
Merging customer relationship
management data

Fredrik Gustafsson

MASTER’S THESIS | LUND UNIVERSITY 2016

Department of Computer Science
Faculty of Engineering LTH

ISSN 1650-2884
LU-CS-EX 2016-29

Merging customer relationship management data

Fredrik Gustafsson

iveqy@iveqy.com

August 6, 2016

Version 1.0

Keywords: CRM, merge, supporting distributed work�ow, merging structural

data in CRM systems, distributed, distributed CRM, customer relationship

management, customer relationship data, merging CRM data

Dept. of Computer Science, Lund University

Supervisor: Lars Bendix

Examiner: Ulf Asklund

Abstract

Working distributed is increasingly important today with technology being
more and more portable while connectivity is still lacking in some areas.
Cellphones and laptops are increasingly in use outside the o�ce with con-
nectivity to internal o�ce services being unreliable, either due to lacking
speed or inability to have a connection.

Di�erent solutions exist. One is a client-server setup where the data
tra�c can be minimized. Another is an internet service where the client is
in the web browser. A third is to use a distributed system where each system
is has full functionality by its own but needs synchronizing with other copies
of the system. Distributed work requires duplication of data and therefore,
also a need to merge data.

Great e�orts have been made to be able to merge program code in text
�les and this kind of merge solutions are pretty mature. However, for merging
other types of data the methods are still young and unproved.

For a CRM system, the data is highly structured and di�erent data �elds
are known in advance. This gives good opportunities to merge diverged data.
However the current systems on the market are lacking support for merge
algorithm knowing about the data format.

Even if the data is structured it doesn't mean that a merge is trivial.
Structured data might have dependencies between di�erent data �elds, so
that one �eld depends on the value of another �eld. That means that a merge
tool needs to be aware of these dependencies. If also taking the history of
changes since the diverging point into account the possibilities for detecting
merge problems is greatly increased.

Di�erent CRM systems have used di�erent approaches to merging data,
however, all found approaches have been without actually merging any data,
but instead either identify a di�erence or guessing the most correct version
without merging. That means that a result will be either one of two con-
�icting changes but not a combination of the two.

This paper has studied di�erent use cases for altering CRM data and how
three di�erent types of CRM programs solve these cases. A custom merge
algorithm that solves all studied cases has been designed and implemented
as a proof of concept.

The proof of concept implementation works satisfying. It uses the history
and the structure of the data, combined with information about dependencies
between di�erent data �elds to identify con�icts and perform a merge. Merge
is only done when it can be done without any risk of loosing information.

The conclusion is that current CRM software handles these problems
poorly and that it is possible to merge this data and/or detect con�icts in a
good way.

2

CONTENTS CONTENTS

Contents

1 Introduction 5

2 Background 7

2.1 CRM architectures . 7
2.1.1 Client-server . 7
2.1.2 Web-based . 8
2.1.3 Distributed . 9

2.2 Di�erent CRM systems . 10
2.2.1 Lime Easy . 10
2.2.2 Deko the CRM . 11
2.2.3 Fat Free CRM . 12

3 Analysis 15

3.1 Use cases . 15
3.1.1 Figure explanation . 16
3.1.2 Use case 1 . 18
3.1.3 Use case 2 . 20
3.1.4 Use case 3 . 22
3.1.5 Use case 4 . 24
3.1.6 Use case 5 . 26
3.1.7 Use case 6 . 28
3.1.8 Use case 7 . 30
3.1.9 Use case 8 . 32
3.1.10 Use case 9 . 34
3.1.11 Use case 10 . 36
3.1.12 Use case 11 . 38
3.1.13 Use case 12 . 40
3.1.14 Use case 13 . 42
3.1.15 Use case 14 . 44
3.1.16 Use case 15 . 46
3.1.17 Use case 16 . 48
3.1.18 Use case 17 . 50

3.2 Characteristics of data . 52
3.2.1 Edit distance . 52
3.2.2 Unit of comparison . 52
3.2.3 Useful information . 53
3.2.4 Di�erence between source code and CRM data 53
3.2.5 Data formatting . 54

3.3 Types of con�icts . 54
3.3.1 Only one change . 55
3.3.2 Related changes . 56
3.3.3 Con�icting change . 56

3

CONTENTS CONTENTS

3.3.4 Unknown relation . 59
3.4 CRM applications . 60

3.4.1 Lime Easy . 61
3.4.2 Deko the CRM . 62
3.4.3 Fat Free CRM . 64

4 Design and results 65

4.1 Merge approaches . 65
4.1.1 Simple merge . 66
4.1.2 Merge with common ancestor 67
4.1.3 Merge with translations 68
4.1.4 Merge with more than two parents 70
4.1.5 Merge with more than two parents and translations . . 71
4.1.6 Partial history merge 73

4.2 Custom implementation . 75
4.2.1 Data format and result validation 76
4.2.2 Merge algorithm selection 76
4.2.3 Limitations . 77

5 Discussion and related work 81

5.1 Current CRM implementations 81
5.2 Use cases . 82
5.3 Design and implementation 83
5.4 Related work . 86
5.5 Future work . 88

5.5.1 Merge algorithm selection 88
5.5.2 Uses for editing distance techniques 88
5.5.3 Optimal information needs 88
5.5.4 Finding what to merge 89

6 Conclusions 91

A Implementation of merge algorithms 93

4

1 INTRODUCTION

1 Introduction

Computers and cellphones are more and more capable and portable the need
for working everywhere has increased. Being forced to be at the o�ce or
connected to a certain network to be able to use di�erent computer programs
are an obstacle for working e�cient. This is especially true for traveling
salesmen who are working on the move.

Mobile networks and Virtual Private Network, VPN, connections are
two solutions used to let a computer work outside the o�ce site, both has
however, their weaknesses. Mobile networks are often slow and unreliable.
The quality depends on the strength of the connection, which varies between
di�erent areas and are dependent of the position of the device using them.

VPN connections isn't really a type of connection but a way to connect
securely from one untrusted network to a trusted one. This type of solution
is in itself not bad, but it is often used to make the computer using it to
think that it is the same network as it uses VPN to connect to. However
even if it is the same network security wise, it isn't the same network speed
wise. Connecting over a VPN tunnel is often much slower that sitting direct
on the network. This means that network heavy programs won't work in a
good way over network, even if VPN is used.

A third common way is to use a web application so that the program is
used as a website. This has the advantage that the client doesn't have to
install any additional software and that it can be reached from everywhere
there is an internet connection. However, web applications are often slow
and hard to work with due to loading times. A loading time of 1 seconds is
perceived as fast, but studies show that a human will notice loading times
over 100 ms and change her behavior when using the application with slower
than this loading times, [14].

The problem with sharing data has been seen in program development
and source code collaboration for quite a few years. This has led to dis-
tributed systems where each client is fully �edged and fully featured by itself
and then it's synchronized with other clients. This is possible thanks to ad-
vances in techniques for merging two di�erent versions of text �les, which is
what source code most often is written in.

Since the computer industry is considered to be early adopters of technol-
ogy, it can be assumed that this techniques could be interesting to examine
for use in di�erent areas, such as Customer Relationship Management, CRM,
systems.

Instead of trying to achieve good connectivity and instant data for all
users, a distributed system could be used where users can work o�ine with
access to the whole database.

A users' database is then allowed to diverge against other users' databases,
resulting in the double maintenance problem, [4]. To reduce the di�erent
versions down to one version again, the databases needs to be synchronized

5

1 INTRODUCTION

in some way. This requires good support for con�ict detection and merge
capabilities.

There's a vast number of di�erent CRM solutions on the market. Look-
ing at how di�erent types of software handle this issue today, categorizing
these systems to di�erent architectures are leaves just a couple of di�erent
implementations. Two typical and one more exotic distributed architectures
has been chosen to study how they allow distributed working.

It might be possible to merge CRM data more e�ciently taking the
knowledge about the data format into account. CRM data is highly struc-
tured and it's known beforehand which �elds exists and what their relations
between each other are.

A custom algorithm will be implemented as a proof of concept to show
that it is possible to merge or at least be noti�ed about merge con�icts for
all use cases studied.

To answer these questions, a collection of common use cases has to been
de�ned and studied. The use cases show con�icts, merges and how even non
con�icting changes could be a problem for parallel work. An important part
here being the unit of versioning [8].

It's easy to imagine that interesting use cases should contain di�cult
merge problems. However, it's equally important to show cases of easy
merges, cases that just need to be found to be con�icts, and cases that
doesn't con�ict at all. All these needs to be handled in a correct manner to
e�ciently and securely be able to work distributed.

This paper presents a number of use cases, describe how di�erent types of
CRM software handle distributed work�ows and show an implementation of
a custom merge algorithm that successfully will solve all use cases presented.

6

2 BACKGROUND

2 Background

In this chapter a background of the problem will be presented and then the
di�erent CRM applications that will be examined will be presented.

Using inspiration from Di� and merge support for feature oriented devel-

opment [7] and remembering the choices needed to be made between consis-
tency, availability and partition tolerance [1] and the performance impact on
the user experience when working with thin clients [14] an interest in study
merging of customer relationship data was born.

The CAP-theorem [1] says that there's a tradeo� between consistency,
availability and partitioning. Increasing availability and partitioning (and
therefore performance) will lower the consistency and result in the double
maintenance problem [4].

On a conceptual level the question is if it is possible to mitigate the
consistency issue enough to enjoy the improved availability and partitioning.
Most CRM application today seems to rate availability above consistency
and trying to mitigate the availability issue instead of the consistency issues.

This chapter will start with a section describing di�erent CRM architec-
tures from a data perspective. Then three CRM application are chosen to
represent the di�erent architectures, these will also be presented.

2.1 CRM architectures

There are several di�erent CRM applications available and there are many
di�erent implementations which are using di�erent architectures.

Three common architectures are found, client-server, web based and dis-
tributed. From these three CRM application were chosen to represent each
category.

Di�erent architectures does not imply di�erent merge strategies but they
do have di�erent need of merges. A client-server architecture has such small
timeframe where a con�ict might arise that the need for a merge capability is
lower since there're less con�icts than for a system with very long timeframes.

However in this paper, the common solution for each architecture is used
as an example and the fact that a certain architecture can have di�erent
merge soltions is ignored.

The common problem with a multiuser CRM system is to have the whole
database shared with all users. That is, all users of the system need to have
access to the same data. Being a CRM system, it's not needed to be updated
instantly, but in a reasonable timeframe.

2.1.1 Client-server

Technically, all types of systems presented here can be called a client-server
system. A traditional client-server system is a system where all data is

7

2.1 CRM architectures 2 BACKGROUND

Figure 1: Client-server

present on the server and where the clients asks for information from the
server each time information is needed. There can be di�erent thicknesses 1

of the clients, depending on how much information is stored locally at the
client.

2.1.2 Web-based

Figure 2: Web-based

A web-based system is a client-server system with all information and
the program stored on the server. The system is using web technologies
such as HTML and http, to connect to the server. This has the advantage
that every computer that has a web browser can connect to the server, but

1A thin client is a client without any data stored, depending completely on information
from the server to operate. A thick client has all data local and communicates with the
server when necessary. There's unlimited levels of thicknesses between these two extremes

8

2.1 CRM architectures 2 BACKGROUND

the disadvantage that web technologies is limited by the choices of protocol
available, since only web protocols such as http, https, etc. can be used.

The web-based system is actually a restricted client-server system. The
reason for separating it into its own category is that web-based system often
do similar tradeo�s. They often rely on transactions being fast and overwrite
data if another user has saved data between a page load and a page save from
another user.

There's also a very limited possibility to alert clients that the data they
are looking at has changed and needs to be reloaded.

2.1.3 Distributed

Figure 3: Distributed system

A distributed system has several equal nodes2 where no one is more im-
portant than the other. All nodes can share information with any other node.
The advantage that each system is self su�cient, but with the disadvantage
that data may diverge and that there's no clear point that is guaranteed to
have the most up to date data.

A distributed system can be used with a centralized server so that it
actually acts as a client-server system, with the exception that o�ine work
is possible and that the server isn't more important in any way than the

2a node is an instance of the program. Most often a separate computer with the
program running on it.

9

2.2 Di�erent CRM systems 2 BACKGROUND

client. Except that it's used as a communication center for the clients. If
the server disappears any of the clients contains all the information needed
to replace the server.

2.2 Di�erent CRM systems

In this section, three di�erent CRM system will be introduced. Their origin
and technical di�erences as well as why they were chosen will be presented.

The CRM systems were chosen based on their di�erent technical imple-
mentation approaches:

• Lime Easy, use a local database that is be shared over a network �le
system such as samba.

• Deko the CRM, use a document database with built-in support for
con�icting versions of a document.

• Fat Free CRM, is a web application that will have one common data
source for all clients.

2.2.1 Lime Easy

Figure 4: Lime Easy

Lime easy is a CRM system developed by Lundalogik [?]. It follows a
very common model for programs sharing a database on a Microsoft system.

10

2.2 Di�erent CRM systems 2 BACKGROUND

The client program is written as a desktop application and it uses a Microsoft
Access database as data store.

This database could be put on a network drive, to allow multiple clients
to use the same database. This is a simple method of that quickly let the
developer of the software implement a client/server like application. The
negative parts is that it often requires a fast network and hence won't scale
to many clients. This is because all data that is needed for a calculation must
travel over the network instead of just the data that the user is requesting
to see, which is the case for most web-based systems.

For using Lime easy in a distributed way without being online with a
central server, Lime easy is using a �check in�/�check out� model. A work�ow
where the network database is copied in whole to the client and when the
client is put in o�ine mode it's using its local database.

Lime Easy is chosen to represent the old style client-server type of CRM
systems and how they can cope with the modern requirements of distributed
work�ows.

2.2.2 Deko the CRM

Figure 5: Deko the CRM

Deko the CRM is a CRM system developed by Hobrasoft [2]. After
requests from customers about the possibility to work o�ine, they build this
system on top of Apache CouchDB. A screenshot of Deko the CRM can be
seen in �gure 5.

The Apache CouchDB has a built in replication and synchronization
mechanism. Being a document database, it doesn't have any knowledge
about the data inside the documents, but can resolve con�icts on a document
level only.

11

2.2 Di�erent CRM systems 2 BACKGROUND

A user has a complete database locally and can specify remote databases
to sync against. If the remote databases are available, the synchronization
can start and con�icts will be detected by Deko the CRM, or more correctly
by Apache CouchDB. All con�icts have to be manually solved and are listed
in a list of con�icts for the user to easy see which records are con�icting.

Deko the CRM is chosen to investigate one of few distributed CRM sys-
tems that has an interesting technical implementation, since CRM systems
building upon a distributed database is very rare.

2.2.3 Fat Free CRM

Figure 6: Fat Free CRM

Fat Free CRM, �gure 6, is an open source CRM system founded by
Michael Dvorkin [?]. It's an application written in the programming envi-
ronment Ruby on Rails [?], with a SQL-database as data store. It's installed
on one server and then connected to by visiting a webpage, usually over the
internet. The system is then interacted with through the web browser.

The thought about con�icts here is that each local copy of data is so
short lived that con�icts are rare and hence do not need discovery. Data is
saved when the user press the a Save button, so the assumption is that the
user is quick to press that button after an edit is done.

Instead the latest version is always used. This means that data can be
lost when it's overwritten and that the user won't even get a notice about
it.

12

2.2 Di�erent CRM systems 2 BACKGROUND

Fat Free CRM is chosen to investigate the rapidly, in popularity, growing
web-based CRM systems.

13

2.2 Di�erent CRM systems 2 BACKGROUND

14

3 ANALYSIS

3 Analysis

In this chapter, there is a short overview of current CRM implementations.
Then an analysis of di�erent use cases and what their merge result should
be. followed by an analysis of Lime Easy, Deko the CRM and Fat Free CRM
will be done.

After reading this chapter the reader will be familiar with common soft-
ware architectures of common CRM application and have a good overview of
a couple of interesting use cases for distributed work with CRM application.

The reader will also have a toolbox that make it possible to solve the
di�erent uses cases and an understanding on which tools are useful in which
case as well as which tools are not useful.

3.1 Use cases

In this section a number of use cases are presented. The use cases are chosen
to explore cases that could be common use cases when working distributed
with CRM. They will then function as a requirement base and test envi-
ronment for a custom implemented tool that will explore the possibilities of
solving the use cases.

There's a huge number of di�erent use cases that could be described.
However just a few of them are chosen as they represent the same problem
as many other use cases.

Each use case have a prefered result that is the correct behaviour for
that situation. A good result would be an implementation that produces
that result. A less good result but still an acceptable result is an implemen-
tation that does not destroy data or might produce wrong results and a bad
implementation is an implementation that might destroy data.

In this paper the di�erent use cases will be categorized as:

• Only one change

• Unrelated changes

• Related changes

• Con�icting change

• Unknown relation

An edge case that seldom occur is not of great importance as long as the
program assures that it results in a merge con�ict, losing data is a problem,
edge case or not.

In this section a collection of use cases is presented. They are chosen to
be representative both from a view of di�erent common use case scenarios
but also to demonstrate the di�erent merge techniques that may be available.

15

3.1 Use cases 3 ANALYSIS

Some merge techniques presented are not implemented in the custom
merge tool for the reason that they simply aren't good enough for this par-
ticular problem. They are still presented as dead ends in the analysis phase
of the paper.

First some general techniques and related topics are presented to give the
reader a good ground to stand on before the di�erent types of changes and
con�icts will be presented. This is followed by a few techniques that could
be used to solve use cases.

3.1.1 Figure explanation

Figure 7: Example �gure

In �gure 7 a change can be seen. Each square represents a node. The
�rst line in the node is the name of the person that has created that node.
Below is the date when the node was created. In a real implementation this
would be a timestamp instead of a date, but in this paper dates are used for
clarity.

Below the line a list of changed �elds can be seen. If there's nothing
below the line, no changes is made.

Even if each node contains of multiple �elds only the �elds that are
changed somewhere in the �gure are shown.

An arrow means that one node is the parent to an other node.
In �gure 7 the author Fredrik Gustafsson did a change at 2015-01-01.

It's not showed all �elds that Fredrik changed but it's showed that Fredrik
gave the �eld Company the value iveqy.

Then the new author Beril Bertilsson did a change to Fredriks node at
2015-01-02 where he changed the �eld Company to have the new value svep.

16

3.1 Use cases 3 ANALYSIS

This page is intentionally left blank.

17

3.1 Use cases 3 ANALYSIS

3.1.2 Use case 1

Figure 8: Use case 1

This test case will show a con�ict detection solution for two con�icting
one �eld changes.

In �gure 8, a simple change can be seen. A version changes the value
of the company �eld from �iveqy� to �svep�. The other version changes the
company �eld from �iveqy� to �LTH�.

There's no good way, from this information alone, to know if �LTH� or
�svep� is the correct company. The result of a merge between these two
versions should therefore be a merge error.

A tool picking the latest version would choose �LTH� and just ignore
�svep�, since �LTH� was edited after �svep�. Adam didn't have access to the
edit done by Bertil and that's why information will be lost if only the latest
version is picked.

A merge error should be shown to the user to be able to do a manual
merge. This can be done in a number of di�erent ways, the most common
being that the last person trying to synchronize with a master database,

18

3.1 Use cases 3 ANALYSIS

that being Adam and Bertil, the date of the change doesn't matter, just the
synchronization date, should do the merge resolution.

It's not necessary that the last person has enough information to do the
merge manually. Another way to manually solve a merge con�ict is that any
person could suggest a solution and that all persons then vote on the best
solution and strive for something everybody has deemed correct. This works
well in a centralized system where all users always can communicate with
all other users. In a distributed system this is not always the case and the
team e�ort of solving merge con�icts is much harder to implement.

The easiest way to solve this is that if the person doing the merge res-
olution doesn't have enough information to do a good resolution, he or she
should make sure to get access to enough information to be able to solve the
merge. For example, by talking to the person that had done the con�icting
change.

So it can conclude that this use case tests if a tool have con�ict detection.

19

3.1 Use cases 3 ANALYSIS

3.1.3 Use case 2

Figure 9: Use case 2

In this use case, the handling of con�icts due to spelling errors will be
examined.

In �gure 9, the initial version is diverging into two di�erent versions.
With company �svep� and �sevp�. One version is misspelled. The most
important thing is to notice that this is a merge error.

This would trigger the same merge error mechanism as use case 1, sec-
tion 3.1.2.

Trying to propose a merge can be done with noticing that it's a spelling
error. There's a number of algorithms to determine the edit distance between
two words. The most famous might be the Levenshtein distance, however
there are algorithms that will provide better results for names.

A possible solution would be to see if the edit distance between two words
in a merge con�ict is small and then use an external resource, for example,
a wordlist, or even better a list of names or company names to determine if
one of the words, but not the other, is correctly spelled.

20

3.1 Use cases 3 ANALYSIS

If two words have a small edit distance and one of them is misspelled
while the other one is correctly spelled, it can be assumed that the correctly
spelled word is the correct answer to the merge con�ict. However, this would
still just be an assumption. How good this assumption could be is outside
of this paper, a very rough estimation would be over 85 % [5].

Since there's no way to verify if a merge has produced a correct answer
or not, like it is with source code, an erroneous merge shouldn't be able
to compile or run the test suite, it's very important that a merge never
introduces false positives. That is, solves a merge case without a guaranteed
correctness of the result. Instead it should be marked as a merge con�ict to
be solved manually.

A helpful program could of course try to hint this to the human trying
to solve the merge, that this is probably a spelling error.

So it can be concluded that there aren't good enough tools to solve this
merge on CRM data, but this should result in a merge error.

21

3.1 Use cases 3 ANALYSIS

3.1.4 Use case 3

Figure 10: Use case 3

In this use case, two exact same leaf nodes are present. For example if
two salesmen met the same customer and add him/her to the system with
the exact same data.

One orphan3 node exists with the same data as another orphan, as in
�gure 10, or a not orphan leaf node. In the case that all data is �lled in, it's
a clear duplicate and the two nodes should be merged to one.

However, if not all data is �lled in, there's a chance that it's not the
same node. For example, if only �rst name and company are entered it's
not unreasonable to assume that there can be two people with the same �rst
name working at the same company.

If there isn't a full match, the safest approach here is to not �ag this at
all. The risk here is duplicated data, which is a serious problem in databases,
but to throw away data that a faulty merge would do isn't very good either.

If one of the nodes isn't a leaf node. The leaf node can be advanced
to the same state as the non-leaf node and merge, if and only if, it can be
determined that they are the same entry (that is a full match).

A possible middle way solution is to �ag a merge con�ict if there's a
partial data match and let the user decide if this could be a duplicate or not.

With only a few �elds containing data, the likelihood if two versions
being a duplicate is lower even if the data match. A good merge algorithm
should be able to only �ag possible duplicates if it has a high enough reason
to suspect that a duplicate might be possible.

For example, just adding someone named �Fredrik� without any other
data added should probably not be �agged as a duplicate of another entry

3An orphan node is a node with no parent

22

3.1 Use cases 3 ANALYSIS

with the name �Fredrik�. Names are an example of a poor comparison �eld,
since two people could have the same name. A phone number is a much
stronger indicator of a duplicate and should render a higher score for deter-
mination if it's something to alert the user about or not, but of course even a
phone number doesn't need to be personal and more than one person could
share the same phone number.

It can be concluded that great care must be taken to ensure that two
physical di�erent persons don't end up as one entry in the system. But
avoiding duplicates greatly improves the data quality in the CRM system.

23

3.1 Use cases 3 ANALYSIS

3.1.5 Use case 4

Figure 11: Use case 4

This use case will examine the possibilities for �nding duplicates due to
spelling errors.

An edit distance search could be made to �nd potential duplicate data.
This would be a combination of the spelling error in use case 2, in section
3.1.3, and the duplicate data problem in use case 3, in section 3.1.4. The
correction of spelling mistakes has the same consequences as in use case 2, in
section 3.1.3 and those has to be weight against the duplicate data problem.
However, since duplicated data is better than thrown away data, this case
shouldn't be �agged.

If the spelling error detection can be good enough, there might still be a
real world usage for a merge algorithm that can succeed in merging this case,
but the result can never be assured to be correct. A safe approach would be
to �ag this as a possible duplicate and let the user make a decision.

This depends on which data �eld is being examined. In this example the
name �eld is the �eld examined and as discussed in use case 3, section 3.1.4
it's rather poor indicator of a duplicate. In use case 3, section 3.1.4, a phone
number is an example of a �eld with a high score for determining a duplicate.
However, it's not necessarily true for a misspelled phone number since people
at the same company tend to have similar phone numbers that have a low
edit distance between them. In that case it's also important at what position
the phone number di�ers.

For two entries where only the phone number di�ers slightly and this
is not the last number of the phone number that di�ers, a duplicate is less
likely to be the case than if the phone number di�ers at an earlier number.

24

3.1 Use cases 3 ANALYSIS

Since all possible duplicates are �agged for the user anyway, a false pos-
itive isn't as bad as a faulty merge. The extra work done by solving false
duplicates are to be related to the cost of having a database with a higher
number of duplicates. This is probably something that di�erent users/com-
panies will value di�erently depending on their business case.

It can be concluded that even if the results will contain false positives it
can be worth doing since the user will check if the merge should be concluded
or not.

25

3.1 Use cases 3 ANALYSIS

3.1.6 Use case 5

Figure 12: Use case 5

In this use case it will be examined if two dependent �elds 4 are changed
in a way that each �elds don't con�ict but a logical con�ict due to the
dependency between the �elds exists.

In �gure 12, two values are changed. The values are dependent on each
other and that dependency must be taken into account when merging.

A tool doing a merge by looking at each row would simple merge this
without any con�ict ending up with incorrect data. In the worst case, both
previous versions would have correct data that combined would have an
invalid combination of values. This would be what is often called an evil

4By de�nition in this paper, zip code and city are dependent.

26

3.1 Use cases 3 ANALYSIS

merge 5.
A tool doing an item based merge, where the change of zip code also

marks the city as a change would mark this as a merge con�ict, a much safer
approach that will result in more merge con�icts but guaranteed correct
data.

A way to attack this problem is to have a dependency list of which �eld
is dependent on which other �eld(s) and then do the merge if the �elds
are independent and mark a merge con�ict if they are dependent. This is
related to the problem of choosing the best unit of comparison and is an
implementation of a variable unit of comparison suggested in [8]. The idea
is to have a very small unit of comparison that can be combined with other
units when needed to form bigger units of comparison. This might sound a
bit tricky but is easy to implement for the CRM system case where all data
�elds are known beforehand. For other systems where the format of the data
can't be de�ned or known beforehand in the same way this would be harder
to implement.

It can be concluded that it's important to have a �exible unit of compar-
ison to be able to have an as small as possible unit of comparison, but never
a so small unit of comparison that inconsistent merge results can occur.

5An evil merge is de�ned in this paper as a merge resulting in a value that isn't present
in any of the versions that are being merged.

27

3.1 Use cases 3 ANALYSIS

3.1.7 Use case 6

Figure 13: Use case 6

In this use case it will be examined if two independent �elds are changed
in a way that each �eld don't con�ict but no logical con�ict due to the
dependency between the �elds exists.

In �gure 13, two values are changed. The values are independent and
no dependency must be taken into account when merging. This is the same
problem as in use case 5, section 3.1.6, but with independent �elds. This
merge should succeed in a good tool.

This use case will show if a tool is doing a change-based merge where
any con�ict will result in a merge con�ict. This instead of a item-based or
row-based merge where each value in the change will be merged against the
corresponding value in the other change.

The unit of comparison is important for this merge case. A small unit of

28

3.1 Use cases 3 ANALYSIS

comparison will merge this without problem while a bigger unit of compari-
son will result in a merge con�ict.

A merge con�ict would still be better than to just choose Bertils change
because that's the newest. The result then would be that Adams age change
would get lost.

A small unit of comparison, but without a merge algorithm more ad-
vanced then taking the latest entry, would also succeed with this merge case.

It can be concluded that it's important to have a �exible unit of com-
parison to be able to have an as small as possible unit of comparison and
minimize the number of con�icts.

29

3.1 Use cases 3 ANALYSIS

3.1.8 Use case 7

Figure 14: Use case 7

In this use case it will be shown how information about the history can
help solve a simple merge con�ict.

In �gure 14, looking only on the changes with the dates 2015-01-03 and
2015-01-04 a clear con�ict can be seen. However, when also looking at the
history this use case could be solved.

One way to solve this would be to look at the dates of the two con�icting

30

3.1 Use cases 3 ANALYSIS

changes and choose the latest one. However, this could be wrong since each
change builds on the data from the previous change. Choosing the latest
change will result in choosing a change that is done without all data. In
this case the change from 2015-01-04 would be chosen and it won't know
about 2015-01-02 at all (in this particular case 2015-01-04 and 2015-01-02 is
identical and it doesn't matter).

Another way to solve this use case would be to use the branch with most
changes in. This is for example the standard behavior of merges done by
Couch DB [3]. This way would work in this particular case but could result
in errors for example if one change was a simple spelling correction, that
branch would still have a heavier weight.

The way of doing this would be to �nd a common sequence. Since one
branch contains the change �LTH� → �svep�, that change could be applied
to the other branch as well, since �LTH� exists in that branch as well. The
result would be two branches with leafs that both contain �svep� and the
merge would be without con�icts.

This way could be achieved by keeping a change list from each branch
and try to apply that to the other branch(es) until a trivial merge is found.

Looking at not the data but the changes and merge changes instead of
data is closely related to operation-based merging and con�ict detection [10].

It can be concluded that saving the history of each branch can give the
merge algorithm valuable information for being able to solve a merge con�ict.

31

3.1 Use cases 3 ANALYSIS

3.1.9 Use case 8

Figure 15: Use case 8

In this use case, two identical changes should be merge into one.
In �gure 15, two people change the same �eld with the exact same value.

This shouldn't be a problem for a merge tool and it's not a con�ict so it
shouldn't be �agged as a con�ict. However, this is an easy test to see if
an application is using actually trying to do a trivial merge or just �ags a
con�ict if an edit has been made.

A tool doing a trivial merge attempt will probably solve this with ease
while a tool not doing a merge will fail and mark this as a merge con�ict,
hopefully. A tool could also choose to ignore this at all and just perform a
merge, picking one of the versions. This wouldn't show up in this use case
since a merge will result in the same result as if just one version would be
chosen at random, however such approach will be revealed in use case 1 8.

It can be concluded that even a simple case like this will fail if the tool
doesn't try to do a merge, but only con�ict detection.

32

3.1 Use cases 3 ANALYSIS

This page is intentionally left blank.

33

3.1 Use cases 3 ANALYSIS

3.1.10 Use case 9

Figure 16: Use case 9

34

3.1 Use cases 3 ANALYSIS

This use case will study the use of many one step translations instead of
one multi-step translation.

The case showed in �gure 16 is almost identical with use case 7, sec-
tion 3.1.8, however here there is two translations from �LTH�. That is:

• �LTH�→�Svep�

• �LTH�→�Sony�

Looking only for one step translations won't work here. Either a multi-
step translation could be done, that is �rst:

• �LTH�→�Svep�

• �Svep�→�LTH�

• �LTH�→�Sony�

should be applied to the right hand branch, or translations with more
steps should be allowed, that is:

• �LTH�→�Svep�

• �LTH�→�Svep�→�LTH�

• �LTH�→�Svep�→�LTH�→�Sony�

should be applied one at the time until a trivial merge is found.
Note that in the multi-step solution, the case that starts and ends with

the same value (�LTH�→�Svep�→�LTH�) this could be ignored since it doesn't
change the value (and is probably an �undo� operation from the user).

It can be concluded that support for multi-step translations or transla-
tions with more steps are crucial for cases with longer history.

35

3.1 Use cases 3 ANALYSIS

3.1.11 Use case 10

Figure 17: Use case 10

This use case will show how to handle multiple parents for an easy con�ict
detection case.

In �gure 17 a multi parent merge is shown. A simple way to attack this
problem is to merge changes two and two until all changes are merged. For
example, �rst merge Adams and Bertils changes into one and then merge
that result with Ceasars change. This might have implications, that will be
shown in use case 11, section 3.1.12, however for this use case it will work
just �ne.

Since all changes that is been merged have di�erent values, this is clearly
a con�ict that should result in a merge error.

It can be concluded that if all leafs are di�erent, they can be handled
two and two using the previous discussed techniques.

36

3.1 Use cases 3 ANALYSIS

This page is intentionally left blank.

37

3.1 Use cases 3 ANALYSIS

3.1.12 Use case 11

Figure 18: Use case 11

This use case will examine the case where a merge has three parents but
two of the parents doesn't con�ict.

This problem is just like use case 10, section 3.1.11 except that two of
the changes have the same value.

One way to solve this would be by vote, since two values are the same,
that value might be more correct than the single one. This is also a good
example on when the merge two and two changes, described in use case
10, section 3.1.11, wouldn't work. That is, it would always give MERGE

ERROR as a result, but the correct result for this use case when using
the vote method would be LTH (although this paper argues that the vote
method is giving the wrong result in this case and shouldn't be used).

Consider three salesmen at a multi-day long conference with no internet
connection. They all work at the same company and the all meet the client
David. The �rst two salesmen meet David on the �rst day, noting that
the company information about David is wrong, so they both update their

38

3.1 Use cases 3 ANALYSIS

system stating that David works at �LTH�. However, during the conference
David is recruited by �Svep� and when the last salesmen meet David on the
last day of the conference, he enters �Svep�.

When all three salesmen get access to internet again and are able to sync
their copies of the database, the vote method wouldn't give a correct result.

The result for the use case in �gure 18 should therefore be a merge error.
If the time stamp of the changes is taken into account. Let's examine if

the vote method works if it also is a requirement for the majority value to
also be the value of the latest change.

That would work for the example with David, leaving that to be a merge
error as well. However, one problem with human entered information is that
there's a delay from the point the information is received to it is entered into
the system. This could possibly be a quite long delay. For example, that one
of the salesmen that meets David the �rst day, just record this information
into his notebook and then enter it in the computer on his way home. That
would make the time stamps of the changes out of order with the time stamps
of when the information was received by any of the salesmen. Hence this
solution wouldn't work either.

So it can be concluded that the voting method shouldn't be used in this
case since it has clear drawbacks.

39

3.1 Use cases 3 ANALYSIS

3.1.13 Use case 12

Figure 19: Use case 12

This use case is a combination of translation and multi-parent merges.
The use case in �gure 19 is similar to the one in use case 11, section 3.1.12.

If the voting approach discussed in use case 11 should be used, the result
here would be �LTH�.

However, the di�erence between �gure 18 and �gure 19 is that �gure 19
has more history to take into account.

40

3.1 Use cases 3 ANALYSIS

Using the translation techniques from use case 7, section 3.1.8, here would
translate �LTH� to �Svep� and three leaves with the same value would be
found. That would make a trivial merge with �Svep� as a correct result.

The voting method is delivering a less safe result and should therefore
be deemed less successful than the translation method. This is because
information doesn't have a weight and therefore two identical data isn't
more correct than one data that di�ers.

It can be concluded that for the multi-parent case, voting would give a
di�erent result than a merge done with the translation technique.

41

3.1 Use cases 3 ANALYSIS

3.1.14 Use case 13

Figure 20: Use case 13

In this use case, ignoring (some) history is examined.
The use case in �gure 20 is similar to the one in use case 12, section 3.1.13.
Let's look at the change with value �Sony�. If the only thing interesting

is the current value, it can probably be safetly ignored. However, in the case
of a CRM system, the history would probably be interesting. For example,
knowing a contacts employment history good give good insights in how to

42

3.1 Use cases 3 ANALYSIS

interact with that contact.
In use case 7, section 3.1.8, information is added. Here information will

be ignored. That's probably not a good way to solve this.
An argument could be had about adding �Sony� to all branches but that

would be wrong since each change is building on its parent. Hence the two
changes with value �LTH� that has parent �iveqy� also implicit holds the
information that company changed from �iveqy� to �LTH�. Inserting �Sony�
in between would destroy that information.

History could be important in some cases for a CRM tool. But to be able
to use the history, it would have to be linear. Since all merges combines two
branches into a common branch and does not alter the history to make sure
that the history agrees, the history would be useless. Therefore, the solution
here is chosen to be �Svep�. Other tools that values the history in another
way, would �nd this to be the wrong approach and instead favor a �MERGE
ERROR�.

It can be concluded that sometimes not all history must be used, but
some can be ignored.

43

3.1 Use cases 3 ANALYSIS

3.1.15 Use case 14

Figure 21: Use case 14

44

3.1 Use cases 3 ANALYSIS

This use case will show how an erroneous implementation of translations
would result in the wrong merge result for some values.

This case is very similar to use case 9, section 3.1.10. It would be possible
to add a change with the value �Svep� and one with �LTH� to the right hand
branch, then end up with two leaves both with the value �LTH� that could
trivially be merged.

However, that is way too complex, the case starts with two leaves with
value �LTH�. That does however not take linear history into account as dis-
cussed in use case 13, section 3.1.14. If history is needed, here's actually a
use case where the history can be merged!

Trying to implement a merge algorithm for this case could however be a
bit tricky. The problem being to know when to stop translations, since the
algorithm should both start and stop with �LTH�.

In this particular case two stop conditions are possible, either stop when
the right hand branch has equally or more changes than the left hand branch
or stop when the right hand branch has reached �LTH� again. Neither those
criteria will work for more complex cases, for example when both branches
needs to translate 6 or when a translation contains several changes with the
same value.

Since history merging isn't a top priority for this paper. No further
exploration is done here.

Since both leaves are identical this use case would word �ne with a simple
merge algorithm, for example the one used in use case 1, see �gure 8. Use
case 14 can be solved without looking at the history. That means that for
use case 14 to be a good test for a merge tool, it must tell the merge tool
to speci�c use the translation merge algorithm or make sure that the tool
chooses the merge algorithm for use case 1 above the merge algorithm for
translation merge.

It can be concluded that translations must be limited and is not always
the go to tool for all history enhanced merge algorithms.

6It could be argued that both branches never should be translated since it could result
in an evil merge.

45

3.1 Use cases 3 ANALYSIS

3.1.16 Use case 15

Figure 22: Use case 15

In this case it will be shown where translations used before voting with
multiple parents can lead to unde�ned results.

In use case 11 in 3.1.12 it was concluded that voting is an approach that
wasn't suitable. This case, seen in �gure 22 would serve as a tricky voting
case. �LTH� could be translated to both �Svep� and �Sony� and whichever
is done, opens up for a vote result. Hence this case would be a good case to

46

3.1 Use cases 3 ANALYSIS

show an implementation �aw in a voting implementation. The correct result
here would be a merge error, because even if it's known that �LTH� isn't
the correct result, it's impossible to know if �Svep� or �Sony� is the correct
result. The tool doing the merge shouldn't throw away the information that
�LTH� could be translated. This is important information that can ease a
manual solution to this merge. Instead all the changes with �LTH� should
be merged and after that merge two divergent branches will be seen. This is
de�ned in this paper as a partial history merge, where a part of the history
can be merged. It will still result in a con�ict for the user, but that con�ict
will probably be easier to solve.

A merge tool doesn't need to have the two extremes that it either success-
fully do a merge or completely aborts. Sometimes, like this example shows,
it's perfectly �ne to partially succeed with a merge.

It can be concluded that, even if voting where a good method is used, it
would have some troublesome cases.

47

3.1 Use cases 3 ANALYSIS

3.1.17 Use case 16

Figure 23: Use case 16

48

3.1 Use cases 3 ANALYSIS

This use case will show that for some cases translations and partial his-
tory merges could lead to the same result.

The merge problem in �gure 23 has a clear solution. Previous use cases
has shown that both translation and partial history merges would reach the
same conclusion.

Whenever partial history merges are possible, they are advised to be used.
That would ease other merge approaches, which could be more expensive to
calculate.

A partial history merge would simply result in a single branch history in
this case.

Note the dates of the changes. They are irrelevant for the result. Not all
tools agree with this.

It can be concluded that partial history merges can be good, but not
always needed since translations gives the same resolution, and are already
needed for other use cases.

49

3.1 Use cases 3 ANALYSIS

3.1.18 Use case 17

Figure 24: Use case 17

50

3.1 Use cases 3 ANALYSIS

This use cases will show that translations don't always work.
The use case 17, �gure 24, looks to be an easy solve for the translation

approach at �rst. Trying to translate the left hand branch would result in
�LTH�. Trying to translate the right hand branch would result in �Sony�.

It's obvious that this approach doesn't work here. One way to solve this
case would be to look at the change dates and try to see if the both changes
with �Sony� match better or worse than the two changes with �LTH�.

Looking at change dates is however not safe as discussed in use case 11,
section 3.1.12. The correct solution for this should therefore be a �MERGE
ERROR�.

This case is also interesting from an implementation point of view. It's
not totally clear when to stop translations here. The rule here would be that
a translation found from one branch cannot be applied to the same branch
again, since that would result in an in�nite loop.

It can be concluded that translations can be tricky when hitting circular
dependencies.

51

3.2 Characteristics of data 3 ANALYSIS

3.2 Characteristics of data

To be able to do a good con�ict detection and merge resolution, it's impor-
tant to know as much as possible about the data being examined.

In this section some of the characteristics about CRM data will be anal-
ysed and presented. CRM data is di�erent from many other types of data,
like source code or UML data, but close to other types of data, most obvious
di�erent types of registers.

First a way of determining how di�erent two words is will be presented,
then a discussion about what, extra, information is needed to be able to do
a good merge. The di�erence between CRM data and source code will be
analysed in depth and then this section will �nish with a discussion about
how to format data.

3.2.1 Edit distance

The edit distance, often in the form of Levenshtein distance [6], is the number
of operations needed to convert one word into another word. This is useful to
see if one word is similar to another word. If two words are very similar it's
possible that one of the words is a misspelled version of the other word. There
are many other techniques for comparing words, specially names which can
be spelled quite di�erently have phonetic representations that can be used to
�nd similarity. This is useful for �nding if two person entries in a database
refer to the same physical person even if the spelling is di�erent. Algorithms
for doing these kind of detections often have higher than 90% accuracy [13].

Since 90% correctness isn't enough for what a CRM system need as
accuracy, these methods should result in a merge con�ict instead of trying
to do an automatic merge. That is, techniques that cannot guarantee a 100%
accuracy shouldn't be used for CRM data since there's no way to verify that
the result is sane. It would be possible to give a merge proposal, which is
good but not considered in this paper.

An example of this kind of merge con�ict can be seen in Case 2, chap-
ter 3.1.3.

It is important to notice that the Levenshtein merge is just unsuitable for
CRM data. For other types of data where the result could be validated, for
example with a compiler, this merge approach could still be a good candidate.

See section 3.2.4 for a discussion about why CRM data need higher ac-
curacy than source code.

3.2.2 Unit of comparison

An important part of the paper Requirements for Practical Model Merge -

An Industrial Perspective [8] is the discussion about unit of comparison. The
unit of comparison is the unit of data that should be compared to other units
of data. The extreme being that the whole database is seen as one unit of

52

3.2 Characteristics of data 3 ANALYSIS

data and hence any change would result in a con�ict and the other extreme
being that each data �eld is seen as a unit of comparison which might lead
to invalid combinations of data as shown in chapter 3.1.6.

A too big unit of comparison will lead to many con�icts and made it
harder to solve con�icts since they can be rather big.

In this paper a �exible unit of comparison will be used, where the size
is scaled dependent on the data examined. This is possible since the data is
highly structured and the structure of the data is known beforehand.

3.2.3 Useful information

Doing a merge is often easy if enough information is given. Often the problem
is that enough information isn't available. It is probably not a good idea to
demand enough information for each merge case. Enough information can
require the use of external resources which could be unreliable but more
possibly nonexistent.

For example, there's a con�ict between two addresses for a company. The
information about which address that is correct is probably available in some
register somewhere or on the company website, etc. It's not realistic for the
algorithm to have access to external data sources for all cases.

Instead a merge algorithm should do its best job with the data present
in the system that is doing a merge. To know what data that is present, a
decision must be made to which data to save.

If all data entered into the system is saved, the algorithm will have the
best possibility to correct a merge. In this paper it will be shown that saving
the edit history give extra information needed to solve complex merge cases.

This di�ers from the techniques used in Requirements for Practical Model

Merge - An Industrial Perspective [8] where history is thrown away deemed
no longer usefull.

3.2.4 Di�erence between source code and CRM data

The most common distributed data systems are code version control systems.
There are a number of mature tools on the market to handle simultaneous
updates to the code.

Common tools like CVS, Subversion and git uses row based merge algo-
rithms where each row is its own entity to merge.

CRM data is not code and should not be treated that way. Code have
strict rules on how it should look, its syntax. After a merge a syntax check
could be performed with a compiler 7. That is, code that compiles have
probably had a somewhat good merge.

7A compiler is a program that converts a textual representation of computer code into
binary represented instructions for the computer

53

3.3 Types of con�icts 3 ANALYSIS

Even if a merge error is introduced that won't get recognized by syntax
checking, there are (should be) test cases that ensure that the code behaves
as expected. For CRM data the options to check if a merge is correct or not
is somewhat more limited.

Code uses syntax rules, but for a CRM system it has to use data, see
section 3.2.3. That's more expensive and not always possible to even get
hold of. For example, two CRM records are merged and ends up with a
record involving a city and a zip code. There are no rules that tells if the
city can have that zip code or vice versa. However, there are records to look
up if this is a correct combination.

Finding records for zip codes and cities may be trivial, but what about
phone numbers and people? Here it's not even hard but impossible since
phone records don't have coverage or correct information for the CRM sys-
tem.

A person that could be reached at a phone number that could be regis-
tered to the company that the person works at for example.

Given these di�erence between code and CRM data, di�erent prioritiza-
tions has to be done. It's much more important for a CRM merge algorithm
to be correct, hence it should give false merge errors rather than possibly
false information.

3.2.5 Data formatting

Some errors are trivial, the information in the two di�erent records being
merged might be the same, but due to the computers inability to understand
the information it still results in a con�ict.

For example, the phone number �0733 608274� and �073 36 08 274� will
show a con�ict in a comparison. This can be solved by always having the
data formatted in the same way, either at the time it's typed into the system
or by the time it's compared.

Comparing data that �rst is transformed by (to the user) hidden rules
are error prone and confusing. That's why data should be on the correct
format already when entered into the system.

This paper won't go deeper into di�erent technique to solve this.

3.3 Types of con�icts

Con�icts can be divided into �ve di�erent categories, only one change, match-
ing changes, unrelated changed and con�icting change. In this section they
will all be analysed in detail and in case of con�icting change, di�erent tech-
niques on how to solve a con�ict will be presented.

54

3.3 Types of con�icts 3 ANALYSIS

3.3.1 Only one change

Let's assume that two users are involved, Adam and Bertil and that these
two needs to synchronize their work from time to time.

The simplest case is when Bertil has done a change, but Adam hasn't.
When they now synchronize their changes, Adam will have all Bertil changes
and no con�icts would have occurred since Adams changes are done following
the same version as Bertil has.

Matching changes

When Adam and Bertil both have done the exact same change, a merge will
be trivial since a merge change (a change with more than one parent 8) will
have the same information as any of its parents, since all parents have the
same information.

This might seem to be a strange case, but it's highly practical when deal-
ing with merge con�icts later on because it requires that con�ict detection
is present, which is one of the requirements for a good merge tool.

If a con�ict somehow could be translated into this case, a merge would
be trivial. Therefore, this is an important scenario. This is called a trivial
merge.

Unrelated changes

An unrelated change is a change of one value, that isn't related to a change of
another value. The values have no logical dependency and a merge between
two changes should be trivial. An example of this can be seen in use case 6
in section 3.1.7.

In use case 6, see section 3.1.7, Adam changes the age and Bertil changes
the company. Since the age isn't related to the company in any way, a merge
would be trivial.

This is only if an item based merge is done. If the merge would be
document based, there would be a con�ict. Since the documents are bigger
than items since a document contains multiple items. The key issue here is
if a single item is considered to be the unit of comparison or if a document
is considered to be the unit of comparison.

An example from the source code world. If Adam change a row in a text
�le and Bertil change another row in the same text �le, a merge could be
successfully done.

However if the merge tool had used a whole �le as unit of comparison,
there would be a con�ict.

8A parent is an entry which precedes and other entry

55

3.3 Types of con�icts 3 ANALYSIS

3.3.2 Related changes

A problem with unrelated changes is that there needs to be a way to know
if they are unrelated or not, see section above on Unrelated changes. For
example, a city is related to the zip code. Change of just the zip code and
not the city could, but doesn't have to, result in invalid data. Great care
has to be taken doing merges with dependent data since the merge algorithm
doesn't know which relations are valid or invalid. A way to prevent this issue
is to not do item based merges but only document merges, see section 3.3.1.
Another way is to identify the dependent relations that are present in the
data and provide that information to the merge algorithm.

Since CRM data is a highly structured data with known data types it is
possible to identify these dependencies. This is a manual process that only
needs to be done once.

In use case 5, see section 3.1.6 a merge with two changes can be seen.
Adam who has changed the city to �Lund� and Bertil who has changed the
zip code to �226 34�. Since the merge algorithm knows that city and zip code
are dependent a merge error is the result instead of a successful merge that
it would be at �rst sight.

If an unrelated merge strategy had been used, the result would have been
�Lund� and �226 34�. That could be a perfectly �ne answer, but there's no
way for the merge algorithm to know that.

As discussed in section 3.2.4 there is no way to verify if it's a valid result
or not, hence great care must be taken to prevent invalid information being
the result of a merge.

3.3.3 Con�icting change

Changes that have values that con�ict with each other. The most simple
case is a value that is totally di�erent from a value in the other change. See
use case 1, section 3.1.2, where the company for one record is changed by
Bertil and Adam to two di�erent values.

Note that Adam is doing his change one day later than Bertil. This
shouldn't have an e�ect on the resulting merge. Since the time information
is entered isn't the same as the time the information is received by the user.

Since a CRM system is dependent of when the data typed into it, (in this
case) the information always has a certain delay before being entered into
the system. This delay will vary depending on a huge number of di�erent
factors. For example, Ceasar is talking with a customer, he gets information
that he needs to change about the customer in the CRM system. But before
he does that, he takes a Swedish �ka, and the entry timestamp is delayed by
30 minutes.

Adam on the other hand, doesn't have �ka at the same time. Adam is
working at the same company as Ceasar. The customer remember that he

56

3.3 Types of con�icts 3 ANALYSIS

gave Ceasar wrong information and call the company again, now speaking
with Adam. Adam enter the correct information in the system, and later
when Ceasar is done with his �ka he has no idea that his information now
is deprecated.

The locking approach 9 does not work here since a distributed system is
used, hence there no way to communicate the lock between di�erent parts of
the system. A centralized system would be able to solve this with locking,
but then other problems with mobility and connectivity will arise.

There are a number of di�erent scenarios with the same consequences.
The result being that listening to the timestamp when the data is entered
into the system is a bad indicator on how correct the data is, see use case 1
in section 3.1.2.

Another trivial error is misspelled words. The treatment of spelling was
presented in 3.2.1.

When two or more �elds are con�icting, it's not more di�cult to merge
them than if one �eld is in con�ict. See use case 6, section 3.1.7 for an
example of this. To solve this, just threat each �eld separately.

This is not the case if there's a dependency between the two di�erent
�elds con�icting. In that case the unit of comparison should increase to be
big enough to �t all �elds dependent on each other. In use case 6 however, the
�elds are independent. For a discussion about how to handle the dependent
case, see use case 5 in section 3.1.6.

More information should lead to better merge results. Each change is
information, so instead of throwing that information away keep that infor-
mation stored until the merge is done. This can be seen in use case 7,
section 3.1.8.

Now the question is, how can this extra information be used to result in
a better merge?

Translations

This paper propose the solution of translation lists. A translation list is a list
of changes from one value to the next that are stored. All those translations
can then be used on any other branch that are to be merged until they go in
a circle. A good example of this can be seen in use case 9 in section 3.1.10.
Where a translation (or two following translations) can result in the same
value (�LTH�) as started with, resulting in a loop.

Sometimes more than one translation step needs to be taken. This can
be implemented in two di�erent ways. Either each translation is one step
long and multiple steps can be applied or one translation can in itself be

9Locking means that a user locks a record from editing by any other user, until the
user holding the lock releases it again. This make sure there's never two con�icting update
since the versions never diverge.

57

3.3 Types of con�icts 3 ANALYSIS

multiple steps long. Again use case 9 in section 3.1.10, is a good example of
this.

Let's say that more than two changes has been done in parallel as can
be seen in use case 10, in section 3.1.11. An easy approach here would be
to compare two changes at the time, merging them down to one change and
then continue with the next one.

Voting

If two changes are equal as in use case 11, section 3.1.12, a voting method
can be used. Let each change have one vote and use the change with the
most votes.

This is unfortunately a bad merge strategy that shouldn't be used. Since
multiple equal changes do not need to add weight to a change. If two changes
are done that are equal and then the information changes resulting in a third
change with the correct value, then a merge would have two versions with
the old incorrect data and one version with the new correct data. Still, using
a voting method, the old data would win since there are two changes for it.
An example can be found in 3.1.12.

Use case 12 in section 3.1.13 explore this even further, when translations
and voting methods are combined and di�erent results occurs depending on
which method to start with. This makes it clear that voting is a bad method
for a multi parent merge strategy.

This isn't a method used by the custom implementation by reasons dis-
cussed in 3.1.12.

History recording

Most systems today are just interested in the current information. That gives
a lot more freedom when designing a merge algorithm. Consider use case 13
in section 3.1.14. If �Sony� can be ignored, this merge is easily solved using
previously discussed techniques, however if the information that �Sony� has
been a previous company for the person should be stored, this should result
in a merge error. Chances are however that �Sony� isn't a correct value at
all, but an error by the person doing the data entry. The value of recording
this is hard to measure, but it's probably very low. The question is not if
the history should be kept, but if the history is important for the user. For
example, if the history of a contact's di�erent companies should be recorded,
the history needs to be correct as well and there need to be a history merge
to result in a correct history as well as make sure that the latest version is
correct.

Starting from the oldest ancestor, the history should be tried to be
merged step wise. This would solve some otherwise tricky situations. Using
translations to solve use case 14, section 3.1.15, could be tricky. Even easier

58

3.3 Types of con�icts 3 ANALYSIS

would be to merge �rst generation children �rst, it would be a trivial merge,
and then only a linear history is left.

Adding multi parent merges into this, as in use case 15, section 3.1.16,
shows that translations isn't the most e�cient way to solve this problem.

There are times when a translation approach could fail even for a merge
case with two branches. This can be seen in use case 17 in 3.1.18 where
applying translations to the two di�erent branches result in a di�erent result.
This could lead to data loss and is hard to detect in an e�cient way. Since
data correctness is very important for CRM data merges, this should be
�agged as a con�ict.

3.3.4 Unknown relation

As seen in use case 3, in section 3.1.4, two changes could need a merge result-
ing in a non-con�icting merge, see section Matching changes in section3.1.
To detect this case avoids duplicates in the database.

Knowing which changes that are to be merge is crucial, otherwise the
merge problem isn't even known to exist! If two or more changes has a
common ancestor, it's pretty clear in this case that they should be merged.
Assume that all changes with a common ancestor should be merge or �agged
as merge errors. However, it's not clear that changes that don't have a com-
mon ancestor should be merged. They probably shouldn't, but sometimes
they should. If two records are meant to represent the same physical per-
son, but are entered in the system as two di�erent accounts, they should be
merged to one.

It's hard to identify which ones should be merged or not, but since this
isn't a merge, but a suggestion for merge. The need for a correct result
isn't that important and many of the techniques deemed too unsafe in chap-
ter 3.3.3 can be used to �ag possible merges.

The trivial case would be two changes, or rather entries, that are identical
with all data �elds given a value.

For example, if one record is for Bertil working at Tetra Pak and another
record is for Bertil working at Tetra Pak, they should be �agged as a possible
duplicate but they do not need to be a duplicate, since there is a chance that
there are two people named Bertil that work on Tetra Pak.

However, if all �elds are given a value, they may still be two di�erent per-
sons, but the systems resolution isn't enough to keep them apart anyway10,
so it is safe to assume that they can be merged into one entry.

Records with partial matching �elds should be considered for a merge
candidate. Partial matching can be that some �elds match and some �elds
don't, that some �elds match and some other �elds are compared to an

10Let's assume that a system records only �rst and last names of a person. There might
be two di�erent persons with the same �rst and last name in the real world, but not in
the system. The systems resolution isn't enough to keep them apart.

59

3.4 CRM applications 3 ANALYSIS

empty �eld. This would possibly be a pretty expensive operation if all records
should be compared to all other records and when two records are compared,
all �elds in those records should be compared as well.

For merging two entities without a common ancestor, a 100 % match
for all �elds are required to be sure that data isn't lost. However since this
isn't a merge, but a suggestion for a merge candidate, there's no need for a
100 % match. Instead the edit distance can be used to �nd �elds that almost
matches. For example, the Levenshtein distance could be used to compare
di�erent �elds to each other.

Levenshtein distance is only one method of comparing the distance be-
tween two words. There are di�erent algorithms that are more suitable for
names. These algorithms and their abilities are outside the scope for this
document. An example of this scenario can be seen in use case 4 in sec-
tion 3.1.5.

To �gure out if two entities should be merge candidates or not, a given
is that if many �elds are equal or almost equal, the higher chance of the two
entities are good merge candidates. However not all �elds should have the
same weight.

When comparing �elds, they should be weight against each other. For
example, two records with the same person name is more likely to be a good
merge candidate than two records with the same company name. This is
because person names tend to be, at least to some point, unique while many
people can work at one company. Even more people live in the same city, so
�nding two records with the name Bertil and the city Lund should probably
not result in a merge candidate. However, two records with the name Bertil
and the company Arimans Café might. Two records with the name Bertil
and the company Tetra Pak might however not, since Tetra Pak has more
employees that Arimans Café.

The model considered in this paper lacks information about the company
size. The weight for di�erent �elds probably has to be determined by trial
and error with real data.

Two changes that are resolved as a non-merge, would possible be detected
again, next time a scan is done for �nding a potential merge. To prevent this,
even merge con�icts resulting in a non-merge result need to be recorded.

3.4 CRM applications

There are many CRM applications on the market today. In this report the
leading applications have not been chosen but instead three applications that
di�ers from each other at an architectural standpoint.

Most of the leading CRM tools on the market today resemble at least
one of the chosen tools. First a tool named Lime Easy will be evaluated.
Lime Easy is a client-server style type of tool. Then there's Deko the CRM
that is one of few distributed CRM systems on the market today and last

60

3.4 CRM applications 3 ANALYSIS

Table 1: Lime Easy results
Use case Expected result Result Verdict

1. MERGE ERROR svep and LTH incorrect merge
5. MERGE ERROR 226 34 and Malmoe incorrect merge
6. svep and 31 svep and 31 correct
8. svep svep correct

there's Fat Free CRM that is to represent the web based systems that are
getting increasingly popular in recent days.

3.4.1 Lime Easy

Lime easy does distribution by "checking in" and "checking out". A work�ow
where the database on the network is copied in whole to the client and when
the client is put in o�ine mode it's using its local database.

When reconnecting to the network with the master database again a
check in is performed, that is a synchronization between the both databases.
There could probably be con�icts here, when a con�ict is discovered, the
latest entry is chosen.

The latest entry is not necessarily the correct one, especially not since
the timestamp is set when the data is entered into the system and not when
the data is acquired 11

Lime Easy is doing a poor job of solving merge con�icts, table 1. The
time of entry is not the same time as the time the data is correct, if the
frequency of data change is much lower than the frequency of the data being
entered into the system, the entered timestamp would probably mostly be
correct enough.

If the number of customer entry points to a company is small, for example
one account manager handles one customer, the risk of collisions will also be
small. It could be argued that since Lime Easy is targeting small businesses
the need for merge solving isn't that huge since con�icts will be rare. Several
persons will seldom work on the same customer. Each customer will seldom
be updated and if several persons do work on the same customer their work
will be far apart in time. Also if the salesmen are touching base with the
master version of the database daily instead of monthly the con�icts will
probably be rather few.

Although this could be a correct guess, the problem here is that data

11Let's assume that there's something like correct data come from one single source and
should be registered in the CRM system. Since the CRM system could be updated in
di�erent ways, due to it having multiple users, the data could arrive to the CRM system
out of order. Therefore, the timestamps where when the data arrive to the CRM system
is not guaranteed to be in the same order as the data is produced from this imaginary
single source.

61

3.4 CRM applications 3 ANALYSIS

can be destroyed. To prevent this, con�ict detection is needed, although an
automatic merge algorithm might not be needed.

When a con�ict occurs, as in use case 1 in chapter 3.1.2, Lime Easy would
simply choose the latest entry and therefore possibly loose data. Duplicate
data isn't found either but are both inserted into the system, this problem
will be analyzed in use case 3 in chapter 3.1.4.

The huge problem with Lime Easy isn't the lack of merging but the total
lack of con�ict detection. Even if con�ict detection actually is done, it's
not communicated to the user and therefore in practice Lime Easy does lack
con�ict detection.

To summarize, a good merge algorithm needs �rst of all to have good
con�ict detection. If no con�ict detection is present, it's impossible to even
know that a merge is needed.

3.4.2 Deko the CRM

The Apache CouchDB has a built in replication and synchronization mecha-
nism, that is used by Deko. CouchDB is a document database, meaning that
it stores documents and it also �nd con�icts of di�erent documents. Being
a document database, it doesn't have any knowledge about the data inside
the documents, but can detect con�icts on a document level.

If there's a con�ict, CouchDB will choose the version with most edits
�rst and in case of a draw it will choose the latest version.

However, CouchDB will always notify the application about the con�ict
and will provide both con�icting documents for access if the application
wants to.

Deko the CRM is using the capabilites of CouchDB for doing con�ict
detection. If a document is con�icting with another version of that same
document, Deko will show a con�ict and let the user merge the two versions.

Merging on a document level is hard, because there's no di�ng function-
ality so there's no way of knowing what di�ers between two versions of the
document. Also a document can be quite big, usually containing for example
all information about a person.

Deko the CRM is �nding a lot of con�icts, table 2. This is good since the
risc for data loss from a automatic merge like in Lime Easy isn't possible.
However, since the merge con�icts are both big and hard to know which
items actually con�icts. Each con�ict resolution is pretty expensive since it
requires manual work.

As seen in table 2, use case 1 is resulting in a con�ict as it should but
use case 6 is also resulting in a con�ict even if it shouldn't.

If the number of con�icts are big, it can be imagined that the human way

62

3.4 CRM applications 3 ANALYSIS

Table 2: Deko the CRM results
Use case Expected result Result Verdict

1. MERGE ERROR
con�ict but LTH
as winner

incorrect merge

5. MERGE ERROR
con�ict but 226
34 and Malmoe as
winner

incorrect merge

6. svep and 31
con�ict but svep
and 30 as winner

incorrect merge

8. svep
con�ict but svep
as winner

correct

to resolve each of them is error prone 12 and this can lead to invalid data
being stored.

To conclude, Deko the CRM is doing con�ict detection and are presenting
this to the user. However, Deko is doing a poor job of helping the user solve
the merge and is also giving a lot of false positives due to a too big unit of
comparison.

Using the same arguments as for Lime Easy, assuming that Deko is used
by a small company with con�icts seldom to occur, this is still probably
a better approach than Lime Easy since Deko won't risk losing any data.
However in a bigger setting, the false positives and the expensive merges
would make Deko hard to work with.

In the case where con�icts are rare and the Lime Easy solution already
is deemed good enough, it's not sure that the increased complexity of Deko
the CRM is worth having. That is, in Lime Easy the users don't have to
think about merging, but in Deko they have. In Deko the CRM the data
sharing problems are visible, that might be a �rst step, but it's also an extra
load on the users.

Two di�erent versions need to be presented to the user with the di�er-
ences clearly visible so that a manual con�ict resolution can be done.

12Humans make errors, with a huge number of con�icts the human solving them are
probably reducing his/hers attention after a while and gets sloppy. This of course doesn't
need to be the case but in that case it would probably be time consuming

63

3.4 CRM applications 3 ANALYSIS

3.4.3 Fat Free CRM

Fat Free CRM isn't the most popular web based system, but many of the
available web based systems share the same problems and solutions. Al-
though the use of web technologies does not imply that a con�ict detection
and merge behavior needs to be implemented in a certain way, they often
are.

The solution for o�ine work in these web based applications is that it
is nonexistent. They instead rely on the widely spread internet connectiv-
ity and as long as there is an internet connection it's possible to use the
application.

Since each client has such direct communication with the server, the time
for data to diverge is often very small. Since this time is so small, it's often
thought that con�ict detection isn't needed because of the low frequency of
con�icts.

Table 3: Fat Free CRM results
Use case Expected result Result Verdict

1. MERGE ERROR LTH incorrect merge
5. MERGE ERROR 226 34 and Malmoe incorrect merge
6. svep and 31 svep and 30 incorrect merge
8. svep svep correct

The results from the tests can be seen in table 3. The problem here is
that con�ict detection is nonexistent and that the unit of comparison is a
whole page load. Since not only the changes but the current content of a
view is sent, it's impossible for Fat Free CRM to know what has changed.

Technically there could be done a server side di� 13 to know this, but
then the version to di� against must be known and such history support isn't
existent in most web based tools.

Both a simple use case like use case 1 that should con�ict and a simple
use case 6 that should result in a merge fails.

Fat Free CRM is su�ering from both a big unit of comparison and its
lack of con�ict detection. The version saved is always the latest version no
matter if that version has the current version as an ancestor or not.

The risk of data loss is present, however it is mitigated by the short times
each client holds its data to itself.

13A di� is the di�erence between two versions

64

4 DESIGN AND RESULTS

4 Design and results

In this chapter it will be shown how to obtain the desired results for the
di�erent use cases previously analyzed. The merge algorithm used will be
analyzed in detail and the e�cacy of it will be discussed.

From the use cases, �ve important requirements have been collected.

• Con�ict detection

• Merge capability

• Flexible unit of comparison

• Access to change history

• Access to dependencies between �elds

Not all use cases require all �ve requirements to be used at the same
time. But together they form a very good base for being able to solve all the
use cases.

For being able to do a merge, it must �rst be known if there's a con�ict
between two versions. For this to be useful it's not only of interest to know
that two versions di�er but also what di�ers between them.

When a con�ict is found, a merge should be conducted. A merge is a
quite complex operation. It's known from software development that it is
possible to merge text �les with a pretty good result. However, merging
CRM data is di�erent. The data types and the data structure is much more
de�ned and won't change between di�erent versions and there's no compiler
to verify the result meaning that the importance of a correct merge is higher.

A key to being able to do con�ict detection and merges is to have a �exible
unit of comparison. The algorithm should always use the smallest possible
unit of comparison, but not any smaller. Since the smallest possible unit of
comparison di�ers between di�erent data �elds, them being dependent on
other data �elds or not, the unit of comparison must be �exible.

This chapter will start with a discussion about the di�erent merge ap-
proaches needed to solve the use cases from chapter 3.1 and then discuss the
custom implementation that is done as a proof of concept to show that the
techniques actually work.

4.1 Merge approaches

In this section, the di�erent merge approaches that are implemented by the
custom merge tool will be analyzed. Not all approaches are used to solve
the use cases analyzed in the paper and not all merge approaches previously
discussed are implemented.

65

4.1 Merge approaches 4 DESIGN AND RESULTS

For example the voting method isn't implemented since it was deemed
to be a bad �t already in the analysis of the use cases.

The Levenstein merge is implemented but not used since the false pos-
itives are too many. This was seen already in the analysis part, but a test
implementation was done either way. The results were correct in the test
run but the test data too small for that to have any importance.

First the case of a simple merge will be discussed, followed by how to
handle a merge where the leafs to be merged have a common ancestor. Then
merging with the translation method described in 3.3.3 will be discussed.
The case with doing a merge with more than two parents, that is merge
three of more leafs together will then be discussed, followed by the same
case, but including translations. Finally a discussion about partial history
merge will be held.

4.1.1 Simple merge

Figure 25: Simple merge

A simple merge is the merge of two nodes, see �gure 25. In the �gure
node a is merged with node b to form node c.

One way to solve this is to look at the timestamps of the nodes, and just
pick the latest node. This is what Lime Easy and Fat Free CRM does. A
better approach would be to �ag it as a con�ict, that's what Deko the CRM
does. Best would be to try to merge the two nodes with an as �ne unit of
comparison as possible and only �ag it as a merge con�ict if needed.

To pick just the latest node isn't the same as picking the most correct
node and data might be lost. Always requires human merge resolution is
cumbersome and work intense. Hence an automatic merge should be tried,
since that's the best solution if it works.

In detail the custom algorithm work as described below.

66

4.1 Merge approaches 4 DESIGN AND RESULTS

The simple merge will take two nodes. It will �rst create a third node
to hold the result of the merge. It is this node that will be populated with
data and returned as the result node.

The meta data of the newly created third node will be populated with
the author, which would be the merge tool itself and the current time. The
parents of the node will be set to be the �rst and second node, the nodes
supplied to the simple merge algorithm. Each node has an id, the supplied
two nodes will have id 1 and 2 respectively and the third resulting node will
get an id that is one bigger than the biggest id supplied, in this case 3. Each
�eld of the supplied nodes will be traversed and if they match, the value of
that �eld will be put as the value at the corresponding �eld on the third
node that will hold the result. If the values di�er, a merge error marker will
be inserted instead of the data from any of the supplied nodes. The result
node will then be returned as a result.

4.1.2 Merge with common ancestor

Figure 26: Merge with common ancestor

In section 4.1.1 there's no way to know if the changes done to node a
and the changes done to b are con�icting with each other or not.

One way to solve this is to use an algorithm called the three way merge [12].
The three-way merge algorithm looks at what changes between node a

and b and compare that with what changed between node a and c. This

67

4.1 Merge approaches 4 DESIGN AND RESULTS

way the changes, not the content, will con�ict.
The same problem as in section 4.1.1 can be solved with the additional

information about the common ancestor of the two nodes that are going to
be merged.

In �gure 26 the merge case can be seen, where two nodes have the same
ancestor and then are merged together to form a fourth node combining the
information from both node b and c. What this actually does is decreas-
ing the unit of comparision from being a node to be a change between two
nodes. This might have implications, since one change may alter one �eld
that depends on another �eld. That's why a �exible unit of comparision is
implemented. This will detect if a change alters a value that has a depen-
dency and in that case it will mark both values as changed. More about how
this is implemented can be found in section 4.2.

In detail the custom algorithm work as described below.
The merge with parent will take three nodes, node a, node b and c and

a list of dependencies between di�erent data �elds. The �rst node will be
the common parent of node b and c.

A new node, node d will be created as the result. The meta data of the
newly created fourth node will be populated with the author, which would
be the merge tool itself and the current time. The parents of the node will
be set to be the second and third node. Each node has an id, the supplied
three nodes will have id 1, 2 and 3 respectively and the fourth resulting node
will get an id that is one bigger than the biggest id supplied, in this case
4. Then each �eld of node b and c will be traversed and if they match, the
value of that �eld will be put as the value at the corresponding �eld on the
fourth node that will hold the result.

If the values di�er, a check will be conducted to see if a value is changed
between the parent and the node. If that's the case, that data �eld is de-
pendent on any other data �eld. If it is a dependency and the �eld has
changed between the parent or any of the children a merge error marker will
be inserted instead of the data from any of the supplied nodes. The result
node will then be returned as a result.

4.1.3 Merge with translations

In previous section, 4.1.2, a con�ict is solved by additional information, that
is the common ancestor node. More information about the history might
help to create an even better merge.

This isn't obvious. Previous versions could contain errors, and this
method would make it possible to translate a value to an erroneous value,
for example a misspelled word. However, assume that that error also have
been corrected, then that information on how to correct such error could be
useful in a merge.

68

4.1 Merge approaches 4 DESIGN AND RESULTS

Figure 27: Merge with translations

In �gure 27. The approach is to use information from the changes be-
tween node a and node b, and node b and node d instead of just the change
between node a and d as is done in the merge with common ancestor in the
previous section.

In detail the custom algorithm work as described below.
The merge with translations will take an object containing all nodes, one

of the nodes being merged called node d and the other node being merged
called node c. A new node, node e will be created as the result. The meta
data of the newly created node e will be populated with the author, which
would be the merge tool itself and the current time. The parents of the node
will be set to node d and node c. Each node has an id, the resulting node
will get an id that is one bigger than the biggest id supplied. Each �eld of
node d and d will be traversed and if they match, the value of that �eld will
be put as the values at the corresponding �eld of node e, the node that will
hold the result.

69

4.1 Merge approaches 4 DESIGN AND RESULTS

If a �eld doesn't match, an e�ort to �nd translations for that �eld is
done. A translation is a change to a �eld, a rule that says that one value of
a particular �eld can be translated to another value of that �eld. This was
analyzed in section 3.3.1.

Finding translations will traverse the history and record all changes to
that particular �eld. This is called translations and all these translations
will be collected. Next translations will be applied to �rst d to �nd a match
with c and then on c to �nd a match on d. The application of translations
is a recursive function that will try all collected translations on �eld in order
to �nd a �eld that will be equal to the target �eld. This will be done for
all translations, knowing that multiple translations could be applied to after
each other.

If no translations succeed to result in a merge, a merge error marker will
be inserted in node e instead. The result node, node e, will then be returned
as a result.

4.1.4 Merge with more than two parents

Figure 28: Merge with more than two parents

In �gure 28 a merge of three nodes is shown. This case could be treated
the same way at a two parent merge, done multiple times. However, then
the information that this is a multiple parent merge is lost. It's seen from
section 4.1.3 that extra information can be important. For using the extra

70

4.1 Merge approaches 4 DESIGN AND RESULTS

information, the merge algorithm called voting, see section 3.3.3 can be used.
However as discussed in use case 12, section 3.1.13, this isn't a method that
is safe to use in the CRM setting and hence there's no need for the extra
information needed.

The case with more than two parents could therefore be handled as a
generalization of the two parent case.

In detail the custom algorithm work as described below.
The merge with multiple parents will take a list of the nodes that are to

be merged. For example in use case 10, section 3.1.11 a list of three di�erent
nodes.

A new node, node d will be created as the result. The meta data of the
newly created node a will be populated with the author, which would be the
merge tool itself and the current time. The parents of the node will be the
second and third node. Each node has an id, the resulting node will get an
id that is one bigger than the biggest id supplied.

For each �eld in the nodes, the value will be compared with all other
nodes in the list of nodes supplied to the merge with multiple parents func-
tion. If they match, the value will be applied to the corresponding �eld in
node d. If not a merge error marker will be inserted in node d instead.

The result node, node d, will then be returned as a result.

4.1.5 Merge with more than two parents and translations

Let's consider the most complex case where history and more than two par-
ents are combined in one merge case. A simple example can be seen in
�gure 29. This must be handled by a merge tool.

A combination of the merge with more than two parent in section 4.1.4
and the translation merge in section 4.1.3 are combined in order to solve this
merge.

A case to consider here is when node b, node c and node d are equal. In
that case node f will be equal to node e. This might from a �rst look seem
a bit strange, but that's the result of ruling out voting, section 3.3.3, as a
method.

The partial history merge could be seen as a purely optimization tool
since the merge result would be the same with or without it.

In detail the custom algorithm work as described below.
The merge with multiple parents and translations function will take an

object with all the nodes as input data as well as a list of the leave nodes,
the (soon to be) parents to merge. A new node, node f will be created as
the result. The meta data of the newly created node a will be populated
with the author, which would be the merge tool itself and the current time.
The parents of the node will be set to be the second and third node. Each
node has an id, the resulting node will get an id that is one bigger than the
biggest id supplied.

71

4.1 Merge approaches 4 DESIGN AND RESULTS

Figure 29: Merge with more than two parents and translations

For each �eld in the nodes, the value will be compared with all other
nodes in the list of nodes supplied to the merge with multiple parent function.
If they match, the value will be applied to the corresponding �eld in node a.
If they don't match, the nodes will be traversed to �nd possible translations
that can be used.

The translations will be appended to each of the leave nodes and try to get
two leaves to match. If that's possible the result will be tried to even get the
third node to match. This is implemented as a recursive function that could
possibly be pretty expensive to run. Here the algorithm could be optimized
by make use of dynamic programming and score boarding techniques to
reduce the cost of running this function.

If still no merge could be done a merge error marker will be inserted in
node a instead. The result node, node a, will then be returned as a result.

72

4.1 Merge approaches 4 DESIGN AND RESULTS

4.1.6 Partial history merge

Figure 30: Partial history merge

Consider �gure 30. If node b and node c are equal, they could be merged
with the simple merge, section 4.1.1, to form a new history, hence a new
merge case, as shown in �gure 31. This is a method of simplifying the
history to ease the use of other merge algorithms.

The partial history merge doesn't solve any problem that the other merge
algorithms haven't already solved, but can greatly improve the performance
of the other merge algorithms since partial history merge is much cheaper
to do than for example merge with more than two parents and translations
from section 4.1.5. The example from section 4.1.5 would never happened if
partial history merge was done �rst.

The need for partial history merge isn't obvious but reducing the merge
problem as much as possible is e�cient for dealing with longer histories.

In detail the custom algorithm work as described below.

73

4.1 Merge approaches 4 DESIGN AND RESULTS

Figure 31: Result after applying partial history merge

The partial history merge will take an object containing all nodes. It will
then create three lists, new, drop and adopt. The new list will contain the
new collection of nodes that another merge algorithm will consider its input
data. The drop list will make sure that a node won't be processed more than
once and the adopt list will contain information about which nodes that can
be said to adopt any other nodes in order to reduce the history.

For each node, all children will be found. If any of the children are present
in the drop list, they are already processed and nothing will be done. The
adopt list will be traversed to see if the item's parent could be changed with
the information gathered in the adopt list or not. Then if more than two
children exists they will be compared. If they contain the same values for
each �eld, they will be merged using the simple merge algorithm described
above. Note that they are guaranteed not to have any merge con�icts since
they are compared �rst.

The new node is added the new list and data is added to the adopt

74

4.2 Custom implementation 4 DESIGN AND RESULTS

list with information about each node that can be translated to the newly
created node. Also each merged node is added to the drop list so that is
won't be examined again. If they do di�er in the comparison, they will be
added to the new list.

This function will be called recursively with the new list as its argument
as many times as it takes not to have any newly create merged items added
to the new list. Then the new list will be returned.

4.2 Custom implementation

In this section, the custom implementation will be analyzed together with
its abilities and limitations.

Figure 32: Distributed and centralized work�ow

To prove that the techniques from chapter 4, can be used to solve the use
cases from chapter 3.1, an implementation is done as a proof of concept. The
implementation is pure con�ict detection and merge program and does not
include any other CRM functionality nor a user interface. With these tech-
niques a distributed work�ow as well as a centralized work�ow is possible. In
�gure 32 three salesmen can be seen working centralized towards a server at

75

4.2 Custom implementation 4 DESIGN AND RESULTS

the same time as they share information with each other directly. Working
towards a server could be great if the salesmen rarely see each other. It can
also be great to be able to share information between each other if meeting
without being able to communicate with the server. Both cases should work
when the salesman is o�ine from time to time. A good con�ict detection
and merge tool makes this possible.

First a discussion about the data format used and how the result valida-
tion is implemented, then a discussion about merge algorithm selection will
follow. Last the limitations of the implementation will be discussed.

4.2.1 Data format and result validation

To be able to specify the use cases in a clear way and to be able to verify
that the result of the custom merge algorithm was successful, a special data
format for describing use cases was constructed.

Each use case is described in a text �le with each node, including the
correct result that can be seen in the �gures in chapter, 3.1.

For processing a use case, the program need to read the �le and separately
store the �nal node. The merge algorithm is then run with all the other nodes
as input data. A result in the form of a node will be returned from the merge
algorithm.

The returned node is then compared to the �nal node stored earlier. If
they are equal, the merge algorithm is said to successfully solve the use case.

A success could be in the form of a merge error, showing that the merge
algorithm is capable of con�ict detection in those cases where a merge can't
or shouldn't be done.

There's certain meta data that should be excluded from the comparison
between the merge node and the �nal node, for example the date meta data
that is changed each day the merge algorithm is run.

Since the meta data isn't important as a result (and isn't important
for solving any use case either) the complete meta data is ignored in this
comparison, even if it could be included or not.

The meta data contains information about when the change was done and
who did the change, as well as which parents a change has. Since a merge
can be run at any time and still should produce the same result for the exact
same input data, the timestamp of the result shouldn't be compared in the
validation. The same is true for a few other �elds as well, but this should be
pretty self-explanatory.

4.2.2 Merge algorithm selection

Previously in this chapter six di�erent merge approaches where listed:

• Simple merge

76

4.2 Custom implementation 4 DESIGN AND RESULTS

• Merge with common ancestor

• Merge with translations

• Merge with multiple parents

• Merge with multiple parents and translations

• Partial history merge

An important part of a merge algorithm is to know which one to use.
This is done manually by the custom implementation. That is, since the use
cases are prede�ned, which merge strategy that should be used to which use
case is prede�ned at the implementation time. The reason for this is that
merge algorithm selection in its own is an interesting problem and deemed
too big to �t in this paper. This wouldn't work in a real world scenario
where it's also important to determine which approach is the best to take.

An easy way of solving this would be to run each merge algorithm until
a merge error isn't the result or until all merge algorithms are tested. This
requires that a merge algorithm never will give a faulty answer.

For the above merge algorithms that's probably true. A merge algorithm
that fails in one case, won't succeed in another case, that another merge
algorithm should solve, but fail there too. To prove this is outside the scope
of this paper and is left as a possibility for future work.

Running a merge algorithm could possibly be pretty expensive compute
wise. One way to mitigate this is to run the merge algorithm with the most
likelihood to succeed or to reduce the problem �rst and then order the rest
of the merge algorithm in the same way.

The �rst merge approach should probably be partial history merge. Al-
though it not a very likely case, it has the ability to reduce the problem for
the other merge algorithms making them cheaper. Next algorithm to choose
should be the simplest that will work for the most cases and not be that
expensive.

An even better way would be to somewhat analyze the input data and
then predict the best algorithm to use. This could be done for example with
machine learning. This is however not in the scope of this paper.

4.2.3 Limitations

Apart from the lack of merge algorithm selection, there are a couple of other
known limitations of the implementation.

The data format is hard de�ned and changing the number of input �elds
would make the program stop working correctly. This would be simple to
�x but it's not needed for the custom implementation. The implementation
is done to prove a concept for the above use cases and not for being used in
a real world settings. With just small adjustments it would be possible to

77

4.2 Custom implementation 4 DESIGN AND RESULTS

feed the implementation with di�erent sized nodes. This is important since
it would be possible for the customer to choose which data to track of each
customer and the merge algorithms would still work as long as the customer
is also specifying the possible dependencies that exist between di�erent items.

All multi-parent cases are limited to three parents. This is enough for
evaluating how to handle multiple parent situations good enough for this pa-
per, and the same algorithms and techniques that is used for a three parent
merge could most likely be used for a n parent merge, where n is an integer
bigger that 3. This is however not supported in the custom implementation
that is limited to max three parents. This is because each algorithm is done
from a two con�icting nodes case and then needs to be generalized. A gener-
alization would be done already for three nodes, so the conceptual di�erence
between a merge algorithm that can handle three nodes and n nodes would
be nonexistent. However, there might still be di�erences between n nodes
and three nodes in the implementation.

Data formats and sub-algorithms used are not optimized at all and will
possibly scale badly for a real world scenario. For example, in some cases
lists are used where a hash map should be more e�cient. The data formats
would be deemed too heavy for real world usage. For example the JSON data
format is using a lot of overhead since each item contains a full description.
Since the data format is static and won't change, this is not needed for this
application.

Example of sub-algorithms used could be �nding an item in a collection,
or iterate over all nodes in the history. This is not optimized and it's possible
that other data collections or iteration patterns would be more e�cient.

Error handling is very rudimentary, each use case only presented with a
�Success� or �Failure� label in the output, but never what is failing. Since
the use cases processed is all known and know to succeed, a more elaborate
error handling isn't implemented. For trying this program on other use cases
than the above, a better error handling with more information to the user
should be implemented. For example, information about which items failed.

However, for the user of a CRM program it is often not important to
know why a merge approach fails, just that the failure is and what fails so
that he or she could do a manual merge. A next step for aiding the user
would be to leave a merge proposal where the merge algorithm presents
the most likely case and/or simplify the merge problem as much as possible
before presenting it to the user, for example with partial history merge and
translations.

If both con�icting leaves will need to have translations done to them in
order to �nd a match, then this algorithm will fail since it's not supported
to translate both nodes. The reasoning behind this is that if it's allowed, a
merge could result in a value that isn't present in any of the leaves that are
being merged. This should never be allowed to happen from a data integrity
state of view. So even if this could be seen as a limitation, it's actually a

78

4.2 Custom implementation 4 DESIGN AND RESULTS

safeguard against evil merges 14.

14An evil merge is de�ned in this paper as a merge resulting in a value that isn't present
in any of the versions that are being merged.

79

4.2 Custom implementation 4 DESIGN AND RESULTS

80

5 DISCUSSION AND RELATED WORK

5 Discussion and related work

In the previous chapters the current support for distributed work has been
studied in some di�erent CRM systems on the market today, then require-
ments have been collected for what is needed of a good merge tool for CRM
data. Di�erent tools and techniques for solving these requirements have been
studied and then implemented.

This chapter will start with a discussion on the current CRM implemen-
tations that where analyzed earlier in this paper. A discussion about the
use cases presented and their relevance will follow. Then there will be a dis-
cussion about the custom merge algorithm implementation and the design
choices made when writing it. This will be followed by a part about related
work and last a few suggestions for future work.

5.1 Current CRM implementations

Current CRM software shows poor or nonexistent con�ict detection as well as
merge proposals. Di�erent tools are using di�erent sizes of unit of comparison
and con�ict detection was only present in one of three systems studied.
The case where con�ict detection was present had however a lacking merge
support as well as good tools for showing the di�erence between two versions,
meaning that con�icts was hard to solve. The two other tools that didn't
had con�ict detection had very di�erent unit of comparison. This lead to
very di�erent behavior in the use cases presented earlier in this paper.

During talks with di�erent representatives for CRM vendors, it's clear
that much often the problem of diverging data is poorly understood by the
sales representatives. This would probably be a hint about that the problem
is even less understood by the customers, the implementers of CRM software.
If there's no demand for handling data collaboration problems, there won't
be any solutions given either. This is probably because a lack of awareness
of the problem and the di�erent solutions possible and the lack of serious
consequences if something actually goes wrong.

An exception to this is Deko the CRM who had listen to some of its
customers that actually understood these problems and made a solution [2].
However, the solution is clearly lacking compared to the tools for software
development that are available today, even if it is market lead in the CRM
industry.

The lack of support for distributed work�ow in CRM systems isn't neces-
sarily a bad thing. Experience shows that even a good tool can be bad if not
understood correctly. Very rudimentary con�guration management systems
is performing better than more advanced once if the users do understand
them. That is, if the users don't understand a distributed work�ow and the
need for con�ict detection and merging, it might be better to just loose data
since that can be understood easier.

81

5.2 Use cases 5 DISCUSSION AND RELATED WORK

It's not a clear if educating a sales force enough to use distributed systems
is economical bene�cent or not. That's also not part of the scope for this
paper.

There should however be a market place for a system that not only sup-
ports con�ict detection (which is hard to get user friendly) but also merge
resolution. If the merge resolution is good enough it will be easy for users to
handle the system. A CRM system does not need to show complex con�g-
uration management tools such as branching to the users but only con�icts
in the few cases when a merge can't be done manually.

A good merge algorithm is the foundation towards the next generation
of CRM systems.

5.2 Use cases

Most of the use cases are relevant for everyday use, some are only edge cases.
The goal was to choose use cases where to study what was common scenarios
when working with distributed and diverging datasets and also cover some
edge cases to get a feel for the depth of edge cases that might occur. If the
number of edge cases would have turned out to be numerous and they also
had been hard to solve, then the cost of solving the distributed work�ow
model would have been clearly much more expensive than if the edge cases
was few and easy to solve.

As it turned out, most edge cases are still very easy to detect and it's
often enough to just detect edge cases since they are so rare (by de�nition
since they are edge cases) that a manual merge procedure is acceptable.

An important lesson from working with the use cases is that even a simple
use case can be poorly handled by a naive implementation. Therefore even
the very simple looking use cases are often the most important ones.

The most important use cases are the one that results in a merge con�ict.
Con�ict detection is extremely important and is often the �rst thing that
shows if a CRM system is lacking or not. If a system cannot detect a merge
con�ict, it doesn't matter how good it can merge data. Detecting the need
for a merge is fundamental before a merge should be done.

Other important merge con�icts are the ones that handle di�erent unit
of comparisons. Both where a merge con�ict should be detected and when
a merge should be made without any con�ict. The technique with a �exible
unit of comparison couldn't be found in any of the systems examined and
should therefore be a unique selling point for any system that implements it.

Duplicate detection is maybe not that critical for an everyday work-
�ow, since missing to �nd a duplicate won't result in any immediate prob-
lems. However, they are as important as any other use case in the long
run and is often overlooked. Unfortunately, it's a rather hard case to solve
that almost always will need human veri�cation. This is because an en-
try seldom has a unique identi�er. Names and even phone numbers and

82

5.3 Design and implementation5 DISCUSSION AND RELATED WORK

e-mail addresses are not guaranteed to be unique to a single person. For
example, the e-mail address �info@lth.se� is probably not personal while
�fredrik.gustafsson@svep.se� are. This is hard to verify for a computer but
a human can probably do a better job in weighting all available information
and resolve the situation.

Duplicate detection is needed both in a centralized system but is more
important in the case of a distributed/o�-line system. In a centralized sys-
tem it is always possible to get all the current data in the system and to be
able to detect duplicates in some way (even if that way is very cumbersome
sometimes). However, in an o�-line system where each node doesn't have
access to all data at any given moment it's impossible to do duplicate detec-
tion at creation time of a record and it must therefore be considered to be a
merge problem and not just a fringe bene�t.

The case with miss spelled names or other �elds are interesting but not
that important for a merge tool. Since the accuracy isn't high enough there's
no use for any special techniques in this case but a simple merge error should
be the result. This is however an area where increase in the accuracy for
misspelled words could change the importance of these use cases.

Use cases with more than two parents is interesting and opens up for
more possibilities for solving a merge case, for example by voting. However,
the extra information that the algorithm get access to by treating a merge
case with all parents at once instead of solving the cases as multiple two
parent merges seem to be super�uous. Therefore, it's of no use to handle
merges with more than one parent as a special case, but instead merge the
leafs two and two. This would not only result in the same merge result, but
also probably be easier to implement since code can be reused from the case
with a two parent merge. See use case 11, section 3.1.12, for a more detailed
discussion about this.

5.3 Design and implementation

The custom merge algorithm was satisfying. It succeeded in solving all use
cases as intended. A few general techniques could be used that solved all use
cases. The results can be seen in table 4.

Most surprisingly was the implementation of �exible unit of comparison
that was very easy to implement. It's implemented in the way that the merge
function takes a dictionary, for example:

city -> [zip code]

zip code -> [city]

This list explains that city depends on zip code and that zip code depends
on city. This system is �exible enough to even specify single direction de-

83

5.3 Design and implementation5 DISCUSSION AND RELATED WORK

Table 4: Results from testing the custom merge algorithm implementation
Use case Verdict

1. Success
2. Success
3. Success
4. Success
5. Success
6. Success
7. Success
8. Success
9. Success
10. Success
11. Success
12. Success
13. Success
14. Success
15. Success
16. Success
17. Success

pendencies, something that wasn't explored at all in this paper. It's possible
that it would be a feature wanted if the data �elds where chosen di�erent.

The algorithm is a proof of concept algorithm that has been run on
limited datasets which means that the e�ciency of the calculations done
hasn't been important. No optimization has been done and in a few places
the data structures and (sub)algorithms used are not optimal. Since the
datasets where quite limited in size, this was not a problem and the algo-
rithms was fast to run. On the authors computer, solving all 17 use cases
took about 60 ms. The computer being a 2015 high end desktop computer,
with 8 virtual cpu cores and 16 gb in RAM. If this scale is not of interest for
this paper and the test implementation would probably not scale very well
due to ine�cient use data structures.

In a real life scenario, not only is the time to do the merge of importance
but the complete time to sync one client with another. That involves to �nd
out what to merge. This could possibly be expensive. See future work for a
discussion about this.

Even if the results are satisfying for as a proof of concept, there's still
work to be done for using this in production. There would need to be a
merge selection algorithm and some parts of the code might scale badly.
The parts that probably would scale badly is excessive use of lists instead of
arrays or hash maps where appropriate. Therefore, longer histories before
the common ancestor could become a problem.

84

5.3 Design and implementation5 DISCUSSION AND RELATED WORK

To conclude, the implementation was a success and it proves that it is
possible to successfully solve the problem with con�ict detection and merge
resolution presented in chapter 3.1.

Translations

The translation method is the most questionable method. The idea behind
is the assumption that one of the leaf nodes has the correct data for a �eld
and that all changes handle a progress and progress is correct.

The assumption that one leaf node has correct data is not very hard to
do. It's logical to believe that if two versions are both said to represent a
common truth and they di�er, one of them is wrong. It could of course also
be so that both are wrong, but in that case it doesn't matter which one that
are chosen. However, it's not possible that the truth is a mixture between
the two versions, since a mixture should require each version to know about
the other version when reading the truth in order to be able to divided the
truth between two nodes.

The second assumption is that progress is correct. This one is not com-
pletely true. For example, a mistake could be made that makes a �eld change
from being correct to be incorrect. If the user notice this and change back
to a correct value, no harm is done. The translations would result in a no-op
and won't impact the result. If the user doesn't notice the error made the
translation technique could be dangerous since such an error could spread
between di�erent clients, since it would be deemed to be a progress of the
data.

Merge algorithm selection

Since di�erent use cases needs di�erent techniques to be used to solve them,
di�erent merge algorithms need to be used. A �rst task for solving a use
case is to determine which merge algorithm to choose. Some thoughts about
how to implement this is presented in 5.5.

The custom algorithm did not implement merge algorithm selection since
it was deemed out of scope for this paper. However, with manual algorithm
selection it successfully solves all merge cases. That is, all merge cases get
the desired results stated in the use case descriptions in chapter 3.1.

One way of doing merge algorithm selection is to make sure that each
algorithm always will fail if it's used on an unsuitable merge case and no
previously run merge algorithm has succeeded. In that case it would be
possible to order the merge algorithms and run them one by one until a
merge algorithm succeeds. It would be advisable to run the less expensive
merge algorithms just after the merge problem reducing algorithms, such as
partial history merge, that should be run �rst.

Another way would be to study the merge problem and then guess a

85

5.4 Related work 5 DISCUSSION AND RELATED WORK

merge algorithm. This would possibly be more e�cient but needs more study
to know how to match a merge problem with a merge algorithm correctly
(and e�cient).

5.4 Related work

There is a few related papers on this subject.
The most closely related text about this problem is the manual for Deko

the CRM, [2] that isn't a scienti�c paper but presents it's solution to the
problem with distributed CRM systems. The underlying techniques for Deko
is described in the manual for Couch DB, [3].

Deko the CRM has successfully identi�ed the problem that a user might
work o�-line and that there's a need for synchronizing and detecting con�icts.
With that, this paper agrees. The solution chosen in Deko the CRM is
however not optimal. The document database Couch DB is used as a data
store and also its merge and con�ict detection algorithms. The con�ict
detection in Couch DB is not specialized for CRM data but are general
algorithms that has no knowledge about the data it handles. This makes
it to be a blunt tool that need much support from the program using it,
support that Deko the CRM doesn't deliver. Although being the best found
CRM software on the market today, in the area of distributed work, it could
still improve.

A more general text about working together with data and the fundamen-
tal problems that arise from sharing data is described by Babich in his book
Software con�guration management : coordination for team productivity, [4].
Babich identi�es three fundamental problems for data sharing between dif-
ferent users. His double maintenance problem is the most obvious for the
CRM cases where two copies of the same data should be maintained and be
identical.

A similar problem is the problem of merging models instead of source
code. There has been quite a lot of work in that area, for example by Bendix,
Emanuelsson [8], where di�erent requirements for model based merges are
examined. A model based merge has similarities with CRM data merge
that it's not row based information that is to be merge but data that has
another structure. Bendix and Emanuelsson are however working with the
assumption that the models should be represented as text and then merge
to be able to use a conventional version control system. This is a limitation
that this paper hasn't. The di�erence here being that a CRM system is its
own data store and has full control over it, while the models in Bendix and
Emanuelsson's paper is generated by a program and then needs to be stored
in another program together with other data.

An alternative approach is to use operation based merge instead of data
based merge. This is studied by Koegel et. al. in [10]. Here it's not the data
that is stored as version information but all operations stored on that data.

86

5.4 Related work 5 DISCUSSION AND RELATED WORK

This paper suggests not merging the data but the changes done to that data.
A change and an operation isn't quite the same thing, but related at least
in concept. Koegel has a problem with versioning a model and not about
merging data. To solve this Koegel merge operations instead. The CRM
data is just data and there's no need to record operations, operations are
quite simple in the use cases presented above. If however a more full data
model of a CRM system would be used, that has multiple relations between
di�erent objects, let's say instead of the CRM system being a single database
table as in this paper, it would be a relation database with multiple tables,
then the techniques learned by Koegel would be highly relevant because the
problems would be very similar.

CRM data is however di�erent from data that should describe a model,
for example XMI, see [9] for a good explanation of XMI. It is therefore more
complex than needed for CRM data, which has a rigid data structure with
known data.

Lide, [9], studied XMI merging as well and built his work on a paper by
Martini, [11].

The main di�erence between XMI data and the CRM data that are
presented in this paper is that XMI data describes which types of data can
occur, but not that they occur or which relation they have between each
other. All data �elds in the CRM data case are always present, although
they may be empty, and the relations between di�erent �elds are known
beforehand. This means that the unit of comparison is simple to calculate
when the system is designed. It can be �exible (as described in this paper)
but it doesn't have to be dynamic. For the case with XMI represented data
this is not true. The data structure can be changed and those changed should
be able to merge, leading to a much more complicate problem.

For deeper study in name matching techniques, a good start would be
Christen [5]. This paper presents more e�ective algorithms for matching
names than the more general Levenshtein approach. For example, has really
good results been delivered in matching patient data from hospital records.
This is probably not that far from CRM data, and many of the techniques
here could be useful for displaying a merge proposal to the user. Although
since the techniques didn't give a 100% secure result they could result in
incorrect merges if the merges should be performed automatically and not
just be presented as a proposal to the user.

The name matching techniques used are highly coupled to the English
language and would probably need to be adjusted for being used in an other
context. The sound matching techniques presented in [5] are using the �rst
character of a name followed by a representation of the sound of that name.
This is an interesting approach to identify misspelled names that would often
sound the same but be spelled di�erently. The problem here being that the
person writing the name is not the owner of the name and has only a vocal
record of the name.

87

5.5 Future work 5 DISCUSSION AND RELATED WORK

However, many names di�ers in the �rst character as well. For exam-
ple �Filip� and �Philip� would be hard to be identi�ed in these algorithms.
For using these algorithms, some additional data editing beforehand would
probably give a better result.

5.5 Future work

In this section, di�erent parts that could be interesting for future work will
be presented.

If the techniques described in this paper are implemented in a real world
application it would be interesting to see real world use statistics that shows
which algorithms is used and how much. Maybe some of the algorithms here
is so rarely used that they actually isn't worth having? Maybe there's a use
case not covered here that is frequent enough to demand the invention of a
new merge algorithm?

5.5.1 Merge algorithm selection

There is multiple parts that would be interesting for future work. The most
obvious one is merge algorithm selection. An easy way would be to design
all algorithms so that they will result in a merge error if they don't produce
correct result, that is, they won't be dependent on in which order to be run.
This would make it possible to start to run one algorithm and if that fail
continue to try the next one and so on until one algorithm solves the merge
case or until all algorithms fails. However, this isn't very e�cient. A case
for future work would be a predictor that could predict which algorithm to
test based on the input data.

5.5.2 Uses for editing distance techniques

The Levenshtein merge that earlier was deemed too insecure for use on CRM
data is still interesting to look at. Would it be possible to combine di�erent
word comparison algorithms to be able to get a good enough result? Is there
any kind of data that could use this since a good validation tool is available?

5.5.3 Optimal information needs

In section 3.2.3 the amount of information available to the merge algorithm
is explored. More information would probably give a better chance to design
a good merge algorithm. Which information is needed, which information
isn't needed and what additional information would have a high impact on
the quality of the merge algorithms results would be an other area for future
work.

In section 3.3.4 in partial matching records are discussed. Finding partial
matching records is a possibly expensive to do, in terms of cpu cycles. Here

88

5.5 Future work 5 DISCUSSION AND RELATED WORK

it would be possible to do some optimizations to improve the speed on how
to �nd partial matching records.

5.5.4 Finding what to merge

The real world use case would be that two identical databases are separately
updated until they diverge with di�erent data. Then the two databases are
to be merge into being identical again.

Except the merge problem itself, an important problem to solve is to
know what to merge. This could be done by saving all changes done to the
database in chronological order and then just look for merge candidates for
the data that has been updated in any of the databases from the time since
they where merged last time.

If a and b are both changed since last merge, the next step is to �gure out
if they are related at all and should be merged or if they are two completely
unrelated items.

One way to do this is to check if they have a common parent and if they
do try to merge them. Another way of doing that is to let each tree have an
unique identi�er and aim for that each tree only should have one leaf after
a merge.

89

5.5 Future work 5 DISCUSSION AND RELATED WORK

90

6 CONCLUSIONS

6 Conclusions

Today's CRM software has no standard practice for solving the problems
with a distributed work�ow, the approach di�ers a lot between di�erent
products. Trying to merge data to ease distributed work is nonexistent. The
best programs at least warns when a possible data loss is possible due to
update con�icts. While most programs won't even tell that data is overwrit-
ten.

Since the data is structured and the relationship between di�erent data
�elds can be known in advance, the possibilities of doing a merge of the data
is good. It's even better if the history is preserved.

This paper examines three di�erent CRM systems and their solution to
the distributed work�ow problem. The paper also presents 17 use cases that
can be used to analys a CRM system as well as work as a requirement spec-
i�cation for an implementation of a CRM system that supports distributed
work�ows. Last this paper explore techniques that can be used to solve all
17 use cases and implements a software that successfully solves all 17 cases
as a proof of concept.

The three CRM systems that was analysed in this paper has to solve
the simultaneously update problem in some way. The most common is to
make the diverging time as small as possible and then use the latest version,
even if another version would be overwritten. Since people usually not work
on the same record, this approach seems to work fairly well as long as the
diverging time is small. When starting to work o�ine the time two versions
can diverge increases and con�icts will happen more often.

The conclusion is that this isn't an area given too much attention by
today's CRM software, or that the knowledge of merge algorithms is low by
designers of CRM software.

This paper delivers 17 use cases that could be used to assess the con�ict
detection and merge capabilities of a CRM software. It also delivers multiple
techniques that can be used to successfully solve all 17 use cases.

It is possible to manage all studied examples with the techniques dis-
cussed in this paper. The most important result is however to not throw
away data due to a merge con�ict without the user noticing this. Achieving
this is simple, but it's hard for the user to manually merge data, especially
with many data �elds.

A custom merge algorithm was implemented as a proof of concept with
the techniques presented in this paper. It successfully detects when a con�ict
can be merged successfully and when to ask for assistance from the user.

It is possible to detect merge con�icts and do merging in the cases that
are possible to solve. Current software has limited support for this, but the
potential for improvement in this area is great. It's not just merging that is
the challenge, but also con�ict detection which is a big part of the challenges
for distributed work.

91

REFERENCES REFERENCES

References

[1] Multiple authors. Cap theorem - wikipedia, the free encyclopedia.
http://en.wikipedia.org/wiki/CAP_theorem. (Visited on 06/08/2015).

[2] Multiple authors. Hobrasoft: Deko the crm � distributed crm
system. http://www.hobrasoft.cz/en/deko/description. (Visited on
07/03/2015).

[3] Multiple authors. Overview � apache couchdb 1.6 documentation.
http://docs.couchdb.org/en/1.6.1/. (Visited on 06/08/2015).

[4] Wayne Babich. Software con�guration management : coordination for

team productivity. Addison-Wesley, Reading, Mass, 1986.

[5] Peter Christen. A comparison of personal name matching: Techniques
and practical issues, 2006.

[6] Wilbert Jan Heeringa. Measuring dialect pronunciation di�erences using
levenshtein distance, 2004.

[7] Bendix L and Emanuelsson P. Di� and merge support for feature ori-
ented development, 2008.

[8] Bendix L and Emanuelsson P. Requirements for practical model merge
- an industrial perspective, 2009.

[9] Aron Lide. A state-based 3-way batch merge algoritm for models seri-
alized in xmi, 2011.

[10] Koegel M, Herrmannsdoerfer M, von Wesendonk O, and Helming J.
Operation-based con�ict dtection, 2010.

[11] Antonio Martini. Merge of models: an xmi approach.

[12] Pablo Santos. Three-way merging: A look under the hood.
http://www.drdobbs.com/tools/three-way-merging-a-look-under-
the-hood/240164902, 12 2013. (Visited on 15/03/2016).

[13] Clement McDonald Shaun J. Grannis, J. Marc Overhage. Performance
of approzimate string comparators for use in patient matching, 2004.

[14] Niraj Tolia, David G. Andersen, and Mahadev Satyanarayanan. Quan-
tifying interactive user experience on thin clients, 2006.

92

A IMPLEMENTATION OF MERGE ALGORITHMS

A Implementation of merge algorithms

1 #!/ usr / b in /python3
2 import j s on
3 import os
4 import time
5 import datet ime
6 import sys
7 from ppr int import ppr int
8 from subproces s import c a l l
9

10 def read_case (f i l ename) :
11 with open(f i l ename) as df :
12 data = j son . load (df)
13 return data
14
15 # Remove the r e s u l t from the data
16 def remove_result (data) :
17 dag = l i s t ()
18 s i z e = len (data)
19 i = 0
20 for r in data :
21 i += 1
22 r e s u l t = r
23 i f (i != s i z e) :
24 dag . append (r)
25 return dag , r e s u l t
26
27 # Print debug data
28 def pr in t_er ro r (ca lc , d e s i) :
29 print ("========================")
30 print (c a l c)
31 print ("−−−−−−−−−−−−−−−−−−−−−−−−")
32 print (d e s i)
33 print ("========================")
34
35 # Compare wi th d e s i r e d r e s u l t
36 def compare_result (ca lc , d e s i) :
37 r e s = set (c a l c ["data"]) & set (d e s i ["data"])
38 for c in c a l c ["data"] :
39 i f c a l c ["data"] [c] != de s i ["data"] [c] :
40 pr in t_er ror (ca lc , d e s i) ;
41 return "Error "
42 return " Success "
43
44 def process_case (f i l ename , func t i on) :
45 data = read_case (f i l ename)
46 data , r e s u l t = remove_result (data)
47 c a l c = func t i on (data)
48 r e s = compare_result (ca l c , r e s u l t)
49 print (f i l ename + " : " + re s)
50
51 def empty_object () :

93

A IMPLEMENTATION OF MERGE ALGORITHMS

52 j s o n s t r = (' { " id " : 0 , " parent " : [] , " author " : "" , '
53 ' " timestamp " : "" , "data " : { "name" : "" , '
54 ' "age " : 0 , "company " : "" , " address " : "" , '
55 ' " z ip code " : "" , " c i t y " : "" , "phone " : "" , '
56 ' " emai l " : "" }} ')
57 return j s on . l oads (j s o n s t r)
58
59 # Return the minimum of t h r e e va l u e s
60 def minimum(a , b , c) :
61 i f (a <= b and a <= c) :
62 return a
63 e l i f (b <= a and b <= c) :
64 return b
65 else :
66 return c
67
68 # Return the maximum of two va lue
69 def maximum(a , b) :
70 i f (a < b) :
71 return b
72 return a
73
74 # Find the l e v e n s t e i n d i s t ance between two s t r i n g s
75 def l e v e n s t e i n (a , b) :
76 a = a . s t r i p ()
77 b = b . s t r i p ()
78
79 i f (len (a) == 0) :
80 return len (b)
81 i f (len (b) == 0) :
82 return len (a)
83
84 co s t = 1 ;
85 i f (a [−1] == b[−1]) :
86 co s t = 0
87
88 return minimum(l e v e n s t e i n (a [0 : −1] , b) + 1 ,
89 l e v e n s t e i n (a , b [0 : −1]) + 1 ,
90 l e v e n s t e i n (a [0 : −1] , b [0 : −1]) + cos t) ;
91
92 # Return the l e v e n s t e i n d i s t ance as a normal ized
93 # va lue between 0 and 1
94 def norm_levenstein (a , b) :
95 return l e v e n s t e i n (a , b) / maximum(len (a) , len (b))
96
97 def merge_levenste in (a , b , wo rd l i s t) :
98 # The d i s t ance between a and b i s sma l l .
99 # Assume s p e l l i n g error and look
100 # for co r r e c t s p e l l i n g in a word l i s t .
101 i f (norm_levenstein (a , b) < 0 . 6) :
102 i f (wo rd l i s t (a)) :
103 i f (wo rd l i s t (b)) :
104 return "MERGE ERROR: " + a + "|===|" + b
105 else :

94

A IMPLEMENTATION OF MERGE ALGORITHMS

106 return a
107 e l i f (wo rd l i s t (b)) :
108 i f (wo rd l i s t (a)) :
109 return "MERGE ERROR: " + a + "|===|" + b
110 else :
111 return b
112 return "MERGE ERROR: " + a + "|===|" + b
113
114 def merge (a , b) :
115 c = empty_object ()
116 c [" author "] = "Merge t o o l "
117 t s = time . time ()
118 unformated_datetime = datet ime . datet ime . fromtimestamp (t s)
119 c [" timestamp"] = unformated_datetime . s t r f t ime ('%Y−%m−%d ')
120 parents = l i s t ()
121 parents . append (a [" id "])
122 parents . append (b [" id "])
123 c [" parent "] = parents
124 c id = 0
125 i f (a [" id "] > b [" id "]) :
126 c id = a [" id "] + 1
127 else :
128 c id = b [" id "] + 1
129 c [" id "] = c id
130
131 for i in c ["data"] :
132 i f (a ["data"] [i] == b ["data"] [i]) :
133 c ["data"] [i] = a ["data"] [i]
134 else :
135 c ["data"] [i] = "MERGE ERROR"
136 return c
137
138 # Check i f t h e r e ' s a dependency between p , a and b
139 # on po s i t i o n i , in the dependency l i s t deps
140 def check_dependencies (i , p , a , b , deps) :
141 for item in deps :
142 i f item == i :
143 return False
144 return True
145
146 # p = parent o f both a and b
147 # a one o b j e c t
148 # b on other o b j e c t
149 def merge_with_parent (p , a , b , dependenc ies) :
150 c = empty_object ()
151 c [" author "] = "Merge t o o l "
152 t s = time . time ()
153 unformated_datetime = datet ime . datet ime . fromtimestamp (t s)
154 c [" timestamp"] = unformated_datetime . s t r f t ime ('%Y−%m−%d ')
155 parents = l i s t ()
156 parents . append (a [" id "])
157 parents . append (b [" id "])
158 c [" parent "] = parents
159 c id = 0

95

A IMPLEMENTATION OF MERGE ALGORITHMS

160 i f (a [" id "] > b [" id "]) :
161 c id = a [" id "] + 1
162 else :
163 c id = b [" id "] + 1
164 c [" id "] = c id
165
166 for i in c ["data"] :
167 i f (a ["data"] [i] == b ["data"] [i]) :
168 c ["data"] [i] = a ["data"] [i]
169 else :
170 # Check i f t h i s va lue depends on an other
171 # and in t ha t case , i f t h a t a l s o can be
172 # merged the same way
173 i f (a ["data"] [i] == p ["data"] [i] and

174 check_dependencies (i , p , a , b , dependenc ies)) :
175 c ["data"] [i] = b ["data"] [i] ;
176 e l i f (b ["data"] [i] == p ["data"] [i] and

177 check_dependencies (i , p , a , b , dependenc ies)) :
178 c ["data"] [i] = a ["data"] [i] ;
179 else :
180 c ["data"] [i] = "MERGE ERROR"
181 return c
182
183 # Function to ease debug
184 def p r i n t_ l i s t (l) :
185 print ("− l i s t −")
186 for i in l :
187 print ("ID : " + str (i [" id "]) + " PARENT: " + str (i ["

parent "]))
188 print ("− end −")
189
190 def get_item_by_id (data , i) :
191 for j in data :
192 i f j [' id '] == i :
193 return j
194 return False
195
196 def get_changes (a , b , index) :
197 changes = {}
198
199 i f a [' data '] [index] != b [' data '] [index] :
200 changes [a [' data '] [index]] = b [' data '] [index]
201 return changes
202
203 def f i nd_t r an s l a t i on s (data , index) :
204 t r a n s l a t i o n s = {}
205 for i in data :
206 i f (len (i [' parent ']) > 0 and i [' parent '] [0] != 0) :
207 # Compare wi th each parent and ge t change
208 # Add change to t r a n s l a t i o n i f not a l r eady in the

t r a n s l a t i o n
209 for j in i [' parent '] :
210 parent = get_item_by_id (data , j)
211 d i f f = get_changes (parent , i , index)

96

A IMPLEMENTATION OF MERGE ALGORITHMS

212 t r a n s l a t i o n s . update (d i f f)
213 return t r a n s l a t i o n s
214
215 # App l i e s a t r a n s l a t i o n to a node , r e tu rns f a l s e i f t h i s would
216 # r e s u l t in a loop .
217 def app ly_trans la t ion (trans , target , item) :
218 i f t a r g e t == item :
219 return True
220 for t in t rans :
221 i f (item == t) :
222 return app ly_trans la t ion (trans , target , t rans [t])
223 return False
224
225 # data the o r i g i n a l data to f i nd t r a n s l a t i o n s from
226 # a one o b j e c t
227 # b one o ther o b j e c t
228 def merge_trans lat ions (data , a , b) :
229 c = empty_object ()
230 c [" author "] = "Merge t o o l "
231 t s = time . time ()
232 unformated_datetime = datet ime . datet ime . fromtimestamp (t s)
233 c [" timestamp"] = unformated_datetime . s t r f t ime ('%Y−%m−%d ')
234 parents = l i s t ()
235 parents . append (a [" id "])
236 parents . append (b [" id "])
237 c [" parent "] = parents
238 c id = 0
239 i f (a [" id "] > b [" id "]) :
240 c id = a [" id "] + 1
241 else :
242 c id = b [" id "] + 1
243 c [" id "] = c id
244
245 for i in c ["data"] :
246 i f (a ["data"] [i] == b ["data"] [i]) :
247 c ["data"] [i] = a ["data"] [i]
248 else :
249 t rans = f i nd_t r an s l a t i on s (data , i)
250 suc c e s s = 0
251 i f (app ly_trans la t ion (trans , a ["data"] [i] , b ["data"

] [i])) :
252 c ["data"] [i] = a ["data"] [i]
253 su c c e s s += 1
254 i f (app ly_trans la t ion (trans , b ["data"] [i] , a ["data"

] [i])) :
255 c ["data"] [i] = b ["data"] [i]
256 su c c e s s += 1
257
258 i f su c c e s s != 1 :
259 c ["data"] [i] = "MERGE ERROR"
260 return c
261
262 def compare_value_at (l , i) :
263 f i r s t = l [0] ["data"] [i]

97

A IMPLEMENTATION OF MERGE ALGORITHMS

264 for item in l :
265 i f (item ["data"] [i] != f i r s t) :
266 return False
267 return True
268
269 def compare_value (val , l) :
270 print ("compare value ")
271 print (va l)
272 print (l)
273 t o r e t = Fal se
274 for a in l :
275 i f a == val :
276 t o r e t = True
277 else :
278 t o r e t = False
279 break

280 print (" t o r e t : " + str (t o r e t))
281 return t o r e t
282
283 def apply_mult iparent_trans lat ions (trans , l) :
284 for i in l :
285 for j in l :
286 i f app ly_trans la t ion (trans , i , j) and i != j :
287 tmp l i s t = l i s t ()
288 once = True
289 for k in l :
290 i f (k == j and once) :
291 once = False
292 continue

293 tmp l i s t . append (k)
294 i f len (tmp l i s t) == 2 :
295 i f (app ly_trans la t ion (trans , tmp l i s t [0] ,

tmp l i s t [1])) :
296 return tmp l i s t [0]
297 e l i f (app ly_trans la t ion (trans , tmp l i s t [1] ,

tmp l i s t [0])) :
298 return tmp l i s t [1]
299 else :
300 return False
301 else :
302 return apply_mult iparent_trans lat ions (trans ,

tmp l i s t)
303 return False
304
305 def merge_multiparent (l) :
306 c = empty_object ()
307 c [" author "] = "Merge t o o l "
308 t s = time . time ()
309 unformated_datetime = datet ime . datet ime . fromtimestamp (t s)
310 c [" timestamp"] = unformated_datetime . s t r f t ime ('%Y−%m−%d ')
311 parents = l i s t ()
312 c id = 0
313 for p in l :
314 parents . append (p [" id "])

98

A IMPLEMENTATION OF MERGE ALGORITHMS

315 i f (p [" id "] > c id) :
316 c id = p [" id "]
317 c [" parent "] = parents
318 c [" id "] = c id
319
320 for i in c ["data"] :
321 i f (compare_value_at (l , i)) :
322 c ["data"] [i] = l [0] ["data"] [i]
323 else :
324 c ["data"] [i] = "MERGE ERROR"
325 return c
326
327 def merge_mult iparent_trans lat ions (data , l) :
328 c = empty_object ()
329 c [" author "] = "Merge t o o l "
330 t s = time . time ()
331 unformated_datetime = datet ime . datet ime . fromtimestamp (t s)
332 c [" timestamp"] = unformated_datetime . s t r f t ime ('%Y−%m−%d ')
333 parents = l i s t ()
334 c id = 0
335 for p in l :
336 parents . append (p [" id "])
337 i f (p [" id "] > c id) :
338 c id = p [" id "]
339 c [" parent "] = parents
340 c [" id "] = c id
341
342 for i in c ["data"] :
343 i f (compare_value_at (l , i)) :
344 c ["data"] [i] = l [0] ["data"] [i]
345 else :
346 t rans = f i nd_t r an s l a t i on s (data , i)
347 tmp l i s t = l i s t ()
348 for j in l :
349 tmp l i s t . append (j ["data"] [i])
350 r e s = apply_mult iparent_trans lat ions (trans , tmp l i s t)
351 i f r e s != Fal se :
352 c ["data"] [i] = r e s
353 else :
354 c ["data"] [i] = "MERGE ERROR"
355 return c
356
357 def next_id (data) :
358 max = 0
359 for i in data :
360 i f i [" id "] > max:
361 max = i [" id "]
362 return max + 1
363
364 def compare (a , b) :
365 for i in a ["data"] :
366 i f b ["data"] [i] != a ["data"] [i] :
367 return False
368 return True

99

A IMPLEMENTATION OF MERGE ALGORITHMS

369
370 def f i nd_ch i ld r en (data , parent) :
371 ch i l d r en = l i s t ()
372 for item in data :
373 for p in item [" parent "] :
374 i f p == parent [" id "] :
375 ch i l d r en . append (item)
376 return ch i l d r en
377
378 def adopt (data , new_parent , adoptees) :
379 for d in data :
380 i f d [" parent "] [0] in adoptees :
381 d [" parent "] [0] = new_parent
382
383 def part ia l_history_merge (data) :
384 new l i s t = l i s t ()
385 d r o p l i s t = l i s t ()
386 ad op t l i s t = {}
387 has_new = False
388 for item in data :
389 ch i l d r en = f ind_ch i ld r en (data , item)
390 cont = False
391 for k in d r o p l i s t :
392 i f k == item [" id "] :
393 cont = True
394 i f cont :
395 continue

396 for k , v in ad op t l i s t . i tems () :
397 i f item [" parent "] [0] == k :
398 item [" parent "] [0] = v
399 i f len (ch i l d r en) == 2 :
400 i f compare (ch i l d r en [0] , c h i l d r en [1]) :
401 new = merge (ch i l d r en [0] , c h i l d r en [1])
402 parents = l i s t ()
403 parents . append (item [" id "])
404 new [" parent "] = parents
405 new [" id "] = next_id (data)
406 new l i s t . append (new)
407 ad op t l i s t [c h i l d r en [0] [" id "]] = new [" id "]
408 ad op t l i s t [c h i l d r en [1] [" id "]] = new [" id "]
409 d r o p l i s t . append (ch i l d r en [0] [" id "])
410 d r o p l i s t . append (ch i l d r en [1] [" id "])
411 has_new = True
412 else :
413 new l i s t . append (item)
414 else :
415 new l i s t . append (item)
416
417 i f (has_new) :
418 return part ia l_history_merge (n ew l i s t)
419 else :
420 return new l i s t
421
422 # Normal izat ion o f data

100

A IMPLEMENTATION OF MERGE ALGORITHMS

423 # −−−−−−−−−−−−−−−−−−−−−
424 # To prevent merge c o n f l i c t s i t ' s important to have
425 # normal ized data . That i s , data t ha t f o l l o w s a
426 # cer t a i n convent ion . For example to wr i t e pos t
427 # number as "217 56" and not "21 756". In a l l merge cases
428 # here we assume tha t the data i s normal ized . This can be
429 # done be f o r e sav ing the data , or b e f o r e comparing the
430 # di v e r g en t branches . In the case when the data i s normal ized
431 # ju s t f o r the d i f f , a random a lgor i thm i s used to determine
432 # which ve r s i on has won .
433
434 # Detec t ing d u b l i c t e s
435 # −−−−−−−−−−−−−−−−−−−
436 # Assuming two peop l e are adding the same contac t wi th maybe
437 # s p e l l i n g e r ro r s and maybe a d i f f e r e n t number o f f i e l d s
438 # entered . How can we merge t h i s to one record ? Are c e r t a i n
439 # f i e l d s more important than o the r s when d e t e c t i n g a match?
440 # Maybe two peop l e from the same company shouldn ' t be
441 # cons idered as a dup l i c a t e but maybe two peop l e wi th the
442 # same company and almost the same name shou ld .
443
444 # Record l i n k a g e
445 # −−−−−−−−−−−−−−
446 # How to d e t e c t t h a t d i f f e r e n t records are the same even i f
447 # they appear to be d i f f e r e n t . See w i k i p ed i a .
448
449 # For d e t e c t i n g nicknames use phone t i c a l gor i thm such as soundex

,
450 # NYSIIS or metaphone .
451
452 # Case 1 i s a c o n f l i c t .
453 def case1 (data) :
454 return merge (data [1] , data [2])
455
456 # Case 2 i s a s p e l l i n g error .
457 #
458 # We can c a l c u l a t e the Levenshte in d i s t ance between
459 # the mismatching f i e l d s . I f the d i s t ance i s low we
460 # probab l y have a s p e l l i n g mistake .
461 #
462 # Since we know which f i e l d t h a t has the c o n f l i c t
463 # we can use a good l i s t to f i nd a co r r e c t s p e l l i n g .
464 # For example i f the f i e l d i s a name f i e l d , we use a
465 # name r e g i s t e r , i f the f i e l d i s an address f i e l d we
466 # use a address r e g i s t e r .
467 def case2 (data) :
468 return merge (data [1] , data [2])
469
470 # Case 3 i s two newly entered va l u e s wi th a s p e l l i n g
471 # error in one o f them .
472 def case3 (data) :
473 return merge (data [0] , data [1])
474
475 # Case 4 i s two new en t r i e s wi th a m i s s p e l l e d name .

101

A IMPLEMENTATION OF MERGE ALGORITHMS

476 # This shouldn ' t be d e t e c t e d
477 def case4 (data) :
478 return merge (data [0] , data [1])
479
480 # Case 5 i s two f i e l d s t h a t shouldn ' t be a b l e to merge
481 # but r e s u l t in a c o n f l i c t s ince they are dependent on eachother

.
482 def case5 (data) :
483 dependenc ies = { ' c i t y ' : ' z ip code ' , ' z ip code ' : ' c i t y ' }
484 return merge_with_parent (data [0] , data [1] , data [2] ,

dependenc ies)
485
486 # Case 6 i s two f i e l d s t h a t shou ld be a b l e to merge
487 # since they don ' t have a dependency .
488 def case6 (data) :
489 dependenc ies = { ' c i t y ' : ' z ip code ' , ' z ip code ' : ' c i t y ' }
490 return merge_with_parent (data [0] , data [1] , data [2] ,

dependenc ies)
491
492 # Case 7 i s a case wi th h i s t o r y t ha t shou ld merge us ing the
493 # t r an l a t i o n t echn i que .
494 def case7 (data) :
495 return merge_trans lat ions (data , data [2] , data [3])
496
497 # Case 8 , todo , not implemented ye t .
498 def case8 (data) :
499 return merge (data [1] , data [2])
500
501 # Case 9 , mu l t i s t e p t r a n s l a t i o n s
502 def case9 (data) :
503 return merge_trans lat ions (data , data [4] , data [5])
504
505 # Case 10 , mu l t i paren t
506 def case10 (data) :
507 items = l i s t ()
508 items . append (data [1])
509 items . append (data [2])
510 items . append (data [3])
511 return merge_multiparent (items)
512
513 # Case 11 , vo t i n g shou ld not be used
514 def case11 (data) :
515 items = l i s t ()
516 items . append (data [1])
517 items . append (data [2])
518 items . append (data [3])
519 return merge_multiparent (items)
520
521 # Case 12 , mu l t i paren t wi th t r a n s l a t i o n s
522 def case12 (data) :
523 items = l i s t ()
524 items . append (data [1])
525 items . append (data [2])
526 items . append (data [3])

102

A IMPLEMENTATION OF MERGE ALGORITHMS

527 return merge_mult iparent_trans lat ions (data , i tems)
528
529 # Case 13 , mu l t i paren t wi th t r a n s l a t i o n s and d i f f e r e n t h i s t o r y
530 def case13 (data) :
531 items = l i s t ()
532 items . append (data [2])
533 items . append (data [4])
534 items . append (data [5])
535 return merge_mult iparent_trans lat ions (data , i tems)
536
537 # Case 14 , t r a n s l a t i o n s and mergeab le h i s t o r y
538 def case14 (data) :
539 return merge_trans lat ions (data , data [3] , data [4])
540
541 # Case 15 , mu l t i paren t wi th t r a n s l a t i o n s and dubious i f us ing

vo t i n g
542 def case15 (data) :
543 items = l i s t ()
544 items . append (data [2])
545 items . append (data [3])
546 items . append (data [4])
547 return merge_mult iparent_trans lat ions (data , i tems)
548
549 # Case 16 , mu l t i s t e p t r a n s l a t i o n and mergeab le h i s t o r y
550 def case16 (data) :
551 data = part ia l_history_merge (data)
552 return data [−1]
553
554 # Case 17 , t r a n s l a t i o n s t ha t f a i l s
555 def case17 (data) :
556 return merge_trans lat ions (data , data [3] , data [5])
557
558 process_case (" t / t1 . j son " , case1)
559 process_case (" t / t2 . j son " , case2)
560 process_case (" t / t3 . j son " , case3)
561 process_case (" t / t4 . j son " , case4)
562 process_case (" t / t5 . j son " , case5)
563 process_case (" t / t6 . j son " , case6)
564 process_case (" t / t7 . j son " , case7)
565 process_case (" t / t8 . j son " , case8)
566 process_case (" t / t9 . j son " , case9)
567 process_case (" t / t10 . j son " , case10)
568 process_case (" t / t11 . j son " , case11)
569 process_case (" t / t12 . j son " , case12)
570 process_case (" t / t13 . j son " , case13)
571 process_case (" t / t14 . j son " , case14)
572 process_case (" t / t15 . j son " , case15)
573 process_case (" t / t16 . j son " , case16)
574 process_case (" t / t17 . j son " , case17)

103

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTATIONSDAG 2016-06-03

EXAMENSARBETE Merging customer relationship management data
STUDENT Fredrik Gustafsson
HANDLEDARE Lars Bendix (LTH)
EXAMINATOR Ulf Asklund (LTH)

Hitta konflikter och sammanfoga
kunddata

POPULÄRVETENSKAPLIG SAMMANFATTNING Fredrik Gustafsson

Många företag använder ett kundhanteringssystem för att registrera interaktioner
med sina kunder. I en allt mer mobil värld vill användarna av dessa system kunna
använda systemen var de än befinner sig men oförändrad prestanda och funktion-
alitet.

De flesta kundhanteringssystem använder sig av nå-
gon form av server och client lösning. Det vill säga att
en användare hämtar data från en gemensam server
som alla användare delar och där all data finns. Detta
gör att det alltid endast finns en version av datan och
att alla användare alltid har tillgång till den senaste
versionen av data.

För att kunna arbeta distribuerat med dåliga inter-
net uppkopplingar eller kanske till och med utan in-
ternet över huvudtaget krävs det att varje användare
själv har all data i systemet hos sig. Detta innebär att
användarens version så småningom kommer skilja sig
från andra användares versioner av datan när dessa
ändrar i datan.

Olika kundhanteringssystem löser detta på olika
sätt. Dessa har olika för och nackdelar. Tre olika
kundhanteringssystem har analyserats för att se skil-
naderna mellan dem och hur de på olika sätt hanterar
distribuerat arbete. Resultaten har visat sig vara
väldigt varierande.

De tre kundhanteringssystemen valdes inte efter
deras populäritet utan efter deras olika angreppsätt
mot distribuerat arbete. Här valdes ett webb-baserat
systemm, ett system som dumt kopierar all data och
sedan håller reda på vilka ändringar som är gjorda

och ett system som använder ett lagringssystem med
inbyggt stöd för distribuerad lagring.

För att kunna göra ovanstående analys har ett an-
tal test fall tagits fram. Ett test fall är ett scenario
där olika användare gör olika operationer på datan,
exempelvis byter namn på en kontakt, och sedan
när alla användare synkroniserar sina databaser med
varandra ska den resulterande versionen innehålla
rätt data. Vad rätt data är kan diskuteras men
grundläggande principer är att data aldrig ska kastas
bort och att användaren ska tillfrågas om systemet är
osäkert på vilket resultat som är rätt.

För att kunna lösa alla test fall togs även ett an-
tal lösningsmetodiker fram som beskriver hur man
kan lösa olika typer av test fall. Här utforskas vilken
annan data som kan sparas för att ge bättre lösnings-
förslag. Till exempel om det ger ett mervärde att inte
bara spara senaste versionen av datan utan även his-
torik för hur datan tidigare sett ut. Det framgår det
att vetskapen om att det är just kunddata och inte
någon annan typ av data (exempelvis fritext, bilder
eller videor) ger extra kraftfulla verktyg.

Som bevis på att ovanstående metoder fungerar
har dessa även implemeterats och test körts på
samtliga framtagna test fall med gott resultat.

