
Massively Parallel BVH Construction
Using Mini-trees

Erik Nossborn

MASTER’S THESIS | LUND UNIVERSITY 2016

Department of Computer Science
Faculty of Engineering LTH

ISSN 1650-2884
LU-CS-EX 2016-34

Massively Parallel BVH Construction
Using Mini-trees

Erik Nossborn
erik@nossborn.se

June 19, 2016

Master’s thesis work carried out at
the Department of Computer Science, Lund University.

Supervisor: Per Ganestam

Examiner: Michael Doggett, michael.doggett@cs.lth.se

mailto:erik@nossborn.se
mailto:michael.doggett@cs.lth.se

Abstract

The Bounding Volume Hierarchy is an acceleration data structure used in ray
tracing, allowing for faster intersection tests between rays and triangles. The
goal of this thesis was to take one algorithm for rapidly generating such data
structures, the Bonsai algorithm, which was initially implemented on a CPU,
and instead implement it on a graphics processing unit. Many parts of the al-
gorithm go very well together with the massive parallelism of a graphics card.
However, the resulting algorithm was considerably slower than the original.

Keywords: BVH, computer graphics, GPU, CUDA, ray tracing

Contents
1 Introduction 3

2 GPU computing concepts 4
2.1 CUDA . 4
2.2 The GPU . 4
2.3 Warps and blocks . 4
2.4 Parallel reduction and segmented prefix sums 4
2.5 SIMD lanes . 5
2.6 Unrolling . 6
2.7 Ballot and popcount for memory calculation 6
2.8 Atomic functions and mutexes . 7
2.9 Thrust . 7

3 SweepSAH 8

4 The Bonsai Algorithm 10
4.1 Mini tree selection . 10
4.2 Mini tree construction . 10
4.3 Mini tree pruning . 10
4.4 Top tree construction . 11

5 GPU implementation 12
5.1 Mini tree selection . 12
5.2 Mini tree construction . 13
5.3 Mini tree pruning . 15
5.4 Top tree construction . 16

6 Results 17

7 Conclusions 18

2

1 Introduction
Ray tracing is a common method of generating computer graphics. To calculate the color
of a specific pixel, one or more rays are traced through the scene, going backwards along
the path light would have taken. Because of this emulation of physical photons, ray tracing
makes some effects, like reflections and refractions, much easier to accomplish compared
to other popular computer graphics techniques.

While tracing a ray, the scene is searched through, to find which triangles the ray in-
tersects. Because this search is independent for every ray, the process can be massively
parallelized.

Searching for intersections between the triangles and the rays can be very time con-
suming for larger scenes with many triangles, so data structures that allow for faster in-
tersection tests are needed. This is especially relevant for ray tracing in real time, since
all calculations have to happen between frames. One such data structure is the bounding
volume hierarchy (BVH).

A BVH is a tree structure, where the inner nodes describe volumes, and the leaf nodes
contain the triangles. The root node describes a volume that contains all the triangles in
the scene. The volume of every inner child node is completely contained inside the volume
of its parent. The triangles of the leaf nodes are also all inside the volume of the parent.

The advantage of utilizing a BVH is that a large number of triangles can easily be
dismissed early on during intersection tests. If a ray is found not to pass through the
volume of a particular node, it also cannot go through the volumes of any of that node’s
children, since the volumes of every child is contained inside the volume of the parent.
This, in turn, means the ray cannot intersect any of the triangles at the leaves - they are
also all inside the volume. As such, the whole sub-tree can be safely skipped.

If a scene is dynamic, meaning triangles move around from frame to frame, the BVH
must be reconstructed at every frame. Otherwise, triangles may move out of the volumes
where the BVH expects them to be, making traced rays unable to find proper intersections.
As such, a fast BVH building algorithm is necessary. The Bonsai algorithm[1] was created
for precisely this situation.

However, the Bonsai algorithm was designed for, and implemented on, a CPU, and
there are many advantages to having an algorithm instead run on a GPU.

Many parts of the algorithm can benefit from the massive parallelism of a GPU, and
although the original version utilized some parallelism on the CPU through extensions,
the parallel capabilities of the GPU are much greater.

If the actual ray tracing takes place on the GPU, having the algorithm on the GPU as
well can decrease bandwidth use - the amount of data flowing between the CPU and the
GPU. If the BVH is built on the CPU, it must be sent to the GPU for ray tracing every
frame. If it is built directly on the GPU however, only updates to the moving parts of the
scene have to be transferred on a frame to frame basis, before the BVH is reconstructed.

However, there are also many parts of the algorithm that lend themselves towards se-
quential processing.

3

2 GPU computing concepts
2.1 CUDA
CUDA is a language for GPU programming on NVIDIA devices. It mostly uses C/C++
syntax.

2.2 The GPU
A GPU is built to handle thousands of active threads at once. That does not mean that all
of them are executing at the same time, however. While all the GPU’s streaming multi-
processors do execute many instructions in parallel, much of the processing power of the
GPU comes from the ability to hide latency. The GPU will make context switches regu-
larly, for example while waiting for data transfers and after calls to synchronize threads.
This allows some threads to execute while others are unable to, hopefully always keeping
the GPU executing relevant instructions. Avoiding unnecessary memory latency is still
important, however. Contexts take memory, and with too many slow memory requests,
there might not be enough threads available for execution. This will stall execution.

2.3 Warps and blocks
Threads in the GPU are organized into warps (CUDA uses 32 threads per warp). Within
a warp, the same code is always run for every thread, and the instructions are executed in
lock-step (meaning, right after each other).

This means that if different threads within a warp evaluate a condition branch, such as
an if-statement, differently, a divergencewill happen. Both condition branches will run for
the whole warp, but any threads not involved in the current branch will pause, and just do
nothing when it is their turn to execute. If possible, code should be written so that branch
conditions within a warp evaluate the same for all of the threads, or are avoided entirely.

Blocks are collections of warps that execute on the same streaming multiprocessor.
Memory within a block can be synchronized between threads relatively easily - sharing
memory between blocks is much more difficult, and slow. Sharing memory within a warp
is the easiest, requiring the least amount of synchronization.

2.4 Parallel reduction and segmented pre-
fix sums

In the implementation of this algorithm, it is often necessary to search through an array
for a specific value, such as the minimum or maximum. On a GPU, parallel reduction
is used for this purpose. By utilizing the parallel threads of the GPU, several values are
simultaneously compared with each other, storing the desired values back into the array.
This process is repeated, reducing the number of values by half each iteration, until there

4

2.5 SIMD lanes

Figure 2.1: A reduction sum flowchart. Memory on a GPU is
specialized in handling sequential data as shown in the diagram,
so the order is purposeful.

is only one value left. If summing is used instead of comparing, this process will give the
sum of all values in the array. (In fact, reduction works for any associative operation.) An
example of a reduction sum is shown in Figure 2.1.

The prefix sum y of a sequence of numbers x is a sequence where yn = Σn
k=0xk. In

other words, it is a running sum - the value at each position in sequence y is the sum of
all the previous values in x. When calculating this on a GPU, the numbers can be added
as shown in Picture 2.2, but there are also other, more sophisticated methods for larger
numbers of threads. As shown by Harris and Garland[2], the special properties of the
warp can be utilized to improve segmented sum calculations.

A prefix sum is also known as a cumulative sum or a scan. Prefix sums can also be
exclusive rather than inclusive, meaning it excludes the current value in the array, only
counting up those before it. That is of particular use when calculating memory indices,
since the first thread tends to want memory location zero.

2.5 SIMD lanes

SIMD stands for Single Instruction Multiple Data. GPUs are specialized at making these
kinds of calculations, where many threads execute the exact same operations, but with
different values for their operands. A warp is a 32-wide SIMD group.

5

2. GPU computing concepts

Figure 2.2: Flowchart of a prefix sum. In this chart, four threads
can work at the same time, each adding two numbers together. For
larger arrays, there are better algorithms.

2.6 Unrolling
When optimizing reductions in CUDA, it is often good to ’unroll’ the last iterations of the
process; writing them out explicitly instead of including them in a loop. More specifically,
this is effective when all the remaining threads are in the same warp. One reason for this
is because no block-wide synchronization is needed within a warp and so can be omitted.

2.7 Ballot and popcount formemory calcu-
lation

CUDA has a function called the ballot function. It takes a boolean expression and returns
a 32 bit integer, where the bit at every position i is the boolean value of thread i within the
current thread’s warp. This allows all threads in a warp to communicate the results of a
particular boolean expression between each other. The popcount function simply counts
the number of ones in the binary representation of a variable. These two, in combination
with bitwise operators, can be used to determine memory locations based on predicates[2],
as explained below. This method is used extensively in this implementation.

If threads in a warp want to store a certain value in an array, but only if certain condi-
tions are true, the relevant threads must find out which memory positions they are to write
to. The position cannot be the same as any other thread that also wants to write to the
array, but it should not leave any gaps between data either. To solve this within a warp, the
warp is balloted for the predicate. Then, all bits higher than the index of the current thread
are masked out using bitwise and. Finally, the number of ones in the resulting integer is
calculated. The result for every thread becomes the number of threads with lower or equal

6

2.8 Atomic functions and mutexes

indices for which the boolean expression evaluated as true. This number is the same as
how many threads with lower (and equal) indices want to store something in that array.
This lets every thread place their data safely. This is a simplified (only ones and zeros)
prefix sum, called a binary prefix sum.

2.8 Atomic functions and mutexes
Atomic functions are functions that are guaranteed to be performed in one piece, without
reads, writes or cachings from other threads to potentially mess with them. They are used
for global synchronisation, but they are very slow.

A mutex, or a mutually exclusive semaphore, simply speaking allows you to close off
sections of code, perhaps data accesses that shouldn’t be simultaneously handled by several
blocks. Once a mutex has been taken (using an atomic function), no other thread can take it
- and therefore pass into the sensitive code section - until it is released. In CUDA, however,
it is up to the programmer to make sure it is always the same thread that locks and unlocks
a mutex, and that the code sections really are locked off by the mutex - there are no checks.

Mutexes are even slower than most other atomic functions, since they are blocking
- stopping other threads from executing - by design. There are also other problems, for
example that mutexes don’t stop cached and delayed reads and writes to the data they
protect - you still need to synchronise properly in other ways. These things, of course,
make mutexes - and global synchronising in general - a last resort.

2.9 Thrust
Thrust is an open source parallel computing library, giving access to several common
algorithms that can execute on a GPU. This includes sorting and partitioning.

7

3 SweepSAH
SweepSAH is a BVH building algorithm that tries to maximize the tree quality by re-
cursively splitting the triangles into groups that together minimize the total Surface Area
Heuristic (SAH). Tree quality in this case means how good they are for ray tracing - how
fast they can be traversed by a ray intersection finder.

Every triangle has an axis aligned bounding box (AABB), the smallest axis aligned
box that holds the whole triangle within it. For every triangle in the partition we are
making a tree out of, we calculate themidpoint of the AABB, and consider the result of that
computation the midpoint of the triangle itself. Then, we create three lists of references to
all the triangles in the partition. These lists are each sorted by the midpoint coordinates of
the different dimensions. The result is three sorted lists of triangles, each along a different
dimension.

The recursion starts at the root node. Then, for every node, when we look for a good
partitioning, we try to find a low SAH cost by sweeping across the triangles in that node.
Sweeping means that, for the three lists described above, all partitionings of triangles, as
shown in Figure 3.1, are considered. First one triangle on one side, and the rest on the
other. Then two triangles on one side, and the rest on the other, and so on. For all of
these partitionings, we calculate an approximation of the SAH cost as described below,
by calculating the bounding boxes for the two parts. The lowest cost we find is then of
the chosen partitions. However, it is possible that not splitting the node at all would give
a lower SAH cost. If that is the case, the node is not split, and the recursion ends. The
node in question becomes a leaf. If splitting is preferable, however, two child nodes are
created. During this partitioning into two child nodes, the sorted orders of the three triangle
reference lists are kept intact within the new partitions, so they do not need to be re-sorted.
This does however require a stable partitioning. In fact, only two of the three lists need
to be sorted, since the split was made along the dimension of one of them. That one is
already partitioned. After this, the process is repeated for the new children.

The SAH cost of a node is given by

C(n) =

{
CIA(n) + C(nl) + C(nr), n ∈ I,
CTA(n)N(n), n ∈ L,

whereC is the SAH cost,A is the AABB area of a (suggested) node, CI is the traversal
cost of an inner node, CT is the cost of intersecting a triangle, and N is the number of
triangles in a (suggested) node. I and L are inner and leaf nodes, respectively.

Since this definition is recursive, it is impossible to use it as a guide for building the
tree. We instead use a non-recursive formula that has been found to approximate the SAH
well enough:

C(n) =

 CI + CT
A(nl)N(nl) +A(nr)N(nr)

A(root)
, n ∈ I,

CTN(n), n ∈ L,

using the same notation as above.

8

Figure 3.1: Sweep of four triangles from left to right. The to-
tal surface area spanned by the axis aligned bounding box of each
possible pair of partitions along an axis is calculated during the
sweep, repeated for all dimensions. In practice, the right sweep
and left sweep are calculated separately, by iteratively adding tri-
angles to the appropriate side. The SweepSAH algorithm uses
the two surface areas in every partition to calculate a surface area
heuristic (SAH) cost, and the lowest score across all partitions in
all dimensions becomes the chosen partition.

Figure 3.2: Two levels of the segmented partitioning for selecting
mini trees, as described in section 4.1. The AABB midpoints of
the triangles, represented by the dots in the figure, are used instead
of the actual triangles. In each step, the partition is split along the
longest axis of the axis aligned bounding box. The process is then
repeated for the newly created partitions.

9

4 The Bonsai Algorithm
In the Bonsai algorithm, the triangles are first quickly partitioned into groups, based on a
user-defined size.

Then, every individual group of triangles is built into a mini tree, using a more sophis-
ticated - and therefore time consuming - BVH building algorithm, SweepSAH.

When all mini trees have been constructed, a process called pruning is performed on
all mini trees, in an attempt to improve tree quality (which may have suffered because of
how roughly the mini trees were selected).

Lastly, the top tree is constructed with SweepSAH, using the mini trees as leaf nodes.

4.1 Mini tree selection
Like in SweepSAH described above, we calculate the axis aligned bounding boxes of all
triangles, and get their midpoints. In this part of the algorithm, the midpoint for every
triangle is used as an approximation of the whole triangle. At every split, the total AABB
of the partition - based on the midpoints described above - is found. Then, the partition
is split in the dimension that has the biggest difference between minimum and maximum
values. The splitting plane is chosen to be straight through the middle of the bounding box
in this dimension. This process is repeated recursively for the new partitions, until they
go below a user-defined number of triangles. This is shown in Figure 3.2 The maximum
number of triangles in a finished partition in this implementation was chosen to be 4096.
This was one of the values used in the original Bonsai paper.[1] Larger mini trees make the
mini tree selection take less time, but increases the time taken for mini tree construction.

4.2 Mini tree construction
The mini trees are built using the SweepSAH algorithm described in section 3.

4.3 Mini tree pruning
In Bonsai pruning, we split mini trees that are deemed unbalanced.

The average AABB surface area for all mini trees is calculated.
Nodes are then recursively checked, starting at the root node. The surface area of each

sub tree is compared to the average surface area of all trees. If the area of a node is greater
than some user defined fraction T of the average area, the children are also checked. When
a sufficiently small node - or a leaf - is found, that node becomes a new root node for a
mini tree.

A value of T = 0.1 was used in this implementation. This was one of the values chosen
in the original paper on Bonsai.[1] Performance-wise, a lower value mostly affects the top
tree construction time, as it creates more mini trees to combine.

10

4.4 Top tree construction

4.4 Top tree construction
The top tree is also built using the SweepSAH algorithm, with a few differences, since the
tree uses mini trees as end points. For example, the recursion only stops when two or fewer
nodes remain.

11

5 GPU implementation
5.1 Mini tree selection
First, the midpoints of all triangles are calculated. The midpoint in this case is defined as
the midpoint of the AABB. Using the midpoints means that there is only one reference
point to describe each triangle, instead of three. That simplifies many calculations, such
as computing the bounding box of the tree. It is the midpoints that are being moved around
in this step, and every midpoint has a reference to its original triangle as a fourth value in
addition to the three coordinates.

Since global synchronization between blocks is difficult and slow, work is delegated
fairly statically, and most of the synchronization is done by returning from kernel. Then,
a second kernel can combine the results from several blocks. In fact, for large enough
scenes, three levels might be preferred in one of the steps.

All partitions that need further partitioning are handled in parallel. After one such set
of partitions has been calculated, the process is repeated for the new set of partitions, until
all partitions are complete. The number of blocks used for every partition depends on the
number of partitions in the current set of partitions - the more partitions being handled in
parallel, the fewer blocks are assigned to every individual partition. This is in order to fill
up the GPU, while still trying to avoid assigning too many blocks that will be redundant.
A block size of 1024 threads is used in this implementation, since partitions will generally
have a large number of triangles. However, depending on hardware, it might be worth
considering using 512 threads per block as well, as that size may give a higher occupancy
in the streaming multiprocessor. (That is, how full the streaming multiprocessor is. A
higher occupancy often means more transactions being processed at the same time, which
is good. However, a lower occupancy can often be good enough.)

For every partition step, we must find the AABB of all midpoints in the current par-
tition. This is done through a reduction of bounding boxes. Every bounding box is eight
float values. Three coordinates and one padding value each for the minimum and maxi-
mum of the bounding box. The maximum values are stored as their negatives, so that all
threads can use the minimum function to determine their optimal value. This avoids di-
vergence, since we do not have to conditionally use maximum and minimum evaluations.
Eight threads can ’combine’ the coordinates of two boxes at the same time, meaning one
warp deals with four pairs of boxes at a time. Since the number of coordinates is often
high, a second kernel is launched to collect the results, and sometimes even a third after
that if multiple blocks are needed to gather the results.

Once the partition-wide bounding box has been calculated, it is time for the actual
partitioning. The split is done along the longest axis of the bounding box. The mid-plane
of that axis is determined, and triangles are chosen to get partitioned based on which
side of the plane their midpoint belongs to. The partitioning happens in two steps: First,
the midpoints are partitioned block-wise, using a segmented sum. The ballot-popcount
method described in section 2.7 is used. The resulting partitions are stored in a buffer.
The cut-off indices between the partitions are also stored. Then, another segmented sum
is calculated, this time of every block’s cut-off point. Using this sum, and the cut-off
points, the midpoints are stored back into the original array, now partitioned. See Figure
5.1. Once the partitions are done, they are ready for another potential split.

12

5.2 Mini tree construction

Figure 5.1: The partitioning implementation. In a first pass, a
block-wide partitioning is done individually for every block, using
segmented sums to determine new locations for all values. Then, a
new segmented sum, this time for the partitioned blocks, is calcu-
lated, and this is used to transfer the values back to the first array,
partitioned.

When a partition reaches a user-defined number of triangles, it will no longer split. In
this implementation, a maximum tree size of 4096 was used.

5.2 Mini tree construction
The SweepSAH algorithm needs to have access to the triangles in the mini tree, sorted by
their AABB midpoints, for all three dimensions. As such, we have three vectors, one for
each dimension, with references to the triangles. These vectors are sorted for each tree.
This is done using the Thrust library. Unfortunately, this requires sending some data (in
particular, the locations of the different mini trees in memory) between the GPU and the
CPU. With a well constructed sorting algorithm called from the kernel itself this overhead
would not occur. However, Thrust is a very powerful library, so the overhead might very
well be preferred in many cases.

Every tree is initially built independently by a block of 8 warps (although other powers
of two are possible). This number gives a decent work load distribution. These initial
nodes are stored statically, based on branch and depth of recursion. This is to avoid un-
necessary communication between blocks.

As the tree branches, the warps are designated their own sub trees. As such, eventually
each warp has its own part of the tree, which it has full independent responsibility for. At
this point, the warp uses a queue to handle the nodes dynamically. This allows for less
communication between warps. This way, the work load can be more evenly distributed,
provided enough sub trees have been generated. After the initial static recursions, when
the sizes of all sub trees are known, they are given storage proportional to the original
size of the tree. This ensures that the bigger sub trees of unbalanced trees will not cause
overflow into memory used by different sub trees as they add more nodes to their branch.

13

5. GPU implementation

The actual node vector is in fact the queue as well - new nodes are added on at the end, and
every node is processed in turn, from oldest to newest. The process stops when no more
nodes are available.

The sweep is performed for each dimension consecutively. It would be possible to
parallelize the sweeps of different dimensions, since they do not affect each other until the
final SAH value has to be decided. This was however not done in this implementation. The
sweep in every dimension is also done in two steps. First, the sweep goes one way, and
stores the calculated areas for every triangle partitioning from one side. Then the sweep
goes the other way, calculating the areas for the other side of the partitioning. It is also
during this backsweep that the SAH costs are calculated using the formula in Section 3,
since it is at that point the areas of both partitions are known.

During the sweep we want to calculate the SAH cost for every partitioning along the
axes. Therefore, the bounding boxes are calculated using the same technique as segmented
prefix sums, except for combining bounding boxes instead of summing up values. This
will give us the cumulative boxes for every partitioning. Since warps have 32 threads and
a bounding box has eight values (minimum and maximum for x, y, z, and a padding w),
four boxes can be ’added’ with four other ones in one warp-wide operation. Even though
not having any padding would allow for ten boxes to be handled at once, since five is just
above a multiple of two, no time would really be saved- there would be an ’extra’ box that
would have to be handled while the other threads are waiting. (To see this, imagine there
were two more numbers in the flowchart from Figure 2.2. They would always have to be
tacked on at the end, or somewhere in the middle.) Furthermore, properly aligned shared
data is faster to access - four boxes fit perfectly into 32 consecutive four-byte words.

As was done in the mini tree selection, the maximum values are stored as their nega-
tives, for the same reasons - avoiding divergence.

After a set of eight bounding boxes have been fully calculated, their surface areas are
calculated and stored. A new set of bounding boxes are loaded in, and the last bounding
box of the previous iteration is added to the first bounding box in the current one, so that the
chain continues. Then, the process described above repeats, until the full prefix bounding
is complete.

During the backsweep, the same process occurs, except in reverse. After each set of
eight bounding boxes have been calculated, the SAH values for these eight partitions can
be calculated, using the current data and the stored areas from the other sweep direction.
Eight threads keep one SAH value each - together with the corresponding pivot index and
dimension, and save any lower values they come across. After the sweep, the final eight
values are reduced and the final SAH value, together with the dimension and pivot index,
is determined.

At this point, the SAH cost of not splitting the node is calculated. If not splitting is
better, and provided that the resulting node would not be too big (64 triangles was used
as the minimum for a tree in this implementation), it is declared a leaf node together with
all the triangles it contains, and marked as such. During the static portion, this means the
branch will not continue, and it (and potential children) should be marked, to avoid trying
to calculate a node that does not exist. In the dynamic portion, having no children simply
means that no new nodes will be added to the queue by this node.

Now the new partitions have been decided, so we move on to the actual partitioning.
During this process, a boolean vector is used to mark which triangles should be ’moved’

14

5.3 Mini tree pruning

where. The triangles are in fact not moved during this stage, the partitioning is of the three
sorted vectors that in turn point at the triangles. One vector, S, is already partitioned, on
account of being of the dimension the split happened in. It is this vector that is used to
fill the marking vector - any elements pointed at from Si where i < pivot end up in one
partition, and the rest end up in the other. Just like during the mini tree selection, the ballot
function can be used to calculate memory locations. Unlike in the mini tree selection,
the partition needs to be stable - the vectors must keep their sorted order in each of the
new partitions - but luckily we also know the exact sizes of both partitions beforehand.
Also, since every warp is working independently, there is no thread communication needed
outside of the ballot function during this stage. Like sweeping, the two dimensions can be
calculated in parallel using two or more warps, but this is not done in this implementation.

At this point, the two child nodes are created, based on the information from the parent
together with the pivot. The nodes are either inserted in the proper static position, or added
to the queue for the dynamic part. Once a node gets children, the variables that used to
describe the range of triangles under their care now instead point to the two children. The
sizes of the new nodes (which eventually will mean the total number of triangles in all the
leaf nodes beneath them) are also saved at this point. Node sizes are used during the top
tree construction, and this happens to be a convenient time to compute them.

5.3 Mini tree pruning

Pruning consists of two simple kernel calls - calculating the average area of all original
mini trees, and the actual pruning.

Calculating the average tree area is a simple addition reduction of calculated surface
areas (all nodes already contain their own bounding box, including the mini tree roots)
followed by a division by the total number of trees.

Only one warp per tree is used for pruning. More isn’t really needed - one thread can
check a node by itself, so you get minimal benefit unless you have over 32 pending nodes
to check at the same time. Even then, it would require more synchronisation.

A stack consisting of indices to nodes is used for storing pending work, and nodes are
handled up to 32 at a time. If their surface area is too big, and if they aren’t already leaves,
they should be pruned. This means adding their two children to the stack, effectively
removing the current node from the system. If they should not be pruned, they are deemed
a new mini tree root node, which means they should be added to a global list of roots. The
surface area threshold is some constant T times the average tree area calculated above.
T = 0.1 is used in this implementation.

Once again, warp balloting is used for calculating memory positions. We are helped
by the fact that a pruned node always leaves two children in the stack - never just a single
one - making the memory allocation fairly regular. The non-pruned nodes are initially
stored in a shared vector. At the end, an atomic add operation is used to reserve space in
the global array, after which the block local roots are copied to the reserved space.

15

5. GPU implementation

5.4 Top tree construction
The top tree construction is very similar to the mini tree one, except it uses the newly
pruned mini trees as ’leaves’. One difference is that the recursion only stops when there
are two or fewer nodes, since inner nodes have exactly two children. Sometimes during this
process, a node will end up only having one mini tree root left to process, but in this case,
the current node just copies all the information from the only child, effectively "becoming"
the child while still remaining connected to their own parent, effectively collapsing the two
into one. Another difference is that a cumulative sum of the total number of triangles is
calculated with the backsweep. This, of course, is because the SAH approximation uses
the number of triangles in every partitioning. Using the number of nodes (that is, the
number of mini trees) instead leads to imbalanced trees, since higher density nodes get
undervalued.

One last difference is that since there is only one top tree, we can throw as many re-
sources as we can and need on just building this tree.

16

6 Results
The implementation was done using an NVIDIA GeForce GTX580, with Compute Ca-
pability 2.0 and Fermi architecture. It has 16 Streaming Multiprocessors and 32 cores
handling one SIMD group on every processor.

The comparisons were made towards the equivalent algorithm implemented on the
CPU by Ganestam et al.[1].

The test scene was Conference Room[3], with 331179 triangles. Conference Room is
a very common scene for testing ray tracing.

Midpoint calculation 0.169 ms
Partitioning 16.3 ms

Sorting mini trees 417 ms
Tree sweep 1 43.3 ms
Tree sweep 2 52.6 ms

Average tree area 0.010 ms
Pruning 0.032 ms

Top midpoints 0,010 ms
Sorting top trees 3.08 ms
Top tree sweep 7.60 ms

The implemented algorithm was significantly slower than the original CPU version,
which finished the whole equivalent task in less than 20 ms.

The sorting of the mini trees is especially slow. However, that sorting is done through
several calls to the Thrust library, which uses generic sorting, and the different calls may
not be well parallelized. A specialized sorting, or an optimization of the thrust execution,
would result in a significantly lower time.

It is possible that the algorithm uses too many global memory accesses that are spread
out, resolving to separate requests rather than being coalesced. This could result in the
GPU stalling, waiting for data frommany locations to arrive while being unable to process
anything else in the meantime.

17

7 Conclusions
While some parts of the SweepSAH algorithm lend themselves to parallelism, other parts
do not. It is possible that for a GPU implementation, other BVH algorithmsmight be better
matches to combine with partitioning and pruning. Those two processes are relatively
separate from the rest of the algorithm, and can therefore be applied in other situations.

Since this implementation was made on slightly older hardware, it is possible that
newer hardware would do much better. In particular, the algorithm does much work on
individual warps, and often requires communication using shared memory. In NVIDIA’s
newer GPUs, it is possible to use the thread shuffling intrinsic, which allows threads within
the same warp to exchange data very effectively.

It would possibly be beneficial to create the sorted arrays used during the mini tree
construction before themini tree selection, and then only using stable partitions tomaintain
the order. That way, during mini tree selection, calculating the AABB at every recursion is
anO(1) operation, because the first and last values in the partition of a sorted array define
the bound for its corresponding direction. It would be fast to find the exact sizes of the
new partitions. Sorting would not be required before mini tree construction, as the proper
order has been preserved. For this implementation in particular, this means that no data
has to exchanged between the GPU and CPU at that point in the algorithm. The downsides
are that there are more arrays to partition, and that a stable partitioning is possibly more
time consuming to perform. Also, it is generally slower to sort one long array than it is to
sort many short ones.

18

Bibliography
[1] Per Ganestam, Rasmus Barringer, Michael Doggett and Tomas Akekike-Möller, Bon-

sai: Rapid Bounding Volume Hierarchy Generation using Mini Trees, 2015

[2] MarkHarris andMichael Garland,Optimizing Parallel PrefixOperations for the Fermi
Architecture, 2012

[3] Conference Room. Original scene by Anat Grynberg and Greg
Ward, recreated by Kenzie Lamar. Fetched 2015-08-18 from
http://graphics.cs.williams.edu/data/meshes.xml

19

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTATIONSDAG 2016-06-03

EXAMENSARBETE Massively parallel BVH construction using mini-trees

STUDENT Erik Nossborn
HANDLEDARE Per Ganestam (LTH)
EXAMINATOR Michael Doggett (LTH)

Parallelliserat byggande av
datastruktur för avancerad datorgrafik i
realtid

POPULÄRVETENSKAPLIG SAMMANFATTNING Erik Nossborn

Med mer kraftfulla grafikkort har möjligheterna utökats för vilka grafikmetoder
som kan utföras i realtid. För en sådan metod, raytracing, används speciella data-
strukturer, och för att kunna användas i realtid behöver dessa byggas upp snabbt.

I raytracing, eller strålföljning, skapas bilder genom
simulering av ljusstrålar. Genom att ta reda på var-
ifrån de ljusstrålar som man tänker sig har skapat
bilden kommer ifrån, kan man räkna ut vilka färger
ljusstrålarna - och därmed pixlarna i bilden - borde
ha. Denna metod är speciellt bra på att skapa tro-
värdiga reflektioner, refraktioner, och skuggor.

Metoden kräver dock en stor mängd uträkningar
för varje bild. Raytracing används därför vanligtvis
endast i till exempel animerade filmer, där tiden för
uträkningarna inte är kritisk. På senare tid har det
dock gjorts framsteg när det gäller att kunna använda
metoden i bilder som ska räknas ut i realtid, till ex-
empel i datorspel.

För att snabbt kunna hitta exakt vilka objekt en
ljusstråle har träffat, används speciella datastruk-
turer. En BVH (Bounding Volume Hierarchy) är en
vanlig sådan. Det är en trädstruktur, där varje nod
beskriver en del av volymen som utgör scenen. Varje
barns volym är helt innesluten i förälderns volym, så
att ju längre ner i trädet man kommer, desto min-
dre blir volymerna. Trädets löv består av trianglarna
själva - även dessa helt inneslutna i förälderns volym.

Detta gör det möjligt att snabbt söka genom ett

stort antal trianglar. Om en ljusstråle inte passerar
genom en viss nods volym, så kommer den inte heller
passera genom någon av barnens volymer, och därför
inte heller genom någon av de trianglarna längre ner i
den delen av trädet. Hela grenen kan därför ignoreras
utan problem.

I detta arbete har jag tagit en LTH-utvecklad al-
goritm, Bonsai-algoritmen, som på en vanlig proces-
sor snabbt bygger BVHer av hög kvalitet, och imple-
menterat den på ett grafikkort. Grafikkort är gjorda
för att kunna behandla stora mängder data paral-
lellt, vilket kommer till nytta under många delar av
algoritmen. Bonsai-algorithmen delar till exempel
upp trianglarna i flera grupper som oberoende av
varandra kan byggas upp till små träd (en av anled-
ningarna till att algoritmen kallas för "Bonsai"), och
även varje individuell gren av desa träd är separat
från varje annan gren. Eftersom själva raytracingen
oftast utförs på grafikkortet, är det även en fördel om
BVHn inte behöver skickas över till grafikkortet inför
varje bilduppritning.

Det finns dock många delar av algoritmen som inte
lika lätt lämpar sig för parallellisering, och slutresul-
tatet gav i helhet ingen förbättring i tidsanvändning.

	Introduction
	GPU computing concepts
	CUDA
	The GPU
	Warps and blocks
	Parallel reduction and segmented prefix sums
	SIMD lanes
	Unrolling
	Ballot and popcount for memory calculation
	Atomic functions and mutexes
	Thrust

	SweepSAH
	The Bonsai Algorithm
	Mini tree selection
	Mini tree construction
	Mini tree pruning
	Top tree construction

	GPU implementation
	Mini tree selection
	Mini tree construction
	Mini tree pruning
	Top tree construction

	Results
	Conclusions

