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Abstract

This is a project on a geometric method to visualise the calculation of continued
fractions, which was developed by Lester R. Ford in the 1930s. The description
of the method is followed by the use of the technique of Ford circles on three
distinct cases. In contrast to a continued fraction with positive integer coef-
ficients, which is always convergent, a continued fraction with real coefficients
might diverge. This project provides an alternative geometric proof for one of
the classical convergence theorems on continued fractions.
Among the integer factorization methods there is one that uses continued frac-
tions. We give an alternative geometric proof for the lemma that is the base for
the method and for a corollary that reduces the factoring problem by a factor
of 2.
Continued fractions are also connected to the subject of Diophantine approxima-
tion, and the project presents an alternative geometric proof for the Dirichlet’s
approximation theorem.
We assume the reader to be a mathematics student who has taken a course on
Number Theory and on Analytic Functions, and has certain amount of time on
her hands to read the paper.
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Introduction

We shall study continued fractions considering them as functions of finitely or
infinitely many variables. If the variables are positive integers then everything
is straightforward, the continued fraction outputs an unique irrational number
in the infinite case and a rational number in the finite case. We can also find
the unique pre-image for any rational number as well as for any irrational given
for example by its decimal expansion.
The calculation of continued fractions gets more complicated if we allow the
variables to be not just positive integers but also negative or even any real or
complex numbers. Then we face the question of convergence of the continued
fraction, as the possibility for divergence arises and the continued fraction might
no longer be well-defined.
Similarly the calculation of pre-images is not unique any more if we allow the
variables to be in any larger set than that of the positive integers, and we have
to make choices.
In order to understand and reason about the convergence and divergence we
describe a geometric method developed by Lester R. Ford to visualise the cal-
culation of continued fractions.
In the first chapter the plan is to develop the geometric picture of continued frac-
tions to prepare the ground, paved with numerous examples and illustrations,
for proving two classical theorems about convergence of continued fractions.
Both proofs are inspired by the work of Ford. In one of them we follow the
reasoning given by Beardon and Short, and the other is ours.
At the end of the first chapter we examine the problem of finding the inverse
images of continued fractions, i.e. given a real or complex number, constructing
its continued fraction representation. By restricting or expanding the domain
for the terms in the continued fraction, we have a choice of various algorithms
beside the classical simple continued fraction, e.g. nearest integer continued
fraction.
One of the applications of the continued fractions in number theory is factoring
integers. With the help of the continued fractions we can make the task much
easier, reducing the problem of factoring a number with d digits to the problem
of factoring a set of numbers with d

2 digits.
In the second chapter we attempt to convey the gist of what is involved in the
continued fraction method of factorization, and give an alternative proof of the
lemma on continued fractions that is the base for the continued fraction factor-
ization method. We prove a corollary that reduces the factorization problem by
a factor of 2.
In the third chapter we prove Dirichlet’s approximation theorem using Ford and
Short circles.
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Historical background

Continued fractions have a long and fascinating history, we can find examples
throughout mathematics in the last 2000 years.
The Euclidean algorithm for computing the greatest common divisor of two
numbers, say a and b, described in his Elements (c. 300 BC), actually also
produces the continued fraction representations for both a

b and b
a .

The Indian mathematician Aryabhata (476–550) attempted to solve linear Dio-
phantine equations ax + by = c, where a, b, c are given integers. His technique
was somewhat connected to the properties of continued fractions. The key of
solving the equation is to consider first ax + by = 1 and use the feature of the
continued fractions that a

b has its last two convergents pn−1

qn−1
and pn

qn
= a

b related

by:
aqn−1 − bpn−1 = (−1)n−1.

Fibonacci describes in his book Liber Abaci (1202) how to express fractions in
unit fractions in ascending fashion:

13

30
=

1 +
1+ 1

5

4

3
.

The proper theory of continued fractions began with Rafael Bombelli. In his
book L’Algebra Opera (1572) there is a method to find square roots by means
of infinite continued fractions. He proved for example:

√
13 = 3 +

4

6 +
4

6 +
4

6 + 4

. . .

.

William Brouncker established in 1655 the following identity:

4

π
= 1 +

12

2 +
32

2 +
52

2 + 72

. . .

.

John Wallis introduced in his 1655 book Arithmetica Infinitorum the term ”con-
tinued fraction” for the first time and explained how to calculate them. Before
him the term ”anthyphairetic ratios” was used.
Christian Huygens (1629–1695) found a way to use continued fractions in a
practical application. He used continued fractions for approximating gear ratios
in the building of a table top planetarium with the planets Mercury, Venus,
Earth, Mars, Jupiter and Saturn.
The theory of continued fractions was developed extensively the 18th and 19th
centuries.
Leonhard Euler provided in his De fractionibus continuis dissertatio (1737) a
then-comprehensive account of the properties of continued fractions, and in-
cluded the first proof that the number e is irrational, using continued fractions.
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Euler describes in Introductio in analysin infinitorum (1748) the connection be-
tween continued fractions and infinite series, proved that every rational number
can be written as a finite continued fraction, and proved that the continued
fraction of an irrational number is infinite. He also found the continued fraction
representation of e itself which is not periodic but still has a pattern:

e = [2; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, 1, 1, 12, 1, 1, . . . , 1, 1, 2n, 1, . . .].

In 1761 Johann Heinrich Lambert gave the first proof of the irrationality of π
using a continued fraction for tan(x).
In 1768 Joseph Louis Lagrange provided the general solution to Pell’s equation
x2 − dy2 = 1 using the continued fractions expansion of

√
d.

Lagrange proved in 1770 that the expansion of a real number as a simple contin-
ued fraction is (eventually) periodic if and only if it is the real root of a quadratic
equation in one variable with rational coefficients. In 1869 Carl Gustav Jacob
Jacobi tried to generalize this to cubic irrationals by means of a mixed continued
fraction for pairs of real numbers but did not succeed.
In 1798 Adrien-Marie Legendre proved that if the rational number p

q satisfies∣∣∣∣α− p

q

∣∣∣∣ < 1

2q2

then p
q is one of the convergents in the continued fraction representation of an

irrational α and Karl Theodor Vahlen proved in 1895 that at least one of every
two consecutive convergents to α satisfies the above inequality.
Carl Friedrich Gauss derived in Werke (1813) a class of complex-valued contin-
ued fractions using the hypergeometric function. An application of the technique
gives for example: √

π

2
ez

2

erf(z) =
z

1−
z2

3
2 +

z2

5
2 −

3
2 z

2

. . .

.

In 1829 Évariste Galois proved that if a quadratic equation in one variable with
rational coefficients has a root x1 whose continued fraction representation is
purely periodic, then the other root x2 is such that −1

x2
is also purely periodic

given by the inverse of the period of x1.
Peter Gustav Lejeune Dirichlet proved in 1842 that for any real number α
and positive integer N , there exist integers p, q such that 1 ≤ q < N and
|αq − p| ≤ 1

N . His proof is based on the pigeonhole principle.
In 1844 Joseph Liouville proved the existence of transcendental numbers by a
construction using continued fractions.
Adolf Hurwitz proved in 1891 that for every irrational number α there are
infinitely many distinct rational numbers p

q with:∣∣∣∣α− p

q

∣∣∣∣ < 1√
5q2

and Émile Borel proved in 1903 that at least one of every three consecutive
convergents to α satisfies the above inequality.
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Hermann Minkowski defined in 1904 the question mark function

?(x) = b0 + 2

∞∑
n=1

(−1)n+1

2b1+...+bn

where [b0; b1, b2, . . .] is the continued fraction representation of an irrational
number x.
Srinivasa Ramanujan had considerable interest in evaluating infinite continued
fractions and expanding functions in continued fractions, his notebooks contain
about 200 results on continued fractions. One example of his continued fraction
expansions in his letter to G. H. Hardy in 1913:

e
2π√
5

 √
5

1 + 5

√
5

3
4 (
√

5−1
2 )

5
2 − 1

−
√

5 + 1

2

 =
1

1 +
e−2π

√
5

1 +
e−4π

√
5

1 + e−6π
√

5

. . .

.

Ramanujan also found continued fraction representations for the Riemann zeta
function ζ(z) at z = 2 and z = 3:

ζ(2) = 1 +
1

1 +
12

1 +
1 · 2

1 +
22

1 +
2 · 3

1 +
32

. . .

and ζ(3) = 1 +
1

4 +
13

1 +
13

12 +
23

1 +
23

20 +
33

. . .

Aleksandr Yakovlevich Khinchin proved in 1935 that the geometric mean of the
partial quotients of continued fractions:

lim
n→∞

(b1b2 . . . bn)1/n =

∞∏
m=1

(
1 +

1

m(m+ 2)

) logm
log 2

= constant ≈ 2.685452001 . . .

is a constant for almost all real numbers. The exceptions are rational numbers,
quadratic irrationals and some other irrational numbers, like for example e. The
set of exceptions is of Lebesgue measure zero.
Continued fraction arithmetic for performing addition, subtraction, multiplica-
tion and division was developed by Bill Gosper in 1972.
Continued fractions keep playing role today in number theory and Diophantine
approximation.
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Chapter 1

Geometric picture of
continued fractions

1.1 Continued fractions and Möbius transfor-
mations

We shall describe the functions (K for Kettenbruch):

K(bn) = b0 +
1

b1 +
1

b2 +
1

. . . +
1

bN

and K(bn) = b0 +
1

b1 +
1

b2 +
1

b3 +
1

. . .

of the N + 1 variables b0, b1, . . . , bN , as a finite continued fraction and of the in-
finite number of variables (bn)∞n=0 as an infinite continued fraction, respectively.
We call the variables (bn)∞n=0 partial quotients (also known as continued frac-
tion digits or coefficients) and use less voluminous notation for the continued
fraction by putting the partial quotients into square brackets [b0; b1, b2, . . .] with
the risk of losing some expressiveness.
If we restrict the domain for the partial quotients such that b0 ∈ Z and bn ∈ Z+

for n > 0, then we have simple continued fractions. We shall also consider the
cases when bn ∈ Z, bn ∈ R and bn ∈ C.
In the case of finite continued fraction the value of [b0; b1, b2, . . . , bN ] is calcu-
lated in the obvious way. If there are infinitely many partial quotients then we
define the value of

[b0; b1, b2, . . .] := lim
n→∞

[b0; b1, b2, . . . , bn].

We call the fraction
pn
qn

= [b0; b1, b2, . . . , bn]

that ignores the partial quotients after bn, nth-order convergent (also known
as approximant or truncation). The existence of the limit and various ways of
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divergence will be studied in this project.
The nominator and denominator of a convergent can be calculated separately
using Wallis-Euler recursion:

p−2 = 0, p−1 = 1 and q−2 = 1, q−1 = 0,

pk = bkpk−1 + pk−2 and qk = bkqk−1 + qk−2.

Note that denominators qk do not depend on b0.
For example 12

√
2 = [1; 16, 1, 4, 2, . . .] has its first 5 convergents calculated with

Wallis-Euler recursion in Table 1.1, where 196
185 = 1.059459 . . . and 12

√
2 = 1.059463 . . ..

Table 1.1: Calculation of first 5 convergents of 12
√

2 = [1; 16, 1, 4, 2, . . .].

k -2 -1 0 1 2 3 4 . . .
bk 1 16 1 4 2
pk 0 1 1 17 18 89 196
qk 1 0 1 16 17 84 185

k-th convergent 1 17/16 18/17 89/84 196/185 . . .

Following the reasoning of Beardon and Short in [1] we express the above re-
currence in matrix form:(

pk pk−1

qk qk−1

)
=

(
b0 1
1 0

)(
b1 1
1 0

)
. . .

(
bk 1
1 0

)
. (1.1)

We see that all of the matrices involved have determinant ±1, therefore are
all invertible and so we can associate each matrix with a non-singular Möbius
transformation of the complex plane. The association has the form:

matrix

(
a b
c d

)
, multiplication 
 Möbius transform

az + b

cz + d
, composition.

In particular, each matrix on the right side of 1.1 is connected with a Möbius
transformation tk(z) = bk + 1/z for each k, which is a composition of a complex
inversion and a translation. Then the product on the right hand side of 1.1
corresponds to the composition that is again a Möbius map:

t0 ◦ t1 ◦ . . . ◦ tk(z) =: Tk(z)

and using the left hand side of 1.1 we can express the map as:

Tk(z) =
pkz + pk−1

qkz + qk−1
.

Evaluating Tk(z) at ∞ and 0 give:

Tk(∞) =
pk
qk

and Tk(0) =
pk−1

qk−1

and so we can not only recover all the convergents from the Möbius maps Tk
but also the partial quotients bk:

bk = tk(∞) = T−1
k−1 ◦ Tk(∞).
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1.2 Horocycles and horospheres

The possibility of studying continued fractions in terms of Möbius maps opens
up a way to see the continued fractions geometrically as chains of horocycles and
horospheres in cases of bn ∈ R and bn ∈ C respectively, an alluring visualisation
developed by Ford in his paper [2].
By a horocycle we mean either a circle in the upper half of the complex plane
H that is tangent to the real axis, or a horizontal line in H. Each horocycle has
a base point that is the point of tangency with the real line in the former case
and ∞ in the latter case.
For each rational point x = p

q , where p and q are relatively prime integers, we
construct a Ford circle of radius

R p
q

=
1

2q2
,

tangent to the x-axis at the given point and lying in the upper half-plane. Ford
circles are are either tangent or disjoint, in no case do they overlap. Thus the
set of Ford circles is a subset of all horocycles.
For each Gaussian rational point x = p

q on the complex plane, where p and q
are relatively prime Gaussian integers, we construct a Ford sphere of radius

R p
q

=
1

2qq̄
,

tangent to the complex plane at the given point and lying in the upper half-
space. Similar to the Ford circles the Ford spheres can be tangent or disjoint
but never overlapping.
We cannot construct Ford circles for irrationals but we can construct a Short
circle for each real point α relative to any rational p

q , that is a circle of radius

R p
q
(α) =

1

2
|qα− p|2, (1.2)

tangent to the x-axis at α and tangent to the Ford circle of pq . The construction

is described in Short’s paper [4]. We see the construction of the Short circle of
α relative to p

q in Figure 1.1.
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Figure 1.1:
Ford circle of p

q with radius R p
q

= 1
q2 (blue) and Short circle of α relative to p

q

with radius R p
q
(α) = 1

2 |qα− p|
2 (red).

Applying Pythagoras’s theorem to the drawn triangle:∣∣∣∣α− p

q

∣∣∣∣2 +
(
R p
q
(α)−R p

q

)2

=
(
R p
q
(α) +R p

q

)2

we get the radius of the Short circle

R p
q
(α) =

1

4R p
q

∣∣∣∣α− p

q

∣∣∣∣2 =
q2

2

∣∣∣∣α− p

q

∣∣∣∣2 ,
since R p

q
= 1

2q2 .

Thus the set of all Short circles is another subset of all horocycles.
Similarly, we construct a Short sphere for each complex number relative to any
Gaussian rational, that is a sphere of radius

R p
q
(α) =

1

4R p
q

∣∣∣∣α− p

q

∣∣∣∣2 =
qq̄

2

∣∣∣∣α− p

q

∣∣∣∣2
tangent to the complex plane at the given complex number α and to the Ford
sphere of the Gaussian rational p

q .

1.2.1 Ford’s clockwork

Now we put the idea of visualising real and complex numbers as horocycles
and horospheres into work, and unravel the essence of Ford’s clockwork that
assembles the chains of horocycles and horospheres. The construction of the
clockwork is based on Ford’s paper [2].
Successive convergents, pk−1

qk−1
and pk

qk
, have their Ford circles tangent to each
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other1, i.e.
pkqk−1 − qkpk−1 = (−1)k−1. (1.3)

This can be seen by taking determinants from the both sides of Eq.1.1 and
considering the triangle ABC in Figure 1.2, where

AB2 =

(
pk−1

qk−1
− pk
qk

)2

+

(
1

2q2
k−1

− 1

2q2
k

)2

=
(qkpk−1 − pkqk−1)2

q2
k−1q

2
k

+
1

4q4
k−1

− 1

2q2
k−1q

2
k

+
1

4q4
k

=
(qkpk−1 − pkqk−1)2 − 1

q2
k−1q

2
k

+

(
1

2q2
k−1

+
1

2q2
k

)2

=
(qkpk−1 − pkqk−1)2 − 1

q2
k−1q

2
k

+ (AD + EB)2.

Figure 1.2:
Ford circles of pk

qk
and pk−1

qk−1
with radii 1

q2k
and 1

q2k−1
.

Consequently the circles are tangent if (qkpk−1 − pkqk−1)2 = 1 since then
AB = AD + EB.
If we have the tangent Ford circles of pk−1

qk−1
and pk

qk
, then finding the next Ford

circle of pk+1

qk+1
could be visualised by Ford’s clockwork as seen in Figure 1.3.

In the beginning there is the line i, i.e. the horocycle Π−1. The next horocycle
has its base at b0 and it touches Π−1 at b0 + i. The touching point fixes 0 for
the current circle and all possible touching points with neighbouring Ford circles
determine the clock-face so that +1 is the highest on the right and all positive
integers are on the right tighter and tighter approaching infinity near the base.
Similarly -1 is the highest on the left and all negative integers are on the left.
Thus b1 points the hand on the integer on the dial and the next horocycle is

1In passing, note a nice property of two rational numbers. If p
q

and r
s

have their Ford

circles tangent to each other, then the cross products, ps and rq, are consecutive integers.
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Figure 1.3:
Ford’s clockwork. Two exmaples: [1; 2, 2] = 7

5 = 1.4 (blue) and
[1;−2, 2,−2] = 1

4 = 0.25 (red).

chosen.
This new touching point fixes 0 for the new horocycle and the process is re-
peated, while keeping in mind that the positive and negative sides swap each
time. So that if we have bn all positive or all negative then the horocycles alter-
nate like pendulum around the final limit point but if there is a change in sign
then we jump to the other side.
There are examples of the continued fractions [1; 2, 2] = 7

5 = 1.4 and [1;−2, 2] =
1
3 in Figure 1.3.
We can also use the clockwork for bn ∈ R but instead of Ford circles we must use
Short circles. Now the next horocycle can touch the current one at any point
and clearly all the Short circles that are touching at points between -1 and +1
on the clock dial are larger and so the door to divergence is open.
The clockwork visualisation is extendible to the bn ∈ C as well. Instead of the
dial numbers on the circle we have the dial numbers on the sphere, the modulus
|bn| gives the latitude and the argument of bn gives the longitude.
The touching point with the previous horosphere fixes the 0 as the North Pole
and the Western and Eastern Hemispheres will be alternating similarly to the
alternating of the positive and negative sides of horocycles.

1.2.2 Chains of horocycles

If bn ∈ Z+ for n > 0 then all the horocycles in the chain are Ford circles and so
their properties are the following:

• The circles are either tangent or disjoint, they never overlap.

• The circles in the chain are strictly decreasing after the first two circles,
which can be of equal size if b1 = 1.

• Even and odd convergents are alternately on the both sides of the final
limit.
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• If there are ones among partial quotients then the horocycle corresponding
to the 1 is not only tangent to the previous horocycle but also to the one
before the previous.

• The pre-images are unique in the sense that for any given rational or
irrational number we can construct its continued fraction representation.
We shall see some constructions in §1.4.

Figure 1.4:
Example of a continued fraction with bn ∈ Z+. First 6 Ford circles in the chain

of horocycles of the golden ratio φ = 1+
√

5
2 = [1; 1̄] = 1.6180339887 . . .. Even

convergents have orange Ford circles and odd convergents have blue.

The examples of bn ∈ Z+ are the beginning of the chain of horocycles of the
golden ratio in Figure 1.4 and the chain of horocycles of e in Figure 1.5. Note
that all horocycles are tangent to previous two in case of the golden ratio and
some in case of e.
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Figure 1.5:
Example of a continued fraction with bn ∈ Z+. First 5 Ford circles in the chain

of horocycles of e = [2; 1, 2, 1, 1, 4, 1, . . .] = 2.71828 . . ..

Now if we consider also positive real numbers that are not necessarily integers,
the picture changes. With bn ∈ R+ the properties of the chains of horocycles
are the following:

• Only successive horocycles are always tangent, others can be tangent,
disjoint or overlapping.

• The horocycles in the chain can increase and decrease. But the even and
odd sub-sequences are still decreasing.

• Even and odd convergents still alternate like a pendulum clock.

• The horocycles in the chain are Short circles, not necessarily Ford circles.

• A completely new feature is the possibility to diverge. But not to infinity,
just divergence with two limit points.

The example of non-successive overlap and when every even circle is succeeded
by a bigger odd circle but still both even and odd sub-sequences decrease in ra-
dius is seen in Figure 1.6 for the continued fraction [1; 1

2 ,
1
3 , . . .]. In this example

the partial quotients sum up to the harmonic series which diverges and there-
fore the continued fraction converges but extremely slowly. It takes about 70
partial quotients to fix the second significant digit 1.7. The convergence of the
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continued fraction follows from the criteria we will prove in Theorem 1 below
in §1.3.

Figure 1.6:
Example of a continued fraction with bn ∈ R+, that converges. First 15

horocycles of the continued fraction [1; 1
2 ,

1
3 , . . .] that has partial quotients that

sum up to the harmonic series
∑∞
n=1

1
n = 1 + 1

2 + 1
3 + 1

4 + . . ..

The example of divergence is seen in Figure 1.7. In this example the partial
quotients sum up to a series that converges and therefore the continued fraction
diverges, again by Theorem 1 below in §1.3.
Although the continued fraction [1; 1, 1

32 ,
1
42 ,

1
52 ,

1
62 . . .] diverges, even and odd

sub-sequences of convergents do converge to the two separate finite limits.
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Figure 1.7:
Example of a continued fraction with bn ∈ R+, that diverges to two limit

points. First 6 horocycles of the continued fraction [1; 1, 1
32 ,

1
42 ,

1
52 ,

1
62 . . .] that

has partial quotients that sum up to the series
3
4 +

∑∞
n=1

1
n2 = 1 + 1 + 1

32 + 1
42 + . . . = 3

4 + ζ(2) = 3
4 + π2

6 .

Next we consider again integers, but now we allow also negative integers, so
that bn ∈ Z. Compared with bn ∈ Z+ we have again new features:

• Sign change in the sequence of partial quotients causes a disruption in the
alternating behaviour of the convergents.

• Minus one turns back time in a sense that it causes the next horocycle to
be bigger.

• The pre-images are not unique. We shall see some examples of nearest
integer and even integer continued fractions in §1.4.

For example, the sequence of 1,-1 in the beginning of the partial quotients takes
us back to the primeval home Π−1 = {z : =(z) = 1} ∪ {∞}.
Alternating signs in the sequence of the partial quotients result in the chain
of horocycles that evolve to one side only, as seen for example in Figure 1.8
and 1.9. Both of these examples converge due to the criteria we will prove in
Theorem 2 below in §1.3.

14



Figure 1.8:
Example of a continued fraction with bn ∈ Z, that converges. First 4 Ford

circles in the nearest integer chain of horocycles of the golden ratio

φ = 1+
√

5
2 = ni[2;−3, 3] = 1.6180339887 . . ..

Even and odd convergents both evolve to the left side only.
See the contrast in the speed of convergence compared with figure 1.4 that

illustrates much faster convergence of the nearest integer continued fractions.
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Figure 1.9:
Example of a continued fraction with bn ∈ Z, that converges. The beginning of
the chain of horocycles of [0; 2,−2] = 1. Even and odd convergents both evolve

to the right side only.

Summarizing, allowing bn ∈ R we can get all the above mentioned features in a
chain of horocycles, and in addition divergence to positive or negative infinity.
An example of divergence such that even convergents diverge to infinity and
odd convergents converge to some finite limit is seen in Figure 1.10.
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Figure 1.10:
Example of a continued fraction with bn ∈ R, that diverges. First 15

horocycles of the continued fraction [1;− 1
2 ,

1
3 ,−

1
4 . . .] that has partial quotients

that sum up to the alternating harmonic series∑∞
n=1

1
n = 1− 1

2 + 1
3 −

1
4 + . . . = log 2. Even convergents diverge to infinity.

We could even construct such a chain of horocycles that visits each rational
number infinitely often, hinted at by Lester R. Ford in [2].
The construction is seen in Figure 1.11. We take a zigzag line that has turning
points at the coordinates ((−1)nn, 1

n ), and observe what Ford circles it crosses
in succession. We see that each Ford circle is visited infinitely many times and
thus each rational number is hit infinitely often.
For the construction of the corresponding continued fraction we will use Ford’s
clockwork.
The first horocycle has base at −1 and radius 1

2 , thus b0 = −1.
The second horocycle has base at 0 and radius 1

2 , thus b1 = 1.
The third horocycle has base at 1 and radius 1

2 , thus b2 = −2.
Note that we needed the negative sign to get to the other side of the horocycle.
The fourth horocycle has base at 2 and radius 1

2 , thus b3 = 2.
The change of sign again in order to get to the other side of the horocycle.
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The zigzag line turns now back, so the fifth horocycle has base at 1 and radius
1
2 , thus we need to go back to the horocycle where we game from and this can
be achieved by b4 = 0.
The sixth horocycle has base at 0 and radius 1

2 , thus b5 = −2.
We can continue in the same fashion until we hit the 17th horocycle that is
smaller, and so we need b16 = 1.
The beginning of the continued fraction until the 17th partial quotient is:

[−1; 1,−2, 2, 0,−2, 2,−2, 2, 0,−2, 2,−2, 2,−2, 2, 1, . . .].

This beginning takes us to the 17th convergent, p16q16
= 3.5, that has the horocycle

with base at 3.5 and radius 1
8 .

By following the zigzag line we can therefore construct the continued fraction
that diverges and its convergents visit every rational number infinitely often.

Figure 1.11:
The construction of the chain of horocycles that visits each rational number

infinitely often. The zigzag line has turning points at the coordinates
((−1)nn, 1

n ) and it visits each Ford circle infinitely many times. The 17th Ford
circle that is visited by the zigzag line is marked red.

18



1.2.3 Chains of horospheres

Figure 1.12:
Chain of horospheres of the continued fraction

[0; 1+i√
3
,−1.5, 1.5,−2.5, 2] ≈ −0.6− 0.2i.

In the construction of the chain of horospheres we follow Beardon and Short in
[1].
Allowing bn ∈ C takes us to the world of horospheres. However we can still
use Möbius transforms to visualise the evolution of the continued fractions, we
just have to use the Poincaré extension of Möbius transformation in terms of
quaternions.
We shall use quaternions of the form:

x+ yi+ tj+wk in H3 = {w = 0, (x, y, t) ∈ R3 : t > 0} = {z+ tj : z ∈ C, t > 0},

where the boundary of H3 is C.
The Poincaré extension to H3 of the Möbius transformation g(z) = az+b

cz+d in C
is:

g(z + tj) =
(az + b)(cz + d) + ac̄t2 + |ad− bc|tj

|cz + d|2 + |c|2t2
. (1.4)

Notice that if t = 0 then we get back the complex plane Möbius transformation.
If g(z) = z + b is a translation on C then g(z + tj) = z + b+ tj is a translation
by b on H3.
If g(z) = 1

z is a complex inversion on C then g(z + tj) = z̄+tj
|z|2+t2 is a geometric

19



inversion in the unit half-sphere followed by reflection in the Euclidean plane
y = 0 on H3 and so g(z + tj) preserves H3.
Now when we have bn ∈ C, all the continued fractions start their horosphere
evolution from the horosphere Σ−1 = {z + j : z ∈ C} ∪ {∞}, that is the hori-
zontal plane through j.
The main mechanism for the evolution of the horospheres is the Möbius transfor-
mation tk(z) = bk + 1/z. Since the coefficients of a Möbius map are not unique
in the sense that we can always normalise the map, we will use tk(z) = ibkz+i

iz+0
in order to simplify the use of 1.4:

tk(z + tj) =
(ibkz + i)(iz + 0) + ibk īt

2 + |ibk0− ii|tj
|iz + 0|2 + |i|2t2

= bk +
z̄ + tj

|z|2 + t2
.

Thus the Möbius map tk is the composition of geometric inversion in the unit
half-sphere followed by reflection in the Euclidean plane y = 0 and translation
by bk on H3. All these transformations map H3 back to itself.
The first horosphere Σ−1 has its base point at ∞ and so the next horosphere
Σ0 has its base point at t0(∞) = b0.
We see from 1.4 that the highest point of the new horosphere will be at z = −dc
and it is at height 1

|c|2 j. Therefore the radius of the new horosphere is:

1

2|c|2

and in particular the horosphere Σ0 has always radius 1
2 (since q0 = 1), Σ1 has

radius 1
2|b1|2 , Σ2 has radius 1

2|b1b2+1|2 , etc.

The horospheres Σ−1 and Σ0 are tangent at the point b0 + j = t0(j). In gen-
eral, every time we start to calculate parameters of the new horosphere by
Tk(z) = t0 ◦ t1 ◦ . . .◦ tk(z) we see that Σ−1 and tk(Σ−1) are tangent at the point
tk(j).
Consequently the horospheres Tk−1(Σ−1) and Tk(Σ−1) = Tk−1(tk(Σ−1)) are
tangent at the point Tk(j). So the successive horospheres are always tangent in
the chain but non-successive horospheres might overlap.
The chain of horospheres is generated by Tk(Σ−1) for k = 0, 1, 2. . . . as spheres
are mapped to spheres by the extended Möbius transforms. The chain is calcu-
lated from the continued fraction [b0; b1, b2, . . .], where bk ∈ C. An example of
the chain of horospheres is in Figure 1.12.
To complete the correspondence between complex continued fractions and chains
of horospheres we need a way to calculate the continued fraction from given
chain of horospheres. If we are given a chain of horospheres by its base points
∞, z0, z1, z2, . . . we can recover the continued fraction recursively:

b0 = z0 and bk = T−1
k−1(zk).

Given a Gaussian rational, for example 5
11 +i, we calculate its continued fraction

representation [i; 2, 5] and then we can visualise it as a chain of horocycles as
seen in Figure 1.13.
The same procedure with e+ πi produces [3 + 3i; 1 + 3i, 2 + i, . . .] and the first
3 horospheres are seen in Figure 1.14.

20



Figure 1.13:
All 3 horospheres of the chain of the continued fraction of 5

11 + i = [i; 2, 5].

Figure 1.14:
First 3 horospheres of the chain of the continued fraction of

e+ πi = [3 + 3i; 1 + 3i, 2 + i, . . .].
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1.3 Convergence and divergence of continued frac-
tions

Now we want look at the criterion for convergence, which was already used in
examples in §1.2.2.
Given a sequence of numbers (bn)∞n=0 then similarly to the series

∑∞
n=0 bn and

infinite products
∏∞
n=0 bn for which the convergence means convergence of the

sequence of partial sums and partial products, the convergence of continued
fraction K∞n=0(bn) means convergence of sequence of convergents (pnqn )∞n=0.
In the case of bn > 0 for all n ≥ 1, there is a useful test for convergence that is
due to Philipp Ludwig von Seidel and Moritz Abraham Stern in the 1840s. The
converse is due to Moritz Abraham Stern and Otto Stolz in the 1860s.

Theorem 1. For the continued fraction K∞n=0(bn) = [b0; b1, b2, b3, . . .] with bn ∈
R+ to converge, it is necessary and sufficient that the series

∞∑
n=1

bn

is divergent.

Proof. We follow the geometrical reasoning given by Beardon and Short in[1].
We have seen that the fate of the sequence of convergents (pnqn )∞n=0 is connected

to the action of the Möbius maps Tn(z) = t0 ◦ t1 ◦ . . . ◦ tn(z) and we can follow
the evolution of the bases of the horocycles by calculating consecutive

Tn(∞) =
pn
qn

= Tn+1(0).

Since bn > 0 each Tn maps [0,∞] to itself such that the point Tn(bn+1) =
Tn+1(∞) lies between Tn(0) and Tn(∞). Thus each base Tn+1 lies between two
previous bases Tn−1(∞) and Tn(∞).
As b0 = T0(∞) < T1(∞) = t0(t1(∞)) = t0(b1) = b0 + 1

b1
we see that

T0(∞) < T2(∞) < . . . < T2n(∞) < T2n+1(∞) < . . . < T3(∞) < T1(∞)

Therefore the even subsequence is increasing and is bounded. Similarly, the odd
subsequence is decreasing and is bounded. So both of the limits exist and now
the question is whether the limits are the same, in which case the continued
fraction converges, or are different so that the continued fraction diverges by
oscillation.
Let α = limn→∞ T2n(∞) and β = limn→∞ T2n+1(∞) be the two limits.
Suppose that K∞n=0(bn) diverges and so the limits α and β are distinct.
Consecutive horocycles are tangent and their bases and radii are related by

|Tn(∞)− Tn−1(∞)|2 = (Rn +Rn−1)2 − (Rn −Rn−1)2 = 4RnRn−1

and as the distances between the bases are decreasing during the evolution

4RnRn−1 = |Tn(∞)− Tn−1(∞)|2 < |Tn−1(∞)− Tn−2(∞)|2 = 4Rn−1Rn−2

the even and odd sub-sequences of radii both decrease, Rn < Rn−2.
Both must have positive limits since

4RnRn−1 = |Tn(∞)− Tn−1(∞)|2 > |α− β|2.
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We can recover the partial quotients bn from the Möbius maps:

bn = tn(∞) = T−1
n−1Tn(∞) = T−1

n−1

(
pn
qn

)
=

=

∣∣∣∣∣ qn−2
pn
qn
− pn−2

−qn−1
pn
qn

+ pn−1

∣∣∣∣∣ = |qn−2pn − pn−2qn| =

= qnqn−2

∣∣∣∣pnqn − pn−2

qn−2

∣∣∣∣ =
|Tn(∞)− Tn−2(∞)|

2
√
RnRn−2

By summing both sides, we see that
∑
bn converges since

∑
|Tn(∞)−Tn−2(∞)|

converges and Rn are bounded away from zero.
We have proved that, if

∑
bn diverges then K∞n=0(bn) converges, by proving its

contrapositive, if K∞n=0(bn) diverges then
∑
bn converges.

Now we are left to prove the converse, if K∞k=0(bk) converges then
∑
bk diverges.

This part of the theorem applies not only for positive partial quotients but
for any complex bk. In the complex case, if K∞n=0(bn) converges then

∑
|bk|

diverges.
We saw that the main mechanism for the evolution of the horospheres, the
extended Möbius transformation tk(z) = bk + 1/z, takes the point j to tk(j) =
bk + j which is the point of tangency of Σ−1 and tk(Σ−1).
Now we consider all smooth paths in H3 from j to bk + j as a collection Γ,
among those there is the straight line, say δ ∈ Γ, with the Euclidean length |bk|.
We can also equip H3 = {(x, y, t) ∈ R3 : t > 0} with the hyperbolic metric:

dŝ =
ds

t
=

√
dx2 + dy2 + dt2

t

and so we can define the corresponding distance function:

ρ(a, b) = inf
η

∫
η

√
dx2 + dy2 + dt2

t

where the infimum is taken over all smooth paths η in H3 from a to b.
The extended Möbius transformations and in particular, tk, map H3 to itself
and if we use the hyperbolic metric then distance between any two points a and
b is equal to the distance between their images. Thus:

ρ(tk(a), tk(b)) = ρ(a, b).

Considering again the points j and bk+ j but now with the hyperbolic distance,
we get:

ρ(j, bk + j) = inf
γ∈Γ

∫
γ

ds

t
≤
∫
δ

ds

t
= |bk|,

since t = 1 along δ.
The extended Möbius transformation Tk−1 preserves hyperbolic distances as
well and so:

ρ(j, bk + j) = ρ(j, tk(j)) = ρ(Tk−1(j), Tk−1(tk(j))) = ρ(Tk−1(j), Tk(j)).

By the triangle inequality:

ρ(j, Tk(j)) ≤ ρ(j, T1(j)) + ρ(T1(j), T2(j)) + . . .+ ρ(Tk−1(j), Tk(j))

≤ |b1|+ |b2|+ . . .+ |bk|.
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If the continued fraction K∞n=0(bn) converges, the adjacent horospheres have
their bases Tk(0) and Tk(∞) approaching the same point as k →∞ all of them
being at the horizon of the hyperbolic space H3. Since the point Tk(j) lies on
a hyperbolic line (Euclidean half-circle, seen in Figure 1.15) between Tk(0) and
Tk(∞), it must approach the hyperbolic horizon as k →∞.
That means:

ρ(j, Tk(j))→∞ as k →∞.
Consequently,

∑
bk diverges. �

Remark. The result shows that continued fractions with positive integer partial
quotients always converge.

Remark. The condition bn > 0 for all n ≥ 1 in the test is necessary since for
example [1;−1, 1,−1, 1, . . .] has

∑∞
n=1 bn divergent but the continued fraction

doesn’t converge and instead oscillates between ∞ and 1.

Figure 1.15:
Successive horospheres Tn−1(Σ−1) and Tn(Σ−1) are tangent at the point

Tn(j). Hyperbolic line (Euclidean semicircle) between Tn(0) and Tn(∞) is the
image of the line between ∞ and 0 in H3 under the extended Möbius

transformation Tn.

Another test for convergence is due to Ivan Śleszyński and Alfred Pringsheim
in the 1890s.

Theorem 2. The continued fraction K∞n=0(bn) = [b0; b1, b2, b3, . . .] with bn ∈ C
converges, if for all n

|bn| ≥ 2.
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Moreover, all convergents are in the open unit disk centered at b0 and the final
limit value is in the closed unit disk centered at b0.

Proof. Lorentzen and Waadeland in [3] (page 30-31) have a proof of the theorem.
We use the Ford circle method to give an alternative geometric proof. We call
two fractions adjacent if their Ford circles are tangent. If we have got one
fraction P

Q that is adjacent to p
q then we can calculate all the others by:

Pn
Qn

=
P + np

Q+ nq
for all n ∈ Z. (1.5)

These Ford circles form a ring of circles around the Ford circle of p
q as seen in

Figure 1.16. We can also see that each Ford circle with q > 1 has exactly two
tangent circles that are larger than it, with all the others being smaller. All
integers (q = 1) have just one larger tangent Ford circle, line y = 1, that can
also be considered as a circle with infinite radius. Obviously the integers have
two tangent circles of the same size too, with all the others being smaller.

Figure 1.16:
Ring of circles around the Ford circle of p

q . The condition |bn| ≥ 2 is marked as
red prohibited zone for tangent Ford and Short circles.

Using the Ford clockwork we see that the condition |bn| ≥ 2 eliminates the
possibility that any Ford circle is followed by one of its 3 biggest tangent Ford
circles (those can only appear for bn = −1, 0, 1) in case of bn ∈ Z as seen in
Figure 1.16.
In the case of bn ∈ R the prohibited zone for tangent Short circles is marked
with red in the same Figure 1.16. Similarly for bn ∈ C, the Ford’s clockwork on
spheres as described in the end of §1.2.1 excludes the upper hemisphere for the
next sphere to be tangent with, if we start with an upright or up to a 90◦ tilted
sphere. Two examples, an upright and a 90◦ tilted sphere is seen in Figure 1.17.
We have seen that all continued fractions start their horocycle evolution from
the horocycle Π−1 = {z : =(z) = 1} ∪ {∞} or from the horosphere Σ−1 =
{z + j : z ∈ C} ∪ {∞} and the next horosphere Σ0 has base at b0.

25



In terms of Ford’s clockwork, Σ0 is an upright sphere with radius 1
2 and the

next sphere Σ1 has maximum tilt and radius if b1 has smallest possible modulus
(argument can be arbitrary). If |b1| = 2 then the radius of Σ1 is R1 = 1

2|b1|2 = 1
8

and the tilt of Σ1 is arccos R0−R1

R0+R1
= arccos

1
2−

1
8

1
2 + 1

8

= arccos 3
5 = 53.13◦.

Figure 1.17:
The condition |bn| ≥ 2 imposes that any Ford or Short sphere can only be

followed by a sphere that is tangent at the red |bn| = 2 line or below. On the
left there is an example of an upright sphere and on the right a 90◦ tilted

sphere.

Figure 1.18:
Angles of tilt, arccos Rn−Rn+1

Rn+Rn+1
, in case of [b0, 2,−2, 2].

The base of Σ1 is at the distance of |b0 − p1
q1
| = |b0 − b1b0+1

b1
| = 1

2 from b0.
Without loss of generality we may assume that b0 = 0, since it doesn’t affect
the radii of the horospheres in the chain nor the distance travelled by the bases
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of the horospheres.
For the following spheres in the chain, each of them will have the next sphere
with maximum tilt and radius in the case of minimal |bn| with argument chosen
properly so that the next sphere is at the antipodal side from the previous.
Thus an extreme scenario is achieved with bn = ±2 with alternating signs that
give the radii of the horospheres in the chain:

Rn =
1

2q2
n

=
1

2(n+ 1)2
, (1.6)

where qn = 2(−1)n+1qn−1 + qn−2, q−2 = 1, q−1 = 0 by Wallis-Euler recursion
and by induction

qn = in
2−n(n+ 1).

The cases n = −2 and n = −1 are obvious and we assume that the formula in
question is also true for all k ≤ n. Then

qn+1 = 2(−1)n+2in
2−n(n+ 1) + i(n−1)2−n+1n

= n
(

2(−1)nin
2−n + in

2−3n+2
)

+ 2(−1)nin
2−n

= nin
2+n

(
2(−1)ni−2n + i−4n+2

)
+ 2in

2+n(−1)ni−2n

= nin
2+n (2(−1)n(−1)n + 1(−1)) + 2in

2+n(−1)n(−1)n

= nin
2+n + 2in

2+n

= i(n+1)2−(n+1)(n+ 1 + 1)

and so the formula holds for n+ 1, whenever it holds for n and n− 1. It follows
by induction that it is valid for all n ≥ −2.
Similarly, we get the bases of the horospheres in the chain:

pn
qn

=
n

n+ 1
.

Using the formula for radii Eq.1.6, we get the maximum possible tilt at n steps:

arccos
Rn −Rn+1

Rn +Rn+1
= arccos

1
2n2 − 1

2(n+1)2

1
2n2 + 1

2(n+1)2

= arccos
2n+ 1

2n2 + 2n+ 1
.

In Figure 1.18 there are shown maximum possible angles of tilt for the beginning
of the chain of horospheres.
Letting n→∞ the radii of the horospheres approach 0, the tilt approaches 90◦

and the distance travelled by the bases approaches 1, i.e. the continued fraction
converges, [0, 2,−2, 2,−2, . . .] = 1. Alternatively, this can be also seen from:

x =
1

2 + 1
−2+x

=
x− 2

2x− 3
=⇒ (x− 1)2 = 0 =⇒ x = 1.

Thus the supremum of the distance the chain of horospheres can travel is ap-
proached by using the lower bound |bn| = 2 and alternating signs in case of real
bn to get to the antipodal sides. See figure 1.9 which illustrates that such a
chain travels a unit distance from its starting point.

�
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Remark. Letting just one 1 or -1 in the continued fraction allows us construct
a continued fraction that diverges to infinity, for example:

[2; 1,−2, 2]

diverges to +∞.

Remark. The bound |bn| ≥ 2 is sharp for bn ∈ R as for example [0, 2− ε,−2 +
ε, 2 − ε,−2 + ε, . . .] diverges to +∞ for any ε. An example of the beginning of
the chain of horocycles for the case ε = 0.1 is seen in Figure 1.19.

Figure 1.19:
First 9 horospheres of the chain for [0, 2− ε,−2 + ε, 2− ε,−2 + ε, . . .] with

ε = 0.1. The chain diverges to +∞.

Remark. The lower bound of the speed of convergence of continued fraction
K∞n=0(bn) with |bn| ≥ 2 is logarithmic convergence. It follows from the limits:

lim
k→∞

pk+1

qk+1
− 1

pk
qk
− 1

= lim
k→∞

k+1
k+2 − 1
k
k+1 − 1

= lim
k→∞

k + 1

k + 2
= 1 (sublinearity),

and

lim
k→∞

pk+2

qk+2
− pk+1

qk+1

pk+1

qk+1
− pk

qk

= lim
k→∞

k+2
k+3 −

k+1
k+2

k+1
k+2 −

k
k+1

= lim
k→∞

k + 1

k + 3
= 1 (logarithmic).

1.4 Inverse images of continued fractions

The inverse problem is also compelling, i.e. given a real or complex number
we construct its continued fraction representation. It turns out that there are
several procedures how to construct these inverse images.
The Euclidean algorithm leads to a simple continued fraction expression for
every rational number. We could also imagine the process of construction of
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the pre-image as repeated process of subtracting integer part that would be the
partial quotient then taking the reciprocal of the remainder. Then subtracting
integer part again giving the next partial quotient, etc. In case of a rational the
process stops at some stage and in case of an irrational it goes on forever.
This method is easily implemented when we know the decimal expansion of the
irrational, for example e = 2.718281828 . . .. Then b0 = 2, b1 =

[
1

0.718281828...

]
=

1, etc.
In case of quadratic irrationals we don’t need to know the decimal expansion,
just the integer part is enough. For example x =

√
23 ≈ 4.8.

Then x0 =
√

23 = 4 + (
√

23− 4) =⇒ b0 = 4.

x1 = 1
x0−[x0] = 1√

23−4
=
√

23+4
7 = 1 +

√
23−3
7 =⇒ b1 = 1.

x2 = 1
x1−[x1] = 7√

23−3
=
√

23+3
2 = 3 +

√
23−3
2 =⇒ b2 = 3, etc.

The continued fraction of a quadratic irrational is (eventually) periodic but pure
square roots of non-square numbers have a particular pattern:

[b0; b1, b2, b3, b4, b5, . . . , b5, b4, b3, b2, 2b0],

where the periodic part starts right after b0 and the periodic part is almost a
palindrome with the exception at the end where we have always 2b0.
For example

√
23 = [4; 1, 3, 1, 8],

√
26 = [5; 10]. But for those who are lazy there

is an almost effortless formula:

√
z =

√
x2 + y = x+

y

2x+
y

2x+
y

2x+
y

2x+
y

. . .

.

The formula above follows from the identity:

√
z = x+

z − x2

x+
√
z

and denoting y := z − x2.
For the irrationals that are not quadratic and we don’t have their decimal ex-
pansion at hand, we can still calculate the continued fraction representation if
we could recognise the number as an alternating series of the form:

b0 +

∞∑
n=0

(−1)n

qnqn+1
= [b0; b1, b2, . . .].

This representation follows from summing up the terms in Eq.1.3.
Another version on the same theme is:

∞∑
n=1

(−1)n

bn
=

1

b1 +
b21

b2 − b1 +
b22

b3 − b2 +
b23

b4 − b3 +
b24
. . .

.
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For example:

π

4
= 1− 1

3
+

1

5
− 1

7
+

1

9
− · · · =

1

1 +
12

2 +
32

2 +
52

2 +
72

2 +
. . .

,

log 2 = 1− 1

2
+

1

3
− 1

4
+

1

5
− · · · =

1

1 +
12

1 +
22

1 +
32

1 +
42

1 +
. . .

.

If we allow bn ∈ Z then we have multiple of choices for pre-images. For example
we could instead of subtracting the integer part subtract the nearest integer.
Then clearly the partial quotients can also be negative, but we can get much
faster convergence since none of the partial quotients have absolute value less
than 2. In other words, nearest integer continued fractions are devoid of numbers
±1 and so by Theorem 2 they always converge, whereas Theorem 1 is not
applicable since some bn can be negative.
Or if we want to make life harder we could always subtract the faraway integer.
This leads to the pre-images that have the partial quotients that have values
only in the double binary system ±1,±2.
Or we could always subtract the even integer leading to the pre-image that has
only even partial quotients.
For example the standard and nearest integer continued fraction of 7

11 :

7

11
=

1

1 +
1

1 +
1

1 +
1

3

= [0; 1, 1, 1, 3] =
1

1−
1

3−
1

4

= ni[1;−3, 4]

and e:

e = [2; 1, 2, 1, 1, 4, 1, . . .] = ni[3;−4, 2,−5, 2,−7, 2,−9, 2,−11, 2,−13, 2, . . .].

The even integer continued fraction of 7
11 :

7

11
=

1

2−
1

2 +
1

4−
1

2−
1

2 +
1

. . .

= ei[0; 2,−2,−4, 2,−2, 2,−2, . . .].

30



In case of complex numbers we are not as free when it comes to choosing which
Gaussian integer to subtract since we need for the complex inversion a complex
number that has modulus less than 1. As seen in Figure 1.20, in the center
region we are free to choose but at the four border regions we have only a choice
of two. Note also that the circular arcs with radius 1

2 distinguish the regions
for each corner where the inversion gives at least 2 as integer part and in the
center region it is always 1, no matter which corner we choose.
For complex numbers the algorithm for the nearest Gaussian integer continued
fraction is the standard. Other possibilities would be to choose always even-
even/odd-odd Gaussian integer or always mixed Gaussian integers.
Examples of continued fractions for complex numbers 7

11 + 11
7 i and π + e · i:

7

11
+

11

7
i = 1 + 2i−

i

1 + i+
i

1 + 2i+
i

3−
1

3−
1

1 + 2i

,

π + e · i = 3 + 3i+
1

1 + 3i+
1

2 + i+
1

1 + 5i+
1

1 + 4i−
1

1 + 2i−
1

1 + 2i−
1

. . .

.
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Figure 1.20:
Unit in the Gaussian lattice. If the complex number is in the dark yellow

region then we are free to choose the corner relative to which we can invert. In
the white border regions we have only choice of two corners. The circular arcs
with radius 1

2 distinguish the regions for each corner where the inversion gives
at least 2 as integer part.
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Chapter 2

Continued fraction method
of factoring integers

Decomposition of a composite number into a product of smaller integers has
been of interest through the centuries. The method of using continued frac-
tions for factorization was described by Legendre in his Théorie des Nombres
of 1798, developed further by Maurice Kräıtchik, Derrick Henry Lehmer and
Ralph Ernest Powers in the 1920s. Translation of the method into a computer
algorithm by John Brillhart and Michael A. Morrison made factoring of 50-digit
numbers commonplace in the 1970s. Their heyday started with factoring the
seventh Fermat number F7 = 2128 + 1, a 39 digit number, on September 13,
1970.
For all currently known integer factorization methods the hardest numbers to
factor are semi-primes, the product of two prime numbers. As of December
12, 2009 the largest semi-prime factored is RSA-768, a 232-digit number, using
the general number field sieve. The effort took about 3 calendar years for a
six-institution research team. As of today, the next RSA Factoring Challenge
semi-prime RSA-896 with 270 decimal digits, is unsolved.
We shall start the description of the continued fraction method of factorization
by recalling the method of Fermat. Then turn to prove the lemma on continued
fractions that is the base for the continued fraction factorization method and
prove a corollary that reduces the factorization problem by a factor of 2. Then
we give details of the continued fraction factorization algorithm and finish with
an example calculation using both the original and modified methods.

2.1 Fermat’s factorization method

We assume that n is an odd integer, not a perfect square, that we are trying to
factorize. Each odd number has a representation as a difference of two squares:

n = x2 − y2 ⇐⇒ n = (x− y)(x+ y)

and unless x − y = 1, we have a proper factorization if we could find these
x, y. This representation exists, since if n = ab then n = (a+b

2 )2 − (a−b2 )2 and
divisions by 2 give integers since both a, b are odd.
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As x >
√
n we start the trial and error with x = [

√
n] + 1, check whether x2−n

is a perfect square. If yes, then we are done, if not, then we add one to x and
repeat the check. The search will end sooner or later, at the latest at x = n+1

2 .
One way to speed up the search is instead of looking for x, y such that x2−y2 =
n is to look for x, y such that x2 ≡ y2 (mod n). For a random such pair,
x, y, the probability is at least 1

2 that n is factored by writing it as a product
gcd(x− y, n) · gcd(x+ y, n).
Fermat’s factorization method is the foundation on which the continued fraction
factorization is built besides the quadratic sieve and general number field sieve,
the currently best-known factoring algorithms.

2.2 A lemma on continued fractions

Lorentzen and Waadeland in [3] (page 427-428) have a proof of the lemma below,
we give an alternative geometric proof using Ford circles.

Lemma 3. Let ξ > 1 be an irrational number, and (pkqk )∞k=0 its sequence of
simple continued fraction convergents. Then:

|p2
k − ξ2q2

k| < 2ξ for all k ∈ N. (2.1)

Proof. Let us choose one of the convergents of ξ, say p
q . Then

|p2− ξ2q2| = |p+ ξq||p− ξq| = q2

∣∣∣∣pq + ξ

∣∣∣∣ ∣∣∣∣pq − ξ
∣∣∣∣ =

1

2R

(
p

q

∣∣∣∣pq − ξ
∣∣∣∣+ ξ

∣∣∣∣pq − ξ
∣∣∣∣)

where R = 1
2q2 is the radius of Ford circle of p

q .

Figure 2.1:

Real ξ is to the right of its convergent p
q . The product p

q ·
∣∣∣pq − ξ∣∣∣ is represented

as the yellow area and it is dominated by the area p
q · 2R. The area ξ ·

∣∣∣pq − ξ∣∣∣
is the sum of yellow and blue areas and it is dominated by the area ξ · 2R.
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If ξ is to the right of its convergent p
q as shown in Figure 2.1, then

|p2 − ξ2q2| = 1

2R

(
p

q

∣∣∣∣pq − ξ
∣∣∣∣+ ξ

∣∣∣∣pq − ξ
∣∣∣∣) <

1

2R

(
p

q
2R+ ξ2R

)
< 2ξ

since
∣∣∣pq − ξ∣∣∣ < 2R and p

q < ξ.

The dominance of p
q ·
∣∣∣pq − ξ∣∣∣ by p

q · 2R and ξ ·
∣∣∣pq − ξ∣∣∣ by ξ · 2R is illustrated

in Figure 2.1. The distance from p
q to ξ is dominated by 2R since this is the

maximal distance between consecutive convergents in case of simple continued
fractions. This proves our statement for the case ξ is to the right of p

q .
To see that no better bound is possible notice that the maximal distance 2R can
be approached with the following configuration of partial quotients b2n → ∞,
b2n+1 = 1, and b2n+2 →∞. In terms of Ford’s clockwork it is the case when an
upright even horosphere is followed by a horosphere of the same size and then
by another upright horosphere.

If ξ is to the left of its convergent p
q as shown in Figure 2.2, then

∣∣∣pq − ξ∣∣∣ < 2R

and p
q < ξ + 2R.

Figure 2.2:

Real ξ is to the left of its convergent. The product p
q ·
∣∣∣pq − ξ∣∣∣ is represented as

the sum of yellow and blue areas and it is dominated by the area (ξ + 2R) · 2R.

The area ξ ·
∣∣∣pq − ξ∣∣∣ is painted yellow and it is dominated by the area ξ · 2R.

The dominance of p
q ·
∣∣∣pq − ξ∣∣∣ by (ξ + 2R) · 2R and ξ ·

∣∣∣pq − ξ∣∣∣ by ξ · 2R is illus-

trated in Figure 2.2. The distance from p
q to ξ is again dominated by 2R since

this is the maximal distance between consecutive convergents in case of simple
continued fractions. This proves our statement for the case ξ is to the left of p

q
with R→∞.
To see that no better bound is possible notice that the maximal distance 2R
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can be approached this time with the following configuration of partial quotients
b2n+1 →∞, b2n+2 = 1, and b2n+3 →∞. In terms of Ford’s clockwork it is the
case when an upright odd horosphere is followed by a horosphere of the same
size and then by another upright horosphere.

But whenever a partial quotient goes to ∞, the radius of the corresponding
horosphere approaches 0. Therefore we must take the limit R → 0 to get the
bound:

|p2 − ξ2q2| = 1

2R

(
p

q

∣∣∣∣pq − ξ
∣∣∣∣+ ξ

∣∣∣∣pq − ξ
∣∣∣∣) < lim

R→0

1

2R
((ξ + 2R)2R+ ξ2R) = 2ξ.

�

If we choose nearest integer continued fraction instead, then we get a better
result.

Corollary 3.1. Let ξ > 1 be an irrational number, and (pkqk )∞k=0 its sequence of
nearest integer continued fraction convergents. Then:

|p2
k − ξ2q2

k| < ξ for all k ∈ N. (2.2)

Proof. If ξ is to the right of its convergent p
q as shown in Figure 2.3, then

|p2
k − ξ2q2

k| =
1

2R

(
p

q

∣∣∣∣pq − ξ
∣∣∣∣+ ξ

∣∣∣∣pq − ξ
∣∣∣∣) <

1

2R

(
p

q
R+ ξR

)
< ξ.

Figure 2.3:
Nearest integer continued fraction. Real ξ is to the right of its convergent. The

product p
q ·
∣∣∣pq − ξ∣∣∣ is represented as the yellow painted area and it is

dominated by the area p
q ·R. The area ξ ·

∣∣∣pq − ξ∣∣∣ is the sum of yellow and blue

areas and it is dominated by the area ξ ·R.

The dominance of pq ·
∣∣∣pq − ξ∣∣∣ by p

q ·R and ξ ·
∣∣∣pq − ξ∣∣∣ by ξ ·R is illustrated in Fig-

ure 2.3. The distance from p
q to ξ is dominated by R since this is the maximal
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distance between consecutive convergents in case of nearest integer continued
fractions. This proves our statement for the case ξ is to the right of p

q .
To see that no better bound is possible notice that the maximal distance R can
be approached with the following configuration of partial quotients b2n → ∞,
b2n+1 = 2, and b2n+2 →∞. In terms of Ford’s clockwork it is the case when an
upright even horosphere is followed by a horosphere with 4 times smaller radius
and then by another upright horosphere.

If ξ is to the left of its convergent p
q as shown in Figure 2.4, then

∣∣∣pq − ξ∣∣∣ < R

and p
q < ξ +R.

Figure 2.4:
Nearest integer continued fraction. Real ξ is to the right of its convergent. The

product p
q ·
∣∣∣pq − ξ∣∣∣ is represented as the sum of yellow and blue painted areas

and it is dominated by the area (ξ +R) ·R. The area ξ ·
∣∣∣pq − ξ∣∣∣ is painted

yellow and it is dominated by the area ξ ·R.

The dominance of p
q ·
∣∣∣pq − ξ∣∣∣ by (ξ +R) ·R and ξ ·

∣∣∣pq − ξ∣∣∣ by ξ ·R is illustrated

in Figure 2.4. The distance from p
q to ξ is again dominated by R since this is

the maximal distance between consecutive convergents in case of nearest integer
continued fractions. This proves our statement for the case ξ is to the left of p

q
with R→∞.
To see that no better bound is possible notice that the maximal distance R can
be approached this time with the following configuration of partial quotients
b2n+1 →∞, b2n+2 = 2, and b2n+3 →∞. In terms of Ford’s clockwork it is the
case when an upright odd horosphere is followed by a horosphere with 4 times
smaller radius and then by another upright horosphere.
But whenever a partial quotient approaches ∞, the radius of the corresponding
horosphere approaches 0. Therefore we can take the limit R→ 0 to get a tighter
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bound:

|p2
k − ξ2q2

k| =
1

2R

(
p

q

∣∣∣∣pq − ξ
∣∣∣∣+ ξ

∣∣∣∣pq − ξ
∣∣∣∣) < lim

R→0

1

2R
((ξ +R)R+ ξR) = ξ.

�

2.3 Continued fraction factorization

In the description of the factorisation method we follow Lorentzen and Waade-
land in [3] §IX.3.
The main effort of the Fermat’s method is to find integers x, y such that x2 ≡ y2

(mod n).
If we go and calculate the simple continued fraction pre-image of

√
n and from it

some nominators of convergents pk, raise them to the second power and reduce
them (mod n), then without knowing the lemma we would expect them to be:

−n
2
< p2

k (mod n) <
n

2
.

But using the lemma on the assumption ξ2 = n , in which case we have

|p2
k − nq2

k| < 2
√
n,

we see a miracle happening:

−2
√
n < p2

k (mod n) < 2
√
n.

Hence with the help of continued fractions we can make factoring much easier
reducing the problem of factoring number with d digits to the problem of fac-
toring a set of numbers with d

2 digits.
As a next step we need to factor fully these p2

k (mod n) and then concentrate
on the exponents in the prime factorization. There is too much information in
these exponents, so we reduce them (mod 2). Now every p2

k (mod n) is asso-
ciated to a vector of zeros and ones.
If there is among them a linearly dependent set of vectors then the product of
corresponding set of p2

k (mod n) is a square, say y2. Let x2 be the square of
the product of corresponding pk. Unless x ≡ ±y (mod n) we are done, since
gcd(x+ y, n or gcd(x− y, n) is a proper factor in n, which is then easily found
by the Euclidean algorithm.
If we didn’t find a linearly dependent set of the binary exponent vectors or if
we reached the situation x ≡ ±y (mod n) then we have to continue with the
continued fraction expansion and run through the previous steps again.
Note that using the nearest integer continued fractions and the Corollary 3.1
instead of the lemma we get smaller bounds for p2

k (mod n):

−
√
n < p2

k (mod n) <
√
n

making the factorization problem slightly easier to solve.
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2.4 Example of continued fraction factorization

Let n = 9073. Then
√
n = [95; 3, 1, 26, 2, . . .] and preparatory calculations are

in Table 2.1.

Table 2.1: Calculations for factoring 9073 using the simple continued fraction
of
√

9073 = [95; 3, 1, 26, 2, . . .].

k -2 -1 0 1 2 3 4 . . .
bk 95 3 1 26 2 . . .
pk 0 1 95 286 381 1119 2619 . . .

p2
k (mod n) -48 139 -7 87 -27 . . .

factorization (−1)243 139 (-1)7 3 · 29 (−1)33 . . .
interesting ? ? . . .

The nominators of convergents are calculated using Wallis-Euler recursion:

p−2 = 0, p−1 = 1 and pk = bkpk−1 + pk−2.

After squaring and reducing (mod n) we calculated the factorizations of p2
k

(mod n). Note that the bounds for p2
k (mod 9073) are ±

⌊
2
√

9073
⌋

= ±190

instead of ±
⌊

9073
2

⌋
= ±4536.

Next we need to compare all the factorizations of p2
k (mod n) and if we find

factors that occur more than once then we mark the corresponding factorizations
interesting. All the different factors in these interesting factorizations form the
factor base, in our case it is {−1, 2, 3}.
The following step is to reduce the powers of factors (mod 2) and form the
exponent vectors of the interesting factorizations with respect to the factor
base, in our case as follows:

95→ −48 = (−1)243→ exponent vector 〈1, 0, 1〉,

2619→ −27 = (−1)33 → exponent vector 〈1, 0, 1〉.

Luckily, the vectors are linearly dependent as their sum is the zero vector
〈0, 0, 0〉. This implies that the product of interesting factorizations is a square:

y2 = (−48)(−27) = (−1)22434,

and taking the square root:

y = (−1)2232 = −36.

Next we multiply the corresponding nominators pk and reduce (mod n):

x ≡ 95 · 2619 (mod n) =⇒ x = 3834.

Luckily, x 6≡ ±y (mod n), and so we have found a proper factor:

gcd(x− y, n) = gcd(3870, 9073) = 43.

39



The full factorization follows easily:

9073 = 43 · 211.

In the factorization process we were two times lucky, but if it had not been the
case then we would have needed to go back to calculating the next nominator of
the convergent, pk, in the continued fraction of

√
9073 and repeat the subsequent

steps of the algorithm.
Let’s try the same method but now with the nearest integer continued fraction√
n = ni[95; 4,−27,−2,−7, . . .]. The preparatory calculations are in Table 2.2.

Table 2.2: Calculations for factoring 9073 using the nearest integer continued
fraction of

√
9073 = ni[95; 4,−27,−2,−7, . . .].

k -2 -1 0 1 2 3 4 . . .
bk 95 4 -27 -2 -7 . . .
pk 0 1 95 381 -10192 20765 -155547 . . .

p2
k (mod n) -48 -7 87 -27 -88 . . .
interesting ? ? . . .

This time the bounds for p2
k (mod 9073) are ±

⌊√
9073

⌋
= ±95 compared to the

bounds ±190 we had with simple continued fraction.
By the same steps and calculations as before we get the same result and even
faster with the nearest integer continued fraction, suggesting that the modifica-
tion might be propitious.

40



Chapter 3

Dirichlet’s approximation
theorem

The distinction between numbers being rational or irrational, algebraic or tran-
scendental have been studied by means of Diophantine approximation, that is
the investigation how closely, or with what degree of accuracy, can a given num-
ber be approximated by rational numbers or algebraic numbers.
Dirichlet’s approximation theorem is one of the cornerstone results in Diophan-
tine approximation which tells us that rational numbers can approximate ar-
bitrary real numbers quite well in terms of the size of the denominator of the
approximate rational numbers.
First, if we consider all rational numbers with a fixed denominator and try to
approximate a given irrational α with them, then clearly α lies between two
such rational numbers, say r

q < α < r+1
q and so:∣∣∣∣α− r

q

∣∣∣∣ < 1

q
,

or if we choose properly p = r or p = r + 1, whichever is closer, then:∣∣∣∣α− p

q

∣∣∣∣ < 1

2q
.

We say that p
q is a good approximation to α if for all ab with 0 < b ≤ q we have:∣∣∣∣α− p

q

∣∣∣∣ < ∣∣∣α− a

b

∣∣∣
and if p

q can satisfy even a stronger requirement:

q

∣∣∣∣α− p

q

∣∣∣∣ < b
∣∣∣α− a

b

∣∣∣
then we call pq the best approximation to α. It turns out that the convergents of
the continued fraction representation of α are precisely the best approximations
to α.
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Next, we will prove the Dirichlet’s approximation theorem using Ford and Short
circles. The original proof by Dirichlet from 1842 uses the pigeon-hole principle.

Figure 3.1:
Red circle is a Ford circle of n

Q+1 for some n. Blue circles are examples where

the Ford circle is translated to α and to α′ and green circles are Short circles.
Yellow circles are examples where the Ford circle of 1

Q+1 is inside a larger Ford
circle.

Theorem 4. Let α be a real number and Q be a positive integer. Then there
exist integers p, q such that 1 ≤ q ≤ Q, and∣∣∣∣α− p

q

∣∣∣∣ ≤ 1

q(Q+ 1)
. (3.1)

Proof. In the beginning of §1.2 (Eq.1.2) we saw that the Short circle of α relative
to p

q has radius:

R p
q
(α) =

q2

2

∣∣∣∣α− p

q

∣∣∣∣2
and so we can combine the two inequalities and restate the theorem as an
existence of a rational number p

q for the given α and Q such that:

R p
q
(α) ≤ 1

2(Q+ 1)2
<

1

2q2
.

It means that we have to find a rational number p
q such that its Ford circle is

strictly bigger than the Ford circle of 1
Q+1 and the Short circle of α relative to

p
q is smaller or equal to the Ford circle of 1

Q+1 .
Every Ford circle has infinitely many adjacent Ford circles and if we consider a
rational number a

b with b > 1 then we see from the Eq.1.5 that the Ford circle of
a
b has exactly two adjacent Ford circles larger than itself. Namely, |B+nb| < |b|,
i.e. |n+ B

b | < 1 for exactly two values of n, the integers between which −Bb lies.
We have given Q which fixes a Ford circle with radius 1

2(Q+1)2 . If we translate

this circle along the x-axis then there are exactly three possibilities:
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• the circle is inside a larger Ford circle (yellow circles in Figure 3.1),

• the circle is tangent to two larger Ford circles (red circle in Figure 3.1),

• the circle is overlapping with some larger Ford circle (two examples in
Figure 3.1 with blue circles).

If we have that after the translation of the Ford circle of 1
Q+1 is inside a larger

Ford circle, then α satisfies itself Dirichlet’s theorem. This is the case when α
is of the form n

Q−m for any n > 0 and 0 ≤ m < Q.
In the second case, if we have that after the translation of the Ford circle with
radius 1

2(Q+1)2 , its base is at α and it is tangent to two larger Ford circles, then

in respect of both of them we have:

R p
q
(α) =

1

2(Q+ 1)2
<

1

2q2
.

This is the case when α is a rational number of the form n
Q+1 for any n > 0 and

(Q+ 1) - n. Such α = n
Q+1 is adjacent to two Ford circles, k

Q and l
Q−m , where

1 ≤ m < Q and k, l some positive integers. With the former:

R k
Q

(
n

Q+ 1
) =

Q2

2

∣∣∣∣ n

Q+ 1
− k

Q

∣∣∣∣2 =
1

2(Q+ 1)2
<

1

2Q2
,

and similarly with the latter:

R l
Q−m

(
n

Q+ 1
) =

(Q−m)2

2

∣∣∣∣ n

Q+ 1
− l

Q−m

∣∣∣∣2 =
1

2(Q+ 1)2
<

1

2Q2
.

Thus we have choice two possibilities of which the rational with smaller Ford
circle approximates clearly more closely then the other.
Finally, if we have that after the translation of the Ford circle with radius 1

2(Q+1)2

is overlapping some larger Ford circle, then we choose the rational number p
q

that gives rise to this larger Ford circle and have our Short circle relative to
that:

R p
q
(α) <

1

2(Q+ 1)2
<

1

2q2
.

This is the case when α is not of the form n
Q+1 for any n > 0 nor of the form

n
Q−m for any n > 0 and 0 ≤ m < Q. That means α is either an irrational or a
rational a

b with b > Q+ 1.
�

Two examples are shown in Figure 3.1. For given α and Q we have the left blue
circle which is the Ford circle of 1

Q+1 that is translated to α and the left green

circle which is the Short circle of α relative to p
q . This Short circle is tangent to

x-axis at α and to the Ford circle of p
q . Similarly, for given α′ and Q we have

the right blue circle which is the Ford circle of 1
Q+1 that is translated to α′ and

the right green circle which is the Short circle of α′ relative to r
s . This Short

circle is tangent to x-axis at α′ and to the Ford circle of r
s .

How, then, can we find a rational number p
q for the given α and Q that satisfies

Dirichlet’s theorem?

43



One possible way is to use the convergents of the continued fraction represen-
tation of α. If n is the index satisfying qn ≤ Q < qn+1, then:∣∣∣∣α− pn

qn

∣∣∣∣ ≤ 1

qn(Q+ 1)
.

This can be seen using Eq.1.3 that implies:∣∣∣∣pn+1

qn+1
− pn
qn

∣∣∣∣ ≤ 1

qnqn+1
.
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