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ABSTRACT 

The purpose of this master thesis is to evaluate the performance of an 

inventory policy in a one warehouse, multiple retailer inventory system 

with end customer demand at all stock locations. The objective is to 

compare the performance of a multi-echelon model with stock rationing, 

compared to real inventory data which is based on uncoordinated single-

echelon optimization. The comparison is carried out by simulations, where 

the focus is put on expected service levels and expected inventory levels.  

The multi-echelon model with service constraints in Berling and Marklund 

(2013) is used with the inclusion of a virtual retailer which only serves the 

end customer demand at the central warehouse (upstream demand). The 

virtual retailer approach is used to approximate a critical level policy at the 

central warehouse. This means that when the stock on hand at the 

warehouse falls to or below the critical level, only customer orders are 

satisfied while retailer orders are backordered.    

The results show that the multi-echelon model greatly outperform the 

uncoordinated solution in terms of the ability to reach target service levels. 

This is particularly evident when customer order sizes are large. 

Furthermore, the virtual retailer approach is shown to overestimate the 

critical level which leads to excess stock. However, the multi-echelon 

model still holds on average 10% less inventory at the central warehouse 

when both models achieve the target service level. Finally, the sensistivity 

analysis illustrates that a critical level policy has the potential to reduce the 

total inventory with up to 25% but the potential reductions diminish as the 

fraction of upstream demand increases. 

 

Keywords: Multi-Echelon, Critical level, Stock rationing, Upstream 

demand, Virtual retailer 
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1 INTRODUCTION 

This chapter describes the background for the thesis. It also presents a 

problem definition, the purpose of the work, its delimitations, Syncron 

International and finally it discusses the target audiences and provides a 

chapter overview.  

1.1 BACKGROUND  
For many companies a single warehouse is not sufficient to satisfy their 

network of customers. A common solution is to create a network of 

multiple central and regional warehouses, a so called multi-echelon 

inventory system. These systems have a flow of goods which enter at the 

central warehouse or warehouses that supply the retailers, which in turn 

deliver to the end customer.  

When considering a multi-echelon system it is relatively simple to 

optimize each installation’s inventory levels separately, solely based on the 

demand they experience. However, from a cost perspective this approach 

is many times inefficient as the system as a whole might carry excess stock. 

There are large potential savings to be realized by instead coordinating the 

inventory control decisions for the system. That is, to optimize the overall 

cost and inventory levels in the entire network, while focusing on the 

service requirements of the end customers. This is the main purpose of 

multi-echelon modeling. 

Because of geographical or business model reasons the central warehouse 

can be allowed to serve end customers, causing the phenomenon this thesis 

refer to as upstream demand. An example of a divergent multi-echelon 

system with upstream demand is depicted in Figure 1.  
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Figure 1- Divergent Multi-Echelon Inventory System with Upstream Demand 

One important aspect which makes modelling multi-echelon systems with 

upstream demand complex is that retailers and end customers usually have 

very different service requirements. This is problematic because when 

optimizing multi-echelon systems, stock is usually pushed from the central 

warehouse to the retailers. Consequently, the central warehouse gets a quite 

low measured service (Axsäter, et al., 2007), compared to the very high 

measured service at retailers.  

Therefore, when both end customers and retailers are served from a central 

warehouse, either both demand classes will get a high service level and 

excess stock is carried in the system, or both will get a lower service and 

the end customer will not be satisfied.  

One approach to meet the challenge of differentiating the service at the 

central warehouse to different demand classes, is to reserve stock for the 

high priority upstream demand. This can be accomplished by 

implementing a critical level policy. That is, when the stock at the 

warehouse is less than or equal to the critical level, only upstream demand 

is satisfied directly from stock while retailer orders are backordered 

(Axsäter, et al., 2007).   

The global software provider, Syncron International, offer solutions that 

can help organizations manage their global supply chains. Syncron realize 

that a critical level policy has the potential to assist their customers in their 
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objective to reduce stock while still maintaining excellent service. As a 

result, Syncron is interested in evaluating the critical level policy by 

comparing its performance to real inventory data.  

In previous cooperation between Syncron and Production Management at 

LTH, Berling and Marklund (2013, 2014) developed a multi-echelon 

model for a divergent system, the BM-model. In this model end customer 

demand only occur at the retailers. However, with slight modification, the 

model can also handle end customer demand at the central warehouse.  

In this thesis the BM-model will incorporate a critical level policy and its 

performance will be compared to inventory data, provided by one of 

Syncron’s customers.      

1.2 PROBLEM DESCRIPTION 
This thesis will evaluate the BM-model presented by Berling & Marklund 

(2013; 2014) in a divergent multi-echelon setting with end customer 

demand at all locations. This model is chosen because of its flexibility in 

handling different demand distributions as well as its computational and 

conceptual simplicity. Parts of it has also been implemented in Syncron’s 

inventory management software. 

The main challenge is that the BM-model has to be able to differentiate 

between the service requirements for end customers and retailers at the 

central warehouse. Focus is put on evaluating how well the BM-model 

performs, in terms of reaching target service levels (TSL) with as little 

expected inventory as possible.  

This leads to the following questions that the thesis aim to answer: 

 What impact does reserving stock have on the precision of 

achieving TSLs?  

 What are the potential reductions in total inventory compared to 

the real inventory data, when reserving stock at the central 

warehouse for end customer demand? 

 How does the fraction of upstream demand affect the potential 

reductions in inventory? 
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1.3 PURPOSE 
The purpose of this thesis is to evaluate the performance of the BM-model 

in a one warehouse, multiple retailer system with upstream demand. This 

will be achieved by performing a comparison between empirical data, 

provided by one of Syncron’s customers, and analytical computations 

based on the BM-model.  

The comparison will be performed with the help of simulation models, 

which are created to represent the real inventory system. The performance 

will be evaluated with respect to expected service levels and expected 

inventory levels.  

1.4 SYNCRON INTERNATIONAL 
The empirical data is provided by Syncron International which is a global 

“Software as a Service” (SaaS) provider that specializes in managing 

complex global supply chains. They have customers in over 100 countries 

and offices in a handful countries over the world. In Sweden they have 

offices in Stockholm, the global headquarters, and in Malmö. 

There are four main products in Syncron’s software; Inventory 

Management, Pricing Management, Order Management and Master Data 

Management. They also offer services in advanced analytics. Figure 2 

presents a conceptual model showing how all of Syncron’s offers ties in to 

each other. This thesis is performed in connection to their Inventory 

Management Software, IM.  

Figure 2 - Conceptual model of Syncron’s service offerings. Source: 

Syncron (2015) 
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The IM software offers companies the potential to reduce stock and 

increase end-customer stock availability by differentiating products, 

reallocating inventory and eliminating excess and obsolete stock. They 

offer both single- and multi-echelon modeling and tailor solutions to the 

customer. 

1.5 DELIMITATIONS 
This thesis will cover a divergent multi-echelon inventory system with one 

central warehouse and several retailers. Empirical data have been collected 

from one of Syncron’s customers, who wish to be known only as the case 

company. The data is restricted to items with customer demand at both 

retailer and central warehouse. All items are spare parts, or share 

characteristics with them. The results will be limited to measured service 

levels and expected inventory levels, no costs will be covered. The service 

measure used in this thesis is the demand fill-rate1, also referred to as the 

service level throughout the thesis.   

1.6 TARGET AUDIENCE 
The target audience for this thesis are Syncron, people working for the case 

company as well as inventory management students and professionals with 

an interest in inventory control. 

1.7 DISPOSITION  
The disposition in this thesis is based on a separated model for master 

theses by Blomkvist & Hallin (2014). It moves logically through the thesis 

based on a chronical setup, even if the thesis process in itself was iterative. 

The most important parts of this thesis, for all readers, are the adopted 

method in Section 2.1.2, the results in Chapter 7 and the conclusions in 

Chapter 8. 

Chapter 1 – Introduction 

This chapter describes the background for the thesis. It presents a problem 

definition, the purpose of the work, its delimitations and Syncron 

International. It also discusses the target audience.  

                                                      
1 Fraction of demand satisfied directly from stock 
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Chapter 2 – Methodology  

This chapter begins with a description of a general approach for operations 

research projects from the literature. This is followed by an adapted 

framework which is modified to align with the purpose of this thesis. The 

chapter ends with a description of some general scientific approaches and 

concepts as well as the positioning of the thesis in this context.   

Chapter 3 – Theoretical Framework 

This chapter covers the theory on which this thesis is based. First a 

literature review is presented which describes existing research conducted 

in the same field of study. This is followed by a description of the heuristic 

used in the main model for this thesis. Finally a section on different service 

level classifications will end this chapter.  

Chapter 4 – Data Collection and Analysis of Input Data 

This chapter describes the collection of data from the case company as well 

as the process of converting that data into useful information for this thesis. 

How the selection procedure of items to study were performed is also 

described.  

Chapter 5 – Analytical Calculations 

This chapter will present the procedure of using the BM-model in order to 

obtain reorder points. Furthermore the modifications to the BM-model are 

described. The chapter ends with a description of the recalculation of 

reorder points. 

Chapter 6 – Simulation 

This chapter explains the simulation modeling and analysis used in this 

work. Simulation is used to assess the performance of the analytical 

method used for obtaining reorder points for all the different stock points 

in the system.  

Chapter 7 – Results and Analysis 

In this chapter the results from studying the simulation will be presented. 

Focus is put on measured service levels and expected inventory levels. 

Then the results as well as assumptions will be discussed and analyzed in 

order to help the reader understand the results. Finally the results of the 

sensitivity analysis are presented. 
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Chapter 8 – Conclusions 

This chapter will present a short summary of the key components of the 

analysis. Followed by a remark of what future research may be undertaken 

to further validate the results of this study.    



 
8 

  

  



 
9 

  

2 METHODOLOGY 

This chapter begins with a description of a general approach for 

operations research projects from the literature. This is followed by an 

adapted framework which is modified to align with the purpose of this 

thesis. The chapter ends with a description of some general scientific 

approaches and concepts as well as the positioning of the thesis in this 

context.   

2.1 OPERATIONS RESEARCH 
As organizations grow, the complexity of its operations increases and new 

challenges and problems arise. One common problem is that when 

specialization and complexity in organization increases, it gets more 

difficult to allocate available resources to various activities in a way that 

benefits the organization as a whole (Hillier & Lieberman, 2001). As a 

result, individual units in an organization might grow into autonomous 

entities with their own goals and lose sight of the overall objective 

(Lieberman and Hiller, 2001). 

Problems and challenges like these paved the way for the emergence of 

Operations Research (OR). OR uses mathematical modelling to provide 

near-optimal solutions for complex decision-making problems i.e. provide 

the best course of action (Hillier & Lieberman, 2001).  

In the following sections, an overview of the generic Operations Research 

modeling approach described in Lieberman and Hillier (2001) will be 

presented, followed by the adapted framework which is more suited for the 

purpose of this thesis. 

 The Generic Operations Research Modeling Approach 

The purpose of this section is to present an overview of the major phases 

of an Operations Research study, as presented by Lieberman and Hillier 

(2001). Even though mathematical modelling plays a major role in OR, it 

often represents a relatively small part of the total effort required (Hillier 

& Lieberman, 2001), as the following section will demonstrate. 
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The generic modeling approach can be divided into six steps: 

1. Define the problem of interest and gather relevant data. 

Formulate a clear statement that describes the problem of 

interest. Gather relevant data to gain understanding of the 

problem and to provide input to the mathematical model. 

2. Formulate a mathematical model to represent the problem. 

Translate the studied problem into a form that is convenient for 

analysis. Mathematical modeling simplifies the problem with the 

help of assumptions and approximations, while still capturing the 

essential challenges and reveal cause-and-effect correlations. 

3. Develop a computer-based procedure for deriving solutions 

to the problem from the model. 

Develop a procedure to be able to execute the mathematical 

model and determine near-optimal solutions. A well formulated 

and tested model should provide a good approximation of the 

best course of action. 

4. Test the model and refine it as needed. 

Model verification to find and remove errors and model 

validation to establish that the model captures the ideas and 

concepts of the studied problem.  

5. Prepare for the ongoing application of the model as 

prescribed by management. 

Install a system for applying the model as prescribed by 

management. The system includes the model, the solution 

procedure and operating procedures for implementation. 

6. Implement. 

Implementation of the system, including the mathematical 

model.  

 The Adapted Operations Research Modeling Approach 

The modelling approach described in the previous section has to be 

adjusted to fit the purpose of this thesis. The most notable difference is that 

the fifth and sixth steps will be disregarded as implementation is outside 

the scope of this thesis. Furthermore, time will not be spent on developing 

a new analytical model. Instead we adapt an existing model that has been 

proposed for handling upstream demand, but which has never been tested 

in this respect. More details regarding the existing model can be found in 

Section 3.2. 
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The adapted modeling approach contains the following steps: 

1. Define the problem of interest and gather relevant data 

2. Perform data analysis and select items to study 

3. Modify the existing model and derive solutions 

4. Evaluate the model by comparison through simulations 

5. Analyze the results and refine if needed  

Each of these steps are further explained below. 

1. Define the problem and gather relevant data 

The problem definition originated from discussions with representatives 

from Syncron and Production Management at LTH. Syncron were 

interested in evaluation of an inventory policy that can be applied to an 

inventory system with upstream demand. In previous cooperation, Berling 

and Marklund (2013, 2014) developed a multi-echelon model, the BM-

model, for a divergent system where end customer demand only occur at 

the retailers.  

However, with slight modification, the model can also handle end customer 

demand at the central warehouse. This aspect of the model had so far not 

been evaluated. Consequently the purpose of the master thesis was created 

to evaluate the performance of this model when allowing customer demand 

at the central warehouse as well. The evaluation will be carried out through 

simulations, by comparing the BM-model with N+1 uncoordinated single-

echelon models. Real data from a case company will be used as input and 

the performance will be assessed based on the two models’ ability to reach 

target service levels and the total expected inventory.   

To gather relevant data, a literature study was performed which can be 

found in Section 3.1. The purpose of this study was to acquire an 

understanding of the academic research that is available on the topic of 

upstream demand, in both single- and multi-echelon settings. Later, this 

study was extended to include research on stock rationing and multiple 

demand classes as these areas also cover inventory policies which involve 

demand streams with different service requirements or priority.  

The data from practice was provided by the case company. Data analysis 

and manipulation will be covered in the next section. 
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2. Perform data analysis and select items to study   

The purpose of using data from practice as input is twofold, using data 

from the case company facilitates the comparison as parameters such as 

order quantities, target service levels and lead-times are readily available. 

Furthermore, fictional data would be difficult to construct in a way that 

captures the sometimes elusive nature of demand patterns. Hence, by using 

fictional data some of the challenges of inventory control in practice may 

be lost in the process. More details regarding the empirical data can be 

found in Section 4.1. 

The items for the study are selected based on a list of criteria that ensures 

that appropriate items are used. The sample size is set to be large enough 

to sufficiently capture a wide range of item characteristics but not too large 

as the study is rather time consuming. About 100 items is be considered 

enough for this purpose. The execution of this selection is described in 

Section 4.2. 

For each of the selected items the mean and standard deviations of the 

demand per day were determined together with the distributions of the 

customer order sizes. These parameters can be derived from the extracted 

demand history, provided by the case company. This data analysis is 

further explained in Section 4.3.    

3. Modify the existing model and derive solutions 

The BM-model is originally constructed to model a pure multi-echelon 

system where customer demand only takes place at the retailers. However, 

it is also possible to let the model handle upstream demand by setting the 

transportation time to one of the retailers to zero. This retailer will be 

referred to as the virtual retailer and its inventory is reserved to only satisfy 

the upstream demand, see Figure 3. Furthermore, the virtual retailer 

replenishes its stock from the central warehouse using a continuous review 

(S-1, S) policy. Conceptually the central warehouse and the virtual retailer 

are modeled as separate stock points that are linked by the lead-time which 

depends on R0. However, in reality they may both be part of the same stock.  
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1 Ni . . . .. . . .

Ɩ  = 0

 

Figure 3- Divergent Multi-Echelon System with Upstream Demand and a Virtual Retailer 

The approach to model with a virtual retailer can be viewed as an 

approximation of a so called critical level policy. This policy defines a 

nonnegative critical level c for stock on hand at the central warehouse. If 

the stock on hand is less than or equal to c, only customer demand is 

satisfied while retailer orders are backordered (Axsäter, et al., 2007).  

As there are two stock locations in the approximation, the central 

warehouse reorder point of a critical level policy can be approximated as 

S+R0. Furthermore, the critical level c can be approximated by S, as 

depicted in Figure 4.  
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S R0

S+R0

c=S

Central warehouse with a 
virtual retailer

Central warehouse 
with a critical level c

 

Figure 4 - Illustration of the Relationship Between a Central Warehouse with a Virtual 

Retailer and a Central Warehouse with a Critical Level c. 

Based on the input parameters derived from the empirical data, the BM-

model is used to determine near-optimal reorder points for all stock 

locations, including the S-level at the virtual retailer. More details 

regarding deriving solutions from the BM-model can be found in Section 

5.1.2. 

4. Evaluate the model performance using simulation 

In order to evaluate the performance of the model, simulations are used 

where simulation models are created for each individual item to emulate 

the real inventory system. The comparison consists of simulating each item 

two times, where the reorder points are the only input parameters that are 

changed between simulations. The studied reorder points are the ones 

determined with the BM-model as well as reorder points from N+1 

uncoordinated single-echelon models. The results from the simulations 

include expected service levels and expected inventory levels for each 

stock location including the virtual retailer.  

5. Analyze the results and refine as needed 

As this study consists of a number of steps where data is manually inserted 

and all these steps are repeated for all items in the study, there is a risk of 

making a mistake somewhere. To reduce this risk a check list was used 

which systematically explained the procedure step by step. In addition to 

the check list, the results in each step were analyzed to detect any 
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unreasonable values and to get a chance to correct any errors that could 

occur.    

2.2 SCIENTIFIC APPROACH 
There are a vast array of scientific approaches that are relevant when 

conducting an operations research study. This include, but is not limited to, 

what the study is trying to accomplish, what the process looks like and 

what data analysis method that will be used. 

 Explorative, Descriptive, Explanatory and Normative 

The type of study that is used depend on the existing body of knowledge 

in the particular area (Björklund & Paulsson, 2014).  

An explorative or investigatory study is used when there are little 

knowledge in the area and the purpose is to attain fundamental knowledge. 

A descriptive study builds on the existing knowledge by describing the 

existing correlations without explaining. Explanatory studies strive for 

deeper knowledge in an area and seek to both describe and explain. Finally, 

normative studies are used when there are already knowledge and 

understanding in the area and the objective is to provide further guidance 

and prescribe what to do (Björklund & Paulsson, 2014).  

Based on these classifications this thesis will contain elements of an 

explanatory study, as the purpose is to gain deeper knowledge in a specific 

area which has already been described in previous research. 

 Deductive and Inductive 

Research approaches may also be classified as deductive or inductive2. The 

deductive process, also known as theory testing process, starts with a 

known theory and aims to test if it applies in a certain context (Spens & 

Kovács, 2006). The inductive process does the opposite and starts with an 

observed phenomenon and seek to generalize it into a new theory (Spens 

& Kovács, 2006).  

This thesis will use both the deductive and inductive approach. It is 

deductive due to the fact that the BM-model can be classified as known 

and ratified theory and the objective is to test its performance in another 

                                                      
2 Some argue for a third approach, abductive, as a mix of the deductive and the 

inductive approaches. 
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context. However, the study is inductive when it comes to understanding 

and explaining the observed results. 

 Quantitative and Qualitative 

Research can also be classified as qualitative or quantitative. According to 

(Spens & Kovács, 2006) this classification should be decided based on 

which data analysis technique is used and not the means of gathering data. 

Qualitative research is all research that does not use statistical measures or 

try to quantify the problem (Golafshani, 2003). Quantitative research aim 

to generalize findings and to find a casual determination (Golafshani, 

2003). Within logistics, quantitative research is most often conducted with 

numerical data analysis (Spens & Kovács, 2006).  

This study will mainly use quantitative analysis and conduct numerical 

data analysis. There will be qualitative aspects to the final results but those 

are not the main focus but rather a result of data anomalies that need further 

investigation.  

2.3 QUALITY DIMENSIONS 
There are several different dimensions when assessing quality. Näslund 

(2002) classifies the quantitative research as part of the Positivist paradigm. 

To this paradigm he pairs four criteria for good research; Internal validity, 

external validity, reliability and objectivity. This section will explain these 

criteria with respect to the thesis and its operations research approach. 

 Validity 

Validity is a way to assess if the observations in a study in a meaningful 

way capture the ideas and concepts it studies (Adcock & Collier, 2001).  

Potential validity issues can be caused by delimitations or assumptions in 

the model. Näslund (2002) divides validity into two parts, external and 

internal. Where internal is how well the model represents the reality and 

external concerns how transferable the results are to other similar situations 

as those studied. 

As this study does not include the development of a new model but instead 

utilize the existing BM-model, validity is not an issue. The BM-model has 

been thoroughly tested and used in previous academic research and theses, 

its internal validity is well-grounded. Furthermore, regarding its external 

validity, it is constructed with few restrictions but many options which 

makes it valid for many divergent multi-echelon systems.  
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 Reliability 

Reliability concerns how replicable an observation or result is (Golafshani, 

2003). This is important because if the results cannot be established as 

reliable then they are of little use. A reliable result will be the same, within 

specified limits, when the test is repeated in order for the results to be 

trusted. It is important to remember that reliability does not say anything 

about the correctness of the result just the ability of the method or tool used 

to consistently produce the same result. 

The main aspect that affects the reliability of the results in this study is not 

the model itself but the human factor. This is due to the fact that data is 

manually inserted in several steps. To reduce the risk of creating errors a 

check list is created in combination with careful analysis of the results in 

each step in order to expose anomalies.   

Furthermore, the simulation model, that is used to evaluate the 

performance in this study, has been thoroughly tested in previous research. 

The minor changes that are made are tested to make sure that the model 

operates as it is intended.  

 Objectivity 

This quality dimension concerns how free the results are from bias 

(Näslund, 2002). By clarifying and motivating the different choices made 

in the study the reader is given the possibility to reflect on the course of 

action as well as the results of the study (Björklund & Paulsson, 2014). 

When using synopses of other author’s papers, objectivity problems can 

arise (Björklund & Paulsson, 2014). It is a matter of recounting the content 

in an unbiased manner by, first and foremost, reciting statements without 

any factual errors. Secondly, there should be no distorted selection of facts 

or arguments, with the purpose to support your own point of view. Finally, 

one should avoid the using a negative vocabulary which can give the 

impression that the original author has an erroneous perception.  

The main purpose of the thesis is not to promote nor try to prove the 

efficiency of a method. The purpose is to observe the results and try to 

understand and explain why the results are as they are, without an agenda. 

Furthermore, the papers included in the literature review (see Section 3.1) 

are not selected to prove a certain point. Instead they are selected to 

illustrate what academic research that has been conducted in the area of 

upstream demand, multiple demand classes and stock rationing.    
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3 THEORETICAL FRAMEWORK 

This chapter covers the theory on which this thesis is based. First a 

literature review is presented which describes other academic research 

conducted in the same field of study. This is followed by a description of 

the heuristic used in the main model for this thesis. Finally a section on 

different service level classifications will end this chapter.  

3.1 LITERATURE REVIEW 
The purpose of the literature review is to position this thesis in relation to 

the existing literature. Following are a number of inventory models that are 

developed for handling multiple demand classes with different service 

requirements. This typically means the use of critical level policies or 

general stock rationing policies. As mentioned in Section 2.1.2, a critical 

level policy essentially means that some inventory is reserved for a demand 

class which have higher service requirements. The first section covers 

models for single-echelon systems, followed by a section for multi-echelon 

systems. 

For a single-echelon inventory model the objective is to optimize the 

inventory decisions at a single stock location, independent of the other 

stock locations. Consequently, when using single-echelon optimization in 

a system with several stock locations, the inventory at each stock location 

is sub-optimized. 

In multi-echelon optimization the objective is to optimize the inventory 

decisions for the entire system according to certain objectives. Usually 

these objectives involve minimizing the overall expected costs. When 

modelling with service constraints this means that only stock locations 

which face customer demand need to reach a certain target service. 

Furthermore, the lead-time between stock locations depends on the risk of 

stock-out at the supplying location.   

 Single-echelon models with critical level policy 

Dekker et al. (2002) use an (S-1, S) policy with lost sales and can show 

that a critical level policy outperforms the first-come, first-serve policy 

(FCFS). The total cost savings when using service constraints have an 

average of 33.3% and show the largest savings when the majority of 

demand is in the lower service level class (Dekker, et al., 2002). 
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Ha (1997) investigated the use of a critical level in combination with an (s, 

S) policy, several demand classes and lost sales. This means that the 

objective is to minimize the total expected holding and lost sales costs. He 

finds that the potential cost savings are strongly related to the ratio between 

the high priority demand rate (λ1) and the low priority demand rate (λ2), 

Figure 5. The largest cost reduction occur when the high priority demand 

is equal to or slightly smaller than the low priority demand (Ha, 1997). 

Furthermore Ha discusses that when arrivals of customers of one demand 

class is rare, the cost reductions are very small. This is because the system 

in those cases is close to a system with a single demand class.  

 

Figure 5 - Cost Reduction when Using versus Demand Ratio for Three Examples with 

Different Lost Sales Cost Structures (Ha, 1997) 

Melchiors et al. (2000) investigates a combination of a critical level and a 

(R, Q) policy with lost sales and two demand classes. They find that the 

cost reductions vary depending on whether the critical level is larger or 

smaller than the reorder point. When the critical level is larger, cost 

reduction of up to 50% were recorded. When it was instead smaller than 

the reorder point, the maximum cost reduction were only 10% and that was 

in a situation where the cost of lost sales were extremely high (Melchiors, 

et al., 2000).  

They also found that the greatest cost reductions occurred when the high 

priority demand were between 10 to 25 percent of total demand. Finally 

the authors also conclude that it might be cost efficient to let the policy be 

lead-time dependent. That is, low priority demand can be satisfied even 

though the inventory is below the critical level if there is a certain time left 

before a replenishment order from the supplier arrives. 
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Wang and Tang (2014) study a system with a mix of demand classes with 

backorders as well as lost sales. Furthermore, it consists of multiple periods 

where the inventory level is replenished at the start of each period with a 

lead-time of zero. The critical levels are dynamic and changes over time. 

They conclude that the average cost reductions are slightly above 10 

percent and they also conclude that rationing policies are close to useless 

when one of the demand classes is dominant (Wang & Tang, 2014).  

Nahmias and Demmy (1981) analyze the effects of using a critical level in 

combination with a (R, Q) policy with both continuous and periodic review. 

Given a certain combination of reorder points and order quantities, they 

construct tables with resulting fill-rates for both with and without stock 

rationing. They conclude that stock rationing can achieve higher fill-rates 

than without stock rationing, given a certain reorder point (Nahmias & 

Demmy, 1981).  

Moon and Kang (1981) use an (R, Q) policy with compound Poisson and 

a critical level to be able to differentiate between demand classes. They 

also add several critical levels and study how the expected number of 

backorders for the different demand classes changes (Moon & Kang, 1998). 

They conclude that by using stock rationing it is possible to efficiently 

satisfy different demand classes.    

A conclusion that many of these papers have in common is that a critical 

level policy is most valuable when a minority (≈10-40%) of the total 

demand is of higher priority. However, if one demand class is dominant 

(>90%), a critical level policy yields no better result than a regular FCFS 

policy.     

 Multi-echelon models with critical level policies 

In a Multi-Echelon setting there are very few studies made on continuous 

review systems with stock rationing. One problem seems to be that there 

are no known exact mathematical solutions, instead numerical studies 

using simulation is required. (Axsäter, et al., 2007). 

Axsäter et al. (2004) use a (S-1, S) policy with lost sales and multiple 

demand classes. They also find that a critical level policy leads to cost 

savings, in this case often around 5%. They also state that in more extreme 

cases, substantially larger cost reductions are possible (Axsäter, et al., 

2004). 



 
22 

  

Numerical results shows that the critical level policy performs better than 

both standard FCFS, as expected, and the so called separate stock point 

policy (Axsäter, et al., 2007). The separate stock point policy uses a virtual 

retailer which carry stock and only serve the high priority demand. This is 

the same approach that is used in this thesis and is described in Section 

2.1.2. 

The advantage of a critical level policy over separate stock policies is not 

clearly stated in the article but could be due to the fact that the results for 

the critical level policy are obtained by simulation while the results for the 

separate stock point policies are analytically calculated. The separate stock 

policy has the advantage that it can be evaluated and optimized without 

special treatment for direct demand (Axsäter, et al., 2007). Using 

simulation to determine policy parameters is not feasible for large real 

world systems. 

3.2 THE BM-MODEL 
This section will describe the models presented in Berling and Marklund 

(2013; 2014). The models are similar with the important exception that the 

retailer demand is modelled by a normal distribution in Berling and 

Marklund (2014), and a compound Poisson distribution in Berling and 

Marklund (2013). Therefore the models will be treated as one, here referred 

to as the BM-model, with two options on retailer demand. The authors also 

conclude that it is possible to combine these models (Berling & Marklund, 

2014).  
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Figure 6 depicts the considered one-warehouse, N-retailer system. All 

stock-points use continuous review (Ri, nQi) policies to replenish their 

inventory. This means that when the inventory position3 reaches or falls 

below R, an order is triggered to get the inventory position back above R. 

Orders are placed as integer multiples, n, of the fixed order quantity Qi at 

each installation. The central warehouse replenishes from a supplier that is 

assumed to have an infinite amount of stock. (Berling & Marklund, 2014) 

Figure 6 – Multi-Echelon Inventory System with a Central Warehouse and N Non-

Identical Retailers. Source: (Berling & Marklund, 2014) 

The BM-model assumes that complete backordering and partial deliveries 

are used. Furthermore, FCFS policies are employed throughout the system. 

The lead-time, L0, from a supplier to the central warehouse as well as the 

transportation times to the retailers from the central warehouse are assumed 

to be constant. However, lead-times to retailers are stochastic due to the 

possibility of stock outs at the central warehouse. The notation used in this 

chapter can be found in Table 1. 

  

                                                      
3 Inventory position is defined as: Stock on hand + outstanding orders - backorders  
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Table 1- Notations used in the BM-Model 

Notation Description 

𝑅𝑖 Reorder Point at retailer i (0 denoting CW) 

𝛽 Induced backorder Cost at Central Warehouse 

𝛽𝑖 Induced back order cost for retailer i 

𝜇𝑖 Mean demand for retailer i (0 denoting CW) 

𝜎𝑖
2 Variance at retailer i (0 denoting CW) 

𝑝𝑖 Shortage cost at retailer i 

ℎ𝑖 Holding cost at retailer i (0 Denoting CW) 

𝐿0 Lead-Time to supplier 

𝑙𝑖 Transportation time to retailer i 

𝛾𝑖 Fill-rate at retailer i 

𝑇𝐹𝑖 Target Fill-rate at retailer i 

𝐶0 Cost at total warehouse, function of R0 

𝐶𝑖 Cost at retailer i , function of Ri 

𝑄0 Batch size to Central Warehouse 

𝑄𝑖 Batch size to retailer i 

𝐼𝐿0
+ Stock on hand at central warehouse 

𝐼𝐿𝑖
+ Stock on hand at retailer i 

𝐵0 Backorder at Central Warehouse 

𝐵𝑖 Backorder at Retailer i 

 

The BM-model incorporates two options for service requirements (Berling 

& Marklund, 2013). The first one is the service level model, where the 

objective is to minimize the expected holding costs while meeting the 

specified target service levels. The second option is the backorder cost 

model, where the objective is to minimize the expected backorder and 

holding costs, without adding any service level constraints. This master 
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thesis only uses the service level model, therefore the backorder cost model 

will not be explained any further. 

The BM-model makes use of an induced backorder cost, β, which should 

capture the costs at the retailers due to the delivery delays at the central 

warehouse. Using this induced backorder costs makes it possible to 

decompose the multi-echelon system into N coordinated single-echelon 

systems (Berling & Marklund, 2006) which are possible to solve using 

installation stock policies.  

This approach was first presented in Andersson et al. (1998) where βi is 

defined as the expected marginal cost with respect to retailer i’s lead-time. 

Later this method was used in Berling and Marklund (2006), to estimate 

closed form estimates of a near-optimal β-value, which are conceptually 

and computationally simple to use.  

 How to Use the Heuristic 

The BM-Model can be divided in five steps. These steps are performed in 

sequence once, which explains why the model is computationally possible 

to use for large problems. The steps are (Berling & Marklund, 2014): 

1. Determination of near optimal induced backorder cost 

2. Determination of lead-time demand at the central warehouse 

3. Determination of reorder point at central warehouse 

4. Determination of lead-time demand at each retailer 

5. Determination of reorder points at each retailer 

1. Determination of near optimal induced backorder cost 

The induced backorder cost, β, is an approximation of the cost caused by 

the central warehouse when it fails to deliver as ordered. This includes both 

the cost for safety stock and the shortage cost at the retailers (Berling & 

Marklund, 2014). 

To estimate the induced backorder cost associated with retailer i, the 

approach in Berling and Marklund (2006) is used. This approach first 

normalizes the system parameters with respect to the tranportation time (li), 

the mean demand (µi) and the holding cost (hi).  The table which shows 

how to move between the original and normalized parameters can be found 

in Appendix A – table for determining normalized parameters.  
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One of the system parameters is the shortage cost (pi), which is not directly 

available in a model with service level constraint. However, it can be 

estimated with the help of the corresponding target fill-rate by using the 

optimality condition (Axsäter, 2006) which is described as a relation 

between fill-rate, holding- and shortage costs in (1). The optimality 

condition is exact for normally distributed demand but has shown to work 

as a good approximation for other distributions as well in the context of the 

BM-model (Berling & Marklund, 2014). 

𝑇𝐹𝑖 =
𝑝𝑖

ℎ𝑖 + 𝑝𝑖
                                                        (1) 

Each retailer’s induced backorder cost, βi, is calculated according to (2) 

which uses the closed form estimate from Berling and Marklund (2006).  

β𝑖 = ℎ𝑖 ∗ 𝑔(𝑄𝑖,𝑛, 𝑝𝑖,𝑛) ∗ 𝜎𝑖,𝑛

𝑘(𝑄𝑖,𝑛,𝑝𝑖,𝑛)
                              (2) 

An alternative to the closed form expressions is to use tabulated values of 

𝑔(𝑄𝑖,𝑛, 𝑝𝑖,𝑛)  and 𝑘(𝑄𝑖,𝑛, 𝑝𝑖,𝑛) , which can be found in Appendix A. 

Between parameter values in the tables, linear interpolation may be used, 

and outside of the table range the closed form expressions for 𝑔(𝑄𝑖,𝑛, 𝑝𝑖,𝑛) 

and 𝜎𝑖,𝑛

𝑘(𝑄𝑖,𝑛,𝑝𝑖,𝑛)
 need to be used. 

The induced backorder cost for the central warehouse is then estimated as 

a demand weighted average of the different β𝑖′𝑠. The weighting method 

for the induced backorder cost at the central warehouse can be found in (3) 

and its performance is established in (Berling & Marklund, 2006). The 

main reason for selecting this weighting formula is that it has shown near-

optimal results and not performing significantly worse than other plausible 

but more complex weighting schemes (Berling & Marklund, 2014). It is 

therefore the best option based on its simplicity. 

β =
∑ 𝜇𝑖β𝑖

𝑁
𝑖=1

∑ 𝜇𝑖
𝑁
𝑖=1

                                                     (3) 
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2. Determination of lead-time demand at the central warehouse 

The BM-model approximates the true lead-time demand distribution by 

using three standard distributions based on the variance-to-mean ratios 

(Berling & Marklund, 2014). The three standard distributions are;  

 Negative Binomial, when 
𝜎0

2

𝜇0
≥ 1  

 Discrete normal approximation, if 
𝜎0

2

𝜇0
< 1 𝑎𝑛𝑑 

𝜎0

𝜇0
< 0.25  

 Discrete gamma approximation for all other cases.  

This approximation scheme is used to improve the computational 

performance of the model which would have decreased considerably if the 

true lead-time distribution is used. Berling and Marklund (2014) show that 

this approximation typically render the same reorder points as the true 

distribution. Consequently, the lead-time demand at the central warehouse 

is approximated by fitting distributions to the correct mean (4) and variance 

(5).  

µ𝑜 = µ0
1 + µ0

2 + ⋯ + µ0
𝑁      𝑤ℎ𝑒𝑟𝑒   µ0

𝑖 =
µ𝑖𝐿𝑜

𝑄
   (4) 

𝜎0
2 = (𝜎0

1)2 + (𝜎𝑜
2)2 + ⋯ + (𝜎𝑜

𝑁)2   (5) 

 𝑤ℎ𝑒𝑟𝑒  (𝜎𝑜
𝑖 )

2
= ∑(𝜇0

𝑖 − 𝑛𝑞𝑖

∞

𝑛=0

)2𝑔0
𝑖 (𝑛𝑞𝑖) 

The variance of the lead-time demand at the central warehouse depends on 

the number of retailer orders that are triggered during L0.   Defining, 

𝐷0
𝑖 (𝐿0), as the sub-batch demand from retailer i during L0 time units and 

its probability mass function 𝑔0
𝑖 (𝑢) according to (6), we have: 

𝑔0
𝑖 (𝑢) = 𝑃(𝐷0

𝑖 (𝐿0) = 𝑢) = 

= {
𝛿𝑖(0)                      𝑖𝑓  𝑢 = 0

𝛿𝑖(𝑛) − 𝛿𝑖(𝑛 − 1)       𝑖𝑓  𝑢 = 𝑛𝑞𝑖,  𝑛 = 1,2, . . .

0                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (6) 
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3. Determination of the reorder point at central warehouse, R0  

When the induced backorder cost and the distribution of the lead-time 

demand is known, the reorder point at the central warehouse (R0) can be 

determined by minimizing the expected holding and induced backorder 

costs. (Berling & Marklund, 2014). This cost function can be found in (7). 

𝐶0 = ℎ0𝐸[𝐼𝐿0
+(𝑅0)] + 𝛽𝐸[𝐵0(𝑅0)]   (7) 

Since the cost function is convex in R0 the optimal reorder point for the 

central warehouse can be found by a simple search while applying the 

condition in (8). (Berling & Marklund, 2014) 

𝑅0 = max {𝑅0: 𝐶0(𝑅0) − 𝐶0(𝑅0 − 1) ≤ 0}  (8) 

4. Determination of lead-time demand at each retailer 

The replenishment lead-time to retailer i, and the associated lead-time 

demand, are functions of R0. In this step Berling and Marklund (2014) use 

two different methods for calculating the variability of the lead-time. Both 

methods use an approximated mean for the lead-time (9) by applying 

Little’s law to find the expected warehouse delay (Berling & Marklund, 

2014).  

�̅�𝑖(𝑅0
∗) = 𝜇𝛿(𝑅0

∗) + 𝑙𝑖 =
𝐿0

𝜇0𝑄
𝐸[𝐵0(𝑅0

∗)] + 𝑙𝑖  (9) 

When determining the standard deviation of the lead-time, the methods 

differ. The first method uses the METRIC approximation (Sherbrooke, 

1968) which sets the lead-time variance to zero, basically disregarding it. 

The second method estimates the lead-time variability by adapting the 

method in Axsäter (2003). This method will not be used in this thesis as it 

is more computationally demanding and do not give better results (Berling 

& Marklund, 2014). Using the first approach, the mean and standard 

deviation of the retailer lead-time demand are then defined according to 

(10) and (11) respectively. 

𝜇𝐷𝑖(𝐿𝑖) = 𝜇𝑖�̅�𝑖     (10) 

𝜎𝐷𝑖(𝐿𝑖) = √𝜎𝑖
2�̅�𝑖   (11) 
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5. Determination of reorder points at each retailer 

After the lead-time demand for each retailer is determined, the multi-

echelon system is decomposed into N coordinated single-echelon systems 

that can be optimized using single-echelon methods. The objective is to 

find the smallest reorder point that still satisfies the target service level. 

The optimal reorder point is easily found by performing a search until (12) 

is satisfied, starting from Ri = −Qi and increasing Ri with integer steps. 

𝑅𝑖 = min{𝑅𝑖: 𝛾𝑖 ≥ 𝑇𝐹𝑖} 𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑁  (12) 

The service level requirements are calculated according to (13), fill-rate 

calculation under the assumption of normal demand, and (14), fill-rate 

calculations for compound Poisson demand (Berling & Marklund, 2013, 

2014). 

𝛾𝑖 = 1 − 𝑃(𝐼𝐿𝑖 ≤ 0) = 

= 1  − (
𝜎𝐷𝑖(𝐿𝑖)

𝑄𝑖
[𝐺 (

𝑅𝑖−𝜇𝐷𝑖(𝐿𝑖)

𝜎𝐷𝑖(𝐿𝑖)

)  −  𝐺 (
𝑅𝑖+𝑄𝑖−𝜇𝐷𝑖(𝐿𝑖)

𝜎𝐷𝑖(𝐿𝑖)

)])  (13) 

 

𝛾𝑖 =
∑ ∑ min(𝑗,𝑑)𝑓𝑖(𝑑)∞

𝑗=1
∞
𝑑=1 𝑃(𝐼𝐿𝑖=𝑗|𝑅𝑖)

∑ 𝑑𝑓𝑖(𝑑)∞
𝑑=1

  (14) 

The underlying assumption in the normal distribution is that all customer 

orders arrive continuously which create problems in this approach. If the 

actual demand consists of customers with different order quantities it 

means that the inventory position falls below the reorder point before a 

replenishment order is triggered. The normal demand model on the other 

hand assumes that a replenishment order is triggered at the exact moment 

when the inventory level hits the reorder point. (Berling & Marklund, 

2014) 

Berling and Marklund (2014) uses two different undershoot adjustment 

methods to compensate for this property of the normal distribution. One 

based on realized reorder points and the other based on the mean and 

variance of the undershoot.  

The method based on realized reorder points uses the assumption that the 

inventory position is uniformly distributed on [Ri+1, Ri+Qi], which is a 

good approximation for normally distributed demand as long as the 
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probability of negative demand is small (Berling & Marklund, 2014). With 

the probability of an undershoot of size u, as presented in (15), it is possible 

to calculate the expected fill-rate for the following realized reorder point, 

as can be seen in (16).  

𝑈𝑖(𝑢) =
1

𝑄𝑖
∑ 𝑂𝑖(𝑘)

𝑢+𝑄𝑖
𝑘=𝑢+1    (15) 

𝛾𝑖 = ∑ 𝑆𝐸𝑅𝑉1(𝑅𝑖 − 𝑢)𝑈𝑖(𝑢)�̂�
𝑢=0   (16) 

3.3 SERVICE LEVELS 
There are many ways to measure service levels. However, there are three 

main categories that covers most of the service level measurements; 

Probability of no stock out during an order cycle, Fill-rate and Ready Rate4. 

In this thesis Fill-rate will be used as the service level measurement and it 

will be defined as: 

Fraction of demand that can be satisfied immediately from 

stock on hand – (Axsäter, 2006)  

The reason fill-rate is used is that, except that it is easy to evaluate both 

theoretically and in practice, it only decreases when customers demand an 

item that is not in stock. Ready rate on the other hand decreases during 

stock outs, whether or not there are any current customer demand.  

Probability of no stock out during an order cycle, SERV1, is easy to 

conceptually understand and use in practice. However, SERV1 has one 

great disadvantage, it does not take the order size into account. This means 

that when the order quantity is large this measurement will underestimate 

the service experienced by the customer. Consequently when the 

replenishment order quantity is small the experienced service (e.g. fill-rate) 

can be low even if SERV1 is high. (Axsäter, 2006)  

                                                      
4 Also known as SERV1, SERV2 and SERV3 
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4 DATA COLLECTION AND ANALYSIS OF 

INPUT DATA 

This chapter describes the collection and analysis of the data from the case 

company as well as the process of converting that data into useful 

information for this thesis. How the selection procedure for items to study 

is also described.  

4.1 DATA RECEIVED 
In order to use the BM-model as well as compare the results to the 

empirical data several parameters are needed. This material was provided 

by the case company and extracted from Syncron´s system. The data 

material was received as two excel files and contained item information as 

well as demand history for the studied inventory system. The parameters 

in the data material can be seen in Table 2. In response to a request from 

the case company, only the results from using this information will be 

presented in this thesis, and not the data itself. 

 

Table 2 - Case Company Data Extracted from IM 

Excel file 1 (Item information) Excel file 2 (Demand history) 

Item code Item code 

Warehouse code and name Receiving Warehouse name 

Order level (Reorder point) Customer code 

Order quantity Requested date 

Inventory policy Requested quantity 

Pick class Sales order number 

VAU class Sales order line number 

Target service level  

Stocking policy  

Supplier ID  

Lead-time (Days)  

Demand type  

 

Some of the parameters in Table 2 are only of practical use for keeping 

track of and sorting items, suppliers, customers and warehouses. The 

following parameters are needed for the numerical study: 
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Demand history 

This will be used to determine a statistical distribution to represent 

the item’s demand pattern. The demand covers three years back 

from October 2015 and an assumption was made that all items 

were introduced before the start of this time period. The most 

important parameters are the requested date and requested quantity 

which are needed to calculate the mean and standard deviation of 

the demand per day, for all selected items. In total the demand 

history consisted of over 300 000 transactions. 

Lead-times 

In order to determine the safety stock levels properly, the 

replenishment times are essential. The replenishment times from 

the case company are the agreed times between order and delivery. 

The historic data does not account for stock out delays at the 

warehouse. This is however calculated in the BM-model. 

Target service level 

As the real inventory system is optimized using single-echelon 

methods with service constraints, all stock locations including the 

central warehouse has a target service level. However, the target 

service level for the central warehouse is not used in the BM-model 

as it uses multi-echelon optimization.  

Order quantities 

This thesis will use the fixed order quantities from the real data. 

This is because even though it is possible to calculate the 

Economic Order Quantity, often restricted by other factors. 

Optimizing the order quantities also requires information 

regarding the order set up costs which are not available from the 

case company. 

Order level (Reorder point) 

The reorder points in Syncron´s system are calculated as 

uncoordinated single-echelon installations with normal, Poisson or 

negative binomial distribution to approximate the demand. The 

reorder points are important because they are needed in the 

situation for comparison with the analytical model’s reorder points 

to. As explained in Section 5.2 some of the extracted reorder points 

were later recalculated in order to get a more fair comparison of 

the performances of the models.      
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One parameter which would intuitively seem important but have been 

disregarded in this thesis is the holding cost rate at central warehouse and 

retailers. After discussion with Syncron it has been concluded that the 

holding cost rates are the same at all stock-points since this is generally 

how most of the customers have their setup, including the case company. 

As a result, minimizing the total expected inventory is equivalent to 

minimizing the expected holding costs.  

4.2 ITEM SELECTION 
There are several ways of selecting the data for a quantitative study. The 

broadest distinction is between random and non-random samples. Non-

random samples include comfortability selection5 and yes-sayer selection6 

(Blomkvist & Hallin, 2014). The random sampling methods include 

complete random selection, systematic random selection, cluster selection 

and proportional stratified selection (Blomkvist & Hallin, 2014). If the aim 

for the study is to be able to extrapolate the results to a larger group than 

the sample, the random selections are preferable. This is because of the fact 

that non-random selection methods can end up with a large portion of bias. 

Initially the plan was to make the selection of items in two steps, where the 

first step included setting up a number of criteria in order to remove the 

items that did not fit the scope of the thesis. The second step would then be 

to perform a stratified selection to select a range of items that represented 

the overall characteristics of the entire product assortment. Even though 

the data consisted of more than 4000 stocked items, only a few hundred 

items fulfilled the list of criteria that was set up. Therefore the stratified 

selection were deemed unnecessary and the items were instead selected 

solely based on the following list of criteria. 

1. Items stocked in central warehouse 

2. Items stocked at no less than two retailers 

3. Items with at least 10 transactions per stock location 

With the help of these criteria 92 items were chosen to represent the case 

company’s article range in this study. 

                                                      
5 Using the data which is easiest to obtain 
6 Use those that want to be a part of the study 
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4.3 DETERMINING INPUT PARAMETERS  
In order to be able to determine optimal reorder points in the BM-model, 

several input parameters and the order size distribution are required. These 

are as follows: 

 Mean demand per day 

 Standard deviation of demand per day 

 Customer order size distribution 

 Lead-time 

 Order quantity 

 Target service level 

 Holding cost 

All parameters are needed for each item and stock location, including the 

virtual retailer facing the upstream demand at the central warehouse. Lead-

time, order quantity and target service level were provided by the case 

company, the holding cost rate is assumed to be the same for all stock 

locations and is therefore, without loss of quality, set to one. Consequently, 

the first three input data on the list need to be calculated. 

 Distribution of demand at retailers 

The mean demand is simply an average of the demand experienced at each 

stock location per day. The variance of the demand per day is estimated 

using (17). �̅� denotes the mean demand of n observations. Subsequently, 

the standard deviation of the demand per day is calculated as the square 

root of the variance.   

𝑉𝑎𝑟 =
∑ (𝑥𝑖−�̅�)2𝑛

𝑖=1

𝑛−1
    (17) 

The customer order size distribution i.e. the probability of customers 

ordering a certain number of units, are estimated from the data using 

relative frequencies. This mean that the number of orders of a certain unit 

size at each retailer is divided by the total number of orders at that retailer.  

 Mean and standard deviation for upstream demand 

From the data received it was not possible to distinguish the upstream 

demand from retailer orders at the central warehouse. In order to estimate 

the upstream demand the following approach was therefore used. 

The approach consisted of comparing the mean and standard deviation of 

the demand experienced at the central warehouse from the empirical data, 
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with the aggregated demand from the retailers as calculated in the BM-

model (see Section 0 for calculations of 𝜇0
𝑖  and (𝜎0

𝑖)2 for retailer i). If the 

aggregated demand from the retailers is subtracted from the total demand 

at the central warehouse, the remainder will equal the mean (𝜇𝑈𝐷) and 

standard deviation (𝜎𝑈𝐷) of the upstream demand, as presented in (18) and 

(19).    

𝜇𝑈𝐷 = 𝜇0 − ∑ 𝜇0
𝑖𝑛

𝑖=1       (18) 

𝜎𝑈𝐷 = √(𝜎0)2 − ∑ (𝜎0
𝑖)2𝑛

𝑖=1       (19) 

When the virtual retailer is added to the BM-model and new reorder points 

are calculated, the resulting mean and standard deviation of the demand 

experienced by the central warehouse should be equal to the values of these 

same parameters obtained from the empirical data. This worked for the 

mean demand but the calculated deviation from the BM-model were 

usually lower than the respective standard deviation from the data.  

The reason for the difference is that the BM-model assumes that retailers 

only use the fixed order quantity, Qi. In reality this is not the case. From 

the data it is clear that, in the real system, manual adjustments to the order 

quantity are common. This will increase the variance of the demand 

expected at the central warehouse and increase the need for safety stock at 

this location. 

In order to compare the performance of the BM-model to the 

uncoordinated single-echelon solution, it is essential that they are based on 

the same values of mean and standard deviation of the demand. As a result 

it was decided to recalculate the reorder points at the central warehouse for 

the uncoordinated solution, based on the limited information we had about 

the IM software. Therefore the normal distribution was used to 

approximate the demand and the reorder points were calculated using 

single-echelon methods, as described in Section 5.2.   

 Customer order size distribution for upstream demand 

Regarding the order size distribution an assumption was made that 

customers that orders directly from the central warehouse request orders of 

the same sizes as the customers at the retailers. Therefore the probability 

of a customer ordering k units from the central warehouse (𝑂𝑈𝐷(𝑘)) was 

calculated as a weighted average (20). Where the probability that an 
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arriving customer chooses retailer i is denoted 𝜌𝑖, and the probability that 

this customer orders k units is denoted 𝑂𝑖(𝑘) . 𝜌𝑖  was determined by 

dividing the number of orders at each retailer by the total number of orders. 

𝑂𝑈𝐷(𝑘) = ∑ 𝑂𝑖(𝑘)𝜌𝑖
𝑛
𝑖=1 , 𝑘 = 1, 2, 3 …    (20) 
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5 ANALYTICAL CALCULATIONS 

This chapter will present the procedure of using the BM-model in order to 

obtain reorder points. Furthermore the modifications to the BM-model are 

described. The chapter ends with a description of how the extracted 

reorder points at the central warehouse were recalculated. 

5.1 ANALYTICAL MODEL 
The analytical model as used in this thesis is constructed to calculate 

optimal reorder points, based on fill-rate constraints, with the BM-method 

described in Section 3.2. The input parameters in the model are listed in 

Section 4.3. The distribution and approaches that are included in the model 

are: 

 Central warehouse demand distribution 

 Retailer demand distribution 

 Compounding distribution 

 Retailer lead-time approach 

 Induced backorder cost approach 

 Undershoot adjustment approach 

Some of these distributions and approaches have already been discussed in 

Section 3.2 but for completeness we will recapitulate the choices made in 

the following description of the analytical model. As a starting point the 

negative binomial distribution was chosen to approximate the central 

warehouse demand. If the variance-to-mean ratio of this demand is below 

one the normal distribution is used instead.  

Compound Poisson with empirical compounding distribution was chosen 

to approximate the retailer demand. This distribution is deemed the best 

choice because it works well for lumpy demand. The reason it works well 

is because it takes the customer order sizes explicitly into account with the 

help of a compounding distribution. If the variance-to-mean ratio is below 

one, the normal distribution is used instead.  

The METRIC type approximation (see Section 0) was used to calculate the 

expected retailer lead-time and tabulated values were used for the g and k 

– functions to calculate the induced backorder cost (see Appendix B - 

Tabulated Values of 𝒈 and 𝒌 Functions). If the normal distribution is used, 
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an undershoot adjustment of the reorder point is needed in order to be able 

to reach the TSL. The undershoot method in this thesis uses the realized 

reorder points to calculate the expected fill-rate.  

 Modifications to the analytical model 

The BM-model is originally constructed and evaluated as a pure multi-

echelon model where customer demand only occur at the retailers. 

However, as Berling and Marklund (2013) mention, it is possible to deal 

with upstream demand by introducing a virtual retailer with transportation 

time zero and base stock ordering. This approach is referred to as the 

separate stock policy in Axsäter et al. (2007). The virtual retailer uses an 

(S-1, S) policy to replenish its stock from the central warehouse and the 

stock at the virtual retailer is reserved to only satisfy upstream demand.  

A complication of using a transportation time of zero is that the calculation 

of the induced backorder cost is not defined. Instead the induced backorder 

cost, for the virtual retailer, is assumed to be equal to the shortage cost 

corresponding to the target fill-rate of the upstream demand (21). The 

relationship between shortage cost, target fill-rate and holding cost is 

obtained from (1). In our study the target fill-rate for the upstream demand 

was estimated as an average of the target fill-rates at the retailers. This is 

because of the assumption that customers at the upstream demand have the 

same characteristics as the customers at the retailers. 

𝛽𝑈𝐷 = 𝑝 =
𝑇𝐹∗ℎ

1−𝑇𝐹
   (21) 

In the BM-model the virtual retailer and central warehouse stock are 

optimized as separate stock points that are connected by the expected lead-

time to the virtual retailer. This means that in the BM-model the fill-rate of 

the virtual retailer is calculated based on the stock at this location, 

independent of the central warehouse stock. However, when simulating 

this system, the virtual retailer will also use the available central warehouse 

stock to satisfy upstream demand.  

Consequently, the analytically calculated S-level at the virtual retailer is 

expected to be overestimated and exceed the TSL. This overshoot is also 

expected to increase as the customer order sizes increase. The impact of 

approximating a critical level using the virtual retailer approach is 

discussed in Section 7.3.3   
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 Procedure to derive near-optimal reorder points 

The procedure of obtaining near-optimal reorder points with the BM-

model consists of two steps in this thesis.  

In the first step only the regular retailers are included and all their input 

parameters. The purpose of this first step is to let the model calculate the 

mean and standard deviation of the demand experienced by the central 

warehouse. Since the virtual retailer is excluded in this step, this demand 

only consists of replenishment orders from the retailers. The mean and 

standard deviation are needed to calculate the mean and standard deviation 

of the upstream demand, according to (18) and (19) in Section 4.3.2. 

In the second step the virtual retailer is added to the model, with all its input 

parameters as well as the order size distribution. The BM-model is then 

used for calculating the reorder points at the warehouse, the retailers and 

the virtual retailer.   

5.2 RECALCULATION OF REORDER POINTS EXTRACTED 

FROM IM 
When calculating the reorder points in the BM-model it was noticed that 

the resulting standard deviation of the demand experienced by the central 

warehouse did not correspond to the standard deviation obtained from the 

empirical data. In order to make a fair comparison of the performance of 

the reorder points, it is important that they are calculated based on the same 

mean and standard deviation of the demand. For this reason the originally 

obtained central warehouse reorder points from the IM software were 

recalculated with the standard deviation obtained from the BM-model.  

For the recalculations the normal distribution was used to approximate the 

demand at the central warehouse. The motivation for this is that it is the 

normal distribution that the IM software uses for the items in the study. 

Hence the new reorder points at the central warehouse were calculated 

using the standard single-echelon method in Axsäter (2006) for continouos 

normally distributed demand with fill-rate constraint. Here the target fill-

rate for the central warehouse was obtained from the extracted data from 

the case company.  

As a result of the recalculation the comparison consists of the BM-model, 

with a virtual retailer to estimate a critical level, compared to N+1 

uncoordinated single-echelon solutions. In the uncoordinated setup the 
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reorder points at the central warehouse were calculated while the reorder 

points at the retailers were obtained from Syncron’s IM software.  

 Central warehouse TSL and upstream demand TSL 

It is important to emphasize that in this thesis we separate between target 

service levels at the central warehouse and for the upstream demand. 

Therefore this section will clarify the difference between them, describe 

how they are used and finally what the consequences are.  

The central warehouse TSL is obtained from the extracted data. For the 

real inventory system that the thesis studies, Syncron’s IM software uses 

single-echelon optimization with service constraints, which requires a TSL 

for the central warehouse. Therefore, this measure is used when the reorder 

points at the central warehouse are recalculated.  However, this measure is 

not used in the BM-model which uses multi-echelon optimization. 

The upstream demand TSL is an estimation of what service requirements 

upstream demand customers have. This estimation is needed because the 

data from the case company did not contain any information about the TSL 

for upstream demand. Remember that the TSL for upstream demand was 

calculated as an average of the target service levels at the retailers. This is 

motivated by the assumption that upstream demand customers have the 

same characteristics as customers at the retailers. The upstream demand 

TSL is used to determine the S-level in the BM-model. It is also a 

benchmarking tool when comparing the performance of the BM-model to 

the uncoordinated N+1 single-echelon models. 

It should be noted that the central warehouse TSL and the upstream 

demand TSL are not necessarily the same for the items in the study. Figure 

7 depicts the difference in percentage points between the upstream Demand 

TSL compared to the central warehouse TSL. 
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Figure 7 - Difference between TSL for Upstream Demand compared to the TSL for the 

Central Warehouse Measured in Percentage Points and Sorted by Item Number 

When comparing the BM-model’s and the uncoordinated solution’s 

abilities to reach the upstream demand TSL, it is important to remember 

that the central warehouse reorder points for the uncoordinated solution 

were calculated based on the central warehouse TSL.  

An alternative approach would be not to treat these two measures 

separately. One could assume that the central warehouse TSL, extracted 

from the IM software, is equal to the TSL of the upstream demand 

customers. This approach was rejected in this thesis in order to stay 

consistent with the assumption that all customers in the system have the 

same characteristics. Furthermore, representatives from Syncron agreed 

that this is a reasonable assumption with respect to the studied inventory 

system. 
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6 SIMULATION 

This chapter explains the simulation modeling and analysis used in this 

work. Simulation is used to assess the performance of the analytical 

method used for obtaining reorder points for all the different stock points 

in the system.  

6.1 EXTEND  
The software used in this thesis is called Extend V6, henceforth referred to 

as Extend, and is developed by Imagine That Inc. Extend use a graphical 

interface to build models where complex system can be easily overviewed 

and at the same time offers large possibilities for tailoring the system. 

6.2 THE SIMULATION MODEL 
The simulation model have previously been used in related research, for 

example Berling and Marklund (2013, 2014) and is therefore carefully 

verified and has high internal validity. The only modification made is a 

change in the fill-rate calculations for the virtual retailer due to the zero 

transportation time. Consequently, the modification to the model will be 

presented while the original model will only be graphically displayed. 

In Figure 8 an overview over the entire model is shown. The leftmost side 

of the model displays the actual flow of orders and inventory. The 

remainder of the model contains input and output blocks as well as 

calculations of total cost, expected inventory and expected service levels. 

The model is set up for one central warehouse and ten retailers where only 

the retailers used, for the simulated item, are connected. One retailer will 

in this thesis be dedicated to the direct customer demand to the central 

warehouse, namely retailer 10. 
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As the virtual retailer is modelled with zero transportation time from the 

central warehouse, the fill-rate calculations for this retailer has to be 

modified. This is because orders to the virtual retailer can not only be 

satisfied immediately from the stock on hand at the virtual retailer, but also 

immediately from stock on hand at the central warehouse.  

As orders arrives to the virtual retailer, the equation block marked with a black bolded 

black bolded frame in  

Figure 9, compares the number of units in the customer order with the 

amount of units in stock. The difference in this retailer inventory block 

compared to the regular retailer inventory blocks is how stock on hand is 

calculated. In this block the amount of units in stock for the virtual retailer 

is calculated as the total amount of stock at the virtual retailer and the 

central warehouse. While regular retailer inventory blocks only account for 

the stock at that specific retailer.         

 

Figure 9 - Retailer Inventory Block for the Virtual Retailer 
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6.3 SIMULATION APPROACH 
Each item is simulated two times, first using the reorder points from the 

BM-model and the second time using the reorder points from the 

uncoordinated single-echelon solutions. The length of the simulations are 

150 000 days divided into 30 blocks of 5000 days. The motivation for using 

this long simulation time and block length is to attain independent 

observations. For each one of the 30 blocks, fill-rate and mean inventory 

are calculated. Based on these observations the overall mean and standard 

deviation of the mean are estimated.  

When a simulation is completed the results are exported to Excel where 

they are collected in one sheet per article with all information and results 

concerning that specific item. 
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7 RESULTS AND ANALYSIS 

In this chapter the results from studying the simulation will be presented. 

Focus is put on measured service levels and expected inventory levels. 

Then the results as well as assumptions will be discussed and analyzed in 

order to help the reader understand the results. Finally the results of the 

sensitivity analysis are presented. 

Results are at the core of the thesis and can be divided into a lot of different 

categories. We will primarily focus on results connected to measured 

service levels and expected inventory as these are the performance 

measures chosen for evaluating the models. Furthermore, data concerning 

costs have not been available and therefore we measure relative expected 

inventory instead. The majority of the results will be displayed in graphs, 

more detailed numbers can be found in Appendix C – . Furthermore, if 

nothing else is stated in the captions of the graphs, the x-axis displays all 

92 items in the study.  

7.1 EXPECTED SERVICE LEVELS 
The target service level (TSL) is the constraint under which we aim to 

optimize the reorder points. The objective is to achieve the TSL without 

exceeding it too much, which would mean that excess stock is carried. At 

the same time, not being able to achieve the TSL is also highly undesirable.   

Table 3 presents the results of deviations from TSL for the two models. A 

description of the different measures can be found in Appendix D – 

Description of measures in Table 3. The BM-model with a virtual retailer 

has a more even distribution of results and does not have the extreme 

deviations that the single-echelon model shows. This means that the BM 

model have a higher degree of accuracy and can be trusted to deliver the 

fill-rate that are desired when calculating reorder points.  

The average deviations are calculated as a simple average over all regular 

retailers for each item, then the mean is calculated over all 92 items. Since 

the measured fill-rates might exceed the TSL in some cases while not 

reaching it in others, the actual deviations might even out when calculating 

the average. Therefore these measures are complemented with the absolute 

deviations as well as maximum result over and under the TSL.  
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Table 3 - Summary of Results of Deviations from TSL in Percentage Points 

Measure BM with a Virtual 

Retailer  

Single-Echelon  

Mean Deviation 1.67 -10.66 

Mean Absolute Deviation 1.88 12.98 

Weighted Mean Deviation 

(Weighted by 𝝁𝟎) 

0.63 -13.23 

Weighted Mean Absolute 

Deviation (Weighted by 𝝁𝟎 ) 

1.02 15.04 

Largest Positive Deviation 9.45 10.00 

Largest Negative Deviation -2.42 -79.22 

Mean Deviation at Virtual Retailer 3.67 -1.41 

 Retailers 

When focusing on the retailer performance, Figure 10 shows that the BM-

model with a virtual retailer hovers right around zero percent average 

deviation from TSL. In many cases where the items seem to overshoot the 

TSL quite a bit, the mean demand is very low resulting in a low reorder 

point. In these cases it is not uncommon that the measured fill-rate is a few 

percentage points over the TSL, as each incremental change in reorder 

point affects the fill-rate drastically.  
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The single echelon model on the other hand seems to drastically 

undershoot the TSL in many cases. This can partly be explained by the 

distributions used to approximate the retailer demand. Some distributions 

are sensitive to large order sizes and this is further explained in Section 

7.1.3. However, the distributions alone does not explain all extreme 

deviations.  

Both the BM-model and the IM software use the same demand history 

when determining reorder points in this study. The time frame used might 

differ but this should not have an impact on the result unless there a major 

positive or negative trends. As the purpose of this thesis does not include 

the objective of analyzing the technicalities of the IM software, this 

analysis will simply include some possible explanations to the deviations. 

One explanation is that IM software uses a different forecasting method. 

This may lead to smaller discrepancies between the mean and standard 

deviations used in this thesis compared to what is used in the calculations 

in the IM software. However, this should not have a major impact on the 

results. 

Another explanation migh be that operators at the case company have 

manually adjusted the reorder points of some of the items, for reasons 

Figure 10 – Average Deviation from retailer TSL in Percentage Points Sorted by Increasing 

Fraction of Upstream Demand. The Virtual Retailer is not Included in these Results. 
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unknown in this study. Manual adjustments can have a great impact on the 

results. 

Finally, in this study all orders are included when calculating mean and 

standard deviation of the retailer demand. It is possible that the IM 

software, or the case company, remove orders that are much larger than the 

average order size before calculating mean and standard deviation. These 

large orders might be satisfied from stock location higher up in the 

inventory system. If this is the case it would explain some of the extreme 

deviations.       

 Upstream demand  

As discussed in Section 5.2.1, in this thesis we make a distinction between 

upstream demand TSL and the central warehouse TSL. The difference in 

percentage points between these service requirements are illustrated in 

Figure 11. This difference only affects the results of the single-echelon 

model as the BM-model is not optimized with a central warehouse TSL but 

only with respect to the retailer TSL and the upstream demand TSL. 

 

Figure 11 - Difference between Upstream Demand TSL compared to the Central 

Warehouse TSL for all items. Measured in Percentage Points and Sorted by Increasing 

Fraction of Upstream Demand. 

 

Comparison with both these service requirements are interesting but show 

different things. Figure 12 illustrates the deviation from the upstream 
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demand TSL in percentage points, for the BM-model as well as single-

echelon model. The BM-model exceeds its TSL with an average of 3.67 

percentage points. This probably means that it is possible to find a lower 

S-level and still be able to achieve the TSL for the upstream demand. This 

is further discussed in Section 7.3.3 and a local search for optimal S-levels 

for a selected group of items is presented in Section 7.4.1.  

The single-echelon model has extremely varying results where the majority 

of items do not achieve its TSL. The three items with more than 10 

percentage points below the TSL for the single-echelon model are items 

with customer demand which includes extremely large customer order 

sizes compared to the mean order size.  

 

Figure 12- Deviation from Upstream Demand TSL in Percentage Points Sorted 

by Increasing Fraction of Upstream Demand. 

Remember that the central warehouse reorder points in the single-echelon 

model were calculated using the central warehouse TSL. However, in 

Figure 12 the expected service level is compared to the upstream demand 

TSL. Consequently, this figure illustrates the single-echelon model’s 

ability to reach the estimated service requirements of the upstream demand 

customers. However, it does not reflect a single-echelon model’s ability of 

reaching TSLs in general due to the difference between upstream demand 

TSL and central warehouse TSL (Figure 11). 
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Figure 13 illustrates the deviation of the single-echelon model’s expected 

service level from the central warehouse TSL, which the reorder points in 

this model were calculated with respect to. It also shows the BM-model’s 

deviation from the upstream demand, as in the previous figure.  

The single-echelon model has a tendency to fall below the central 

warehouse TSL, which primarily can be explained by the normal 

distributions sensitivity to larger order sizes. The items where the single-

echelon model seems to exceed the TSL by more than 5 points are items 

where the reorder points are very small.  

 

Figure 13 - Deviation from Upstream Demand TSL for the BM-Model and 

Deviation from Central Warehouse TSL for the Single-Echelon Model. Measured 

in Percentage Points and Sorted by Increasing Fraction of Upstream Demand. 

Both Figure 12 and Figure 13 are sorted by increasing fraction of upstream 

demand. This shows that fraction of upstream demand does not have any 

major effect on the ability to reach target service levels.  

 Effect of increasing customer order sizes 

The normal and Poisson distributions are built on the assumptions of 

continuous demand for the former and unit demand for the latter. As these 

distributions disregard the fact that in reality customers can usually order 

many units at the same time, thus these distributions will have a hard time 

reaching their TSL when the order sizes are large.  
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This is because when order sizes are larger than one, there is a probability 

of undershooting the reorder point, i.e. the inventory level decreasing 

below the reorder point before a replenishment order is created. And of 

course, the larger the mean order sizes are, the larger the expected 

undershoot will be. This dilemma is shown in Figure 14 where the single-

echelon model has an evident trend away from achieving TSL when mean 

order size increases.  

 

Figure 14 - Average Deviation from Retailer TSL in Percentage Points, Excluding the 

Virtual Retailer. Sorted by Mean Customer Order Size. 

In Figure 15 the deviation from upstream demand TSL for the BM-model 

and the deviation from the central warehouse TSL for the single-echelon 

model are depicted. Once again there is an evident trend where the single-

echelon model falls below the TSL as the order sizes increase. 
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Figure 15 - Average Deviation from Upstream Demand TSL for the BM-Model and 

Deviation from the Central Warehouse TSL for the Single-Echelon Model. Measured in 

Percentage Points and Sorted by increasing Mean Customer Order Size. 

To counter the problem of falling below the TSL when undershooting the 

reorder point, it is preferable to approximate the demand with a distribution 

that takes the order sizes into account. One such distribution is the 

compound Poisson. Another approach is to compensate the undershoot by 

adjusting the reorder point, as explained in Section 0. 

 Effect of fraction of upstream demand on CW fill-rate 

One major expectation when modeling a multi-echelon system is that the 

fill-rate at the central warehouse will go down due to the fact that the end 

customer fill-rate is the important measurement and consequently stock is 

pushed out to the retailers. When adding upstream demand the expectation 

is that as the fraction of upstream demand increases, the BM-model will 

move towards a single-echelon system and hence the fill-rate at the central 

warehouse will be higher. 

In Figure 16 it is illustrated that when fraction of upstream demand are low 

the fill-rate is low as expected from a multi-echelon model, and as the 

fraction of upstream demand increases the fill-rate moves towards what is 

expected of a single-echelon system. This suggests that the benefits 

obtained by multi-echelon optimization will diminish as the fraction of 

upstream demand increases. 
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Figure 16 – Fill-Rate at the Central Warehouse of the Total Demand Including the 

Upstream Demand. Sorted by Increasing Fraction of Upstream Demand. 

7.2 EXPECTED INVENTORY LEVELS 
As holding cost rate and unit cost are not known in this thesis, total 

expected system inventory is used instead of expected holding cost. The 

actual values of the inventory is not that interesting but the relative 

difference between the models are.  

 Total inventory 

Figure 17 presents the difference in total expected inventory, at the central 

warehouse and all the retailers, as the relative increase in inventory held 

with the BM-model. The average increase over all 92 items is 15.69%. The 

reason that there is more inventory, on average, held with the BM-model 

is that the single-echelon model more often than not fail to reach the TSL 

and in many cases undershoot it drastically. The average deviation from 

retailer TSL, illustrated in Figure 18, is closely connected to the difference 

in total inventory. Therefore it is difficult to compare total inventory when 

there are such large differences in the models’ ability to reach TSLs. 

However, note that when both models deliver approximately the same 

service level, the BM-model often carry less inventory. 



 
56 

  

 

Figure 17 - The Relative Difference of the Total Inventory, Including the Virtual Retailer, 

for the BM-Model Compared to the Single-Echelon Model. Sorted by Item Number. 

 

Figure 18 - Average Deviation from retailer TSL in Percentage Points Sorted by Item 

Number. The Virtual Retailer is not Included in these Results. 

 Central warehouse 

Figure 19 shows the difference in expected inventory at the central 

warehouse. On average the BM-model holds 10.53% more inventory, 

which ones again mainly can be explained by the fact that the single-

echelon model often fails to reach the TSL. The items where the BM-model 

holds more than twice as much inventory are items where the single-

echelon model is far below the TSL, as illustrated in Figure 20.    
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Another important factor is that the BM-model seems to exceed the TSL 

for the upstream demand as a consequence of reserving too much stock at 

the virtual retailer.  

 

Figure 19 - The Relative Difference of the Central Warehouse Inventory, Including the 

Virtual Retailer, for the BM-Model compared to the Single-Echelon Model. Sorted by 

Item Number. 

 

Figure 20 - Deviation from Upstream Demand TSL in Percentage Points for the BM-

Model and the Single-Echelon Model. Sorted by Item Number. 
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 Effect of fraction of upstream demand on CW inventory 

Figure 21 demonstrates that in the cases where both models achieve their 

TSL for upstream demand, the BM-model with a virtual retailer holds 

significantly lower inventory in the central warehouse. On average the 

BM-model holds 10.15% less inventory in the central warehouse, and in 

individual cases this number can be as great as 30%. The reason that total 

expected inventory is not used for this comparison is that there a very few 

items where the single-echelon model is able to reach the TSL for upstream 

demand and at the same time have a positive average deviation at the 

retailers.  

From the literature review in Section 3.1 we learned that in other academic 

research conclusions have been made that a critical level policy is most 

effective when the fraction of upstream demand is somewhere between 10 

and 40 percent. Our results are inconclusive in this matter even though they 

might hint that the greatest potential reductions can be found when the 

fraction of upstream demand is small. In order to support this theory a 

larger number of observations is needed in combination with a local search 

of optimal reorder points for both models.  

 

Figure 21 – The Relative Difference of BM Central Warehouse Inventory compared to 

Single-Echelon, Sorted by Increasing Fraction of Upstream Demand. Only Items Where 

Both Models Reach TSL for Upstream Demand are Included. 
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7.3 IMPACT OF ASSUMPTIONS 
In order to keep the complexity of the observed system down to a level that 

is manageable, only a certain number of parameters are used to describe 

the real inventory system. The chosen parameters are closely related to the 

underlying assumptions. In the following section some of the assumptions 

of this study are discussed in terms of their impact on the results.   

 The BM-model 

From the BM-model there are two assumptions that need to be discussed, 

namely the assumption that the central warehouse replenishes from a 

supplier with infinite stock, and the assumption that retailers only create 

orders of a fixed order quantity. 

The result of the former assumption is that the lead-time from supplier to 

central warehouse is constant. In reality there are no such thing as constant 

lead-times, any order can be delayed. A consequence of this assumption 

may be that the calculated safety stock at the central warehouse is not large 

enough to cover the uncertainty in the real inventory system. However, if 

this would become a problem when applying the BM-model on a real 

system, it would not be hard to include uncertainty to the central warehouse 

lead-time.  

Regarding the second assumption it seems reasonable enough that retailers 

replenish from the central warehouse with a fixed order quantity. However, 

in this study it became clear that the fixed order quantities were often 

manually adjusted by the personnel at the case company. For the 

comparison it would have been useful to calculate new order quantities 

based on the empirical data. However, in the data it was not possible to 

identify from which retailer a certain replenishment order had emanated. 

By using the fixed order quantities which are not used in reality, we 

unintentionally tamper with the standard deviation of the demand 

experienced by the central warehouse. This was the main reason to why 

the reorder points extracted from IM had to be recalculated. 

 Upstream demand in the empirical data 

As already mentioned, some information in the data was missing which 

made it impossible to distinguish from which retailer the orders to the 

central warehouse came from. This forced a number of assumptions to be 

made in order to study the aspects of upstream demand.  



 
60 

  

First, the mean and standard deviation of the upstream demand needed to 

be calculated somehow, and we chose the approach described in Sections 

4.3.2 and 4.3.3. This works well for the mean demand but may be more 

questionable when it comes to the standard deviation. This is closely 

related to the discussion about the fixed order quantities in the previous 

section. 

As a consequence of using order quantities that does not seem to cohere 

with what is used in reality, the standard deviation of the demand at the 

central warehouse is tampered with. In turn, this variance is used to 

calculate the standard deviation of the upstream demand and thereby the 

discrepancy will be transferred to the upstream demand. Again, this was 

countered by recalculating the extracted reorder points at the central 

warehouse.  

Another assumption concerned the customer order sizes at the upstream 

demand. The assumption was made that the upstream demand customers 

share characteristics with retailer customers and therefore use the same 

order sizes. In cases where the upstream demand order sizes are much 

larger in reality, our estimations of the time between customer arrivals will 

be overestimated and vice versa. This does not affect the performance in 

terms of measured service levels in this study. However, in terms of 

analysis and discussion it would have been preferable to have correct data 

on the order sizes as the upstream demand customers might have 

completely different characteristics than retailer customers.          

 The use of a virtual retailer with lead-time zero 

The results indicate that the BM-model with a virtual retailer overestimates 

the critical level, resulting in an overshoot of the target fill-rate. This is 

likely to be the result of two assumptions connected to the virtual retailer. 

First, the virtual retailer and the central warehouse stock were optimized 

as two separate stock points that are connected by the expected lead-time 

to the virtual retailer. When using this approach to approximate the critical 

level, it is expected to overestimate the S-level at the virtual retailer. This 

is because the fill-rate calculation at the virtual retailer only depend on the 

virtual retailer stock and not the central warehouse stock. In reality the 

upstream demand can be satisfied from stock at both the virtual retailer and 

the central warehouse. Since the transportation time is zero, this is not a 

problem as long as the orders to the virtual retailer are small. However, as 

the order sizes increase, the overestimation of the critical level is expected 
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to increase. In Section 7.4.1 a sensitivity analysis is performed with a local 

search for near-optimal S-levels.     

Secondly, when modeling the upstream demand with the help of a virtual 

retailer with lead-time zero, it requires an alternative approach to calculate 

the induced backorder cost. This study used the approach to let the induced 

backorder cost at the virtual retailer be equal to the shortage cost, as 

calculated in (21) in Section 5.1.1. Clearly there are other possible 

approaches to approximate this induced backorder cost. However there are 

no obvious indications in the results that leads us to question the chosen 

approach.  

7.4 SENSITIVITY ANALYSIS 
The sensitivity analysis proposed in this Section was performed to see if 

the results with simple measures can be made better. Focus is put on 

performing local searches, with the help of simulations, to find reorder 

points that perform better than the ones from the study. 

 Local search for near-optimal S-levels 

The results show that S-levels determined by the BM-model tend to render 

a fill-rate for the upstream demand that exceeds the target. However, this 

does not necessarily mean that there are lower S-levels that still achieve 

the target. When modeling with service constraints and integer values of 

the reorder points, the fill-rate is expected to exceed the target, or at least 

not be exactly equal to the target.  

To investigate if there are in fact lower S-levels that still reach the TSL, 20 

items were randomly selected to be included in a sensitivity analysis. The 

analysis was carried out by successively lowering the S-levels obtained 

from the BM-model and then use the simulation model to determine the 

corresponding fill-rates. The investigation stopped when the first S-level 

did not manage to reach the TSL and consequently the previous S-level 

was noted.  

The results are presented in Figure 22 where the calculated S-levels are 

compared to the lower simulated values. It is evident that the S-levels are 

overestimated, the average reduction was almost 23 percent. The 

maximum reduction were as much as 82 percent for an item where the 

mean order size were large, which forced a significant increase of the S-

level in the BM-model. At the same time the central warehouse carried a 
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lot of stock which helped satisfy the upstream demand. Therefore it was 

possible to reduce the S-level from 21 to 3 in the simulations.    

 

 

Figure 22 - Comparison between S-Levels Obtained from the BM-model and Simulated S-

Levels for 20 Randomly Selected Items, Sorted by Increasing S-Level from the BM-model 

The items in Figure 22 are also divided into three groups. In the group 

denoted A, the calculated S-levels are no larger than two and the mean 

customer order sizes are close to one unit. In this group the there was only 

one item where it was possible to lower the S-level and still reach the target 

which means that for these items the S-levels obtained from the BM-model 

worked very well. 

In the second group the mean order sizes are somewhere between two and 

four units. The calculated S-levels for these items are only slightly 

overestimated so they work fairly well. 

In the last group the mean order sizes are somewhere between four and 

eleven units. The S-levels for these items are significantly overestimated 

and can therefore carry excess stock. 
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Even though the S-levels are overestimated at times, Figure 21 shows that 

the inventory at the central warehouse is most of the time still lower with 

the BM-model when both models reach the TSL for upstream demand.  

 Local search for near-optimal reorder points 

In order to find the potential of a critical level policy regardless of which 

model used to attain the reorder points, a local search by simulation were 

performed to find near-optimal reorder points for the system, both with and 

without a critical level. Since it is very time consuming to perform a local 

search through simulations, only twenty randomly selected items were 

used in this search. 

For the system without a critical level, the search was performed by 

increasing the reorder point at the central warehouse until the fill-rate for 

the upstream demand reached its target. After this point was found the 

same procedure was performed for the retailer reorder points.  

For the critical level setup the procedure is a little more complex since not 

only the reorder point at the central warehouse but also the one at the virtual 

retailer have to be lowered in the first step. Consequently, to find the 

optimal setup a vast number of iterations are needed. Instead an approach 

were used where the reorder point for the central warehouse calculated 

with BM were initially assumed to be optimal. Then the reorder points for 

all retailers including the virtual retailer were adjusted until the smallest 

reorder points which reached the TSLs were chosen. Finally the central 

warehouse reorder point was lowered to investigate if the retailers still 

were able to reach their TSLs.  

Figure 23 depicts the results of this heuristic search when the items are 

sorted by increasing fraction of upstream demand. The results illustrates 

that a critical level policy in most cases have a significantly lower expected 

total inventory. Over the 30 items the average reduction is 8.43 % with a 

maximum reduction of 25%. In this small sample size it seems that the 

greatest potential savings occur when the fraction of upstream demand is 

below 50 percent which is also concluded in several papers discussed in 

Section 3.1. Furthermore the potential reductions increases when the mean 

demand is rather high which results in large reorder points. 
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Figure 23 – The Relative Difference in Total Inventory of a Critical Level Policy 

Compared to Policy Without Critical Level. The Items are Sorted by Increasing Fraction 

of Upstream Demand. 

The six items that show marginal or no improvements can be explained by 

two reasons. Either they have very small reorder points to begin with which 

leaves no room for improvement, or the fraction of upstream demand is 

very high (>90% of total demand). For an item with a very high fraction of 

upstream demand, that dominates the lower demand class, a critical level 

policy attain no advantage.  
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8 CONCLUSIONS 

This chapter will present a short summary of the key components of the 

analysis. Followed by a remark of what future research may be undertaken 

to further validate the results of this study.    

8.1 ACHIEVING TARGET FILL-RATES AND REDUCING 

INVENTORY 
The results show that the BM-model with a virtual retailer significantly 

outperform the single-echelon model when it comes to reaching target fill-

rates. However, the calculated S-level at the virtual retailer are in general 

slightly overestimated, and as a result the central warehouse carry some 

excess stock. This is because of the fill-rate calculation and can be 

improved by simple adjustments. Nonetheless, when comparing the 

expected inventory in the central warehouse for items where both models 

achieve the TSL for upstream demand, the BM-model still holds on 

average 10% less inventory than the single-echelon model. 

When it comes to target fill-rates at the retailers, the BM-model is very 

precise with an average weighted deviation of 0.63 percentage points, 

when weighted by mean demand. One other conclusion that was expected 

is that when the mean order size increases, the single-echelon model do not 

keep enough stock to compensate for the assumption of continuous or unit 

demand. This is because of undershoot of the reorder point and is known 

for the normal and Poisson distributions and can be adjusted for. 

8.2 POTENTIAL OF A CRITICAL LEVEL POLICY 
The results of the sensitivity analysis suggests that a model with a critical 

level policy, in this thesis modeled as a virtual retailer, consistently 

outperform a model without a critical level. In some cases a near-optimal 

critical level policy can reduce the total inventory with up to 25 percent 

while still managing to fulfill the service commitments.  

A critical level policy seems to have the greatest potential when the mean 

demand is high and fraction of upstream demand is less than 50 percent. 

When this fraction gets to large and the upstream demand dominates, the 

potential reduction in inventory diminishes.  
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When combining a critical level and multi-echelon optimization the largest 

potential reductions are expected for items with small fraction of upstream 

demand. This is because the benefit of coordinated control is to reduce the 

central warehouse inventory, which will mainly be accomplished when 

fraction of upstream demand is small. As the fraction of demand increases, 

the benefits of multi-echelon optimization diminishes.  

The potential of a critical level needs to be validated in a study with less 

uncertainty in the data and with a larger sample size. The results obtained 

in the sensitivity analysis are promising but the sample size is too small to 

draw any general conclusions.  

8.3 UNCERTAINTY IN THE EXTRACTED DATA 
During the numerical study it was obvious that the extracted reorder points 

were calculated based on another set of mean and standard deviation of the 

demand compared to what was derived from the demand history. The 

extracted reorder points for the central warehouse were recalculated but the 

ones for the retailers were left as they were. However, as the recalculated 

reorder points at the central warehouse are independent of the reorder 

points at the retailers, the comparison of fill-rates for the upstream demand, 

as well as the central warehouse inventory, were unaffected by this.  

Not being able to distinguish between replenishment orders and upstream 

demand resulted in an alternative approach to calculate the mean and 

standard deviation as well as the distribution of customer order sizes for 

the upstream demand. This does not affect the performance measures but 

the study failed to fully capture the characteristics of upstream demand 

customers at the case company.    

8.4 FUTURE RESEARCH 
Future numerical studies on the potential of critical level policies are 

suggested to further validate the results of this thesis. It could bring great 

value if a study were able to pinpoint more exactly how different item 

characteristics influence the potential inventory reductions of a critical 

level.    

Secondly it would be interesting to be able to model a dynamic critical 

level that changes depending on the remaining time of an outstanding order. 

If an outstanding order is about to arrive at the warehouse in a few days, 
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replenishment orders could be satisfied even though the inventory level is 

at or below the critical level.     

Finally, an interesting topic for another thesis would be to evaluate some 

different ways to adjust the virtual retailer approach to prevent it from 

overestimating the critical level. More specifically, the fill-rate calculation 

at the virtual retailer in the BM-model need to be adjusted so that it also 

consider the expected inventory level at the central warehouse.  
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APPENDICES 

APPENDIX A – TABLE FOR DETERMINING NORMALIZED 

PARAMETERS 
Table 4 present how to move between original and normalized parameters 

when estimating the induced backorder cost at retailer I in the BM-model. 

Table 4 - Transfer Table between Original and Normalized Parameters. 

Original System 
Parameters 

Normalized System 
Parameters 

𝑸𝒊  𝑄𝑖,𝑛 = 100 𝑄𝑖/(𝜇𝑖𝑙𝑖) 

𝑸𝟎 𝑄0,𝑛 = 𝑄0 

𝒉𝒊 ℎ𝑖 = 1 

𝒉𝟎  ℎ0,𝑛 = ℎ0/ℎ𝑖  

𝒑𝒊 𝑝𝑖,𝑛 = 𝑝𝑖/ℎ𝑖  

𝑳𝟎  𝐿0,𝑛 = 𝐿0/𝑙𝑖  

𝒍𝒊 𝑙𝑖,𝑛 = 1 

𝝁𝒊  𝜇𝑖,𝑛 = 100 

𝝈𝒊 𝜎𝑖,𝑛 = 100𝜎𝑖/(𝜇𝑖√𝑙𝑖) 

𝜷∗ = 𝜷𝒏
∗ 𝒉𝒊

 𝜷𝒏
∗  
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APPENDIX B - TABULATED VALUES OF 𝒈  AND 𝒌 

FUNCTIONS 
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APPENDIX C – TABLE AND DESCRIPTION OF RESULTS 
Following is a description of the result categories for the tables on the 

following pages. The result in each category are based on each individual 

item from the study. BM refers to the BM-model with a critical level and 

SE refers to the uncoordinated single-echelon models. 

 TSL Dev. BM/SE (pp) – The average deviation from target service 

level at all retailers not including the virtual retailer. Measured in 

percentage points. 

 TSL Upstream Demand BM/SE (pp) – Deviation from target 

service level for upstream demand. Measured in percentage points. 

 Mean Total Inv. BM/SE (units) – The expected total inventory. 

Measured in units. 

 Inv. Diff. (%) – The difference in total expected inventory. 

Measured in percentage as the increase/decrease when modeling 

with the BM-model. 

 Mean CW Inv. BM/SE (units) – The expected inventory at the 

central warehouse. Measured in units. 

 CW Inv. Diff. (%) – The difference in expected central warehouse 

inventory. Measured in percentage the as increase/decrease when 

modeling with the BM-model. 
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APPENDIX D – DESCRIPTION OF MEASURES IN TABLE 3  
Following is a description of the measures presented in Table 3. The first 

four measures in the list are excluding the virtual retailer. All measures’ 

units are in percentage points.  

 Mean Deviation – The mean of all item’s average deviations from 

TSL. The average deviation for an individual item is calculated as 

an average of the deviations from TSL at all retailers. 

 Mean Absolute Deviation - The mean of all item’s absolute 

average deviations from TSL. The absolute average deviation for 

an individual item is calculated as the average of the absolute 

values of the deviations from TSL at all retailers. 

 Weighted Mean Deviation – The weighted mean deviations from 

TSL for all items. This measure is weighted based on the mean 

demand at the central warehouse for each item.   

 Weighted Mean Absolute Deviation – The weighted mean 

absolute deviations from TSL for all items. This measure is 

weighted based on the mean demand at the central warehouse for 

each item. 

 Largest Positive Deviation – The maximum overshoot of the TSL 

for all items and retailers. 

 Largest Negative Deviation – The maximum undershoot of the 

TSL for all items and retailers. 

 Mean Deviation at Virtual Retailer – The mean of the deviation 

from TSL for all items.   

 

 

 

 

 

 

 


