

Department of Automatic Control

Artificial Intelligence and Terrain Handling
of a Hexapod Robot

Markus Malmros

Amanda Eriksson

MSc Thesis
TFRT-6010
ISSN 0280-5316

Department of Automatic Control
Lund University
Box 118
SE-221 00 LUND
Sweden

© 2016 by Markus Malmros & Amanda Eriksson. All rights reserved.
Printed in Sweden by Tryckeriet i E-huset
Lund 2016

Abstract

The focus of this master’s thesis has been getting a six-legged robot to au-
tonomously navigate around a room with obstacles. To make this possible a time-
of-flight camera has been implemented in order to map the environment. Two force
sensing resistors were also mounted on the front legs to sense if the legs are in con-
tact with the ground. The information from the sensors together with a path planning
algorithm and new leg trajectory calculations have resulted in new abilities for the
robot.

During the project comparisons between different hardware, tools and algo-
rithms have been made in order to choose the ones fitting the requirements best.
Tests have also been made, both on the robot and in simulations to investigate how
well the models work.

The results are path planning algorithms and a terrain handling feature that
works very well in simulations and satisfyingly in the real world. One of the main
bottlenecks during the project has been the lack of computational power of the hard-
ware. With a stronger processor, the algorithms would work more efficiently and
could be developed further to increase the precision of the environment map and
the path planning algorithms.

3

Acknowledgements

First of all we would like to thank Combine Control Systems and our supervisor
there, Simon Yngve, for giving us the possibility of writing this thesis for them and
also for providing us with the equipment needed and helping us in the times we got
stuck. A special thanks goes to Sara Gustafzelius and Andreas Tågerud for all the
help with the camera implementation and computer hacking stuff.

We would also like to thank the Department of Automatic Control, at Lund
University for providing us with tools and hardware during this master thesis. Our
supervisor at the department, Anders Robertsson, has guided us through this project
and helped us a lot with his ideas during our weekly meetings.

Finally we would like to thank Dan Thilderkvist and Sebastian Svensson for the
previous work they did that made our work possible and for answering our questions
about the Hexapod.

5

Acronyms

UAV Unmanned Aerial Vehicle

IMU Inertial Measurement Unit

RGB-D Red Green Blue - Depth

TOF Time-of-Flight

FSR Force Sensing Resistor

RANSAC Random Sample Consensus

RANSOP Random Sample Optimization

RRT Rapidly Exploring Random Trees

PRM Probabilistic Road Map

BFS Breadth First Search

DFS Depth First Search

LIDAR Light Detection and Ranging

UCS Uniform Cost Search

SLAM Simultaneously Localization And Mapping

CAD Computer Aided Design

7

Contents

1. Introduction 11
1.1 Background . 11
1.2 Previous Work . 11
1.3 Goals . 12
1.4 Resources and Division of Labor 13
1.5 Tools . 13
1.6 Outline . 13

2. Theory 15
2.1 Modeling and Simulation Software 15
2.2 Force Sensing Resistor . 16
2.3 Time-of-Flight (depth) Camera 16
2.4 Depth Map To Coordinates . 18
2.5 Random Sample Consensus (RANSAC) 19
2.6 Random Sample Optimization (RANSOP) 19
2.7 Planning Problem Formulation 22
2.8 Non-holonomic System . 23
2.9 Motion Planning . 23
2.10 Overview of Planning in Continuous Space 23
2.11 Road Map . 24
2.12 Search Methods in a Discrete State Space Graph 28

3. Method 34
3.1 Simulink Model . 34
3.2 Friction Modeling in SimMechanics 38
3.3 Choice of Simulation Software 38
3.4 Setting Up the Hexapod in V-REP 38
3.5 Mapping sensors . 41
3.6 Camera Implementation . 43
3.7 Overview of Autonomous Mode 44
3.8 Real-Time Multi-threading . 46
3.9 Positioning of the Hexapod . 46

9

Contents

3.10 Mapping and Planning Overview 48
3.11 Planning . 51
3.12 Search . 51
3.13 Path Following and Feedback 53
3.14 Remote Control Changes . 55
3.15 Terrain Handling . 57
3.16 Electrical Assembly . 63

4. Results 65
4.1 RANSAC and RANSOP . 66
4.2 Mapping . 71
4.3 Complete Planning Tests . 72
4.4 Force Sensors . 77

5. Discussion and Conclusions 78
5.1 Discussion . 78
5.2 Conclusions . 86
5.3 Future Improvements . 87

Bibliography 89

10

1

Introduction

1.1 Background

The growing trend of developing and using automated, unmanned vehicles could
be very useful for making the work in dangerous and non human-friendly envi-
ronments safer and more efficient. A robot could for example be used in the ruins
after a big earthquake to find survivors and possible paths for emergency work-
ers. This is one application that has inspired the work and the goals of this thesis.
The project is based on a previous master thesis for Combine Control Systems in
Lund where locomotion and movement patterns were developed for a six-legged
robot, also known as hexapod. Since the hexapod is stable, has many legs and is
relatively small it could work very well together with sensors and a path planning
algorithm for applications in non human-friendly environments. An autonomous
terrain handling hexapod is also a great possibility for Combine Control Systems to
demonstrate their work and a way to present their competence and business idea at
a technical fair.

1.2 Previous Work

The initial development of the hexapod used in this project was made by two mas-
ter students, Dan Thilderkvist and Sebastian Svensson. They mounted a six-legged
robot and programmed a micro-controller to work with a remote control. They also
developed a feature for stabilizing the body of the robot as the angle of the ground
changed. This was done by measuring the body angle with an IMU (Inertial Mea-
surement Unit). The stabilization feature could however only be used when the robot
was standing still. The software development process was performed according to
principles in model-based design in Simulink and Matlab.

The robot used is of the model PhantomX AX Hexapod Mark II from Interbotix
Labs, see Figure 1.1. It has six legs, uses three servos per leg and thereby provides 18
degrees of freedom. The hand-held control is wireless and communicates with the
hexapod by using XBee modules [Thilderkvist and Svensson, 2015]. The computer

11

Chapter 1. Introduction

used on the robot is of the model BeagleBone Black and has a 1 GHz processor
[BeagleBone Black].

Another master thesis used as an inspiration in this project was done by Sara
Gustafzelius, also for Combine Control Systems in Lund. The objective of Sara’s
project was to use an RGB-Depth camera together with a path planning algorithm
on an Unmanned Aerial Vehicle (UAV) to perform a dynamic path planning. The
RGB-D camera was used to map the world so that the robot could avoid obstacles
in the environment. The same camera, an Asus Xtion Pro Live and a version of the
path planning algorithm, D*, was later used in this thesis.

Figure 1.1 PhantomX AX Hexapod Mark II

1.3 Goals

One of the main goals of this master thesis was to develop the hexapod to analyze the
environment and autonomously make dynamic, optimal decisions to avoid obstacles
and reach a goal. This required using mapping sensors, finding a way to detect
the current position, programming algorithms for mapping the environment and
planning the path as well as control the movements and the path following of the
robot. The other main goal was to develop the terrain handling of the robot. In
normal walking mode the hexapod could only walk on flat ground without terrain
but one of the desires from Combine Control Systems was that the robot also should
sense the ground and thereby be able to avoid cliffs and walk on stairs. To make this
possible a way of sensing the ground needed to be found as well as reprogramming
the trajectories for the legs of the hexapod.

12

1.4 Resources and Division of Labor

1.4 Resources and Division of Labor

To make the project work more efficient the labor was divided between Amanda and
Markus during the thesis. Markus has more of a computer science background with
a focus on artificial intelligence, statistics and planning. Therefore he focused on
researching and implementing the systems for performing planning, mapping and
path-following autonomously.

Amanda, on the other hand, has taken more courses in mechatronics, electronics
and embedded systems and therefore focused more on the hardware. That involved
for example setting up the camera and get it to work with Simulink, find, buy and
install the force sensors and activate the accelerometer to test whether it could be
used as a positioning tool.

1.5 Tools

The two main tools used in this thesis are Matlab [Matlab], with the Simulink envi-
ronment [Simulink], and the robot simulator V-REP [coppeliarobotics.com]. More
about V-REP and why it was chosen as a simulation tool can be read in Chapter 2
and 3.

Figure 1.2 Matlab Simulink Figure 1.3 V-REP

1.6 Outline

The first chapter of the report contains background information to give the reader an
introduction to the rest of the thesis. The purpose of the project and a couple of pre-
vious projects that made this thesis possible are also mentioned in the introduction
as well as the different goals and constraints that have been followed throughout the
project.

In Chapter 2 the theory behind the methods later used is explained. Some con-
cepts and models are also explained to make it easier for the reader to understand
the following chapters. The theory section also contains information about the tools
used, for example V-REP, and explains how the sensors work, both the time-of-flight
(depth) camera and the force sensing resistance.

13

Chapter 1. Introduction

The following chapter, Chapter 3, contains more information about why differ-
ent programs, sensors and tools were used and how they were used. This includes
some comparisons between the chosen program, sensor or tool and other, simi-
lar ones. The methods used to achieve the goals are also listed and described as
well as some changes from the previous master thesis by Thilderkvist and Svensson
[Thilderkvist and Svensson, 2015].

The trials that were made to test the theory and the different methods, as well
as the results from the tests, are described thoroughly in Chapter 4. It contains both
tests made in the simulation environment and in the real world on the actual robot.
Trials to test the algorithms to find the most optimal ones are also listed in Chapter
four as well as some tests on the force sensors.

Chapter 5 is the last chapter of the report and contains a discussion of the chosen
methods and the results as well as some improvements that could be made and
suggestions of further developments.

14

2

Theory

2.1 Modeling and Simulation Software

The main software used in this project to model, simulate and analyze the code and
systems are Mathworks Simulink and V-REP.

Simulink and Matlab
Simulink and Matlab are two products from the corporation Mathworks. Together
they can be used to create a model of a system and simulate it and/or run it on
external hardware. External code can be included to the model which makes the
code development process easy and efficient. The software is also good for analyz-
ing the results of the simulations [Matlab] [Simulink]. All the code that is used on
the hardware in this project is programmed directly in or is code-generated through
Simulink.

Simulink Code Generation
In order to write the code from Simulink to the hardware, code generation is
required. Code generation transforms the source code from the Simulink model
into executable code that can be run on the hardware. However, this requires the
Mathworks-tool Embedded Coder [Understanding C Code Generation]. The setup
used is based on the setup from the previous master’s thesis on the hexapod by Dan
Thilderkvist and Sebastian Svensson [Thilderkvist and Svensson, 2015].

V-REP
V-REP is a robotics simulator with broad capabilities in simulation of mobile robots,
factory automation and a tool for fast algorithm development. It is cross-platform
compatible and works on Windows as well as Mac and Linux. V-REP provides three
different physics-engines for dynamic calculations and collision detection between
meshes. A wide range of sensors and terrain capabilities are also included [Enabling
the Remote API - client side].

15

Chapter 2. Theory

2.2 Force Sensing Resistor

The force sensing resistors, FSRs, used in this project are manufactured by the com-
pany Interlinc Electronics. They are 5 mm in diameter and have a thickness of 0.30
mm, hence, they are small enough to fit under the feet of the hexapod. When a force
is applied to the circular part of the sensor the resistance is lowered and with in-
creasing force the resistance is decreasing even more [FSR Force Sensing Resistor
Integration Guide and Evaluation Parts Catalog]. The two ends of the sensors are
connected according to the circuit in Figure 2.2. One of the sensor pins are con-
nected to VDD and the other pin is connected to both ground together via a 10 k
Ohm resistor and to one of the analog inputs of the BeagleBone Black. The changes
of the analog input pin can thereafter be read and the information can be used to
program the walking pattern of the hexapod.

Figure 2.1 The force sensing resistor
[Picture of FSR].

Vdd

10k

FSR

VOUT

Figure 2.2 The electrical circuit of the
sensor connection.

2.3 Time-of-Flight (depth) Camera

Time-of-flight cameras have reached an upswing during the last couple of years
when they have become cheap consumer products, mainly from the introduction
of the Microsoft Kinect camera. The cameras are a compact and convenient way
of gathering 3D information about the world. They offer high sample rates and
accurate depth readings.

A TOF camera works by emitting pulses of infrared light which illuminates the
environment. The wave length is usually around 850 nm and not visible to the hu-
man eye. The light spreads across the environment and will be reflected on objects.
The reflected light arrives back at a photosensitive imaging sensor designed for the
infrared spectrum. The time of flight of the light is measured. Since the speed of
light is known this information can be used to calculate the distance to a certain
point in space. This is done simultaneously for all pixels in the image sensor ma-

16

2.3 Time-of-Flight (depth) Camera

trix. The equation used for calculating the depth is presented in Equation 2.1 where
d is the depth distance in the current pixel [Li, 2014]. The speed of light is denoted
c, Dt is the amount of time during which the illumination occurs, that is, pulse width.
The reflected energy is measured by two out of phase windows, C1 and C2. Electri-
cal charges accumulated during these two windows are integrated and denoted Q1
and Q2. Figure 2.3 illustrates the time aspects of measuring the depth distance.

d =
1
2

cDt
Q2

Q1 +Q2
(2.1)

Figure 2.3 Time-of-flight time integration [Li, 2014]

The TOF camera will generate a matrix with depth values. An example is pre-
sented in Figure 2.4 where brighter areas are close by and darker areas are farther
away. The completely black areas contain zeros, which happens when the sensor
does not perceive enough reflected light. This can happen when an object is too
close, too far away or if no light is reflected back from the surface. The last case
can occur on smooth surfaces, such as glass or mirrors, which do not spread the
incoming light. When the light is not dispersed in a large amount of directions on
impact with an object, there might be no reflected light coming back to the sensor.

Figure 2.4 Example of a depth map

17

Chapter 2. Theory

2.4 Depth Map To Coordinates

In order to get a global view of the environment, the depth matrix does not provide
enough information. But if the matrix is transformed into coordinates in space, a
point cloud emerges. In order to do this, four intrinsic camera parameters have to be
known. The transformation equation is presented in Equation 2.2 where fx and fy
are focal lengths and cx and cy are the pixel coordinates where the principal axis and
image plane meets. A pixel indexation is denoted (i, j) where i is the pixel index on
the x-axis and j is the pixel-index on the y-axis. Id is the depth map and z= Id(i, j) is
the measured distance for index (i, j) [Gustafzelius, 2015]. The concept is illustrated
in Figure 2.5 where xc,yc and zc is the camera coordinate system and the grid is the
image plane.

(x,y,z) = (
(i� cx)z

fx
,
(j� cy)z

fy
,z) (2.2)

z

x

y

(cx,cy)

(i,j)

optical axiszc

xc

yc

Figure 2.5 Depth camera [Gustafzelius, 2015]

Equation 2.2 has to be applied to all pixels in the depth map. Each pixel contains
a depth which after transformation will be a point in space. An example of a full
point cloud originating from one depth image is presented in Figure 2.6.

Figure 2.6 Example of a resulting point cloud

18

2.5 Random Sample Consensus (RANSAC)

2.5 Random Sample Consensus (RANSAC)

RANSAC is a method for fitting model parameters to data containing outliers and
inliers. The outliers are not to be included in the model and the inliers should be
included, though they may be subject to noise. The following steps are repeated for
a suitable amount of iterations [Fischler and Bolles, 1981].

1. Choose a subset of the points in space at random. This subset is seen as the
hypothesis.

2. Perform an estimation of a hypothesis model based on the hypothesis set of
points in space.

3. Evaluate all the data points against the hypothesis model according to some
evaluation function. The data points close enough to the model are added to
a set called the consensus set.

4. The model may be re-estimated using the data in the consensus set.

When a number of hypothesis subsets have been tested the models are compared
to each other and the best ones are used as the final model. Figure 2.7 shows an
example of RANSAC where a line is fitted to the data points. The blue points have
been found to be inliers by the RANSAC algorithm while the red ones are outliers.

Figure 2.7 RANSAC example, [Example of RANSAC]

2.6 Random Sample Optimization (RANSOP)

RANSOP was developed during this master’s thesis in an attempt to overcome
the drawbacks of RANSAC. The main drawback to overcome was the fact that
RANSAC does not take into account initial information about a probable range for
the parameter estimates. Another goal was to keep computational time low.

19

Chapter 2. Theory

The standard RANSAC assumes that there is no information about the model
in addition to the data points and model structure. But using the RANSOP instead
of the standard RANSAC comes at the cost of robustness. There are no guarantees
that RANSOP will find the correct plane and there is always the risk of statistical
variance in the chosen points to throw the results off.

A plane in space can be defined in its most sparse version needing only four
parameters according to Equation 2.3. a, b and c are parameters which describe the
orientation of the plane, that is, the normal vector, n̄, to the plane. d is the perpendic-
ular distance between the plane and the origin. These are the four parameters which
are to be estimated by RANSAC or RANSOP. See Figure 2.8 for an illustration.

d

n = [a, b, c]

x

z

y

Figure 2.8 Basic description of a plane.

ax+by+ cz+d = 0 (2.3)

The algorithm works by sampling a subset of points from the point cloud and
also guesses initial model parameters based on external information. The set of
points are kept as validation points for evaluating the model fit. Then choose three
points for a number of iterations, fit the model to the points. Compute a loss value
based on the difference between the fitted plane and how well the plane fits the
validation points. The sampled set of three points with the best loss value is deemed
the best model. There are two parameters in the algorithm which trade-off between
robustness and computational time. The choices are how many validation points
to use and how many sample sets to use. The RANSOP algorithm is presented in
pseudo code as Algorithm 1 below.

20

2.6 Random Sample Optimization (RANSOP)

Algorithm 1: Random Sample Optimization (RANSOP)
Data: Point Cloud
Result: The four parameters which describe the fitted plane
input : nbrValidationPoints - Number of points used for validation

nbrSampleSets - Number of sets to sample
planeInitNormal - Plane guess normal vector
planeInitDistance - Plane guess distance
pointCloud with nbrPoints points each with x,y and z coordinates

output: planeParamers - The four parameters describing the optimal plane
validationSet = sample a uniform random subset of points from pointCloud;
costVect = saves the cost for all sampled sets;
distanceT hreshold = Threshold for when a validation point is close enough
to the model to be considered an inlier;
penalty = Cost to add when validation point is not part of the inlier set;
for iSet = 1 : nbrSampleSets do

samplePoints = sample three random points from pointCloud;
[normVect,d] = Find parameters for a plane using least square estimate
on samplePoints;
angleDi f f = abs(acos(planeInitNormal ⇤normVect));
heightDi f f = abs(planeInitDistance�d);
sumCost = 0;
for iValPoint = 1 : nbrValidationPoints do

distance =
abs(validationSet(iValPoint)⇤normVect �d)/norm(normVect);
if distance < distanceT hreshold then

sumCost = sumCost +distance;
else

sumCost = sumCost + penalty;
end
costVect(iSet) = sumCost +angleDi f f ⇤ costWeight;

end
end
return: the plane parameters with lowest cost

The following paragraph is a reasoning regarding how many sample points are
needed in order for the different success probabilities. The number of points is de-
noted nbrPoints, number of sample sets chosen are nbrSampleSets. Part of the point
set is an inlier set for the model called inlierSet with nbrInliers points. When sam-
pling a point from the point cloud uniformly at random, there will be a p chance
of choosing a point within the inlier set according to Equation 2.4. When choosing
three points independently there will be a p3 probability that they are all in the inlier
set.

21

Chapter 2. Theory

P(point 2 inlierSet) =
nbrInliers
nbrPoints

= p (2.4)

The binomial distribution can be used to find the probabilities of successfully
sampling three inlier points for different values of nbrSampleSets. The value of the
binomial random variable is the number of “successes” out of a random sample of n
trials. nbrSampleSets equals the number of trials and p is the probability of success
for one trial, which equals p3. The binomial probability formula is presented in
Equation 2.5 where y is the number of successful trials. One success is enough in
order for RANSOP to produce a working model, so finding the probabilities for
P(y � 1) is of importance for analyzing how many sets to be sampled.

P(y successes in n trials) =
n!

y!(n� y)!
py(1�p)n�y (2.5)

2.7 Planning Problem Formulation

Planning is concerned with moving an object, in this case a robot, from a start po-
sition and orientation to a goal. This has to be performed under certain constraints,
either imposed by the properties of the robot or the environment. Below a couple
of important concepts are presented [Lavalle, 2006]. In order to illustrate these, a
simple example is constructed and presented in Figure 2.9. The magenta blocks are
obstacles, the black ball is the robot, the green ball is the goal.

Figure 2.9 Problem formulation example

22

2.8 Non-holonomic System

States The states are all possible situations in a planning problem. There could
be a finite number of states in a discretized environment or an infinite number of
states in a continuous environment. In the simple example above all white cells are
possible states for the robot.

Configuration Space (C-space) The configuration space of a robot is a set of all
possible states. C-free is the part of configuration space not occupied by an obstacle.
In the simple example the c-space is the whole grid while c-free is the set of white
cells, which are traversable.

Time Time always has to be taken into account. Either as an objective variable for
optimizing the planning, or as a way of keeping a sequence in order.

Actions An action can be performed by the robot in order to change the state. The
set of actions in the simple example is to move right, left, up or down.

Plan A plan is a strategy for determining which actions to take in every states
in order to reach a goal state. The current plan in the simple example is illustrated
by the arrows. There is an action associated with each possible state, that is, the
preferred direction to walk in every cell is the direction of the arrows. The set of all
of these actions constitutes a plan.

2.8 Non-holonomic System

A non-holonomic system is where the current state depends on the path which was
taken to reach the state. It is described by a set of parameters subject to differential
constraints, such that if a system evolves along a path in the c-space and then returns
to the original set of values the system itself might not have returned to the original
state [Lavalle, 2006].

2.9 Motion Planning

The motion planning problem consists of building an algorithm to be given a high-
level specification of a task and converting it to low-level instructions. It has to be
possible for an autonomous system to actuate the instructions. Motion planning is
usually only concerned with the issue of kinematics and velocities, but does not
regard dynamics and differential constraints. It is usually performed in a continuous
world and the objective is to find a path from start to goal state in the free c-space
without colliding with obstacles [Lavalle, 2006].

2.10 Overview of Planning in Continuous Space

The state space in the real world is uncountable infinite and a robot motion plan-
ning problem must therefore be simplified in some way. Configuration space is the

23

Chapter 2. Theory

state space in motion planning. The number of dimensions of c-space corresponds
to the number of degrees of freedom of the robot. Using the configuration space,
motion planning will be viewed as a kind of search in a high-dimensional config-
uration space that contains implicitly represented obstacles. There are two ways
of discretizing the c-space, combinatorial and sampling based [Lavalle, 2006]. A
majority of planning methods contains two steps: Building the road map and per-
forming search in the road map graph.

2.11 Road Map

A road map is a graph of connections between possible states, essentially the topol-
ogy of a planning problem. A road map is usually the result of a discretization of
the continuous c-space. In the graph each vertex is a state, while the edges denote
possible transitions between the states, that is, a collision free path. For many of the
planning methods presented, one of the first steps is to build a road map. An ex-
ample is presented in Figure 2.10. The free space is filled with possible discretized
states displayed as the blue graph network. The magenta obstacles can not be tra-
versed and are therefore not connected in the graph. Note that this is a simple two
degree-of-freedom example where the state space and road map can be visualized
in a simple way.

Figure 2.10 Road map graph example

24

2.11 Road Map

Combinatorial Planning
Combinatorial planning characterizes free c-space explicitly by capturing the con-
nectivity of free c-space in a graph. These methods have a couple of convenient
features. They are complete, which means that if a solution exists it will be found,
even though it might be time consuming. The solution is found by using search and
a failure will be reported if no path exists. All of these methods produce a road map.

Uniform Grid Discretization This method of building a road map is one of the
most straight forward. The whole space is discretized into a uniform grid. Cells are
marked as either blocked or free. The free configuration space is discretized as free
cells and these cells are put as vertices in the road map graph. They are connected
with edges in order to create the map. The vertices can be connected in different
ways. One option is to connect a vertex only to the four adjoining neighbors [Russel
and Norvig, 2010]. Another method is to connect to the eight adjoining neighbors
and thereby allowing diagonal movement in the path. Figure 2.11 provides an ex-
ample where the first image is the continuous world with the pink obstacles. Image
two contains the uniformly discretized map with the road map graph in blue.

Figure 2.11 Uniform grid discretization example

Visibility Graphs If the world is assumed to contain polygonal obstacles there
will be both convex and concave corners on the obstacles. Every corner is seen as a
vertex. An attempt to connect all vertices to each other is made. An edge is added
between two vertices when there is no obstacle obstructing a straight line between
them [Russel and Norvig, 2010]. An example is presented in Figure 2.12, where red
and green nodes represent start and goal.

25

Chapter 2. Theory

Figure 2.12 Visibility Graph example

Voronoi Diagram A Voronoi diagram is another method of building a road map.
Vertices will be placed in locations with the same maximum distance from all the
nearest obstacles. An example of a Voronoi diagram is presented in Figure 2.13.
A Voronoi diagram will ensure that a high level of clearance is achieved since the
distance to obstacles will always be at a maximum. On the other hand, paths will
not be optimal and for open spaces there will be a strong attraction to the center of
the open space [Russel and Norvig, 2010].

Figure 2.13 Voronoi diagram example, [Russel and Norvig, 2010]

Sample-Based Planning
Sample-based planning is based on probabilistic methods for sampling the state
space in order to build a road map. Collision detection is used to probe and incre-
mentally search the c-space for a solution. These methods are usually more efficient
than the combinatorial planning methods, but they are not complete. This means
that there is no guarantee of finding a path even though one exists. The sample-
based methods are convenient and in many cases necessary for complex planning
problems with a high number of degrees of freedom. The reason being that these
methods can explore tight state spaces by running a high sampling frequency in the
most difficult areas.

26

2.11 Road Map

Probabilistic Road Map A probabilistic road map works by sampling the whole
c-space. A random sample in c-space is declared a vertex in the road map if it is
in the free c-space. The whole space can be sampled uniformly or sampling can
be focused close to obstacles and narrow passages. Each new vertex is connected
with its neighbors if there are no obstacles between the vertices. Two vertices can
be considered neighbors if the euclidean distance between them is lower than a
certain threshold. Another method is to use a clustering algorithm such as k-nearest
neighbors to decide which vertices are neighbors. A probabilistic road map is a great
way of building a road map efficiently. It is however neither complete nor optimal
[Russel and Norvig, 2010]. An example of a probabilistic road map is presented in
Figure 2.14 where the first image contains the sampled nodes and the second one
illustrates the nodes connected to their neighbors in a graph.

Figure 2.14 Probabilistic Road Map Example

Rapidly Exploring Random Trees The RRT is initialized by choosing an initial
configuration which will act as the tree root node. From this root the tree will be
expanded into the c-space. Sampling for another node is performed in the region
around the graph. An edge is created between the sampled node and the nearest
node in the graph if there is no obstacle between them. That is done by checking
intermediate points at regular intervals between the two nodes. If no collisions are
found, the edge is added. At an interval try to put the goal node as a new node to
connect to the graph. If it is connected successfully, a path is found. An advantage
of RRTs is that they combine an exploratory and exploitative approach which can
be efficient in many cases [Lavalle, 2006]. An example of what a complete RRT
might look like for different amounts of iterations is presented in Figure 2.15.

27

Chapter 2. Theory

Figure 2.15 Example of RRT, [Lavalle, 2006]

2.12 Search Methods in a Discrete State Space Graph

The previously mentioned techniques are used in the building of a road map. This
provides a connection between vertices, but it does not provide an actual path. For
that purpose a search method is needed. Many instances of search in a graph is
performed by expanding the graph into a tree structure instead. If nodes are allowed
to be revisited the tree can become infinite, even if the graph is finite. The general
structure of a graph search with a search tree is presented in Algorithm 2 and Figure
2.16. In this example nodes are not revisited. Nodes can be denoted in different
ways depending on whether they have been expanded into the search tree or not.
The nodes can be in three different states.

Unvisited nodes are those who have not been expanded into the search tree.

Alive nodes have been visited, but some of their children have not been visited.

Dead nodes have been visited along with all of their children.

The expansion of the tree nodes is done by storing a new set of alive states in a
priority queue. These are the children of the expanded nodes, that is, fringe nodes.
The difference between different search methods is the function used to sort the
priority queue [Russel and Norvig, 2010].

28

2.12 Search Methods in a Discrete State Space Graph

a

a

b

b

c

c

d

d

e
e

f
f

g

g

h

h

i

i

j

j

k

k

l

Figure 2.16 Building a search tree from a graph

Algorithm 2: General expansion of graph to tree

Initialize by putting the initial node as the root of the tree;
while Goal node has not been found do

Select a node from the search tree;
if node corresponds to the goal node then

break loop;
else

expand the node by putting its successor nodes as children in the
search tree;

end
end
Walk up the tree and store all intermediary nodes to get the path;

Informed or uninformed Search Uninformed search are search methods which
do not use any form of domain knowledge to perform the search. Only the actual
graph is used in the search. Examples of uninformed search are breadth first and
depth first search. Informed search on the other hand uses an evaluation function to
decide which node is the most promising to explore. This heuristic can be knowl-
edge such as the direction of the goal which might be used to bias a search in that
direction. Commonly used informed search methods are greedy best first search or
A* search [Russel and Norvig, 2010].

Performance Measures of Search
A couple of measures are needed to aid in the comparison of search algorithms.

Completeness is fulfilled if an algorithm always will find a solution if one exists.

Optimality means that an optimal path will be found if one exists. An optimal path
is seen as the path which minimizes some cost function.

Complexity can be either seen as the memory or time needed in order to perform a
successful search. The complexity is denoted in big O notation which essen-
tially shows the scaling factor of time or space with growing problem size.

29

Chapter 2. Theory

Branching factor, b is the number of children each node has.

Goal depth, d is the depth of the shallowest goal node, that is, the number of steps
in the search tree from the start node to the closest goal node.

Max depth, m is the maximum depth of any node in the tree.

Breadth First Search
Breadth first search (BFS) will explore the graph by only expanding deeper into the
graph when all of the nodes at the same level in the search tree has been expanded.
In BFS the fringe nodes are kept in a FIFO, first in first out, queue [Russel and
Norvig, 2010].

Completeness Yes, if the branching factor, b, is finite

Optimality If the cost function is the number of steps in the graph, then yes.

Complexity O(bd) is the complexity for both time and space.

Depth First Search
DFS is the opposite of BFS and performs a search along one branch of the tree until
it can not be expanded any more. The fringe node expanded is the most recently
inserted into the tree. Fringe nodes are kept in a LIFO, last in first out, queue [Russel
and Norvig, 2010].

Completeness Yes, if m is finite and there are no loops in the state graph or if states
are not revisited.

Optimality No

Complexity O(bm) is the complexity for time, while O(bm) is the space complex-
ity.

Uniform Cost Search
BFS and DFS only use the topology of the graph in order to find a path. If a cost
can be estimated for traversal of each edge, this information can be used in order to
find a more optimal path faster. Uniform cost search uses a priority queue to store
the fringe nodes where the priority is decided by total distance from root to node.
The distances of the edges are added and the shortest total distance will have the
highest priority and be expanded next [Russel and Norvig, 2010].

Completeness Yes, if b is finite and all edges have a cost larger than 0.

Optimality Yes

Complexity O(b1+ f loor(C
e)) is both the time and space complexity, where C is the

cost of the optimal solution and e the smallest possible edge cost.

30

2.12 Search Methods in a Discrete State Space Graph

A* Search
A* is similar to uniform cost search but in addition to using the cost for traversed
distance along the edges a heuristic is used to estimate the distance to goal.

n: The current node

g(n): Cost from root to node n.

h(n): Estimated cost from node n to goal.

f(n) = g(n) + h(n): Total cost.

The node with the lowest f(n) will have the highest priority in the priority queue and
will therefore be expanded first.

Completeness Yes, if all edges have a cost larger than zero.

Optimality Yes, if the heuristic is admissible.

Complexity Depends on which heuristic is used.

D* Search
A drawback of the previously mentioned search methods is that if there is a change
in the planning map, position of the robot or goal, the whole search has to be re-
performed. D* is short for dynamic A* and is a version of A* but with a minimum of
recalculations for a changing environment. When the environment changes, D* only
re-plans the path locally. D* Lite is another implementation of the D* algorithm
and is at least as efficient. That makes D* Lite well suited for real-time application
[Koenig and Likhachev, 2002]. The algorithm is presented in Algorithm 3.

31

Chapter 2. Theory

Algorithm 3: D* Lite, [Koenig and Likhachev, 2002]
procedure CalculateKey
01’ return ;

procedure Initialize
02’ ;
03’
04’ for all ;
05’ ;
06’ U.Insert CalculateKey ;

procedure UpdateVertex
07’ if ;

08’ if U.Remove ;
09’ if U.Insert CalculateKey ;

procedure ComputeShortestPath
10’ while U.TopKey CalculateKey OR
11’ U.TopKey
12’ U.Pop ;
13’ if CalculateKey
14’ U.Insert CalculateKey
15’ else if
16’ ;
17’ for all UpdateVertex ;
18’ else
19’ ;
20’ for all UpdateVertex ;

procedure Main
21’
22’ Initialize ;
23’ ComputeShortestPath ;
24’ while
25’ /* if then there is no known path */
26’ ;

27’ Move to ;
28’ Scan graph for changed edge costs;
29’ if any edge costs changed
30’
31’
32’ for all directed edges with changed edge costs
33’ Update the edge cost ;
34’ UpdateVertex ;
35’ ComputeShortestPath ;

Potential Field Methods
Many other methods aim at capturing the connectivity of the free c-space in a graph.
Potential field methods offer an alternative where the robot is modeled as a particle
under the influence of an artificial potential field. The potential field U is built such

32

2.12 Search Methods in a Discrete State Space Graph

that forces from obstacles repulse the particle and goal points attract it. The problem
is solved with gradient descent. A common problem is that the particle might get
stuck in local minima. There are however methods for overcoming this difficulty.
An example of the potential-field method can be seen in Figure 2.17. The figure
illustrates how a complete field is assembled by one function for the goal, where
the goal is at the bottom of the function surface. This will yield attractive forces
towards the goal and repulsive forces from obstacles. In Equation 2.6 the equation
for the field is presented. Uatt is the attractive field function and Urep is the repulsive
function. They depend on the position in space q. Equation 2.7 shows that the di-
rection in which the path will head is the negative gradient of the field function for
a certain position. The force vector is denoted

�!
F (q) and

�!
—U(q) is the gradient of

the potential field at the position q. Finding the path can be performed by using the
optimization method gradient descent [Potential Field Methods].

U(q) =Uatt(q)+Urep(q) (2.6)

�!
F (q) =�

�!
—U(q) (2.7)

Figure 2.17 Illustration of potential-field method, [Potential Field Methods]

33

3

Method

This chapter includes comparisons between various theories, methods and hardware
together with a small discussion on why certain programs, sensors and tools were
used. Implementations of suitable methods and theories from Chapter 2 are also
described.

First the software used are described and discussed, followed by the mapping
sensors, an overview of the mode used for autonomous walk and a discussion of the
sampling frequency. Thereafter positioning, mapping, planning and search prob-
lems of the hexapod are investigated and solved. Lastly, the changes of the remote
control, the terrain handling problem and changes of the electrical assembly are
described.

3.1 Simulink Model

The Simulink model developed in this project has its origin in the previous thesis
by Dan Thilderkvist and Sebastian Svensson. It consists of three main blocks called
modeSwitch, Control and PosArdu. Figure 3.1 shows the top layer of the Simulink
model and the connection between the three main blocks. ModeSwitch decides
when to switch mode and what should be done when a mode switches. This means
that the camera S-function, the planning algorithms and the movement changes of
the sensor mode are all included in this block. The output of the modeSwitch block
is the new movement signal. More on the different parts of modeSwitch are ex-
plained below. The control block contains the locomotion controls which includes
which leg to move, how it should be moved and how the rest of the body should
follow. This is for example where the force sensors have been integrated. A lot of
the changes since the last master’s thesis have been done in the subblock called
TrajectorySystem in MainControllerNew. The TrajectorySystem block creates the
different positions for the leg trajectory and therefore this also contains the extended
trajectory showed in Chapter 3. From the control block the different positions are
sent to the third main block, called PosArdu and the mission of this block is to take
the leg positions and forward them to the servos. The function and construction of

34

3.1 Simulink Model

the control block and the PosArdu block are explained in more detail in the previ-
ous master’s thesis by Dan Thilderkvist and Sebastian Svensson [Thilderkvist and
Svensson, 2015].

modeSwitch
The block modeSwitch is, as mentioned previously, the block where mode changes
are made. As can be seen in Figure 3.2, it consists of five sub-blocks called get-
Camera, checkStopSignal, checkMode, pathPlanning and finally changeMode. The
inputs are the signal from the remote control, position and angle of the hexapod,
goal position of the path-planning and a signal called noGroundStopSignal.

NoGroundStopSignal is used in mode 3, sensor mode, to check whether the
active foot has ground contact at the end of the trajectory. If the sensors do not
register any pressure the noGroundStopSignal becomes true and the movement is
reversed.

getCamera The block getCamera basically gets the information from the camera
and sends this information to the path planning block where this information is
handled. The other output from the getCamera block is used in mode 2 where the
robot is moving straight forward until the camera registers an obstacle in front of
the camera. This signal simply becomes 1 if there is an obstacle and 0 if the space
is clear.

checkStopSignal The only thing this block does is to change mode to mode 4 if
the robot is in mode 2 and if the stop signal from the previous block is 1.

checkMode This block uses the information from the buttons to check which
mode is active. It also checks the signal called noGroundStopSignal to see if the
sensors have indicated ground contact. This is only done in mode 3. Output from
the checkMode block is the active mode and it is thereafter used to activate the path-
planning algorithm, if the mode is 5, or to tell the final block to change the origin of
the movements.

pathPlanning The pathPlanning block takes the information from the camera to
make a map of the world, it uses the position and angle of the hexapod to decide
where in the room the robot is at the moment, it looks at the input goalPosition
to decide where the robot should move and it checks which mode the robot is in.
Since the path-planning calculations together with the mapping is demanding it is
preferred to only perform these calculations while in mode 5, planning mode.

changeMode The last sub-block in the switchMode block is used to actually
change the mode. After this block the rest of the model gets information about how
it should move. For example, if mode 1 is active, the information about the move-
ment should be taken from the remote control but if mode 2, the camera mode,
is active the movement should just be straight forward or stop, depending on the
camera stop signal.

35

Chapter 3. Method

C
O

N
TR

O
L

TO
 S

E
R

V
O

S

M
O

D
E

 C
H

A
N

G
E

Le
ft

R
ig

ht

M
es

_l
ef

t

M
es

_r
ig

ht

Po
sA

rd
u

R
em

ot
e

bo
dy

Po
si

tio
n

bo
dy

An
gl

e

go
al

Po
si

tio
n

no
G

ro
un

dS
to

pS
ig

na
l

M
ot

io
n

co
nt

ro
l

m
od

eS
w

itc
h

C
om

m
an

de
r

U
ar

t 2
co

m
m

an
d

C
om

m
an

de
r

[1
25

10
0]

G
oa

lP
os

itio
n

[M
es

_r
ig

ht
]

G
ot

o

[M
es

_l
ef

t]

G
ot

o1

[M
es

_l
ef

t]

Fr
om

[M
es

_r
ig

ht
]

Fr
om

1

R
em

ot
e

IM
U

M
es

_l
ef

t

M
es

_r
ig

ht

Le
ft

R
ig

ht

bo
dy

Po
si

tio
n

bo
dy

An
gl

e

no
G

ro
un

dS
to

pS
ig

na
l

C
on

tro
l

[p
os

itio
n]

G
ot

o2

[p
os

itio
n]

Fr
om

2

[a
ng

le
]

Fr
om

3

[a
ng

le
]

G
ot

o3

[n
oG

ro
un

d]

G
ot

o4

[n
oG

ro
un

d]

Fr
om

4

M
P

U
-9

15
0

S
en

so
r f

us
io

n

E
ul

er
 a

ng
le

s

an
gl

es

Su
bs

ys
te

m
1

Fi
gu

re
3.

1
Th

e
to

p
m

od
el

of
th

e
sy

st
em

w
ith

th
e

m
ai

n
bl

oc
ks

,m
od

eS
w

itc
h,

C
on

tro
la

nd
Po

sA
rd

u.

36

3.1 Simulink Model

1

R
e
m

o
te

1

M
o
ti
o
n
 c

o
n
tr

o
l

re
m

o
te

In

C
a
m

e
ra

S
to

p
S

ig
n
a
l

re
m

o
te

O
u
t

c
h
e
c
k
S

to
p

S
ig

n
a
l

re
m

o
te

n
o

G
ro

u
n
d

S
to

p
S

ig
n
a
l

m
o
d
e

lo
o
k
V

b
u
tt
o
n
s

c
h
e
c
k
M

o
d
e

2

b
o
d
y
P

o
s
it
io

n

3

b
o
d
y
A

n
g
le

4

g
o
a
lP

o
s
it
io

n

s
a
m

p
le

T
im

e
C

a
m

e
ra

c
a
m

e
ra

S
to

p
S

ig
n
a
l

C
a
m

e
ra

g
e
tC

a
m

e
ra

n
o
rm

a
lW

a
lk

in
g

M
o
d
e

c
h
a
n
g
e

M
o
d
e

lo
o
k
V

b
u
tt
o
n
s

p
la

n
n
in

g
m

o
d
e

n
o

G
ro

u
n
d

S
to

p
S

ig
n
a
lm

o
tio

n
C

o
n
tr

o
l

c
h
a
n
g
e

M
o
d
e

m
o
d
e

c
a
m

e
ra

b
o
d
y
P

o
s
iti

o
n

b
o
d
y
A

n
g
le

g
o
a
lP

o
s
iti

o
n

P
la

n
n
in

g
 m

o
d
e
 5

p
a
th

P
la

n
n
in

g

5

n
o

G
ro

u
n
d

S
to

p
S

ig
n
a
l

c
a
m

e
ra

S
to

p
S

ig
n
a
l

Fi
gu

re
3.

2
Th

e
co

ns
tru

ct
io

n
of

th
e

bl
oc

k
m

od
eS

w
itc

h.

37

Chapter 3. Method

3.2 Friction Modeling in SimMechanics

A model of the robot was set up in SimMechanics according to Thilderkvist and
Svensson [Thilderkvist and Svensson, 2015]. This model contained all mechani-
cal parts of the robot complete with joints and the control system could be run on
the model. However this could only verify the mechanical system isolated from
an external world. Since a goal of this thesis was to navigate in an environment
with obstacles and terrain another method or software had to be used. A first step
was to improve the SimMechanic model with contact and friction forces between
the feet of the hexapod and the ground. Since there was poor support for contact
forces and friction in the native SimMechanics toolboxes an external package was
used [SimScape Multibody Contact Forces Library]. The toolbox allowed for fric-
tion and contact force model blocks to be set up between the floor and the feet. This
allowed for the Hexapod model to walk around on a flat surface.

3.3 Choice of Simulation Software

Since the solutions for modeling interactions between the robot and environment
was cumbersome in SimMechanics, other alternatives for simulating robots were
researched. Gazebo, MuJoCo, V-REP and Webots are all popular programs for sim-
ulating multi-body dynamics, force contacts and friction through their physic en-
gines. Having support for CAD-parts and capabilities for simulating a virtual time-
of-flight camera were also important features. They all have similar capabilities and
either one of the programs seemed to work for our purposes. Since code generation
to the hardware is performed from the Simulink environment simulink also had to
be used when running simulations. None of the simulation programs had an API for
Simulink connection, but they all had different types of Matlab API’s. In the end we
chose to go with V-REP because of its convenient Matlab API and free academic
license.

3.4 Setting Up the Hexapod in V-REP

All of the individual parts of the Hexapod were provided in the form of CAD-
models. These had to be converted into STL file format in order for them to be
importable into V-REP. This meant that all parts of the hexapod had the correct
weights and moment of inertia. The parts were also dynamically enabled in order
for simulations to include collisions, falls and for gravity to act upon the parts. All
parts were also enabled for sensor interaction and camera rendering so they could
be captured by the depth-camera. The robot contains 18 leg parts and one solid
body part. All of the parts were assembled with joints according to Thilderkvist and
Svensson [Thilderkvist and Svensson, 2015].

38

3.4 Setting Up the Hexapod in V-REP

Virtual Depth Camera
V-REP includes virtual sensors so the depth-camera can be simulated and send a
depth matrix back to Matlab. Thereby the information between V-REP and Matlab
will replicate the information which is to be sent between the BeagleBone and the
camera. The resolution of the real camera used is 320x240 but unfortunately V-REP
only supports 1:1 aspect ratios, therefore 240x240 was used in V-REP. The field of
view and focal lengths of the real camera was used with the virtual one. The camera
was mounted and the final V-REP assembly of the hexapod is presented in Figure
3.3.

Figure 3.3 Assembled hexapod in V-REP

Modeling Dynamic Behavior in V-REP
Static shapes will not be influenced by gravity or dynamically enabled joints, while
dynamic shapes will. Respondable shapes will be affected by other respondable
shapes in collision. The computations of dynamic and respondable parts are heavy,
primitive shapes were therefore created to represent the complete CAD-parts. All
dynamic and collision computations are performed on the simple parts while the
original parts are used in the rendering of the visualization. The tibia parts of the
legs are first selected and a convex hull shape created. This shape is to be used in the
collision computations. It is connected to the corresponding part and collision masks
are set so there will be no collisions between connected parts of the leg [Designing
dynamic simulations].

39

Chapter 3. Method

Connect to V-REP with Matlab and Simulink via Remote API
In order to connect Matlab to V-REP the correct paths has to be included in Matlab
and the right port number has to be found [Enabling the Remote API - client side].
The API has a range of methods which can be applied to the V-REP object. With
these functions angles for the servos can be sent to the V-REP simulation based on
the Simulink controller. The virtual vision sensor will perceive the built environment
and send the depth Matrix to Simulink. Another piece of information which is sent
from V-REP to Simulink is the global position and orientation of the hexapod in the
environment. The information flow between Simulink and V-REP was attempted to
keep close to the flow between the BeagleBone and Simulink, see Figure 3.4 for an
illustration of the flow of information.

Simulink

Generated
Code on BeagleBone

V-REP

Arbotix

Camera

Simulation

Real

Joint Angles

Joint Angles

Depth Matrix

Depth Matrix

Position and Rotation

Internal Position and Rotation

Figure 3.4 Information flow simulation compared to real robot

The coder in Matlab/Simulink does not support certain kinds of functions. The
V-REP remote API could therefore not be run directly in the Matlab-function block
but calls to external functions containing the V-REP connection code had to be
made. A preference was to run V-REP in real-time, therefore we had to run Simulink
in real-time as well in order for the commands sent to V-REP to be useful. A real-
time synchronization block was added to the Simulink-model. The communication
between Simulink and V-REP will by default take place asynchronously. Data will
be sent irrespective of where in the simulation calculations V-REP is. Blocking
function calls has to be used in order for the communication to take place syn-
chronously. That is, Simulink will send data to V-REP and wait until the calcula-
tions have been performed. V-REP will then send data back to Simulink [Remote
API modus operandi]. Running the simulations synchronously is therefore more

40

3.5 Mapping sensors

time consuming. It can be important to use synchronous execution when dynamics
are of importance. In this case it was preferred to have faster execution.

Servo Joint Controllers
Movement of the hexapod is performed by controlling the joints of the servos. On
the real robot an angle value is sent to the servos and an internal PID controller
moves the joints [Thilderkvist and Svensson, 2015]. The same behavior is prefer-
able in the virtual simulation environment in order for the main controller to send
the same information in both the real case and the virtual. Luckily V-REP has built-
in PID controllers in the joint objects which were to be used for this purpose. The
maximum torques are 16.5 kgcm for the real servos, and the virtual torque limit
was therefore set to the same. Since the real servo PID parameters were unknown
the virtual PID parameters were found by trying to compare the behavior in simula-
tion with the real behavior. The real servos never had any difficulties following the
created trajectories. The PID controller in simulation was therefore tuned to also
follow the trajectories.

3.5 Mapping sensors

In order for the robot to navigate autonomously in the world, some sort of mapping
sensor is necessary. There is a myriad of sensors which can be used to perceive the
environment but a Time-of-Flight camera was eventually used for convenience.

Time-of-Flight Camera
The TOF camera chosen in this project is an Asus Xtion Pro Live. It features among
other things an infrared (IR) emitter and detector that captures the depth image and
it features a RGB camera. The two different features are separated in two matri-
ces when delivered. It is small and light weighted and therefor works fine on the
hexapod [Xtion PRO LIVE].

Another 3D sensing camera considered was Microsoft’s Kinect for Windows.
The two cameras are much alike but some of the differences are explained in Table
3.1.

41

Chapter 3. Method

Table 3.1 Comparison between ASUS Xtion PRO LIVE and Microsoft Kinect

ASUS Xtion PRO LIVE Microsoft Kinect

Product Dimensions 18 x 3.5 x 5 cm 38.1 x 38.1 x 12.4 cm

Weight 0.170 kg 1.09 kg

Depth Space Range Between 0.8m and 3.5m Between 0.8m and 4m

Field of View 58°H, 45°V 57°H, 43°V

Frame rate 640 x 480: 30 FPS 640 x 480: 30 FPS

320 x 240: 60 FPS

Power Supply USB2.0/3.0 interface External

RGB Resulution 1280x1024 1280x960

Features RGB camera RGB camera

Infrared (IR) emitter Infrared (IR) emitter

IR depth sensor IR depth sensor

Microphone Multi-array microphone

3-axis accelerometer

Tilt motor with a tilt range of ±27°.

Additional comments for the Kinect [Kinect for Windows Sensor Components
and Specifications]:

• Impossibility to lower the resolution.

• Possibility to use the accelerometer to determine the current orientation of the
Kinect.

• Possibility to record audio as well as find the location of the sound source and
the direction of the audio wave.

42

3.6 Camera Implementation

The reason why the ASUS camera was finally chosen was mainly because of
the weight and size of the camera and the fact that the power was supplied via the
USB cable. An image of the camera is presented in Figure 3.5.

Figure 3.5 ASUS Xtion Pro Live

3.6 Camera Implementation

Since Mathworks does not support use for Asus Xtion Pro Live OpenNi was needed
in order to receive the depth images from the RGB-D camera [Gustafzelius, 2015].
OpenNI is a C++ open source SDK used for 3D sensing applications [OpenNI 2
SDK Binaries & Docs]. The communication between the camera and Matlab gen-
erated some problems, mainly because of the fact that Matlab does not support
code generation to C from C++ code. The problems were solved with help from a
previous thesis from Combine [Gustafzelius, 2015] and personal consultation from
Sara Gustafzelius, the author of the thesis. A C-wrapper which interfaces the C++
methods was written and thereafter used to create an S-function C-file with Mat-
lab’s built-in legacy code commands. An .so library file was also needed, both on
the target hardware and on the host computer, in order to solve the communica-
tion problem. In the user manual belonging to this project a small tutorial describes
how to get the connection between the camera and Matlab to work [Eriksson and
Malmros, 2016].

Integrate camera code to BBB code
When the camera was up and running the model needed to be integrated to
the simulink model for the rest of the project. The camera code generated from

43

Chapter 3. Method

the S-function contained one .tlc-file, one .c-file, one .mex64-file and finally one
.rtwmakecfg-file. The rest of the project also contained these files but in total the
model could only have one rtwmakecfg-file. Therefore the two rtwmakecfg-files
needed to be manually integrated in each other so that the camera block thereafter
could be placed into the rest of the model and data from the camera could be taken.

3.7 Overview of Autonomous Mode

Autonomous mode runs the hexapod with information from the camera, plans a path
from current position to a goal position and executes the path with the leg controller.
The planning and mapping is dynamic and will therefore avoid new obstacles and
re-plan the path when obstacles have been removed.

A number of different parts have to work together in order for the hexapod to
move from one position to another. Figure 3.6 presents an overview of the different
operational parts which have to work together in order for the hexapod to move
around in the real world autonomously. The three colored areas denote different
functional aspects of the autonomous mode.

Leg Operation

Main Controller

Leg
queue

queue

Trajectory
generation

Inverse
kinematics

Servos

Camera

Trajectories Angles

Depth map

Depth map to
Coordinates

Internal position and orientation

Coordinates

Build map

Planning

Map

Path-following
controller

PathVelocity control

Rotation control

Mapping

Planning

Autonomous Mode

Goal
Position

Figure 3.6 Functional overview of hexapod operation

Leg Operation The blue area contains the control and calculations for the legs.
The inputs into the blue block are two signals. One signal for controlling the straight
forward velocity of the hexapod and the other for controlling the rotation. An op-

44

3.7 Overview of Autonomous Mode

tion could have been to include another control signal for controlling the sideways
movement. But the sideways signal was left out since it provided small practical
advantages but would have added complexity to the path-following controller. The
leg queue block orders the legs with regards to which legs are the farthest behind
the others when it comes to following the velocity signal. The leg farthest behind
will be put first in the queue and the following legs in subsequent order. This queue
is passed to the trajectory generation where discretized trajectories are created for
all feet. These trajectories are based on the current position of all hexapod feet and
their individual goal positions. The goal positions are calculated based on velocity
and rotation control signals. The feet trajectories are fed to the inverse kinematics
block. This block calculates the angles of all joints for the feet positions calculated
in the trajectory generation. These angles are then fed to the servos via the Arbotix-
card. The actual movement is then performed by the internal PID-controllers in the
Dynamixel-servos [Thilderkvist and Svensson, 2015].

Mapping The red block contains all of the mapping calculations. It starts with a
connection to the ASUS depth camera. This provides a depth map which essentially
is a matrix with depth values in every pixel. The depth map is sent to the coordi-
nate transform block. This block uses information about the intrinsic parameters of
the camera in addition to the depth map to create a point cloud. The point cloud is
essentially a set of points in space which consists of x, y and z values. The point
cloud is cleaned by removing the floor which is assumed to be a plane. Reflections
in windows can produce points which are unreasonably far away are removed. The
set of points are then sent to the map building block. This block combines the in-
formation about obstacle coordinates in space and the robot position and rotation
in a map. Obstacles are added and removed from the map depending on the points.
A safety area is also added around all obstacles, in order for the hexapod to have a
margin to avoid collisions.

Planning and Path-Following The green block performs all the planning opera-
tions where the goal position is set by the user. The planning block then uses the
map with start and goal position to plan a path from the current position to the goal.
Planning is performed by building a road map from the discretized grid map. All ad-
joining cells in the map are connected in the road map which is essentially a graph.
An incremental heuristic search algorithm called D* lite is used to find a path in the
road map. The path shows which cells to traverse in order to reach the goal as fast as
possible. In order to follow the path, it is sent to the path-following controller. Each
way-point is transformed into continuous coordinates. The controller compares the
current position and rotation to the direction and distance of the next way-point in
the path. Errors in direction and distance from way-point are used to calculate con-
trol signals. The controller used is essentially a proportional controller where the
forward control signal is blocked if the rotational error is too large. Forward veloc-
ity and rotation control signals are sent into the leg block and the feedback loop is
closed.

45

Chapter 3. Method

3.8 Real-Time Multi-threading

Simulink includes functionality for running multiple threads on one core. This is
called multitasking operation in Simulink. All blocks running at the same sampling
frequency will be running as the same task. By default the priorities of the threads
are set so the fastest sampled thread will have the highest priority. The code gen-
eration takes care of setting up threads and includes a scheduler [Simulink Coder
User’s guide].

Different parts of the code are of varying importance and different sample fre-
quencies are needed for robust operation. In Table 3.2 the sampling frequencies for
different parts of the code are presented. The leg operations have to be performed at
a high sampling frequency for smooth operation of the legs. The leg operations are
set to highest priority since they are more important than the other blocks. More
thorough testing of the sample frequency of the leg operations is performed in
[Thilderkvist and Svensson, 2015]. Based on tests and [Thilderkvist and Svensson,
2015] the leg operation can be seen to possess a bit less than half of the compu-
tational power of the BeagleBone. The calculations of mapping and planning take
approximately half a second to perform. The execution time of the path-following is
negligible compared to the leg, mapping and planning calculations. The sample rate
of mapping and planning was set to one sample per second. With good multi-tasking
behavior the computational power should suffice to run the hexapod without inter-
ruptions. The one-second sampling time for mapping and planning should suffice
for dynamic re-planning to work quickly enough.

Process Sampling frequency [Hz]

Leg operation 40

Mapping and Planning 1

Path-following 10

Table 3.2 Sampling frequencies

3.9 Positioning of the Hexapod

Inertial Measurement Unit
To calculate the positioning of the hexapod, different methods where analyzed.
Since the robot already had an IMU integrated it would be convenient if the ac-
celerometer in the IMU could be used to estimate the position of the hexapod in
the map. Unfortunately, the measurements were noisy and hard to read. A low-pass

46

3.9 Positioning of the Hexapod

filter was implemented as an attempt to make this better. Thereafter the filtered sig-
nals were fed through double integrators in order to estimate the position out of the
acceleration but large drift in the position was observed. This is to be expected when
double integrators are applied since tiny errors in mounting of the IMU and noise
might yield large effects.

Internal velocity for positioning
As it would be time consuming to get the accelerometer to work properly. There-
fore, it was decided to look for other methods. A simple heuristic way used for
localization was to assume there is no uncertainty in the actuation of the controller.
This way the trajectory for the feet will provide the position of the robot for each
time step.

Point Cloud Processing
The planning is performed in 2 dimensions and all traversable surfaces are required
to be flat. In order to build a map which represents all non-traversable areas as
obstacles, the floor is to be found in the point cloud. With information about the
orientation of the floor all points deviating more than a pre-determined threshold
can be seen as obstacles. There are numerous ways of fitting a plane to a set of
points in space of which a simple method is using least squares regression. This
method will fit a plane to all points in space with a quadratic loss function. A result
of this will be that points farther from the fitting plane will influence the orientation
more than those close to it. The fitted plane will therefore be extremely biased and
unpredictable unless the points are evenly distributed around the plane, for example,
a Gaussian distribution. This case was highly unlikely, if not impossible, another
method taking into account a vast amount of outliers therefore has to be used.

Random Consensus Optimization (RANSOP)
The RANSOP method was developed and tested in V-REP based on the assumption
that the point clouds generated would be similar to those from the real camera. It
was done by mounting the camera in a known position on the robot where the pos-
sible movements of the robot are approximately known. This yields approximate
information of the position and orientation of the floor plane related to the camera.
This extra information was used to improve the RANSOP algorithm for these pur-
poses. The goal was to reduce the computational power needed since the algorithms
are run in real-time. Another goal was to modify the algorithm so information about
the initial guess of the plane could be used for better results. The algorithm was only
to find the floor plane and no others. Unfortunately, the floor from the real camera
was noisy and mostly incomplete. The use of RANSOP on the real robot therefore
had to be abandoned.

47

Chapter 3. Method

3.10 Mapping and Planning Overview

The mapping and planning methods are tightly connected since the planning algo-
rithm will have to plan in the map. In other words, they will have to be compati-
ble and chosen in tandem. A first realization is that saving all points of the point
cloud every sample will generate large amounts of data. However, it will not con-
tribute with significant amount of extra information since many static objects will
yield points in the same position. An interesting reasoning regarding the memory
needs are discussed in the master’s thesis by Sara Gustafzelius [Gustafzelius, 2015],
where data grow quickly if no simplification or reduction is performed. Therefore,
a method for modeling the world in a more simple way is needed.

2D Mapping
Assumptions and simplifications of the mapping problem had to be made in order
for the computational power to be sufficient. The first assumption is flat floor oper-
ation. The hexapod only works on a flat surface in automatic mode and is not able
to traverse differences in terrain height. All objects which protrude from the ground
more than a set distance, are assumed to be non-traversable obstacles. The map is
therefore built in 2D, a discretized occupancy grid map. The trade-off was between
having a fine resolution map and computational efficiency when adding and espe-
cially removing obstacles. The map size was set to 400x400 cells with each cell
having a side length of 0.05 meters. This covers an area of 20x20 meters which was
deemed sufficient for these purposes. A matrix is used to represent the map, where
occupied cells contain a one and free cells a zero. An example of an occupancy grid
map is presented in Figure 3.7.

0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 1 1 1 1 0 0 0

0 0 0 1 1 0 0 0 0

0 0 1 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0

Figure 3.7 Occupancy grid map example

The map is built by projecting every point in the point cloud onto the floor
plane. The cells which contain a point will be regarded as obstacles. In order for

48

3.10 Mapping and Planning Overview

a point to be added to the map additional conditions must apply. The point must
be more than a certain distance from the floor and less than another distance, the
reason being that the hexapod height is below certain obstacles. Before actually
adding any obstacles to the map the location and rotation of the hexapod has to be
taken into consideration. Those are acquired by the internal positioning for the real
robot and can be measured directly in V-REP. Coordinates of the point cloud are
first calculated in the coordinate system of the camera called the local coordinate
system. The initial position of the robot is set to the center of the map and the
orientation origin in a direction to the right. The point cloud is then translated and
rotated based on the robots position and rotation in the global coordinate system.
An illustration of the global mapping process is presented in Figure 3.8.

Translate
points

Add
obstacles

Δx

Δθ

Δy

Figure 3.8 Global obstacle point transformation

In order to make the planning more efficient the size of the cells were doubled
to 0.1 m side length. In the planning environment the robot is modeled as a point
but in reality when standing in the standard pose it has an approximate length of
45 cm and a width of 50 cm. One way of solving this is to add a margin to all
added obstacles in the planning map. The transition between the regular map and
the courser planning map with margins is presented in Figure 3.9. The purple square
is a point in the regular map, which is added as the dark gray area in the planning
map. To the planning map a margin of three cells are added in all directions in order
to cover worst case scenarios.

49

Chapter 3. Method

70 cm

Figure 3.9 One cell obstacle added to planning map

Mapping Dynamic Environment
Adding obstacles to the map is fairly straight forward. But in order for the mapping
to work in a dynamic world obstacles have to be removed from the map as well.

A simple heuristic method for dynamic mapping was however created which
does not apply any probabilistic methods and always keeps the map which has been
seen. All obstacles which have been seen are, as previously discussed, added to
the map. The problem is how to know which obstacles to remove from the map.
Adding obstacles is a simple task since there is a point in space representing the
object. However, when removing an obstacle the information is only absence of a
point. It is difficult to interpret when absences of obstacles warrant a removal of an
obstacle from the map. The method used is illustrated in Figure 3.10. The magenta
obstacles represent obstacles in the old map. The obstacles are removed by iterating
from each new obstacle, green, to the robot and all obstacles in the path are removed
from the old map. New obstacles are then added to the map.

50

3.11 Planning

Old obstacles in map

New obstacles percived

Old obstacles

New obstacles

Remove obstacles

Obstacles to remove Obstacles removed New obstacles added

Figure 3.10 Process of removing obstacles

3.11 Planning

In the methods used to perform planning and actions to follow the plan, the plan-
ning and actuation have been completely decoupled. Meaning that the planning has
not taken the limitations of actuating the plan into account. The reasoning is that
since the robot can rotate and walk in any direction it will not be limited by differ-
ential constraints in the same way other vehicles might. Therefore the path will be
followed in a correct manner. No dynamics are therefore included in the planning
algorithms since this would make the planning problem harder and less suited for
real-time operation [Lavalle, 2006].

C-space The configuration space in the case of the hexapod is defined with three
parameters, position along x-axis, y-axis and rotation, q . The c-space is the set of
all possible positions and rotations over the free space.

Uniform Grid Discretization Uniform grid discretization was used to build the
road map in which planning was performed. The main reason being that it is a sim-
ple intuitive method. For comparisons and discussion regarding alternative planning
and mapping methods, see the discussion part in the thesis.

3.12 Search

Uniform grid discretization provides a solid road map, but in order to actually find
a path, search has to be performed in the graph. D* Lite was chosen as search
algorithm since it is efficient and dynamic.

51

Chapter 3. Method

D* implementation
An implementation of D* Lite [Koenig and Likhachev, 2002] was found in C++ [D*
Lite C++ Implementation]. Code in C++ can not be directly used in code generation
and therefore a wrapper was written in C. This allowed us to finally run the planning
algorithm on the BeagleBone hardware. In Figure 3.11 an example of D* Lite is
presented. Obstacles were added step by step while the path was re-planned. The
colors are denoted as follows.

Black Traversable free space

Green Traversable with changed cost

Purple Path and goal cell

Red Untraversable obstacle

Yellow Start cell

Figure 3.11 Illustration of the D* Lite implementation

52

3.13 Path Following and Feedback

Integrating the path planning code with the rest of the model
Once the path planning was done and worked satisfyingly it needed to be integrated
with the rest of the model run on the hexapod. The procedure of this integration had
a lot of resemblances with the integration of the camera code. Also here a wrapper
was needed to be able to generate code to C from C++ and an .so library was needed
to be created on the BeagleBone to get a symbolic link to the planning code. When
the D* S-function was compiled in the model the new rtwmakecfg-file needed to
be integrated to the old file in the same way the rwtmakecfg-file for the camera was
integrated before. Lastly the simulink block for the D* S-function was created and
placed in the model together with the rest of the planning code. In Figure 3.12 an
example of a path created in the Simulink/Matlab environment with the C++ D*
Lite code is presented.

X [meters]
9.5 10 10.5 11 11.5 12 12.5 13

Y
 [

m
e

te
rs

]

9

9.5

10

10.5

11

11.5

12

Figure 3.12 Illustration of a planned path

3.13 Path Following and Feedback

Planning using feedback has two separate approaches [Lavalle, 2006]. The explicit
approach is when the possible future state drift uncertainty is taken into account in
the planning. While the implicit approach says that no uncertainty is possible in the

53

Chapter 3. Method

states. But a feedback plan is present which provides the actions to take in order
to revert back to the plan if it ends up in an unexpected state. Designing systems
with the explicit approach is more complicated, complexity is larger and algorithms
more difficult to implement. We are using the implicit approach where planning is
performed by not taking into account the uncertainty in states, but instead corrects
for uncertainties with a control law.

Actuation for Path Following
There are three input signals which can be used for actuating the robot. These cor-
respond to walking forward, walking sideways and rotating. The path which is to
be followed is a set of points, that is coordinates (x,y). An example of a path which
is to be followed is presented in Figure 3.12. The issue of following the path can
be seen as a control problem where the control signals have to be used in such a
way that the robot follows the path efficiently. The error in the control problem can
be seen as the distance between the robot and the next way-point in the path. In
order to follow the path as smoothly as possible a couple of factors have to be taken
into account. First of all a decision has to be made by the robot regarding which
way-point to aim for. If a way-point to close is chosen the walking will be jerky
and change direction frequently and quickly. However, if a way-point goal is set too
far away the robot might cut corners and collide with obstacles. Another possibility
is to use numerous way-points at the same time so adjustments can be made for
direction of the next way-point even before the current one has been reached. This
would add a large amount of complexity and the controller was kept simple by just
aiming for one way-point at the time. Since no differential constraints are imposed
on the hexapod it can walk and rotate in the direction necessary for following the
path. A simple controller could therefore be used. It works by first checking if the
current way-point is closer than a set threshold. If so, choose the next point in the
path. If not, keep the current way-point as the goal. Then find the difference, eq , in
direction between the current direction and the direction of the way-point. Use the
difference as the error in a proportional controller to minimize the direction error.
If this direction error is below a magnitude threshold, walk forward. The error dis-
tance, ed is used to decide when the way-point is close enough to start aiming for
the next way-point. In Figure 3.13 the errors used by the path-following controller
are used.

54

3.14 Remote Control Changes

current
direction

way-point
direction

ε

εd

Figure 3.13 Illustration of the errors used by the path-following controller

3.14 Remote Control Changes

The remote control from the previous master’s thesis [Thilderkvist and Svensson,
2015] uses 8 out of 12 buttons. Some of them worked fine and others were just
for experiments and did not work perfectly in the beginning of this project. On the
remote control there are 6 small buttons called R1, R2, R3, L4, L5 and L6, see
Figure 3.14. These are used to change the mode of the Hexapod. L6 is used for
mode 1 which means normal walking controlled by the user. L5 was not working
from the previous master thesis and was therefore changed in this project to work
as a first try of an automatic mode. This means that when L5 is being pressed, then
the user can no longer use the remote to control the Hexapod. Instead the Hexapod
walks straight forward and stops whenever the camera sees an object near the robot.
This is called mode 2. When the camera sees an obstacle it sets a stop signal to 1.
This signal switches mode to mode 4 which corresponds to button R3. In theory this
means that the button R3 is being pushed and the robot stops. When the obstacle
disappears the mode is going back to mode 2 and the robot starts to move.

L4, which corresponds to mode 3, is like mode 1 except the sensors are being
used to check if the legs have touched ground or not. This means that the hexapod is
controlled with the remote control as long as the sensors does not indicate that there
is ground under the feet. In that case it starts to move in the opposite direction for a

55

Chapter 3. Method

couple of samples to avoid falling of an edge. Mode 3 is described more below.
The most interesting mode is mode 5, corresponding to button R2. When this

button is being pushed the robot goes into path planning mode. It will now walk
according to the mapping and planning calculations and avoid obstacles.

The last button R1 (mode 6) was used as a balancing mode in the previous
master thesis and has not been changed since then. This mode uses the gyroscope
from the IMU to balance the body of the hexapod.

In Table 3.3 a summary of the different buttons on the remote control can be
viewed.

Figure 3.14 The remote control that is used to operate the hexapod.

Table 3.3 The different buttons with corresponding modes

Button Mode Description

L6 Mode 1 Normal walking mode

L5 Mode 2 Check for obstacle mode

L4 Mode 3 Sensor touch mode

R3 Mode 4 Obstacle stop mode

R2 Mode 5 Planning mode

R1 Mode 6 Balancing mode

56

3.15 Terrain Handling

3.15 Terrain Handling

Force Sensors
To get information of whether the feet of the Hexapod are in contact with the ground
or not, several alternatives were considered. One of the first ideas was that the inter-
nal forces of the servos could be measured. The torque in the servos would depend
on whether the foot had a force applied to it or not, that is, the servo must work
harder when the foot is on the ground. Another idea was to use a small button
which would be pushed in when the foot got contact and thereby trigger an I/O sig-
nal. This current could be measured and used as an indicator. The third idea that
was considered and later chosen was to buy a couple of force sensing resistors.

Application of the Force Sensors
Once the force sensors were up and running the values could be measured in Matlab.
It was found that the sensor was very sensitive and just a small pressure on the
sensor showed a change in the values. Figure 3.15 shows the result that the company
Interlinc Electronics got when they tested the sensors for different values of the
added resistance, RM. Since the hexapod needed a sensitive sensor it was decided
that a 10k Ohm resistor was going to be used, see Figure 2.2 from the theory section.
Some simple tests were made that showed that the sensors worked according to the
graph from Interlinc Electronics. A Matlab plot that shows the sensor in action can
be viewed in Figure 3.16(a).

Figure 3.15 The voltage output from the sensor depending on the value of the
added resistance, RM. [FSR Force Sensing Resistor Integration Guide and Evalua-
tion Parts Catalog]

57

Chapter 3. Method

0 5 10 15 20 25

Time

-0.5

0

0.5

1

1.5

V
o
lta

g
e

(a) The changes of the voltage.

0 5 10 15 20 25

Time

-0.5

0

0.5

1

1.5

T
ru

e
/F

a
ls

e

(b) The boolean expression for ground contact

Figure 3.16 Force sensor example

The use of the sensor was decided to be relatively simple. If the voltage of the
analog input was above 0.1 V the output of the function was set to true, otherwise
it was set to false, see Figure 3.16(b). This boolean value was thereafter used in the
code for the walking pattern to cancel the step if the foot was in contact with the
ground, or to keep moving the leg until contact with the ground was found. In order
to make these changes in the walking pattern the code needed to be supplemented
with an extended moving trajectory for the leg. In the previous case the trajectory

58

3.15 Terrain Handling

was based on a half ellipse and hence, the trajectory was canceled when the leg had
reached the end of the half ellipse. In order to make the leg keep moving a short
vertical trajectory was added to the previous ellipse. The new trajectory is shown
in Figure 3.17. In this case the leg will move down to 3 cm in negative z-direction
if the sensor has not indicated ground touch. When the extended trajectory is done
the leg will move back to its original position. Thereafter, to avoid falling off an
edge, the hexapod will keep moving backwards for a couple of samples before it
stops completely. This feature is only available in mode 3 to avoid disturbances of
the sensors to conflict with the normal mode or the planning mode.

119

120

121

60 80 100 120 140 160 180

-100

-90

-80

-70

-60

-50

-40

Figure 3.17 The old trajectory (blue) of the leg movement together with the ex-
tended trajectory (red). The start position is (120, 60, -70) and the goal of the ellipse
is (120,180,-70).

Force Sensor State Flow
The state flow for the use of the force sensors are described in the diagrams in
Figures 3.18 and 3.19.

When mode 3 is activated the hexapod will wait for instructions from the remote
control and as soon as the hexapod starts to move it will check the sensor of the
moving leg. If the sensor becomes active the leg will stop in the current position
and next leg will start to move. If the sensor does not indicate that the leg has
touched ground the state "Check for ground" will become active. The flow of this
state is described in Figure 3.19. Here the leg can go through four states called
moving state 0, moving state 1, moving state 2 and moving state 3. Moving state 0
corresponds to the normal trajectory that the leg is doing according to the old code
from the master thesis by Sebastian Svensson and Dan Thilderkvist [Thilderkvist
and Svensson, 2015] and moving state 1 corresponds to the new, extended trajectory,
which is described in the previous section and Figure 3.17. This trajectory makes the
leg move downwards for 3 cm to check if the ground can be reached or if there is an

59

Chapter 3. Method

edge. During moving state 0 and moving state 1 the leg movement can be canceled
if the sensor check becomes true and in that case the next leg will start to move. If,
however, the sensor check never becomes true, indicating no ground can be reached,
the moving state 2 will become active. After this point the sensors will no longer
be used. Moving state 2 and 3 are corresponding to 1 and 0 respectively. They use
the same trajectory but inverted so that the leg moves backwards. The number of
samples in the two back trajectories have also been changed for faster movement.
When moving state 3 is done the leg will be in the exact same position as when it
started to move in moving state 0. Thereafter the velocity of the hexapod is set to
full speed backwards for a couple of samples before it completely stops. To activate
the hexapod again and be able to control it with the remote control, the mode needs
to be changed by pressing any of the six buttons showed in Table 3.3 and thereafter,
if the force sensor mode is to be used, activate mode 3 again by pressing button L4.

At the moment the force sensors are only implemented on the two front legs and
hence, this mode will only fork if the hexapod moves straight forward towards the
edge.

Figure 3.18 The state flow diagram for mode 3 where the force sensors are being
integrated.

60

3.15 Terrain Handling

Figure 3.19 The state flow diagram for mode 3 when the state "check for ground"
is activated.

Mounting of the Force Sensors
As mentioned before the sensors give a better precision if the force acting on them
is perpendicular to the sensor. This requires that the mounting of the sensor catches
the forces coming in with an angle and transform them to act better on the sensor.
Another requirement is that the mounting does not create any internal forces on the
sensors which might give inaccurate readings. Therefore, it is not possible to simply
glue the sensors to the bottom of the feet. Hence, a holder for the sensor is needed.

Because of the two requirements mentioned above it was decided that the sensor
holder would consist of two parts, one cylinder used to push the sensor when the
ground is being touched and one housing part that holds the cylinder in place. A
simple design of the two parts was constructed in the CAD program Creo, see Figure
3.20, and sent to a 3D printer. The final result can be viewed in Figure 3.21.

When everything was in its place some simple tests were made to see if the
holder worked satisfyingly.

61

Chapter 3. Method

Figure 3.20 Sensor holder CAD design

Figure 3.21 The 3D printed force sensor holder (white), the sensor and a pad to
increase the friction (black).

62

3.16 Electrical Assembly

3.16 Electrical Assembly

The electrical assembly of the hexapod is very much like the one in the previ-
ous master thesis from Dan Thilderkvist and Sebastian Svensson [Thilderkvist and
Svensson, 2015] except that the camera and the force sensors have been added. The
new circuit systems can be viewed in Figures 3.22 and 3.23 where the first one
shows the power connections and the other figure shows the communication.

Figure 3.22 An overview of how the power is connected in the system.

Figure 3.23 An overview of the communication circuit. Each wire is represented
by a line.

63

Chapter 3. Method

The electrical assembly of the force sensors was constructed for all of the six
sensors to make the connections easier. Figure 3.24 represents the model being used
to construct the circuit board. The specific numbers of the pins on the BeagleBone
are also printed on the model in order to make it clear for the user how to connect
the cables. The 12 connections in the middle are used for the sensors and the six
connections to the right represents the pins on the BeagleBone.

Figure 3.24 Force sensors circuit

64

4

Results

In this chapter all the tests that have been made are described. This includes tests
for:

• RANSAC and RANSOP

• Mapping

• Complete planning test

• Force Sensors

For RANSAC and RANSOP tests were made both for the performance of the al-
gorithms and comparisons of execution time. The tests for the Mapping were made
in V-REP where the objective was to map an environment consisting of a couple of
obstacle.

The next tests were three trials to test the planning, mapping and path-following.
Three different scenarios were tested, one without any obstacle, one with a static
obstacle and one test with a dynamic obstacle.

The last test performed was to see how well the force sensors and their imple-
mentation worked. That included mounting of the sensors as well as the program-
ming of the leg movements.

Before the different tests are described more thoroughly a quick review of the
hexapod hardware changes are presented.

In Figure 4.1 the current hexapod can be seen. What is new since the beginning
of this project is mainly the implementation of the camera and the force sensors.
Some changes regarding the mounting of different parts have also been made.

65

Chapter 4. Results

Figure 4.1 Hardware changes of the hexapod.

4.1 RANSAC and RANSOP

Testing
There are no guarantees or proofs that RANSOP will yield the correct results. How-
ever after running numerous tests it can be seen as working well. The real depth
camera did not see the floor but an evaluation of the algorithm was still deemed rel-
evant. Mainly since the algorithm might be used with other mapping sensors or in
other robot applications with a better view of the floor in the future. For evaluation
purposes point clouds from the V-REP simulation was used instead of real camera
data. The depth camera simulation in V-REP does not have the same real world
limitations as the real camera and therefore perfect point clouds were acquired. The
resolution was 240x240 but decimated by a factor of 5 to 48x48 in order to speed up
calculations. This decimation was also done on the real robot. Three different test
cases were set up in V-REP on which both RANSOP and RANSAC were run. The
algorithms were both run 100 times for each test case to yield a sufficient amount
of test data. The execution time was measured for each run and each run was eval-
uated as being successful or not in order to determine the success rate. The tuned

66

4.1 RANSAC and RANSOP

parameters which are presented in Table 4.1 and Table 4.2 were kept through the
whole testing process.

Parameters Values Description

nbrSampleSets 45 Number of random sets of points to try

nbrPoints 3 Number of coordinate points in each sam-
ple set

nbrValidationPoints 50 Number of points to use for evaluation of
the sample sets

Table 4.1 RANSOP parameters

Parameters Values Description

nPoints 40 smallest number of points required

nIterations 10 number of iterations

threshold 0.05
meters

threshold used to id a point that fits well

nNearby 20 number of nearby points required

Table 4.2 RANSAC parameters

Algorithm Performance
In the RANSOP figures the green circles encircle the randomly sampled validation
points. The blue circles encircle the points chosen to estimate the model and the
blue plane is the estimated plane. In the RANSAC figures all points encircled by a
black circle are part of the set of inliers. Since RANSAC is run twice and the black
circles are kept for both runs they could belong to either run.

Test 1 Test 1 was constructed as a simple environment only containing a wall and
the floor as can be seen in Figure 4.7(a). During test 1 RANSAC had a success-
rate of 100 % while RANSOP also had a success-rate of 100 %. In order to show
that RANSOP is less robust than RANSAC a decrease in nbrSampleSets to 30 was
tried. This decreased the success-rate for a test of 100 runs to 98 % for RANSOP.

67

Chapter 4. Results

An increase in the number of sample sets will increase the probability of success,
but there will always be a possibility of getting unwanted results with RANSOP.

(a) V-REP environment

2.5

2

1.5

1

0.5

0
-1

-0.5

0

0.5

1

0

-0.2

0.4

0.6

0.2

(b) Random Sample Optimization

(c) Random Sample Consensus

Figure 4.2 Test 1

Test 2 Test 2 was constructed with a couple of objects obscuring the view but still
not a complex scene with a fair amount of floor left visible. It can be seen in Figure
4.9(a). Of the 100 runs, RANSOP succeeded 96 times while the failed estimations
were still really close to the real floor. RANSAC succeeded all runs.

68

4.1 RANSAC and RANSOP

(a) V-REP environment

2.5

2

1.5

1

0.5

0

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0

-0.2

0.6

0.4

0.2

(b) Random Sample Optimization

(c) Random Sample Consensus

Figure 4.3 Test 2

Test 3 In Test 3 even less floor was visible for the camera, with an even more com-
plex environment and obstacles close to the robot. The environment can be seen in
Figure 4.10(a). One result of RANSOP is presented in Figure 4.10(b). The RAN-
SOP algorithm performed substantially worse in this test as compared to the previ-
ous ones, with a success-rate of only 72 %. This rate is obviously not acceptable so
an attempt to increase number of sample sets to 1000 was tried. The success-rate
was then increased to 99 %. RANSAC also struggled when only two planes were
to be found since it often found two other planes than the floor plane. This was
corrected by increasing the number of planes to four.

69

Chapter 4. Results

(a) V-REP environment

2.5

2

1.5

1

0.5

0-1

-0.5

0

0.5

0.4

-0.2

0

0.2

0.6

1

(b) Random Sample Optimization

(c) Random Sample Consensus

Figure 4.4 Test 3

The efficiency and robustness depends on which environment it is to be used in.
But the conclusion is that in order for it to work in all environments the parameters
used during test 3 has to be the ones used in production code.

Execution Time
The execution times were not measured on the target hardware and can therefore
not be used as a measurement of the real-time possibilities on the robot, but more as
a comparison between RANSAC and RANSOP. The algorithms were run 100 times
on each of the test cases and the execution times were measured and are presented
in Figure 4.5.

70

4.2 Mapping

Execution Time [s]
0.02 0.04 0.06 0.08 0.1 0.12

N
u

m
b

e
r

o
f

ru
n

s

0

5

10

15

20

25

30

35
Test 1 RANSOP

Execution Time [s]
2 3 4 5 6 7

N
u

m
b

e
r

o
f

ru
n

s

0

5

10

15

20

25

30

35
Test 1 RANSAC

Execution Time [s]
0.02 0.04 0.06 0.08 0.1 0.12

N
u

m
b

e
r

o
f

ru
n

s

0

10

20

30

40
Test 2 RANSOP

Execution Time [s]
1 2 3 4 5 6 7

N
u

m
b

e
r

o
f

ru
n

s

0

5

10

15

20

25

30

35
Test 2 RANSAC

Execution Time [s]
0.6 0.7 0.8 0.9 1 1.1

N
u

m
b

e
r

o
f

ru
n

s

0

5

10

15

20
Test 3 RANSOP

Execution Time [s]
2 4 6 8 10 12 14

N
u

m
b

e
r

o
f

ru
n

s

0

5

10

15

20
Test 3 RANSAC

Figure 4.5 Execution times for RANSAC and RANSOP

4.2 Mapping

A complete example of mapping with point data from V-REP is presented in Figure
4.6. The scene was set up to contain a couple of obstacles. In (a) the V-REP visual-
ization can be seen, (b) presents the point cloud acquired by transforming the virtual
camera depth map to coordinates in space. The high-resolution occupancy grid map
is presented in (c) and the planning map with lower resolution and margins in (d).

71

Chapter 4. Results

(a) V-REP (b) Mapping points

Binary Occupancy Grid

X [meters]
10 10.5 11 11.5 12 12.5 13

Y
 [

m
e

te
rs

]

8.5

9

9.5

10

10.5

11

11.5

(c) Occupancy grid map

X [meters]
8 9 10 11 12 13

Y
 [

m
e

te
rs

]

8

9

10

11

12

13

(d) planning Map

Figure 4.6 Mapping Test

4.3 Complete Planning Tests

In order to test the complete hexapod three test cases were run. A first simple test
was made with no obstacles blocking the path between start and goal. During the
second test a static obstacle was placed between the hexapod and the goal. Finally,
the third test was performed within a dynamic environment to force a complete re-
planning of the path. This was done by starting with no obstacles and then adding
an obstacle in front of the hexapod while it was walking.

Test 1, Static Environment With No Obstacles
In Figure 4.7 the results for test 1 are presented. A depth map is presented in (a)
where the room can be seen. Darker areas in the depth map are closer to the viewer
while lighter areas are more far away. The depth map was captured right at the start
of the test and then converted into points in (b). The final map is shown in (c), where
the black areas are obstacles and the gray areas are planning obstacles with safety
margin. The path planned is seen as the tiny blue dots, while the actual path walked
is the red line. In (d) the hexapod can be seen in the real world with the green dot

72

4.3 Complete Planning Tests

being the goal. Figure 4.8 displays the path more precisely with the green dot being
the goal.

(a) Depth Map

-2

-1

0

10

1

2

z

x

5

y

0 -5-4-3-2-1012

(b) Mapping points

10 12 14 16

X [meters]

6

7

8

9

10

11

12

13

Y
 [
m

e
te

rs
]

1010 1212 1414 1616

X [meters]X [meters]

66

77

88

99

1010

1111

1212

1313

Y
 [
m

e
te

rs
]

Y
 [
m

e
te

rs
]

(c) Occupancy grid map and corresponding
planning map

(d) Real world

Figure 4.7 Test 1

73

Chapter 4. Results

9.5 10 10.5 11 11.5 12 12.5 13 13.5

X [meters]

8.5

9

9.5

10

10.5

11

11.5

Y
 [
m

e
te

rs
]

Figure 4.8 Test 1

Test 2, Static Environment With Obstacles
A box was placed in-between the goal and start position of the robot. The envi-
ronment was kept static and the robot walked the planned path perfectly. In Figure
4.9 three sampled times of the planning are presented. The left column of images
display real world images of the hexapod at time t. The right column contains the
map at time t, the red dots are the planned path and the blue dots display the path
traversed by the robot. The blue star denotes the hexapod’s current position and the
green circle is the goal.

74

4.3 Complete Planning Tests

(a) Real world, time = 0 s

X [meters]
9.5 10 10.5 11 11.5 12 12.5 13

Y
 [
m

e
te

rs
]

9

9.5

10

10.5

11

11.5

12

(b) Map and Plan, time = 0 s

(c) Real world, time = 20 s

X [meters]
9.5 10 10.5 11 11.5 12 12.5 13

Y
 [
m

e
te

rs
]

9

9.5

10

10.5

11

11.5

12

(d) Map and Plan, t = 20 s

(e) Real world, time = 35 s

X [meters]
9.5 10 10.5 11 11.5 12 12.5 13

Y
 [
m

e
te

rs
]

9

9.5

10

10.5

11

11.5

12

(f) Map and Plan, t = 35 s

Figure 4.9 Test 2

Test 3, Dynamic Environment
The start and goal positions are the same as in previous tests. However, an obstacle
is added after five seconds during this test. Figure 4.10 shows three snap shots of
the run.

75

Chapter 4. Results

(a) Real world, time = 0 s

X [meters]
9.5 10 10.5 11 11.5 12 12.5 13

Y
 [
m

e
te

rs
]

9

9.5

10

10.5

11

11.5

12

(b) Map and Plan, time = 0 s

(c) Real world, time = 5 s

X [meters]
9.5 10 10.5 11 11.5 12 12.5 13

Y
 [
m

e
te

rs
]

9

9.5

10

10.5

11

11.5

12

(d) Map and Plan, t = 5 s

(e) Real world, time = 20 s

X [meters]
9.5 10 10.5 11 11.5 12 12.5 13

Y
 [
m

e
te

rs
]

9

9.5

10

10.5

11

11.5

12

(f) Map and Plan, t = 20 s

Figure 4.10 Test 3

76

4.4 Force Sensors

4.4 Force Sensors

To test the force sensors mode 3 was run on different terrains. The first test was to
see if the leg stopped earlier if the sensor got into contact with something above
ground, for example, a stone. This test was successful and the leg stopped at the
correct position. The next test done was to see if the leg could keep going below
ground level and then stop if the sensor indicated ground about one cm below the
ground level. Also this test was successful.

Finally, a test was made where the sensor never indicated ground. To do this test
the robot was placed on a table and was allowed to walk straight forward. When
one of the front leg got to the edge it responded exactly as wanted and hence, the
hexapod did not fall of the table.

The only time the tests were not successful was when the leg slipped in such a
way that the sensor never indicated ground touch.

At the moment the force sensors are only integrated on the two front legs, mainly
because other things were prioritized before integrating them on every leg. This
means that the tests made above only works when the robot is moving towards the
edge with its front.

77

5

Discussion and

Conclusions

5.1 Discussion

Simulink and Model-Based Design with Verification in V-REP
Simulink has some advantages and disadvantages when it comes to building a map-
ping and planning system. It has been convenient to generate code to the Beagle-
Bone and small changes in the Simulink code can make for large differences in
the generated code which make for a fast testing and iteration process. However,
when systems with large matrices or data structures have to be built it is better to
implement them in C/C++ or Matlab code and run it in the Simulink model.

SimMechanics
There were a couple issues with modeling friction in SimMechanics. The contact
friction package in SimMechanics only supported friction between pre-set shapes,
such as between a sphere and a plane. The robot is to interact with all sorts of shapes
in the terrain. One solution might have been to approximate different shapes with
large amounts of spheres or planes. This would mean that there had to be an ex-
plicit friction model between all of these shapes and the feet. This is a cumbersome
solution when it comes to creating the SimMechanics model, which would need
friction blocks between all planes and the spheres on the feet. Another possible so-
lution would be to change the position and orientation of the friction model plane
depending on the topography of the terrain. So the same object would be used for
all contacts between feet and ground, but this object would move to the position
of a foot when it was to be in contact with the ground. A similar solution was pro-
posed by Burkus and Odry in a paper where they suggest modeling the ground using
polygons generated by Matlab functions [Burkus and Odry, 2014].

78

5.1 Discussion

Mapping Sensors
A Time-of-flight camera was used on the robot, but many different mapping sensors
were discussed during the thesis. One option was to use ultrasonic sensors which
utilize sound to find obstacles. These can only see distances along one axis and
were discarded immediately. The reason being that a more high resolution map was
preferred in order to perform robust planning. Other options were depth cameras,
also called time-of-flight cameras and LIDAR (Light Detection And Ranging). LI-
DARs are commonly used in world mapping applications for autonomous vehicles.
They work by essentially shooting a laser pulse and measuring the reflection time.
By sweeping the environment a full map can be built point by point. Time-of-flight
cameras work in a similar fashion but in comparison the whole 3D mapping is done
with one pulse of infrared light, which covers the whole area of interest. The re-
flected light is then captured by a photo-sensor like on a regular camera [Varghese
and Boone, 2015]. Yet another option is to use a stereo camera, which essentially
is two cameras with a known distance between them. Stereo cameras find matching
points in the two images captured and measure the distance between them. This
is fairly heavy computationally and accuracy is a problem. Therefore, a time-of-
flight camera is preferred over a stereo camera [Li, 2014]. A full scanning LIDAR
would have been preferred over a time-of-flight camera since there are versions
which can map in 3D 360 � around the robot. LIDARS with full mapping capabili-
ties are however expensive while there exist a fair amount of good consumer grade
time-of-flight cameras. The time-of-flight cameras are widely used and lots of open
source code for implementation and use can be found. These were the two reasons
a time-of-flight camera was chosen over a LIDAR for mapping purposes.

Depth Camera
The depth camera is a convenient tool for mapping the environment during the
right circumstances. Numerous limitations have however been discovered during
the course of this thesis. These limitations are mostly intrinsic based on physical
fundamentals of electromagnetic waves. The camera works by sending a pulse of
light in the infrared spectrum which is reflected by surfaces in the environment. The
reflected light beams are measured by a photo sensor similar to what is used in a
regular digital camera. The time between when the light pulse is sent and when the
different pixels sense the reflected light is measured and the distance is calculated.
If a pixel in the sensor does not acquire enough infrared light, then there will be no
measurement in that pixel. Therefore there has to be a beam reflected back to the
camera from the surface in order for a depth value to be registered. If the surface
is not right in front of the camera there has to be a certain roughness in order for
light beams to also be spread back to the camera sensor. This is not a problem for
most surfaces but an example is glass or other reflective surfaces. The general rule
goes that the shinier and more reflective an object is, the worse the depth camera
will handle it. Another factor which was discovered to play a role in the ability of

79

Chapter 5. Discussion and Conclusions

the depth camera was the angle between the camera and surface. For the hexapod
the outgoing beams were at a small incoming angle to the floor. The result was that
a majority of the beams were reflected away from the floor at the same, or similar
out-angle. But not enough light was reflected back to the camera and therefore the
floor would not be included in the point cloud. This has not been an issue when the
floor is equally reflective so no points are added to the point-cloud. But when the
floor reflects a small amount of the light this might lead to inconsistent behavior
in the algorithms. Another flaw is the effect of surrounding light. Indoors this is
not a problem, but outdoors there are large amounts of ambient infrared light. This
disturbs the camera to the extent that it does not even work outdoors.

RANSAC and RANSOP
RANSOP was never used in the final version of the robot for two reasons. The first
reason being that the data collected by the depth camera had a hard time registering
the floor. For most types of floor surfaces there were no readings since the floor
reflected the infrared light away from the camera. The second reason being that
even though execution time is lower than original RANSAC it would add some
time for calculations and still not add much extra functionality. RANSOP will be
less robust for environments where only a small part of the number of points are
points in the plane which is to be found. In this case, the robot is assumed to walk in
an environment with a flat floor and a fairly open space. Based on these assumptions
a substantial part of the points should be points from the floor. A difficulty which
might skew the results of the tests are the many parameters of both RANSOP and
RANSAC. The tuning of these might affect the outcome both when it comes to
execution time and success-rate. The tuning was done by trial and error until both
performance and robustness seemed reasonable.

Force Sensors
In Chapter 3 two alternatives to the force sensing resistors were mentioned, one was
to place small buttons under the feet and the other to measure the internal forces of
the servos. The reason why the resistors were finally chosen was because they are
easy to use, precise and gives more information about the pressure than just if it has
contact or not. The buttons would only give true or false depending on ground touch
or not and even if this information is enough in this master thesis it could be a nice
feature in the future to now how much pressure there is on the feet, for example
to be able to balance the body. Another disadvantage of the push button is that the
force must be applied perpendicular to the button. If the foot slides a little the button
might not be triggered. This can also be a problem with the force sensing resistors,
since they work better if the force is perpendicularly to the sensor but it has a better
chance of catching forces coming from the side. The internal measurements of the
forces could work, but would require a lot of testing and calibrations before they
would give a satisfying result and even then it was not certain that the measurements

80

5.1 Discussion

would be accurate enough. Since the force sensing resistors worked so nicely and
were easy to use it was decided to use them. In the Result section it can be seen that
they are precise and work as expected.

The difficult part about the force sensing resistors was to mount the them in a
proper way. In the end a solution was found and with help from a 3D printer a pro-
totype could be build that worked as required. A 3D printed prototype is cheap and
very easy to construct but there may be some flaws with 3D printing a product. The
different materials that can be chosen are limited and the prototypes are often not
as strong as traditionally manufactured parts. The dimension errors in the prototype
can also cause problems, for example, some of the force sensor holders needed to
be filed down in order to fit the hexapod [Disadvantages of 3D Printers].

Localization
In order to localize the position of the hexapod in the environment only the internal
positioning was used due to a lack of time. This solution is useful in predictable
environments where the feet are not likely to slip. Another issue with this method
is that all small uncertainties will incrementally add up and produce a drift in the
localization. However, this method would prove to work well for smaller distances.
Since the map is updated continuously there would only be problems if some area
of the map is obscured for a longer period of time. More measurement sources were
however available and could have been used when estimating the position. The IMU
provided measurements from the accelerometer which could be integrated twice to
get changes in position. The IMU does produce a large drift, which could have been
solved by fitting the camera information to the previous map information to get
the global position. These extra sources of information could have been joined in a
Kalman filter for position estimation, or a method called Simultaneous localization
and mapping could have been used [Huang et al., 2005].

Alternative Mapping Methods
Below a number of alternative mapping methods are discussed. They were not used
mainly as a result of lacking computational power and time constraints when writing
the thesis.

Primitive Shape Estimation
One way of reducing the amount of data is by estimating primitive shapes from the
point cloud. The parameters of the primitive shapes are kept as a representation of
the environment. When a new point cloud is captured, these points are compared
against the primitive shapes to find which are inliers of the shapes and which are
outliers which might be part of new shapes. The algorithm which in many cases is
the base for these methods is RANSAC [Fischler and Bolles, 1981]. One way of
using object recognition with shape matching [Somani et al., 2013] is to fit a num-
ber of primitive shapes to the point cloud. Surfel estimation [Henry et al., 2014] is

81

Chapter 5. Discussion and Conclusions

another method where surfaces are approximated to the point cloud which reduces
the amount of data to save. Methods within these areas of shape matching and esti-
mation are, however, computationally heavy and not suitable for real-time operation
on an embedded processor.

3D Voxel Discretization
Another method for mapping a 3D environment is by discretizing the whole space.
This essentially fills the space with boxes, also called voxels. A voxel is filled if a
point from the point cloud exists in the box. This way memory usage is known but
more memory is used than actually necessary. Memory usage can be decreased by
representing all known voxels, both occupied and free, in a tree structure [Maier
et al., 2012]. The boxes can also be associated with occupancy probabilities for
dynamic environments. Another advantage is that unobserved boxes are implic-
itly modeled since they are not included in the box-tree. An illustration of the box
method is presented in Figure 5.1.

Figure 5.1 Voxel discretization, [Maier et al., 2012]

Mapping the complete 3D environment would have been preferred from an in-
formation point of view. This would also have allowed for planning in multi-level
environments and terrain traversal. However, the restrictions placed by the embed-
ded processor once again forced other approaches to be considered.

82

5.1 Discussion

Discretization Issues
The world is discretized in 5x5 cm cells for the mapping which is then transformed
to a grid of 10x10 cm cells for planning. The computations for planning would have
been too cumbersome had the grid resolution been finer. The coarse planning grid
does however yield problems for the margins required around the obstacles in order
to assure collision free paths. An illustration of this can be seen in Figure 3.9 in the
Method. It is clear that the margins around the robot are larger than really necessary.
But if margins on either of the sides were removed a full 10 cm of margin would
disappear. The modeled hexapod is placed within a certain cell of the map as long
as it is positioned within it, even if it is positioned at the edge of the cell. The result
of decreasing the margins and a case where the hexapod is positioned at the edge
of a cell, would yield a collision. These large margins result in the hexapod not
being able to traverse narrow passages even when there is enough space. Possible
solutions for this problem could be to replace the processor with a more powerful
one and increase the resolution of the planning map. A probably better solution
would be to use another method of building the road map, such as Probabilistic Road
Map or Rapidly Exploring Random Tree. This would allow for the fine resolution
map to be used in planning enabling a more precise use of margins.

Comparison of Planning methods
A couple of alternative planning methods were explained in the theory section.
These methods are discussed and compared below.

Potential Field Methods Potential field methods are based on the simple idea of
having repulsive and attractive forces act on the robot. The resultant force vector
decides in which direction the robot moves. There are some inherent difficulties
in dealing with potential field methods. One problem is that the robot might end
up in local minima for certain obstacle configurations. This also apply for narrow
passages. Another common problem while planning close to multiple obstacles is an
oscillating behavior in the path. This is due to the force of one obstacle sending the
path closer to another obstacle which creates oscillating overcompensation [Koren
and Borenstein, 1991]. An example of a narrow corridor instability is shown in
Figure 5.2. There are methods for overcoming these problems but the difficulties
still deterred further investigations of potential field methods.

83

Chapter 5. Discussion and Conclusions

Figure 5.2 Example of unstable potential field path, [Koren and Borenstein, 1991]

Visibility Graphs and Voronoi Diagrams These are two potential methods for
building a road map to perform search in. They will yield opposite types of road
maps. Visibility graphs creates a graph which rounds corners as closely as possible
while Voronoi diagrams keeps the largest clearance possible. Neither case is optimal
from a planning point of view where margins in an uncertain world is important but
also keeping the path as short as possible. They are not appropriate for changes
in the environment since the road map will have to be reconnected when obstacle
positions change. For these reasons visibility graphs and Voronoi diagrams were
discarded as methods for road mapping.

Probibilistic Road Map and Rapidly Exploring Random Trees These are two
methods where sampling is used to build the road map. They are both efficient
methods for planning in narrow spaces and with a high dimensional configuration
space. In this case, however, with only three degrees of freedom in the c-space it did
not seem to provide any additional advantages over simpler methods.

Comparison of Search Methods
Different search methods are discussed below. In order for search to be performed
the position of the robot has to be translated into a node in the road map graph. This
is easily done by checking which cell the hexapod is positioned within the grid and
set this cell as the start node.

Depth First Search and Breadth First Search These are solid methods for find-
ing a good path. Depth-first search will always find the optimal path when it comes

84

5.1 Discussion

to number of steps in the graph. However, none of these methods utilize the infor-
mation which is present about the world, such as the position of the graph nodes
and position of the goal.

Uniform Cost Search The problem of not utilizing the position of the graph nodes
is solved in uniform cost search. Here each node is associated with the correspond-
ing cell and the edges are labeled with their actual length. This edge value is used in
uniform cost search in order to decide which node to expand. Had the node connec-
tions only been vertical and horizontal, this method would have yielded the same
results as breadth first search, the reason being that the number of steps would have
been proportional to the actual path length. This is however not the reason when
the diagonal edges are included since their cost is different from the horizontal and
vertical costs. Uniform cost search does however not utilize the information about
where the goal is and therefore UCS was also discarded.

A* Search In order to use information about where the goal is located A* search
was considered. A* adds an estimate of how far away the goal is to the decision
of which node to expand. This makes the search biased towards the goal, which
decreases the number of nodes expanded and thereby the search time.

D* Search While A* is good at efficiently finding a path in a static environ-
ment, the whole path still has to be recalculated when something in the environment
changes. Dynamic A*, D*, is the solution to these problems. D* only recalculates
local areas which have been changed by moving obstacles. This makes it more effi-
cient for real-time operation in dynamic environments.

Planning
Using D* as a search method has been working really well and it is truly a great
search method for dynamic and fast search. However the implementation used came
with a few draw-backs. It is limited by the assembly of the road map. The road map
only allows traversal between cells horizontally, vertically or diagonally. For most
cases the optimal path will be at another angle. A possible solution could be to
use another method for assembling the road map such as a PRM. Since it samples
the space in order to find possible positions for nodes it will be free of the grid
structure. There also exist a myriad of alternative search methods closely related to
D* Lite. Theta* [Daniel et al., 2010], also called "Any Angle Theta" is a method
worth further investigation. It is based on A* and employs a line-of-sight algorithm
in order to cut the path as short as possible which also allows paths at any angle.

Path-Following
The simple path planning method used is working very well for static paths, which
are followed smoothly without cutting corners too narrowly. However, in some cases
when the path is re-planned the current way-point is shifted quickly from one direc-
tion to a completely different direction. The rotation control signal therefore might

85

Chapter 5. Discussion and Conclusions

go from the maximum positive value to the maximum negative value in one sample.
This might result in jerky movements with the risk of leg collision. It can be some-
what solved by lowering the allowed maximum rotational signal. In order to really
solve the problem a low-pass filter might be used to filter out high frequencies and
thereby blocking the quick changes.

Cornering Issues
One issue found during testing was the issue of walking around obstacles where
only the side of the obstacle facing the hexapod has been seen. When the hexapod
rounds the corner it has never added the new side of the obstacle to the map. Since
the TOF-camera has a blind distance the first 0.5 m it will never add and see the
other side of the obstacle which increases the risk of collision, see Figure 5.3 for
an example. Here can be seen how the green part of the obstacle is seen with the
camera, but the red parts are never added to the map. Since the hexapod wants to
reach the goal right behind the obstacle the path is planned cutting the corner since
that part of the obstacle never is added to the map.

Goal

Crash

Figure 5.3 Illustration of a failed corner rounding

One solution to this problem might be adding more hardware to the hexapod.
Other sensors could pick up the slack within the dead zone of the camera. A couple
of ultrasound sensors could have been added just in order to avoid collision with
close obstacles, especially in a dynamic world.

Another possible solution could be to use a decision-making model for how the
hexapod is supposed to traverse the path during different circumstances. It could
then rotate and walk sideways around corners with a margin in order to map the
other side of obstacles before trying to traverse those areas.

5.2 Conclusions

Overall this project has been successful, despite a lack of computational power and
some time consuming implementations, the hexapod became autonomous. V-REP

86

5.3 Future Improvements

has been a great way of testing algorithms before putting them on the hardware.
It allowed for a much faster iteration testing process than testing directly on the
hexapod would have been. Being able to plot all signals in real-time and having
control of the environment also helped in the testing. Uncertainties in the real world
have been a large issue during the thesis. Even though the planning and mapping
algorithms worked fine after testing in V-REP there were almost always issues when
moving the testing onto the real hardware in the real world. With more testing and
tweaking most of the algorithms ended up working fine.

The TOF camera has many positive aspects, despite issues in locating the floor
and not being able to use it outdoors. It is a convenient and cheap solution for map-
ping a complete 3D environment. Capturing the depth map was not at all computa-
tionally heavy even though processing the point cloud was. Mapping the environ-
ment in an accurate dynamic way has been a challenge. The errors in localization
of the position and rotation did not effect the map during the short tests which were
run. During longer tests it might have been problematic.

The planning part using D* Lite was tricky to implement using S-functions.
However, it did work efficiently and with great results when it was implemented.

Finally, the terrain handling mode works really well. The force sensing resistors
used are sensitive, small and fairly cheap. The mounting generated some problems
but in the end a solution was found that works satisfyingly. Since a 3D printer could
be used the parts needed to mount the sensors were easy to construct.

The hexapod ended up being able to plan a path, avoid obstacles and handle
simple terrain. The potential improvements in performance, number of features and
robustness in planning are immense.

5.3 Future Improvements

Many of the future improvements have been discussed as possibilities through-out
the thesis. One of the largest obstacles in development has been the computational
power of the BeagleBone Black. It has a good processor which is sufficient for gen-
erating trajectories, performing inverse kinematics and some mapping and planning.
However for some of the methods, especially in a 3D environment, computations
tend to become cumbersome.

Full 3D Planning
In order to make the hexapod able to traverse terrain it would probably be necessary
to perform planning in a fully three dimensional model. Mapping a 3D environment
was briefly mentioned earlier in the thesis, but was then discarded since it was too
computationally heavy.

87

Chapter 5. Discussion and Conclusions

Mapping dynamic environments with probabilistic methods
The mapping only contains two possible states, either a cell is occupied or it is
free. A more advanced system could be built where cells could be free, occupied or
uncertain. The current version regards cells which have not been seen as free cells.
Even though it actually is uncertain whether they are free or not. This information
could be used to make more robust maps and planning. One example of how to use
the extra information is presented in [Hähnel et al., 2013].

Decision-Making
The hexapod could be developed with a specific goal in mind. For example to map
the environment or to search for a specific object. This would require some form of
decision-theoretic model in order for the system to itself make decisions regarding
where to walk.

Simultaneous Localization and Mapping
A better system for mapping and localizing the hexapod in the world would be
necessary if the goal is to create accurate maps.

Force Sensors
In the future, one goal could be to apply the sensors to every foot and integrate them
with the balancing mode and thereby get the hexapod to re-balance as the legs are
in different positions.

88

Bibliography

ASUS. Xtion pro live. http://www.asus.com/se/3D-Sensor/Xtion_PRO_
LIVE/. Accessed: 2016-05-09.

BeagleBoard, F. Beaglebone black. https://beagleboard.org/black. Ac-
cessed: 2016-06-03.

Burkus, E. and P. Odry (2014). Implementation of 3D Ground Contact Model for
Uneven Ground Using SimMechanics. Tech. rep. 10.1109/SISY.2014.6923572.
Subotica Tech, Subotica, Serbia.

Cornell, S. Disadvantages of 3d printers. http://yourbusiness.azcentral.
com/disadvantages-3d-printers-2212.html. Accessed: 2016-06-07.

Daniel, K., A. Nash, S. Koening, and A. Felner (2010). Theta*: Any-Angle Path
Planning on Grids. Tech. rep. Journal Of Artificial Intelligence Research, Vol-
ume 39, pages 533-579, 2010, DOI: 10.1613/jair.2994. Computer Science De-
partment University of Southern California, Los Angeles,USA. URL: http:
//www6.in.tum.de/Main/Publications/Somani2014a.pdf.

Eriksson, A. and M. Malmros (2016). Developer Manual, Artificial Intelligence and
Terrain Handling of a Hexapod Robot. Users guide. Department of Automatic
Control, Lund University, Lund, Sweden.

Example of RANSAC. https://en.wikipedia.org/wiki/RANSAC. Figure
reference, Accessed: 2016-06-09.

Fischler, M. A. and R. C. Bolles (1981). Random Sample Consensus: A Paradigm
for Model Fitting with Applications to Image Analysis and Automated Cartogra-
phy. Tech. rep. ACM New York, NY, USA, Vol. 24, Issue 6, pp. 381-395, DOI:
10.1145/358669.358692. Columbia University.

Gustafzelius, S. (2015). Dynamic path planning of initially unknown environments
using an RGB-D camera. Master’s Thesis TFRT--5980--SE. Department of Au-
tomatic Control, Lund University, Lund, Sweden.

89

Bibliography

Henry, P., M. Krainin, E. Herbst, X. Ren, and D. Fox (2014). RGB-D Mapping: Us-
ing Depth Cameras for Dense 3D Modeling of Indoor Environments. Research
paper. Springer-Verlag GmbH Berlin Heidelberg, Vol. 79, DOI 10.1007/978-
3-642-28572-1_33, Print ISBN: 978-3-642-28571-4, Online ISBN: 978-3-642-
28572-1, Series ISSN: 1610-7438.

Huang, G., A. Rad, and Y. Wong (2005). Online SLAM in Dynamic Environments.
Tech. rep. ICAR ’05. Proceedings., 12th International Conference on Advanced
Robotics, DOI: 10.1109/ICAR.2005.1507422, Print ISBN: 0-7803-9178-0. De-
partment of Electrical Engineering, The Hong Kong Polytechnic University,
Hong Kong.

Hähnel, D., R. Triebel, W. Burgard, and S. Thrun (2013). Map Building with Mobile
Robots in Dynamic Environments. Research Paper. Kluwer Academic Publish-
ers, Vol. 19, Issue 1, DOI: 10.1007/s10514-005-0606-4, Print ISSN: 0929-5593,
Online ISSN: 1573-7527. University of Freiburg, Department of Computer Sci-
ence, Freiburg, Germany and Carnegie Mellon University, School of Computer
Science, PA, USA.

Interlink electronics. FSR Force Sensing Resistor Integration Guide and Evaluation
Parts Catalog. Users guide. Camarillo, CA, USA.

Koenig, S. and M. Likhachev (2002). D* Lite. Paper. American Association for
Artificial Intelligence. Georgia Institute of Technology, Atlanta, USA, Carnegie
Mellon University, Pittsburgh, USA.

Koren, Y and J Borenstein (1991). Potential Field Methods and Their Inherent Lim-
itations for Mobile Robot Navigation. Paper. Proceedings of the IEEE Confer-
ence on Robotics and Automation, Sacramento, California, April 7-12, 1991,
pp. 1398-1404. The University of Michigan.

Lavalle, S. M. (2006). Planning Algorithms. http://planning.cs.uiuc.edu.
Cambridge University Press, Camebridge, UK.

Leonard, S. Potential field methods. http://www.cs.jhu.edu/~sleonard/
week03.pdf. Accessed: 2016-03-17.

Li, L. (2014). Time-of-Flight Camera – An Introduction. Company Tech Report. Lit-
erature number: SLOA190B, http://www.ti.com/lit/wp/sloa190b/sloa190b.pdf.
Texas Instrument.

Maier, D., A. Hornung, and M. Bennewitz (2012). Real-Time Navigation in
3D Environments Based on Depth Camera Data. Research Paper. 2012 12th
IEEE-RAS International Conference on Humanoid Robots, DOI: 10.1109/HU-
MANOIDS.2012.6651595, Print ISBN: 978-3-642-28571-4, ISSN: 2164-0572.
University of Freiburg, Germany.

Mathworks. Matlab. http://se.mathworks.com/products/matlab/. Ac-
cessed: 2016-06-02.

90

Bibliography

Mathworks. Simscape multibody contact forces library. http://www.mathworks.
com / matlabcentral / fileexchange / 47417 - simscape - multibody -
contact-forces-library. Accessed: 2016-02-02.

Mathworks. Simulink. http://se.mathworks.com/products/simulink/.
Accessed: 2016-06-02.

Mathworks. Simulink Coder User’s guide. Users guide. URL: http : / / se .
mathworks.com/help/pdf_doc/rtw/rtw_ug.pdf.

Mathworks. Understanding c code generation. http://se.mathworks.com/
help/dsp/ug/understanding-code-generation.html. Accessed: 2016-
05-31.

Microsoft. Kinect for windows sensor components and specifications. https://
msdn.microsoft.com/en-us/library/jj131033.aspx. Accessed: 2016-
05-09.

Neufeld, J. D* lite c++ implementation. https://github.com/ArekSredzki/
dstar-lite. Accessed: 2016-03-11.

Picture of FSR. http : / / www . sedoniatech . co . nz / force - sensing -
resistor-touch-sensor.htm. Figure reference, Accessed: 2016-05-25.

Robotics, C. Coppeliarobotics.com. http://www.coppeliarobotics.com. Ac-
cessed: 2016-02-02.

Robotics, C. Designing dynamic simulations. http://www.coppeliarobotics.
com / helpFiles / en / designingDynamicSimulations . htm. Accessed:
2016-02-02.

Robotics, C. Enabling the Remote API - client side. http : / / www .
coppeliarobotics.com/helpFiles/en/remoteApiClientSide.htm.
Accessed: 2016-02-02.

Robotics, C. Remote API modus operandi. http://www.coppeliarobotics.
com/helpFiles/en/remoteApiModusOperandi.htm. Accessed: 2016-02-
02.

Russel, S. and P. Norvig (2010). Artificial Intelligence, A Modern Approach. http:
//aima.cs.berkeley.edu. Pearson Education, New Jersey, USA.

Somani, N., C. Cai, A. Perzylo, M. Rickert, and A. Knoll (2013). Object
Recognition using constraints from Primitive Shape Matching. Paper. DOI:
10.1007/978-3-319-14249-4_75, Print ISBN: 978-3-319-14248-7, Online
ISBN: 978-3-319-14249-4, ISSN: 0302-9743. Cyber-Physical Systems, fortiss
- An-Institut der Technischen Universität München. Technische Universität
München, Fakultät für Informatik.

Structure. Openni 2 sdk binaries & docs. http://structure.io/openni. Ac-
cessed: 2016-02-02.

91

Bibliography

Thilderkvist, D. and S. Svensson (2015). Motion Control of Hexapod Robot Using
Model-Based Design. Master’s Thesis TFRT--5971--SE. Department of Auto-
matic Control, Lund University, Lund, Sweden.

Varghese, J. and R. Boone (2015). Overview of Autonomous Vehicle Sensors and
Systems. Tech. rep. Proceedings of the 2015 International Conference on Oper-
ations Excellence and Service Engineering Orlando, Florida, USA, September
10-11, 2015, pp. 178-191. Department of Electrical Engineering, University of
Michigan, United States.

92

Document name

Date of issue

Document Number

Author(s) Supervisor

Sponsoring organization

Title and subtitle

Abstract

Keywords

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title ISBN

Language Number of pages Recipient’s notes

Security classification

