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Abstract

The cosmological constant is one of bigger mysteries in modern fundamental physics and
cosmology. In this work we investigate one of the possible interpretations for the cosmo-
logical constant. The model a studies spatially-homogeneous mode of the Yang-Mills field
known as the Yang-Mills condensate and throughout the work we discuss the dynamics
and the time evolution of the homogeneous isotropic Yang-Mills condensate in the expand-
ing Universe. The description of the Yang-Mills field is given for a completely classical
field and an effective Lagrangian in the one-loop approximation. The stability of those
solutions has been studied in both perturbative and non-perturbative cases. The other
approach featuring the functional renormalization group method is discussed in last part
of this work and a non-perturbative Yang-Mills Lagrangian is retrieved. This result is com-
pared to the one-loop toy model. The conclusion discusses the cosmological implications
of the condensate and its possible connection to the Dark Energy.

Populärvetenskapligt sammanfattning

I den här uppsatsen diskuterar vi flera möjligheter om hur man kan förklara den kosmolo-
giska konstanten. År 1998 genomfördes observationer av typ 1a supernovor som visade att
universums expansionshastighet ökar. Det här fenomenet blev kallat mörk energi. Sedan
dess har flera olika hypoteser framlagts. Vi ska studera en teori som använder Yang-Mills-
fält som en mekanism som hjälper att klargöra flera problem med det här fenomenet. Vi
finner en ny form för fältens effektiva Lagrangetäthet, som inte använder störningsteori
men ger snarlika resultat som de kända approximationerna.
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1 Introduction

The observations of the type 1a supernovae and the cosmic background radiation led to
a conclusion that the Universe is expanding with acceleration.[1] The data obtained from
the WMAP suggests the effective energy of the substance that causes the acceleration
corresponds to 73% of the total energy composition of our Universe, while other 23% being
dark matter and the rest being the baryonic matter and radiation.[2] Although at this
point phenomenology of this ”Dark Energy” is quite satisfactory, a working theoretical
model for this component of the Universe still remains undiscovered.

The ground state of Yang-Mills fields plays an important role in particle physics in the
form of gluon condensate, while the Yang-Mills field of the SU(3) gauge symmetry is a
primary model for the Quantum Chromodynamics (QCD) interactions. Yang-Mills fields
also have several applications in cosmology, being an adequate model for explanation of
Cosmic Inflation and Dark Energy. This means that further investigation of the ground
state dynamics is imperative for understanding the fundamental laws of physics.

Cosmological Constant (CC) scenario with the equation of state w = p/ε = −1 is
the most accepted observational model and it is supported by a significant amount of
observational data. The initial theoretical ideas were to connect the existence of the Dark
Energy (DE) to the levels of the vacuum energy predicted by the Quantum Field Theory
(QFT), but the results had an extreme divergence with the theoretical observations. For
example, the vacuum expectation value for the Higgs field at the scale of electroweak
symmetry breaking 〈0|H(x)|0〉 ∼ 100GeV yields the Higgs condensate contribution ΛEW

vac ∼
〈0|H(x)|0〉4 ∼ 108GeV4, while the corresponding value based on observations for the DE
is Λcosm = 2.5× 10−47GeV4. This drastic difference(known as ”the vacuum catastrophe”)
is a serious issue since it implies that the existing models fail to describe the Universe
accurately. This means that any theoretical framework for the CC should not only explain
the smallness of the CC but also its positivity and should give strong reasons for its
existence. Many of the existing theoretical models, for example, those that utilize simple
scalar fields cannot provide sufficient explanations for this behavior. Although this problem
has been investigated for almost two decades a consensus in the scientific community
regarding the model for CC has not yet been reached.[7]

The ground state of the Universe receives contributions from various existing quantum
fields, such as corrections from quantum gravity and QCD.[7] This correction appears due
to the graviton-exchange interactions between virtual elementary particles and it provides
a contribution term Λcosm ∼ Gm6 to the energy density, where m is a characteristic mass of
light particles. Later this relation was more accurately specified and written in terms of the
fundamental constants, through the minimal and the maximal mass scales for hadrons[7]

Λcosm =
m6
π

(2π)4M2
Pl

' 3.0× 10−47GeV4 (1)

This value is extremely close to the value of the CC that is currently observed, which is a
remarkable coincidence. The way the QCD contributes to the ground state is quite unique,
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since in this case it emerges from the perturbative quantum-topological fluctuations of the
quark and gluon fields predicted in the instanton theory[7]

ΛQCD
inst = −(5± 1)× 10−3GeV4.

The theory that could explain the evolution of such contribution has not been developed
yet. Thus CC from the aforementioned effects is considered to be

Λ = Λcosm + ΛQCD
inst (2)

There are several possible ways to avoid discrepancies between the predictions for the
DE. The first one interprets the observed CC as a non-vanishing effect in the expand-
ing Friedmann-Lemaitre-Robertson-Walker (FLRW) Universe. In this way, the de-Sitter
phase can be dynamically initiated in expanding Universe by a topological (auxiliary) non-
propagating field in the non-perturbative QCD vacuum which does not possess a canonical
kinetic term in analogy to the topologically ordered phases in condensed matter systems.[7]

Another possible pathway to resolve the CC problem relies on a mechanism of dynamical
compensation for short-distance vacuum fluctuations, in particular, during the electroweak
and QCD phase transition epochs, such that they no longer affect the macroscopic evolution
of the Universe.

In this work one of the possible models for the DE will be explored, which links the
dynamics of the CC to a Yang-Mills condensate (YMC). This model states that the effect
perceived as the Cosmological Constant is composed of several different components and
the YMC corresponds to the dynamical component of the physical vacuum that contributes
to its ground state. This allows for the compensation mechanism to occur without a specific
fine-tuning. This means that we can require from the general quantities such as energy
density to take specific values at the current times, but we do not need to specify most of
the parameters.

The perturbation theory for the Yang-Mills fields was studied for one-, two- and three-
loop approximations. [4, 5] While giving satisfactory qualitative results, these approxi-
mations are not sufficient for a complete understanding of dynamics of these fields. The
results given by the non-perturbative approach retain most of the properties of the fixed-
order perturbative models, although these models also take some approximations, such as
an imposed self-duality of the field.[3, 8] In the final section of this paper we will attempt
to expand this work, and compare it to the one-loop approximation.

One of the key features that is evident from the one-loop approximation is that the
equation of state for the condensate develops from w = 1

3
to w = −1 over time.[8, 18] This

means that it is close to w = 1
3

for high values of the redshift (early Universe) then at
some point, which is determined by the initial conditions, it goes through a transition and
eventually becomes close to the current observed value for the CC, w = −1. This makes
the YMC one of the best models for the Dark Energy. The value w = 1

3
corresponds to

the classical Yang-Mills field, thus we will start the analysis with its description.
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2 Classical Yang-Mills fields.

As we will see, the classical YM field does not behave as the observed CC, but it is still
an instructive example that shows differences between quantum and classical systems. We
start with Yang-Mills field strength, which is similar to the one used in QCD, although it
is important to stress that this field is a separate entity from the one that we know from
the Standard Model:

Faµν = ∂µA
a
m − ∂νAaµ + gYMe

abcAbµA
c
ν (3)

where a, b, c = 1 . . . N2 − 1 are isotopic (adjoint representation) indices and Lorenz µ, ν =
1 = 0, 1, 2, 3 are Lorentz indices. gYM is the gauge coupling constant.

The classical Lagrangian has a standard form

L = −1

4
F a
µνF

µν
a (4)

One typically uses temporal (Hamilton) gauge that makes the asymptotic states of the
S-matrix to contain the physical transverse modes only. The corresponding condition is

Aa0 = 0. (5)

Due to the local isomorphism of the isotopic SU(2) gauge group to the SO(3) group of
spacial rotations in 3-dimensional space, the unique (up to a rescaling) SU(2) YM config-
uration can be parameterized in terms of a scalar time-dependent spatially homogeneous
field. [14, 15, 16]

With a mixed space-isotopic orthonormal basis eai , a, i = 1, 2, 3 in the temporal gauge
(5), such that the field Aaµ transforms into a tensor field Aik as follows

eaiA
a
k ≡ Aik, eai e

a
k = δik, eai e

b
i = δab. (6)

Then the tensor Aik can be split into two parts

Aik(t,
−→x ) = δikV (t) + Ãik(t,

−→x ), 〈Ãik(t,−→x )〉 =

∫
d4Ãik(t,

−→x ) = 0. (7)

V (t) is identified with isotopic and homogeneous classical YM condensate, and Ãik(t,
−→x )

are spatially-inhomogeneous space YM-waves.. In QFT formulation, the Yang-Mills the
inhomogeneous waves are interpreted as YM quanta (gluons) while V (t) contributes to
the vacuum ground state of the theory. In the following we will not be considering the
non-homogeneous part; we assume that the contribution from this part is either very small
or it dissipates entirely. We introduce the following quantities

Aaµ ≡ gYMA
a
µ, Faµν ≡ gYMF

a
µν = ∂µAaµ + fabcAbµAcν . (8)

U(t) is the quantity that will be used from now on to refer the YM condensate instead of
V (t) because it is more convenient:

U(t) ≡ gYMV (t). (9)
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The energy-momentum tensor for this field takes form:

Tµν = −Lgµν +
∂L

∂(∂µAaν)
∂νAµ =

1

4
FabcF bca gµν −

1

4

∂(FαβFαβ)

∂(∂µAaν)
∂νAµ (10)

=
1

4
FabcF bca gµν −

1

2
Fαβ

∂Fαβ
∂(∂µAaν)

∂νAµ =
1

4
FabcF bca gµν −

1

2
Fαβ(δµαδ

ν
β − δ

µ
βδ

ν
α)∂νAµ (11)

=
1

4
FabcF bca gµν −FaµλFλba gbν (12)

And the equation of motion is

∂µ F a
µν + geabcAbmF cµν = 0 (13)

In the following we are using the spatially-flat Friedman-Lemáıtre-Robertson-Walker con-
formal metric

gµν = a2(η)diag(1,−1,−1,−1),
√
−g = a4(η), t =

∫
a(η)dη,

where a(η) is the scale factor. The equation of motion and the Einstein equation for YMC
read [7] (

δab√
−g

∂ν
√
−g − fabcAcν

)
Fµνb√
−g

= 0 (14)

1

κ

(
Rν
µ −

1

2
δνµR

)
= −

FaµλFνλa
g2

YM

√
−g

+ δνµ
FσαβFαβσ

4g2
YM

, (15)

where κ is the gravitational constant and Rν
µ and R are the Ricci tensor and the Ricci

scalar respectively. If we ignore the inhomogeneous fluctuations, these equations of motion
are reduced to

3

κ
(a′)2

a4
=

3

2g2
YMa

4

(
(U ′)2 + U4

)
, U ′′ + 2U3 = 0, (16)

The second equation in (16) can be exactly integrated leading to the following solutions

(U ′)2 + U4 = C,

∫ U

U0

dx√
C − x4

= η, U0, C = const, (17)

U ′(0) = 0, U0 = C → U(η) ' U0 cos(
6

5
U0η) (18)

So the classical YM condensate behaves as an ultra-relativistic medium with energy density
ε ∼ 1/a4 and the equation of state pYM = εYM/3 (radiation) [9].
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3 Yang-Mills effective Lagrangian.

As it was shown in the previous section, the classical Yang-Mills condensate behaves in a
way similar to radiation and thus is vastly different from the observed dark energy. It is
now necessary to incorporate the quantum corrections into the classical action and, as it
will be shown in the following sections, these additions drastically change the picture. The
way these additions are usually handled is through the effective Lagrangian.

We will name the field contraction as J :

J = FσαβFαβσ = F2. (19)

The effective Lagrangian for Yang-Mills field has a form

Leff = −1

4

F2

gYM(J)2
(20)

The main difference here is that the coupling strength is no longer considered to be a
constant and depends on the field strength. So, if we follow a similar derivation, the
energy-momentum tensor will take form

T νµ =
1

g2
YM

(
−FaµσFνσa +

1

4
δνµFaρσFρσa

)
+

d

dJ

(
1

g2
YM(J)

)
FaµσFνσa

=
1

g2
YM

(
−FaµσFνσa +

1

4
δνµFaρσFρσa +

β(g2
YM)

2
FaµσFνσa

)
(21)

(22)

The trace of the energy-momentum tensor for the classical field vanishes, while for this one
it is non-zero and equals

T µµ =
β(g2

YM)

2g2
YM

J (23)

4 Dynamics of Yang-Mills condensate.

If we do not introduce any constraints on β(g2
YM), the energy-momentum tensor for the

ground state of the field can be written as

T νµ = −
[
1− 1

2
β(g2

YM)

] FaµλFνλa
g2

YM

√
−g

+ δνµ
FσαβFαβσ

4g2
YM

(24)

The equation of motion for the condensate is(
δab√
−g

∂ν
√
−g − fabcAcν

)[
1− 1

2
β(g2

YM)

]
Fµνb

g2
YM

√
−g

= 0 (25)
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In the FLRW metric

1

κ

(
Rν
µ −

1

2
δνµR

)
= −

[
1− 1

2
β(g2

YM)

] FaµλFνλa
g2

YM

√
−g

+ δνµ
FσαβFαβσ

4g2
YM

(26)

If we put β(g2
YM) = 0 then we will come back to(

δab√
−g

∂ν
√
−g − fabcAcν

)
Fµνb

g2
YM

√
−g

= 0 (27)

1

κ

(
Rν
µ −

1

2
δνµR

)
= −

FaµλFνλa
g2

YM

√
−g

+ δνµ
FσαβFαβσ

4g2
YM

(28)

If we, on the the other hand, put β(g2
YM) = 2 we will get the exact partial solution of

this system.
The field contraction can be written in terms of the condensate and the scale factor as

FσαβFαβσ = − 6

a4

(
a2U̇2 − 1

4
U4

)
(29)

The energy density T 0
0

T 0
0 =

3

2g2
YMa

4

[
2− β(g2

YM)

2

(
a2U̇2 +

1

4
U4

)
− β(g2

YM)

2

(
a2U̇2 − 1

4
U4

)]
(30)

The trace of the energy momentum tensor is

T µµ = −3β(g2
YM)

g2
YMa

4

(
a2U̇2 − 1

4
U4

)
(31)

This exact partial solution presents an important object for further analysis.

4.1 One loop approximation for β(g2
YM).

In order to understand the dynamics of the YMC with the effective Lagrangian it is nec-
essary to employ the simplest approximation. While not being incredibly accurate, this
approximation, however, shows some the of the required properties.

We identify

J =
FσαβFαβσ√
−g

The dependence of the coupling constant is determined by the RG equation

2J
dg2

YM

dJ
= g2

YMβ(g2
YM) (32)

For the one-loop approximation the form of β-function is determined by

β(g2
YM) = −bg

2
YM

16π2
, g2

YM =
32π2

b ln(|J |/λ4)
(33)
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where λ is the scale parameter and b is the one-loop β-function coefficient. The Lagrangian
will take form

L1−loop
eff = − bJ

128π2
ln

(
|J |

(ξλ)4

)
(34)

Using standard variational techniques we obtain the equations of motion and after substi-
tution into the general relativity equations the result is

1

κ

(
Rν
µ −

1

2
δνµR

)
= T ν,matter

µ + Λδνµ +
b

32π2

1√
−g

[(
−FaµλFνλa

+
1

4
δνµFaσλFσλa

)
ln
e|FaαβFαβa |√
−g

− 1

4
δνµFaσλFσλa

] (35)

(
δab√
−g

∂ν
√
−g − fabcAcν

)(
Fµνb√
−g

ln
e|FaαβFαβa√
−g(ξλ)4

)
= 0 (36)

The Friedman equation for condensate and the expansion law are

6

κ
ȧ2

a3
= Λ +

3b

16π2a4

[
(U ′)2 − 1

4
U4

]
(37)

∂

∂η

(
U ′ ln

6e|(U ′)2 − 1
4
U4|

a4(ξλ)4

)
+

1

2
U3 ln

6e|(U ′)2| − 1
4
U4

a4(ξλ)4
= 0 (38)

The first integral of this system is

3

κ
ȧ2

a4
= Λ + T 0,YM

0 (39)

Where

T 0,YM
0 =

3b

64π2a4

([
((U ′)2 +

1

4
U4)

]
ln

6e|((U ′)2 − 1
4
U4|

a4(ξλ)4
+ (U ′)2 − 1

4
U4

)
(40)

4.2 Solutions.

The logarithm in the equation (35,38,39) can vanish if its argument is equal to 1 and this
leads to two exact partial solutions. We can represent this as a transcendent equation:

|Q| = 1, Q ≡ 32π2e

11(ξΛQCD)4
T µ,YM
µ =

6
[
(U ′)2 − 1

4
U4
]

a4(ξΛQCD)
, (41)

which provides two possible distinct cases Q = ±1. Here the ΛQCD is taken as the scale λ.
One of these Q = 1 yields a positive constant energy density of the gluon condensate with
minimum corresponding to the chromoelectric condensate

(U ′)2 − 1

4
U4 > 0, T 0,YM∗

0 ≡ 3b

64π2

(ξΛQCD)4

6e
> 0. (42)
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(a) Plot of the U(t) for the chromoelectric case. (b) Plot of the U(t) for the chromomagnetic
case. The minimums are supposed to be
smooth, but the separate branches were re-
trieved numerically and this is the limitation
of the algorithm; the exact solutions should be
smooth near the minimums.

Figure 1: The graphical solutions for the equations (42),(43).

The second solution with Q = −1 corresponds to the chromomagnetic part of the con-
densate. This contribution is negative and has the same magnitude as the chromoelectric
counterpart

(U ′)2 − 1

4
U4 < 0, T 0,YM∗

0 ≡ − 3b

64π2

(ξΛQCD)4

6e
< 0, (43)

In order to identify the normalization constant ξ we employ the following compensation
condition as it was done in [6]

33

64π2

(ξΛQCD)4

6e
= |ΛQCD

inst |, ξ ' 4 (44)

In the present Universe with a = a0 = 1 with the boundary condition Ũ0 = 0 implicit
partial solutions for the homogeneous condensate reads

Q = ±1,

∫ Ũ

Ũ0

du√
1
4
u4 ± 1

= η̃, Ũ = U
6e1/4

ηΛQCD

, η̃ = η
ξΛQCD

6e1/4
. (45)

corresponding to the chromoelectric (42) and chromomagnetic (43) solutions. These solu-
tions exhibit the following properties:

• Symmetry: Ũ(−η̃) = −Ũ(η̃)

• Periodicity: Ũ(η̃ ± T ) = Ũ(η̃)

• Continuous intervals and singularities: Ũ(η̃ → ±T/4)→ ±∞
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where T is the period of oscillations.
Fig. 1a and Fig. 1b show the simplified version of the solutions, where all constants are

taken to be one. This simplification still retains the key features, such as the quasiperiodic
singularities.

So it can be concluded that the time evolution of the gluon condensate can be seen as a
regular sequence of quantum tunneling transitions through the regular singularities in the
quantum vacuum solution of the effective model (34). That implies the homogeneous gluon
condensate is analogous to the topological condensate in the instanton theory of the QCD
vacuum interpreted in terms of spatially-inhomogeneous gluon field fluctuations induced
by quantum tunneling of the field through topological (spatial) barriers between different
classical vacuums. [6]

4.3 Asymptotic analysis of the YM gluon condensate.

Now we will construct a general analytic approximation for the solution of this system in
the case Q is not far from unity. One would expect that the general solution would exhibit
a similar behavior to the partial one. If it is assumed that the initial energy density is not
extremely large, one can show for the Q = +1 solution that the period of oscillations in
conformal time is estimated in the following way:

T+
η '

4k(6e)1/4

aξΛQCD

, k ≡
∫ ∞

0

du

1 + 1
4
u4

=
Γ(1/4)2

2
√

2π
≈ 2.622. (46)

In physical time this reads

T+
t '

4k(6e)1/4

ξΛQCD

' 5.3

ΛQCD

(47)

Following the same calculation one gets the corresponding period for the negative solution:

T−t '
√

2k(6e)1/4

ξΛQCD

' 1.86

ΛQCD

(48)

The conformal time derivative of the gluon condensate energy density for Q0 > 1 given
by

∂T 0,YM
0

∂η
= − 33κ

16π2

a′

a5

[
(U ′)2 +

1

4
U4 ln

6e|(U ′)2 − 1
4
U4

a4(ξΛQCD)4

]
. (49)

It is negative at t = t0; its absolute value decreases and the value of T 0,YM
0 (t) approaches

T 0,YM∗
0 , which corresponds to the exact de-Sitter solution given by (42). From the dimen-

sions of the given quantities a rough approximate for the relaxation time of the YM energy
can be retrieved:

tr '
1√
κε
, ε ≡ T 0,YM

0 (t = t0) (50)

It was shown that although the unobservable function U(t) and its combination (U ′)2 +
1
4
U4 have periodic singularities the actual physical quantities T 0,YM

0 (t = t0),T µ,YM
ν (t) are
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continuous. This continuity condition can only be met if Q(t) oscillates with the same
period as U(t) and reached unity, so that the logarithm vanishes and thus the singularities
that are coming from the term (U ′)2+ 1

4
U4 are compensated. The Q(t) cannot cross through

Q = 1, since that would lead to a change of sign in the first term in 30, when Q = 1 .
From these arguments one can conclude that the function Q(t) satisfies the constraints
0 < Q(t) ≤ 1 for 0 < Q0 < 1 and Q(t) ≥ 1 for Q0 > 1. Thus the relaxation time for Q(t)
is tr and is the same as for T 0,YM

0 (t = t0). The period of oscillations can be approximated
as

T ≡ Tt
2
' 2k(6e)1/4

ξΛQCD

(51)

It can be concluded that all of the important features of the general solution can be derived
from qualitative arguments only, without choosing any particular parameters and without
any reference to numerical approximations.

4.4 Analysis of the general solution.

Omitting the matter component in (35), the equations of the YMC in physical time read

6

κ

[ ä
a

+
ȧ2

a2

]
= Λ + T µ,YM

µ ,
3

ξ

ȧ2

a2
= Λ + T 0,YM

0 (52)

In order to find the general solutions of these equations we introduce an auxiliary
continuous function g=g(t)

T µ,YM = (g(t) + 1)
[
T 0,YM

0 − C

4

]
, C ≡ −4ΛQCD

inst =
33

16π2

(ξΛQCD)4

6e
(53)

Thus the (52) can be rewritten as

6

κ

[ ä
a

+
ȧ2

a2

]
= 4Λcosm + (g(t) + 1)

[
T 0,YM

0 − C

4

]
(54)

3

κ
ȧ2

a2
= Λcosm −

C

4
+ T 0,YM

0 , T 0,YM
0 = T 0,YM

0 (U, U̇ , a), (55)

The equation for the scale factor is retrieved by excluding T 0,YM
0

6
ä

a
+ 3(1− g(t))

ȧ2

a2
+ κΛcosm(g(t)− 3) = 0 (56)

The general solution for this equation is

a(t) = a∗ exp
[√κΛcosm

3
×

∫ t

t0

1 +
√

Λcosm

ε0
+
(

1−
√

Λcosm

ε0

)
exp

(√
κΛcosm

3

) [
−3(t′ − t0) +

∫ t′
t0
g(τ)dτ

]
1 +

√
Λcosm

ε0
−
(

1−
√

Λcosm

ε0

)
exp

(√
κΛcosm

3

) [
−3(t′ − t0) +

∫ t′
t0
g(τ)dτ

]dt′
] (57)
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in terms of total energy density ε0 and the initial value of the scale factor a∗ ≡ a(t = t0)
respectively.

We also retrieve the total energy density and the trace of the energy-momentum tensor
as functions of physical time:

T 0
0 (t)

Λcosm

=
1 +

√
Λcosm

ε0
+
(

1−
√

Λcosm

ε0

)
exp

(√
κΛcosm

3

) [
−3(t′ − t0) +

∫ t′
t0
g(τ)dτ

]
1 +

√
Λcosm

ε0
−
(

1−
√

Λcosm

ε0

)
exp

(√
κΛcosm

3

) [
−3(t′ − t0) +

∫ t′
t0
g(τ)dτ

] (58)

T µµ (t)

Λcosm

= 4 +
4(g(t) + 1)

(
1−

√
Λcosm

ε0

)
exp

[√
κΛcosm

3

(
−3(t− t0) +

∫ t′
t0
g(τ)dτ

)]
1 +

√
Λcosm

ε0
−
(

1−
√

Λcosm

ε0

)
exp

(√
κΛcosm

3

) [
−3(t′ − t0) +

∫ t′
t0
g(τ)dτ

] (59)

where ε0 is the energy density of the gluon condensate, and Λcosm � ε0 is the observed
cosmological constant given by the equation (1). The expressions (58),(59) do not use any
additional approximations and yield the general solutions for the system (52) as long as
the g(t) is known.

The exact form of the function g(t) can be implicitly found from this differential equa-
tion:

ġ4 − 8(ξΛQCD)4

3e
(1− g2)3 = 0 (60)

A good approximation for the solution is:

g(t) ' A cos(
2πt

Tg
) + (1− A) cos(

6πt

Tg
), (61)

where

A =
2

k

∫ 1

0

g

(1− g2)3/4
cos

(
π

2k

∫ 1

0

dx

(1− x2)3/4
dg

)
≈ 1.14, (62)

Tg =
2(6e1/4)

ξΛQCD

∫ 1

0

g

(1− g2)3/4
(63)

and k is defined by (46).
Assuming the asymptotic compensation condition

T 0,YM∗
0 (t) > 0, T 0,YM

0 + ΛQCD
inst = 0, T 0

0 (t→∞)→ Λcosm (64)

for large times t� Tg the general solution (57) takes the form

a(t) ' a∗

[
1

2

√
ε0

Λcosm

(
1 +

√
Λcosm

ε0

−

(
1−

√
Λcosm

ε0

)
e−3t
√

κΛcosm
3

)]2/3

et
√

κΛcosm
3 , (65)

where a∗ ≡ a(t = 0).
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Figure 2: Plot of the time dependence of the logarithm of the scale factor a(t) represented by

the primary approximation (65) (blue), power-like law (67) (green and dashed), and the de-Sitter

solution (71) (red and dashed). Most constants have been assigned with simple values, thus this

plot is largely qualitative and the units of time are arbitrary.

The initial total energy of the Universe is large ε� Λcosm at time scales

Tg � t� 1

κΛcosm

(66)

the corresponding power-like solutions are

a(t) ' a∗
(

1 +
3

2

√
κε
3
t

)2/3

, T 0
0 (t) ' ε0(

1 + 3
2

√κε
3
t
)2 , T µν (t) ' (g(t) + 1)ε0(

1 + 3
2

√κε
3
t
)2 . (67)

For the period in the case

tr ∼
1
√κε0

(68)

the trace and the energy density becomes independent of

a(t) = a∗(3
κε0

4
)1/3t2/3, T 0

0 (t) ' 4

3κt2
, T µµ =

4g(t) + 1
4

3κt2
. (69)

This corresponds with absence of oscillations in eq. (50). At asymptotically large t

t� 1

κΛcosm

(70)
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the solution approaches the de-Sitter solution and the energy density approaches the value
of the current cosmological constant:

a(t) ' a∗
1

2

(√
ε0

Λcosm

+ 1

)2/3

et
√

κΛcosm
3 , T 0

0 (t) ' Λcosm, T µµ (t) ' 4Λcosm. (71)

So we get an important result: under these conditions the one-loop Lagrangian YMC-filled
Universe develops from the power-like law expansion, corresponding to the radiation stage
into the DE stage, which corresponds to the exponential expanding. It is clear now that
the partial solution for Q = 1 is an attractor, since a(t) law approaches the exponential
evolution at large time scales. Thus we established the stability of the one-loop solution
and described its evolution. This behavior matches perfectly with the expectations for
the development of the cosmological constant, but the one-loop approximation is just an
approximation and so it is important to check whether this behavior will be present in
better approximations. The figure (2) demonstrates the results of this section graphically.

5 Functional renormalization group approach for SU(2)

Yang-Mills condensate.

Now we shall follow a new approach to the non-perturbative analysis of the Lagrangian
(20) and then we will compare the results with the one-loop approximation.

Functional renormalization group is a tool that allows us to study QFT in a non-
perturbative fashion in situations where perturbative techniques are not available, for ex-
ample, when the couplings are not small enough. This approach is based on the path
integral formulation of the QFT. The information about the critical exponents and corre-
lation functions of a given system is incorporated into the effective action Γ. This action is
derived by integrating out momentum fluctuations momentum shell by momentum shell.
This procedure leads to a flow equation for a scale-dependent effective action Γk, where
k is a momentum scale, above which all quantum fluctuations have been integrated out.
The dependence of Γk on the momentum scale is determined by the Wetterich equation.

The momentum shell integrations are usually performed in theories, where gauge fixing
is possible, otherwise it is generally impossible to find the effective action. The effective
action can be constructed from the gauge-invariant blocks following the background field
method. The full gauge field Aµ is separated into the the background Aµ and the fluc-
tuations field aµ in the following way Aµ = Aµ + aµ. After this the gauge of aµ is fixed
with respect to the background field, but the action remains invariant under an auxiliary
gauge transformation of the full gauge field and the background field. The invariance of
the standard effective action Γ[A] = Γ[a = 0, A] is, however, retained. In the FRG the
setting a = 0 is only allowed once all of the fluctuations have been integrated out, thus
the disadvantage of this method is the dependence of the newly constructed action on two
gauge fields.[3]

15



The Wetterich flow equation for the scale-dependent action reads [10]

∂tΓk[a,A] =
1

2
STr

(
Γ

(2)
k [a,A] +Rk

)−1

∂tRk (72)

where Γ
(n,m)
k = δn

(δa)n
δm

(δa)m
Γk and ∂t ≡ k d

dk
. The action Γk is an interpolation between

the microscopic action SΛ at the UV cutoff Λ and the full quantum effective action Γ,
i.e., Γk→Λ → SΛ and Γk→0 → Γ. The solution of the flow equation provides an RG
trajectory of action functionals Γk that interconnects the two extremes. The term Rk is
a regulator function depending on an infrared cutoff k that suppresses the propagation of
momenta smaller than k. The trace (STr) runs over all internal indices, momenta and field
components, which means degrees of freedom for gluons and ghosts, including a negative
sign for the ghosts.

Since the field fluctuations are not considered in the picture of the CC that we are
discussing, we are only interested in the background field action:

Γ[A] = Γ[a = 0, A]. (73)

The problem is simplified by the fact that only the propagators of the fluctuation part in
a background field are required in order to retrieve the flow of Γ[a = 0, A].

It is generally very difficult to solve the (72) equation exactly, thus in order to solve it
some approximations must be implemented. Γk is replaced with the bare action S2 and
the equation can be integrated:

Γk = −
∫
Leff = −

∫
Wk(θ) =

∫
dk

1

2
STr

(
S(2) +Rk

)−1
∂tRk

=
1

2
STr ln

(
S(2) +Rk

)
+ const. (74)

The action is selected to be S = 1
4

∫
dxF µν

a F a
µν , which corresponds to the UV limit of this

effective theory. The integration constant will be fixed in a way that requires the effective
action to vanish if the field strength also vanishes. Following our notation from the previous
sections, the operators that contain the background field Aµ and not the full field Aµ have
the plain notation.

The next step in the FRG procedure is to invert the regularized propagator. This is
done by fixing the gauge and introducing the associated ghosts. The corresponding actions
are

Sgauge =
1

2α

∫
dxDµa

a
νDνa

a
µ, Sghost =

∫
dxDµcνD

µcν (75)

We can split the original supertrace into the longitudinal, transversal and ghost parts

1

2
STr

∂tRk

S(2) +Rk

=
1

2
TrT

(
S(2) +Rk

)−1
∂tRk +

1

2
TrL

(
S(2) +Rk

)−1
∂tRk

− 1

2
Trghost

(
S(2) +Rk

)−1
∂tRk

=
1

2
TrT

∂tRk

Dµν +Rk

+
1

2
TrL

α∂tRk

Dµν + αRk

− 1

2
Trghost

∂tRk

� +Rk

(76)
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and after application of Landau-DeWitt gauge condition α → 0, the longitudinal term
disappears

1

2
STr

∂tRk

S(2) +Rk

=
1

2
TrT

∂tRk

Dµν +Rk

− 1

2
Trghost

∂tRk

� +Rk

. (77)

the operators are Dµν
T = �δcbδµν + gF aµνfabc and Dµν

ghost = ηµν�, are made of background
fields and g is the coupling of the Yang-Mills field.

After the integration of the effective action we get

1

2
STr ln(S(2) +Rk) =

1

2
TrT ln (Dµν

T +Rk(D
µν
T ))− 1

2
Trghost ln (ηµν� +Rk(η

µν�)) . (78)

Now, following [3] we need to pick the form of the regulator. The simplest one is the
mass-like cutoff that we use for both the transversal and the ghost sector:

Rk(D
µν
T ) = Rk(η

µν�) = k2. (79)

The specific choice of the background field does not affect the the flow of Γk [3], thus
any covariantly constant colormagnetic field with DµF

µν = 0, would be enough to retrieve
the effective potential. However, as discussed in [13], [3], purely magnetic backgrounds lead
to a tachyonic mode in the spectrum of fluctuations, thus such systems may be unstable.
The other source of constraints arises from the fact that spectrum of differential operators,
like Dµν

T has to be known.
The particular choice of the background is based on its stability. The only known stable

background is the self-dual field Fµν = F̃µν . This condition leads to the identification
F01 = F23 ≡ B = const. Thus apart from its diagonal zero elements, the field strength
depends only on B. This implies that the field strength has the Abelian form since the
commutator of the gauge potentials in the Lagrangian vanishes. It is important to point out
that this particular choice of the background does not affect the generality of conclusions.
In fact any other choice would lead to negative fluctuation modes, which signify a non-
physical solution.[15]

The eigenvalues of the relevant operators are [3, 11, 12]:

Spec [�] = 2gBl(n+m+ 1), n,m ∈ N

Spec [DT] =

{
2gBl(n+m+ 2) , with multiplicity 2
2gBl(n+m) , with multiplicity 2

,

where Bl = |νlB|; νl denotes the eigenvalues of the adjoint color matrix naT a νl =

Spec
[
(naT a)bc | n2 = 1

]
. It is important to emphasize that there is a degeneracy for

n = m = 0 that occurs because of the symmetry between colormagnetic and colorelectric
part. The degeneracy factor is NB2/2π2, where N = 2 for the SU(2) group.

In order to calculate the traces of the logarithms in (78) we employ the Schwinger’s
formula [17]:

ln(Â) = −
∫ ∞

0

ds

s
e−Â, (80)
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where Â is an arbitrary operator. It can be derived from the appendix A in [17]. We get

Γ(ω) = ln(det L̂ω)) = Tr ln L̂ω = −Tr

∫ ∞
0

ds

s
e−isL̂ω , (81)

thus

ln L̂ω = −
∫ ∞

0

ds

s
e−isL̂ω . (82)

The obtained integral can very often be divergent, so, as the procedure requires, after all
of the changes and reshuffling it should be renormalized. Now we have a way to represent
the logarithms in the equation

1

2
STr

∂tRk

S(2) +Rk

=
1

2
TrT ln

(
Dµν
T + k2)

)
− 1

2
Trghost ln

(
ηµν� + k2

)
. (83)

Combining this with the eigenvalues for the operators we get the following representation
for the effective Lagrangian:

Leff =
2g2B2

2π2

∫ ∞
0

ds

s

∞∑
m,n=0

(
e−(2gB(n+m)+k2)s + e−(2gB(n+m+2)+k2)s − e−(2gB(n+m+1)+k2)s

)
=
g2B2

π2

∫ ∞
0

ds

s

1− e2gBs + e4gBs

(−1 + e2gBs)2
=
g2B2

π2

∫ ∞
0

ds

s
e−k

2s

(
1

4 sinh2 (gBs)
+ 1

)
.

The summation of the exponents is easily performed using Mathematica. After a change
of the variable B2 → θ we get the following result

Leff =Wk(θ) =
g2B2

π2

∫ ∞
0

ds

s
e−

k2

gB
s

(
1

4 sinh2 (s)
+ 1

)
=
g2θ

π2

∫ ∞
0

ds

s
e
−s

(
k4

g2θ

)1/2
(

1

4 sinh2 (s)
+ 1

)
.

(84)

As it was expected, this integral has several divergences at s = 0. The first one arises from
the fact that 1/(4 sinh2(s)) + 1 = 1/(4s2) + 11/12 + O(s2) in the vicinity of s = 0, thus
in order to remove this divergence we need to subtract 1/(4s2) from 1/(4 sinh2(s)) + 1.
The second divergence is a logarithmic divergence caused by the term s−1 in the expansion

of the exp(−s
(
k4

g2θ

)1/2

)/s. We will subtract exp(−s)/s from this expression in order to

remove the divergence. The final expression takes the following form

Lreg
eff =Wk(θ) =

g2θ

π2

∫ ∞
0

ds

s

(
e
−s
(
k4

g2θ

)1/2

− e−s
)(

1

4 sinh2(s)
+ 1− 1

4s2

)
. (85)

In order to see the behavior of this Lagrangian we make another change of variable that
consumes most of the constants k4

g2θ
→ 1

θ′
. Now the Lagrangian can be represented graph-

ically.
Wk(θ

′)

k4
=

θ′

π2

∫ ∞
0

ds

s

(
e
− s√

θ′ − e−s
)( 1

4 sinh2(s)
+ 1− 1

4s2

)
. (86)
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Figure 3: Plot of Lreg
eff =Wk(θ

′) (blue) and one-loop approximation (90) (red and dashed).

The minimum of the Lreg
eff , x ≈ 0.36927 is slightly dislocated, when compared to the one-

loop approximation minimum x ≈ 0.367879. This divergence is relatively small and it is
not immediately clear whether this will significantly affect the dynamics of the condensate,
but, as we will show in the following, this makes almost no difference.

This result differs from a similar result obtained in [8]. The effective Lagrangian [[8],
eq. 60]

L∗eff =Wk(θ) =
g2θ

π2

∫ ∞
0

d

s
e
−s

(
k4

g2θ

)1/2
(

1

4 sinh2 (s)
+ 1− 1

4s2

)
(87)

presented in this article does not correspond to its alleged plot, since its logarithmic di-
vergence was never addressed and therefore the integral diverges at s = 0. There is a
possibility that the treatment of this divergence was performed, though it was never in-
cluded in the final paper, thus it cannot be analyzed. Besides, L∗eff is clearly positive on the
interval θ ∈ [0, 1], so the Lagrangian could not have the alleged minimum. The usage of
the integral representation for the logarithm function that is employed in this article is also
questionable, since this representation may not always be valid for operator expressions
and in the paper it requires an additional simplification to retrieve the result; the correct
approach should be based on the Schwinger’s formula and the subsequent renormalization
of all of the divergences. The SU(2) symmetry is also unrepresented in this formula and
should have been included in the degeneracy factor.

The one-loop approximation can be deduced from the expression for Lreg
eff . First we

Taylor expand 1
4 sinh2(s)

around s = 0: 1
4 sinh2(s)

= 1
4s2
− 1

12
+O(s2) and after the substitution,

Lreg
eff takes the form:
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Lreg
eff =Wk(θ) ≈

g2θ

π2

∫ ∞
0

ds

s

(
e
−s
(
k4

g2θ

)1/2

− e−s
)(

1

4s2
− 1

12
+ 1− 1

4s2

)
(88)

=
11

12

g2θ

π2

∫ ∞
0

ds

s

(
e
−s
(
k4

g2θ

)1/2

− e−s
)

(89)

Using Schwinger’s formula backwards we come to a conclusion that the integral equates to

− ln
(
k4

g2θ

)1/2
and thus the expression takes form

Lreg
eff =Wk(θ) ≈

1

2

11

12

g2θ

π2
ln

(
g2θ

k4

)
= 2

1

2

11

24

g2θ

π2
ln

(
g2θ

k4

)
, (90)

which is exactly the well-known expression for the one-loop Lagrangian obtained by Savvidy,
where the ”2” in the front is coming from SU(2) symmetry group.

If we compare our full final result (85) with the general expression for the effective
Lagrangian (20), we can see that J/g2

YM(J) = θ and thus we identify a non-perturbative
expression for the coupling

1

4g2
YM(J)

= − 1

π2

∫ ∞
0

ds

s

(
e−s
(
k4

J

)1/2

− e−s
)(

1

4 sinh2(s)
+ 1− 1

4s2

)
, (91)

In order to calculate the trace anomaly we need the derivative of this expression:

d

dJ

(
1

g2
YM(J)

)
=

2k2

J3/2π2

∫ ∞
0

ds

(
e−s
(
k4

J

)1/2
)(

1

4 sinh2(s)
+ 1− 1

4s2

)
(92)

Now we can determine the Callan-Symanzik β−function, from the RG equation

2J
dg2

YM

dJ
= g2

YMβ(g2
YM). (93)

We get
d

dJ

(
1

g2
YM(J)

)
= −

(
1

g4
YM

)
g2

YMβ(g2
YM)

2J
= −β(g2

YM)

2Jg2
YM

(94)

and so we retrieve the expression for the β-function

β(g2
YM) = −2J

(
1

g2
YM

)−1
d

dJ

(
1

g2
YM(J)

)
. (95)

At the point where the Lagrangian (85) reaches its minimum, the β-function has a
value:

β0(g2
YM(Jmin)) = 2, (96)

which is exactly the value we expect, considering the analysis from the previous chapters.
The figures 4a and 4b show the form of the β-function β0(g2

YM(J)) and we can see that
for low energies the one-loop approximation is extremely close to the non-perturbative
Lagrangian (85); this means that the one-loop model gives a rather accurate result for our
purposes and the analysis that was done in the previous sections holds.
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(a) Plot of β(g2
YM) as a function of J for (85)

(blue and dashed) and the one-loop approx-
imation (90) (red and dotted). As one can
see, these two functions are overlapping, which
means that the one-loop approximation is ex-
tremely close to the solution (85) for small val-
ues of J. The cutoff is chosen to be k = 1GeV.

(b) Plot of β(g2
YM) as a function of J for (85)

(blue and dashed) and the one-loop approxi-
mation (90) (red and dotted). In contrast to
the low energy sector, the functions do not
match exactly for larger values of J. The cutoff
is chosen to be k = 1GeV.

Figure 4: The comparison of the one-loop and non-perturbative β-functions.

6 Summary and conclusion

In this work we examined the dynamics of the classical YM field and one-loop toy model and
gave arguments for stability of the the general and partial solutions. The non-perturbative
approach based on the functional renormalization group yielded a Lagrangian that has a
very similar shape to the one-loop approximation and can be reduced to it using a series
expansion. The analysis did not include the non-homogeneous parts of the condensate
(waves), although they were partially taken into account during the FRG derivation. Be-
sides that the main result of this work is that the one-loop approximation is accurate
enough and the results obtained in earlier sections still apply. The one-loop YMC model
exhibits the characteristics that are required from this component of the CC, such as the
equation of state and and its evolution from w = 1

3
to w = −1. Other key features of the

one-loop approximation such as behavior of the β-function and the coupling are also valid.
It has been established that there are several components that constitute the physical

vacuum. These components are quantum-topological fluctuations, quantum gravity contri-
butions and the ground state of the gluon condensate. The latter has two components that
have qualitatively similar, but opposite effects. If both of these solutions co-exist, their
attractor nature leads to their compensation and thus their contribution to the vacuum
energy diminishes at large times without any fine-tuning. Thus the Yang-Mills ground
state provides a compensation mechanism for the cosmological constant and explains its
small observed value.

Large early values of the energy density of the condensate can provide a mechanism
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for the explanation of the inflationary expansion stage. The YM condensate can drive the
inflationary epoch in the early Universe and its termination can be potentially explained
by means of the same vacuum compensation mechanism as the one which protects the
current cosmological constant from being very large.

The Einstein-Yang-Mills equations have been solved for the scale factor, energy density
and pressure in the vicinity of the attractor solution with the positive cosmological constant
(i.e. de-Sitter solution). Such a solution can be applied for description of the inflationary
stage in the Universe evolution as long as the corresponding YM condensates are found in
the GUT at large energy scales.
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