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Abstract

For this thesis I have programmed and tested a particle simulator. It
was coded in the Python programming language. In this simulator, both
linear and non-linear elements can be used. The design philosophy was
to make the program object-oriented for easy addition of new element
types with a modular result. The Python language allowed for a smooth
implementation and kept the code clear. In order to benchmark and test
the code’s correctness, its results have been compared with the results of
TraceWin, a widely used particle-tracking package, with good agreement
for the essential parts.
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1 Introduction

Particle accelerators have become well-established in both research and indus-
try. The vast range of experiments using accelerators have provided us with a
deep understanding of nature. For every generation that is built, the machines
get bigger, more complex and more expensive. Software for simulating parti-
cle dynamics are used to improve and better understand accelerators. Particle
simulators are not only useful as design tools but also during operation where
they play an integral part in modern control systems. With these arguments for
the utility of simulators, my thesis will delve into the theory and programming
behind the Differential-Algebra-Tracker code (DAT-code) that I have made and
tested for this thesis. The DAT-code was coded under the GNU General Pub-
lic License version 3 [1], and has been made freely available on my Github
repository: https://github.com/OscarES/Differential-Algebra-Tracker

The code that I have written will be used for non-linear simulations at ESS
and parts of it will be used in the ”ESS Linac Simulator” program. The inspi-
ration for this thesis stems from a summer project that I did during 2015 where
I was introduced to non-linear particle simulations. That project’s code is avail-
able on https://github.com/OscarES/lie and parts of it has been used in
this thesis. The work made during this thesis can be used to simulate accelera-
tors made with both linear and non-linear elements. Because of the open-source
license it possible to use the code when coding other particle simulators. The
object-oriented programming design makes it easy to extend the software with
new accelerator elements. Since the user interface is abstracted away from the
simulation code it is easy to write a new interface. Most importantly the soft-
ware that I have written is both a robust and advanced particle simulator which
works when compared against a popular proprietary particle simulator.

2 Theory

This section discusses accelerator physics starting with the Lorentz force equa-
tion and then introduces both the linear and non-linear dynamics that it creates.
The linear and non-linear treatments are based on Wolski’s book ”Beam Dy-
namics in High Energy Particle Accelerators” [2].

2.1 Hamiltonian dynamics

A particle in an accelerator has properties such as mass, charge and energy. The
particle’s position is determined by the coordinates x, y and z. Its momentum
has the components px, py and pz. The time it has spent traveling through the
accelerator is denoted by t.

A function called the Hamiltonian determines the dynamics of the particle and
is denoted H(x, px, y, py, z, pz; t). The Hamiltonian determines the dynamics
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through Hamilton’s equations. For the x axis they are

dx

dt
=
∂H

∂px
, (1)

dpx
dt

= −∂H
∂x

. (2)

Coordinates and momenta that evolve according to Hamilton’s equations are
called canonical variables. Since it is very hard to keep track of the time for each
particle along an accelerator it is more desirable to keep track of the longitudinal
coordinate along the trajectory of the reference particle. The reference particle
is the particle that perfectly follows the trajectory specified by the accelerator
design. A coordinate s is defined as the distance travelled along the trajectory
of the reference particle with the beginning of the accelerator as origin. The
coordinate s allows us to rewrite Hamilton’s equations into

dx

ds
=
∂H

∂px
, (3)

dpx
ds

= −∂H
∂x

. (4)

A particle in an accelerator is affected by the Lorentz force

F = q(E + v ×B), (5)

where q is the charge of the particle, E is the electric field at the particle’s
position, v is the velocity of the particle and B is the magnetic field. This
force determines how the Hamiltonian, H, will look. The calculations from the
Lorentz force into a useful Hamiltonian are rather long and can be found in
chapter 2.2 in [2]. During the calculations the coordinates and momenta are
transformed into a new set of canonical variables. These new variables are

x
x′

y
y′

z
δ
s


, (6)

where s was defined previously, δ is a particle’s energy deviation from the ref-
erence particle defined as

δ ≡ E

cP0
− 1

β0
, (7)

where E is the kinetic energy of a particle, c is the speed of light, P0 is the ref-
erence particle’s total momentum and β0 is the speed of the reference particle
divided by c. The transversal coordinates x and y are how far away from the
reference particle the particle is in their respective dimensions. The y axis is de-
fined as being in the opposite direction of gravity and the x axis is perpendicular
to both y and s in a right hand sided system. The new transversal ”momenta”
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x′ and y′ are the original momenta divided by the reference particle’s total
momentum P0. The coordinate z is the longitudinal advance compared to the
reference particle which is tangential to s and it is defined as

z ≡ s

β0
− ct, (8)

where the speed of the reference particle is included in β0 and c is just the speed
of light in vacuum. The coordinates x, y and z are measured in meters. The
new ”momenta” are unitless.

After calculations found in chapter 2.2 in [2] the following Hamiltonian is ac-
quired from the Lorentz force

H =
δ

β0
−

√
(δ +

1

β0
− qφ

cP0
)2 − (x′ − ax)2 − (y′ − ay)2 − 1

β2
0γ

2
0

− az, (9)

where φ is the scalar potential. The parameter P0 is the total momentum of
the reference particle. The parameters ax, ay and az are the components of the
vector potential

a =
q

P0
A, (10)

where A together with φ give rise to the electric and magnetic fields

E = −∇φ− ∂A

∂t
, (11)

B = ∇×A. (12)

Last but not least γ0 is defined as

γ0 =
1√

1− β2
0

(13)

Different elements of an accelerator have different potentials φ and A and when
they are known the particle dynamics can be calculated.

2.2 Transfer matrices

Given equation 9 together with the electric and magnetic fields in an accelerator
element, we can calculate the particle dynamics inside the element. For linear
elements, where the forces in the accelerator elements are linear, the canonical
variables after an element can be determined.

Starting with the simplest element, the drift element, we can first calculate the
particle dynamics and then solve the equations of motion. In a drift element
both φ and all the components of a are 0. This means that the Hamiltonian
will be

H =
δ

β0
−

√
(δ +

1

β0
)2 − x′2 − y′2 − 1

β2
0γ

2
0

. (14)
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By making the paraxial approximation, which is that power series expansions
of a Hamiltonian can be truncated at low orders for the transversal momenta,
we can expand equation 14 to second order

H = −1 +
x′2

2
+
y′2

2
+

δ2

2β2
0γ

2
0

+O(3). (15)

The paraxial approximation is valid because the transversal momenta are much
smaller than the longitudinal momentum (x′ and y′ are small), which is the
case in almost every point of an accelerator. By dropping constant terms, which
won’t affect the dynamics because the dynamics come from differentiating the
Hamiltonian, and terms of order three or higher we end up with

H =
x′2

2
+
y′2

2
+

δ2

2β2
0γ

2
0

. (16)

By using this Hamiltonian in Hamilton’s equations we get the following dynam-
ics

dx

ds
=
∂H

∂x′
= x′, (17)

dx′

ds
= −∂H

∂x
= 0, (18)

dy

ds
=
∂H

∂y′
= y′, (19)

dy′

ds
= −∂H

∂y
= 0, (20)

dz

ds
=
∂H

∂δ
=

δ

β2
0γ

2
0

, (21)

dδ

ds
= −∂H

∂z
= 0. (22)

The drift element has the length L along the s axis. Given the starting point of
the drift element, denoted with the subscript 0, and the end point of the drift
element, denoted with the subscript 1, the equations of motion can be solved.
The solutions are

x1 = x0 + Lx′0, (23)

x′1 = x′0, (24)

y1 = y0 + Ly′0, (25)

y′1 = y′0, (26)

z1 = z0 +
L

β2
0γ

2
0

δ0, (27)

δ1 = δ0. (28)
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Writing the six canonical variables in vector form makes it possible to construct
a transfer matrix, M , which evolves variables at the start of an element into
variables at the end of an element. For the drift element, the evolution will be


x1

x′1
y1

y′1
z1

δ1

 = Mdrift


x0

x′0
y0

y′0
z0

δ0

 =



1 L 0 0 0 0

0 1 0 0 0 0

0 0 1 L 0 0

0 0 0 1 0 0

0 0 0 0 1 L
β2
0γ

2
0

0 0 0 0 0 1




x0

x′0
y0

y′0
z0

δ0

 . (29)

Particles will drift away from the trajectory of the reference particle in drift
elements. Therefore focusing of the particles is needed. To do this quadrupole
elements are used. A quadrupole element is a magnet element where there
are four magnetic poles which produces a force which grows linearly with the
transversal position deviations from the reference particle. It does not contain
an electric field and thus once again the scalar potential φ can be set to zero. The
magnet structure creates a magnetic field scaled with charge and the reference
particle’s total momentum

b =
q

P0
B = (ky, kx, 0) (30)

where k is the strength of the magnetic field. The vector potential for this field
is

a = (0, 0,−k
2

(x2 − y2)). (31)

The Hamiltonian for the quadrupole thus becomes

H =
δ

β0
−

√
(δ +

1

β0
)2 − x′2 − y′2 − 1

β2
0γ

2
0

+
k

2
(x2 − y2). (32)

By doing the paraxial approximation it becomes

H = −1 +
x′2

2
+
y′2

2
+

δ2

2β2
0γ

2
0

+
k

2
(x2 − y2) +O(3). (33)

Truncating constant terms and terms with order three or higher it becomes

H =
x′2

2
+
y′2

2
+

δ2

2β2
0γ

2
0

+
k

2
(x2 − y2). (34)

The equations of motion become

dx

ds
=
∂H

∂x′
= x′, (35)

dx′

ds
= −∂H

∂x
= −kx, (36)

dy

ds
=
∂H

∂y′
= y′, (37)
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dy′

ds
= −∂H

∂y
= ky, (38)

dz

ds
=
∂H

∂δ
=

δ

β2
0γ

2
0

, (39)

dδ

ds
= −∂H

∂z
= 0. (40)

There are three possible solutions to these equations. If k is 0 the solution is the
same as that for the drift element. If k is positive the following transfer matrix
represents the solution to the equations

MQF =



cos(KL) sin(KL)/K 0 0 0 0

−K sin(KL) cos(KL) 0 0 0 0

0 0 cosh(KL) sinh(KL)/K 0 0

0 0 K sinh(KL) cosh(KL) 0 0

0 0 0 0 1 L
β2
0γ

2
0

0 0 0 0 0 1


,

(41)
where K is

√
|k|. It has the ”QF” subscript meaning quadrupole focusing

because it will make x smaller. Unfortunately it will make y larger. In z and δ
it will act just as a drift element. If k is negative the solution will instead be

MDF =



cosh(KL) sinh(KL)/K 0 0 0 0

K sinh(KL) cosh(KL) 0 0 0 0

0 0 cos(KL) sin(KL)/K 0 0

0 0 −K sin(KL) cos(KL) 0 0

0 0 0 0 1 L
β2
0γ

2
0

0 0 0 0 0 1


.

(42)
Here it will defocus in x, and focus in y. Often the magnetic strength is measured
by the field gradient G [T/m]. The following equation calculates K from G

K =

 −
√
| GBρ | if qG > 0√
| GBρ | if qG < 0

, (43)

where

Bρ =
m0cβ0γ0

q
, (44)

where m0 is the mass of the particles. This K from G comes from the Transfer
Matrices section in [3].

A solution to the problem that quadrupoles only focus in one dimension is
to alternate focusing and defocusing quadrupoles in a structure called FODO-
lattice. The ”F” in FODO stands for focusing quadrupole, the ”O” stands
for drift and ”D” stands for defocusing. The alternation between focusing and
defocusing keeps the beam from growing in size. See Chapter 3.13.3 in [4] for a
worked example.
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By using a similar method of starting with a Hamiltonian and deriving the
equations of motion the transfer matrices for dipole magnets and solenoids can
be constructed. But if one wants to calculate a transfer matrix for a sextupole
(a magnet element with six magnetic poles) this method will discard some of
the sextupoles most essential dynamics. Instead another method called ”Lie
transform” will be used later in this report to construct a ”Transfer map” for
the sextupole which allows one to calculate the canonical variables at the end of
the element. The Lie transform can and will be used to calculate other higher
order magnetic elements as well.

2.3 Plotting the impact on the beam

When plotting particle parameters phase space plots are commonly used, where
in each plot position against momentum along a certain axis are plotted. Two
example phase space plots are shown in Figure 1.

Figure 1: Example of phase space plots for a bunch of 1000 particles along the
x axis before and after an accelerator lattice.

2.4 Space-Charge

In a particle beam there can be around 10 billion particles. For heavy particles,
such as protons which have a speed that is not highly relativistic, the particles
will repel each other. This is known as the space-charge effect. This repelling
force will cause the particles to spread out in all directions. Thus the effect is
three dimensional. It is hard to account for it in simulations as one needs to
find a theoretical description of the effect which makes calculation of it for all
particles feasible. Lighter particles, such as electrons, with the same energy as
heavy particles will have a much higher relativistic gamma value. The current of
the particles will create a magnetic field that will attract particles together. This
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will compensate for the space-charge effect and one can in most cases neglect
the space-charge effect for lighter particles.

Three ways of simulating the space charge can be found in Chapter 12 in [2],
Chapter 7.2 and 7.3 in [5] and in [6].

2.5 Non-Linear Elements

In Chapter 9 in [2] the full Hamiltonian for the sextupole element is stated. By
doing the paraxial approximation and clearing the unnecessary terms it can be
written as

Hsextupole =
x′2

2
+
y′2

2
+
k

6
(x3 − 3xy2). (45)

This Hamiltonian is just for the variables x, x′, y and y′. For the dynamics

of z and δ one just have to add the term δ2

2β2
0γ0

to the Hamiltonian. If the

Hamiltonian in equation 45 is used directly in Hamilton’s equations some of
the equations will have a quadratic dependence on x or y. This makes it very
hard to solve the equations right away. In order to solve this problem the Lie
transform will be introduced. What constitutes the core of the Lie transform is
the Lie operator.

The Lie operator : g : (also called the Poisson bracket) for any function g(xi, pi)
is defined as

: g :≡
n∑
i=1

∂g

∂xi

∂

∂pi
− ∂g

∂pi

∂

∂xi
, (46)

where the i index is for which dimension (x1 is x, x2 is y and x3 is z). If g is
set to H and one applies the operator on x and px (n = 1) we get

: H : x = − ∂H
∂px

, (47)

: H : px =
∂H

∂x
, (48)

since
∂pi
∂xi

= 0,
∂xi
∂pi

= 0,
∂pi
∂pi

= 1,
∂xi
∂xi

= 1. (49)

Also, the cross-dimensional derivatives will be zero. The results for the Lie
operator : H : acting on x and p (multiplied by -1 on the right hand side) are
the classical Hamilton’s equations of motion, which give the derivatives with
respect to time

ẋ =
∂H

∂p
, (50)

ṗ = −∂H
∂x

. (51)

If we write the canonical variables x, x′, y, y′, z and δ as a vector

v̄ = (x, x′, y, y′, z, δ), (52)
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we can write : H : acting on v̄ as

∂v̄

∂t
= − : H : v̄. (53)

By doing a transformation that makes s take the place of t the equation becomes

∂v̄

∂s
= − : H : v̄. (54)

The solution to this differential equation can be written as

v̄(s) = e−s:H:v̄(0), (55)

where the exponential factor is a Taylor expansion similar to the normal Taylor
expansion of e−x. This expression is called a Lie transform and for e:f :g one
says ”the f Lie transform of g”. The justification for the Lie transform can be
found in Chapter 9 in [2]. The transform in Equation 55 then becomes

v̄(s) = v̄(0)− s : H : v̄|s=0 +
s2

2!
(: H :)2v̄|s=0 − · · · . (56)

At the end of an element of length L, the equation will be

v̄(L) = e−L:H:v̄(0) = v̄(0)− L : H : v̄|s=0 +
L2

2!
(: H :)2v̄|s=0 − · · · . (57)

There is however one problem here: that the Taylor expansion has infinite terms.
When should it be truncated? If the alternating terms does not cancel each other
out the series could diverge. It was found that truncating after order 5 gives
accurate results since the factorial denominator will increase rapidly and that if
L is kept less than 1 m it will damp the higher order terms. If one does not mind
the extra computational time the more terms in the Taylor expansion the more
exact the results will be. Also symplecticity, which will be introduced in Section
2.7, is better conserved when keeping more terms. In Chapter 9.2 in [2] the error
for a particle in a sextupole element is calculated to be kmLm+1x2m−1

i , where
m is the order after one truncates and xi is a canonical variable of a particle.

The algebra for calculating a Lie transform becomes rather long and can be left
to the Python library Sympy [7] which is used in my program. By truncating
at the fourth order the transfer map functions for a sextupole after the Lie
transform become

x(L) = −1

6
kL3(x′0x0 − y′0y0)− 1

4
kL2(x2

0 − y2
0) + Lx′0 + x0 (58)

x′(L) =
1

6
kL3(

1

2
kx3

0+
1

2
kx0y

2
0−x′20 +y′20 )− 1

2
kL2(x′0x0−y′0y0)− 1

2
kL(x2

0−y2
0)+x′0

(59)

y(L) =
1

6
kL3(x′0y0 + y′0x0) +

1

2
kL2x0y0 + Ly′0 + y0 (60)

y′(L) =
1

6
kL3(

1

2
kx2

0y0 +
1

2
ky3

0 +2x′0y0)+
1

2
kL2(x′0y0 +y′0x0)+kLx0y0 +y′0 (61)

z(L) = z0 (62)

δ(L) = δ0 (63)
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2.6 Radiofrequency Cavities

Radiofrequency cavities (rf-cavities) are used to increase a beam’s energy and
thus the velocities of the particles. They accomplish this by maintaining an
externally created electric field which accelerates the particles when the field
has the correct phase. Rf-cavities are made of several cylindrical cells and each
cell is one half wavelength long. As a particle exits a cell and enters the next,
the second cell’s field switches from being de-accelerating to accelerating for the
incoming particle. This places a huge demand on the timing of the particles.
The theory for the radiofrequency cavities in my program are based on Chapter
3.6 in [2].

The Hamiltonian for a rf-cavity is

H =
p2
x

2
+
p2
y

2
+

δ2

2β2
0γ

2
0

+
α

4π
cos(φ0)k2(x2 + y2)− α

π
sin(φ0)kz+

α

2π
cos(φ0)k2z2,

(64)
where φ0 is the phase of the electric field when the particles enter the cavity.
k is the wavenumber. Due to the boundary conditions imposed on k, it was
calculated to be

k =
p01

a
, (65)

where a is the radius of the cavity and p01 is the point where the Bessel function
J0 has its first zero (p01 ≈ 2.405). The parameter α in Equation 64 is defined
as

α =
qV0

P0c
, (66)

where V0 is the cavity voltage defined by

V0 = LE0T. (67)

Here, L is the length of the cell, E0 is the amplitude of the electric field and
T is the ”Transit-Time Factor” (TTF). The TTF takes into account that the
electric field will change while the particles are travelling through the cell, and
is defined as

T =
2πβ0

k2L2
sin(

kL

2β0
). (68)

By entering the Hamiltonian from Equation 64 into Hamilton’s equations (see
Equations 50 and 51) and solving them one will obtain a linear transfer map

x̄(L) = Mrf x̄0 + m̄rf , (69)

where Mrf is

Mrf =



c⊥ s⊥ 0 0 0 0

−ω2
⊥s⊥ c⊥ 0 0 0 0

0 0 c⊥ s⊥ 0 0

0 0 −ω2
⊥s⊥ c⊥ 0 0

0 0 0 0 c‖
1

β2
0γ

2
0
s‖

0 0 0 0 −β2
0γ

2
0ω

2
‖s‖ c‖


(70)
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and m̄rf is

m̄rf =



0
0
0
0

(1− cos(ω‖L)) tan(φ0)
k

β2
0γ

2
0ω‖ sin(ω‖L) tan(φ0)

k

 . (71)

The transversal and parallel components of Mrf and m̄rf are

c⊥ = cos(ω⊥L), (72)

s⊥ =
sin(ω⊥L)

ω⊥
, (73)

ω⊥ = k

√
α cos(φ0)

2π
, (74)

c‖ = cos(ω‖L), (75)

s‖ =
sin(ω‖L)

ω‖
, (76)

ω‖ =
k

β0γ0

√
α cos(φ0)

π
. (77)

While the particles’ δ will be changed by Mrf and m̄rf , the reference energy and
momenta will not be changed. Therefore, the reference energy and momenta are
changed after the evaluation inside the rf-cavity. The δ of the particles should be
once again centered around 0 or the point they where initially centered around.
However since x′ and y′ have P0 in their definitions, they need to be rescaled
with the quota of the old and new momentum in order to be correct. The
coordinates are rescaled by

x̄1 = M∆P x̄0 + m̄∆P , (78)

where M∆P is

M∆P =



1 0 0 0 0 0

0 P0

P1
0 0 0 0

0 0 1 0 0 0

0 0 0 P0

P1
0 0

0 0 0 0 1 0

0 0 0 0 0 P0

P1


(79)

and m̄∆P is

m̄∆P =


0
0
0
0
0

1
β1

(γ0γ1 − 1)

 . (80)
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2.7 Symplecticity

A transfer matrix M is symplectic if the following equation holds

MTSM = S, (81)

where

S =

[
0 I
−I 0

]
. (82)

This comes from the definition in Section 3.1 in [8]. If the area of the phase
space is defined as

A = v̄T1 Sv̄2, (83)

it remains constant when v̄ is transformed by a symplectic transfer matrix. A
quick calculation verifies this

(v̄T1 M
T )S(Mv̄2) = v̄T1 (MTSM)v̄2 = v̄T1 Sv̄2 = A. (84)

The fact that the area of the phase space is constant throughout a symplectic
system is called Liouville’s theorem. Thus symplecticity means that Liouvilles
theorem is respected. For particles which are spread out over the phase space
area, Liouville’s theorem requires the particle density in the phase space to be
constant.

For non-linear systems, such as a sextupole, the definition of the symplectic
condition is made by replacing the transfer matrix M in Equation 81 with the
Jacobian, J , of the system

J = I + SH̃δs, (85)

where H̃ is a 2n x 2n (n is the number of dimensions) matrix with elements

H̃jk =
∂2H

∂vj∂vk
|s=s0 . (86)

With this definition of J the non-linear Lie transform of H will be symplectic
if [2]

JTSJ = S. (87)

Since the determinant of S is one it can be shown that if the system is symplectic
then the determinant of J is one. Thus checking the determinant of J can be
a way to check if the system is symplectic or not. One has to be aware though
that a system does not have to be symplectic just because the determinant of
J is 1.

2.8 Symplectic Integrators

One major drawback of the Lie transform discussed in Section 2.5 is that sym-
plecticity is lost when truncating the polynomial. However if one Lie transforms
drift and kinetic terms of the Hamiltonian separately, then the resulting poly-
nomials are not infinite and there is no need to truncate the polynomials and
lose symplecticity. If we use the following approximation

e−L:H: = e−L:Hd+Hk: ≈ e−L:Hd:e−L:Hk:, (88)
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then the equations for the particles remain symplectic. One would, in effect,
have an element of just the kinetic dynamics followed by a drift element. Since
the kinetic elements only hold the dynamics from the magnet, it is physically
still applicable over the same length in the accelerator. Thus, even though
both the drift and kinetic parts have length L, the total length is still L. This
technique comes from Chapter 10 in [2].

2.9 Twiss parameters

So far all the equations above have described how a single particle behaves.
When accelerators have millions of particles travelling through them, it can
be more interesting to look at the beam as a whole rather than a collection
of individual particles. The so called Twiss parameters (also referred to as
Courant–Snyder parameters) can be used to describe the beam as a whole. The
transversal size of a beam oscillates through the accelerator and the first Twiss
parameter that is introduced, β(s), is defined as the local amplitude function
of the oscillation. For a periodic accelerator, the equations of motion are solved
by inserting the trial function

x(s) = A
√
β(s) cos(Φ(s) + φ), (89)

where A is a constant, Φ(s) is the phase, and φ is the initial phase. This beta
function determines the size of the beam. The next Twiss parameter, α(s) is
defined as

α(s) ≡ −1

2

∂β(s)

∂s
. (90)

The third parameter, γ(s), is

γ(s) ≡ 1 + α2(s)

β(s)
. (91)

The three Twiss parameters, together with x and x′, define a constant (for
energy-conserving elements) called emittance, which has the symbol ε, and is
defined as

ε ≡ γ(s)x2(s) + 2α(s)x(s)x′(s) + β(s)x′2(s). (92)

This is the emittance for one particle, the root mean square (rms) beam emit-
tance is defined in Chapter II.5 in [9] as

εrms =
√
σ2
xσ

2
x′ − σ2

xx′ , (93)

where σx is the rms beam width, σ′x is the rms of all particles’ x′ values and
σxx′ is the correlation.

The Twiss parameters can be defined in the same way for the other axes. The
theory for this section is based on Wille’s book Chapter 3.7 and 3.8 [4]. Another
introduction to the Twiss parameters can be found in Chapter 4 in [2].
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2.10 Envelope calculations

The Twiss parameters at the end of an element can be calculated by matrix
multiplications in a similar manner as the canonical coordinates. The derivation
of how the transfer matrix should look is rather lengthy and can be found in
chapter 3.10.2 in [4]. The equation for the new Twiss parameters is

βx

αx

γx

βy

αy

γy

βz

αz

γz


= T



βx0

αx0

γx0

βy0

αy0

γy0

βz0

αz0

γz0


=

Tx 0 0
0 Ty 0
0 0 Tz





βx0

αx0

γx0

βy0

αy0

γy0

βz0

αz0

γz0


, (94)

where the T is a 9 x 9 matrix where the Twiss parameters of each axis only
depend on the Twiss parameters in that axis (if the axes are uncoupled), which
is why three 3 x 3 submatrices Tx, Ty and Tz can be written. The Tx submatrix
is defined as

Tx =

 M2
0,0 −2M0,0M0,1 M2

0,1

−M0,0M1,0 M0,0M1,1 +M0,1M1,0 −M0,1M1,1

M2
1,0 −2M1,0M1,1 M2

1,1

 (95)

Here Mi,j is the matrix element on row i and column j in the corresponding
linear element’s submatrix for that axis calculating the canonical variables in
that axis. The submatrices Ty and Tz are constructed in the same way. Thus
every M-matrix with uncoupled axes has a corresponding T-matrix. The pur-
pose of this section and the previous one is that they allow beam parameters
to be calculated through linear elements which can be described by matrices.
In Section 4.2 these calculations and parameters will be calculated for a beam
which goes through a FODO-lattice.

3 Simulation Code

In my code I have implemented the elements described above as separate classes.
Every element object is placed in data structures called lists. When sending
particles through a lattice, the particles are sent through each of the elements
and are assigned new positions and momenta at the end of each element. When
dealing with the space-charge effect, the elements are split and at each slice the
particles get a kick which resembles the space-charge effect.
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3.1 Overview and Structure

Each implemented element is coded as a class in Python. This means that one
element has its own parameters describing how it behaves and how it wants to
calculate particles’ new positions. In the final phases of programming it was
found that the structure of the program is similar to the structure proposed in
one of C. K. Allen’s papers [10].

Each element class has a function which takes input particles and calculates the
particles’ exit parameters. The particles are stored as NumPy arrays and all
particles are combined into a single NumPy array. The array which holds all
particles is thus passed through each of the elements and has its particle data
calculated.

The ”accelerator.py” file contains all the code for the things mentioned above.
This is the core of the program where all the accelerator physics take place.
The particle distributions are created in a code named ”particleFactory.py”.
The code ”facility.py” provides a handle for user interfaces to interact with the
”accelerator.py” code and the other codes. Results are plotted in the ”plot-
ting.py” code. The ”qtinterface.py” code provides a graphical user interface
(GUI) for the user and is the main way of interacting with the simulator. This
GUI is shown in Figure 2. There is also a code for saving and loading particles,
lattices and other data called ”IOHandler.py”. Functions doing relativistic cal-
culations are defined in a code ”relativity.py”. A graph showing the programs’
dependencies is shown in Figure 3. An arrow pointing toward a program means
that the program at the tail uses the program at the head.
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Figure 2: The GUI showing a constructed FODO lattice. The red and black
pattern on the left side is a graphical representation of the accelerator lattice.
In the top-right corner is a beam editor where a user can set which beam of
particles that should be used. Below the beam editor is the lattice editor where
a user can construct an accelerator lattice. The green and yellow buttons in the
lower-right corner are clicked in order to start the simulation.

Figure 3: The program structure.

3.2 Linear Elements Implementation

For the linear elements, their matrices are constructed for each element. When
it comes to evaluation, the canonical variables of v̄ are multiplied by the matrix.
For s the length of the element is just added to its current value.

19



3.3 Non-Linear Elements Implementation

For the non-linear elements, their Hamiltonians are used in Lie transforms which
have been implemented using the Sympy Python library [7]. When the Lie
transform is done the transfer map functions are tested to see that they are close
to full symplecticity by checking that the difference between the the determinant
of J and 1 is less than 10−6. The result of the symplecticity check is printed.
After the symplecticity check the transfer map functions are lambdified, which
is a Sympy tool that makes evaluation of functions much faster.

3.4 Symplectic Integrator Implementation

Since the symplectic integrator technique is based on the Lie transform approach
it was easy to implement. Non-linear Hamiltonians but without the drift element
terms in them were created for each non-linear element. Elements were then
created with these Hamiltonians according to the previous section. After an
element was created with one of these Hamiltonians a drift element would be
created with the same length as that of the non-linear element. In this way the
drift and kinetic parts were split. Another way of doing the symplectic integrator
approach was to start with half the drift element, then the Hamiltonian element
and then a second drift element.

3.5 Space Charge

The elements are split up in multiple slices. This is because the dynamics
of space charge change over very small distances and therefore require small
displacements between each evaluation. In my code the user can set how many
slices there are per element. I tried using 1000 slices per element since if more
were used the program would become too slow. Between each slice the particle
were ”kicked” by a space-charge matrix. The space-charge matrix is calculated
based on the particles before the kick is applied. The form of the matrix depends
on which space charge implementation was used.

3.6 RF-cavity

The matrices and vectors from Section 2.6 are calculated. When the particle
parameters are evaluated they are multiplied and added with these matrices
and vectors. The new beam energy and beam relativistic beta is added to a list
called ”beamdata” in the code.
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3.7 Graphical User Interface (GUI)

The GUI was coded in the Python library PyQt5 [11] which is the Python im-
plementation of the Qt user interface [12]. It provided an easy way to construct
a manageable interface separating the simulation code from GUI code by having
the ”facility.py” as a middleman. PyQt5 also made it possible for my program
to only use the Python programming language, which is a great advantage since
large codes written in several languages can quickly become hard to manage.

4 Testing

4.1 Result comparison

When testing my program particles were simulated in both my program and
another program called TraceWin [13]. After both programs had simulated the
particles arrays for every parameter were made. Each array held the values of
a parameter for all particles. Thus there was an array holding all x parameter
values calculated by my program and another array containing all x parameter
values calculated by TraceWin. A new array with the difference between the x
parameter values from my program and the x parameter values from TraceWin
was created. This difference array was created for the other parameters as well.
When the difference arrays had been created for each parameter the standard
deviation for each of them was taken. The standard deviation is a statistical
term for how much values in an array deviate from the mean value and is denoted
by σ. It is defined for an array a with N elements as

σ =

√√√√ 1

N

N∑
i=1

(ai − µ(a))2, (96)

where µ(a) is the mean value of a. The unit of the standard deviation is the
same as the unit for the elements in the array a. The smaller the standard
deviations for each array of difference between the resulting parameters of the
two programs the better the agreement between the two programs.

In the Python library NumPy [14] there is a function called std which calculates
the standard deviation for an array. The σ for coordinate x was calculated by

σ = std([x1,DAT − x1,TW , x2,DAT − x2,TW , . . . , xN,DAT − xN,TW ]), (97)

for N particles. By calculating σ for each parameter I could measure how close
the result in my program and TraceWin were. When I did multiple simulations
in my program and compared the results with each other the same technique of
calculating σ values was used.
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4.2 FODO-lattice

Particles with an energy of 2 GeV were sent through a so called FODO-lattice,
in both my program and in TraceWin. The energy of 2 GeV was used since
this is the energy of the beam that will be used at ESS [15]. The FODO-lattice
consists of a half-quadrupole focusing in x, then a drift element, then a full
length quadrupole defocusing in x, then a drift and finally a half quadrupole
focusing in x. The parameters for the FODO-lattice can be seen in Table 1.

Table 1: The FODO-lattice.

Element L [m] G [T/m]
Focusing Quadrupole 0.05 100

Drift 0.10 -
Defocusing Quadrupole 0.10 -100

Drift 0.10 -
Focusing Quadrupole 0.05 100

The resulting phase space plot in the xx′-plane is shown in Figure 4, where
the Twiss parameters make up the ellipses in the two plots. The theory and
parameters for the ellipses come from chapter 3.8 in [4]. The minor axis of the
ellipse has the length of

√
εβ and the major axis of the ellipse has the length of√

εγ. The ellipse is tilted clockwise by an angle

Ψ =
1

2
arctan(

2α

γ − β
). (98)

Figure 4: Simulation in my program of the FODO-lattice specified in Table 1.

The σ values for each parameter of the results can be seen in Table 2. As the
σ values are extremely small it can be said that the two programs produce the
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same results. However the z-value is not nearly as small as the other σ values
due to a small difference in the transfer matrices for z and δ between my program
and TraceWin. This difference comes from the fact that TraceWin uses a dp/p
parameter instead of the δ parameter and TraceWin has a different definition
of the transfer matrix in the z-plane, see the ”Transfer Matrices” chapter in [3].

Table 2: The σ of the differences in each parameter between a FODO-lattice
simulation in TraceWin and my program.

Parameter σ
x 1.654e-10 m
x′ 1.520e-11
y 1.425e-10 m
y′ 1.465e-11
z 0.157 m
δ 0.000

In Figure 4 the ellipses made by the Twiss parameters match the shapes made
by the particles. This means that the Twiss parameter calculations are most
likely correct. Not all particles are within the ellipses and this is due to the fact
that particles are created in ”particleFactory.py” with a Gaussian distribution
and then shaped by Twiss parameters.

4.3 Sextupole simulation

How can one know that the non-linear dynamics of one’s simulation are correct?
Since the calculations quickly become very costly, the next best is to compare
one’s results with other results. For this I have used an example from Figure
9.1 in [2] shown in Figure 5. In this example 1024 particles are sent through a
circular ring 1000 laps. A lap in a periodical circular ring was simulated by a
one-turn with a phase of ν = 0.246 × 2π radians. This would rotate the phase
spaces of the transversal dimensions by the phase ν each turn. This simulates
all the quadrupoles and drifts that the particles travel through. After each
lap, they encounter a sextupole element with length 0.1 m and a strength K =
4000 m−3 where the Lie transform has used an order of 5. The particles in this
test started in the xx′-plane between -4 mm and +4 mm in x, and -4e-3 and
+4e-3 in x′. In the other dimensions, the particle parameters were set to zero
since in [2] the parameters were only defined in x and x′. At the end of the 1000
laps, the phase space plot for x and x′ was plotted.
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Figure 5: Reference simulation of a sextupole in a ring: ν = 0.246 × 2π; sex-
tupole: L = 0.1 m, K = 4000 m−3, order = 5.

The resulting phase space plot from my program is shown in Figure 6. In my
simulation the particle parameters started in an even grid within the above
specified limits. Since some of the particles were unstable they were set to zero
and deemed lost when the coordinates started to grow too large. The limit for
particles were if √

x2 + x′2 + y2 + y′2 + z2 + δ2 > 1. (99)
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Figure 6: Simulation of a sextupole in a ring: ν = 0.246 × 2π; sextupole:
L = 0.1 m, K = 4000 m−3, order = 5. The determinant of J is 3.89e-03 away
from 1. The number of lost particles were 510.

By comparing Figure 5 and 6 one can see that they have the same ”bent cross”
shape but the internal structure is more chaotic in my results. The reason for
this is probably that the starting parameters for the particles are not the same.
The starting parameters which gives the results seen in Figure 5 are within the
same range as the initial parameters in Figure 6 but it is unclear how they are
distributed within that range.

The sextupole was also tested with the symplectic integrator technique by re-
placing the sextupole element in the previous setup with an element with only
the kinetic terms of the Hamiltonian followed by a drift element with the length
of the original sextupole. The results for this can be seen in Figure 7, where the
same initial particles as in Figure 6 has been used. The final parameter values
in the x-plane for the particles in Figure 6 and 7 w compared with the method
described in Section 4.1 which gave the results seen in Table 3. It can be seen
that the σ values are much larger than those for the FODO-lattice found in Ta-
ble 2. This means that the two techniques don’t produce the same result. Since
so many particles are lost there is a risk that a particle is lost with the normal
Lie transform approach but not with the symplectic integrator approach and
this would mean that the σ value would be extra large because of that particle.
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Figure 7: Simulation of a sextupole in a ring calculated with a symplectic inte-
grator: ν = 0.246× 2π; sextupole: L = 0.1 m, K = 4000 m−3, order = 5; drift:
0.1 m. The determinant of J for the kinetic part of a sextupole is equal to 1
with more than 6 digits and thus the calculations are called fully symplectic.
The number of lost particles were 546.

Table 3: The σ of the differences of the parameters in the x-plane for the two
techniques of simulating a sextupole.

Parameter σ
x 1.441e-3 m
x′ 2.293e-3

4.4 Octupole simulation

Octupoles are magnetic elements which have eight magnetic poles and are also
non-linear accelerator elements. Here there were no example to compare the
results with. Instead the setup for the sextupole test in Section 4.3 was used
with the sextupole replaced by an octupole. In Figure 8 the results for this
setup are shown, where the same initial particles as in Figure 6 has been used.
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Figure 8: Simulation of an octupole in a ring: ν = 0.246 × 2π; octupole:
L = 0.1 m, K = 4000 m−4, order = 5. The determinant of J for an octupole
element is equal to 1 with more than 6 digits and thus the calculations are called
fully symplectic.

This setup with the same initial particles was also simulated with the symplectic
integrator technique in two ways. The first way was by having an element with
only the kinetic terms of the octupole Hamiltonian followed by a drift element
with the length of the real octupole. The result for this is shown in Figure 9.

Figure 9: Simulation of an octupole in a ring calculated with a symplectic
integrator: ν = 0.246 × 2π; octupole: L = 0.1 m, K = 4000 m−4, order = 5;
drift: 0.1 m. The determinant of J for the kinetic part of an octupole element
is equal to 1 with more than 6 digits and thus the calculations are called fully
symplectic.
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The second way when doing the symplectic integrator technique was to do the
same as the first one but splitting the drift element in two equally long elements
and placing one before the kinetic octupole element and the other after the
kinetic octupole element. The results for this are shown in Figure 10.

Figure 10: Simulation of an octupole with split drifts in a ring calculated with
a symplectic integrator: ν = 0.246 × 2π; drift: 0.05 m; octupole: L = 0.1 m,
K = 4000 m−4, order = 5; drift: 0.05 m. The determinant of J for the kinetic
part of an octupole element is equal to 1 with more than 6 digits and thus the
calculations are called fully symplectic.

Table 4: The σ of the differences in the phase space for x between the values in
Figure 8 and 9.

Parameter σ
x 1.084e-05 m
x′ 1.092e-05

Table 5: The σ of the differences in the phase space for x between the values in
Figure 8 and 10.

Parameter σ
x 4.686e-05 m
x′ 4.950e-05

Table 6: The σ of the differences in the phase space for x between the values in
Figure 9 and 10.

Parameter σ
x 1.532e-05 m
x′ 1.567e-05
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There are now three simultion results that can be compared to each other. The
final parameter values for the particles in Figure 9 and 10 was then compared
with the final parameter values in Figure 8 by using the method described in
Section 4.1. In the Tables 4, 5 and 6 the results are compared with each other.
It is shown in the tables that the three different techniques have results which
are very close to each other due to the small σ values in all of the tables. This
means that one can use each of the three techniques to simulate an octupole.

4.5 Radiofrequency cavities

To test the rf-cavity in my program, particles with energy 2 GeV were sent
through a single rf-cavity. Since the rf-cavity has the most interesting results
in the zδ-plane only the z and δ parameter values will be calculated. The
parameters for the rf-cavity were: L = 1 m, a = p01/π, E0 = 109 V/m and
φ0 = π/4. The beam energy was increased from 2000.00 MeV before the rf-
cavity to 2474.37 MeV after the rf-cavity. The resulting phase space in the
zδ-plane is shown in Figure 11.

Figure 11: The phase space in zδ-plane before and after a rf-cavity with:
L = 1 m, a = 0.766 m, E0 = 109 V/m and φ0 = π/4 = 0.785.

The particles with the lowest and highest initial z parameter values were then
calculated by only using the equations described in Section 2.6. The particle
with the lowest z parameter value is called particle 1 and the particle with the
highest z parameter value is called particle 2. In Table 7 the results for the
particles from both my program and direct calculations are shown.

29



Table 7: The results for the two particles with both my program and direct
calculations.

Initial parameter Values for particle 1 Values for particle 2
z -0.473 m 0.474 m
δ -1.214e-13 -1.214e-13

My program’s results
z -0.439 m 0.467 m
δ 0.310 -0.234

Direct calculation results
z -0.439 0.467
δ 0.310 -0.234

It is seen that my program and direct calculations match perfectly. The reason
for this is that my program and the calculations are based on the same equations
and thus will produce the same results when the parameters are the same.

5 Discussion

It has been shown here that my program works for simulating both linear and
non-linear particle dynamics.

However, it does not seem possible to simulate the space charge effect in my
program using the theoretical basis in [2], [5] and [6]. The theoretical basis in
[6] has been used succesfully in another program, see [15]. A problem is that for
an accurate simulation one needs to slice each element into many parts, since
the forces arising from space-charge will change over very small distances. This
means that instead of just doing the calculations for an element once, one would
need to do them a thousand times, which is very demanding to do on a normal
computer if the code isn’t properly optimized. It may be possible to overcome
this problem by having a theoretical description which only requires that the
particles be calculated once per element, or perhaps if the particle distribution
was elliptically symmetric or even a KV-distribution. Another problem for
space charge is that it couples the axes since the forces depend on the three
dimensional distances between the particles.

For calculating the slicing of elements a numerical differentiation technique
known as the ”leapfrog algorithm” could have been used when using Hamiltoni-
ans. The leapfrog algorithm steps through time or the longitudinal coordinate
s and calculates the position based on the velocity half a step length before. A
thorough introduction to this technique is found in Chapter 9-6 in [16]. This
source doesn’t use the Hamiltonian formalism but with some calculations the
technique can be used with Hamiltonians as well. The leapfrog algorithm would
have demanded a rewrite of most of my code, but might have had better results,
since it is a very well established technique in mathematics and other areas.

The approximations made in this thesis were that the paraxial approximation
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first used in Section 2.2 holds, that the polynomial after a Lie transform could
be truncated after a certain order and that the Hamiltonian could be split up
for the symplectic integrator approach. The paraxial approximation was the
easiest to justify, since the momentum in the z-direction was larger than the
other momenta by several orders of magnitude. The polynomial truncation was
trickier, but by calculating the Jacobian and the Jacobian’s determinant it was
verified that it was sufficiently close to 1 since the furthest the determinant
of the Jacobian deviated from 1 was in the third decimal. That the Hamilto-
nian split in the symplectic integrator worked was demonstrated by comparison
with the normal Hamiltonian. For the sextupole when using the symplectic
integrator technique the calculations were fully symplectic but not when the
normal Hamiltonian was used. This also shows the usefulness of the symplectic
integrator technique.

Another way of dealing with non-linear elements could have been used. This is
to linearize them so that they fit into the matrix formalism. Since every element
would have had matrices then the evaluation might have gone quicker but it is
questionable if it would have given better results.

Although I have written much code and simulated many aspects of accelerators, I
continue to discover new effects that one must recognize when writing simulation
software. One need to provide many tools for the user if they should wish to
simulate an accelerator through the software. There are many approaches one
can take when simulating accelerators and I find my program to work well for
combining two approaches (the linear and non-linear). It still needs to be further
optimized for speed before it is capable of simulating large machines such as ESS
and the LHC. This is because the major drawback of my program is that it is
quite slow when simulating a long accelerator of more than 1000 elements when
having more than 1000 particles in the beam.

After this thesis my program will be used to simulate non-linear particle effects
at ESS. It can also be used for teaching accelerator physics to students since the
interface is quite user friendly and the code is written to be as clear as possible.
For the code itself I hope that it will be a good basis if others want to write their
own simulators. I would like to get the space-charge effect properly simulated
as well.

6 End note

This master thesis has been enjoyable and I would like to continue in this area
of research. The challenge of combining physics with programming has been in-
teresting. I have deepened my knowledge of both areas as well as my knowledge
of accelerator physics. Since this thesis has touched several fields of science
I have learned the difficulties and benefits of working in an interdisciplinary
environment.
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