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1 Abstract

Credit risk modeling is an important part of the financial protection used by banks during
times of turbulence in the economy. More precisely, the modelling is about estimating
how much economic capital a bank needs to hold in order to survive during an extreme
loss. This thesis is about improving the robustness for the estimation of the economic
capital, when it is updated as time passes. A decrease of the variations in the estimate of
the economic capital would allow the bank to decrease the frequency of which the value
of the economic capital is updated. This is the main aim for the thesis, as banks have a
hard time explaining these variations based on any logical ground. The model used for
estimating the economic capital is based on a multi-factor Merton model. The study will
look at how the correlation matrix of the factors in the model can be updated in order
to obtain as little variation as possible for the estimate of the economic capital. Four
major approaches will be conducted to try and minimize this variation. The approaches
use techniques such as weighting of consecutive correlation matrices, bootstrapping and
standardization of the data using a multivariate CCC GARCH model.
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2 Abbreviations

A summary of all abbreviations used throughout the thesis.

CDF Cumulative Distribution Function

EAD Exposure At Default

EC Economic Capital

EL Expected Loss

ES Expected Shortfall

GARCH Gereralized AutoRegressive Conditional
Heteroskedasticity

I Idicator Function

IID Identically Independently Distributed

IIND Identically Independently Normally
Distributed

L Total loss

LGD Loss Given Default

PD Probability of Default

PDF Probability Density Function

UL Unexpected Loss

VaR Value at Risk
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4 Introduction

All banks face a variety of financial risks. One of them is credit risk which is the risk
that a borrower or counterparty might not be able to pay back money owed to the bank
in case of financial distress. When a counterparty cannot pay back what it owes it is
called default. To deal with potential financial risks statistical models are used to es-
timate the economic capital the bank should keep in order to survive during a crisis.
It is obviously important that the method used for estimating economic capital has a
somewhat accurate result and reflects reality to some extent. This in order to assure the
bank will not underestimate the risk and ending up in financial trouble, or potentially
overestimate the risk and miss the opportunity to invest some of its capital. At last, it
is also desirable that the economic capital needed does not vary too much between the
updates as moving assets around takes resources. Moreover, bigger adjustments without
substantial support are hard to motivate.

This thesis is about a statistical method for estimation of credit risk. More specifi-
cally a study of how the process of updating the correlation matrix between the factors
in a multi-factor Merton model is done. The aim is to optimize the updating process to
achieve smaller variations of the estimate of the economic capital. Four major approaches
will be used to see if the variation in the economic capital estimate can be decreased.
These approaches will use and combine techniques with weighting of correlation matri-
ces, bootstrapping to look at correlation distributions as well as using a GARCH model
to try and estimate these correlations in a more robust way.

First the theory used throughout the thesis will be stated. Then a consistent model
for estimating economic capital is constructed. When a satisfactory model is obtained
it will be used to evaluate the different approaches ability to decrease variations of the
economic capital between updates.

4.1 Objective

The main objective of this thesis is to evaluate how the economic capital changes over
time. That is how the economic capital changes when new data becomes available and
used to update the model. To evaluate this, the first step is to select a method for
estimation of the economic capital in a consistent manner.

Later, we will investigate how to increase the robustness of the updates of the eco-
nomic capital as new market data becomes available. More precisely, we will analyze if
and how changes can be made in the way the model variables are updated in order to
obtain a more robust value for the economic capital. We anticipate to update the model
variables with new data biannually.
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5 Theory

In this section the risk terms, risk measures and statistical concepts used throughout
the thesis are explained. Also statistical methods and models used will be explained in
detail.

5.1 General Risk Concepts

The term credit risk refers to the risk associated with credits and loans granted by
financial institutions to other parties. The financial institution is exposed to a risk of
loosing money as the borrower might fail to make the required repayments.

5.1.1 Single Loan

When managing the risks associated with a single loan to borrower k, the following at-
tributes are usually considered.

• Probability of default, PDk, is the probability that the borrower k will default and
not be able to repay the loan.

• Exposure at default, EADk, is the amount of money at exposure, should borrower
k default.

• Loss given default, LGDk, is the percentage of EADk that is lost, given that bor-
rower k defaults. Even if a default occurs, this does not necessarily mean all of
EADk will be lost. Loans are often somewhat insured and parts of EADk can then
be retrieved.

The values of these attributes are either set by the banks own standards or by a third
party, such as a financial firm like Standard & Poor’s.

The total loss for each borrower k, will be the stochastic variable Lk, see Equation
(1).

Lk = EADk · LGDk ·Dk (1)

where Dk is the logistic stochastic variable described in Equation (2).

2



Dk =

{
1, if k defaults probability = PDk

0, if k does not default probability = 1-PDk
(2)

The Expected Loss ELk, is the expected value of the loss Lk. It is calculated in
Equation (3).

ELk = E[EADk · LGDk ·Dk] = (EADk · LGDk) · E[Dk]
= (EADk · LGDk) · (1 · PDk + 0 · (1− PDk))
= EADk · LGDk · PDk

(3)

5.1.2 Portfolio of loans

In general, a financial institution does not only grant one loan to one single borrower.
Most often institutions have a credit portfolio consisting of multiple loans, where each
loan has the properties described in 5.1.1. The amount of money the bank anticipates to
loose over a certain time period is no longer due to one single exposure. The anticipated
total loss will in this case be the combined outcome of the credit portfolio. We refer to
this as the total loss L. If K = {1,2,3,...,n}, where n is the total number of assets in the
portfolio, we can write L as in Equation (4).

L =
∑
k∈K

Lk =
∑
k∈K

EADk · LGDk ·Dk (4)

As the outcome, Dk, of each borrower in the credit portfolio is uncertain, L will be
a stochastic variable. One possible distribution of L for a general credit portfolio can be
seen in Figure 1.
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Figure 1: The blue curve shows the probability density function for the total loss L of
a typical credit portfolio. The expected loss, unexpected loss and economic capital are
important measures in credit risk.

EL is the expected loss for the credit Portfolio, see Figure 1. It is the loss that the
bank anticipates to loose in average on a yearly basis. As the name suggests, EL is the
expected value of L. See Equation (5).

EL = E [
∑
k∈K

EADk · LGDk ·Dk ] =
∑
k∈K

EADk · LGDk · E[Dk] (5)

However, it is not straight forward how to estimate all E[Dk]. This since, in any
realistic setting, the outcome of each one of the variables Dk is correlated to those of the
remaining Dk:s. In the theoretic case where all borrowers outcomes are independent EL
can be calculated as in Equation (6).

EL =
∑
k∈K

EADk · LGDk · E[Dk] =
∑
k∈K

EADk · LGDk · PDk (6)

Unexpected loss, UL, is the total loss exceeding the expected loss, see Figure 1. The
unexpected loss can stretch all the way from the expected loss up to the outer parts of
the right hand side tail of the total loss distribution L. UL is often defined as V aRα,
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for a certain α. In Figure (1), UL is defined as V aR0.9997.

Economic capital, EC, is the amount of money that the bank needs to hold in case of
an extreme event to stay solvent, see Figure 1. EC can be quantified in many different
manners. An often used definition is to set EC as [UL - EL], as is done in Figure (1)
and this thesis.

Further descriptions of above mentioned credit risk concepts can be found in Antwi,
Constance Mensah, Owusu Amoamah and Joseph[2].

5.1.3 Extreme Measures

V aR, or Value-at-Risk, is an often used measure when describing extreme events in credit
risk contexts. Given a confidence level α ∈ ]0,1[, the V aRα of a portfolio L is defined as
the smallest value l such that the loss L exceeds l with a probability of at most (1− α).
In other words V aRα(L) is the α-quantile value for a the loss distribution L, to a certain
portfolio P . More on V aR can be found in Artzner, Delbaen, Eber and Heath[3]. The
mathematical formulation taken from McNeil, Frey and Embrechts[11] is given below:

V aRα(L) = inf{l ∈ R : P (L > l) ≤ 1− α} (7)

Expected Shortfall, ES, sometimes also called tail V aR, is an alternative measure of
extreme events for stochastic variables. ESα(L) is defined as the expected loss of the
portfolio given that the loss L exceeds a certain V aRα. The mathematical formulation
is:

ESα(L) = E(L | L > V aRα) (8)

where the quantile α ∈ ]0, 1[. More on ES in Acerbi and Tasche 2001[1].

5.2 Multi-factor Merton Model

In 1974, Robert Merton[12] introduced a model for quantitative modeling of credit risk
where a company’s equity was defined as a call option on the company’s assets. Every
company was assumed to have a specific amount of zero coupon debt that would mature
at a future time T. If at time T, the value of the company’s total assets would be less
than the obligated debt repayment, then the company would default. Merton’s model
has become very popular amongst banks and other financial institutions for estimation
of credit risk. Except for estimating the probability of default the model can also be
used for estimating risk neutral probabilities or debt credit spread. For more see Hull,
Nelken and White[10].
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A multi-factor Merton model is simply a Merton model where the modeling of the
company asset value Xi is done with a model of two or several parameters. An example
is given by Pykhtin[14]:

Xi =
√
R2
i Yi +

√
1−R2

i ei (9)

where ei is the standardized normally distributed idiosyncratic shock and Ri is a
measure for how sensitive the borrower is to systematic risk. Yi is the systematic factors
given by:

Yi =

N∑
k=1

αik Zk (10)

where αik are weighting factors and Zk are independent standard normal systematic
factors.

5.3 GARCH Models

General Autoregressive Conditional Heteroskedasticity models, are a popular way of
modeling volatility for financial time series. The reason is the model’s ability to model
heteroskedastic behaviors in the volatility.

5.3.1 Univariate GARCH

The univariate GARCH(p,q) model first stated by Bollerslev[4] has the following appear-
ance:

rt = σt zt (11)

σ2
t = w +

q∑
i=1

αi ε
2
t−1 +

p∑
i=1

βi σ
2
t−1 (12)

where rt is the expected return, σt the volatility, w, αi and βi are parameters, and
zt and εt are N(0, 1) distributed white noise.
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5.3.2 Multivariate GARCH

When investigating the co-movements of several financial time series a multivariate
GARCH model can be used. One of the simpler and more intuitive multivariate models
described in more detail by Silvennoinen and Teräsvirta[16] is the Constant Conditional
Correlation GARCH, CCC GARCH. This model is based on the assumption that the
conditional covariance matrix can be decomposed into conditional standard deviations
and correlations:

Ht = Dt CC Dt (13)

where Ht is the conditional covariance matrix, Dt is a diagonal matrix with the
conditional standard deviations on the diagonal, and CC is a constant correlation matrix.

5.4 Monte Carlo Method

The Monte Carlo method is an algorithm where a statistical model is repeated a large
number of times giving numerical results. According to the Law of Large Numbers the
average of the Monte Carlo method will after a large number of repeated samples be
close to the expected value of the statistical model. The Monte Carlo method is often
used for complicated calculations where analytical computation would be too difficult or
impossible. For more on Monte Carlo methods see Eckhardt[6]. Below is the mathemat-
ical formulation of the Monte Carlo technique stating that the average of the method
will be equal to the expectation for a large N :

E(X) = X̄ =
1

N

N∑
i=1

Xi (14)

Where Xi is the output values from the statistical method.

5.5 Cholesky Decomposition

The main idea of a Cholesky decomposition is finding a root matrix, L, to a hermitian
positive semidefinite matrix A. A is decomposed by L as in Equation (15).

A = LL∗ (15)

where L is a lower triangular matrix and L∗ is the conjugate transpose of L.
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Having found L it can be showed that Lε, where ε is a random vector with identically
independent normally distributed elements (IIND elements), will be random variables
with zero mean and unit variance. The internal correlations of the random variables will
be equal to the original matrix A. The proof can be seen in Equation (16).

V [Lε] =E[(Lε)(Lε)∗]− E[Lε]2 =

E[(Lε)(Lε)∗] = E[Lε ε∗L∗] =

LE[εε∗]L∗ = LL∗ = A

(16)

For more theory on Cholesky decomposition we refer to Glyn Holton[9].

5.6 Bootstrapping

Bootstrapping is a technique that creates a distribution of sample estimates by using ran-
dom sampling with replacement described more thoroughly by Efron and Tibshirani[7].
Bootstrapping can for example be used on the correlations between factors in a multi-
factor model. First the sample data is resampled with replacement and then the corre-
lations are estimated. This procedure is then repeated a large number of times to create
a distribution of the sample estimates.

5.7 Antithetic Variates

Antithetic Variates is a method used in computer simulations to reduce variance. Sup-
pose the objective is to estimate the expectation E(f(X)), where f(X) is a function of
X, antithetic variates can be implemented by drawing a sequence of antithetic sample
pairs (X1, X

′
1), (X2, X

′
2), (X3, X

′
3),. . . , (Xn, X

′
n) where X and X ′ has the same distri-

bution and the pairs are IID Ocnasu, Besanger, Rognon and Carer[13]. The antithetic
variates estimator of E(f(X)) is then:

X̂ =
1

2n

( n∑
i=1

f(Xi) +

n∑
i=1

f(X ′i)
)

=
1

n

n∑
i=1

(f(Xi) + f(X ′i)

2

)
(17)

If we look at the variance of the average of the estimator we get:
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σ2 = V ar
(f(Xi) + f(X ′i)

2

)
=

1

4

(
V ar(f(Xi)) + V ar(f(X ′i)) + 2Cov(f(Xi), f(X ′i))

)
=

1

4

(
2V ar(f(Xi)) + 2Cov(f(Xi), f(X ′i))

)
=

1

2

(
V ar(f(Xi)) + Cov(f(Xi), f(X ′i))

)
(18)

We can now see that Cov(f(Xi), f(X ′i)) < 0 must be true for the antithetic variables
Xi and X ′i to be able to reduce variance.

In a simulation with independent standard normal random variables the antithetic
variates can be implemented by creating two paired sequences of IID N(0, 1) random
variables Z1, Z2, Z3, ..., Zn and −Z1,−Z2,−Z3, ...,−Zn which do have negative covari-
ances. For more on this see Calzolari[5].
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6 Model and Simulation Technique for EC

There are several ways to go around measuring and handling worst case scenarios for
a credit portfolio. As stated in the introduction we have chosen an approach where we
estimate the EC the bank needs to hold to be protected from bad outcomes for the
credit portfolio. The technique investigated in this thesis is to first select a manner in
which to estimate the random variable L. Then select a suitable measure for EC that
depends on the distribution of L. At last we simulate the distribution of L in order to
extract the values needed for the EC estimate.

We wish to estimate EC in a consistent yet relevant manner. By a consistent estimate
of EC we mean an estimate that will grant a similar EC in two consecutive estimations -
all model parameters fixed. The model parameters will depend on the underlying market
and will thus change when the market conditions change. A consistent estimation of EC
would yield accurate thresholds when comparing EC from different market situations.
Should the estimate of EC change too much between two consecutive runs with identical
model parameters, this would cause a problem. More precise, the problem would occur
when comparing EC, after having updated the model to describe contemporary market
conditions. In such a situation, it would be hard to distinguish whether a change in EC
would have arisen from simulation inaccuracy or from an actual change in the market.

We do not, in any way, endeavour to find the ”best” estimate of EC. Thus our focus
is not on assessing the accuracy of EC itself. In fact, it would be very hard to determine
when a ”good enough” estimate of EC is obtained. A very consistent simulation of EC
would not, in itself, say anything about how true to reality the EC estimate actually
is. However, a consistent manner in which to simulate EC will set a good foundation
for viewing changes in EC between different market situations. So, how much should
EC be allowed to change between two consecutive simulations then? We do obviously
not crave a perfectly deterministic model, but the change in EC should not be too high.
The change in EC when using separate model parameters has to be much larger than
the potential variation in the estimate of EC when using the same market parameters.

When having decided upon some desired maximum change of EC there are several
ways to assure it is obtained. One way could be to make the simulation of the distribution
of L more precise. Another alternative is selecting a more smoothing estimate for EC.
A last improvement, before comparing EC values between different market situations,
is to use the same random variables in all evaluations. That is, simulating the random
variables in the model once and for all, then keeping them fixed throughout all different
evaluations. This would obviously yield a deterministic model, with a zero-variance in
the simulation of EC.
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6.1 Creating Credit Portfolio

In order to start evaluating the total credit risk, we need a proper definition of a credit
portfolio, P . The portfolio used in this thesis is created to inhibit suitable properties
in order to mimic a real credit portfolio used by a financial institution. The portfolio
defined, P , will be simulated and created once, then used throughout the whole paper.

We assume a portfolio P with N units. Each unit pi, for i=1,2,3,...,N, represents
one borrower or one exposure to default. Each exposure, pi, will have the following
attributes specified: EADi, LGDi and PDi. These are positive and deterministic for all
i. This is logical since PD is a probability which is always positive, EAD is the amount
of money lent form the bank to the third party and LGD is a share in percentage.

In credit portfolios used by financial institutions today, one exposure pi does not
always represent a single person’s or company’s loan. In fact it is common to accumu-
late a group of single loans then assign them as one borrower in the credit portfolio. In
these cases the single loans accumulated have roughly the same properties. Such as; the
probability of default, the industry they are exposed to and the country they are affected
by. This kind of accumulation has several benefits. First of all; assigning each and ev-
eryone of the single loans as one borrower would immensely increase the time it takes
to simulate EC. This since the credit portfolio, in this case, would consist of millions
of units. At the same time it would not, substantially, grant a more accurate estimate
of EC. Altogether it is much more manageable and efficient to densify the portfolio as
long as it is done mindfully.

In this thesis, the number of assets, N, is chosen to be 10 000. The number used
for N does not, however, reflect any specific bank. It is selected to operate in the same
order of magnitude as any standard bank. The PD and EAD values connected to each
borrower, are created to mimic how PD and EAD often are distributed in banks’ credit
portfolios see Figure 2 and Figure 3. The distribution of all PD in a credit portfolio often
looks roughly exponential. This is because most borrowers have low risks of defaulting
since only a few loans are granted to borrowers with a high PD. EAD is naturally very
correlated with the PD as only very stable borrowers with a small PD get very high
loans.

11



Figure 2: The figure shows a plot of the distribution of PD for the portfolio P . The dis-
tribution of PD is created to mimic the properties of a bank’s portfolio. Most borrowers
have a low PD. PD reaches from 0,0003 to 0,25.
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Figure 3: The figure shows a plot of the distribution of EAD for the portfolio P . The
distribution of EAD is created to be very correlated with PD as this is often the case
in a bank’s portfolio. A low value of PD corresponds to a high value of EAD. EAD
reaches from 5 ∗ 104 to 2, 56 ∗ 107.

6.2 Selecting Model for Total Loss

Regardless of what exact measurement is used to evaluate EC, we need to find a manner
in which to estimate the stochastic variable L. The formula for total loss is specified in
Equation (4). Using this formula we obtain the total loss for the portfolio P to be as in
Equation (19).

L =

N∑
i=1

EADi · LGDi ·Di (19)
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It is clear form Equation (19) that in order to estimate L we need to define a method
for determining Di for each borrower pi. That is, determining whether or not a certain
borrower will default.

6.2.1 Assessing Default for Borrower

We want to find a way to determine the stochastic variable Di, see Equation (2). We
want Di to take value 1 if borrower pi delfault, and 0 otherwie. An important criteria
for each Di is for its expected value to be PDi; E[Di] = PDi.

The way we will determine Di in this thesis is to first create a borrower specific
variable Xi. This variable should reflect a measure of the financial well-being of the
corresponding borrower. Then, in an adequate manner, Xi is compared to PDi, the
probability of default for that same borrower. In this thesis Xi is created to have a
distribution that is standard normal, thus we can easily construct a function of PDi as
a threshold for default. Each borrower, pi, is said to have defaulted if Xi < φ−1(PDi),
where φ−1 is the inverse CDF of the normal distribution. See Equation (20).

Di =

{
1, if Xi < φ−1(PDi)
0, if Xi ≥ φ−1(PDi)

(20)

pi will default if Di = 1 and not default if Di = 0. We need to confirm that each Di

will also fulfill the criteria mentioned above, E[Di] = PDi. See Equation (21) for this
estimation.

E[Di] = 1 · P [Xi < φ−1(PDi)] + 0 · P [Xi ≥ φ−1(PDi)]
= 1 · PDi + 0(1− PDi)
= PDi

(21)

The formula for total loss, as seen in Equation (19), can now be updated to Equation
(22).

L =

N∑
i=1

EADi · LGDi · I(Xi < φ−1(PDi)) (22)

Where I(·) is the idicator function. I(·) takes the value 1 if the statement inside the
brackets occurs and 0 elsewise.
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As mentioned above, we have chosen to create all Xi to be stochastic standardized
normal variables. Yet the only restraint on the distribution of Xi is, in fact, for it
to be known. Both Equation (20) and (21) could have been constructed in a similar
manner would Xi have had an other, known, distribution. The only modification of the
equations would have been a substitution of φ to the other, known, distribution. We
selected a standard normal distribution since it seemed like a natural choice and it was
straight forward to construct. We didn’t see any particular reason to why some other
more complex distribution for Xi would improve the estimate of Di.

6.2.2 Constructing Xi

From the previous section we learnt that in order to find all the values Di we need to
construct and estimate Xi for each borrower. We wish for the value of Xi to reflect
the financial well-being of the corresponding borrower. Hence, it seems reasonable to
create Xi to somehow be affected by the market conditions observable at the moment.
Doubtlessly, there are many ways to accomplish this.

In this thesis, we have settled on an approach using country and industry indices
connected to each borrower. Correlations between market indices tend to increase dur-
ing a crisis. A consequence of a crisis is also a higher systematic risk for the borrowers
affected by it. Hence, we want the model to be built in such a way that a high cor-
relation between indices connected to a borrower will increase the systematic risk for
that borrower. More precise we want the probability of Xi < φ−1(PDi) to increase the
higher the correlation between the country and the industry connected to pi is. We have
access to data over performance indices for 13 countries and 23 industries. This makes
a total of 36 indices. However, each borrower will be assigned two of these 36 factors.
One country index and one industry index. The indices chosen for every exposure pi are
the ones that are believed to influence the specific borrower the most.
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Figure 4: The current market situation is believed to affect both the correlations between
performance indices on the market as well as the systematic risk of the borrowers affected
by the market. We use this fact to model the systematic risk as if it was directly affected
by the correlations between indices. See the dashed line.

As a first step towards creating Xi, we create a variable ri for each borrower. The
outcome of each ri should be affected by the correlation between the country and in-
dustry index for the corresponding borrower pi. When constructing ri, a multi-factor
Merton model is used. Since we have 36 factors, the model is a 36-factor-model. How-
ever, only two factors for each ri will have non-zero corresponding parameters. See αik
in Equation (10). This results in a 2-factor-model for each measure ri. The model for
each ri is stated in Equation (23).

ri =
√
R2 (wIIi + wCCi) +

√
1−R2 ei (23)

The residual ei corresponds to the idiosyncratic risk which is an asset specific zero
mean unit variance residual independent from Ci and Ii. Ci and Ii are simulated to be
normal variables with a correlation corresponding to that between the indices for bor-
rower pi. We will explain more exactly how the indices are simulated in Section 6.2.4.

The correlation between the indices is now obviously incorporated in the model. How
do we know that a high correlation between indices connected to a borrower will in fact,
grant a higher systematic risk for said borrower? When viewing the model it is rather
obvious that this will be the case. A high correlation between the indices C and I will
increase the variance of ri. The higher variance will in turn increase the probability that
Xi is small enough to cause a default for borrower pi.

To read more about general traits of a factor model, we refer you to the theory
chapter. The specific factor model used in this thesis is, a part form a few changes,
similar to the one stated by Pykhtin[14]. Pykhtin used an n-factor Merton model with
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n independent factors. In this thesis we will have a total of 36 factors which will all
be correlated. Since our factors are correlated, our model is in some sence more similar
to the one used by Garćıa Céspedes and Garćıa Mart́ın[8]. In our case a model with
correlated indices was believed to be the most natural approach. This as industries and
countries are highly correlated economically which will probably affect the outcome of
borrowers affected by them.

Using ri straight off, would grant a measure of the financial well-being for each bor-
rower. It is not, however, normalized and thus not comparable to the inverse CDF of
PDi in any logical manner. To convert all the ri to normalized variables Xi, each ri is
divided by its standard deviation as in Equation (24).

Xi =
ri√

2R2wIwCρi + (1−R2) +R2(w2
I + w2

C)
(24)

The returns now have a unit variance and we assign this result to the stochastic
variable Xi. Knowing Xi enables us to compare it to the threshold φ−1(PDi), as in
Equation (20). This in turn, will enable us to obtain all Di needed in order to estimate
the total loss as in Equation (19).

6.2.3 C and I - Data

As mentioned in the previous section, the correlation between Ci and Ii are incorporated
in the model to capture the market conditions observable at the moment.

C and I are mutually correlated which is intuitive as industries and countries have a
natural impact on each other in the economy. The correlation corresponds to the corre-
lation between the different countries and industries according to public macro economic
Morgan Stanley indices. The data is displayed in Figure 14.
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Figure 5: Here we can see all the 36 Morgan Stanley indices with 96 observations each
from 2007/12/31 - 2015/11/31, plotted in one figure. The economic crisis in 2008 is
clearly visible around index 10 on the time axis.

6.2.4 C and I - estimation

As stated above, C and I are created to be zero mean and unit variance random vari-
ables. We also need to assure all C and I are correlated according to the right correlation
matrix. A Cholesky decomposition is used for creating all Ci and Ii as well as assuring
they fulfill the above stated requirements.

In comparison with the theory chapter describing Cholesky decomposition, in this
thesis the original matrix A is the n×n correlation matrix for all the n indices, C and I.
We perform a Cholesky decomposition of A to find the root matrix L. Having found L,
the estimates of Ci and Ii are constructed as Lε where ε is a n×1 vector with identically
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independent normally distributed, IIND, elements. Why this construction will grant
the estimates the desirable properties is described in theory Section 5.5, see Equation
(16).

An important observation at this stage is that all market variables are incorporated
in I and C. Thus updating the model when new market data becomes available, will
solely mean an update of all I and C. Since I and C are generated from the correlation
matrix A, this will mean an update of the correlation matrix A.

6.3 Selecting EC measure

We need the value of EC to be high enough so that the risk of loosing more than
EC is minimal. Well what is minimal? This varies from what standard the financial
institution chooses to use. Basel II, the international capital requirement law supervised
by Finansinspektionen, suggests a V aR-level in the 99,96% - 99,98% interval. In this
thesis we have decided to create EC in such a way that the V aR is at least at a 99,97%
level. The next step is selecting how we should measure EC.

EC = V aRα[L]− E[L] (25)

EC = ESα[L]− E[L] (26)

Should the V aRα or the ESα quantile be used to reassure that the risk of loosing
more than EC is minimal? See Equations (25) and (26). In this thesis the V aRα quantile
will be used as this is believed to give more robust results when the model is updated.
Outliers might induce a higher variance for the ESα quantile than for the V aRα quantile.
This as the ESα quantile is a mean of the tail losses of the distribution. We select the
EC measure in Equation (25) since this will most certainly cause a smaller change of the
EC estimate between runs using fixed market parameters.

6.4 Simulating Total Loss Distribution

Since L, see Equation (19), is a stochastic variable, it will not land on exactly the same
value every time it is estimated. In this section we select a technique to simulate the
distribution of L. Regardless of what measure of EC we pick, the distribution of L will
always be needed. This since EC will always contain some probability operation on the
distribution of L, such as E[L], V aRα[L] or ESα[L]. Hence a proper simulation of the
distribution of L is a fundamental part in estimating EC.

As discussed in the introduction to this chapter we need the estimates of EC to be
somewhat consistent. L itself and the simulation of its distribution is the only stochastic
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contribution towards the value for EC. Thus it is important to obtain minimal variance
in the simulation of the distribution of L. The distribution should not change too much,
should we evaluate it two times using the same market data.

The approach that will be used when simulating the distribution of L and later ex-
tracting EC, is a Monte Carlo simulation. The exact amount of Monte Carlo simulations
needed will be evaluated in 6.4.2. Obviously a larger amount of simulations will grant a
more precise estimate of the true distribution for L. We will also investigate the use of
antithetic variables, to minimize the simulation variance further.

It is hard to evaluate if the simulation of L is accurate enough just by viewing the a
histogram of the results. We can, however, easily evaluate the value of the EC estimate.
Thus we chose to observe EC in the following evaluations and in this manner decide
when the simulation of L is ”good enough”. This is in fact a very logical approach, since
the value of EC is the outcome that the bank is fundamentally interested in.

6.4.1 Accuracy Demands for Simulation of L

In order to decide what accuracy we should demand for the simulation of EC, we need
to get an idea of what EC value magnitude we are dealing with. For this sake a smaller
trial estimation is made. This using correlation matrices from 5 different time intervals.
Knowing approximately how big we can expect EC to be using the different market
variables, will give us a hint of how consistent the simulation technique has to be.

20



Figure 6: Each line shows the average EC level for the corresponding time interval. Each
level is calculated from 10 EC simulations using a very basic Monte Carlo simulation of
1 million samples.

We decide a demand, for the accuracy of the EC simulation, based on the smallest
EC estimate. As seen in Figure 6 this is obviously the one around the value 1,63·109.
For each evaluated simulation technique, EC will be simulated a large number of times.
By the law of large numbers, this will roughly yield a normal distribution among the
EC outcomes. As an accuracy demand we crave that 2 standard deviations of the EC
outcomes for a certain simulation technique, should be a maximum of 1% of 1,63·109.
Se Equation (27)

2 · σ ≤ 16, 3 · 106 (27)

We will evaluate the performance of three different simulation techniques in the fol-
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lowing chapter.

6.4.2 Empirical Testing of Simulation Techniques

We want to evaluate the accuracy of the simulation technique for L and EC. The
simulation technique we select should fulfill the accuracy demands specified in 6.4.1,
Equation (27). Three different versions of a Monte Carlo simulation will be evaluated.
These evaluations will be done in an empirical manner, where trial simulations for each
technique is done 40 times. When doing these trial simulations, we will use all the data
available. The Simulation techniques investigated are specified below;

• Simulation Technique 1: 2 millions Monte Carlo runs

• Simulation Technique 2: 2 millions Monte Carlo runs - using antithetic variables

• Simulation Technique 3: 10 millions Monte Carlo runs - using antithetic variables

For each round k in the Monte Carlo Simulations, the statistic variable sampled is
the total loss L. See Equations (28) and (29).

Lk =

N∑
i=1

EADi · LGDi · I(Xik < φ−1(PDi)) (28)

Where Xi is the only stochastic part that will change for each Monte Carlo Sample.
See Equation (29).

Xik =

√
R2 (wIIik + wCCik) +

√
1−R2 eik√

2R2wIwCρi + (1−R2) +R2(w2
I + w2

C)
(29)

After this the corresponding estimate of EC is easily extracted as in Equation (25).
In Table 1 the standard deviation, 2 standard deviations and the mean are summarized
for each simulation technique.
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1 Standard
Deviation

2 Standard
Deviations

Mean

Simulation Technique 1:
2 millions MC

9,15·106 18,3·106 17844·105

Simulation Technique 2:
2 millions MC antithetic

8,105·106 16,21·106 17813·105

Simulation Technique 3:
10 millions MC antithetic

3,534·106 7,068·106 17833·105

Table 1: The table displays trial simulation measurements for the three different simula-
tion techniques; 2 million Monte Carlo runs, 2 million Monte Carlo runs with antithetic
variables and 10 million Monte Carlo runs with antithetic variables.

Our demand from Section 6.4.1 was that 2 standard deviations, of the simulation
technique, should be less than 1% of 1,63·109. That is less than 16,3·106. The empirical
testing has resulted in two simulation techniques that are good enough to meet this suf-
ficiency demand. Simulation technique 2 and simulation technique 3.

Not surprisingly the simulation technique chosen is Technique 3. The one using 10
million Monte Carlo samples selected in an antithetic manner. Nevertheless, technique
2, the one using 2 million Monte Carlo samples selected in an antithetic manner per-
formed over our expectations. This technique did also fulfill the demands, although with
a much smaller marginal than technique 3. Since technique 3 performed overall better
than technique 2, and yet is fast enough to run, it is the obvious choice as our final
simulation technique.

A last step, towards perfecting the consistency of the EC simulation, is to fix the
random variables used in the Monte Carlso simulations. More precise, we fix the manner
in which the random numbers are drawn. This will assure a zero variation of the EC
estimate, when using a fix correlation matrix to simulate the model variables. this will
make it easy to quantify exactly how much a change of the underlying model parameters
- the values of the correlation matrix A - have affected the EC estimate.

We have now selected a final simulation technique that will be used for estimating EC
throughout this thesis. We will use 10 million Monte Carlo simulations, with antithetic
variates and fixed random variables.

6.5 Summary for EC Estimation

We will now summarize the technique we have chosen to estimate EC. The total loss L,
for the credit portfolio, is described by Equation (30).
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L =

N∑
i=1

EADi · LGDi · I(Xik < φ−1(PDi)) (30)

Where Xi is described in Equation (31).

Xi =

√
R2 (wIIik + wCCik) +

√
1−R2 ei√

2R2wIwCρi + (1−R2) +R2(w2
I + w2

C)
(31)

This gives us a total function for L, as in Equation (32).

L =

N∑
i=1

EADi · LGDi · I(

√
R2 (wIIik + wCCik) +

√
1−R2 ei√

2R2wIwCρi + (1−R2) +R2(w2
I + w2

C)
< φ−1(PDi))

(32)

At the next stage the stochastic variable L is simulated, in order to obtain its dis-
tribution. This is done using a Monte Carlo technique using 10 million samples and
antithetic variates. Exactly what parts of L that are stochastic, and thus will be up-
dated between the Monte Carlo runs, is shown in Equations (28) and (29). At last the
estimate of EC is easily extracted from the obtained distribution of L, as in Equation
(25).

An example of an execution of the total procedure is shown in Figure 7.
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Figure 7: Monte Carlo simulation of the total loss for the credit portfolio constructed in
6.1. The simulation is performed using 10 million Monte Carlo samples with antithetic
variates. The simulations are presented as a histogram in blue. The yellow line represents
the EL and the red line represents the 99,97% quantile of the sampled losses. The EC
is calculated as the 99.97% quantile - the EL.

In the next chapter we will go on evaluating how EC might change as the market
conditions change and an update of EC is necessary.
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7 Updating EC with new Model Variables

In this chapter we will evaluate how EC changes as market conditions change. The
main goal is to investigate and possibly increase the robustness of EC. A big change in
EC is in general not preferable for financial institutions, as it might cause a variety of
practical problems. At the same time it is necessary for financial institutions to update
EC as new market data becomes available. The controversy between the preference of
keeping EC stable and the necessity to have an up-to-date value of EC, is why we want
to attempt to increase the robustness of EC.

The method used for estimating EC is the one derived and discussed in chapter 6. At
first, the multi-factor model is used to obtain the stochastic variables ri describing the
financial well-being of each borrower. Each ri is then converted into a normal standard-
ized variable Xi which is compared to the corresponding threshold φ−1(PDi). Borrower
pi is said to have defaulted if Xi < φ−1(PDi). If a certain borrower pi defaults, the
corresponding loss for that borrower will be LGDi·EADi. To obtain the total loss value
for the whole credit portfolio, the possible losses for each exposure of the portfolio are
added up.

The total loss for the credit portfolio will be a stochastic variable and in order to
simulate its distribution a Monte Carlo technique is used. The Monte Carlo simulation
is run 10 million times including the antithetic variates that are used to reduce variance
in the simulation results. Having all the possible outcomes of the total loss will enable
us to calculate statistical properties that are needed in order to estimate the EC. Also,
the outcomes plotted as a histogram will give us a clear picture over the distribution of
the total loss. It is concluded that the distribution is similar to what one could expect
of a loss distribution for credit portfolios to most banks. An example of an execution of
this procedure is shown in Figure 7.

7.1 Setup for Updating EC

When the model is updated after a certain time interval this is done by updating the
correlation matrix with the new data estimating EC as described above. This will make
the V aR99,97, the red line in Figure 7, change value. We will now take a look at how
much the EC will change between evaluations using different correlation matrices. The
standard test procedure throughout this thesis will be the simulation technique described
above with data over a time period of 16 years with monthly observations.

7.1.1 Selecting Time Intervals

The time window for computations of each correlation matrix will be 8 years. The
interval was chosen as it is believed to give a good representation of the market behavior
including different business cycles in the market and at the same time not be long enough
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to include old and irrelevant data. The time frequency for updating the correlation
matrix will be 2 years. A higher frequency would have given less changes in the updates
and as we want to visualize and study these changes 2 years seemed like an appropriate
frequency. Updating the correlation matrix even more seldom would have given a less
realistic result as that is a very low frequency for updating a credit risk model for any
bank. This setting gives us 5 different correlation matrices and a plot of the changes in
EC between the updates can be seen in Figure 8.

7.2 Updating EC without Modification

Figure 8: The plot displays the EC levels for the 5 different correlation matrices.
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7.2.1 Possible Improvements

For a bank it can be hard to motivate variations of EC of this magnitude and therefore
we will now try to slightly alter the way we update the value of the EC. Four major
approaches will be used to try to decrease these fluctuations of the EC:

• Weighting of the correlation matrices

• Bootstrapping the correlations

• Estimating the correlation matrix with a multivariate GARCH process

• Standardizing the data with the volatilities from the GARCH process and then
bootstrapping

7.2.2 Performance Tests

To evaluate and compare the performance of each possible updating method we need to
establish some performance tests. The tests we select should somehow be correlated with
the robustness of EC between updates. This since the robustness is essentially what a
bank wishes to improve when it comes to EC updates. The tests will be calculated for
all the approaches.

• Spread
By this performance test we wish to capture the overall range covered by EC from
all five time ranges. The Spread for a certain update technique is defines as; [High-
est EC Level - Lowest EC Level]/reference level. The reference level is set to be
the lowest EC level for the original update method.

• Percental change between updates
This performance test is used to capture the percental change between two consec-
utive EC calculations.

• Average percental change
This is, as the name suggests, an average of the four percental changes when EC
is calculated.

• # Updates
This performance test describes how many times the value of EC is updated during
the four updates of the model.

In Table 2 we can see the performance test measurements for the original method.
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Spread Change
1-2

Change
2-3

Change
3-4

Change
4-5

Average
Change

# Updates

Original
Correlation
Matrices

26,1% 20,2% 2,6% 1,6% 0,6% 6,3% 4

Table 2: The table shows the measurements used for performance testing for the model
run with the original correlation matrices.

In Table 2 we can see that with a V aR99,97, the spread interval of the EC levels
corresponds to 18,9% of the reference level. The biggest jump of the value of the EC is
14,7% and the average change is 4,6%.

7.3 Approach 1: Weighting of the Correlation Matrices

The first approach to reduce the variations of the EC when the model is updated is
to use a weighted correlation matrix Cwt

that consists of a weighting with a parameter
λ ∈ [0,1] of the old correlation matrix Ct−1 and the new correlation matrix Ct. As the
first correlation matrix does not have a previous matrix to create a weighted correlation
matrix with, this first matrix will be kept like Ct as it was in the original procedure.
When weighting the other 4 matrices only the original matrices Ct will be used and not
the previous weighted matrix Cwt−1 as this would accumulate old data in the weighting
procedure.

Cwt
= λCt−1 + (1− λ)Ct (33)

This technique will hopefully cause a smoother transition of the correlations and
decrease the variations in the model, giving smaller changes of the V aR99,97 between
the updates. Implementing this technique in the model using weighting parameters
λ = 0, 3, λ = 0, 5, λ = 0, 7 gives us the following results of the EC levels:
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Figure 9: The plot compares the EC levels for the 5 weighted correlation matrices using
weighting parameters λ = 0, 3, λ = 0, 5, λ = 0, 7.

In this study a λ = 0, 5 will be used, weighting half of two consecutive matrices
together. The value of λ could of course be changed but a smaller λ would focus more on
the new matrix Ct than the old matrix Ct−1 and make the model less robust. A higher
value of λ would focus more on the old matrix, making the model more robust but less
realistic as the correlations would not really reflect the true values. How the EC levels
are affected by the value of λ can be seen in Figure 9 above.
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Figure 10: The plot compares the EC levels between the approach of using the original
correlation matrices and the approach of using weighted correlation matrices with λ =
0, 5. It is obvious that using weighted correlation matrices gives smaller jumps between
the updates of the correlation matrices.

Spread Change
1-2

Change
2-3

Change
3-4

Change
4-5

Average
Change

# Updates

Approach 1
Weighted
Matrices

25,9% 10% 10,5% 2,4% 1,1% 6% 4

Table 3: The table shows the measurements used for performance testing for the model
run with the weighted correlation matrices.

In Figure 10 we can clearly see that using weighted correlation matrices while updat-
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ing the model gives smaller jumps between the updates. The biggest jump corresponds
to a change of 7,6% compared to 14,7% with the original correlation matrices. However
after the total of 4 updates we still land at approximately the same value for EC for
both approaches so they have roughly the same spread, 18,9% for the original model
and 18,7% for the weighted approach. This means that the approach of using weighted
correlation matrices does smooth out the difference between each update but it does not
lower the total magnitude of all the updates very much.

7.4 Approach 2: Bootstrapping the Correlations

A financial institution like a bank would prefer not to move assets around at all if possi-
ble. One approach that would address this preference is the one of bootstrapping. The
idea is to bootstrap the correlations of the old correlation matrix creating a distribution
for every correlation in the matrix. All the correlations in the new correlation matrix is
then compared to the old distributions. If the new correlation is outside of a certain two
sided confidence interval of the distribution, that specific correlation is updated in the
correlation matrix. We will use a 5% and a 95% quantile for this purpose. If the new
correlation is within the interval inside the quantiles of the distribution, the new corre-
lation is simply considered to be too similar to the old one and that specific correlation
is then not updated.

Creating the correlation distributions has to be done separately for all the index
pairs. Since we use 36 unique indices, we will get (36 · 35)/2 index pairs to estimate
the correlation distribution for. This is done by drawing data equivalent to 8 years of
measurements randomly with replacement for every index. When drawing the 8 years of
data, the data is drawn in blocks of one year of measurements to erase the possibility of
missing periodic correlations. The correlation between the indices is then computed as
usual. This is called one bootstrap and the procedure is repeated 10 000 times, creating
nice distributions for every index pair correlation.
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Figure 11: The figure shows a histogram of bootstrapped correlations between two in-
dices. The green line represents the original estimate of the correlation and the two red
lines represent the 5% and the 95% quantiles of the confidence interval.

When trying to implement this theory in practice we ran into a problem. When we
bootstrap the correlation matrices and swap the correlation elements that are outside
of the quantiles for new correlations, we also destroy the delicate properties of the cor-
relation matrix. A symmetric correlation matrix C is by default positive semidefinite
as:

xT C x ≥ 0 (34)

for all non zero vectors x of real numbers.

When we swap some of the elements in the correlation matrix this is however no
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longer true. Hence the matrix is no longer by default positive semidefinite and the
Cholesky decomposition can no longer be executed, see sections 5.5 and 6.2.4. If the
Cholesky decomposition cannot be executed, we cannot create the correlated random
variables C and I and we can therefore not run the model. To go around this problem
the bootstrapping approach was slightly altered. The new execution method will be to
bootstrap the correlations as described before and count the number of correlations in the
update that are outside of their quantiles. If the number of correlations that are outside
the quantiles is larger than a certain value, the whole correlation matrix will be updated.
We will use a two sided confidence interval of 90% with a 5% and a 95% quantile. The
null hypothesis in this case states that the correlation will not change with the relaxation
that 10% of the correlations are allowed to be outside of the quantiles. If more than 10%
is outside, the null hypothesis has to be rejected and the full correlation matrix has
to be updated. When the new correlations are compared to the previous bootstrapped
correlation distributions, they are always compared to the correlation distributions of
the correlation matrix that initiated the last update of the value of EC.

Update 1 2 3 4
Percentage Outside Quantiles 51 7,9 16,8 5,7

Table 4: The table shows the percent of the correlations that are outside of their boot-
strap quantiles for the four correlation matrix updates.

In Table 4 we can see that update 1 and 3 have a percentage of correlations outside of
the quantiles big enough to reject the null hypothesis. Hence, the result of this approach
would be to update the correlation matrix between the first and the second run, and
between the third and the fourth run. We can see the results of these updates in Figure
12.
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Figure 12: The plot compares the EC levels between the approach of using the original
correlation matrices and the approach of using bootstrapped correlation matrices. This
gives a more stable model in the sense that the value of EC is updated with a lower
frequency.

Spread Change
1-2

Change
2-3

Change
3-4

Change
4-5

Average
Change

# Updates

Approach 2
Bootstrapped
Correlations

25,3% 20,2% 0% 4,3% 0% 6,1% 2

Table 5: The table shows the measurements used for performance testing for the model
run with the bootstrapped correlation matrices.
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We can see in Figure 12 and Table 5 that the bootstrapped correlation matrices
approach has about the same spread, biggest change, and average change as the model
run with the original correlation matrices. It is however more robust in the sense that it
does not update the value of EC as often as the original method.

7.5 Approach 3: Estimating the Correlation Matrix with a Mul-
tivariate GARCH Process

As argued before, simply updating the correlation matrix normally does not give a per-
fectly robust model. Another way of updating the correlation matrix that might be
more robust is using a multivariate GARCH model. In this thesis a multivariate con-
stant conditional correlation GARCH model was used to extract the constant correlation
matrix that supposedly could replace our old correlation matrix. This GARCH model
would standardize the volatilities in the data over time, hopefully giving more stable
correlations between the model factors. Kevin Sheppard’s MFE Toolbox[15] for matlab
was used to compute the conditional correlations using the cccmvgarch function. The
output from this function is the conditional covariance matrix Ht described in the theory
above, which changes over the time t. The constant correlation matrix CC can then be
extracted as:

CC = D−1t HtD
−1
t (35)

where D is a diagonal matrix with the conditional standard deviations on the diago-
nal.

An important note here is that we are trying to estimate the changes in the correlation
matrix by using a method that assumes that the correlation matrix is constant. This is
somewhat contradictive but by assuming that the correlation matrix is piecewise constant
on the intervals we used to create the original correlation matrices, we still believe that
the model could produce interesting results.
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Figure 13: The figure compares the EC levels between the approach of using the original
correlation matrices and the approach of using constant correlation matrices. We can
see that the EC levels produced with the constant correlation matrices are spread over
a smaller interval than the EC levels produced with the original correlation matrices.

Spread Change
1-2

Change
2-3

Change
3-4

Change
4-5

Average
Change

# Updates

Approach 3
Constant
Conditional
Correlations

19,9% 13,1% 2,8% 3,1% 0,7% 4,9% 4

Table 6: The table shows the measurements used for performance testing for the model
run with the constant correlation matrices from the CCC GARCH.
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As we can see in Figure 13 the EC levels produced with the constant correlation
matrices are spread over a smaller interval than the EC levels produced with the original
correlation matrices. The spread interval of the constant correlation matrix approach
corresponds to 14,4% compared to 18,9% for the original matrix approach. For the
constant correlation approach we have a biggest change of 9,6% between consecutive
runs compared to 14,7% for the model with the original matrices. Also the average
change is much lower with 3,6% compared to 4,6%. Another interesting fact to notice is
that the value of EC now is higher for interval 4 than for interval 5, while for previous
approaches it was the other way around.

7.6 Approach 4: Standardizing the Data with the Volatilities
from the GARCH Process and then Bootstrapping

If we take a look at the plotted data it looks like this:
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Figure 14: Here we can see all the 36 Morgan Stanley indices with 96 observations from
2007/12/31 - 2015/11/31, plotted in one figure. The economic crisis in 2008 is clearly
visible around index 10 on the time axis.

We can see that there is an obvious common trend in the data’s volatility. In turbulent
times in the economy, like the crisis in 2008 around index 10 on the x-axis in Figure 14,
data seems to be perfectly correlated. This is however an effect caused by macroeconomic
events. It is also somewhat unclear to take the correlation between two time series when
their volatilities change over time. A way to get an intuitively more accurate estimate of
the indices internal correlations would be to standardize the indices with their conditional
volatilities. These conditional volatilities can be extracted from the same multivariate
CCC Garch model that was used in the previous section. After standardizing the data
we will hopefully get a more accurate result while bootstrapping for the uncertainty of
the correlation matrix and get better estimates for the distributions of the correlations.
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Figure 15: Here we can see all the 36 standardized Morgan Stanley indices with 96
observations from 2007/12/31 - 2015/11/31, plotted in one figure. Now the volatility is
more even through time amongst the different indices.

The indices are standardized for every time t by dividing with the conditional volatil-
ities, the standard deviations, for every index at time t. The volatilities, D, are extracted
from the conditional covariances, Ht, which are an output from the cccmvgarch method
described in the previous approach.

Dt =
√
diag(Ht) (36)

The correlations are then computed with the standard correlation function like in
the first two approaches combined with the bootstrap scheme that we used in approach
2. Once again we use a 90% confidence interval with 5% and 95% quantiles of the boot-
strapped correlations to decide whether to update the correlation matrix or not. Meaning
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that a maximum of 10% of the correlations are allowed to be outside of the quantiles for
the null hypothesis not to be rejected. We get the following table of correlations that
are outside of the quantiles for the four updates:

Update 1 2 3 4
Percentage Outside Quantiles 37 8,4 20 9,8

Table 7: The table shows the percent of the correlations that are outside of their boot-
strap quantiles for the four correlation matrix updates.

In Table 7 we can see that once again only update 1 and 3 have a percentage of corre-
lations outside of the quantiles big enough to reject the null hypothesis. As for approach
2 the result of this approach would be to update the correlation matrix between the first
and the second run as well as between the third and the fourth run.
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Figure 16: The figure compares the EC levels between the approach of using the original
correlation matrices and the approach of using standardized bootstrapped correlation
matrices. We can see that the EC levels produced with the standardized bootstrapped
correlation matrices have a lower spread, lower biggest change and lower average change
than the EC levels produced with the original correlation matrices.

Spread Change
1-2

Change
2-3

Change
3-4

Change
4-5

Average
Change

# Updates

Approach 4
Standardized
Bootstrapped
Correlations

20,6% 13,8% 0% 6,1% 0% 5% 2

Table 8: The table shows the measurements used for performance testing for the model
run with the standardized bootstrapped correlation matrices.
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In Figure 16 and Table 8 we can see that the standardized bootstrapped correlation
matrices approach has relatively small values of the spread, the biggest change and the
average change with 15%, 10,2% and 3,7% compared to 18,9%, 14,7% and 4,6% for the
original method. It is also robust in the sense that it only updates the value of EC twice.

7.7 Summary Results

Figure 17: The figure shows a summary of the EC levels of all the four approaches
compared to the model with the original correlation matrices.
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Spread Change
1-2

Change
2-3

Change
3-4

Change
4-5

Average
Change

# Updates

Original Correla-
tion Matrices

26,1% 20,2% 2,6% 1,6% 0,6% 6,3% 4

Approach 1
Weighted Matrices

25,9% 10% 10,5% 2,4% 1,1% 6% 4

Approach 2
Bootstrapped
Correlations

25,3% 20,2% 0% 4,3% 0% 6,1% 2

Approach 3
Constant Condi-
tional Correlations

19,9% 13,1% 2,8% 3,1% 0,7% 4,9% 4

Approach 4
Standardized
Bootstrapped
Correlations

20,6% 13,8% 0% 6,1% 0% 5% 2

Table 9: The table shows the measurements used for performance testing for all the four
approaches and the original method.
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8 Conclusion

The conclusion that can be drawn after testing the four different approaches is that they
all outperform the model simply using the original correlation matrices when it comes
to robustness. We shall now discuss and compare the results between the different ap-
proaches.

Approach 1 with the weighted correlation matrices is the most effective when it comes
to smoothing out big jumps between the updates. It is on the other hand not as effective
at minimizing the total magnitude of the spread of the EC levels and had about the
same average change of the EC levels as the original method. Another positive feature
with this approach is that it is very intuitive and easy to implement.

The approach that at first sight seems to be the overall most robust is approach 3,
using constant correlation matrices. It has the lowest measurement values for the spread,
the biggest change as well as the average change. The approach does have a relatively
strong reaction to the economic crises in the first update but is overall robust between
the updates due to the standardization of the volatilities of the data over time. And
maybe a strong reaction to such a severe crisis is not a bad thing as a crisis of this
magnitude does have a major impact on a bank. The problem with this approach is that
it always updates the model even if the change of the EC might be small and unnecessary.

The bootstrapping approaches did not turn out as expected as we were not able to
update single correlations in the correlation matrices due to problems with the Cholesky
decomposition. The alternation of the bootstrap approaches did however turn out to
be even better. With these slightly altered approaches we got a threshold method that
prevented an update if the change in the correlations between the time intervals was
unnecessarily small. From a bank’s perspective that is a very desirable feature of a
credit risk model as the bank does not want to make small unnecessary changes of the
EC. The bootstrap approach with the original data did not except for the low update
frequency impress much on the spread, the biggest change or the average change. The
bootstrap approach with the standardized data did however like the constant conditional
correlation approach provide a very low spread, a low biggest change and a low average
change.

Depending on the aim for the user utilizing this credit risk model, different approaches
could be preferred. For the purpose of implementing a credit risk model for a bank we
would however argue that approach 4 with the combination of standardized data and
the bootstrap method is the most useful. The approach combines the low spread, the
low biggest change and the low average change with few unnecessary updates, which
makes a very effective model for this purpose. The different approaches could also
be mixed and used simultaneously for desired results. As an example, using both the
weighting approach and the standardized bootstrapped approach would probably give
even smoother and more robust results.
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9 Final Recommendations for EC calculation

In this section we will give a final recommendation of how to determine and update the
economic capital - EC. Our recommendations are based on our findings in this thesis.

• Each EC calculation is made with the technique derived in chapter 6 and summa-
rized in Section 6.5.

• EC is updated every 2 years. When calculating the correlation matrix needed for
the model, 8 years of retroactive data with monthly observations is used.

• When updating the correlation matrix, the technique described in approach 4 in
Section 7.6 is used. First standardizing the data with the conditional volatilities
extracted from a multivariate GARCH process. Then estimating the correlation
matrix like in the original method. And at last deciding whether or not to update
using a bootstrap technique.

See Figure 16 of how the recommended technique performs compared to the original
technique. By the original technique we refer to a technique where the correlation matrix
is calculated in a classical manner.

The recommended approach did very well in the experiments in this thesis and out-
performed the original method by far when it comes to robustness of the calculation of
EC. It has overall smaller changes in EC between updates. The smaller changes are
however not due to a failure to capture market conditions. On the contrary we believe
that approach 4 actually captures the ongoing market conditions better than the origi-
nal technique. This is due to the standardization of the data with the GARCH process,
which gives a more robust and intuitive measurement of the correlations between the
indices. The approach also has the nice feature of reducing noise in the calculations of
the EC as the bootstrap technique effectively prohibits small irrelevant changes.
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10 Further Discussions

10.1 Related Topics

We will here discuss some additional topics we would have found interesting to investi-
gate if we had the time.

Why is a multi-factor model using only one country index and one industry index the
best choice for creating a credit risk model? Of course a variety of different models could
have been used. A three factor model with one country index and two industry indices
would probably have been more accurate. It is however a trade off as the complexity of
the correlation matrix and the computations would have increased greatly.

Though not a part of the aim in this thesis, an interesting topic to investigate is
perfecting the actual value of EC. As focus in this thesis has been investigating how
EC changes, and how the robustness of EC might be increased, we have not in depth
discussed the accuracy for the value of EC itself. Then again an exact value of the EC
can never be found as EC is defined by the creator of the model.

Life is like a small magical creature, beyond the horizon, ’neath a rainbow[17]
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