method when k iterations have been performed. Then we set the new calculated
approximation xk as x0 and restart. The amount of times that the method is allowed to
restart is set by a parameter max starts. The GMRES method needs to be continuously
restarted due to memory constraints. In this specific implementation of GMRES, we will
not solve the least-squares problem until k iterations have been performed or a sufficient
approximation to the system has been found. Because each iteration will require us to
save an amount of data relative to the dimension of the system, system memory will fill
up fairly quickly. The solution to the memory problem is to restart the method before
that problem occurs.

17

4.3 The method

We will use Householder transformations Pi as defined in section 3.4 and Givens
rotations Ji as defined in section 3.5 to orthogonalize the Krylov space to make it easier
to solve the least-squares problem.

4.3.1 The iterative part of the GMRES implementation

The first part of the GMRES implementation will be described as an accumulative
recursion over an index i in the following section. For clarification, vi is a vector and vij
is the j:th index of the vector vi.

Initial step (i = 1)

First we generate P1 and define v1:{
P1 : P1r0 = ‖r0‖2e1
v1 := P1AP1e1.

Then we find P2 such that:

P2 : P2v1 = (v11, ψ, 0 . . . , 0), ψ ∈ R.

With this new transformation, P2, we get J1 by solving:

J1P2v1 = (α, 0 . . . , 0), α ∈ R.

Finally we define R1 by:
R1 = J1P2v1.

At this point we have v1, P1, P2, J1, and R1 which is enough to start the recursion.

Recursive step (i = 2, . . . , k)

First vi is defined as:
vi := Pi . . . P1AP1 . . . Piei.

With this definition, we find Pi+1 by:

Pi+1 : Pi+1vi = (vi1, ..., vii, ψ, 0, . . . , 0), ψ ∈ R.

Then we define a new vector v̄i as:

v̄i := Ji−1 . . . J1Pi+1vi.

To get Ji we solve:

Ji : Jiv̄i = (v̄i1, ..., v̄i,i−1, θ, 0, . . . , 0), θ ∈ R.

Ri is constructed by adding Jiv̄i as a column to Ri−1:

Ri = [Ri−1, Jiv̄i].

Finally we check if we need to do another iteration. If (i = k) or (
|[J1 . . . JiP1r0]i+1| < tol), continue to the Solver in section 4.3.2. Otherwise, do the next
recursive step i+ 1.

18

4.3.2 The least-squares part of the GMRES implementation

In this section, we will use the variables generated in the accumulative recursion in
section 4.3.1 to find the new approximation xm assuming the recursion stopped at i = m.
xm will be the solution to the GMRES implementation and the GMRES method for m
iterations. The statements made in the following section will be proven in section 4.4

Solver

Say that the iteration stopped at i = m. Then the first m rows and columns of R are an
upper triangular matrix, say R̂m, by construction. This matrix and the first m
coordinates of w = J1 . . . JiP1r0 ∈ Rn, say ŵ ∈ Rm, form the system:

R̂my = ŵ.

Solving this y ∈ Rm will be the last step of finding the solution to the GMRES method
for m iterations, because the solution xm can be calculated by:

xm = x0 + y1P1e1 + . . .+ y1P1 . . . Pmem.

This xm will solve the least-square problem:

min
ẋ∈ x0+Km(A,r0)

‖b−Aẋ‖2 = ‖b−Axm‖2 = ‖wm+1‖ = ‖rm‖2

which completes the GMRES method for m iterations.

Restart

Once xm is found, we need to check if our new approximation satisfies the desired
tolerance. This is simple because ‖rm‖2 = ‖wm+1‖2. If our new approximation satisfies
the desired tolerance or if the maximum number of restarts (max starts) is met, we
return the new approximation with a corresponding flag. If not, restart the method by
doing another recursion in section 4.3.1 with xm as x0

4.4 A comment about how this works

In this section, we will prove two major statements made in section 4.3.2 in the solver
subsection. We will also use the definitions stated in section 4.3.1. The first proof will be
to show that (P1e1, . . . , P1 . . . Pmem) is a basis for Km(A, r0). The second proof will show
that xm is indeed the solution to the least-square approximation and hence the solution
to the GMRES method after m iterations.

A basis of the Krylov space

In this section we will show that:

span(P1e1, . . . , P1 . . . Pmem) = Km(A, r0).

The proof will be inductive. We will assume that m > 1 without loss of generality.

19

Proof:
The base case comes directly from the definition of P1. We know that:

P1r0 = ‖r0‖2e1.

Because P1 is orthogonal and symmetric, we know it is self-inverse. This implies that:

(P1)
2r0 = ‖r0‖e1 ⇔ r0 = ‖r0‖P1e1.

That in turn means that P1e1 spans the same space as r0 which is the space of K1(A, r0).

With the base proved, we wish to show that:

span(P1e1, . . . , P1 . . . Piei) = Ki(A, r0)⇒ span(P1e1, . . . , P1 . . . Pi+1ei+1) = Ki+1(A, r0).

To start, we note that if:

Ki(A, r0) = span(r0, Ar0, . . . , A
i−1r0) = span(P1e1, . . . , P1 . . . Piei)⇒

Ki+1(A, r0) = span(r0, Ar0, . . . , A
i−1r0, A

ir0) = span(P1e1, AP1e1, . . . , AP1 . . . Piei).

This is because the r0 component in Ki+1(A, r0) is spanned by P1e1 and the rest of the
components are accounted for due to the induction hypothesis (it is just multiplied by
A). This means that we can instead prove the statement:

span(P1e1, . . . , P1 . . . Pi+1ei+1) = span(P1e1, AP1e1, . . . , AP1 . . . Piei).

This can be proven if we apply the orthogonal transformation Pi . . . P2P1 to each
subspace:

span(P1e1, . . . , P1 . . . Pi+1ei+1) = span(P1e1, AP1e1, . . . , AP1 . . . Piei)⇔

span(Pi+1 . . . P2P1(P1e1, . . . , P1 . . . Pi+1ei+1)) = span(Pi+1 . . . P2P1(P1e1, AP1e1, . . . , AP1 . . . Piei)).

On the left hand side, we realize that Pi is self-inverse and Pjei = ei, j > i. On the right
hand side, we know that Pi . . . P1AP1 . . . Pi = vi by definition. Applying this information
to the equation gives us:

span(e1, . . . , ei+1) = span(Pi+1 . . . P2v1, . . . , Pi+1vi).

Now we use the definition of Pj+1:

Pj+1 : Pj+1vj = (vj1, ..., vjj , ψ, 0, . . . , 0), ψ ∈ R.

Here we note that PjPi+1vj = Pi+1vj , j > i+ 1 which means that:

span(e1, . . . , ei+1) = span(P2v1, . . . , Pi+1vi).

Then by taking the only possible non-zeros rows of [P2v1, . . . , Pi+1vi], say
T ∈ R(i+1)×(i+1), we get an upper triangular square matrix. Due to the vectors
(P2v1, . . . , Pi+1vi) only being able to effect the first i+ 1 indicies as a basis, we conclude
that:

u ∈ span(Pi+1 . . . P2v1, . . . , Pi+1vi)⇔

uj = 0, j > i+ 1⇔

u ∈ span(e1, . . . , ei+1). �

The proof is now finished by the principle of mathematical induction.

20

The solution to the least-square problem

To show that the solution of our method is indeed the solution to the GMRES method
we will show that:

min
ẋ∈ x0+Km(A,r0)

‖b−Aẋ‖2 = ‖b−Axm‖2 = ‖rm‖2 = (X).

Proof:
In the previous proof, we showed that ẋ can be written as:

ẋ = x0 + α1P1e1 + . . .+ αmP1 . . . Pmem, αi ∈ R

where i = 1, . . . ,m, due to (P1e1, . . . , Pm . . . P1em) being a basis for Km(A, r0). So let us
put this form in the least-square problem that we wish to prove:

(X) = min
αi∈R: i=1,...,m

‖b−A(x0 + α1P1e1 + . . .+ αmP1 . . . Pmem)‖2 =

min
αi∈R: i=1,...,m

‖r0 −A(α1P1e1 + . . .+ αmP1 . . . Pmem)‖2.

Next we notice that Pi is orthogonal. This means that we can multiply any sequence of
them in the least-squares problem and not change the outcome. We do this with the
multiplication of (Pm+1 . . . P1) to get:

(X) = min
αi∈R: i=1,...,m

‖Pm+1 . . . P1r0 − Pm+1 . . . P1A(α1P1e1 + . . .+ αmP1 . . . Pmem)‖2.

We now observe that vi = Pi . . . P1AP1 . . . , Piei and insert that in the problem:

(X) = min
αi∈R: i=1,...,m

‖Pm+1 . . . P1r0 − (α1Pm+1 . . . P2v1 + . . .+ αmPm+1vm)‖2.

At this point many terms will disappear. Let us start with P1r0. We know that:

P1r0 = ‖r0‖2e1.

We also know that Pie1 = e1, i > 1, because of construction. Put these two facts
together and we get:

Pm+1 . . . P1r0 = P1r0.

But that is not all. We also know that Pi+1vi is composed of only zeros after the index
i+ 1. This means multiplying with Pj , j > i+ 1 is redundant. Removing all these
unnecessary factors leaves us with the problem:

(X) = min
αi∈R: i=1,...,m

‖P1r0 − (α1P2v1 + . . .+ αmPm+1vm)‖2.

It is now time to multiply with the orthogonal transformation (Jm, . . . , J1):

(X) = min
αi∈R: i=1,...,m

‖Jm . . . J1P1r0 − Jm . . . J1(α1P2v1 + . . .+ αmPm+1vm)‖2.

Now note that Jm . . . J1P1r0 = w. But we will also realize that:

J1P2v1 = (β1, 0, . . . , 0) = J2J1P2v1 = J3J2J1P2v1 = . . .

J2J1P3v2 = (β21, β22, 0, . . . , 0) = J3J2J1P3v2 = J4J3J2J1P3v2 = . . .

21

...

Inserting this knowledge into the problem gives us:

(X) = min
αi∈R: i=1,...,m

‖w − (α1J1P2v1 + . . .+ αmJm . . . J1Pm+1vm)‖2.

To finish this proof, we only need to realize that αi is a scalar to the vector
Ji . . . J1Pi+1vi, which happens to be the i:th column of Rm. Because Rm is an upper
triangular matrix, we can only effect the first m rows. Therefore, αi must be uniquely
defined as the coefficients of the vector y ∈ Rn, given that R̂m is the first m column and
rows of Rm and that

R̂my = ŵ,

if ŵ is the first m indicies of w. Finally, we look at the least-square equation and realize
that w only has the first m+ 1 indicies as possible non-zero entries. This, together with
the fact that the first m coefficients of w will be subtracted due to the choice of
coefficients αi, leads us to the statement:

(X) = min
α̇i∈R: i=1,...,m

‖w − (α1J1P2v1 + . . .+ αmJm . . . J1Pm+1vm)‖2 =

‖w−(y1J1P2v1+. . .+ymJm . . . J1Pm+1vm)‖2 = ‖(0, . . . , 0, wm+1, 0 . . . , 0)‖2 = ‖rm‖2 = |wm+1|. �

5 The components of the GMRES implementation

5.1 Data structure

Variables

1. Householder transformations Pi

2. Givens rotations Ji

3. Residual vector w̄

4. The triangular matrix R

Storage

The Householder transformation Pi can be defined by a vector v as described in section
3.4. We will use this definition to store the Householder transformations as columns of a
matrix H. In this chapter we will see pi as the vector corresponding to the Householder
transformation Pi. The Givens rotations can be defined as an angle. Instead of using a
vector of angles, we choose to use two vectors: one with the sine value and one of the
cosine value of the given angles as the vectors s̄ and c̄. The triangular matrix and the
residual vector are stored in a matrix R and vector w̄.

Parallelization

The restart size is very small with respect to the dimension, say n, of the system to be
solved. We therefore assume that the restart size is less than the size of the cell defined
by the partition of a vector with dimension n on the first process as described in section
3.7.2. This allows us to make most of the calculations local to the first process without

22

any communication. With this in mind, the variables are divided into two groups: one
consisting of variables not requiring communication between processes, serial variables,
and ones that do. Let us call the latter parallel. This partition of variables is shown in
Table 2.

Parallel Serial

Pi Ji
H R

w̄, s̄, c̄

Table 2: Parallel and serial variables

5.2 The serial variables

The serial process on the first core in this method will handle the least-squares problem.
The process will require the construction and solving of a triangular system. For this, a
serial vector, matrix, and triangular solver class were created.

5.2.1 Parallelized Householder functions

The Householder functions are divided into two methods. The first generates a vector h
that represents the transformation given by a vector x. The other takes the vector h and
applies the represented transformation to a vector y.

Generating the Householder transformations

The Householder transformations that we wish to generate are of the form discussed in
Section 3.4. Because we are working with multiple sizes of householder transformations
P̂k ∈ Rk×k, we give a parameter k that symbolizes the offset. With this k and a vector
x = (x1, . . . , xn), we can construct the vector v ∈ Rn, which defines the Householder
transformation by the following equations:

α = −sgn(xk)

√√√√ n∑
i=k

x2i ,

r =

√
1

2
(α2 − xkα),

vj = 0 : j < k, vk =
xk − α

2r
, and vi =

xi
2r

: i > k.

The transformation P̂i is then used to construct Pk by:

Pk =

[
In−k 0

0 P̂k

]
.

This Pk is constructed with the following property:

Pkx = (x1, . . . , xk−1, α, 0, . . . , 0).

Because the GMRES method requires us to perform this operation, the α is introduced
as an output to the function. This is done so we can perform the transformation Pkx by

23

the definition instead of calculating it. The code uses similar syntax as the dot product
in the parallelized vector class in section 3.7.2, with the exceptions that the active
indices are restricted by setting conditions in the loop and that the calculations are made
on the first process (ID 0) before being broadcast. The calculation is performed on the
first process because the resulting parallelized vector Pkx will not include any non-zero
entries on any other process in this implementation of the GMRES method.

 void generateHousholder(mpi_doubleVector x, mpi_doubleVector out,int k,double *alpha){
 /**
 * Vector x that the transformation is to be defined by
 * and an offset integer k (from start)
 *
 * It also has an output varible alpha that gives the first
 * vector possitions value after a transformation
 */

 //Get the id
 const int id =COMM_WORLD.Get_rank();
 //Get a varible to sum the segments
 double segsum=0;

 for(int i =x.li(); i<x.ui();i++){
 if(i>=k){
 //transfer the input vector to the output
 out[i]=x[i];
 //Calculate the sum part of alpha
 segsum+=x[i]*x[i];
 }
 }

 double r=0;
 //Get the result on id 0
 MPI_Reduce(&segsum,&r,1,MPI_DOUBLE,MPI_SUM,0,COMM_WORLD);
 //do the final calculations
 if(id==0){
 //Generate alpha and r
 *alpha = -sign(x[k]) * sqrt(r);
 r = sqrt(0.5*((*alpha)*(*alpha)-x[k]*(*alpha)));
 //get the first value of the transformation vector
 out[k]=x[k]-*alpha;
 }else{
 *alpha=0;
 }
 //Send r to all process:
 MPI_Bcast(&r, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD);
 //and apply 1/2r:
 for(int i =x.li(); i<x.ui();i++){
 if(i>=k){
 out[i]*=(1./(2.*r));
 }
 }
 }

Figure 9: The parallelized function that generates the Householder transformations

Applying the Householder transformations

Given a vector pk that characterizes an Householder transformation Pk generated by the

24

above method, we create an algorithm that transforms a given vector x by:

Pkx = y = (I − 2pkp
T
k)x⇔

y = x− 2pk(x, pk).

The method in my code calculates (x, pk). Given this, the rest of the calculations can be
performed without communication.

 void applyHouseholder(mpi_doubleVector t,mpi_doubleVector x,mpi_doubleVector y,int k){
 /**
 * Takes a transformation vector t, a vector that the transformation is to be made on x
 * and an offset integer k (from start)
 *
 */

 double segsum=0;

 for(int i =x.li(); i<x.ui();i++){
 if(i>=k){
 segsum+=t[i]*x[i];
 }
 }

 double tc=0;
 //Broadcast the sum
 MPI_Allreduce(&segsum,&tc,1,MPI_DOUBLE,MPI_SUM,MPI_COMM_WORLD);
 tc*=2.0;

 //The changed part:
 for(int i =x.li(); i<x.ui();i++){
 if(i>=k){
 y[i]=x[i]-tc*t[i];
 }
 }
 }

Figure 10: The parallelized function that applies the Householder transformations (pk = t
in this code).

The GMRES method
The code for the method can be found in Appendix 1. The method is constructed as a
class without a constructor and only has one type parameter that determines what
matrix class is used. GMRES is a function to this class and it takes the parameters
required to solve a system together with a tolerance and restart size. The method is
written similarly to the other parts of this chapter with the exception of the serial part
on the first process. However, these methods and parts are not discussed in this paper.

6 Test: Does the method work

With this test, we validate that the implemented method works. We will construct a test
case where the basic properties of the method will be analyzed and compared to the
theoretical one in order to see if they share the same properties.

25

6.1 Method

A test case was created to determine if the method works. A random dense matrix
A ∈ Rn×n and vector b ∈ Rn are generated, where n = 500. This system is then solved
with initial approximation x0 = 0 for 1, 2, 3 and 4 active processes.

To determine if the method acts appropriately, we log the normalized residual ‖ri‖2 in
each iteration and save the result in a csv document. With these four documents of data
(execution time) four graphs are produced and superimposed to one figure with a
Python script.

6.2 Presentation

0 20 40 60 80 100 120
Iteration number

10-1

100

N
o
rm

 o
f

th
e
 R

e
si

d
u
a
l

Residuals of multiple processors

1 processor(s)
2 processor(s)
3 processor(s)
4 processor(s)

Figure 11: The residual of the approximation after each iteration

6.3 Conclusion

The residuals in the graph are decreasing. This means that the solver is able to find
better approximations to the problem after each iteration. The residuals are almost
exactly the same for each iteration. This is what we want because, mathematically
speaking, the method should do the same thing in each iteration, independent of how
many processors are active. The small deviations that are observed are most likely due
to different rounding errors caused by the reduction steps. The deviations occur because
the order in which the elements are multiplied makes a difference. A final observation is
that the curve seems to be strictly monotonically decreasing. The form of the curve fits
our method because we find better approximations in each iteration. Incidents where the
new approximation is the same as the old are very uncommon. This is enough to
conclude that the method works as we anticipate and that we can proceed to analyze the
improvements it brings.

26

7 Test: Improvements

In this test, the execution time of the parallelized linear solver is analyzed. The analysis
covers solving both sparse and dense matrices with multiple active processes. Fairly large
systems are used because parallelization only makes sense for larger cases and the tests
are performed with differential equation solvers in mind (IRK 1). In this report, it was
concluded that the method does in fact improve execution time by introducing more
processors. We also observe that the more complex and the larger the system is, the
larger the improvement becomes.

7.1 Main questions we wish to answer

1. What is the reduction in computation time when more processors are used?

2. How does computation time differ between a sparse and a dense matrix?

3. What can be said about the improvement in execution time when larger more
complex systems are solved?

4. At what rate does the improvement grow if we increase the number of iterations?

7.2 Method

First, the GMRES method previously constructed is modified to take number of
iterations instead of a tolerance. With this solver, two testing programs that call this
method need to be constructed: one solving a sparse matrix and the other a dense. The
two programs take four parameters:

1. The name of an the output file (<name>.csv).

2. Dimension of the matrix (dim(A)).

3. Number of iterations (itr).

4. How many times the system should be solved and execution time logged. (sample
size)

With the dimension as input, say n, we generate the following systems:

Dense Matrix

The program that solves a dense matrix generates a random matrix R ∈ Rn×n and
b ∈ Rn with entries spanning from 0− 100

n . The entries are bounded by 100
n in order to

avoid overflow errors. The matrix A is then constructed by:

A = I − 10−2R

in the form of the implicit Euler method, where R = fx(t, x) and h = 10−2. Given an
initial condition x(t0) = b, we can perform a step, where x(t1) = x, t1 = t0 + h, with the
implicit Euler method, by solving the following system:

Ax = b

27

Sparse Matrix

The sparse matrix we solve for is the finite element discretization of the heat equation:

∂2u(t, x)

∂x2
=
∂2u(t, x)

∂t
, u(t, 0) = u(t, l) = 0

1

∆x2

−2 1
1 −2 1 0

1 −2 1
. . .

. . .
. . .

0 1 −2 1
1 −2

ū(t) =

1

∆x2
Hū(t) =

dū(t)

dt
,

where the system we solve is the first step of the implicit Euler method on the
discretization:

(I − h

∆x2
H)ū1 = ū0

For the initial step ū0 ∈ Rn, we discretize the function f(x) = sin(2πx) on the interval
(0, 1). Thus:

ui0 = f(
i+ 1

n+ 1
), i = 0, . . . , n

With this particular discretization, we note that ∆x = (n+ 1)−1. To complete the
system, we set ∆h = 10−2 to produce the following problem to be solved:

(I − 10−2(n+ 1)2H)ū1 = ū0

Main structure of the testing programs

The programs does the following operations depending on the desired sample size:

1. Generate dense matrix and the b vector with random entries between 0− 100
n or

generate the sparse matrix and the accompanying initial condition.

2. Generate xitr by letting the method do itr iterations.

3. Log the execution time it took to find the itr’s approximation and log it in the
output document.

This program produces a document with multiple samples of the execution time solving
systems with the same dimension and iteration parameters.

Tests

The programs were run through an R script that solved multiple different problems with
one, two, or three processors. The documents that were produced were analyzed and the
mean value of its content was logged as the answer to the particular system. The script
generated another csv document that had the mean execution time for various different
systems. This document was used in a python script that produced a graph of
superimposed data (execution time) for one, two, or three processors solving the different
systems. The following tests where conducted:

28

Table 3: The parameters for the dense tests

Test Dimension Iterations Samples

Test 1 2 ∗ 102 − 2 ∗ 103 15 5

Test 2 103 21− 126 5

Table 4: The parameters for the sparse tests

Test Dimension Iterations Samples

Test 1 2 ∗ 102 − 2 ∗ 103 55 5

Test 2 103 105− 240 5

7.3 Presentation

200 400 600 800 1000 1200 1400 1600 1800 2000
Dimension

0

5000

10000

15000

20000

25000

30000

35000

E
x
e
cu

ti
o
n
 T

im
e
 [

m
s]

Dense test with respect to dimension

1 processor(s)
2 processor(s)
3 processor(s)

Figure 12: Execution time with respect to dimension for solving dense systems. The test
parameters are those of Table 3, Test 1.

29

20 40 60 80 100 120 140
Number of iterations

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

E
x
e
cu

ti
o
n
 T

im
e
 [

m
s]

Dense test with respect to number of iterations

1 processor(s)
2 processor(s)
3 processor(s)

Figure 13: Execution time with respect to number of iterations for solving dense systems.
The test parameters are those of Table 3, Test 2.

200 400 600 800 1000 1200 1400 1600 1800 2000
Dimension

0

1000

2000

3000

4000

5000

6000

7000

E
x
e
cu

ti
o
n
 T

im
e
 [

m
s]

Sparse test with respect to dimension

1 processor(s)
2 processor(s)
3 processor(s)

Figure 14: Execution time with respect dimension for solving sparse systems. The test
parameters are those of Table 4, Test 1.

30

100 120 140 160 180 200 220 240 260
Number of iterations

500

1000

1500

2000

2500

3000

3500

4000

E
x
e
cu

ti
o
n
 T

im
e
 [

m
s]

Sparse test with respect to iterations

1 processor(s)
2 processor(s)
3 processor(s)

Figure 15: Execution time with respect to number of iterations for solving sparse systems.
The test parameters are those of Table 4, Test 2.

7.4 Validity discussion

The program was run on a lightweight computer with no other active programs for
optimal test conditions. With multiple samples, any inconsistencies should be minimal.
Because we are interested in the impact of involving multiple processors, this setup
should give us a general idea of the improvement, the nature of the improvement, and
what form the improvement takes.

Mathematically the problem does not change if we use one or one thousand processors
because the method relies only on mathematical transformations [7]. This means that
any time we look at the execution time with respect to number of processors or number
of iterations it is not an artificial improvement. The same cannot be said when we look
with respect to dimension. The dense system and sparse system are dependent on
dimension. With this in mind, we can continue to analyze the results.

7.5 Discussion

Improvements were seen in all tests. The largest improvements were seen when dense
systems were solved. With dense matrices, quadratic curves were seen with respect to
dimension (Figure 12) whereas linear curves were observed in the sparse case (Figure
14). This makes sense because a vector-matrix multiplication is of order O(n2) for dense
matrices and O(n) for sparse and this operation is done relative to the number of
iterations (constant) with respect to dimension (scaling). We can clearly see spreading in
Figure 12 and 14 which would suggest that solving larger dimensional systems would
result in a larger improvement of execution time.

When introducing more iterations, linear curves should occur because the same
operation is performed more times. This is evident in Figures 13 and 15 and even here
we can see spreading which also leads to a larger improvement of execution time when

31

increasing the number of iterations. This fact, together with the previous statement
about improvement with respect to dimension, leads to the conclusion that we can see
greater improvement in computation time if we work with larger more dense systems
that require more iterations. This is what we want to see because this implies that the
more the parallelized solver works, the greater the improvement.

7.6 Conclusions

Improvements with respect to degree

We see a quadratic improvement when dense systems are solved and a linear
improvement for sparse systems. This means that the larger the system is the greater
the improvement becomes. This is verified for systems with dimensions in the interval
[200, 2000].

The iterations effect on execution time

Because the number of iterations reflects how much the solver has to work on a specific
problem, there should be a consistent improvement as long as an initial improvement for
that specific problem exists. In the tests we have conducted, there is an initial
improvement for matrices with dimensions between two hundred to two thousand.

Larger more complex systems

Everything in these tests suggests that a greater improvement will be seen when larger
more complex systems are to be solved. This means that the more the method has to
work, the greater the extent of the improvement.

8 Test: Consistency for very large systems

Lastly, we analyze the consistency of the method compared to dimension. In this part we
only analyze sparse systems because dense matrices introduce an array of problems when
large, for example: overflows, memory allocation, and very time consuming to solve. It
will be shown that the method holds up for large sparse systems and that it tends to act
fairly similar relative to the smaller cases.

8.1 Main questions we wish to answer

1. Is the method stable for very large systems?

2. Is the shape of the execution time / dimension curve preserved for larger systems?

3. What can be said about the improvement in execution time when larger more
complex systems are solved?

8.2 Method

In this test, we use the results from Table 4 Test 1 to generate a linear curve by finding
the least-square approximation for the generated sample points. To do this, a python
script was written to solve the system:

DTDx = DTY

32

where:

D =

1 d1
1 d2
1 d3
...
1 dn

 , di : the different dimensions sampled,

y =

e1
e2
...
en

 , ei : the result in execution time for the corresponding dimension di,

and

x =

[
a
b

]
.

This particular system when solved gives the coefficients a, b to the function
l(x) = ax+ b, which is the least-square approximation we wish to analyze [8]. With this
formula, the linear approximations for one, two, and three processors are generated and
together with the sample points are superimposed to one graph: Figure 16.

These least-square approximations are then compared to a few samples from very large
systems. To do this, we use the same method that generated the set of sample points
used in the approximations, but with larger dimensions. The new set of samples were
generated with the parameters of Table 5:

Table 5: The parameters for sparse systems with large dimensions

Dimension Iterations Samples

4e3, 8e3, 12e3 55 5

Lastly, a second graph is produced with the approximations ranging to the dimension of
the new set of sample points with the new sample points marked in the graph, Figure 17.

33

8.3 Presentation

0 0.5e3 1.0e3 1.5e3 2.0e3 2.5e3 3.0e3
Dimension of the system

0

2.0e3

4.0e3

6.0e3

8.0e3

10.0e3

E
x
e
cu

ti
o
n
 T

im
e
 [

m
s]

The sample points fitted to a linear curve

1 processor(s) sample
2 processor(s) sample
3 processor(s) sample
1 processor(s) approximation
2 processor(s) approximation
3 processor(s) approximation

Figure 16: Approximated linear curves generated by the sample points from Table 4 Test
1

34

0 2.0e3 4.0e3 6.0e3 8.0e3 10.0e3 12.0e3 14.0e3
Dimension of the system

0

5.0e3

10.0e3

15.0e3

20.0e3

25.0e3

30.0e3

35.0e3

40.0e3

45.0e3

E
x
e
cu

ti
o
n
 T

im
e
 [

m
s]

Large dimensional samples compared to the approximations

1 processor(s) sample
2 processor(s) sample
3 processor(s) sample
1 processor(s) approximation
2 processor(s) approximation
3 processor(s) approximation

Figure 17: The approximation compared to the large dimensional samples of Table 5.

4000 6000 8000 10000 12000
Dimension of the system

5000

10000

15000

20000

25000

30000

35000

40000

E
x
e
cu

ti
o
n
 T

im
e
 [

m
s]

Large dimensional samples differences

1 processor(s) sample
2 processor(s) sample
3 processor(s) sample
3 and 2, difference of large samples
2 and 1, difference of large samples

4000 6000 8000 10000 12000
Dimension of the system

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

E
x
e
cu

ti
o
n
 T

im
e
 [

m
s]

The approximation differences

3 and 2, difference of approximations
2 and 1, difference of approximations
1 processor(s) approximation
2 processor(s) approximation
3 processor(s) approximation

Figure 18: The differences of the large samples of table 5 and the approximations at the
corresponding dimensions

8.4 Discussion

In Figure 17, it is apparent that the differences, as visualized in Figure 18, of the
improvements between number of processors, stay almost the same whereas execution
time for two and three processors increases slightly relative to the approximations. This
increase could be because of communication and the increased amount of data that

35

needs to be transferred. This would explain why for one processor the samples seem to
oscillate around the approximation (No communication), whereas for two and three
processors the sample points stay above the approximation curves. This phenomenon is
not observed in Figure 16, which could be because the dimension is substantially lower
and that the amount of data sent is comparatively cheaply, computation wise, compared
to the initiation of the transfer. Lastly we note that the increase in Figure 17, for two
and three processors, are similar. This implies that the difference is most likely not due
to the amount of communication initialization, but rather the amount of data that is
being sent. Although several facts point to this theory, one would need to conduct more
tests in this larger dimensional interval to confirm it. One way would be to analyze
differences of two and three processors and verify that the overall increase in execution
time for both of them are monotonically increasing.

If the amount of data transferred is the reason of the increase of execution time, the
deviation noted in Figure 17 would be a linear component overlooked in the smaller
dimensional range. This would imply that the real approximations would be:

l̂i = li + ζx, 0 < ζ << ai, i = 2, 3

if l2, l3 are the approximation curves for two and three processors and a2, a3 are their
derivatives. This would imply that the form of curve stays linear and that the difference
between approximation and samples of two and three processors are parallel since the
difference should not include a linear component. This is clarified in the following graph,
Figure 19.

4.0e3 5.0e3 6.0e3 7.0e3 8.0e3 9.0e3 10.0e3 11.0e3 12.0e3
Dimension of the system

2.0e3

3.0e3

4.0e3

5.0e3

6.0e3

7.0e3

8.0e3

9.0e3

10.0e3

T
h
e
 d

if
fe

re
n
ce

 i
n
 e

x
e
cu

ti
o
n
 t

im
e
 [

m
s]

Comparison of multi processor differences

3 and 2 processors difference of approximations
3 and 2 processors difference of large samples

Figure 19: A comparison graph of the normed differences between 2 and 3 active proces-
sors for approximations and samples. Here we can see that the lines are fairly parallel
which would imply that we have a constant difference between the approximation and real
samples.

36

8.5 Conclusion

Stability for larger systems

Overall the method seems to be fairly stable. The ratio of the improvements seems to
stay relatively the same in the interval the tests where conducted in ([200, 14000]). The
improvement for the smaller systems is similar to that of the larger with slight deviation.

The method’s execution time with respect to large dimensions

The larger dimensional problems seem to have a slight perturbation. This perturbation
is not large enough to believe it could be quadratic so it is assumed to be linear. This
means that the method’s execution time should stay linear with respect to dimension.

Efficiency for larger systems

Even though the slight loss of efficiency has been the main topic in the discussion, the
method performs substantially better for larger systems when parallelized. Moreover the
loss seems to be independent of number of processors introduced, which would imply
that introducing more processors would not be affected by this perturbation.

9 Continued work

Because the tests in this report are made on one computer, communication is relatively
inexpensive when compared to MPI over multiple computers. It would be interesting to
see if this method holds up when using such communication. If it does hold up, one
could analyze how large the system has to be in order to have an improvement and
maybe even find a ratio of dimension compared to number of computers initialized.

There is going to be a point when the RAM on the computer is exhausted. When this
happens, there is going to be a large performance hit and whether or not this method
can take the hit and still be efficient compared to not being parallelized is yet to be
analyzed. The problem here is that one would need to make sure that the RAM is
distributed equally over the different processes, otherwise one would have one or more
processes bottlenecking.

Up until now, the systems that have been solved have either been random or rather
simple computation wise. These are the systems we assume this method solves due to it
working with approximation (we know how the systems act to some extent). What if the
systems where constructed to be difficult? We have quite a lot of communication when
parallelized and, in each reduction step, our solutions differ due to different rounding
errors. We clearly saw this phenomenon in Figure 11 when verifying if the method was
working correctly. This slight problem, that was glanced over in the discussion in
Chapter 6, could be amplified by the choice of system being solved. It would be
interesting to see if there is such a system or family of systems where the method derails
and cannot converge to a correct solution when parallelized but does converge when not.

37

10 Conclusion

It became apparent early in the project that finding a clean way of parallelizing the
method was needed. The first revisions were messy because global and local indicies of
the parallelized vectors both occurred in the GMRES method and its sub-methods. Due
to the confusion, the method had multiple bugs and was nearly unreadable. Because
there were major problems, the method had to be re-rewritten several times. The
resulting concept of writing a separate class for the parallelized vectors cleaned up the
code substantially and therefore solved most of the problems. By having the variables in
the method parallelized, most of the code was able to be written as if it was in serial.
The implementation of this vector class was a natural step forwards because the
partition scheme and the utility functions were written from the start. Writing the
vector class was therefore simply collecting all of the discrete functions and putting them
into one package. Even though re-writing the method several times was tedious, it was
rewarding. The final method’s code is easy to read and more importantly, it is easy to
check that the separate parts of this method are working.

The parallelized implementation of the GMRES method compared to the serial
counterpart reduced execution time substantially for both sparse and dense systems for
varied dimensions. The improvement of the parallelized method is greater when more
iterations are performed to find better approximations. Both of the previous statements
lead to the conclusion that the overall implementation produces an improvement. The
cost of this improvement seems to be minor differences in rounding errors, as seen in
Figure 11, from reduction steps in cross-communication. This deviation is not a problem
because the method restarts after each couple of iterations with a new generated
approximation. This new approximation is handled as the initial one and therefore does
not allow the error to grow. The overall form of the improvement seems to reflect on the
form of running the method serial. Quadratic improvements were seen in dense system
and linear in sparse. The improvement seems to stay stable for larger sparse systems that
where analyzed and only slight deviations where noted. In summary the implementation
is easy to read and validate, brings an overall improvement with respect to the serial
case for both sparse and dense matrices, and stays stable for very large sparse systems.

38

References

[1] The Cayley-Hamilton Theorem 2/6/2016:
http://mathworld.wolfram.com/Cayley-HamiltonTheorem.html

[2] Philipp Birken, Numerical methods for stiff problems, 2015, p46-48

[3] Householder transformations 2/6/2016:
https://en.wikipedia.org/w/index.php?title=Householder_transformation&

oldid=723064434

[4] Givens rotations 2/6/2016:
https:

//en.wikipedia.org/w/index.php?title=Givens_rotation&oldid=721320896

[5] An introduction to the MPI protocol. Last checked 22/4/2016:
https://computing.llnl.gov/tutorials/mpi/

[6] Information about csv documents. Last checked 3/6/2016:
https://en.wikipedia.org/w/index.php?title=Comma-separated_values&

oldid=723065927

[7] Homer F. Walker, Implementation of the GMRES Method Using Householder
Transformations, 1988, p152-163

[8] Linear least-square approximations 10/6/2016:
https://en.wikipedia.org/w/index.php?title=Linear_least_squares_

%28mathematics%29&oldid=721711977

A Appendices

A.1 The code for the GMRES method

39

http://mathworld.wolfram.com/Cayley-HamiltonTheorem.html
https://en.wikipedia.org/w/index.php?title=Householder_transformation&oldid=723064434
https://en.wikipedia.org/w/index.php?title=Householder_transformation&oldid=723064434
https://en.wikipedia.org/w/index.php?title=Givens_rotation&oldid=721320896
https://en.wikipedia.org/w/index.php?title=Givens_rotation&oldid=721320896
https://computing.llnl.gov/tutorials/mpi/
https://en.wikipedia.org/w/index.php?title=Comma-separated_values&oldid=723065927
https://en.wikipedia.org/w/index.php?title=Comma-separated_values&oldid=723065927
https://en.wikipedia.org/w/index.php?title=Linear_least_squares_%28mathematics%29&oldid=721711977
https://en.wikipedia.org/w/index.php?title=Linear_least_squares_%28mathematics%29&oldid=721711977

using namespace std;
using namespace MPI;

template <class matrixclass> class GMRES{
 /**
 * Takes type of matrix needs to be compatible with regular multiplication
 * with mpi_doubleVector
 *
 */

 public:
 // stoping residual, Matrix, rhs,dimesion of the system, approximation, restartsize
 int solver(double stopping_res, matrixclass *Matrix, mpi_doubleVector *rhs,int n, mpi_doubleVector *approx, int restartsize){
 const int max_starts=1e2;
 //Get the local segment length
 const int id =COMM_WORLD.Get_rank();
 //The varibles for this method
 int i, j, k=0, start, ready = 0;
 mpi_doubleVector v(n);
 mpi_doubleVector u(n);
 doubleMatrix R(restartsize,restartsize);
 mpi_doubleMatrix H(restartsize,n);
 doubleVector cosinus(restartsize+1);
 doubleVector sinus(restartsize+1);
 doubleVector w(restartsize+1);
 double currenterror;
 //Create a serial linear solver instance
 serialsolver <doubleVector,doubleMatrix> Solver;
 //Do the first multiplication
 v=(*Matrix)*(*approx);
 v = (*rhs)- v;
 double tmp=sqrt(v*v);
 //store the current error
 currenterror=tmp;
 //Generate and apply the first Housholder transformation
 generateHousholder(v,u,0,&w[0]);
 //set all other indicies to 0
 for(int i=0;i<restartsize+1;i++){
 if(i>0){
 w[i]=0;
 }
 }
 //Stop if approximation is good from the start
 if(tmp<stopping_res){
 ready=1;
 }
 //---
 // Number of starts
 //---
 for(start = 0; start <= max_starts && !ready; start++){
 //Do the same as above to start the method
 if(start){
 v=(*Matrix)*(*approx);
 v = (*rhs)- v;
 generateHousholder(v,u,0,&w[0]);
 for(int i=0;i<restartsize+1;i++){
 if(i>0){
 w[i]=0;
 }
 }
 }
 //------------------------------------
 // The GMRES Method
 //------------------------------------
 for(k = 0; k < restartsize; k++){
 //store the current trasformation in H
 H[k]=u;
 //make v an unit vector
 for(j=v.li();j<v.ui();j++){
 v[j]=0;
 }
 v[k]=1;
 //Apply the last k + 1 Householder transformations in reverse order:
 for(i = k; i >= 0; i--){
 applyHouseholder(H[i],v,v,i);
 }
 u=(*Matrix)*v;
 v=u;
 //Apply last k + 1 Householder transformations:
 for(i = 0; i <= k; i++){
 applyHouseholder(H[i],v,v,i);
 }
 //Generate and apply the last transformation
 if(k < n - 1){
 //Let u be the zero vector
 for(i=u.li();i<u.ui();i++){
 u[i]=0;
 }
 generateHousholder(v,u,k+1,&tmp);
 /* Apply this transformation: */
 for(int i=v.li();i<v.ui();i++){
 if(i==k){
 v[k+1]=tmp;
 }
 if(i>k+1){
 v[i]=0;
 }
 }
 }

 //A double that has the w[k+1]
 double tmp=0;
 //Generate and apply the givens rotations on v and w
 if(id==0){
 givens_rotations(v,w,R,sinus,cosinus,k);
 tmp=w[k+1];
 }
 //Broadcast the current error
 MPI_Bcast(&tmp, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD);
 //store the current error
 currenterror=fabs(tmp);
 //Check if the solution is good enough
 if(fabs(tmp) < stopping_res){
 ready = 1;
 break;
 }
 }
 //------------------------------------
 // The Solver
 //------------------------------------
 if(k==restartsize){
 k--;
 }
 //Solve the triangular system and transfer it to u
 if(id==0){
 doubleVector x=Solver.solveUpperTriangular(R,w,k+1);
 //transfer the solution to u
 for(i=0;i<k+1;i++){
 u[i]=x[i];
 }
 }
 //Calculate the new approximation
 for(i = 0; i <= k; i++){
 //Unit vector
 for(j =v.li();j<v.ui();j++){
 v[j]=0;
 }
 v[i]=1;
 //Apply last i + 1 householder transformations in reverse order:
 for(j = i; j >= 0; j--){
 applyHouseholder(H[j],v,v,j);
 }
 //Get the coeficiant we wish to multiply the vectors with
 double c=0;
 c=u[i];
 //make sure all parts has it
 MPI_Bcast(&c, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD);
 v *= c; //multiply with scalar
 (*approx) += v; //Get the new approximation
 }

 //If the error is small enough stop, else continue
 if(currenterror < stopping_res){
 ready = 1;
 }
 }
 //Check if we have done maximum number of starts
 if(start > max_starts){
 start = max_starts;
 }
 return (start * restartsize + k + 1);
 }
 private:

 void givens_rotations(mpi_doubleVector v,doubleVector w,doubleMatrix R,doubleVector sinus,doubleVector cosinus,int k);

 void generateHousholder(mpi_doubleVector x, mpi_doubleVector out,int k,double *alpha);

 void applyHouseholder(mpi_doubleVector t,mpi_doubleVector x,mpi_doubleVector y,int k);
 //Simple sign function
 int sign(double v);
};

LUNFNA-4010-2016

Numerical Analysis
Centre for Mathematical Sciences

Lund University
Box 118, SE-221 00 Lund, Sweden

http://www.maths.lth.se/

	List of terms
	Introduction
	Preliminaries
	Cayleigh-Hamilton Theorem
	The Krylov Space
	GMRES
	Householder transformations
	Givens Rotations
	MPI
	A parallel vector class
	Partitioning
	The main structure of the class

	CSV documents

	The GMRES method we implement
	General GMRES
	Elements of this implementation
	The method
	The iterative part of the GMRES implementation
	The least-squares part of the GMRES implementation

	A comment about how this works

	The components of the GMRES implementation
	Data structure
	The serial variables
	Parallelized Householder functions

	Test: Does the method work
	Method
	Presentation
	Conclusion

	Test: Improvements
	Main questions we wish to answer
	Method
	Presentation
	Validity discussion
	Discussion
	Conclusions

	Test: Consistency for very large systems
	Main questions we wish to answer
	Method
	Presentation
	Discussion
	Conclusion

	Continued work
	Conclusion
	Appendices
	The code for the GMRES method

