
Deep Learning with a Directed
Acyclic Graph Structure for
Segmentation and
Classification of Prostate
Cancer

Gabrielle Flood

Master’s thesis
2016:E44

Faculty of Engineering
Centre for Mathematical Sciences
Mathematics

C
E
N
T
R
U
M

S
C
IE

N
T
IA

R
U
M

M
A
T
H
E
M
A
T
IC

A
R
U
M

Master’s Thesis, 2016
Mathematics

Deep Learning with a Directed
Acyclic Graph Structure for

Segmentation and Classification of
Prostate Cancer

Gabrielle Flood

Supervisor: Kalle Åström

Lund University
Faculty of Engineering

Centre of Mathematical Sciences

Abstract

Deep learning is a machine learning technique inspired by the biological nervous
system. The method has been used more and more over the last decades. Within
this thesis, convolutional neural networks (CNN:s) are used for Gleason classifi-
cation of prostate cancer in histopathological images. The data that has been
used consists of digitalized microscopic images of prostate biopsies stained with
haematoxylin-eosin (H&E). There are separate samples containing benign, Glea-
son 3, Gleason 4 and Gleason 5 tissue. More specifically, the potential of a directed
acyclic graph (DAG) structure for the classifying CNN has been investigated. In
this network a segmentation image has been used as a second label in the middle
of the network, and the backpropagation has thus been performed using two dif-
ferent outputs. Hence, as a buildup, a CNN with a simple structure was created
for segmentation of different components in benign prostate tissue. The structure
and trained weights of this segmentation network were then used in the classifying
DAG net. No final fine-tuning of the hyper-parameters or optimization of the net-
work has been performed, but the cost function showed a decreasing trend when
the training was carried out. Therefore it was concluded that the DAG structure
does have potential and that further development of the method could yield a high
performance network.

ii

Acknowledgments
I would like to thank all the people who have helped during the work with my master’s
thesis. First , I would like to express my sincere gratitude to my supervisor Kalle Åström.
Thank you for giving me a lot of help, but not too much. Thank you for introducing
me to the field of deep learning and for acting like a sounding board when I myself have
been confused. My work, my learning and my development would not have been the
same without you.
I would also like to thank Agnieszka Krzyzanowska and her colleagues for inviting

to a visit at the pathology department at Skåne University Hospital. The medical
information gave me understanding and also a great motivation.
Finally I wish to express my gratitude to the other thesis workers at the Department

of Mathematics. Thank you for making the coffee breaks a great time for revitalization,
but also for listening and helping when problems with my thesis have arisen. If I have
colleagues like you in the future, I will be happy. A special thanks to Anna Gummeson
who have been working on a similar problem as I have. Thank you for answering my
sometimes very basic questions and discussing both mine and your problems. You have
given me a better insight into the field of neural networks.

iii

Contents
1 Introduction 1

1.1 The DOGS Project . 2
1.2 Related Work . 2
1.3 Aim of and Goals with the Thesis . 3

1.3.1 The Segmentation Problem . 3
1.3.2 The Classification Problem . 3

2 Prostate Cancer 4
2.1 Prostate Tissue . 4
2.2 Cancer Tests and Diagnostics . 5
2.3 The Gleason Grading System . 5

2.3.1 The Gleason Score . 6
2.3.2 The Gleason Grade Group . 7

3 Artificial Intelligence and Neural Networks 8
3.1 Training the Network . 10

3.1.1 Supervised or Unsupervised Training 10
3.1.2 The Cost Function . 11
3.1.3 Gradient Descent Method . 12

Stochastic Gradient Descent Method 13
3.1.4 The Backpropagation Algorithm . 13

The Error in the Output Layer . 15
The Error in Any Layer, Depending on the Error in the Next Layer 15
The Derivative of the Cost with Respect to the Biases 16
The Derivative of the Cost with Respect to the Weights 16
The Actual Algorithm . 16

3.2 Convolutional Neural Networks . 17
3.2.1 Convolutional Layer . 18
3.2.2 Max-Pooling Layer . 20
3.2.3 ReLU Layer . 20
3.2.4 Softmax Loss Layer . 22

The Softmax Function . 22
The Logarithmic Loss Function . 22

3.3 Network Topology . 23
3.3.1 Simple Neural Network . 23
3.3.2 Directed Acyclic Graph Network . 23

iv

4 Deep Neural Networks in Practice 24
4.1 Software . 24
4.2 The Data . 24

4.2.1 Ethical Aspects . 24
4.2.2 The Keys . 25

4.3 How to Build a Network . 26
4.3.1 Connecting the Layers . 26
4.3.2 Kernel Sizes and the Number of Filters 27
4.3.3 The End of the Network . 27

4.4 Choice of Parameters . 28
4.4.1 Adaptive Learning Rate . 28
4.4.2 Number of Training Epochs . 28

4.5 Reduce Overfitting . 28
4.5.1 Increased Amount of Data . 29
4.5.2 Dropout . 29

5 Implementations 30
5.1 The Segmentation Problem . 31

5.1.1 The Input Patches . 31
Pre-Processing . 32

5.1.2 Training the Network . 33
5.1.3 The Evaluation . 33
5.1.4 The Final Training . 34

5.2 The Classification Problem . 34
5.2.1 The Input Patches . 34
5.2.2 The Middle Keys . 35
5.2.3 The Logistic Logarithmic Loss . 36

The Middle Keys for the Cancerous Tissue 36
5.2.4 First Training Approach . 37
5.2.5 Second Training Approach . 37
5.2.6 Third Training Approach . 37
5.2.7 The Evaluation . 38

6 Results 39
6.1 The Segmentation Problem . 39

6.1.1 Training Statistics . 39
6.1.2 Images Run Through the Network 39

6.2 The Classification Problem . 41

7 Discussion and Further Work 45
7.1 The Dataset . 45
7.2 Implementation Issues . 46
7.3 The Network Architecture . 46

7.3.1 The Segmentation Network . 46

v

7.3.2 The Classification Network . 46
7.4 The Hyper-Parameters . 47
7.5 The Different Classification Network Approaches 47

8 Conclusion 49

Bibliography 50

vi

1 Introduction
The human brain consists of 100 billions of neurons, with up of up to 10000 synapses
each [1]. A human can without difficulties learn to recognize things such as faces,
environments, numbers and patterns. The human brain is also very good at drawing
logical conclusions, where one thing leads to another based on certain fact. Even though
these are obvious abilities for a human brain, the tasks can be remarkably complex to
program. The main idea behind artificial intelligence is to make a computer think, act,
draw conclusions and make decisions in the same way as humans do. The vision is that
if a computer program could be designed to use as many neurons as a human brain, it
could also solve as complicated problems as humans can. Today, there is not enough
computational power to do that, but in the future there might be and the method can
still be very powerful.
Just like biological neural networks, the artificial neural networks are built up by

neurons, which in the artificial case also are called nodes. These are usually ordered
and connected to each other in certain ways. The connections are also inspired by the
ones in biological networks and these can e.g. make the nodes be on or off, or transfer a
passing signal less or more [2].
Convolutional neural networks (CNN:s) is one type of artificial neural networks that

is commonly used to perform classification of images. The data has another structure
than it does for regular neural networks and the linear operations performed within the
network are mainly built on 2D convolution. Furthermore, the operations — which can
be non-linear as well — are performed in several steps or layers. Due to this, the method
is also referred to as deep learning. The theory behind deep learning will be explained
in Chapter 3.
This thesis has as a purpose to investigate potential structures for deep neural net-

works. The networks should be used on microscopic images of prostate biopsies to
classify whether the samples contain cancer. If they do, the samples should be graded
according to the Gleason grading system for prostate cancer [3]. A brief overview of
prostate cancer and the used grading systems is given in Chapter 2.
In the present situation the Gleason classification of prostate biopsies is performed

manually by pathologists. First of all, this is a time consuming work. Secondly there is
a shortage of pathologists in Sweden at the moment [4]. Due to this, potentiation of the
screening would be of great importance. An automatic Gleason classification method
could as a first step be used as a recommendation to the pathologists. After running the
images through the network the physician could be told which samples to take a closer
look at. In the future, maybe the computer could handle the whole classification. The
automatic classifier could also be used as a second opinion, since the Gleason grading
scale is not very strictly defined and the opinions of different pathologists usually differ

1

somewhat.

1.1 The DOGS Project
DOGS — Digital Pathology for Optimized Gleason Score in Prostate Cancer — is a
project project financed by Vinnova [5]. The aim of the project is to develop comput-
erized and automatic evaluation of Gleason grading. The project runs during the years
2015 to 2017 and is carried out by the Department for Translational Medicine at Lund
Universiy. This thesis is a small part of that project and could be seen as a pre-study
to future work within the DOGS project.

1.2 Related Work
The idea of an automatic system for classification of prostate tissue is not new. There
are several examples where this has been investigated in different manners. A few of
them will be mentioned here.
Lippolis et al. tried to classify prostate tissue on a Gleason grade from 1 to 5. This was

done using scale-invariant feature transform, bag of words and support vector machine.
A binary classification was performed, where the algorithm should distinguish between
two different grades or groups or grades. E.g. an accuracy of 98.1% was achieved when
trying to distinguish between benign and cancerous tissue and in a one-vs-all multiclass
scheme, 87.3% accuracy was achieved. [6].
Källén et al. used pre-trained deep neural networks and random forest or support

vector machine to classify prostate tissue as benign, Gleason 3, Gleason 4 or Gleason
5. The deep convolutional network that was used there was pre-trained on a large set
of photographic images and then adapted to microscopic prostate images. The network
was then terminated at an earlier layer, whereupon the achieved output was used to
train both a random forest classifier and a support vector machines classifier. Källén et
al. achieved an accuracy of 89% for the prostate images that were tested. [7]
Litjens et al. tried to detect both prostate cancer in biopsies and breast cancer metas-

tasis in resected sentinel lymph nodes. That network was trained to perform binary
classification to distinguish between benign and cancer. The network was trained from
scratch using cut out patches from the original images. This article focuses both on
efficiency and accuracy and the results for the prostate cancer detection is presented as
a ROC-curve measuring sensitivity and specificity. [8]
Gummeson had a similar approach as Litjens, but was looking only at microscopic

prostate biopsies. That network was also trained from scratch but to distinguish between
benign, Gleason 3, Gleason 4 and Gleason 5 tissue. Gummeson achieved an accuracy of
92.7%. [9]

2

1.3 Aim of and Goals with the Thesis
The main goal of this thesis has been to investigate the potential of different CNN
structures that could be used for an automatic Gleason classification system. More
specifically, these structure were built using a directed acyclic graph (DAG) CNN. At
the same time another important aim has been to develop the understanding for deep
neural networks and different CNN structures — simple and directed acyclic graph (see
Chapter 3.3).
The final network was supposed to be built as a straight network, with one outgoing

extra branch with a connected middle key and this middle key is also the main difference
from the work presented by Litjens [8] and Gummeson [9]. The final classification key,
or label is thus made up of the Gleason grade, while the middle key is a segmentation
image of different tissue parts. This is a method which has not been used on the images
in the project before and the thesis was therefore supposed to investigate whether this
would be a promising approach. The project has been divided in two subprojects, one
segmentation problem and one classification problem.

1.3.1 The Segmentation Problem
The first subproject, the segmentation problem, was performed using a simple neural
network. The point of this part was to develop an initial understanding for deep neural
networks and to see whether the middle key could be useful in the final, classifying
network. The segmentation problem only uses benign images and was supposed to
perform segmentation of certain parts of the prostate tissue in the images.

1.3.2 The Classification Problem
The second subproject, the classification problem, had as an aim to fulfill the main goal
of the thesis. Thus, a directed acyclic graph CNN was used. The idea was that one
part of the network should be inspired by the simple network used for the segmentation
problem, so that the middle key could be a segmentation image. This segmentation
should be a “branch” from the rest of the network, which finally led to the Gleason
grading, or tissue classification. The potential of the architecture was to be analyzed
and the short-term goal was thus not to achieve a perfect classifier.

3

2 Prostate Cancer
The prostate is an organ only present in male bodies. It usually has the size of a
walnut and is located below the bladder with the urethra going through it [6]. Prostate
cancer is the most common cancer for men and about 35% of all cases of cancer for
Swedish men are prostate cancer. For a Swedish man, the risk of getting prostate cancer
is approximately 18% and around 2500 men in Sweden die every year as an effect of
prostate cancer [3]. Prostate cancer mainly affect elderly men — the average age at
detection is around 70 years old — but it is quite common for men over 50. It has also
become more common that the cancer is found in an earlier stage.

2.1 Prostate Tissue
Within this report some parts of the prostate tissue will be mentioned and used. An
example of a part of a prostate biopsy can be seen in Figure 2.1.

STROMA

GLAND

LUMEN

GLAND WALL

Figure 2.1: An example of normal prostate tissue, with some parts of
the tissue marked.

Normal prostate tissue consists of glands and stroma. The glands are made up of an
empty lumen, surrounded by cells which are creating a gland wall. The lumens appear
as white or pale on the microscopic images used within this thesis, as the ones in Figure
2.1. There are also certain structures in the gland wall, see further [6]. The stroma is
the rest of the prostate tissue, what surrounds the glandular structures. This is the part
that is pink in the image above.

4

2.2 Cancer Tests and Diagnostics
In general, prostate cancer can develop quite far without showing any symptoms. The
first test that is done is a blood test which looks for increased levels of prostate specific
antigen, PSA. The PSA is a protein which is produced in the prostate when it is healthy
as well, but when cancer occurs PSA leaks into the blood in a greater occurrence.
Through a blood sample the prostate cancer can thus be detected in an early stage,
before any symptoms occur. Though, there are also cases of benign enlargements of the
prostate and these can also result in an increased PSA level. That means that a positive
blood sample not necessarily denotes cancer.
If a blood sample shows increased levels of PSA the investigation is taken one step

further. In some cases, the tumor is large enough for the doctor to feel it through an
rectal examination. Otherwise, transrectal ultrasound can be used. In that case, biopsies
are usually taken as well. The biopsies are taken using needles and ten or twelve samples,
each a few centimeters long, are taken from different parts of the prostate. After that,
in some cases when the cancer is bad, the whole prostate is removed. That is called
radical prostatectomy. Thence the prostatectomy is not performed for screening but as
a medical intervention.
Independently of whether the samples come from needle biopsy or radical prostatec-

tomy, the biopsies are afterwards studied in microscope by a pathologist. This is done to
determine whether cancer is present (in the case of needle biopsy) and in that case how
far the disease has gone. When cancer develops the glandular structure in the prostate
is decreased or lost and depending on how much of the structure that is gone, how
aggressive the cancer is and how likely it is to spread, the cancer is assigned a certain
grade.

2.3 The Gleason Grading System
The system used to classify cancer is called the Gleason grading system or the Gleason
classification system. The system was developed around the 1970’s by Donald Gleason.
The original scale goes between 1-5, with Gleason grade 5 describing the most aggressive
cancer [10]. An explanation of the Gleason grading scale is given in Figure 2.2. Though,
later on pathologists have realized that Gleason grade 1 does not exist, even if it resem-
bles benign tissue. Furthermore, Gleason grade 2 does exist, but can only be classified if
a large area of the prostate is analyzed, like when the whole prostate is removed. Thus,
the Gleason grade 2 will not show on the needle biopsies and therefore that grade is
never used in reality since the radical prostatectomy is not performed right away or if
the cancer is as “kind” as Gleason 2.
The first grade that is actually used is therefore Gleason grade 3. In Gleason grade

3 tissue, there are still clear glandular structures, but the glands are generally smaller
than for benign tissue. Furthermore, the size and shape of the glands can vary a lot.
For Gleason grade 4 the glandular structure has disappeared even more and it is hard

to distinguish the single glands. Instead the glands have started to coalesce. Except

5

Figure 2.2: A description of the Gleason grading system. The worse
the cancer is, the more are the glandular structures lost. Gleason grade
5 indicates the worse case of prostate cancer.

for that they are even smaller than for Gleason 3 and the lumens have substantially
narrowed off.
When it comes to Gleason grade 5 the structure is almost completely gone and the

tissue does not resemble healthy prostate tissue at all. For benign prostate tissue, only
stromal cells are lying alone, while glandular cells are staying together. For Gleason 5
there are a lot of glandular cells that are separate from others and there is no differ-
entiation between the glands at all. Thus, the glands cannot be distinguished and the
lumens are completely gone.
Figure 2.1 shows an example of benign tissue and Figure 2.2 shows the different grades

of cancer. In this project, the classes mentioned above — that is benign and Gleason 3,
4 and 5 — have been assigned.

2.3.1 The Gleason Score
When pathologists speak about prostate cancer they usually do not refer to the Gleason
grade, but the Gleason score. The Gleason score is achieved by adding the two most
common grades in a tumor, so in theory it ranges from 2-10, but in reality only from
6-10. For example, if a patient with prostate cancer mainly has Gleason 4 in the tumor,
but the second most common grade is Gleason 3, then the final Gleason score will be
4 + 3 = 7.

6

2.3.2 The Gleason Grade Group
Another way to assign how bad the prostate cancer is using the Gleason grade is the
Gleason group. This was introduced in the 2014 International Society of Urological
Pathology (ISUP) Consensus Conference. One reason for the new system was the fact
that the lowest assigned Gleason grade is a 6 out of 10 and that this can make the
cancer sound worse than it actually is. Another motivation was that when the Gleason
score is used, there is no way of distinguishing between Gleason 3+ 4 and Gleason 4+ 3,
since both would be Gleason score 7. In reality though, the latter would mean a worse
state than the former. The Gleason grade groups reaches from 1 to 5 and the division
is clarified in Table 2.1. [11]

Table 2.1: The Gleason grade group system. The different groups de-
fined using the Gleason grade and score. The values are taken from [11].

Grade group 1 Gleason score ≤ 6

Grade group 2 Gleason score 3 + 4 = 7

Grade group 3 Gleason score 4 + 3 = 7

Grade group 4 Gleason score 8

Grade group 5 Gleason score 9 − 10

7

3 Artificial Intelligence and Neural
Networks

An artificial neural network is — just like the neural network in the human brain —
built up of neurons. In the artificial case the neurons are also called nodes. The nodes
can be divided in different stages or layers. The nodes of one layer can “communicate”
with the nodes in the previous and the following layer in the same manner as biological
neurons do. Biological neurons are further explained in [2].

4 8
1

5 9
2 12

6 10
3

7 11

Input
layer

Hidden
layers

Output
layer

Input 1

Input 2

Input 3

w14
w48

Output

Figure 3.1: A neural network with four layers; one input layer, two
hidden layers and one output layer. The nodes are marked by circles
and the connections between the nodes by arrows. Above two of the
connections, the weights w are shown.

A network contains three different kinds of layers; an input layer, an output layer and
hidden layers. The hidden layers are all layers that are not the input or output layer. A
small example of a network can be seen in Figure 3.1. The network has four layers, of
which two are hidden, and in total the network contains twelve nodes.
Now the focus will be on one of the nodes in the network, node number 4. Regarding

node number 4 there are a two functions of interest; the propagation function and the
activation function [1]. The propagation function concerns the inputs, in this case coming
from node 1, 2 and 3. Often the propagation function is a weighted sum of the inputs,
such that

pj =∑
i

wijai, (3.1)

8

where wij is the weight from node i to node j and ai is input number i (that is, input to
the current node, not to the network). In the case of node number 4, the propagation
function would look like

p4 = ∑
i=1,2,3

wi4ai. (3.2)

It is also common that a bias term is added to the weighted sum, which gives the final
propagation function

pj = bj +∑
i

wijai. (3.3)

The propagation function between all nodes have the same structure, but the values of
the weights and biases differ.
The activation function takes care of the output of the propagation function and

decides whether a node is “on” or “off”, that is compared to a physical neuron whether
it will fire [2]. A simple activation function could be a threshold function, where

aj =
⎧⎪⎪⎨⎪⎪⎩

0 if pj < threshold,
1 if pj ≥ threshold.

(3.4)

In the case where the bias term is added to the propagation function, Equation (3.3),
the threshold could simply be set to 0, since there is no need for having two constants.
The bias is enough to control the activation threshold.
A disadvantage with a simple step function, which is given by the threshold in Equa-

tion (3.4), is that the output changes from 0 to 1 very quickly. Furthermore, the step
function cannot be continuously differentiated. To overcome this problem, other activa-
tion functions are often used. One is the sigmoid function, defined as

f(x) = 1
1 + e−x . (3.5)

Another common activation function is the hyperbolic tangent function

f(x) = ex − e−x
ex + e−x . (3.6)

The sigmoid function and the hyperbolic tangent function have very similar shape and
are re-scaled versions of each other, the sigmoid having an output range between 0 and
1 and the tanh having an output range between -1 and 1, see Figure 3.2.
There is also another activation function that is common, namely the rectified linear

function [12]. Compared to the sigmoid and the hyperbolic tangent, the rectified linear
function has no upper bound and it is not continuously differentiable. The function is
given by

f(x) = max(0, x). (3.7)
A plot of the different activation functions can be seen in Figure 3.2. Usually, the

activation function is global and thus the same in all parts of the network [13]. If one
of the later activation functions is used instead of the threshold the activation will be
aj = f(pj). In this thesis the rectified linear function has been used.

9

-4 -3 -2 -1 0 1 2 3 4
-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

threshold

sigmoid

tanh

rectfied linear

Figure 3.2: Four different activation functions, one step function cre-
ated by simple threshold (Equation (3.4)), the sigmoid function (Equa-
tion (3.5)), the hyperbolic tangent function (Equation (3.6)) and the
rectified linear function (Equation (3.7)).

It might seem a bit confusing that the node inputs in Equation (3.3) are denoted with
a:s, just as the activations are, e.g. in Equation (3.4). The reason for this is of course
that the activations of one layer are the inputs to the next layer and thus the notation
that at first sight might seem ambiguous actually makes sense.
The signal passes through all nodes in a similar way as described above — with the

activation of one layer passed to the next, to yield first the propagation and then the
activation of that layer and so forth — until the total network output is retrieved. This
type of network, which lets a signal pass through a whole network, one layer at a time,
is called a feedforward neural network [12]. One thing that could be worth noting is that
a network can have any number of nodes in the input and output layer, not necessarily
three inputs and one output, as in Figure 3.1.

3.1 Training the Network
3.1.1 Supervised or Unsupervised Training
Once a feedforward network is initialized, it can be trained to do correct predictions.
The training can be either unsupervised or supervised. In the unsupervised case the
network should be provided input training data (x1, x2, ..., xn). These inputs xi can be
of different dimensions. In the network in Figure 3.1, xi ∈ R3, since node 1, 2 and 3 are
parts of the input. Thus, in general xi ∈ Rm where m is the number of nodes in the
input layer. Though, there will later be cases where the input nodes are arranged as an
image.

10

After the network has been provided the input it will cluster the training data in a
given number of groups and hopingly catch interesting structures. After running the
network on enough training data, it will be good at the clustering and then, if a new
input is added for testing, it will hopefully be correctly classified.
In the case of supervised learning the network should be provided pairs of input data

and desired output, {(x1, y1), (x2, y2), ..., (xn, yn)}. The desired output yi constitutes
the classification ground truth for the training data, that is the label that xi should be
assigned to be correctly classified. The label yi is also referred to as the key. The inputs
xi have the same dimensions as in the unsupervised case, while yi ∈ Rγ, with γ being
the number of possible classes. The label yi contains a 1 at the position corresponding
to the correct class, and 0:s at all other positions. For example, yi = [0 1 0 0]T indicates
that xi belongs to class number two.
The training is then performed by running the training data through the network and

comparing the output with the provided ground truth, to see how good the network is.
The network is then adjusted to make the error decrease — which there will be more
about in the next section. As in the case of unsupervised training, the test data does
not need any ground truth.
There is also a third kind of training which is a combination of supervised and un-

supervised training, where some of the input data has a ground truth. The method is
called semi-supervised training. More information about that can be found in [14].
In this project, only the supervised learning has been applied since the used data

has provided labels.When training is discussed further on this will thus refer to the
supervised training.

3.1.2 The Cost Function
As mentioned above, the supervised training is such that it learns by comparing the
network output to the ground truth and then adjusting the weights and biases in the
network according to that. Thus, the first thing that is needed is a function that takes
care of the comparison, a loss function l(y, ŷ) which expresses the penalty of predicting
ŷ instead of desired output y [15]. One simple example of such a loss function is

l(y, ŷ) = ∣∣y(xi) − ŷ(xi)∣∣ =
γ

∑
k=1

∣∣yk(xi) − ak(xi)∣∣, (3.8)

where y is the key and yk the component of that for output neuron k. Furthermore ŷ is,
as mentioned, the predicted output, which is made up of the activations ak of the output
layer — so the activations from neurons k. The xi symbolizes that it is the output given
by running input xi through the network.
Furthermore, using this loss function a function that takes care of the comparison and

penalization for the whole network can be composed. This function will be called the
cost function C(w, b) — but is also known as the error function or the objective function.
The terms will be used interchangeably. The cost function depends on the weights in
the network, w, and the biases, b. Of course, the function will also contain the true and

11

predicted outputs, but these are considered constant, since it is the weights and biases
that are supposed to be adjusted. The cost function looks as follows

C(w, b) = 1
n

n

∑
i=1
l(y(xi), ŷ(xi)). (3.9)

Here, n is the number of training inputs. Since the loss function contains all output
neurons, the cost function is a summation over all outputs of all inputs. It is thus
adjusted to work for different kinds of networks. The factor in front of the sum can
differ but for the minimization that will not matter.
It is also common to add a term to the cost function to penalize large weights and

this can be done independently of how the original cost function looks. This is called
weight decay, or L2 regularization [16]. The regularization term consists of the sum
of the squared weights, scaled by a regularization parameter λ. With that term, the
regularized cost function C̃ would look like

C̃(w, b) = λ

2n∑w2 +C(w, b), (3.10)

where the summation is over all weights in the network. The exact loss function that
has been used within this thesis will be presented later.

3.1.3 Gradient Descent Method
Once the cost is computed the actual training step can be performed. This is done using
the so called backpropagation method, which is based on the gradient descent method.
When a function has many variables, explicit calculations of the global minimum can
be troublesome. That is why the gradient descent method is used in the case of neural
networks. The cost function C̃ could be seen as a landscape, where the aim is to find
the deepest valley. To do this, several small steps are taken. Every step is taken such
that it goes in a down slope direction. Sooner or later, the valley will be reached.
In mathematical terms, this is approached by taking steps in the direction of the

negative gradient. Once the value of the function to be minimized is computed, the
gradient ∇C̃(w, b) in the current point (w, b) is computed. The gradient tells in which
direction the function changes the most and therefore, a step is taken in the negative
gradient direction. This step is taken through a change of the variables, so all the
weights and biases of all layers in the network are adjusted. The size of the step taken
is controlled by a learning rate variable η. The variables are updated according to [15]

wt+1 = wt − η∂C̃
∂w

= wt − η∂C
∂w

− ηλ
n
, (3.11)

bt+1 = bt − η∂C̃
∂b

= bt − η∂C
∂b
. (3.12)

Equations (3.11) and (3.12) show the simplest version of the gradient descent algo-
rithm. Though, there are more things that can be good to take into account, in addition

12

to the direction of the steepest descent. Therefore, there will be an additional term to
Equations (3.11) and (3.12), called a momentum term [15]. The momentum works as a
“memory”, and by using it the update of the parameters will be a combination of the
current gradient and the previous update. The momentum term is present to reduce
oscillations around the minimum if the valley is particularly steep and narrow. With the
momentum term, the update at each time step is done in two steps: first by updating the
“changing terms” ∆w and ∆b — which earlier was given by the scaled gradient — and
then updating the parameters. The momentum variable µ controls how much memory
the network should have. The update of the weights will then work as follows [15]

wt+1 = wt −∆wt+1, ∆wt+1 = µ∆wt + η ∂C̃
∂wt

. (3.13)

The update of the biases will be done in a similar matter. Note that the cost function
C̃ refers to Equation (3.10), which includes the regularization term.

Stochastic Gradient Descent Method

There is a version of the gradient descent method which is called stochastic gradient
descent [16]. In the regular method which is discussed above the update is done based
on the cost and the gradient over the whole training set. In the stochastic version only
a single, or a minibatch of size τ of the training inputs is used to compute the gradient
of the parameters. This will result in an approximation of the actual gradient, but is
much faster to compute. By taking a new, random batch out of the rest of the inputs
in each time step the whole training set is used. All inputs have to be used a first time,
before any is used a second time. When all inputs have been included in the minibatch
one time, an epoch is said to have passed. Due to this, the parameters are still adapted
to all different examples but the time requirement is reduced.

3.1.4 The Backpropagation Algorithm
Computing the updates of the parameters might seem simple at first glance, but in fact,
the partial derivatives ∂C̃/∂w and ∂C̃/∂b take a lot of effort to compute. Moreover, this
is supposed to be done for each weight and bias in the network, which can be a great
many in a large network. The backpropagation algorithm diminishes the computational
effort needed for these calculation.
Before explaining the actual algorithm some new indexations will be introduced. Re-

call the network from Figure 3.1. Instead of just numbering all the nodes from the first
to the last, first the layers will be numbered and then the nodes in each layer. Each of
the layers 1 to 4 will for example contain a node number 1, see Figure 3.3. The different
nodes numbered with a “1” are thus not the same. Furthermore, the weight wlij goes to
node number j in layer l from node number i in layer l − 1. In the same manner, the
bias added to node number j in layer l is denoted blj and the activation of that node is

13

denoted alj. With these new notations, a certain activation will be computed as

alj = f (blj +∑
i

wlija
l−1
i) , (3.14)

where f(x) can be one of the mentioned activation functions, either the sigmoid in
Equation (3.5), the hyperbolic tangent in Equation (3.6) or the rectified linear function
in Equation (3.7). The sum in the activation equation above is over all the nodes i in
layer l − 1.
Using these new notations, the weights, biases and activations can easily be arranged

in matrices. For each layer l there will be a weight matrix wl whose entry on row i,
column j will be wlij. That means that column j in the weight matrix wl will contain
all the weights used in the computation of the activation for node number j in layer l.
Furthermore, bl and al will be vectors for the biases and activations of layer l and the
number at place i in the vectors correspond to node number i in the layer. By now,
Equation (3.14) can be rewritten in matrix form such that the activations for a whole
layer are computed at once

al = f (bl + (wl)Tal−1) . (3.15)

The function f(x) is the same as before, here working elementwise on the matrix it is
applied to. Just in the same way as before the activation is achieved by applying the
activation function to the propagation, see Equation (3.3). The propagations for the
nodes in layer l can then also be expressed using matrix notations, such that

pl = bl + (wl)Tal−1, (3.16)

where pl is the propagation matrix. Using this notation would thus give al = f(pl), just
as before.
Now it is time to start with the actual backpropagation. First of all, an investigation

will be made concerning what effect a small change at a certain node has. Say that
the propagation of node j in layer l is changed by a small number ∆plj such that the
output of that node is changed from f(plj) to f(plj + ∆plj). This small change would
then propagate through the later layers of the network and result in a change of the cost
function of the size ∂C/∂plj ⋅∆plj. If this change ∆plj is inserted in the network it can be
used to control the resulting cost. With this as a motivation, the intermediate quantity

δlj =
∂C̃

∂plj
(3.17)

is introduced [16]. The error δlj is a measure of how much the j:th node in layer l
contributes to the total cost at the end of the network [16]. In the same manner as
before, δl is a vector containing all the errors of layer l.
The backpropagation algorithm can be built up from four essential equations. The full

proofs will not be given here, but can be found in [16]. The equations will be explained
briefly.

14

1 1
1

2 2
2 1

3 3
3

4 4

layer 1 layer 2 layer 3 layer 4

Input 1

Input 2

Input 3

w2
11

w3
11

Output

Figure 3.3: The same network as in Figure 3.1, but with a different
indexation. The network contains four layers of which two are hidden.
Node number 1 in layer 1 is not the same as node number 1 in layer 2
and so forth. Also, notice the change of weight notation.

The Error in the Output Layer

The error for a certain node in a certain layer is given from Equation (3.17). For the
j:th node in the last layer in the network – layer L – the error will be

δLj = ∂C̃

∂pLj
= ∂C̃

∂aLj
f ′(pLj), (3.18)

where the last step is given by the the chain rule, since aLj = f(pLj). The equation above is
thus a measure of how much the cost function changes as a function of the propagation
of neuron j in the last layer. What the derivatives will be depends on how the cost
function looks and which activation function that is used.
As before, it is desirable to have the equations in matrix form. The matrix form of

Equation (3.18) is
δL = ∇aC̃ ⊙ f ′(pL), (3.19)

with ∇aC̃ being a vector whose components are given by ∂C̃/∂aLj and f ′(pL) a vector
containing f ′(pLj) respectively. The sign ⊙ denotes the Hadamard product (elementwise
multiplication).

The Error in Any Layer, Depending on the Error in the Next Layer

The title of the algorithm – the backpropagation algorithm – indicates that the propaga-
tion should go backwards and thus an equation for the errors in a certain layer expressed
in terms of the errors in the next layer is desired. The expression for this is

δl = (wl+1δl+1)⊙ f ′(pl). (3.20)

15

It can be worth noting that Equation (3.16) for the propagation in matrix form contains
the transpose of the weight matrix, while the non-transposed matrix is used in the
equation above. Since Equation (3.20) is a way of propagating the error backwards in
the network and Equation (3.19) defines the error in the last layer, the error in any layer
in the network can be computed.

The Derivative of the Cost with Respect to the Biases

To actually do some changes of the cost function a measure of how much the parameters
of the network affects the cost is needed. Therefore, the derivative of the cost function
with respect to any bias in the network is derived to be

∂C̃

∂blj
= ∂C̃

∂alj

∂alj
∂plj

∂plj
∂blj

= ∂C̃

∂alj
f ′(plj) ⋅ 1 = δlj. (3.21)

The Derivative of the Cost with Respect to the Weights

The last of the four equations will be the derivative of the cost function with respect to
any weight in the network

∂C̃

∂wlij
= ∂C̃

∂alj

∂alj
∂plj

∂plj
∂wlij

= ∂C̃

∂alj
f ′(plj)al−1

i = al−1
i δlj. (3.22)

It can be worth taking notice of the indices. To achieve the derivative, the activation of
node i from layer l − 1 is multiplied by the error of node j in layer l.
To summarize, the equations needed for the backpropagation algorithm are restated

in the box below.

The equations needed for
backpropagation:
δL = ∇aC̃ ⊙ f ′(pL)
δl = (wl+1δl+1)⊙ f ′(pl)
∂C̃

∂blj
= δlj

∂C̃

∂wlij
= al−1

i δlj

The Actual Algorithm

Now, all pieces that are needed to describe the actual algorithm are assembled. They
only need to be put together. From the beginning to the end, one iteration of the
backpropagation algorithm works as follows:

16

1. Input one or several inputs x to the network. Set the activation a1 = x for the first
layer. Do this separately for the different inputs.

2. For each layer l = 2,3, ..., L compute the propagation pl and the activation al —
again separately for each input.

3. Compute the total network cost C̃(w, b). Here, all different inputs will be taken
into account.

4. Compute the output error δL.

5. For each layer l = L − 1, L − 2, ...,2 compute the error δl.

6. The gradient of the cost function is given by all different ∂C̃/∂blj and ∂C̃/∂wlij.
7. The gradient descent method can now be used to update the parameters of the

network.

3.2 Convolutional Neural Networks
Convolutional neural networks (CNN:s) are a special kind of neural networks which are
good to use when the input consists of data with spatial dependence, such as an image.
The idea behind them is to put the computational effort where it gives the most profit.
An image is made up of several thousands of pixels which for fully connected layers

means a large amount of weights. As an example, think of a 10 megapixel image. If the
first hidden layer would contain as many nodes (each image pixel is a node) as the input
layer that would mean 107 ⋅ 107 = 1014 weights — and that is only for the first step.
Though, in an image the dependence is usually between nearby pixels and it is also

that kind of information that is interesting. Actually, the human visual system works in
a similar way [17]. Therefore, in a neural network for images, a certain node or pixel in
layer i is set to be dependent of the pixels on that certain position, or nearby positions in
the previous layer i−1. The number of pixels that are used is maybe 9, 16 or 25, instead
of 10,000,000. That reduces the amount of computations a lot. That would mean that
in the propagation function in Equation 3.1, most of the weights — except for a few —
would be zero and the sum would only contain a low number of terms.
It has already been indicated that the shape of the image and the pixel orientations

have importance and therefore the data is usually kept in the shape of the image, rather
than stacked as a long column, as was the case in Figure 3.3. The data in the network
is then referred to as feature maps, so one step in the network contains an input feature
map, weights and biases and an output feature map. Since the nodes are arranged, so can
the weights be, to easily touch upon the right pixels. That means that the propagation
function (Equation 3.1) for a certain pixel in a certain layer can be computed by applying
a kernel to the corresponding pixel in the previous layer.
Another thing that concerns networks of images is that the same features are usually

interesting independently of the position in the image. If an edge is to be detected in

17

the upper left corner, it is often desired to find an edge in the middle of the image as
well. Futhermore, it is desirable that the network is somewhat robust to translations.
If the network should detect a certain item in the image, the network should be robust
enough to find that item even if it is moved a bit in the image. Therefore, the same
operations should be applied all over the input feature map.
There are some different kinds of operations that can be performed, or rather some

different types of layers, in a CNN. Some of those will now be presented.

3.2.1 Convolutional Layer

3 3

4 4

2 2

1 1 1 1

2 2

3 3

4 4

9

6

3 1 2

4 5

7 8 3

2

1 1 1

2 2

3 3

• =
1·1+ 1·2+ 1·3+
2·4+ 2·5+ 2·6+
3·7+ 3·8+ 3·9=108

108

1

4

7 9 8

6 5

3 2

Input feature
map

Output feature
map

Kernel

= ()

108 108

153 153

Figure 3.4: A convolutional step in a neural network, where the data
is displayed as feature maps and the weights as a kernel. The lower
part of the image shows how one pixel in the output feature map is
computed using parts of the input feature map and the double flipped
kernel. The multiplication sign in this figure denotes the Hadamard
product (element wise multiplication).

The application of a kernel on the input feature map that was mentioned before is
what is done in a convolutional layer. The same kernel is used everywhere in the input
and this corresponds to 2D convolution of the input feature map with a kernel, see
Figure 3.4. When 2D convolution is performed, the kernel to be applied is first flipped
in the up-down-direction and then in the left-right-direction (or vice versa). Then, the
kernel is “put on” the correct part of the feature map and element wise multiplication is
performed. The final output value is then given my a summation of the achieved values.
The network step that is displayed in Figure 3.4 can also be seen in Figure 3.5. There

18

it is displayed in the same way as the previous networks, with the input and output
being column stacked.

1

2

3

4

1

2 108

3

4 153

1 108
2

3 153

4

1

2

3

4

1

2

3

4

1

2 108

3

4 153

1 108
2

3 153

4

1

2

3

4

1
4
7

2
5
8

3
6
9

Figure 3.5: The image convolution in Figure 3.4 displayed as a regu-
lar network. To the left is the whole network, with the arrow colors
corresponding to the colors of the squares in Figure 3.4 but with the
weights left out. To the right is only the computations of one node in
the output displayed — corresponding to the bottom part of Figure
3.4. Here the weights are written above the arrows. Note that the
nodes in the two layers are not fully connected — that is that not all
nodes in the first layer are connected to all nodes in the second.

Figure 3.4 only shows convolution with a single kernel, but in a convolutional step of a
network, several kernels can be applied at once, each yielding one channel in the output
feature map. To begin with, if the input feature map is an image of size m1 × n1 and it
contains d1 channels, the input will be of size m1×n1×d1. In an RGB image for example,
d1 = 3 and in a gray scale image d1 = 1. Furthermore, each kernel that is applied to this
input feature map has to have the size m2 × n2 × d1, where m2 and n2 can be chosen

19

independently of the size of the input, but the number of channels have to correspond.
Then, having d2 different kernels, results in a total four-dimensional collection of kernels
of size m2×n2×d1×d2. Finally, as mentioned, the convolution of each m2×n2×d1 kernel
would result in one channel in the output feature map, yielding an output feature map
with d2 channels.
Concerning the size of the output feature map there are two different ways to perform

2D convolution. Either, the input feature map can be padded with zeroes such that
the kernel can be applied to every pixel in the map (that is, the middle pixel of the
kernel can be “laid on” every pixel of the input). That would result in an output size of
m1 ×n1 × d2. The other option is to not use zero padding and then the kernel cannot be
applied to the outermost pixels of the input. Depending on the size of the kernel, the
output size would then be (m1 −m2 + 1) × (n1 − n2 + 1) × d2. The convolution described
in Figure 3.4 and 3.5 is done without zero padding and that is what will be used when
referring to convolution in this report.
Often in neural network context the kernels are referred to as filters and the collection

of all filters in a certain layer is called a filter bank.

3.2.2 Max-Pooling Layer
The max-pooling layer is a non-linear subsampling layer which is applied separately to
each channel of the input. Once again the idea that the network should be robust to
small translations is applied. To perform the max-pooling a window size α and a stride
length β are required. A window of α × α nodes from the input feature map yields one
node in the output feature map. This node will be the maximum of the numbers found
inside the window. The stride length β decides how close the different windows should
be. If β = α, then the whole input feature map will be divided into α × α sized parts,
resulting in an output feature map which in both dimensions has decreased in size by a
factor β. It is common to use α = β = 2. An example of max-pooling with window size
two and stride length one and two can be seen in Figure 3.6. In the case with stride
length two, the windows are non-overlapping and thus each node in the output feature
map is created by different nodes from the input feature map. Since the operator is
applied separately to each channel, the number of channels of the output feature map
will be equal to the number of channels of the input feature map.
The max-pooling layer also contributes with some spatial invariance to the network,

such that it does not matter exactly where a feature is found in the image, but more
that it is present.

3.2.3 ReLU Layer
The ReLU layer is performed by taking each pixel of the input feature map as input to
the ReLU function in Equation (3.7) to get the output feature map. Thus, the size of
the output from the ReLU layer is exactly the same as the size of the input.

20

9

2 6

0 3

1 5

9 4 1 5

2 6

3 7

8 4

9

7 7

6

Input feature
map

Output feature
map

2 6

0 3

1 5

9 4 1 5

2 6

3 7

8 4

8

6

6

9

Input feature
map

Stride 1

Stride 2

6

8 8 6

Output feature
map

9

Figure 3.6: A max-pooling step of a CNN. The upper part of the image
shows max-pooling with window size two and stride length one and the
lower part shows max-pooling with window size two and stride length
two. In the lower example the windows are non-overlapping.

21

3.2.4 Softmax Loss Layer
Finally, the network needs a layer than can perform classification and compute the cost
— from Equation (3.10) — for the network. By studying Equations (3.9) and (3.10)
it is clear that these take the same form no matter which loss function that is used.
The example given in Equation (3.8) is a simple loss function which is commonly used.
Though, for the networks that have been implemented in this thesis, another loss function
has been used, namely the softmax loss function. The softmax loss is a combination of
the softmax function and the logarithmic loss function [15].

The Softmax Function

The softmax function is a normalizing function

yijk′ = exijk′

∑dk=1 exijk
. (3.23)

Here, the first two indices, i and j, refer to the pixel and the third index, k or k′, to the
layer or channel. To explain Equation (3.23) a bit further, the exponential of each pixel
in a layer k′ is normed by the sum of the exponentials of that pixel value in all d layers.
In the convolutional neural network this will be performed for all pixels in all layers.
The result will be that all values will be between 0 and 1. Furthermore, for a certain
pixel a summation over all layers would yield one, as should be the case after applying
a normalizing function.

The Logarithmic Loss Function

The logarithmic loss function is what actually replaces the loss function in Equation
(3.8). The input to the function is supposed to be between 0 and 1 and in the softmax loss
layer the logarithmic loss function is applied after the softmax function. The logarithmic
loss is defined as

yij = −log(xijcij
), (3.24)

with cij being the index of the ground truth class at pixel (i, j). This means that if the
network predicts that pixel to be of the correct class, the value xijcij

will be close to
one and the loss yij will be small. On the other hand, if the pixel is wrongly classified,
xijcij

will contain a low value (low probability of being of the correct class cij) and the
loss will be large. In the case of the softmax loss layer, the input to the logarithmic loss
function will be the output of the softmax function.
In the earlier loss function — Equation (3.8) — a summation was performed over all

output neurons. That would correspond to adding a double sum in front of Equation
(3.24), summing over all i:s and all j:s. This is done if different pixels in or different
parts of an input image belong different classes. Though, convolutional neural networks
are often used to classify a whole image. In that case no summation is needed, since the
classification output will be of size 1 × 1 × γ, where γ is the number of possible classes.
Of course, for this to match up, the network needs to be adjusted such that the input
to the classifying softmax loss layer is of that size as well.

22

3.3 Network Topology
Within this thesis, two different network topologies have been implemented — a simple
neural network and a network with a directed acyclic graph structure.

3.3.1 Simple Neural Network
The simple neural network is — just as it sounds — a simple kind of network which
represents networks with a linear topology. This means that the network is a straight
chain of layers, where the output from one layer is the input to the next and so forth.
Compared to the directed acyclig graph network explained below, the simple network is
built as a graph. [18]

3.3.2 Directed Acyclic Graph Network
The directed acyclic graph (DAG) network can represent more complex networks than
a simple network can. The structure is object oriented, where layers and variables
are viewed as different objects. Layers are connected to variables, and variables are
connected to layers. In addition to one or several variables, each layer can also have
parameters as inputs. To reconnect to previous explanations, recall Equation (3.15).
The computation of the activation is performed “in” the layer, which is defined by the
function f(x). The value al−1 is the input variable while the resulting value al will be
the output variable. The bias bl and weights wl are examples of parameters.
The main point of the DAG network is that the structure does not have to consist

of a straight chain of layers. Thus, one layer can have two different input parameters,
which are outputs from two different previous layers. Because of this, it is a good idea to
implement the network as a graph. Futhermore, the acyclic property makes the network
easier to work with. If the network would have cyclic properties, this would yield much
more complicated computations, e.g. when the parameters are to be updated. Still, the
DAG structure is more complicated, but also more variable, than the simple structure
explained above. [18]

23

4 Deep Neural Networks in Practice

4.1 Software
All the implementations done within this thesis are performed in Matlab. For the
implementations of convolutional neural networks the MatConvNet toolbox has been
widely used. This is a toolbox created by the Oxford Visual Geometry Group and it
can be found in [18]. It contains many of the functions that can be desirable when
building and working with neural networks. There are different wrappers to work with
either simple neural network or DAG neural network and all the layers that have been
described here, as well as the actual training process, are already implemented. Thus,
only smaller changes have been made to suit the specific problem.
The tests have been performed on a computer with an Intel Core i5-6400 processor

with 8GB RAM memory-

4.2 The Data
To train the network to perform Gleason classification, digital microscopic images of
prostate biopsies have been used. All samples have been stained with haematoxylin-
eosin (H&E) before the images were taken. The biopsy samples come from two different
datasets, one which was supplied by Beaumont Hospital, Dublin, Ireland and one which
was provided by PathXL, Belfast [6]. The images were previously used in [6].
Furthermore, the images are cut-outs of these biopsy samples, such that each image

only contains one class — that is benign, Gleason 3, Gleason 4 or Gleason 5 tissue. For
this reason, the images consist of various numbers of pixels. In some cases a small part
of the image — like a corner — does not contain any sample. Even if all images are
stained in the same way the colors differ somewhat because of variations such as light,
the staining being performed by different people etc. [6]. Some examples of images can
be seen in Figure 4.1. These can also be compared with the Gleason grading system in
Figure 2.2. In total the original two image sets contain 213 images, 52 each of benign,
Gleason 3 and Gleason 4 and 57 of Gleason 5.

4.2.1 Ethical Aspects
The images used for this project are real samples of prostate biopsies. Thus, they come
from real people. There is no way of identifying from whom the samples are taken and
this project only has medical aims. No matter, there are ethical aspects as soon as

24

Benign Gleason 3

Gleason 4 Gleason 5

Figure 4.1: Examples of the images that were used to train the net-
works. The figure shows one image of each class. These can also be
compared to the Gleason scale given in Figure 2.2. Notice how the
glandular structure is gradually lost with increasing Gleason grade.

human beings are involved. Because of this the project is approved by the Regional
Ethics committee at Lund University with the ethical permit number 2013/400 [19].

4.2.2 The Keys
One main idea with this thesis was to see whether it could have any impact to use a
“key” in the middle of the network, consisting of a tissue classification. These keys have
been created by hand using Matlab and the computer mouse. There are only keys for the
benign images. The key for each image consists of a number of masks. The masks are
created to contain certain parts of the prostate, namely four different classes or parts.
The first part is called stroma and simply consists of that. The second class is called

glandWallCells but is actually not all of the cells, but only the nuclei of the cells making
up the gland wall. In the images these are dark purple round spots which are collected
around the glands, see Figure 2.1. The third part, glandWallPurple constitutes of the
rest of the cells in the gland wall, where there are no nuclei. This part is inside the
glandWallCells and outside the glandular lumen and has a lighter color than the nuclei.
The fourth and last part is called whiteParts. This is a combination of the glandular
lumens and the parts of the image that does not contain any sample. Since the back-
ground (behind the samples) is white, the lumen and the background are considered to
be very similar — actually too similar to be different classes when the surroundings are
not included. An example of a segmentation image key can be seen in Figure 4.2.

25

Original image stroma glandWallCells

glandWallPurple whiteParts

Figure 4.2: One example of the keys used in this project. To the left is
the original image, while the segmentation keys can be seen to the right.
White indicates presence of the certain class, while black indicates
absence. The four classes are stroma, glandWallCells, glandWallPurple
and whiteParts.

There are 52 benign images in the dataset, but keys have only been created for 20 of
these. It should also be mentioned that the key masks are created by an engineering
student with quite low knowledge of the prostate anatomy and not by a physician.

4.3 How to Build a Network
Even if the base for the implemented networks is taken from MatConvNet the architec-
ture of the network is variable. Some different network architectures have been tried,
but most were created on gut feeling and at the end a fairly methodical architecture,
presented below, was chosen. The reasoning below only concerns simple, straight net-
works.

4.3.1 Connecting the Layers
The networks have a base of layer triplets. Each triplet is made up from one convolutional
layer, one ReLU layer and one max-pooling layer. This means that each such part of the
networks consists of a linear operation, a non-linear operation and some downsampling.
This is a common way of building a network, even if the choice of operations may vary.
To begin with, if there are two convolutional layers in a row, these two linear operations
might as well be replaced by only one, since the convolution is a linear operation. After
the convolutional layer an activation function — here the ReLU function — is applied.

26

This can be compared to biological neurons, where the biological “activation function”
will determine whether that neuron should fire or not [2]. Then finally, the downsampling
is applied. This is done to decrease the computational efforts, the size of the feature
map and prepare for classification [12].

4.3.2 Kernel Sizes and the Number of Filters
For the max-pooling a window size of 2×2 and a stride 2 has been used throughout this
thesis. This means that except for the small decrease of feature map size that occurs
after the convolutional layers, the feature map size will be halved — from m ×m to
m/2 ×m/2, so the number of pixels will be decreased to a quarter — with each layer
triplet. The number of filters — and thus output channels from the convolutional layers
— have been doubled in each triplet. It is common that the number of filers are increased
throughout the network. Since the feature map at the same time size is decreased with
each triplet, the computational effort will not be increased due to this. The number of
filters in the beginning of the networks are set to be 20, which would give the filter bank
at the first convolutional layer a size 5× 5× 3× 20 and at the second convolutional layer
a size 5 × 5 × 20 × 40. This is of course if the kernel size is 5 × 5, which has mainly been
the case.
In the beginning, when setting up the networks, the weights have been initialized as

random normally distributed while the biases have been initialized to zero. The mean
of the weights has been kept to zero and the standard deviation f has been varied. All
the convolutional layers have been applied without zero padding.

4.3.3 The End of the Network
Depending on the size of the network input image a number of triplets have been put
together until the output feature map is of size 1×1×d, where d is the number of layers,
in this case d = 20 ⋅ 2χ−1, with χ being the number of triplets. Next, one fully connected
layer was added, in which the layers are doubled. That the layer is fully connected
means that there are connections from all nodes in the first layer, to all nodes in the
second. This layer was then, as was explained earlier, followed by a ReLU layer. Then,
no pooling layer is needed, since each layer only consists of a single pixel. It is common
that convolutional neural networks are created both with and without these layers [12].
After this, to get one output per possible image class, one last — also fully connected
— convolutional layer was added to the network. That filter bank is of size 1× 1× d× γ,
with γ being the number of possible classes. That is, each filter will have the size 1×1×d
and there are γ different filters in the bank. Finally the softmax loss layer was added to
finish the network.
The softmax loss layer gives a total network cost such that the network can be trained.

If the network is already trained and should be used solely for classification, the soft-
max loss layer can be substituted by a layer which applies only the softmax operation.
That then gives an output with class probabilities and the input would be classified as
belonging to the class corresponding to the highest number in the output.

27

4.4 Choice of Parameters
When a network is set up and trained, there are some hyper-parameters that needs to be
chosen. Examples of these are the learning rate η, the momentum variable µ, the batch
size for the stochastic gradient descent and the number of epochs to train the network.
Within this thesis the focus has mainly been to explore neural networks and implement
an architecture that has not earlier been applied to the images in the project, rather
than systematic optimization of these hyper-parameters. Thus, the hyper-parameters
have been tuned by hand, by trying some out and then visually comparing the results —
more specifically the error rates for the classification — with the results for some other
hyper-parameter values. Most of the first try values for this have been inspired by the
values used in the MatConvNet CNN practical tutorial [15] and after that the values
have been adjusted as described.

4.4.1 Adaptive Learning Rate
Instead of choosing a single value for the learning rate η, another approach can be
taken, namely an adaptive learning rate. That means that the learning rate is adjusted
through the network. Usually this means that η is decreased for later epochs, such that
the learning rate is lower and the network can be more finely adjusted when the cost
function has decreased moderately. Though, in which way and what it depends on when
the learning rate is adjusted can differ. Within this thesis, the adaptive learning rate
has been implemented as a decreasing step function.

4.4.2 Number of Training Epochs
The network training should be run until it is saturated. This is considered to be when
the objective function for the training data has stopped decreasing. Usually it starts to
oscillate somewhat at this point, because the network tries to adjust for improvements,
but no proper ones are achieved. When this occurs, the objective for the validation set
has sometimes already increased a bit from its minimum, while the errors have stabilized.
The number of epochs is dependent on the choice of the other hyper-parameters, e.g. if
the learning rate is decreased, the number of training epochs will probably have to be
increased.

4.5 Reduce Overfitting
Overtraining — or overfitting — is when the network is trained to perform very well
on the training data but is adapted just to that data and is thus not general enough.
Then the network will perform badly on other data which is not part of the training set.
Overfitting can be a problem in artificial neural networks and so has also been the case
in this project. There are some things that can be done to reduce overfitting.

28

4.5.1 Increased Amount of Data
The more data that is used, the smaller is the risk of reaching overfitting. When it
comes to the prostate images, there is quite a small amount of images and these should
be used both for training and validation. Though, one way to decrease overfitting would
be to collect more data.
If it is hard or not possible to collect new images the possessed images can be used to

create new, artifical data. This can be done in several ways. One way to do so is to add
noise to the original image, different noise in each training epoch. Then the image will
not look the same throughout the training and thus the risk of overfitting is decreased.
This method has been implemented in this thesis.
Another way to add artificial data is to mirror and rotate the images. For simplicity,

assume that an image is only rotated 90, 180 and 270 degrees to avoid the problem of
corners sticking out. Then the image is also mirrored, both in the left-right and the
up-down direction. That would give six images to train on instead of one. In the same
manner, the images could be skewed, stretched and so forth. This would yield a larger
variation och more images. In the classification problem, the rotation and mirroring has
been used.

4.5.2 Dropout
Dropout is another method used to prevent overtraining. When using dropout, some
nodes of the hidden layers are “shut off” during training. The input and output nodes
are left untouched. Then, the network is run, both forward and backward, with the
nodes that are left, while the shut off nodes are not allowed to take part in the training.
After adjusting the used weights a new set of nodes can be chosen and a new training
step performed, and so forth. Thus, all nodes are likely to take part in the training, but
not all the time. The proportion of hidden nodes ϕ that are shut off can be chosen and
depending on that the trained weights need to be adjusted, since more information will
come when all nodes are on, than when only parts of them are [16].
When the network has been trained all nodes and weights are used for classification,

so it is only for the training part the dropout is used.
The dropout as it is described above has been applied in the implementations. Things

that can be varied are the proportion of shut off nodes ϕ but also the number of layers
that dropout is applied to. Though, dropout in generally applied to fully connected
layers. This means that in the networks used here there have only been a few places to
add dropout, namely at the last convolutinal layers. Hence, dropout has been applied
at these places.

29

5 Implementations
To get a feeling for the architecture of the classifying DAG network, a brief overview
is given in Figure 5.1. In the figure, each block consists of one or several network
layers — and in most cases one or more layer triplets. The input is the image to be
classified and output1 is the classification of that image — that is output1 will tell
whether the image is either benign, Gleason 3, Gleason 4 or Gleason 5. The second
output, output2, is the segmentation of the tissue parts — stroma, glandWallCells,
glandWallPurple or whiteParts. To perform training of the network, a softmax loss
layer is applied to the true class label together with output1. In a similar way, a middle
key image with classifications, similar to the one in Figure 4.2, is added to output2 and
then the backpropagation algorithm can be used. The term middle key simply refers to
the fact that this label is placed in the “middle” of the network (remember that label
and key is the same thing).

input block1 block2 block3 block4

block5

output1

output2

Figure 5.1: A brief overview of the architecture of the classifying net-
work. The network is built up as a straight, simple network, with one
outgoing branch. Concerning the variables, input is the image to be
classified, output1 is the predicted class or Gleason grade of the image
and output2 is the segmentation of the different tissue parts. Each
block can contain one or several network layers.

As was explained in Chapter 2 the glandular structures are lost when cancer develops.
The glands become smaller and the lumens more narrow. The idea with the middle key
was that if the network already by block2 (see Figure 3.1) could have an idea of where
in the image and in what amounts the different tissue parts are present that could help
the final tissue classification.

30

5.1 The Segmentation Problem
As has been mentioned several times, the segmentation network is a straight network
with simple topology. It could be seen as the part of the network in Figure 5.1 consisting
of the input, block1, block2, block5 and output2.

Block1 Block2 Block5
Input
layer

Output
layer

Figure 5.2: The segmentation network. The layer stacks and column
stacks are the different feature maps. Between each layer stack there is
a layer triplet consisting of a convolutional layer, a ReLU layer and a
max-pooling layer. Block5 consist of two fully connected convolutional
layers with attached ReLU layers. There, dropout is applied as well.

A more specific architecture of the network can be seen in Figure 5.2. The network
begins with four layer triplets, each consisting of a convolutional layer, a ReLU layer
and a max-pooling layer. All of the convolutional layers have kernel size 5 × 5 and they
have 20, 40, 80 and 160 different filters respectively. The max-pooling layers have both
kernel size and stride 2.
These triplets are followed by two fully connected convolutional layers, each with a

consecutive ReLU layer and with dropout applied. The first convolutional layer has a
filter bank of size 1 × 1 × 160 × 320 — that is the number of layers are doubled, just like
before — while the second one has a filter bank of size 1 × 1 × 320 × 4 to get the correct
number of inputs, one per possible output class. The applied dropout has a dropout rate
ϕ which means that a part ϕ of the nodes are allowed to continue through the network,
while 1 − ϕ are shut off, each time dropout is applied.
Finally, after these layers, the network has a softmax loss layer to classify and get a

network cost to use for training.

5.1.1 The Input Patches
The output pixels from the network just described get a receptive field size of 76 × 76.
That means that each pixel in the output is dependent of a square of 76 × 76 pixels in
the input. Thus, the input to the network should be of that size, for the input to be
classified only with one class.

31

All patches that are used as input during the training are cut out from benign images.
In total the 20 images that have a key have been used. As explained earlier, in Chapter
4.2.2, the patches are of four different classes — stroma, glandWallCells, glandWallPur-
ple and whiteParts. The keys (Figure 4.2) work as a “maps” to decide where the different
classes can be cut. Though, for some of the classes the coherent areas of pixels are quite
narrow. To make it possible to get more patches of those classes, not all of the cut out
patch has to contain the specific class. Primarily, patches only containing that class are
cut, but if there are not enough possible patches, 10% of the patch is allowed to contain
other classes. If there still are not enough, 20% are allowed to be from another class and
so forth. The maximum allowance is set to 50%, but this has only been used in a few
occasions.
The 20 benign images have all been used to generate input data. The images have

been divided in four sets of five images each. These four sets have been used to perform
four-fold cross-validation, with one set at a time being used as validation set, while the
other three have been used as training set. For each set, 1000 patches of each class were
cut. This means that a total of 16,000 input patches were used, of which 12,000 were in
the training set each time. From which of the large, benign images each patch was cut
was chosen randomly within the set. Where in the large image the patches were cut out
was also chosen randomly, within the correct class. A few examples of patches can be
seen in Figure 5.3.

glandWallCells glandWallPurplestroma

Figure 5.3: Four examples of input patches for stroma (to the left),
glandWallCells (in the middle) and glandWallPurple (to the right).
No patches of whiteParts are included, since they are mainly white.
Each patch is 76 × 76 pixels.

Pre-Processing

Before the patches were cut and run through the network the image mean was removed.
When this is done, the image specific intensity matters less, and the actual variations
in the picture and the tissue becomes more important. In this thesis, the mean has
been removed layerwise from each image. This pre-processing was been performed on
all images, both those used for training and validation.

32

Furthermore, some random, zero mean, Gaussian noise was added to the training
patches. Different noise was added to each image and this was remodeled for each
epoch. This was done to bring some variation to the input data and make overfitting
less probable.

5.1.2 Training the Network

Setting 1 Setting 2 Setting 3 Setting 4 Setting 5
f 1/100 1/100 1/100 1/100 1/100
τ 100 100 100 100 100
ϕ 0.3 0.3 0.5 0.3 0.5
η 7 ⋅ 10−4 adaptive1 7 ⋅ 10−4 7 ⋅ 10−4 7 ⋅ 10−4

µ 0.9 0.9 0.9 0.75 0.95
λ 5 ⋅ 10−4 5 ⋅ 10−4 5 ⋅ 10−4 5 ⋅ 10−4 7 ⋅ 10−4

Table 5.1: The different hyper-parameter combinations that were tried.
Here, f is the standard deviation of the initialized weights, ϕ is the
dropout rate, τ is the batch size, η is the learning rate, µ is the mo-
mentum variable and λ is the weight decay parameter. Furthermore,
adaptive1= 8 ⋅10−4θ(x)−3 ⋅10−4θ(x−10)−4 ⋅10−4θ(x−25)−5 ⋅10−5θ(x−
40) − 4 ⋅ 10−5θ(x − 60).

All the training has been performed using stochastic gradient descent with a batch
size τ . The learning rate η was in some cases constant through all epochs while it was
sometimes adaptive. In the adaptive case the learning rate was, as mentioned, a step
function depending on the current epoch, θ(epoch). The number of patches used for the
training and testing was constant, as described above, and even if they were selected
randomly the sets have been the same through all networks, to make possible for a fair
comparison. Furthermore, other hyper-parameters are the standard deviation for the
initialization of the networks weights f , the dropout rate ϕ, the momentum variable µ
and the regularisation or weight decay parameter λ. A few different parameter settings
that were tried are presented in Table 5.1. In one of the tried settings, the learning rate
was adaptive, such that η = adaptive1 = 8 ⋅10−4θ(x)−3 ⋅10−4θ(x−10)−4 ⋅10−4θ(x−25)−
5 ⋅ 10−5θ(x − 40) − 4 ⋅ 10−5θ(x − 60). The training was run for 150 epochs for all different
settings.

5.1.3 The Evaluation
As has been mentioned several times, the network has been trained to minimize the
objective function. To compare different hyper-parameter setting and runs to each other,
the patch error has been used. For each training epoch, the rate of erroneously classified
patches has been computed. The lower error rate, the better. Both the objective and
the patch error were plotted as functions of the epoch, to clarify the results.

33

5.1.4 The Final Training
To achieve a trained segmentation network to use in the classification network, setting
5 from Table 5.1 was used. For the final training, no images were saved for validation,
but all images were used for training. That means that the final training was performed
on 16,000 training patches. Since the cross validation had already been performed and
an error rate for that had been computed it was better to use as much data as possible
to achieve a good network.
This final network can be used to perform a kind of segmentation on a whole image.

Though, the output from the network will be a smaller image than the input, with
each pixel having a receptive field 76 × 76, but it will resemble the input image with
the tissue structures being caught. Desirably, the different output channels should be
segmentations of the different classes in the image. The network has been applied on
both images of benign and cancerous tissue, since this will be the case in the classification
network. These were images that were not included in the set used for training.

5.2 The Classification Problem
The classification network was built as was briefly explained in Figure 5.1. To connect
this to the segmentation network, the first four layer triplets of that are included in block1
and block2, while the fully connected layers and the loss layer belong to block5. Thus,
to develop the classifying network block3 and block4 were added to the segmentation
network, resulting in a network which needs the DAG architecture for implementations.
The details for the network architecture are illustrated in Figure 5.4. The classifying

network starts with four layer triplets with the same properties as explained in the
previous section. These are followed by another two layer triplets. The convolutional
layers still have a kernel size 5 × 5 and the first of the two has 320 filters, while the
second has 640. The pooling is again performed with kernel size 2 and stride 2. These
two triplets belong to block3 in Figure 5.1, such that block1, block2 and block3 all
contain two triplets each.
Then remains block4, which is partly equivalent to block5 in the segmentation network.

At the end of the classifying network, after the six layer triplets, there are two more
convolutional layers, one with a filter bank of size 1×1×640×1280 and one with a filter
bank of size 1 × 1 × 1280 × 4. The convolutional layers are followed by ReLU layers and
dropout is applied. Finally, there is a softmax and a softmax loss layer, to yield the
output prediction and to make possible for backpropagation.

5.2.1 The Input Patches
The output pixels from block4 in the classifying network have a receptive field size
316 × 316 and thus, this has been the size of the input to the network. To cut input
patches to the network, 10 images of each class — benign, Gleason 3, Gleason 4 and
Gleason 5 — have been used. The benign images are taken from those that have a
corresponding key. Since all images are of different sizes, they yield different numbers

34

Input Block1 Block2 Block3 Block4

Block5

Out-
put1

Output2

Figure 5.4: The classification network. The layer stacks and column
stacks are the different feature maps. Between each layer stack there
is a layer triplet consisting of a convolutional layer, a ReLU layer and
a max-pooling layer. Block4 and Block5 consist of two fully connected
convolutional layers with attached ReLU layers. For these, dropout is
applied. In comparison to Block4, the full connections in Block5 are
denoted with a single arrow for a clearer visualization. Though, they
are fully connected and the feature map sizes are constant.

of patches. From each image, as many patches as possible have been cut, without the
patches overlapping. If the image dimensions were not divisible with 316, the edges of
the image were not included in any patch. The smallest image gave 2 patches, while
the largest gave 60 patches. In total 1074 patches were cut, 344 of benign tissue, 239
of Gleason 3, 220 of Gleason 4 and 271 of Gleason 5. At this stage, the mean of each
patch was removed, in the same manner as was done with the whole images for the
segmentation network.
After the patches were cut, each patch was modified to give more, artificial, input

data. Except from using each patch as it is, another one with zero mean Gaussian noise
added was used. Then, the original patch was mirrored – both in the left-right direction
and the up-down direction. Furthermore it was also rotated 90, 270 and 360 degrees,
just as described in Chapter 4.5.1. This means that each cut patch gave seven inputs to
the classifying network.
One difference from the segmentation network is that a re-cut of the patches in this

case always would yield the same patches, except for the noisy one, since there otherwise
is no randomness.

5.2.2 The Middle Keys
Since the input to the whole, classification network is of size 316×316, output2 in Figure
5.1 will have the size 16×16 (where each of the 16 ⋅16 pixels has a receptive field 76×76).

35

That means that the middle keys need to have that size. The class labels simply contain
a 1× 4 vector, with a 1 on the place corresponding to the correct class. It could be seen
as if there is one channel per class, but that only one of those channels can be non-zero.
This is called a categorical label [18]. Instead of this, the middle keys contain several
pixels and also several channels, one for each segmentation class. That means that the
middle keys also have four channels — one for stroma, one for glandWallCells, one for
glandWallPurple and one for whiteParts. Though, each channel represents whether the
class of that specific channel is present or not, like attributes [18]. A 1 for pixel i, j in
channel k means that attribute/class k is present in the receptive field of pixel i, j. In
the same way, −1 means that the attibute is not present. Compared to the categorical
label, more than one class can be present, when attributes are used.
To create one of the pixels in the middle key, the 76×76 pixels which that pixel origins

from were cut out of the original key, explained in Chapter 4.2.2. Then the cut out key
part was still categorical. After that the ratio of each class or attribute in that cut out
part was computed. All attributes that had a ratio above a certain threshold δ were
considered to be present and were marked with a 1 in the middle key, while those that
had a ratio below δ got a −1. Then all the middle key pixels were created in the same
manner.

5.2.3 The Logistic Logarithmic Loss
In the segmentation network, at the end of block5, the softmax loss function was used
for predictions and backpropagation. Though, this function cannot be used when the
label, or in this case middle key, is not categorical, which for the classification network
is the case at output2. Therefore, another, similar loss function and network layer has
been used, namely the logistic log loss function

l(x, c) = log(1 + e−cx). (5.1)

In the equation above, c is the attribute, that is −1 or +1 depending on whether the
attribute is present or not. The value x is the prediction score from the network. It is
clear that the value of the loss function will be lower if c and x have the same sign. The
logistic log loss function is similar to the softmax log function, but for attributes instead
of categorical labels [18].
The objective function for the classification network looks the same as for the segmen-

tation network, see Equation (3.10).

The Middle Keys for the Cancerous Tissue

There are only keys for the benign images (Chapter 4.2.2), but to run the classifying
network there needed to be keys for all images that patches were taken from. When
cancer develops in the prostate, the glandular structures are gradually lost. At a glance,
the prostate tissue that contains cancer looks quite similar to stroma, see Figure 4.1.
Because of that, the keys for the images with Gleason 3, Gleason 4 and Gleason 5 were
approximated to consist only of the key class stroma.

36

5.2.4 First Training Approach
The training of the network has been approached in three different ways. In all cases,
the training has been performed for a parameter setting which allows the objectives to
change. As soon as such a setting has been found, no more optimization or comparison
between parameter settings has been performed.
In the first case, the network was initialized in the same way as the segmentation

network was, with random weights, and the network was trained from scratch. The
network hyper-parameters that were used are presented in Table 5.2.

Table 5.2: The hyper-parameter setting that was used for the first
approach of the training of the classification network. Here, f is the
standard deviation of the initialized weights, δ is the threshold for
creating the middle key, ϕ is the dropout rate, τ is the batch size, η
is the learning rate, µ is the momentum variable and λ is the weight
decay parameter. Furthermore, adaptive2= 2 ⋅ 10−3θ(x) − 1 ⋅ 10−3θ(x −
12)−5 ⋅10−4θ(x−62)−3 ⋅10−4θ(x−112)−1 ⋅10−4θ(x−162)−3 ⋅10−5θ(x−
235) − 3 ⋅ 10−5θ(x − 350)

f δ τ ϕ η µ λ
1/100 0.1 100 0.3 adaptive2 0.9 5 ⋅ 10−4

5.2.5 Second Training Approach
In the second training approach, the trained segmentation network was used to initialize
the weights and biases in block1, block2 and block5. The parameters in block3 and
block4 were initialized as in the first training approach and the whole network was
trained from there. All parameters could be changed within the network training. The
used hyper-parameters can be seen in Table 5.3.

Table 5.3: The hyper-parameter setting that was used for the second
training approach of the classification network. An explanation of the
variables can be seen in the caption of Table 5.2. Here, adaptive3=
1 ⋅ 10−3θ(x) − 5 ⋅ 10−4θ(x − 7) − 3 ⋅ 10−4θ(x − 14) − 11 ⋅ 10−5θ(x − 84).

f δ τ ϕ η µ λ
1/200 0.1 200 0.3 adaptive3 0.9 5 ⋅ 10−4

5.2.6 Third Training Approach
In the last way of training, the parameters in block1, block2 and block5 were set to be
constant. The parameter values were the ones from the trained segmentation network.

37

Thus, they were not allowed to change during training. The only values that could
change were those in block3 and block4, which again were initialized in the same way as
before. In this case, objective2 did thus not change at all, and has not been included in
the plots. The hyper-parameters that were used for training can be found in Table 5.4

Table 5.4: The hyper-parameter setting that was used for the third
training approach for the classification network. An explanation of the
variables can be seen in the caption of Table 5.2. Here, adaptive4=
1 ⋅ 10−2θ(x) − 6 ⋅ 10−3θ(x − 5) − 2 ⋅ 10−3θ(x − 20) − 1 ⋅ 10−3θ(x − 40) − 4 ⋅
10−4θ(x − 50) − 4 ⋅ 10−4θ(x − 70) − 6 ⋅ 10−5θ(x − 100).

f δ τ ϕ η µ λ
1/200 0.1 200 0.3 adaptive4 0.9 5 ⋅ 10−4

5.2.7 The Evaluation
As for the segmentation network, the classification network has been trained to minimize
the objectives. Though, in this case there have been two of them, objective1 at the end of
block4 and objective2 at the end of block5. This is taken care of by the backpropagation
function, where some of the layer errors, see Equation (3.20), will depend on more
than one consecutive layer. The layer numbering is not as simple, but the equations
in Chapter 3.1.4 can be adjusted to suit the non-straight DAG nets as well and this is
implemented in the MatConvNet package.
Furthermore the patch error has been computed in the same way as in the previous

case. Though, when it comes to classifying the whole prostate images, the prediction of
the patches is not as interesting as the prediction of the whole images. This prediction
has been computed in two different ways.
In both image prediction approaches the patches get to “vote” about which class the

image belongs to, but it is done in different ways. In the first approach, each patch votes
with a 1 for the class that the patch is predicted as, and 0:s for all other classes. The
class with the highest vote wins and the image is classified as that class.
In the second approach, the patches does not vote with 1:s and 0:s, but with the

probabilities. For each image, the outputs from the softmax layer for all different patches
are added. Thus, one patch might vote with probability 0.7 for one class and 0.3 for
another, and this is taken into account for the image classification. Again, the image is
classified to belong to the class with the highest vote after all patches have voted.
Finally, an image error rate has been computed for each epoch, in the same manner

as the patch error rate. Since there have been two ways to predict the image class, there
have also been two image errors, imageError1 computed by the first prediction approach
and imageError2 computed by the second approach. To visualize the results, the two
image errors, the two objectives and the patch error have been plotted over all epochs.
For the classification network, no error rate has been computed for output2, at the end
of block5.

38

6 Results

6.1 The Segmentation Problem
6.1.1 Training Statistics
The achieved objectives and errors from setting 2 and setting 5 can be seen in Figure 6.1
and 6.2. The plots for the other settings look similar and are therefore not included. In
some cases the objective and the error for the validation set are much lower than the ones
for the training set. This is due to the applied dropout. The dropout is applied to two
fully connected layers, each time with a dropout rate ϕ = 0.3. That means that many
nodes have been shut off during training, which has made it hard for the network to do
correct predictions. When the validation set was run through the network, no dropout
was applied and the results are better. Though, if the training set is run through the
network without dropout, the objective and error are even lower than for the validation
set.

Table 6.1: The mean errors over the last ten epochs over all folds for
the five different parameter settings.

Setting 1 Setting 2 Setting 3 Setting 4 Setting 5
Patch error 0.1307 0.2206 0.1319 0.1362 0.1280

After the training the mean validation error for the last ten epochs over all four folds
was computed, separately for all five settings. These achieved errors can be seen in Table
6.1. The patch errors for setting 1, 3, 4 and 5 were similar, while the error for setting 2
was almost the double.

6.1.2 Images Run Through the Network
The classification network was trained on patches from benign images. Figure 6.3 shows
an example of a whole benign image run through the final trained network. The image
has not been used to produce patches for the training procedure. The output channels
correspond to one class each and are thus the somewhat smaller segmentation images of
the different parts.
Figure 6.4 shows an image of Gleason 5 tissue and the output when that was run

through the same network. Even though the Gleason 5 image does not contain the
same kind of tissue or parts as the benign images, there is tissue which resembles both

39

0 50 100 150
epoch

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1
1.2
1.3

co
st

objective
train
val

0 50 100 150
epoch

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

er
ro

r

error
train
val

0 50 100 150
epoch

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

co
st

objective
train
val

0 50 100 150
epoch

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

er
ro

r

error
train
val

0 50 100 150
epoch

0.7

0.8

0.9

1

1.1

1.2

1.3

co
st

objective
train
val

0 50 100 150
epoch

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

er
ro

r

error
train
val

0 50 100 150
epoch

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3
co

st

objective
train
val

0 50 100 150
epoch

0.1

0.2

0.3

0.4

0.5

0.6

0.7

er
ro

r

error
train
val

Figure 6.1: Objective and error plots for the segmentation network
when using Setting 2 from Table 5.1. The four different objective-
error-pairs are from the four different folds of the cross validation. The
curves seem to have flattened after the 150 epochs, which indicates that
the training is finished. Notice that the validation objectives and errors
are lower than those for the training set due to dropout.

stroma and glandWallCells, while the outputs for glandWallPurple and whiteParts are
very dark.

40

0 50 100 150
epoch

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
1.1
1.2
1.3

co
st

objective
train
val

0 50 100 150
epoch

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

er
ro

r

error
train
val

0 50 100 150
epoch

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2
1.3

co
st

objective
train
val

0 50 100 150
epoch

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

er
ro

r

error
train
val

0 50 100 150
epoch

0.6

0.8

1

1.2

1.4

1.6

1.8

co
st

objective

train
val

0 50 100 150
epoch

0.1

0.2

0.3

0.4

0.5

0.6

0.7

er
ro

r

error
train
val

0 50 100 150
epoch

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

co
st

objective
train
val

0 50 100 150
epoch

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

er
ro

r

error
train
val

Figure 6.2: Objective and error plots for the segmentation network
when using Setting 5 from Table 5.1. The four different objective-error-
pairs are from the four different folds of the cross validation. The curves
seem to have flattened after the 150 epochs, which indicates that the
training is finished. In the graphs where the values for the validation
set are lower than for the training set, this is due to the dropout.

6.2 The Classification Problem
For the classification network, three different approaches were taken. The objectives
and errors that were achieved for these can be seen in Figure 6.5, 6.6 and 6.7. For the
first and third approaches the training was run for 400 epochs, while it for the second
approach was aborted after 90 epochs. The training is not done for any of the networks.
The mean errors — both patchError, imageError1 and imageError2 — for the ten last

41

stroma glandWallCells

glandWallPurple whiteParts

Figure 6.3: To the left, an image of benign tissue, to the right the
output when that image was run through the segmentation network.
The image shows the four different output channels. The segmentation
seem to agree with the original image.

stroma glandWallCells

glandWallPurple whiteParts

Figure 6.4: To the left, an image of Gleason 5 tissue, to the right
the output when that image was run through the segmentation net-
work. The image shows the four different output channels. The output
indicates that the Gleason 5 tissue resembles both stroma and gland-
WallCells, but not glandWallPurple and whiteParts.

epochs can be seen in Table 6.2. The means are computed for the validation sets and
only for approach 1 and 3, since the training for approach 2 was aborted earlier.

42

Table 6.2: The mean errors for the validation set over the ten last
training epochs when the initialization of the parameters was done
using approach 1 and approach 3. Approach 2 is left out since it was
aborted.

patchError imageError1 imageError2
Approach 1 0.36 0.37 0.31
Approach 3 0.26 0.34 0.23

0 200 400
epoch

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
imageError1

train
val

0 200 400
epoch

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
imageError2

train
val

0 200 400
epoch

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4
objective1

train
val

0 200 400
epoch

1.22

1.24

1.26

1.28

1.3

1.32

1.34

1.36

1.38

1.4
objective2

train
val

0 200 400
epoch

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
patchError

train
val

Figure 6.5: The errors and objectives that were achieved after 400
epochs for the first training approach of the classification network.
The curves are still decreasing and this indicates that the training is
not done.

43

0 50 100
epoch

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8
imageError1

train
val

0 50 100
epoch

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8
imageError2

train
val

0 50 100
epoch

1.22

1.24

1.26

1.28

1.3

1.32

1.34

1.36

1.38

1.4
objective1

train
val

0 50 100
epoch

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65
objective2

train
val

0 50 100
epoch

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9
patchError

train
val

Figure 6.6: The errors and objectives that were achieved after 400
epochs for the second training approach of the classification network.
No improvement had been achieved for the image errors when the
training was aborted. Though, the decreasing trend of the objectives
indicated that a continued training would give a better result.

0 200 400
epoch

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
imageError1

train
val

0 200 400
epoch

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
imageError2

train
val

0 200 400
epoch

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

train
val

0 200 400
epoch

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

train
val

objective1 patchError

Figure 6.7: The errors and objectives that were achieved after 400
epochs for the third training approach of the classification network. In
this figure, objective2 is not included, since it is constant throughout
the training. The curves are still decreasing and this indicates that the
training is not done.

44

7 Discussion and Further Work
One of the intermediate goals of this thesis was to find out whether the use of a middle
key could be good for the final classification network. Since the segmentation network
— without further fine tuning — did correct predictions for 87% of the input patches, it
was decided that the contemplated approach could be useful for the final classification
network.
Then, the main goal was to investigate the potential of different deep neural network

structures that could be used for an automatic Gleason classification system, using this
middle key. The final, trained networks have not achieved any remarkable results and
they do not perform as good as the ones presented in Chapter 1.2. Nor are the networks
as good as would be desirable for an actual usage at hospitals. Though, they do show
potential. The training could be performed and without further tuning mediocre results
were achieved. This thesis has thus fulfilled it’s purpose as a pre-study of possible
approaches to the problem. It has also contributed with innovation to the main DOGS
project. Though, in the future there are many details that could be developed for better
results.

7.1 The Dataset
To begin with, quite few images have been used for the training, especially for the classi-
fying network. An expanded set of hand-made keys would have given more data to both
networks, which could have given better results. Still, no more keys were produced due
to the time it took to produce them. For the classification network the time consumption
for the training was limiting, see further below. Since the thesis was mainly supposed
to be investigating not too much focus was put on these parts.
Furthermore, as can be seen in Figure 6.4 it was not perfect to assign Gleason tissue

the middle key class stroma everywhere, since there is tissue that resembles other tissue
attributes. Actually, it is possible that the somewhat erroneous middle keys for the
cancerous tissue counteracts the correct segmentation middle keys for the benign tissue.
One future problem to attack could thus be to improve these, maybe by performing
handmade segmentations of the cancerous tissue as well. Another approach could be
to not assign the whole Gleason images the class benign, but a fifth class which is
independent of the benign tissue. It could be called something like cancerTissue.

45

7.2 Implementation Issues
The implementations have been done using Matlab and they have been run on the
computer CPU. The MatConvNet package has support for using the GPU. This could
be one solution to the high time consumption, mentioned above. With a decreased time
consumption, the number of images and input patches to the classification network could
have been increased.
Another issue that arose was an out of memory-error when the classification network

was run on more images (173 images). Each image yields a number of patches and
each input patch is 316 × 316 pixels. This gives many weights, even if the layers are
convolutional and not fully connected. The specific computer on which the computations
were run of course have a large impact here. Another possible solution would be to
down-sample the images before the patches are cut. Though, for the network to be built
as has been explained above that would have had to be done before the segmentation
network was created, which was not the case. The input patches to the segmentation
network would also have to be smaller, since some tissue classes are quite narrow, as
was explained in Chapter 5.1.1.

7.3 The Network Architecture
7.3.1 The Segmentation Network
A few different architectures for the simple segmentation network were tried, but finally
it was set to the one presented in this report, without further investigation. First, the
network was tried with only one fully connected layer, but the addition of another turned
out to yield better results. The dropout does decrease overfitting, which was why it was
added, see Figures 6.1 and 6.2. Though, a deeper or not as deep network could have
made a difference. In the same manner, maybe a change in the number of filters could
have made a difference. The activation function was set to always be ReLU and no
others were tried.

7.3.2 The Classification Network
When it comes to the classification network, only the given architecture was tried. Since
fully connected layers and dropout turned out to be successful for the segmentation
network, it was added at the end of the classifying one as well. Though, it would have
been interesting to see if it made any difference where the middle key was placed and
how long the outgoing “branch” should be — that is how block5 in Figure 5.1 is built.
Furthermore, it would be of interest to vary block3 and block4 in the same figure, to
see what impact the number of layers have. By changing the number of layers in the
network, the size of the input patches would automatically have to be changed as well.
These investigations have not been included in this thesis due to lack of time. The im-

plementations of a DAG net have been performed and the architecture shows potential.

46

How large the potential is will not be established until the architecture is investigated
further.

7.4 The Hyper-Parameters
The networks — both the one for the segmentation and the one for classification —
have been run far more times than is shown in this report. Just to find hyper-parameter
settings such that the objective functions do not explode and still change at all is a
larger challenge than most reports about deep neural networks give the appearance of.
Just small changes in one of the hyper-parameters might have a large impact on the
final result.
For the segmentation a few different settings have been presented, see Table 5.1. The

results turned out to be quite similar, except for when the learning rate η was changed,
for setting 2. This probably does not have to do with the fact that it is adaptive, but
with the size of it. Both if the learning rate is too high and too low, there is a risk of not
reaching the objective minimum and as can be seen in Table 6.1 the difference in η in
setting 1 and 2 made a large difference. Setting 5 turned out to produce the best results,
but the differences to setting 1, 3 and 4 were small. Probably better results could have
been achieved by tuning the hyper-parameters further.
For the classification network it turned out to be crucial with an adaptive learning rate.

Otherwise, the objectives either exploded or did not change at all. Once a parameter
setting which made possible for training was found, that setting was used, without
further tuning. By using the same hyper-parameter settings for all three approaches,
a more fair comparison of the approaches could have been made. This was not done
since the larger batch size for approach 2 and 3 (Table 5.3 and 5.4) made the training
more time consuming and a more effective setting worked for approach 1 (Table 5.2). If
the work is continued, it would be a good idea to investigate whether the same settings
would work for all different approaches.
Instead of having the adaptive learning rate as a step function, it could be implemented

as a function of how the objective function has behaved for previous epochs. Moreover,
the threshold δ for the middle key could have been found by investigating the output
from the segmentation network. In general, to achieve the best possible results with a
certain network architecture and a certain data set the tuning of the hyper-parameters
should be done more methodically.

7.5 The Different Classification Network Approaches
To begin with, the predictions seem to be better according to imageError2 than to
imageError1. Therefore, the second approach of computing the image prediction should
be used. Thus, that corresponding error will also be the one referred to.
Three different approaches of initialization for the weights in the classification network

have been tried. From the beginning the idea was to make a comparison between these,

47

but since the networks are neither run until saturation, nor optimized a fair comparison
cannot be made. For the same reason, there was no point in performing crossvalidation
for these networks.
If any conclusions are to be drawn from the resulting plots of the three different

networks, the third approach, where the parameters of block1, block2 and block5 are
left untouched, shows the most potential. This is also the network that is mostly affected
by the performance of the segmentation network. Though, as has been the case, this
training was performed with a batch size τ = 100, while the other two had a batch size
τ = 200. The larger batch size makes the training more time consuming and thus it was
harder to change any of the other hyper-parameters at all.
It is regrettable that the training for the second approach — where the weights were

initialized by the segmentation network but allowed to change — was not run until any
improvements were achieved. Though, both objectives show a decreasing trend, so there
is reason to believe that a decrease of the image error rate was to come, if the training
would have been run further. Though, the combination of all parameters being trained
and the large batch size made the training very time consuming — enough for it to be
aborted.
If something should be said about the achieved error rates when using approach 1

and 3, the ones for approach 3 are lower after the 400 run epochs, imageError2 is
0.23 compared to 0.31 for approach 1. This is satisfying, since approach 3 uses the
pre-training in the segmentation network more. Though, again, this would have to be
further investigated to be ascertained.

48

8 Conclusion
The first network that was built was a segmentation network. This was a simple,
straight network for classification of different tissue parts in benign prostate tissue. The
classes were stroma, glandWallCells (nuclei of the cells making up the gland wall), gland-
WallPurple (the part of the gland wall cells that is not part of the previous class) and
whiteParts (glandular lumen and background). The network classified 76 × 76 patches
but did also perform segmentation of the mentioned tissue parts when it was applied
to a larger image. The network classified 87% of the validation patches correctly and
was also tried on larger images. The segmentation of a larger benign image was good.
An image of Gleason grade 5 was also run through the network and the outputs showed
tissue resemblance with stroma and glandWallCells.
Since the performance of the segmenation network was good it was decided that the

idea with a directed acyclic graph network with a middle key consisting of a segmentation
should be tried. There were keys for the benign images and the ones containing cancer
were approximated such that their middle keys only contained stroma. The Gleason
classification network was created such that the structure in the beginning was taken
from the segmentation network and then additional layers were appended. Thus, this
network was optimized using two objective functions.
The weights of the classification network were initialized in three different ways. In

the first approach all weights were initialized as random. In the second approach the
ones in the beginning were initialized to be the trained weights from the segmentation
network, but they were allowed to be changed during training. In the third approach
the weights were initialized in the same way as for the second approach, but the weights
from the segmentation network were not allowed to change.
The training of the classification network turned out to be very time consuming. The

second approach was because of this aborted after 90 training epochs but both objectives
showed a decreasing trend when this was done. The other two approaches were run for
400 epochs but were then stopped, even though the training was not done. At this point
the network from the first approach had achieved correct prediction of the images in
69% of the cases while the network from the third approach correctly classified 77% of
the validation images.
The hyper-parameters were not optimized and the trainings were not run for perfec-

tion. This thesis has rather been about investigating the potential of a network with
a middle key, for Gleason grade classification. The networks showed good possibilities
to do correct classifications and achieved improving results even without optimization.
Because of that it is concluded that the tried CNN architecture does have potential and
that it would be a good idea to investigate and develop it further.

49

Bibliography
[1] Hanna Källén. Applications of Machine Vision. PhD thesis, Lund University, Fac-

ulty of Engineering.

[2] Wulfram Gerstner, Werner M Kistler, Richard Naud and Liam Paninski. Neuronal
dynamics: From single neurons to networks and models of cognition. Cambridge
University Press, 2014.

[3] Jan-Erik Damber and Lars Grenabo. Urologi – Prostatacancer. In Jörgen Nor-
denström Bengt Jeppsson, Peter Naredi and Bo Risberg, editors, Kirurgi. Elanders
Beijing Printing Co. Ltd.

[4] Cancerfonden. Cancerfondsrapporten 2016. http://www.cancerfonden.se, [2016-
07-12].

[5] Vinnova. http://www.vinnova.se, [2016-07-12].

[6] Giuseppe Lippolis. Image analysis of prostate cancer tissue biomarkers. PhD thesis,
Lund University, Faculty of Medicine.

[7] Hanna Källén, Jesper Molin, Anders Heyden, Claes Lundström and Kalle Åström.
Towards grading gleason score using generically trained deep convolutional neural
networks. In 2016 IEEE 13th International Symposium on Biomedical Imaging
(ISBI), pages 1163–1167, April 2016.

[8] Geert Litjens, Clara I Sánchez, Nadya Timofeeva, Meyke Hermsen, Iris Nagtegaal,
Iringo Kovacs, Christina Hulsbergen-van de Kaa, Peter Bult, Bram van Ginneken
and Jeroen van der Laak. Deep learning as a tool for increased accuracy and
efficiency of histopathological diagnosis. Scientific reports, 6, 2016.

[9] Anna Gummeson. Prostate Cancer Classification using Convolutional Neural Net-
works. Master’s thesis, Lund University, Faculty of Engineering, 2016.

[10] Jonathan I Epstein, Michael J Zelefsky, Daniel D Sjoberg, Joel B Nelson, Lars
Egevad, Cristina Magi-Galluzzi, Andrew J Vickers, Anil V Parwani, Victor E
Reuter, Samson W Fine and others. A contemporary prostate cancer grading sys-
tem: a validated alternative to the gleason score. European urology, 2015.

[11] Jonathan I Epstein. A new contemporary prostate cancer grading system. Pathology
international, 2015.

50

http://www.cancerfonden.se
http://www.vinnova.se

[12] Andrew Ng et al. UFLDL Tutorial. http://deeplearning.stanford.edu/
tutorial/, [2016-04-12].

[13] David Kriesel. A Brief Introduction to Neural Networks. available at http://www.
dkriesel.com, 2007.

[14] Olivier Chapelle, Bernhard Schölkopf and Alexander Zien. Semi-Supervised Learn-
ing. The MIT Press.

[15] Andrea Vedaldi and Andrew Zisserman. VGG Convolutional Neural Networks Prac-
tical. http://www.robots.ox.ac.uk/~vgg/practicals/cnn/index.html, [2016-
02-10].

[16] Michael A Nielsen. Neural Networks and Deep Learning. Determinaton Press, 2015,
http://neuralnetworksanddeeplearning.com, [2016-02-10].

[17] Robert HWurtz and Eric R Kandel. Central Visual Pathways. In James H. Schwartz
Eric R. Kandel and Thomas M. Jessell, editors, Principles of Neural Science.
McGraw-Hill Companies.

[18] Andrea Vedaldi and Karel Lenc. MatConvNet – Convolutional Neural Networks for
MATLAB. In Proceeding of the ACM Int. Conf. on Multimedia, 2015.

[19] Regional Ethics committee at Lund University. http://www.epn.se/lund/, [2016-
07-25].

51

http://deeplearning.stanford.edu/tutorial/
http://deeplearning.stanford.edu/tutorial/
http://www.dkriesel.com
http://www.dkriesel.com
http://www.robots.ox.ac.uk/~vgg/practicals/cnn/index.html
http://neuralnetworksanddeeplearning.com
http://www.epn.se/lund/

Master’s Theses in Mathematical Sciences 2016:E44
ISSN 1404-6342

LUTFMA-3304-2016

Mathematics
Centre for Mathematical Sciences

Lund University
Box 118, SE-221 00 Lund, Sweden

http://www.maths.lth.se/

	Introduction
	The DOGS Project
	Related Work
	Aim of and Goals with the Thesis
	The Segmentation Problem
	The Classification Problem

	Prostate Cancer
	Prostate Tissue
	Cancer Tests and Diagnostics
	The Gleason Grading System
	The Gleason Score
	The Gleason Grade Group

	Artificial Intelligence and Neural Networks
	Training the Network
	Supervised or Unsupervised Training
	The Cost Function
	Gradient Descent Method
	Stochastic Gradient Descent Method

	The Backpropagation Algorithm
	The Error in the Output Layer
	The Error in Any Layer, Depending on the Error in the Next Layer
	The Derivative of the Cost with Respect to the Biases
	The Derivative of the Cost with Respect to the Weights
	The Actual Algorithm

	Convolutional Neural Networks
	Convolutional Layer
	Max-Pooling Layer
	ReLU Layer
	Softmax Loss Layer
	The Softmax Function
	The Logarithmic Loss Function

	Network Topology
	Simple Neural Network
	Directed Acyclic Graph Network

	Deep Neural Networks in Practice
	Software
	The Data
	Ethical Aspects
	The Keys

	How to Build a Network
	Connecting the Layers
	Kernel Sizes and the Number of Filters
	The End of the Network

	Choice of Parameters
	Adaptive Learning Rate
	Number of Training Epochs

	Reduce Overfitting
	Increased Amount of Data
	Dropout

	Implementations
	The Segmentation Problem
	The Input Patches
	Pre-Processing

	Training the Network
	The Evaluation
	The Final Training

	The Classification Problem
	The Input Patches
	The Middle Keys
	The Logistic Logarithmic Loss
	The Middle Keys for the Cancerous Tissue

	First Training Approach
	Second Training Approach
	Third Training Approach
	The Evaluation

	Results
	The Segmentation Problem
	Training Statistics
	Images Run Through the Network

	The Classification Problem

	Discussion and Further Work
	The Dataset
	Implementation Issues
	The Network Architecture
	The Segmentation Network
	The Classification Network

	The Hyper-Parameters
	The Different Classification Network Approaches

	Conclusion
	Bibliography

