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Abstract

Portfolio choice theory have in the last decades seen a rise in utilising

more advanced utility functions for finding optimal portfolios. This is

partly a consequence of the relatively simplistic nature of the quadratic

utility, which is often assumed in the classical mean-variance framework.

There have been some suggestions on how to find optimal portfolios in ac-

cordance to more realistic utility functions gathered from Prospect theory.

However, some of these methods suffer from practical drawbacks.

This paper proposes a method consisting of a mixture between two op-

timization techniques, in order to find a portfolio allocation that is optimal

in relation to the first four moments. In the empirical implementation, we

utilise the S-shaped and Bilinear utility functions gathered from Prospect

Theory. Results hold in an in-sample testing environment. Improving ex-

pected utility, and the first three moments when tested against a standard

benchmark method, as well as in measurement of the Sharpe Ratio.

Keywords— Utility Maximization, Portfolio Choice, Gradient Ascent,

Sparse Group LASSO
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1 Introduction

As the pioneer of modern portfolio theory, Markowitz (1952) suggests that in-

vestors should not merely place focus on the maximization of expected return,

because doing so ignores the principle of diversification. His answer to that

problem was to view the variance of a portfolio as something to be negatively

considered, and its expected return as something positively so. Subsequently,

to find a vector of weights that maximizes expected returns, while retaining a

certain level of volatility, constitutes the so called Mean-Variance Maxim.

There are of course some issues with this. The MV framework is, in a

sense, a special case of expected utility maximization, where the agent is ei-

ther assumed to have quadratic utility, or that return distributions are assumed

to be normal. It is well observed that financial data typically does not follow

these standard normal assumptions. Straightforward comparisons have found

that the ‘fatness’ of the tails, height of the bell peak, and inconsistency with

zero skew, imply a statistical incoherence with the normality assumptions. This

explanation is, in part, a consequence of the frequency of extreme events (Man-

delbrot, 1963), and the fact that busts are more frequent than booms (Fama,

1965).

Furthermore, if one were to assume that an investor sustains a quadratic

utility preference profile, variance and expected return would be sufficient to

handle the problem of maximizing the utility of a portfolio within the MV

framework. But, as is rather clear now, a realistic investor does not comply

with a simple quadratic utility preference. Though economists have tried to

verify the importance of higher statistical moments, early attempts have proved

rather unsuccessful - with studies finding only ambiguous results that could

not motivate much improvement for any new allocation strategy (Jondeau and

Rockinger, 2006). As optimization methodologies, computational abilities, and

data availability have improved, new light has been shed on the subject. This

paper will, henceforth, aim to extend some of these concepts, to find a new

computationally efficient method for maximizing a more realistic utility of a

portfolio.

Kroll et al. (1984) showed how the maximization of expected utility – look-

ing at various types of utility functions and allowing for a fifty percent borrowing

rate – will be very evenly matched by the allocation produced by the Mean Vari-

ance method, which they accredit to the quadratic approximation of the utility

function. Scott and Horvath (1980) demonstrated how the moment order for

portfolio preferences holds the inequality that all moments uk(w) > 0 when k is

odd and uk(w) < 0 when k is even. Meaning that expected utility is positively

dependent on the mean and skewness, while it depends negatively on variance

and kurtosis. Athayde and Flores (2002) extend this idea of portfolio optimiza-

tion and proposed a theory of a higher dimensionality in a utility maximization
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framework. They suggest a method where even moments are optimized sub-

ject to odd moments. Laying important groundwork in the derivation of the

objective function in utility maximization depending on higher moments.

In practice, a more complex utility function is necessary as many utility

functions yields very little information in the approximation of higher order

moments. Thanks to Kahneman and Tversky (1979), the concept of utility

as piecewise functions, which in addition to some risk averse or similar utility

functions, depends on the condition: whether or not the change in wealth is

considered a loss or a gain. Hence, a more complex, and more realistic notion of

utility is wrought. These utility functions have subsequently gained popularity

over the recent decades (Cremers et al., 2005).

Handling these new ideas, Hagströmer et al. (2008), Adler and Kritzman

(2006), and Cremers et al. (2005) take an approach called Full-Scale Optimiza-

tion (FSO). The idea of FSO is to perform a numerical search over all possible

compositions of the portfolio weights, and choose the vector which maximizes

the chosen utility function. Promising results were found when the utility func-

tion is assumed to be either S-shaped or Bilinear. This is because the FSO will

find the optimal solution, though at the cost of using an extremely computa-

tionally exhausting method. Some statistical properties other than the expected

utility in itself also improves, in comparison to the standard MV optimization

(Adler and Kritzman, 2006).

Jondeau and Rockinger (2006) and Harvey et al. (2010) adopts a method

more similar to the one suggested by Athayde and Flores (2002), whereby they

formulate a different kind of objective function, based on the first four moments,

which also - when assuming S-shaped or Bilinear utility, yields some significant

improvements in statistical properties but with less computational exhaustion

in comparison to the FSO approach.

Previous methods for portfolio optimization will thus forth be considered

too simplistic when only expected return and variance are used as inputs. While

the FSO and moment based optimization generally seems to find better alloca-

tions in terms of utility and other statistical properties (meaning that portfolio

risk metrics also improves), it falls short in atoning for issues regarding larger

sets of assets. The concept of optimization in those frameworks are rather

computationally exhausting, meaning that if the number of assets grows, the

methods grows equally impractical at the same pace. Thus a more versatile

framework for portfolio selection and optimization is needed.

Thenceforth, we extend the theoretical appeal of the philosophy of utility

maximization while, at the same time, confront further impractical issues that

the previous methods hold. To do this we suggest a framework which extends

as a combination of two optimization processes. One to induce sparsity via

selection based on the two first moments – so that the original size of the number
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of assets used will have less effect in the second process - which will be done

using the Sparse Group LASSO methodology, effectively eliminating all non-

contributing assets in terms of the expected return and variance. The second

step of the process utilizes a gradient-based method for finding the optimal

allocation, which will maximize expected utility over the first four moments in

combination.

In this paper, we present a successful formulation of a new method for

optimizing a portfolio based on utility maximization. We utilise the variable

selection properties of the Sparse Group LASSO technique to subsequently in-

crementally improve that allocation in relation to the gradient of the portfolio

utility. We managed to outperform the standard Mean Variance, both in terms

of the Sharpe ratio as well as in skewness, however, not in terms of kurtosis.

We tested this by doing in-sample comparisons between the two methods. From

this we conclude that the added gradient method to the Sparse Group LASSO

Mean-Variance improves the allocation further, while not being too computa-

tionally exhausting.

The paper will be structured as follows: firstly, in section 2, a motivation of

the innate relationship between utility maximization and portfolio theory, before

(in section 2.2) a subsequent motivation for using the concept of prospect utility,

furthering the idea of the necessity of the use of more complex and realistic

utility functions in portfolio optimization. Following this, in section 3.2, is an

explanation and motivation of the reasoning behind using variable selection

techniques, and the provision of an augmentation of the regularization method

called the Sparse Group LASSO. In order to extend this, and incrementally

improve the allocation garnered from the Sparse Group LASSO, there follows

a motivation of methodology in section 4.2, with explication of a method for

approximating the gradient vector – with the discrete partial derivatives such

that we can follow the path of the portfolio that yields the greatest effect on the

expected utility, in terms of each of the four first moments. After this, in section

5, we present an empirical implementation of the proposed methodology and

investigate its relevance by testing it against the MV as a benchmark method.
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2 Utility Maximization

In the following section we provide a brief background on utility theory and

the most relevant and famous utility functions within the subject. We will

furthermore provide some reasoning to why that type of utility function can be

considered archaic in a realistic and modern setting, and also how a better utility

function can be considered to atone for this. Lastly we will explain how such a

theory can be applied in the concept of utility maximization of a portfolio.

2.1 Risk Aversion

The concept of Risk Aversion and its relation to concave functions was first

established a long time ago by Bernoulli (1782), but it was not until Pratt

(1964) and Arrow (1965), independently and almost simultaneously, pointed

out the importance of the first and second derivative (respectively) of a utility

function, in order to see whether or not an agent exhibits risk averse tendencies.

The following Arrow-Pratt framework came later to be an important foundation

in financial theory.

Kimball (1990), and Eeckhoudt and Schlesinger (1995) ventured further in

this subject as they did not stop at seeing an important pattern (in regards to

risk appetite) in only the first two derivatives, in means to signify non-satiation

at u′(w) > 0, and risk aversion when u′′(w) < 0, but also to observe the third

derivative as u′′′(w) > 0, to signify prudence. This is then related to the idea

that an agent will thus forth prefer a positive skew in the return distribution.

Prudence according to Kimball (1990) is a concept that states that an agent

will increase its savings rate when faced with riskier situations. These savings

are called precautionary savings. This furthers the concept of risk aversion in

the sense that if an agent is only risk averse, it only sheds a dislike towards risk,

but a prudent agent will take active steps towards decreasing its exposure to

risk in times of higher volatility.

The next order risk attitude is called temperance, contrived by Kimball

(1992), and Gollier and Pratt (1996) as the risk attitude constituent that plays

a role when faced with exogenous background risk. However not as simple as an

aversion towards variance, Eeckhoudt (2012) states more precisely that: when

looking at the fourth derivative as uiv(w) < 0, the agent is effectively considered

to exhibit an aversion towards increasing kurtosis, and is so forth a temperate

agent.

This is very intuitive from the perspective of an investor, as aversion towards

unnecessary volatility would be considered as straight forward common sense.

And happiness would most likely befall the investor who were to obtain a skew

towards a higher frequency of positive returns rather than negative. And last
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but not least, an aversion towards extreme events would as well most likely be

preferred amongst any relatively rational investor.

2.2 Loss Aversion

Kahneman and Tversky (1979) performed further investigations on how indi-

viduals actually act in terms of simple gambles, and in their paper they propose

the concept of which they call Prospect Theory. The essence of which stems

from what they call Loss Aversion.

Loss Aversion is epitomized by the idea that losses hurt the agent more than

gains please. Hence, the function will be a piecewise function where there will

be some kink at a specific reference point. In the case of asset returns, it is

natural to place the kink around zero as changes in wealth will so forth either

be positive or negative. The intuition of which can be found in equation 1,

u(x) =

{
f(x) if x ≥ 0

λg(x) if x < 0
(1)

where u(x) is the utility function in which x is the change in wealth. A typical

example of f(x) and g(x) would be when f(x) is some strictly increasing con-

tinuously differentiable function and g(x) would carry similar traits but have a

steeper slope and some multiplier λ ≥ 1. This results in a kinked curve with

the kink located, in the case of financial asset returns, at the origin. In figure

Figure 1: Graphic example of the Prospect Theory value function with a kink

at the origin. Figure gathered from Barberis (2013)
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1 one can easier and more explicitly see how smaller losses takes a relatively

greater toll than small gains increases utility. This is a much more realistic way

of thinking about utility for an investor according to the experiments performed

by Kahneman and Tversky (1979).

2.3 Maximizing Expected Utility

The central connection between utility theory and maximization of utility in

relation to an investors exposure towards risk was made popular by Markowitz

(1952). A few years later Kraus and Litzenberger (1976) furthered the concept

by including the higher moments on valuation in asset pricing. In their paper

they found empirical evidence that a three moment valuation technique in the

Sharpe-Lintner Capital Asset pricing model framework, refutes the usefulness of

quadratic utility. In this paper we will extend this idea and apply it to the loss

averse S-shaped and Bilinear utility functions. We will express these preferences

in a manner similar as Kraus and Litzenberger (1976), Jondeau and Rockinger

(2006), and Harvey et al. (2010) where we express utility as the general Taylor

series

u(w) =

∞∑
k=0

uk(w)

k!
(w − E[w])k (2)

where w = φr where r denotes asset return and φ denotes the weighting vector,

which constitutes an investors current portfolio of assets. If taken the expecta-

tion of, and truncate at k = 4, we will get

E[u(w)] = u′(w)µ+
u′′(w)

2!
σ +

u′′′(w)

3!
S +

uIV (w)

4!
K (3)

where S is Skewness and K is Kurtosis. As mentioned in 2.1. u′′(w) < 0 implies

risk aversion, and as Kimball (1990) and Eeckhoudt and Schlesinger (1995)

extended: u′′′(w) > 0 implies prudence. And an extension made by Kraus and

Litzenberger (1976) implies that this is in direct relation to a preference towards

a positive skew, whereas Eeckhoudt (2012) claims that the same conclusion is

to be drawn about the fourth derivative and the kurtosis.
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3 Optimal Portfolios

We will in the following section present a more formal explanation of the modern

portfolio theory approach on optimizing a portfolio allocation. Then present

some central issues with this method and explain how some of these issues can

be solved by using regularization techniques.

For the sake of definition we define the mean, variance and covariance in

this paper as the sample mean, sample variance and sample covariance. The

mean is also the first k sample moment

µ =
1

N

N∑
i=1

xki (4)

where k = 1. The following second central moment will be defined to be the

variance

σ2 =
1

N

N∑
i=1

(xi − µ)2 (5)

and we obviously follow by evaluating sample covariance as

Σ =
1

N − 1

N∑
i=1

(xi − µ)(xi − µ)T (6)

with T signifying the transpose of the vector in the calculation that will yield a

NxN covariance matrix, which we will frequently use in the standard portfolio

optimization routines in the Markowitz framework.

3.1 Portfolio Optimization

In the famous essay by Markowitz, he makes the (now) obvious definition that

expected return is something to covet, and risk (measured as variance or stan-

dard deviation) is something to disdain (Markowitz, 1952). From this realiza-

tion, he suggests that one should construct an objective function to cover just

this issue. In equation (7), all of those aspects are covered as the φ is the Nx1

vector chosen such that the covariance matrix Σ is as small as possible, and

the vector of expected return µ is as large as possible. This yields the convex

optimization problem
min
φ

θφTΣφ− φµT

s.t. φT1 = 1,

φi ≥ 0

(7)

where θ denotes a multiple which can be considered as a measure of the level

of risk aversion, and 1 is the Nx1 vector of ones. In this paper we assume
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a non short-selling constraint. This is to make the optimization simpler as it

can otherwise assume very large leveraged positions financed by short positions,

which due to their nature will be very sensitive to small changes in return char-

acteristics in individual assets, which could result in an undesirably stochastic

portfolio (Ruppert, 2010).

The model assumes a risk averse investor and it is also very interpretable,

parsimonious and simple to construct. It has subsequently played a central role

in economic theory and asset pricing theory, and obviously been very popular

as the main benchmark in portfolio theory, earning its creator a Nobel price in

1990, and John von Neumann Theory Prize in 1989.

3.2 Sparse Variable Selection

In the theoretical framework proposed by Markowitz, he assumes that the fu-

ture returns are known, which consequently assumes that the input parameters

Σ and µ are also known. However, these parameters are in practice merely

estimated from historical returns, meaning that small changes in the return

characteristics can have a big impact on the portfolio optimization, even when

the zero-short constraint is assumed. This is the so-called parameter uncer-

tainty problem and yields estimation error, which Carrasco and Nérée (2011)

claims is amplified by two facts. Firstly, the fact that the number of assets are

typically high, and the more assets, the higher estimation error. Secondly, the

asset returns can tend to have a relatively high degree of correlation.

To combat such a dilemma Frost and Savarino (1986) suggests a Baysian

approach, however, Carrasco and Nérée (2011), Brodie et al. (2009), and Fas-

trich et al. (2012) suggests it can be treated using regularization techniques.

Brodie et al. (2009) means that by including a penalty, which stands in pro-

portion to the sum of the absolute values of the weights in the portfolio, and

a tuning parameter to either amplify or decrease that penalty. This implies

that our assets selection will be sparse, and depending on our tuning parameter

have fewer non-zero weights. This means that any individual which does not

contribute to the desired extent is effectively excluded from the sample, conse-

quently leaving only a group of optimal individuals to be regarded as necessary

in the optimization process, and so forth stabilizing the optimization problem

at hand.

The concept of using regularization was first wrought by Tibshirani (1996) when

he faced similar issues regarding accuracy and interpretability in regression mod-

els, with the only available option to perform some step wise selection or the

Ridge Regression, which faced the remaining problem of having issues with inter-

pretability. Hence, seeing how that was highly inefficient, Tibshirani proposed a

method called LASSO (Least Absolute Shrinkage and Selection Operator). The
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idea was to force the sum of the absolute value of the coefficient to be less than

some value λ. This means that some coefficients will be forced to be set to zero,

yielding a much simpler model (See James et al., 2015, p 203-222).

In practice, this model will optimize a Least Square problem penalized over

the l1 norm as a convex optimization problem. The concept is mathematically

illustrated as the residual sum of squares proposed in James et al. (2015) below

in equation (8).

arg min
βi,c

(
y − c−

M∑
i=1

βiXi

)2

s.t.

M∑
i=1

|βi| < λ (8)

This minimizes the magnitude of the β vector and sets any non-contributing

individuals in the matrix of explanatory variables to zero.

This method has also been proven to perform relatively well in other ap-

plications, than those originally intended by Tibshirani. Implementing this into

the portfolio optimization framework, one will similarly to Carrasco and Nérée

(2011) and Ao et al. (2015), perform a straight forward augmentation of equa-

tion (7) with l1 penalties in accordance to the Residual Sum of Squares (RSS)

in equation (8), where the RSS is a tool for measuring the accuracy as the

difference between the estimated model and the data.

In recent years issues in the variable selection process when groups of vari-

ables are known to be correlated has arose. Yuan and Lin (2007) illuminates

this as an issue of the nature in the multi-factor Analysis of Variance (ANOVA).

Seeing that the application of the standard LASSO has been thoroughly inves-

tigated by Fastrich et al. (2012) and Carrasco and Nérée (2011) we will extend

this method further and avoid any potential issues which can occur with high

correlation between certain groups in the sample. Hence we will focus mainly

on the method that is called the Sparse Group LASSO (SGL). As proposed by

Yuan and Lin (2007) the Grouped LASSO takes the LASSO with a grouped

variable

arg min
β,c

∥∥∥∥∥y − c−
K∑
l=1

βTl Xl

∥∥∥∥∥
2

2

+ λ

K∑
i=l

√
pl‖βl‖2 (9)

where
√
pi denotes the amount in each group so that it accounts for varying

sizes of groups, and ‖.‖2 denotes the non-squared euclidian norm. Here the X

denotes the MxN matrix of features (with for example M assets over N data

points) with the Mx1 parameter vector β. βl and Xl denotes the data and

predictor corresponding to the lth group. In this formulation the LASSO acts

entirely on group level, which can effectively exclude an entire group from the

data set. This will however not yield any sparsity within the group. To adress
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this Friedman et al. (2010) proposes the SGL

arg min
β,c

∥∥∥∥∥y − c−
K∑
l=1

βTl Xl

∥∥∥∥∥
2

2

+ λ(1− α)

K∑
l=1

√
pl‖βl‖2 + λα‖β‖1 (10)

where β = (β1, β2, ..., βK) is the entire vector of parameters. As equation 10

is a linear combination on α of two convex problems, it will also be a convex

optimization problem.

This means that the α parameters effectively works as a weighting parame-

ter, which if α = 1 reduces the SGL into a regular LASSO, while if it is closer or

equal to zero, will only emphasize the group factor. That would yield sparsity

only between the entirety of the individual groups, and include all individuals

of each group equally.

For the sake of simplicity, we will limit our selves to plainly performing

the same augmentation as referred to in the previous paragraph when handling

the regular LASSO. This will however be an augmentation of the convex op-

timization problem as proposed by Friedman et al. (2010) and Yuan and Lin

(2007) and is presented in equation (11), which will effectively only change how

we handle the penalizing terms. The objective function will so forth only be a

Mean-Variance problem with Sparse Group LASSO penalties as

arg min
φ

K∑
l=1

(
φTl Σφl − φlµT

)
+ λ(1− α)

K∑
l=1

√
pl‖φl‖2 + λα‖φ‖1

s.t. φT1 = 1,

φi ≥ 0

(11)

with K group types of assets, N amounts of assets, non-short constraints, and

the general penalty amplification λ. This results in a convex portfolio optimiza-

tion problem, which will yield a vector that sets any non-contributing individuals

to zero on both a group level and individual level.

Hence it is very useful for an investor whom need not to own all assets at

the same time but values the fact that the resulting portfolio will, in the context

of the second and fourth moment, be much more stable. One can even go so far

as to state industry sector preferences so that this grouping process can exclude

or weight the optimization in accordance to that preference as well. We will

for the time being not focus on that, as that would fall into the scope of more

practical applications of a SGL portfolio optimization. Instead we will focus

on furthering this concept to cover the prospect utility framework, and improve

the existing allocation in regards of higher moments with the help of gradient

techniques.
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3.3 Optimizing Utility

Earlier in this section, we dealt with the issue of variable selection through

sparsity, which would find a portfolio optimal over the first two moments, which

would suffice for any standard risk-averse agent. However, the aim of this thesis

is to further this framework onto more realistic and more complex utility func-

tions. As previously mentioned we will in this thesis focus on optimizing over

the Bilinear and S-shaped utility functions. These utility functions are more

dependent on further moments past the expectation and variance.

This could be done by the FSO, optimizing the expected portfolio utility

over an infinite amount of moments. However, the practical issues implied by

this method, such as the fact that both any increased resolution or added asset

increases the number of required iterations exponentially, are something that

we want to overcome. According to Jondeau and Rockinger (2006), and Harvey

et al. (2010) one can numerically solve a system of equation on a series of first

order conditions. Simplifying this process to the first four derivatives, one will

find an optima in regards to the first four moments. This means that to find

this vector would mean a more accurate estimate in accordance to more complex

utility functions. However, in this paper, we have chosen to look directly at the

gradient vector of the expected portfolio utility. By using the MV-SGL optima

as the initial starting point, which is optimized over the first two moments, we

utilise a type of line-search technique based on the gradient, to find a portfolio

optimal over the third and fourth moment as well.
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4 Gradient Based Optimization Techniques

Gradient optimization techniques such as the Conjugate Gradient method, and

line search methods such as Gradient Descent are members of a family of iter-

ative optimization techniques, and is very popular within the field of numerical

analysis. The general idea is to search for the optimum in a direction defined by

the gradient of the objective function. The gradient can be viewed as a vector

containing all the information about the change of a function in relation to each

individual variable, as illustrated in expression (12).

∇f(a) =

(
∂f

∂x
(a),

∂f

∂y
(a),

∂f

∂z
(a)

)
(12)

This means that in relation to the change in the function it self, one can also

observe the change in individual variables in relation to the function, which

is a very useful insight and tactic when optimizing more complex non-linear

functions. This means that depending on the gradient vector, one will be able

to deduce which ‘direction’ is the fastest way to reach a local (and sometimes

global) optima.

In figure 2 one can see how the iterations from the starting point finds the

way towards the optima by following the direction of the largest gradient which

can be simplified (for intuition) to be considered as the change in y divided by

the change in x.

Figure 2: Graphic Example of a contour plot with the line signifying iterations

towards the optima as the steepest descent. Figure gathered from Heggelien Ref-

snæs (2009)

In the following part of this section we will cover the general ideas of Gradi-

ent Based Optimization Techniques and provide the framework in which these

techniques can be used to solve the final steps of the Portfolio Optimization

problem in relation to the Taylor expansion of the utility function as motivated

in Section 3.3.

12



4.1 Approximate Steepest Ascent

Gradient Ascent is an optimization technique in which you choose an initial

point and then walk in the direction where the gradient is the largest. Meaning

that in relation to one of the dependent variables, your function will increase

the most when adjusting your path towards that individual.

The main reason for the popularity of methods such as this is the fact

that they are fast and can handle larger problems more easily than comparative

optimization techniques. The mathematical concept can be described as:

max f(θ) (13)

By updating the parameters so that one follows the largest path according to

the gradient ∇θf(θ) where θ = (θi, ..., θP ) is the vector of parameters. The

update function will be (in the vanilla case) defined as presented in 14

θ = θ − η∇θf(θ) (14)

where η denotes the so called learning rate of which determines the size of each

iteration or step. This is chosen such that the learning rate converges at an

appropriate rate. This rate is commonly chosen by simulation. If the learning

rate is too small, the time til convergence will be unnecessarily long, and if

chosen too large, convergence will be hard to find as it might fluctuate around

the optima and even diverge (Heggelien Refsnæs, 2009).

4.2 Application in Utility Maximization of a Portfolio

The problem at hand in the case of utility maximization by adjustment of the

weighing vector calls for slight augmentation of the general idea. Given our

objective function
max
φ

f(θ) = E[u(φTR)]

s.t. φT1 = 1, φi ≥ 0
(15)

with φTR, where φ is the Mx1 weight vector and R is the MxN matrix of

returns, as our definition of wealth, which means that we maximize the utility of

change in wealth given our allocation, and again including the same assumption

of the non-short constraint as assumed in the previous examples of portfolio

optimization in this paper. From 2.3 that we can approximate the E[u(φTR)]

with the Taylor series in equation 3 in order to get all the partial derivatives of

the objective function. To retrieve the gradient, i.e. the change in the objective

function in regards to its partial derivatives of the parameter vector we claim
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the following

∇θE[u(w)] =

(
∂E[u(w)]

∂µ
,
∂E[u(w)]

∂σ
,
∂E[u(w)]

∂S
,
∂E[u(w)]

∂K

)
(16)

from which we can see the how the partial derivative is directly linked to each

moment. However, for practical purposes, we approximate the vector as forward

differences and subsequently get

∇θE[u(w)] ≈

(
∆E[u(w)]

∆µ
,

∆E[u(w)]

∆σ
,

∆E[u(w)]

∆S
,

∆E[u(w)]

∆K

)
(17)

where ∆ denotes the discrete partial derivative for each moment, i.e. the incre-

mental change of the expected utility in relation to each moment. This indicates

that the gradient with respect to the mean is the change in expected utility of

the portfolio divided by the change in the mean, and so on for the other mo-

ments. To create a practical framework in which to calculate this we propose

an algorithm which takes its initial point at the portfolio composition that we

got from the SGL method, and continues to evaluate the gradient of each sta-

tistical moment by approximating the relative change per each of said moment

in relation to maximizing the objective function. We do this by looking at 18

as the that relative change we call the gradient.

∇θiE[u(w)] =
∂f

∂θi
(18)

Approximating the change as a direct relative change with the reference

point as the previous point, we approximate the change in f as ∆f as in equation

19 where E[u(w)]∗ denotes the new portfolio candidate. This means that if the

new candidate has a better utility than the previous candidate, then the ∆f

will rise.

∂f ≈ ∆f =
E[u(w)]− E[u(w)]∗

E[u(w)]∗
(19)

Where in a very similar fashion to 19 we evaluate the relative change in a

statistical moment between two candidate portfolio constitutions.

∂θi ≈ ∆θi =
θi − θ∗i
θ∗i

(20)

Furthermore, from the assumption in 2.3 that odd moments are considered as

something positive for utility, and even moments are considered as something
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negative. We assume that a positive increase in 20 is something bad in general.

Hence, formulating this in a practical aspect we consider the numerator as θi−θ∗i
when i is even and θ∗i − θi when i is odd. This means that we consider relative

increases in the relative change in the even moments as something negative, and

vice versa for odd moments. From this we see in equation 21 that a positive

change in ∇u(w) indicates a better portfolio, and if we can follow the path of

the highest ∇u(w) we will find the best portfolio in a fast pace.

In order to find the actual relative change in a statistical moment to the

relative change in the utility function, we divide equation 19 by 20 to get the

approximate gradient vector

∇u(w) ≈ ∆u(w)

∆θi
(21)

where we will use this metric as our compass in the optimization process. We

present a short summary of the algorithm we wrote to perform this optmization

in algorithm 1.

Algorithm 1 Portfolio Gradient Maximization

1: procedure SGL-MV

2: Retrieve data X

3: Evaluate Σ

4: Evaluate µ

5: Minimize 11 return φSGL

6: procedure Maximize Utility

7: init φ← φSGL
8: Evaluate Initial u(φTR)

9: while δ > α do

10: for i = 1 to M do

11: Calculate equation 17

12: φ∗ = φi + η

13: φ∗ = φj − η
N−1

14: where i 6= j

15: for θ = 1 to G do

16: Evaluate u(φTR)

17: Re-calculate equation 17

18: if ∇θu(φT∗R) > ∇θu(φTR) then

19: φ = φ∗

20: Evaluate δ = |∇θu(φ∗R)−∇θu(φR)|
21: return φGSGL

M denotes the number of individuals in the weight vector, and G denotes
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the number of individuals in the approximated gradient vector. In this process

δ denotes the absolute value of the change in the size of the change in the

gradient, meaning that as this decreases, we are closing in on the sought after

maximum. The critical value α where we determine convergence is arbitrarily

chosen at such a level so that we believe that convergence is found without

to much unnecessary running around the maxima. This gives us a good and

intuitive method for numerically optimizing the portfolio problem over the first

four moments in a relatively fast and parsimonious way. To summarize our aim

with this process we conclude this section with the following:

22:• Firstly perform the Sparse Group LASSO optimization technique. This

is to find a viable starting point for the next gradient based optimization

technique. Doing this will also effectively eliminate any unwanted assets

relative to the first two moments.

• Moving on we will have the initial vector of weights. From this we evaluate

the utility in accordance to the S-shaped and Bilinear utility function.

• As we now have the utility, and are able to evaluate the sample moments

with ease we will evaluate our approximate gradient in accordance to equa-

tion 21.

• Then we utilise algorithm 1 that will follow the path where the gradient is

the highest, so as fast as possible find the best portfolio at our predefined

convergence.

We will then also compare this to standard methods of portfolio optimiza-

tion in-sample framework where we try these methods in various trading hori-

zons, with portfolio metrics as our metric of measurement against the MV port-

folio as the benchmark.
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5 Empirical Application

We will investigate the application of our Gradient Ascent SGL method of port-

folio optimization by comparing its performance against a regular straight for-

ward Mean Variance portfolio. In this section we will cover the data set and

how we implement the techniques discussed in the previous sections, as well as

testing them in an in-sample analysis environment.

5.1 Data and Statistics

As one of the main goals of our optimization technique is to make it more

computationally efficient than other techniques which relies on maximizing a

utility. We have so forth chosen to randomly select fifty companies from the SP

500 index over the last 3000 days from march 2016 and back. We have covered

so that we have assets within ten different industry sectors and controlled so

that they are all traded on the same day in the entire data set. If an asset was

not traded on a specific day for some reason, we copied the price quote from

the previous trading day.

From this we calculate the asset return series as the percentage change

between each trading day and yielded a 50x3000 matrix of returns. As it would

be quite cumbersome to summarize the statistical properties of all the individual

assets we evaluated the average return on each trading day to the following

index to capture the statistical properties of the entire dataset without any

optimization procedures done. The distribution is illustrated in figure 3.

Figure 3: Histogram over the average daily return of the return matrix

From this one can see a slight negative skew and far reaching tails, which

is in line with the theoretical assumptions on financial return series as discussed
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in section 1. These statistical properties are furthermore summarized in table 1

below.

N Mean Standard Deviation Skewness Kurtosis JB-test

50 -0.0004 0.01452 -1.6542 17.5651 (Reject)

Table 1: Descriptive statistics of the average daily return of the return matrix

The Jarque-Bera null hypothesis of normality is rejected as the skew is non-

zero and the kurtosis is significantly higher than three. The data series covers

two periods of high volatility, of which the last period (2008 stock market crash)

impacted the American stock market severely.

5.2 Grouped Sparse LASSO

As the concept of the Group factor in the SGL aims to reduce potentially dam-

aging effects from correlation between any individuals in the matrix, one has

to find suitable grouping rules which would account for this. In this portfolio

optimization framework we saw sector categories to be the most appropriate

rule of grouping and used the Global Industry Classification Standard (GICS)

taxonomy. Using the ten different sector categories where we have between three

and eleven individuals in each group as the SGL does not require each group to

be uniform in size.

Evaluating the various statistical elements used in the optimization was

done in the most straight forward fashion by using MatLabs methods for evalu-

ating a sample covariance matrix and a vector of expected return as the sample

mean return. To subsequently perform the minimization objective we utilise

the CVX package in MatLab, which is an excellent straight forward package

for disciplined convex optimization. As of choosing the the λ, one could divide

them as two separate and amplify each component differently. In this paper we

decided that the weighing parameter α does this to an appropriate and sufficient

extent. Trying out different types of scenario left us to chose λ = 1 as it did not

make much of a difference untill one reached significantly higher values, which

would be theoretically unappealing.

The tuning parameter α in equation 11, which is chosen such that α ∈ [0, 1]

is set at 0.5 for simplicity so that the grouped vector of weights and the vector

of individual weights are weighed equally.
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5.3 Evaluation of the Gradient

As the objective is to maxmize the utility we created a versatile function in

MatLab so that we could easily switch between the S-shaped and the Bilin-

ear function. In equation 22 and 23 we present the mathematical method of

evaluating the S-shaped utility and the Bilinear utility function respectively in

accordance to the method presented by Hagströmer et al. (2008).

In the S-shaped utility function the x determines the location of the inflec-

tion point, while the other parameters (A,B,ψ1, ψ2) determines the curvature

of the function.

u =

{
−A(x− rp)ψ1 if x ≥ rp
B(rp − x)ψ2 if x < rp

(22)

In the Bilinear utility function presented in equation 23 the x is in this case the

threshold value, or the so called kink, and the P constitutes the level of penalty

of which the utility level is suffering during returns below the threshold value.

u =

{
ln(1 + rp) if rp ≥ x
P (rp − x) + ln(1 + x) if rp < x,P > 0

(23)

Kahneman and Tversky (1979) argues that these types of functions focuses on

the utility in the return on an investment in a scenario where the agent has a

different function for any return below a certain threshold value. Commonly this

will be set to zero, so that all negative returns imply a steeper utility, meaning

that losses will hurt more than gains pleases. This is the major idea in prospect

theory, and prospect utility subsequently, and is the principle in which we aim

to model a more realistic portfolio optimization which takes these insights into

account.

To justify our reasoning of the relation between the Expected utility and

four first statistical moments we plotted these together in figure 4. In this

simulation we used the S-shaped utility function and randomly generated one

thousand different unit-sum weight vectors against our data set.

What we gather from this is that there is a very strong relation between

the expected utility and the first two moments where a higher mean yields a

higher utility and lower variance yields the same. The skewness also has a clear

relationship although not as strong as the first two moments, the kurtosis is

similar, but slightly weaker in correlation than the skewness. This is in line

with the insights gathered from section 2.3 meaning that if one finds a way to

optimize the utility in relation to the first four moments, one would find a better

allocation that the standard MV technique.

In order to evaluate the Gradient of the objective function as formulated

in equation 15 we need to modify the weight vector φ. As we suggest in the
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(a) Mean and Expected Utility (b) Variance and Expected Utility

(c) Skewness and Expected Utility (d) Kurtosis and Expected Utility

Figure 4: The four moments plotted against a S-shaped Expected utility func-

tion

proposed algorithm 1, we look around for any adjacent improvement and evalu-

ate the gradient in accordance to this proposed change and step in the direction

where the gradient is the highest. We do this because we approximate the

numerical gradient as the relative change in the expected utility over the rela-

tive change in statistical moments. Meaning that if our algorithm detects the

direction which would increase our relative utility the most we would modify

our weights in accordance to this direction. In order to keep a unit sum with

non-negative weights due to the short selling constraint we made so that when

increasing the φi we make a linear subtraction from all φj where j 6= i and

the φj ≥
η

n− 1
where η denotes the step-size. This prevents any individual

weights from being less than zero and keeps the sum of the weights at one. To

illustrate, in the case of a step size at 0.01 and four equally weighted assets,

one asset would gain the step size leading to the vector (0.26, 0.25, 0.25, 0.25)

which would give a sum of 1.01. Subtracting 0.01
4−1 from all other weights yields

the vector (0.26, 0.246..67, 0.246..67, 0.246..67) which has a sum of one, and as

long as a weight has above or equal value of 0.0033.. the weight will not be

subtracted and will never go below zero.

The task at hand after formulating this process is to find the appropriate

step-size. As explained, in our case this will be by how much we alter our weight

vector in each step. We measure this path to convergence as the difference in

improvement of the gradient, when it starts to diminish, we know that we are

closing in on a local or global optima. We found that a good initial step-size

was at 1%. What we did after that to ensure that there where no more room
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for improvement is that when our rule reached .01% we halved the step size,

and repeated that until we reached a difference at .0001% and concluded that

we had reached some converging point.

Figure 5: Figure presenting the level of convergence in the gradient based opti-

mization technique where we can see how the expected utility converges at some

point after about 20 steps

This convergence is illustrated in figure 5 where we performed the opti-

mization over all three thousand days in the data set.

5.4 In-Sample Analysis

The in-sample analysis was performed in such a manner that we performed

the optimization over the three thousand days in ‘chunks’ of three hundred

and thirty respectively. This is to some what capture a concept of yearly and

monthly re-weighing the portfolio.

In figure 6 we present the resulting 29 Sharpe ratios from each so called

‘monthly’ re-weighing.

From this we can see that the Sharpe ratio for the Gradient SGL (Blue) is

consistently higher than the Sharpe Ratio we got from the MV optimization.

In table 2 we averaged out all the monthly results for the Sharpe ratio as

well as the third and fourth moment.

We see how the Sharpe Ratio for the Gradient SGL performs significantly

better than the MV for both the S-shaped and Bilinear utility function. The

results even yield a positive skewness for the Gradient SGL, also in both sce-

narios, while the skewness is negative for the MV. The kurtosis averaged out to

a larger value for the Gradient SGL than for the MV.
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Figure 6: Sharpe Ratio between the Gradient SGL (Blue) and the MV (Red)

portfolio optimization over the ‘monthly’ in-sample test

Gradient SGL (S-shaped) Gradient SGL (Bilinear) MV

Sharpe Ratio 0.2926 0.2835 0.0618

Skewness 0.8784 0.9804 -0.1509

Kurtosis 5.6185 5.9351 3.1662

Table 2: Monthly re-weight

In table 3 we did similarly as above where we averaged out the performance

over all nine three hundred days iterations to get to following results.

Gradient SGL (S-shaped) Gradient SGL (Bilinear) MV

Sharpe Ratio 0.1061 0.1059 0.0124

Skewness 0.0352 0.0400 -0.3622

Kurtosis 5.9535 5.9642 4.8846

Table 3: Yearly re-weight

Here we see similar results where the Sharpe ration is significantly higher

in the case of both of the utility scenarios in the Gradient SGL method than the

MV. And again a negative skewness for the MV with positive for the Gradient

SGL. The kurtosis is still however lower in the MV in this case as well, but not

by as much in this yearly scenario.

One reason which could cause this is the fact that the kurtosis does not have

as much of a relationship with the expected utility as the other three moments.
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Depending on the portfolio metric, we would say that this still would yield a

better portfolio than the MV would as the kurtosis is still well below the value

of the initial kurtosis of the entire data set with a simple average return for each

asset. Measuring from a pure utility point of view one can see in our figure of

the evolution of the convergence that the SGL-MV yields an initial ecpected

utility of about 0.565, and with our Gradient method added converges with an

expected utility at around 0.595.

5.5 Summary of Results & Implementation

The tests were done by a varying amount of settings on the various parameters,

in the previous section we presented the implementation and results of the

scenarios that produced the most theoretically interesting results. All of the

theoretical models included in our method needed some form of simulation in

order to find optimal presets before running it as a complete process. By using

the very fast and precise optimization environment called CVX in Matlab we

where able to obtain our SGL MV optima with ease. Subsequent formulation

of the Gradient Ascent algorithm was done in a manner as straight forward as

possible by the discrete approximation of the gradient vector of the portfolio.

The SGL method was very dependent on the selection of the parameter α.

This was because that parameter adjusted how much the model should focus

on finding the MV minima on a group level, or on an individual asset level.

One could of course dive deeper into this depending on the agent performing

the optimization. This is because some agents might prefer to have a portfolio

optimization between the sector categories themselves, as well as a direct sparse

MV allocation between all of the assets in total. That choice is however outside

of the scope of this paper as we only aim to attain the beneficial properties of

a sparse allocation which considers possible correlation between assets inside

sector groups. We chose therefore to set the α = 0.5 so that we would not

discriminate too much between the two counter philosophies.

The calibration of the gradient optimization method was as well important

for it to have the desired properties. This meant that we needed to find an

appropriate step size. This is because a too large step size means it will fluctuate

around the optima and a too small would take unnecessary time to reach the

optima. We solved this by setting a condition that, when the change in the

gradient decreased at a certain level, the algorithm would stop. Also, in order

to ensure that the maxima would be reached, we formulated a condition which

broke the step-size in half when the incremental improvement diminished in

order to make sure that we could not improve the expected utility any further.

In the Bilinear utility framework we set the kink at zero. This is so that the

undesirable dimension of the function is when the asset returns are negative. In

the same manner, regarding the S-shaped utility function, we set the inflection
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point at zero as well. Choosing parameter settings on the use of the Bilinear

and S-shaped utility function also required some simulation in order to achieve

the desired theoretical properties. For example, when one used a lower penalty

P for the Bilinear utility the gradient optimization routine did not find much

better allocations than the MV. This has to do with the fact that as the penalty

diminishes, the function will approximate into some simple function perfectly

described by the first two moments, and defeat the purpose of performing the

portfolio optimization in a prospect utility framework. To make sure that we

would have the desired properties, we set the parameters A = 20, B = 1, ψ1 =

0.3 and ψ2 = 0.55 in the S-shaped utility framework. In the Bilinear framework

we saw that a penalty level at P = 2 was sufficient to capture the desired

characteristics with a kink at x = 0.

When in line with our theoretical assumptions of prospect utility we could

however see how our optimization routine outperformed the standard MV port-

folio in the first three moments, as well as by the portfolio metric Sharpe Ratio.

In fact, the skewness of the MV portfolio was negative, while the Gradient As-

cent SGL finds a portfolio with positive skewness. This tells us that the MV

agent does not regard skewness as important, while the S-shaped or Bilinear

Gradient Ascent SGL agent does. This could indicate that portfolio optimiza-

tion in the latter method falls more in line with classical risk aversion utility

theory. On the contrary, in our tests, we found the MV method yielded lower

kurtosis than the Gradient Ascent SGL method, which as well is a desirable

property within that theoretical framework.

We believe, in regards to the Gradient Ascent SGL optimized allocation

having a lower kurtosis than the MV optimization, can be explained by the rel-

atively low correlation that Kurtosis had with the expected utility as presented

in figure 4. Hence, improvement in the expected utility was not by as much

amplified by any improvement in kurtosis, when compared to the improvement

in the mean, variance, and skewness.

Otherwise we see that this has yielded very interesting results as we could

get significant improvements in regards to the Sharpe ratio, and portfolio skew-

ness. This implies that there is room for improvement for the MV method, and

in comparison to the FSO, our method could optimize over fifty assets on three

thousand data points with ease. One could easily change the settings on the

utility function to cater to any other utility function that we have not mentioned

in this paper.
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6 Conclusion

In this paper we have constructed a new method for portfolio optimization in

order to properly take a more complex utility function into account. We used

two examples of utility functions gathered from the concept of prospect utility,

so that we could have a more realistic allocation in terms of investor preferences.

This idea extends earlier findings by Hagströmer et al. (2008) and Adler and

Kritzman (2006), but with a further extension with the aim of decreasing the

computational load, so that in a similar manner to Jondeau and Rockinger

(2006), and Athayde and Flores (2002) we focused on the changes relative to

the first four moments. However, in this paper we diverged from their approach

by formulating a Gradient Ascent method with a starting point gathered from a

SGL MV allocation. This is assuming that such an allocation yields stable and

sparse allocations which are optimized for the first two moments. This idea is

an extension of previous research by Brodie et al. (2009), Fastrich et al. (2012),

and Carrasco and Nérée (2011).

We saw some success in our method as it on average outperformed our

benchmark MV method in the in-sample testing framework, in both a yearly

and monthly re-weighing scheme. We managed to overcome the computational

burden of the FSO, and provided an alternative on optimizing a portfolio relative

to its gradient, while retaining full flexibility, and mathematical integrity in

the usage of any utility function. However, as we saw that there was little

effect to be gained from the kurtosis, we consider it reasonable to truncate the

approximation at the fourth derivative, and not investigate any moments past

the kurtosis.

Investigating the performance of this method on other types of asset classes

could subject for future research, as the empirical part of this paper used S&P

500 equity returns, which has rather special distributional properties. Hence,

looking at a portfolio of commodities, currencies, indexes or a mixed portfolio

would be very interesting. Furthermore, as this paper mainly focused on mo-

tivating and formulating the method, and testing it in-sample, expanding the

testing environment to an out-of-sample testing framework would as well be a

necessity going forward.
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