
Patterns in live performance data

Simon Svensson

MASTER’S THESIS | LUND UNIVERSITY 2016

Department of Computer Science
Faculty of Engineering LTH

ISSN 1650-2884 
LU-CS-EX 2016-37



 



Patterns in live performance data

(Method to find explanations for the app start times)

Simon Svensson
dat11ss1@student.lu.se

August 23, 2016

Master’s thesis work carried out at Sony Mobile.

Supervisors: Prof. Pierre Nugues, Pierre.Nugues@cs.lth.se
Jens Gulin, Jens.Gulin@sonymobile.com

Examiner: Jacek Malec, Jacek.Malec@cs.lth.se

mailto:dat11ss1@student.lu.se
mailto:Pierre.Nugues@cs.lth.se
mailto: Jens.Gulin@sonymobile.com
mailto:Jacek.Malec@cs.lth.se




Abstract

This thesis explores methods to find features that affect the start time of mo-
bile apps. To help app developers improve performance over patch cycles, we
implement an alarm pipeline in Apache Spark and tested it. This implemen-
tation is able to detect notable changes in the start time distribution and alert
the developer. Spark is a scalable cluster computing framework, that proved
well suited for the given problem.

The program consists of five steps; preprocessing the data, fitting a Gaus-
sian mixture model (GMM) to the data, and finding differences in the distri-
butions. Then a linear regression model is fit to map the available features
to the GMM parametrization. The linear regression enables the developer to
find relationships between the available features and the parametrization, by
analyzing the regression weights.

We tested the alarm pipeline on two data sets and shown that it could iden-
tify statistically significant changes in the start-time distribution.

Keywords: Android, Linear regression, Gaussian mixture models, Clustering, Per-
formance data, Sony Mobile



2



Acknowledgements

I would like to thank my supervisor Prof. Pierre Nugues for his guidance and advice
throughout the thesis work.

My gratitude also goes to Jens Gulin for his relentless criticism and for sharing his in-
valuable knowledge about both Sony and Android, as well as inviting me to the “Cupcake”
fika group.

I would like to thank Snild, Björn and the rest of the performance team at Sony Mo-
bile, where members have helped me with everything from computer problems to feature
finding.

And Maria, without her proofreading and support I would never have been able to
finish this thesis.

Lastly I am gratefully that Sony Mobile allowed me to use their data and allowing me
to work at their great office.

3



4



Contents

Abstract 1

1 Introduction 7
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Introduction to Android Applications . . . . . . . . . . . . . . . . . . . . 8
1.3 The Data Mining and Machine Learning Process . . . . . . . . . . . . . 8
1.4 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 The Data 11
2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 About the Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Data Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.1 Software Features . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.2 Hardware Features . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Preprocessing the Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Approach 17
3.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.1 Identifying Relevant Features . . . . . . . . . . . . . . . . . . . 17
3.1.2 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.3 Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.1 One-Hot Encoding . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.2 Kernel Density Estimator . . . . . . . . . . . . . . . . . . . . . . 18
3.2.3 Gaussian Mixture Model . . . . . . . . . . . . . . . . . . . . . . 19
3.2.4 K-Means . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.5 Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.6 Decision Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Visualisation of the Result . . . . . . . . . . . . . . . . . . . . . . . . . 22

5



CONTENTS

3.4 CRISP-DM Revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.5 Introduction of the Alarm Pipeline . . . . . . . . . . . . . . . . . . . . . 25

3.5.1 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.5.2 Fitting a Distribution . . . . . . . . . . . . . . . . . . . . . . . . 25
3.5.3 Differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.5.4 Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.5.5 Finding the Cause of the Change . . . . . . . . . . . . . . . . . . 26

4 Implementation 27
4.1 Spark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 K-means . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3 Kernel Density Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.4 Gaussian Mixture Models . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.5 Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.6 Decision tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.7 Alarm Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 Evaluation 31
5.1 Feature selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.2.1 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2.2 Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2.3 Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.2.4 Decision Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.3.1 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.3.2 Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.3.3 Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.3.4 Decision Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.5 Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.6 Alarm Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6 Conclusions 51

Bibliography 53

6



Chapter 1
Introduction

1.1 Background
Sony Mobile produces high-quality mobile phones that run the Android operating system.
SonyMobile designs the hardware, and customizes the Android operating system to better
suit Sony’s customers needs. Sony Mobile gathers some data with user consent from it’s
mobile phone users. This data is used in analysis to improve products. This thesis will
focus on performance analysis. In particular the thesis focuses on finding what affects the
start time of applications on Sony phones. By start-time is meant the time from when a
user starts an application until the application is usable by the user.

The current mobile market is massive and growing, with a large amount of people
using their phones, generating more data at all times. The users are not only using their
phones to call, quite the opposite, other applications are used at least as frequently. As
the demands on the phones’ performance grow there is a need to monitor and improve
the performance of the phones to enhance the user experience. Many users view the start
time of applications as an important part of their phone’s everyday experience. Therefore
it is important to reduce application start times. In complex hardware and software, it is
often difficult to knowwhy something is slow. Currently, this performance data is analysed
using classical statistical methods rather than machine learning. Machine learning could
help bring new insights to the table and allow for a better understanding of the performance
of phones.

The goal of the thesis is to use machine learning to find phones that operate particularly
slow compared to similar phones and to identify what causes the observed delays; as well
as finding a method for doing these analyses semi-automatically and with new data. With
a growing amount of performance data, it would be beneficial to use machine learning in
addition to classical statistical models.

The application start-times differ between phones and have a high variance. Many
machine learning models are known to perform poorly on high-variance data. Therefore it

7



1. Introduction

would be useful to estimate the probability distribution of the application start-times and
use the estimated distribution as an input to machine learning algorithms instead of the
raw data.

In summary, the questions this thesis attempts to answer are the following:

• How to find the important features?
• How to describe distributions of start-time data?
• How to apply machine learning models on performance data?

The distribution estimation andmachine learningmodels found are then combined into
a pipeline. The found model can be used to notify or alarm the application developers of
significant changes in the start-time distributions. This pipeline will be referred to as the
Alarm pipeline.

1.2 Introduction to Android Applications
Android applications, called apps for short, consist of a number of components. All apps
consist of one or more activities. An activity is a single screen in the user interface. Almost
all apps have a main activity that starts when the user starts the app. Some apps start with
a different activity than the main, for example the album app can start in show image mode
directly.

All parts of an app are delivered to the user in the form of a single package. The
name of the package should be descriptive and unique as this is used to differ between
applications.

Some apps available to the user are delivered with the phone. On Sony phones most
of these pre-installed apps are produced by Sony or Google. The user can also install
additional apps to the phone.

An app that is shown on the screen is considered to run in the foreground, and an appli-
cation that runs without user action is considered to run in the background. An application
that is running in background can be terminated by the Android operating system if need
be. For example an app running in the background can be terminated when the phone runs
out of RAM.

An app can also start another app. For example the contact list app cannot make calls,
so the contact list app has to start the phone app to make calls. To give the user a smooth
experience it is important the start-time of the newly initialized app is short.

1.3 The Data Mining andMachine Learning
Process

Cross Industry Standard Process for Data Mining, CRISP-DM, is a method of data mining
and data analysis that is widely used. Data Mining is broad term, referring to various
methods for exploring patterns in data. CRISP-DM is an iterative process with six steps
to perform data mining (Chapman et al., 2000). Figure 1.1 show these six steps.

The six steps are shortly described below:

8



1.3 The Data Mining and Machine Learning Process

Figure 1.1: An illustration of the CRISP-DM steps. From Chap-
man et al. (2000)

1. Business Understanding. Decide what is the business benefit of the given data
mining task, and how is this related to the data at hand.

2. Data Understanding. Understand the data structure of the data. Locate possible
problems with the data.

3. Data Preparation. Collect and prepare the the data set for modelling.
4. Modeling. Model the data sets.
5. Evaluation. Evaluate the model.
6. Deployment. Apply the model to provide new knowledge of the data set for solving

the initial problem.

All of these steps are important. The 1 to 5 loop is used actively during the the thesis work
to improve the existing models and prepare the data for new models. It is easy to lose track
of the goal of the task at hand when dealing with large amounts of data. CRISP-DM is
used to perform data analysis in an organized and focused manner.

9



1. Introduction

1.4 Previous Work
There has been work published on predicting the starting times of applications, based on
application byte-code analysis (Kwon et al., 2013). They analysed the byte code to find
slow or heavy computation as well as possible branches that could make the program run
slower. They then formulated a function that predicts the running time of apps. The byte-
code level analysis of Kwon et al. (2013) obtained a quite good result with only a few
percent error rate in the prediction. This thesis differs from Kwon et al. (2013) since we
look at the performance of various apps on different phones without analysing the source
code at any level. Further Kwon et al. looked only at one phone in their analysis, this
phone was a Galaxy Nexus, where as in this thesis several phones are compared.

Some similar research has been done on Windows PC machines in Bird et al. (2014).
The authors look at the reliability of software with relation to other programs on the ma-
chine, and try to find what causes the software to function incorrectly. In Bird et al. (2014)
the combination of programs is emphasised as well as the performance of the PC. The
information used in the analysis consist of which apps the user has installed, hardware
specifications of the computer, information about program usage such as number of starts
and the number of crashes. In Bird et al. (2014) they have features describing the hardware,
it should be noted that the hardware of PC:s can vary greatly. In this thesis we concen-
trate on Sony phones, therefore exploring hardware with some variation but less than the
variation of the hardware studied in Bird et al. (2014).

In Bird et al. (2014) they found that certain applications affect other applications in
a significant way. For example if the user plays games it seems to affect all the other
programs and reduce their reliability. It is interesting that applications can affect each
other and this study could be extended to Android apps as well.

10



Chapter 2
The Data

This chapter describes the data and features used in the thesis. The simpler preprocessing
steps applied to the data are also discussed.

2.1 Overview
Sony gathers, with user consent, some information from phones used by Sony Mobile
customers. Sony gathers additional data from test phones. The test phones are tested
internally at Sony by automated test rigs, test scripts and by Sony employees.

The test rigs are run by robots that use the phone’s screen with a touchscreen pen and
record the apps’ start times. The robot tests are made to simulate a user that uses the same
apps several times. The tests do not imitate exactly a human’s usage of a phone but catch
some crashes. There are also test scripts that run similar tests. The test scripts are run on
software only and thus lack some of the errors that result from touchscreen usage.

Sony employees use test phones as their daily phones. Their usage should resemble
a typical user, but there are some problems with this test data. First, the sample group
is not entirely representative of the customer population. For example, most usage data
is collected in the countries where Sony Mobile has development sites, with additional
bias representing employee gender and age amongst developers. Secondly the employees
are often technically inclined and if they experience a crash they often try to replicate it,
resulting in an unusually high number of crashes.

Sony also has a retail user base from where some users send in data to Sony. To ensure
the users’ privacy Sony limits the amounts of data gathered from private users to a min-
imum. Due to this data that is collected from retail phones is more limited compared to
the data collected from internal phones. The external data is also anonymised when it is
sent to Sony such that that two samples from the same phone can be identified to originate
from the same device, but not which phone the samples come from.

This thesis focuses on Sony apps.

11



2. The Data

Table 2.1: Comparison between Z5 phones

Phone name RAM Display Battery Size Abbr.
(GB) (mAh) (mm)

Xperia Z5 3 5.2" FHD 2900 146 x 72 x 7.3 Z5
Xperia Z5 Compact 2 4.6" HD 2700 127 x 65 x 8.9 Z5-C
Xperia Z5 Premium 3 5.5" 4K 3430 154.4 x 75.8 x 7.8 Z5-P

The phones gather a set of log messages from the start of apps. When the phones have
collected enough data, it is sent to Sony’s servers. After arriving at Sony some processing
is done to pick out the interesting parts of the log message. The experiments in this thesis
are done on a subset of this data.

2.2 About the Data Set
This thesis concentrates on the data from phones in the Z5 series. In this series there are
three phones, Xperia Z5, Xperia Z5Compact andXperia Z5 Premium. Table 2.1 shows the
different models. Note that CPU is not in the table since they all share the same CPU type,
Quad-core 1.5 GHz Cortex-A53 and Quad-core 2.0 GHz Cortex-A57. The phones also
have the same version of Android 5.1 natively, but have an optional upgrade to Android
6.0 or later available on most markets (Devenish, 2015).

In Table 2.1 the reader can see that the Z5-P phone is the largest, has the best screen
and battery. The normal Z5 has medium values and the Z5-C is a bit smaller. A larger
screen contains more pixels than a smaller one and therefore can require more CPU power
to draw an image, and may thus affect the phone’s performance. Since battery power is
rather limited it affects the CPU speed. Withmore battery available the phone’s CPU usage
could be increased thus resulting in increased performance. Heat is also a factor that is
taken into consideration when deciding on CPU usage. A large phone has a larger surface
area to give off heat from and ventilate. Therefore a larger phone can use its CPU more
effectively since it is able to ventilate more of the heat.

For the initial experiments, a small partition of the data was used. The algorithms were
tested on a personal computer, with Intel® Xeon(R) CPU E5-1650 0@ 3.20GHz × 12 and
15.6 GB of RAM. The data set has approximately one million entries. Entries with null-
valued features are not included in the data set. The data gathered varies between phone
models, therefore only phone models of the Z5 series are studied. This series was chosen
because it is one of the newer mobile phone series and provides a large number of features
in the captured data. The data is from internal testing, both from the employee group and
automatic testing with robots and scripts.

2.3 Data Storage
The data is sent to Sony as log files that are opened and interpreted as they arrive to Sony.

The data is stored on a Hive Cluster or a Relational Database. The cluster storage
contains more raw data while the relational database is cleaner. The relational database

12



2.4 Features

Table 2.2: Features used

Feature Unit
Start time in ms
Up-Time in ms
Start Type 0 or 1
Android version String
Package String
Encrypted Boolean
Frequency limit String
Model String
Group String

also contains less data and has a few days lag time, from when data enters the cluster
storage until the data is stored in the database. This thesis uses the data from the relational
database but the program could be extended to support the hive data. The only difference
would be in the first preprocessing method of the program.

To have a stable test set and an easy format to work with, a tab separated text file was
generated from the database.

2.4 Features
When given user consent, each time an app is launched Sony collects non-personal data
describing the event. In this section follows a description of some of the data fields that
are recorded in the database. For clarity they are split into two sub-categories; software
and hardware features. Table 2.2 summarisers the features.

2.4.1 Software Features
Some of the features collected are created by the software and are related to the software
that is running.

Start Time

The app start time that is recorded is called "Fully-drawn time". It is the time from when
the application starts until a log message is sent from the app that it is ready for being used.
Fully-draw time is what we use as the start-time in this thesis.

There is also a time recorded that is called "Activity Time". It is the time from when
the application starts until it is done launching in the android operating system. This time
exists natively in Android.

All times are recorded as an integer in milliseconds.

13



2. The Data

Up-Time
Sony collects data about how long the phone has been powered on. This is called up-time.
Up-time could affect the start time, due to possible issues such asmemory leaks and similar
issues that could arise after a long up-time. Android defines up-time as the time that the
phone has been on and not in sleep mode continuously since the last shut down or sleep
mode deactivation. This feature could be used to find if there is a dependency between the
frequency of restarts of the phone and the performance of the phone.

Up-time is recorded as an integer in millisecond.

Start Type
Applications starts in Android can be classified as warm and cold starts. A cold start is
when the app has not been started recently and is not active in the memory of the phone.
A warm start is when an app that has been used recently and is still active in the memory
is started.

This information is logged when available. Complications with logging this informa-
tion have been noted. A sample that has a logged "cold start" could in practice have been
incorrectly logged and in fact have been either cold or a warm start. However a sample
that has a logged state "warm start" is guaranteed to have had a warm start.

This feature is saved as a integer, 0 or 1 where 0 is a cold start and 1 is a warm start.

Android version
Sony collects information about the software version of the android operating system. This
is not only the Android version that the phone is running but also which Sony release is
used. Sony release is necessary because Sony may over time have released several patches
for an Android version, also there may exist separate releases for different operators or for
different markets, e.g. to handle network specific requirements.

Package
The package of the app is recorded. The package is used as a general description to find
which application was launched. Several activities might share the same package but these
are usually a part of the same application. For example the photo camera app and the video
camera app share package but have different activities.

This package is saved as a string in the style of “com.example.app”, in the presented
results this is written without the “com.example” part and becomes “app”.

Encrypted
Android allows encryption of the phone’s file system to prevent theft of personal data
from the phone. During use the data has to be decrypted. The constant encryption and
decryption of data could possibly lead to lower performance. This feature is a Boolean
called “Encrypted”, that is set true if encrypted.

14



2.5 Preprocessing the Data

2.4.2 Hardware Features
Some of the features collected are hardware related, such features could be about the phone
model or the usage class, on internal phones.

Frequency limit
Some of the phone models, such as the Z5 series, have a software feature that limits CPU
power to make sure that the phone does not overheat. Limited CPU power should have a
negative impact on the performance of the phone since it is artificially making the CPU
run slower. This is a fairly new method for reducing overheating and is not present in older
phone models. In this thesis the frequency limit is recorded as a string of the phone’s limit
on the CPU during launch of the apps. This feature will be referred to as the “Frequency
limit”. The older phone models that lack this feature report the “Frequency limit” as the
hardware specific maximum CPU frequency.

Sony’s Z5 phones have each two CPUs. The CPUs have four cores. One of the CPUs
has a higher performance and power usage than the other. For example Sony’s Xperia Z5
has two CPUs one with 4 cores at 2 GHz and one with 4 cores at 1.5 GHz. The slower
CPU in general runs background tasks, while the faster is often used for foreground tasks
and applications. The two different CPUs can be limited in different ways. The frequency
limit per core is recorded.

Model
Sony collects information about the phone model. This is recorded in the database as the
features “Product” and “Name”. It is saved as a string consisting of the phone’s name, for
example Xperia Z5 is called “XperiaZ5” in the database. The phone model could have a
large impact on the performance since different phones can behave very differently.

See Table 2.1 for abbreviations of phones, that are used in this thesis to make tables
more readable.

Group
For each sample the user group of the given phone is recorded. The feature that records the
user group is referred to as “Group”. The feature records if the phone is used in automated
tests or by human users. This feature is only recorded on internal phones. This feature
contains some uncertainty if the phone is recorded to be a part of the automated test group.
Phones used by Sony employees can have the same group as phones used in test rigs. This
is due to unintentional errors in recordings of the features. This feature is recorded as a
string with the name of the group, and requires additional internal tables to interpret the
content of.

2.5 Preprocessing the Data
Many of the features are categorical and need to be preprocessed to be used in numerical
algorithms. This is done by encoding the categorical features using one-hot mapping. It

15



2. The Data

is describe below in the Section 3.2.1.
Some cleaning of the data is performed by removing outliers in start-time. To make

start-times comparable between samples, there is a need to remove samples with long start-
times. For example a start time of 2 weeks is unrealistic for any app. Therefore there has
to be some kind of error that occurred in the recording of the app’s start-time. Samples
with a start-time longer than 10 seconds are removed. According to experts at Sony 10
seconds is a reasonable limit for an app’s start-time on Sony devices. A start time that is
longer than 10 seconds is probably an error. All zero times are also removed, because they
are obviously erroneous given the ms-precision used.

As is good practise the data is scale between 0 and 1. This is done using this formula,

x =
xorg − xmin

xmax − xmin
. (2.1)

Where x is the normalized feature value, xorg is the unnormalized value of the feature,
xmin is the minimum value of the given feature that occurs in the dataset and xmax is the
maximal of the given feature in the dataset. The values x, xorg, xmin, xmax are all scalar.
Normalization is performed feature-wise.

Scaling is done before applying any algorithms. This increases the numerical accuracy
of the algorithms.

16



Chapter 3
Approach

An important part of finding out what makes a phone slow is discovering the features that
contribute the most to making the phone slow. Several different methods to find features
with the most effect on start-time were tested. In this chapter the tested methods will be
described.

The Alarm pipeline will also be introduced. The Alarm pipeline allows the user to
find changes in the performance of a given app’s start-time and helps identify the possible
cause of the change.

3.1 Method
Here the used methods will be introduced.

3.1.1 Identifying Relevant Features
The first sub-problem of the thesis is finding which features are the most important in
deciding the performance of the phone. To find the important features, several different
methods were used.

Some of the collected features in the database have little relevance to performance and
were not studied. To identify features that could be of interest and likely to be relevant
to the performance of the phones, experts at Sony were consulted before performing any
computational work. The features described in Section 2.4 were pointed out by the experts
as possibly relevant to app-start times.

3.1.2 Clustering
Clustering was used to identify groups of fast and slow start-times. These cluster centers
were then analysed to study which features had an effect on the performance of the phone.

17



3. Approach

Figure 3.1: An illustration of one hot encoding, with the table
before on the left and the table after on right

Clustering was done using K-means. DB-scan was also tested but is not further mentioned
in the report due to its complexity. DB-scan has a number of hyper-parameters that needed
to be tuned, and since tuning is time consuming K-means was preferred.

3.1.3 Linear Regression
Linear regression was among the first methods applied after the first clustering experi-
ments. The linear regression models built evolved into the Alarm. The amount of data
and its variance made it difficult to estimate the behaviour of the whole data set given the
available features, so a different approach had to be used.

3.2 Theory
This section will introduce the algorithms used as well as the concepts, parameters and
notation used later in the thesis.

3.2.1 One-Hot Encoding
One-hot encoding is an encoding method used to transform categorical data into numeric
data. This method is also known as dummy features or dummy encoding. The encoding
works by extending the feature space with a new feature per categorical data-value. The
newly introduced feature is then set to one if the observation contains this feature-value
and to zero if it does not. See Figure 3.1 for example. One-hot encoding increases the
number of features of the data set dramatically, which make it difficult to visualise the
model without the use of some dimensional reduction method. In numerical methods the
one-hot-encoded features can result in ill-conditioned feature matrices. When calculating
with ill-conditioned matrices one stands at risk of increasing numerical errors. (James
et al., 2013)

3.2.2 Kernel Density Estimator
The Kernel density estimator (KDE) is a method for creating a continuous histogram-like
representation of the data. A Kernel density estimator can be used as a non-parametric

18



3.2 Theory

probability distribution estimator. First a kernel function, often a Gaussian, and a band-
width of the kernel, often variance of the Gaussian, are chosen. The KDE is the sum of
kernels centered at each data point. This is seen in the equation below,

p(x) =
1
m

m∑
i=1

1
h

K
( xi − x

h

)
, (3.1)

where m is the number of data points, h is the smoothing parameter bandwidth and x
is a data-point. Note that K is the kernel function. KDE describes the distribution of
the sampled data as a continuous distribution, therefore likely resembling the continuous
data’s distribution better than a histogram does. (Bishop, 2006)

An example of this KDE is show in Figure 3.3.

3.2.3 Gaussian Mixture Model
Gaussian mixture model (GMM) is a probability distribution that consists of multiple
weighted Gaussians. It allows multiple-peaked data distributions to be described with
minimal number of parameters. The GMM of K Gaussians is described by the following
equations,

p(x) =
K∑

k=1

πkN(x|µk, σk), (3.2)

N(x|µ, σ) =
1

σ
√

2π
e−(x−µ)2/2σ2

. (3.3)

Note that 0 ≤ πk ≤ 1, where πk is the weight of the kth Gaussian, and that
∑K

k=1 πk = 1
need to be fulfilled in order for the GMM to be valid. Further µk is the mean and σk is the
standard deviation of the kth Gaussian.

The model is fitted to the data using the Expectation Maximisation (EM) algorithm.
EM is an iterative algorithm that finds maximum likelihood parameters. It consisting of
two steps; the expectation step and the maximization step. In the expectation step the
expected conditional likelihood of the data points given the current Gaussian distribution
are calculated. In the maximization step the expected conditional likelihood is maximized
to find the best parameter values. The GMM fits best if the data is known to originate from
Gaussian distributions (Bishop, 2006).

The GMM can be seen as a clustering model that gives the probability that a data point
is part of a Gaussian cluster.

3.2.4 K-Means
K-means is a clustering algorithm where the mean of a selection of points are determined
to be the cluster center. First the centers are assigned randomly in the data space. Then
for each point the distances to all cluster centers are calculated and the point is assigned

19



3. Approach

to the cluster with the closest cluster center. A point x is assigned to cluster µk, such that

J =
N∑

n=1

K∑
k=1

rnk ||xn − µk ||
2 (3.4)

if k=argmin j ||xn − µ j ||
2 then rnk = 1 (3.5)

else rnk = 0. (3.6)

Where N is the number of data points, K is the number of clusters and µk is the center of
cluster k = 1, ....,K . The goal of K-means is to minimize the value of the loss function
J . Each cluster center is then updated to be the mean of the points that belong to the
cluster. These steps are repeated as long as the cluster centers change significantly between
iterations.

In this method the user has to specify the number of clusters when initializing the
algorithm. It is a non-trivial problem to decide howmany clusters are sufficient. To decide
upon the optimal number of clusters one can perform clustering with a varied number of
clusters and plot the loss function J against the number of clusters, or study the within-
cluster variance. With these two methods one can find the least number of clusters that
still yield a sufficient loss value (Bishop, 2006).

3.2.5 Linear Regression
Linear regression is a model. It is modelled by fitting a linear hyperplane through the data
points, to give a prediction of the label given the input-features vector. The weights of the
model can give information about the importance of different features (James et al., 2013).

A linear regression model can be expressed in the following manner,

y = β0 + β1x1 + β2x2 + .... + βnxn, (3.7)

where y is the scalar output called the dependent variable, βi, i = 0, ..n are the weights and
xi, i = 0, .., n are the input features. In matrix notation equation 3.7 can be expressed as,

y = xβ. (3.8)

Generally x is not a square matrix. The equation 3.8 is multiplied by xT to solve for β,

xT xβ = xT y, (3.9)
β = (xT x)−1xT y. (3.10)

In practice the weights β are solved for iteratively by minimizing the sum of squared
error between the true and estimated labels. The analytical solution as shown in equation
3.10 is prone to numerical errors and memory issues for large datasets.

Since the sum of squared error is a convex function, stochastic gradient descent (SGD)
is used to find the minimum. SGD is an algorithm where at each iteration a small step
is taken in the direction in which the gradient of the loss function is negative. The data
is shuffled between iterations. This prevents the GD to get stuck in local minimum and
allows for faster convergence. This iterative method is faster than taking the inverse of
the feature covariance matrix and provides a more numerically stable solution; especially
since matrices with One-hot encoding often have bad numerical properties which make
the inverses hard to calculate numerically correctly.(Bottou and Bousquet, 2008)

20



3.2 Theory

Outlook

Overcast

Humidity

NormalHigh

No Yes

Wind

Strong Weak

No Yes

Yes

RainSunny

Figure 3.2: An illustration of a decision tree of the famous tennis
data set. From Quinlan (1986)

3.2.6 Decision Tree
Decision tree is a model that uses a tree to describe the decisions needed to classify data.
Intuitively it is very easy to understand with the help a picture. For example the tree in
Figure 3.2 is a decision tree that decides if the weather conditions are suitable to play tennis
or not. This example is from Quinlan (1986).

Decision trees are trained from previously labelled data. The tree is built from the root,
and every branch discriminates the data with respect to an expected feature-value. The
algorithm for training decision trees consist of a loop of calculating the next best feature
to split the data set in two parts. This splitting can be done in different ways, two of the
most common measures used to decide weather to split a leaf or not are the information
gain and Gini impurity. The goal of the training is to find a tree structure such that the leaf
nodes classify data correctly (Mingers, 1989).

21



3. Approach

3.3 Visualisation of the Result

The analysed data has a high number of dimensions and the data cannot be plotted in
two dimensions without preprocessing. Therefore different methods for plotting the re-
sults have been used. We used two methods to visualise the results from kernel density
estimation and linear regression:

• Kernel density estimation results in histogram-like plots, where the height of the
curve indicates the probability of data points with this value. A transition from
histogram to kernel density estimation is shown in Figure 3.3

Figure 3.3: A plot of the transition from histogram to kernel den-
sity estimation, generated using Scikit-learn

• We visualise linear regression using a residual plot. A residual plot shows the ob-
served value of the data against the predicted value. Optimally the predicted and
estimated values should be equal. We add a line to the residual plot to show the
optimal model’s residual. An example of this is show in Figure 3.4, where the line
has the formula x = y and the red dots are the data-points.

22



3.4 CRISP-DM Revisited

0.0 0.2 0.4 0.6 0.8 1.0
Observed

0.0

0.2

0.4

0.6

0.8

1.0
P
re

d
ic

te
d

TrainingAlarmOH_18 5Mu

Figure 3.4: A residual plot of the linear regression, this is a figure
from the linear regression tests presented in 5.3.2, this figure is
of µ5. The blue line is the line x = y and the red dots are the
data-points

A dimension reduction method such as the principal component analysis (PCA) could be
used to plot only significant features. However during testing it was noted that plotting
data in the most significant principal components was not more informative than KDE
and residual plots. Therefore this method was omitted.

3.4 CRISP-DM Revisited
In the introduction a method for data mining called CRISP-DM is described. This section
will describe how CRISP-DM was used throughout the thesis.

This is a connection to show what work was done during the different steps show in
Figure 3.5 and described in Section 1.3

1. Business Understanding. To decide upon relevant questions to study regarding
start times, an open-ended discussion was held with Sony employees before the start
of the thesis. It was decided with the help of experts at Sony that a partially auto-
mated system for identifying reasons for delays in app launches was of interest. App
start times reflect user’s opinion of the quality of the phone as discussed in Section
1.1.

2. Data Understanding. Understanding of how the data is structured. Sony employees
were of great help when figuring out how to get the data and also what the data was.

23



3. Approach

Figure 3.5: An illustration of the CRISP-DM steps. From Chap-
man et al. (2000)

3. Data Preparation. This is the process of creating the data set. Since the dataset
was already gathered by Sony, this step was mostly the preprocessing of the data to
fit the models described in Section 3.1.

4. Modeling. Find a good model for the data via experiments. This is the step of fitting
a distribution to the data.

5. Evaluation. Evaluating the model with numerical methods like mean square error
if it makes sense in the context of the data.

6. Deployment. This step consist of using the “Alarm” program to help the debugging.

Throughout the thesis the 1-5 loop was done several times testing different models and
gathering data. The loop of 3-4 was done several times for every model with preparing the
data in different ways to ensure maximum performance of the model.

CRISP-DM is a very loose model that works because it is simple and easy to use, while
still giving some structure to the work.

24



3.5 Introduction of the Alarm Pipeline

3.5 Introduction of the Alarm Pipeline
In this section we introduce the Alarm pipeline to find the changes in the app-launch times
and possible causes for the change. The Alarm pipeline is intended to be used to compare
two different data-sets. After the experiments with linear regression a pipeline was created.
It will be more thoroughly describe below but these are the basic steps of the pipeline;

1. Preprocess.
2. Fit a distribution to the data.
3. Find differences in test- and training- distribution.
4. Fit a linear regression model.
5. Manually analyse the regression weights.

The last step is not done automatically in the pipeline, but the weights are readily available
in the output.

3.5.1 Preprocessing
Preprocessing is the first step in the Alarm pipeline. It consist of making the data ready
for the rest of the steps in the pipeline. During preprocessing outliers are removed from
the data. Outliers are data-points which have a start-time longer than 10 seconds. This is
chosen as it is suitable limit for phones. Data point with a start time that is slower than
10s are not uninteresting but they require a different analysis. The data is collected into
different groups where all features that are evaluated have the same value. The groups that
have a very low amount of samples are removed. One hot encoding is performed.

3.5.2 Fitting a Distribution
In this step a GMM is fitted to the data. This is done for every group of features that is
available in the data set and that is not removed by the pre-processing step. The number
of Gaussians is decided by linear search to find the first local minimum.

3.5.3 Differences
In this step we look at the distributions that were created in the previous steps and find if
there has is large difference in the distributions. The distributions are analysed with the
help of decision trees.

3.5.4 Linear Regression
Linear regression is performed on the data generated from step two. The mean and stan-
dard deviation of the distributions are used as the dependent variable. If the number of
Gaussians in the best fitting GMM model is greater than 1, multiple regressions are per-
formed (two regressions per Gaussian). In this manner the weights from multiple regres-
sion models can be compared separately in a simple fashion.

25



3. Approach

3.5.5 Finding the Cause of the Change
Given a data point group the weights in the test and training regression can be compared
to find the change in the regression weights. This can currently be done by simply looking
at the weights as there are at most six Gaussians. In the future a more suitable method can
be added to automate this step.

26



Chapter 4
Implementation

This chapter will explain the implementation details of the experiments and the Alarm
pipeline. To begin with the programming language used will be described followed by a
description of the implementation of the different algorithms and methods used.

4.1 Spark
We used Spark 1.6.0 to implement the program. Spark is a scalable open source cluster
computing framework. It is a popular extension of Hadoop (Zaharia et al., 2012). It even
has some native support for machine learning.

Spark has a library for Linear Regression with stochastic gradient descent which is
parallelizable andworks easilywith PySpark. Spark also has support for performing kernel
density estimation, applying K-means and Expectation Maximization for fitting Gaussian
Mixture Models.

Further NumPy (Van Der Walt et al., 2011) for python and Scikit-learn (Pedregosa
et al., 2011) for python were used in the implementations. NumPy is a python library
which implements matrix operation and other practical mathematical operations. Scikit-
learn is a machine learning toolbox with support for a large amount of algorithms and
machine learning tools.

A tool called Jupyter was used for code development. Jupyter allows the programmer
to execute small code blocks instead of running the whole program at once. This allows
for a fluid implementation process.

Spark can be run in python with the help of the program PySpark.
Even if Spark is a great tool it misses some of the algorithms that are available in

Scikit-learn. Scikit-learn is also better documented than Spark.
As Spark is a cluster computing frame work it uses nodes to do the calculations. When

running Spark on a PC with limited memory it is important to manage the nodes of Spark
in a good manner. Too few nodes can result in a low amount of parallelization but a too

27



4. Implementation

high number of nodes could result in out of memory errors or a too expensive overhead.
The suitable number of nodes and the memory requirement of each node may vary

between programs. These variables need to be tuned by hand. This was very relevant
when doing linear regression with large amounts of data without the tuning the program
would run out of memory.

The computer where the tests were executed has a Intel® Xeon(R) CPU E5-1650 @
3.20GHz × 12 and 15.6 GB of RAM. To run the programs two set-ups were used, one with
two nodes with 5 GB each for memory demanding calculations and another set-up with
12 nodes with 1 GB each when less memory was required. These set-ups were sufficient
for this work but could probably be improved.

4.2 K-means
The Spark 1.6 implementation of K-means was used. The implementation assigns the first
cluster centers at random points in space. There is an option to specify the starting posi-
tions, but this was not used. We choose number of clusters to fit with the elbow method.
One can note that the execution time increases significantly as the number of clusters in-
creases. (Zaharia et al., 2012)

4.3 Kernel Density Estimator
We use Kernel Density estimator to estimate the true distribution of the start-time data.
Spark has an implementation of Kernel Density estimator that was used. The kernel func-
tion in the Spark implementation is a Gaussian centered at the data point. Here the size of
mu has to be picked, during the thesis this was chosen to be 250 ms, since this made the
curve smooth without flattening out the curve unnecessarily much.

4.4 Gaussian Mixture Models
ExpectationMaximization for Gaussian mixture models (GMM) is implemented in Spark.
The Spark implementation was used in the experiments. To find the right number of Gaus-
sians to use, a local minimum was searched for beginning with one Gaussian, and increas-
ing the number of Gaussians in the mixture model until the error did not decrease. A
good match is one that is close to the Kernel Density estimation that had been done on
the data set. One Gaussian is used in the beginning because in this manner the simplest
locally-optimal model is fitted.

4.5 Linear Regression
Linear regression is implemented in Spark using Stochastic gradient descent. Fitting linear
regression with Stochastic gradient descent has better properties than fitting regression
with matrices. Calculating the inverse on ill-condition matrices causes numerical errors
and large matrices can have problems with fitting in memory. Taking the inverse of the

28



4.6 Decision tree

matrix is a very time demanding task. The correlation matrix is very sparse due to the use
of one-hot encoding. This further causes the matrix also to be ill-conditioned. Therefore
calculating the numerical inverse of the matrix is error prone with large numerical errors.

The Spark implementation of linear regression has several hyper-parameters available.
Notable is that the max numbers of iteration can be chosen, the default is 100.

4.6 Decision tree
Decision trees can be learnt with a number of algorithms. One of the most well-known
methods is ID3 (Quinlan, 1986). ID3 uses entropy and information gain to make decisions
when building the tree. Since these measures are adapted for categorical data, an improved
version of the algorithm, C4.5, is preferred. (Quinlan, 2014) The decision tree implemen-
tation that was used, from scikit-learn, is based on the CART algorithm (Pedregosa et al.,
2011). The CART algorithm is specifically adapted to build decision trees of numerical
data. Since a large amount of the features are categorical it is likely that the C4.5 method
would give shallower trees since there would be no need for one-hot-mapped features. As
the experiments with decision trees were small this hypothesis was not explored.

4.7 Alarm Pipeline
The Alarm program consist of two different programs. One is the preprocessing part of
the pipeline and the other program is the alarm part of the program. The two steps are
carried out in two separate programs to allow for further analysis on the data after the
preprocessing. The split in programs also helps to optimise Spark configurations for each
separate part of the program.

Both parts of the program are implemented using PySpark.

29



4. Implementation

30



Chapter 5
Evaluation

Here follows a description of the experimental setup, a presentation of the results and a
discussion of these results. The features that are used in the experiments are also discussed.

5.1 Feature selection
It is known that uninformative features can decrease the statistical significance of a model.
By decreasing the feature space linearly the model space is decreased exponentially, due
to one-hot-encoding.

Therefore it is beneficial to perform feature selection before proceeding with model
fitting.

In this section the feature selection is described in detail, the reasons for selecting or
omitting each feature from the model are discussed. The features are described in Section
2.4.

Table 5.1 shows the results of feature selection. Observe that the features that are
selected to be a part of the model are only the most interesting for this thesis. The other
features may be used in further work.

Start-time is dependent variable of the models except when stated otherwise. Start-time
is never omitted from the models since it is what is analysed in the thesis.

Up-Time was not included in the final model. Weak dependencies were noted between
Up-time and start-time.Up-time was plotted against start-time. We noted that the
data was not relatively uniformly distributed on the plot indicating that there is little
or no dependence between up-time and start-time. It can be seen in Figure 5.1 that
there is no obvious correlation between up-time and start-time.
This may be because automatically tested phones have in general a short up-time,
either due to memory cleaning issues or due to the patches required for updates.

Start Type was used in the model. Not only was this heavily encouraged by the experts,
but also found to correlate to start-time significantly. This was tested by chi-squared

31



5. Evaluation

Table 5.1: Features used

Feature Unit Used?
Time in ms Yes
Up-Time in ms No
Start Type 0 or 1 Yes
Android version String No
Package String Yes
Encrypted Boolean No
Frequency limit String Yes
Model String Yes
Group String No

test and is also supported by Table 5.3, where a large difference can be seen when
comparing warm and cold start.

Android version was not included in the model. The feature was omitted because there
are only a few android versions per data-set. In the data sets used in this thesis there
was exactly one version per data set, with one being in the test and another in the
training. This made the feature uninformative. In a different data set this could be
an interesting feature to explore further.

Package was used in the model. Not only was this heavily encouraged by the experts we
also found examples where it influenced the start time significantly. As this feature
indicates the app that was used it is of great interest to Sony and is one of the main
interest points of the thesis.

Encrypted was expected to have a significant effect on the start-time. But it did not.
Most of the datapoints were not encrypted. The distribution of the start-times of
apps on encrypted phones was plotted and noted that it did not significantly vary
from the distribution of app start times on unencrypted phones. Since the difference
was insignificant and the feature is not used by most Android users it was decided
to not include the feature in models.

Frequency limit was used, it had a significant correlation to start-time. It is also of great
interested to Sony.

Model was used in the model. Not only was this heavily encouraged by the experts but
there where also examples found where it influenced the start-time significantly.

Group was not used. The data sets used in this thesis contained data from only one group.
This makes the feature uninteresting on the analysed data sets.

5.2 Experimental Setup
Here follows a explanation of the experiments we ran during the thesis work.

5.2.1 Clustering
Given a data set consisting of 24mobile phonemodels and total of 1,000,000 samples from
all user groups. Note that this data set was only used for the clustering. The categorical

32



5.2 Experimental Setup

Figure 5.1: A plot of the Up-time and the start-time where the
Up-time is on the y axis and the start-time is on the x axis. It can
be seen that there is little or no dependence between up-time and
start-time

features listed in Section 2.4 were one-hot-mapped. This resulted in approximately 80
features. We used the elbow method to find sufficient K-means clusters (James et al.,
2013). Mean distance within-set was used as a measure of error in the clusters. K-means
was carried out with 3 to 30 cluster-centers. The sufficient number of clusters was chosen
as the number of clusters corresponding to the point in the error graph where the error did
not decrease significantly when an additional cluster center was added.

5.2.2 Linear Regression
A large part of the thesis consisted of applying linear regression (LR) in different ways
to the data. We will refer to three general models used as LR, LR using mean and LR
using GMM. We ran all of the LR experiments with the same data. The training data set
consists of 957,407 points and a test set of 111,350 data points. The datasets were chosen
randomly, although such that the samples in training set were captured before the samples
in the test set. The test and training subsets were chosen amongst samples with no missing
feature values. For LR using mean and LR using GMMwe grouped the data into different
“groups” when taking the mean and fitting the GMM. We define a “group” as all of the
data points that have the same value for every feature.

To show correlation between Model and Package, the Cartesian product of these two
features was added to the data as an additional feature. The one-hot encoded Cartesian
product adds a feature for every unique combination of the phone’s model and package.

33



5. Evaluation

Simple Linear Regression
In this set-up data points were used without using groups. First we removed outliers, that is
data-points with a start-time greater than 10000 ms were removed from the data-set. Then
the categorical features were one-hot mapped to be usable in linear regression. Just before
fitting the model the data was normalized to fit between 0 and 1 as described in Section
2.5. After the preprocessing we fitted a linear regression model to the data set. The fitted
linear regressionmodel was regularized with an l2-norm and fitted with stochastic gradient
descent. The fitting was carried out for a maximum of 150 iterations. Otherwise default
PySpark hyperparameters were used when fitting the regression model.

Mean or the Top of Kernel Density Estimation
The same preprocessing was done as in Section "Simple Linear Regression". We noted
that Simple LR performed poorly. This is likely due to the few features that were available
for the relatively complex data. To improve the performance of the regression model the
data was grouped and a model estimating the different “groups” means was fitted. For the
model the mean of a group was used as the dependent variable of the LR. Another model
was built to estimate the maximum density top of each group’s Kernel Density estimation
(KDE) instead of the group’smean start-time. See Figure 5.6 for a visualization of a typical
KDE curve and its maximum. The start-time that is at the maximal top of the probability
density is most likely to occur and therefore represents the “group”.

With GMM
Gaussian Mixture model describes the probability distribution of the data with only a few
parameters. Therefore the parametrization of the Gaussian mixture model captures more
information from the distribution than simply the mean or the top of a “group”. The same
data preprocessing was done as in Section “Simple Linear Regression”. Each group was
fitted with a GMM model, as described in Section 4.4. The fitted GMM’s were used to
better capture the behavior of the distribution. The mean (µ) and standard divination (σ)
of the GMMdistributions were used as the dependent variable. If the number of Gaussians
in the best fitting GMMmodel was greater than one, multiple regressions were performed
(one regression per Gaussian).

5.2.3 Alarm
The experiments consisted of testing and developing the Alarm pipeline that consist of 5
steps which are as follows, from Section 3.5:

1. Preprocessing.
2. Fit a distribution to the data.
3. Find differences in test- and training- distribution.
4. Fit a linear regression model.
5. Manually analyse the regression weights.

34



5.3 Results

We used two data sets; the previously described data set consisting of approximately
1M training samples and approximately 100k test samples and a smaller data set, consist-
ing of 5465 traning samples and 3330 test samples. Since the Alarm pipeline is looking
for differences between the start-times of the test and training data, it was important to
use some data that has known differences in start-times between the test and training data.
This is the purpose of the smaller data set. The small-scale data set originates from two
internal patches. One of the patches we known to be slower than the second patch. Note
that these patches were internal and were never released to the public. We chose the slower
patch to be the training data and the faster patch to be the test data. The training data is
chronologically gathered before the test set.

The differences in start-times between the test and training data in the large-scale data-
set are unknown. Experiments on these two data-sets can show that the Alarm pipeline
can handle a larger unknown data-set as well as identify known difference in the data. Two
separate experiments were carried out, one per data-set. In each the pipeline was applied
to the test and training set.

5.2.4 Decision Trees
We used decision tree to find which features discriminate between the Gaussians in the
GMM fitted to the data. In this application the Gaussians from the GMM were used as
classes. The decision tree estimates the Gaussian a data point is expected to belong to.

We trained one decision tree per Alarm pipeline “group”.

5.3 Results
This section we will present the results of the experiments that were carried out. As the
amount of data is large only examples of results are presented, as all result graphs would
quickly become overwhelming for the reader.

5.3.1 Clustering
We applied the clustering algorithm k-means to the data. The clusters we received were
uninformative. The clustering resulted in clusters along only one feature space. This can
be seen in Figure 5.2, in the figure the different colors are the different clusters. It can be
seen that only the start-time appears to determine the clusters. The feature that the clus-
tering occurred on was dependent on the one-hot-encoding and standardisation. Clusters
spanning patterns across several features were not achieved. Clustering did not yield the
intended results. However creating the program for clustering gave insight on Spark and
the data that was available.

5.3.2 Linear Regression
The results of the experiments with linear regressionmodels are presented in residual plots,
to visualize the fit of the multi-dimensional regression model on the data. The horizontal

35



5. Evaluation

Figure 5.2: A plot of the K-means clustering with time on the y
axis and model of phone on the x axis, note that the model is cen-
sored, the different clusters are represented using different colors

axis shows the observed value and the vertical axis the predicted value. In the middle of
the graph the line x = y is plotted. Points on this line were estimated with no error. The
shortest distance to the line from a point is the residual error of the point. Ideally the line
should intercept all the data points, but this is not likely to occur.

Simple Linear Regression
The simple linear regression had a problem with too few features for the number of data
points, this resulted in a bad fit of the model. As is show in Figure 5.3 the model fits the
data well for small values, but quickly looses the goodness of the fit. It can be seen that
the model cannot fully express the variance in the data. This baseline test yielded a mean
squared error of 0.049.

Mean or the Top of KDE
After introducing the group concept described in Section 2.4.2 we used the mean of the
groups as the dependent variable. This resulted in a much better fit as can be seen in Figure
5.5. The same method was used for the maximums of KDE. These results are very similar,
as can be seen in Figure 5.4.

The mean squared error of the group-mean linear regression model was 0.077, while
the linear regression for the KDE-tops was 0.082. The tops were chosen as in Figure
5.6, as the start-time corresponding to the highest probability when probability density is

36



5.3 Results

Figure 5.3: A residual plot of the linear regression with the pre-
dicted value on the y axis and the observed on the x axis, the blue
line represents the goal line. Data points are the red dots and the
data is scaled between 0 and 1. Note that it’s a bad fit, with several
data points map to the same value.

estimated with kernels. This graph is an example since for only one data set more than a
thousand graphs were generated. But the general shape of the probability density curve
is the most common shape of the start-time distribution. The shape of the curve varies
slightly.

With GMM
Linear regression using the GMM fitted to the data fitted to the data with varying success.
Overall the results were sufficient. As is shown in Figure 5.7 the model fits approximately
as well as the top model, except for a few outliers that are relatively extreme. For each
Gaussian in the fitted GMMwe built two regression models; one for the standard deviation
σ and one for the mean µ of the Gaussian.

Comparing the mean squared errors from these linear regression models yields the
Table 5.2. These values seems to be lower than the MSE of the previously described linear
regression model’s MSE. It is important to note that the number of samples per regression
model is dramatically decreased as the number of Gaussians is increased in the GMM.
With fewer samples for a regression model a lower MSE could be reached. It is easy to see
that the MSE is lower for the model in Figure 5.7 than for the model in Figure 5.8 because

37



5. Evaluation

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Observed

0.0

0.2

0.4

0.6

0.8

1.0

P
re

d
ic

te
d

TrainingAlarmMean

Figure 5.4: A residual plot of the linear regression with the pre-
dicted value on the y axis and the observed on the x axis, the blue
line represents the goal line. Data points are the dots and the data
is scaled between 0 and 1. This plot is of the experiments with the
mean of a group as the dependent variable. Note that this model
fit the data quite well, with a few outliers between 0.8 and 1.0 on
the x axis.

.

it is easier to fit a regression line through the few samples in Figure 5.8.

5.3.3 Alarm
To test the Alarm pipeline a data-set was selected such that it would give conclusive results.
That is a data-set were it was known that the start-times in the test set are significantly faster
than in the training set. The full set of weights for the 16 fitted LR models are listed in the
appendix.

After preprocessing large differences were found between the data sets. One of the
greatest differences between the data sets is explored in the Section 5.3.4 with the help of
a decision tree.

Figure 5.9 contains the LR model of the training set’s µ0. This model fits the data quite
well. There are a few points that are clearly outliers and do not fit the model. These points
are also the points with the slowest start-times making it seem that the LR is fitting worse
at slower times. In the Figure 5.10 the LR model of the test data can be seen. The fitting

38



5.3 Results

0.0 0.2 0.4 0.6 0.8 1.0
Observed

0.0

0.2

0.4

0.6

0.8

1.0
P
re

d
ic

te
d

TrainingAlarmOHE_top

Figure 5.5: A residual plot of the linear regression with the pre-
dicted value on the y axis and the observed on the x axis, the blue
line represents the goal line. Data points are the dots and the data
is scaled between 0 and 1. This plot is of the experiments with the
top of KDE as the dependent variable. Note that this model fit the
data quite well, with a few outliers between 0.6 and 1.0 on the x
axis.

has improved. There is only one outlier and the rest of the data points agree well with the
model.

When looking at the weights in the test and training data LR models in Table 5.3 one
can see that there has been a general decrease in the weights in the test compared to the
training set. The app that had the longest start-times in the training set was the Album app,
called “Album” in the table. The weight of the Album app variable has approximately
halved from the training to test data, which shows that the start-times for that app have
been improved in the test-patch.

Understanding the tables
Since the tables for the result of the alarm can be difficult to understand some clarification
is needed. The weights are translated into ms to be easier to understand. An explanation
for the features follows:

• The first feature is the intersect in the linear regression model.
• The phone’s model, as an abbreviation, for example Xperia Z5 becomes Z5.

39



5. Evaluation

Figure 5.6: A plot of the kernel density estimation of data, with
a dot on the maximum of the KDE. You can see that there is one
significant maximum at 200. One could also see a maximum at
6000 and at 5000, but as they are not global maximums they are
not a part of the linear regression model.

• The package of the apps being launched.
• The Cartesian product of the phone model and the the app being launched. If there is
only one phone in the alarm this weight will be the same as the package weight. This
feature is shown as the phone models abbreviation a space and the apps package, as
example the cartesian feature of comexampleapp and Z5 is “Z5 comexampleapp”.

• The start type that the app has been launched with. The start type is noted as “other
start” if the program has reported a strange number for start type, there are a few
samples with this feature value. The feature value “other start” indicates high un-
certainty of the true start type.

• The CPU frequency limit of the program. If the program has failed to report its
frequency limit properly it reports back “UNKNOWN”. There are very few data
points with “UNKNOWN” frequency limit. The numbers are in the style of “1.5
GHz x 4 0 0 0 2 GHz” with the current frequency limit in Hz and n x 4 means that
the first four cores have the same frequency limit, n.

• The mean of the dataset is added at the bottom, this is not a part of the model but is

40



5.4 Discussion

0.0 0.2 0.4 0.6 0.8 1.0
Observed

0.0

0.2

0.4

0.6

0.8

1.0
P
re

d
ic

te
d

TrainingAlarmOH_18 0Mu

Figure 5.7: A residual plot of the linear regression with the pre-
dicted value on the y axis and the observed on the x axis, the blue
line represents the goal line. Data points are the red dots and the
data is scaled between 0 and 1, of the µ0. Note that this model fit
the data quite well, with a few outliers between 0.6 and 1.0 on the
x axis.

added for reference.

5.3.4 Decision Trees
Decision trees were used to discriminate between different Gaussians in the fitted GMM.
It generally resulted in informative decision trees that could be used to help experts find
the differences between the different clusters.

An example of a fitted decision tree can be seen in Figure 5.11.

5.4 Discussion
Discussion of the results has been split into two different subsections, one for the Linear
Regression experiments and one for the Alarm Pipeline.

41



5. Evaluation

Table 5.2: A Table of the mean squared errors for different de-
pendent variables

Dependent variable MSE
µ0 0.083
µ1 0.211
µ2 0.187
µ3 0.184
µ4 0.110
µ5 0.086
µ6 0.006
σ0 0.055
σ1 0.133
σ2 0.166
σ3 0.162
σ4 0.095
σ5 0.054
σ6 0.009

5.5 Linear Regression
Linear regression generally performed quite well, and the “grouping” concept that was
introduced gave good results. It is interesting that the mean-regression model had a better
fit than the top-regression model. It appears to be easier to fit a LR model of the mean,
than the KDE top model to the data. This is likely to be the case because the means are
likely to be similar to one-another.

The Cartesian product features that have been used could be extended to include more
features, for example the start type and apps could be an interesting combination. Also
when there only exists one product or app the Cartesian features are uninteresting and
should be removed.

When looking at the graphs of 5.6 and 5.5 a few outliers can been seen that lie in the
right bottom corner of the graph. These points belong to “groups” that have an uncommon
start-time probability distribution. For example they can have a sinusoid shape, instead of
the normal shape in Figure 5.12. This makes them interesting for further analysis by users
of the system.

Other distributions than the Gaussians could also be used to fit the data, for example the
Poisson distribution could work given the general shape of the kernel density estimation.

5.6 Alarm Pipeline
The greatest issue with the Alarm pipeline is the threshold for the Alarm to notice an error.
That is, when the program should notice that there has occurred a change in the distribution
of the data. This part has been explored to some extent but even when using methods
to find the differences in the GMM distributions the problem of finding an appropriate
threshold still stands. A suggestion is to allow the user of the program to insert such

42



5.6 Alarm Pipeline

0.2 0.0 0.2 0.4 0.6 0.8 1.0
Observed

0.0

0.2

0.4

0.6

0.8

1.0
P
re

d
ic

te
d

TrainingAlarmOH_18 6Mu

Figure 5.8: A residual plot of the linear regression with the pre-
dicted value on the y axis and the observed on the x axis, the blue
line represents the goal line. Data points are the red dots and the
data is scaled between 0 and 1, of the µ6. The regression model
fits the data points with low MSE this is due to the fact that there
are so few data points in the model.

a threshold manually as this limit could vary. Another possibility is an implementation
that uses classical statistic measures to detect large changes. These measures could work
better but could also remove some of the transparency of the program from the user. The
measures could also result in a scaling problems.

The features in the “groups” could be changed. The user of the pipeline may have
interest in examining different features during varied applications of the Alarm Pipeline.
Possibly reports could come in that the phones appears to be slow when encrypted, then
this could be added to the feature list to investigate further.

Comparing the regression weights, is a non-trivial task and it gets more complicated
the more features that are considered. To aid the analyst in this a percentage-change in
regression weights could be presented.

The Alarm seems to be working as intended. In Table 5.3 it can be seen that most
weights have the expected relative values. More experiments with live data could be in-
teresting.

43



5. Evaluation

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Observed

0.0

0.2

0.4

0.6

0.8

1.0

P
re

d
ic

te
d

SVS_310GMMOH_18 0Mu

Figure 5.9: A residual plot of the linear regression with the pre-
dicted value on the y axis and the observed on the x axis, the blue
line represents the goal line. Data points are the dots and the data
is scaled between 0 and 1. This linear regression uses µ0 as the
dependent variable and is created for the traning data. Note that
this model fit the data quite well, with a few outliers between 0.8
and 1.0 on the x axis

44



5.6 Alarm Pipeline

0.0 0.2 0.4 0.6 0.8 1.0
Observed

0.0

0.2

0.4

0.6

0.8

1.0

P
re

d
ic

te
d

SVS_349GMMOH_18 0Mu

Figure 5.10: A residual plot of the linear regression with the pre-
dicted value on the y axis and the observed on the x axis, the blue
line represents the goal line. Data points are the dots and the data
is scaled between 0 and 1. This linear regression uses σ0 as the
dependent variable and is created for the test data. Note that this
model fit the data quite well, with one outliers at (1.0, 0.3)

45



5. Evaluation

Table 5.3: A Table of the changes in weights (unit milliseconds)
in the linear regression, using the SVS data-set, with the expected
value of the Gaussian, µ0, as the dependent variable. An explana-
tion for the features can be found in Section 5.3.3. Some of the
larger changes, both positive and negative, are marked with a gray
box. Note that generally there are only a few weights that have
had a larger change and often the changes absolute value is lower
than 25 ms. Also one of the known problems with the data set was
that album had a low performance which can be seen in the large
change of Album’s weight.

Feature Traning µ0 Test µ0 Change
Intersect 132.48 109.18 −23.3
Z5 132.48 109.18 −23.3
Calendar 27.09 6.16 −20.93
Email 45.11 72.33 27.22
Settings −44.4 −24.8 19.6
Album 184.99 97.45 −87.54
Camera 52.82 71.56 18.74
Organizer −14.3 12.14 26.44
Z5 Calendar 27.09 6.16 −20.93
Z5 Email 45.11 72.33 27.22
Z5 Settings −44.4 −24.8 19.6
Z5 Album 184.99 97.45 −87.54
Z5 Camera 52.82 71.56 18.74
Z5 Organizer −14.3 12.14 26.44
Cold start 102.95 127.94 24.99
Warm start −1.43 17.69 19.12
Other start 78.49 13.81 −64.68
1.5 GHz x 4 0 x 4 54.02 54.34 0.32
1.5 GHz x 4 0 0 0 2 GHz −18.47 −8.51 9.96
1.5 GHz x 4 0 0 2 GHz 0 14.11 23.58 9.47
1.5 GHz x 4 0 0 2 GHz 2 GHz 66.23 4.86 −61.37
1.5 GHz x 4 0 2 GHz 0 0 5.33 13.98 8.65
1.5 GHz x 4 0 2 GHz 0 2 GHz 40.25 37.97 −2.28
1.5 GHz x 4 0 2 GHz 2 GHz 0 30.15 23.18 −6.97
1.5 GHz x 4 2 GHz 0 0 0 3.55 1.94 −1.61
1.5 GHz x 4 2 GHz 0 0 2 GHz −20.83 14.54 35.37
1.5 GHz x 4 2 GHz 2 GHz 0 0 59.69 29.59 −30.1
1.5 GHz x 4 2 GHz x 4 61.87 27.35 −34.52
UNKNOWN 137.91 142.99 5.08

Mean 329.92 264.56 −65.36

46



5.6 Alarm Pipeline

Table 5.4: A Table of the changes in weights in the linear regres-
sion, using the SVS data-set, with the standard deviation of the
Gaussian, σ0, as the dependent variable. An explanation for the
features can be found in Section 5.3.3. The standard deviation is
harder to interpreter than the mean, as a small estimated standard
deviation can be due to a small amount of samples or due to a
small variance in the data. We can see that the largest reduction
in standard deviation has been in the “Album” feature. Also note
that “Organizer” has had a large increase in standard deviation,
possibly suggesting a reduced performance.

Feature Traning σ0 Test σ0 Change
Intersect 560.63 615.94 55.31
Z5 560.63 615.94 55.31
Calendar 81.64 220.25 138.61
Email 168.56 307.87 139.31
Settings −177.36 17.72 195.08
Album 845.47 778.3 −67.17
Camera 465.05 483.75 18.7
Organizer −3.07 237.55 240.62
Z5 Calendar 81.64 220.25 138.61
Z5 Email 168.56 307.87 139.31
Z5 Settings −177.36 17.72 195.08
Z5 Album 845.47 778.3 −67.17
Z5 Camera 465.05 483.75 18.7
Z5 Organizer −3.07 237.55 240.62
Cold start 329.46 493.74 164.28
Warm start 205.52 251.18 45.66
Other start 353.51 442.82 89.31
1.5 GHz x 4 0 0 0 0 290.51 366.57 76.06
1.5 GHz x 4 0 0 0 2 GHz 144.25 124.8 −19.45
1.5 GHz x 4 0 0 2 GHz 0 128.95 117.9 −11.05
1.5 GHz x 4 0 0 2 GHz 2 GHz 255.25 461.65 206.4
1.5 GHz x 4 0 2 GHz 0 0 208.82 221.88 13.06
1.5 GHz x 4 0 2 GHz 0 2 GHz 132.31 303.6 171.29
1.5 GHz x 4 0 2 GHz 2 GHz 0 90.36 377.86 287.5
1.5 GHz x 4 2 GHz 0 0 0 167.28 221.2 53.92
1.5 GHz x 4 2 GHz 0 0 2 GHz 234.05 222.86 −11.19
1.5 GHz x 4 2 GHz 2 GHz 0 0 200.36 265.18 64.82
1.5 GHz x 4 2 GHz x 4 165.09 275.51 110.42
UNKNOWN 454.94 803.98 349.04

Mean 1394.34 1144.79 −249.55

47



5. Evaluation

Figure 5.11: A Decision tree that separates two different Gaus-
sians, one that is a faster Gaussian and on that is a slower Gaus-
sian. The first line in a node is the splitting condition, note that
all features are one-hot-encoded. On the second line is the Gini
impurity value of the splitting condition. On the third line is the
number of data samples in that node. On the last line is the num-
ber of samples that belong to each Gaussian, in the first node we
have 2 samples in the fast Gaussian and 19 in the slower. The first
features that is used to split is adbd running. The feature indicates
if a debugging tool is running on the phone. Label is a unique
identifier for the software version and lastly plug type shows the
type of USB connection on the phone where zero is no connection.
Note that plug type and adbd are features that are collected only
on internal phones.

48



5.6 Alarm Pipeline

Figure 5.12: Plot of a KDE and GMM where the distribution has
a standard shape. Note that the shape is Gaussian like and that the
shape of the sum of Gaussian and the KDE are similar.

Figure 5.13: Plot of the Gaussians that make up the sum in Figure
5.12

49



5. Evaluation

50



Chapter 6
Conclusions

The goals of the thesis were the following:

1. Find features that affect app start-times,
2. Describe the distribution of the start-times,
3. Apply machine learning models on performance data.

The features found that significantly affect app start-times were app package name,
product, start-type and frequency limit. The start-time distribution was fitted using GMM
and represented using KDE.

Spark has proven to be a useful tool for implementing and applying machine learning
to large amounts of data. Although the documentation of Spark has room for improvement.
When combining PySpark and Jupyter, Spark became easy to use. After learning how to
best use the Resilient Distributed Dataset (RDD) the programs became efficient also for
large data sets. Jupyter enabled fast and iterative development.

The result of the thesis is the alarm pipeline that, based on machine learning models,
with Android performance data from Sony Mobile can help Sony’s developers improve
app quality.

51



6. Conclusions

52



Bibliography

Bird, C., Ranganath, V.-P., Zimmermann, T., Nagappan, N., and Zeller, A. (2014). Extrin-
sic influence factors in software reliability: A study of 200,000 windows machines. In
Companion Proceedings of the 36th International Conference on Software Engineering,
pages 205–214. ACM.

Bishop, C. M. (2006). Pattern recognition and machine learning. Springer, New York.

Bottou, L. and Bousquet, O. (2008). The tradeoffs of large scale learning. In Platt, J.,
Koller, D., Singer, Y., and Roweis, S., editors, Advances in Neural Information Pro-
cessing Systems, volume 20, pages 161–168. NIPS Foundation (http://books.nips.cc).

Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C., and Wirth, R.
(2000). Crisp-dm 1.0 step-by-step data mining guide.

Devenish, A. (2015). Sony xperia and android 6.0, marshmal-
low. http://blogs.sonymobile.com/2015/10/06/
sony-xperia-and-android-6-0-marshmallow/. (Accessed on
08/15/2016).

James, G., Witten, D., Hastie, T., and Tibshirani, R. (2013). An introduction to statistical
learning, volume 112. Springer.

Kwon, Y., Lee, S., Yi, H., Kwon, D., Yang, S., Chun, B.-G., Huang, L., Maniatis, P., Naik,
M., and Paek, Y. (2013). Mantis: Automatic performance prediction for smartphone
applications. In Proceedings of the 2013 USENIX conference on Annual Technical Con-
ference, pages 297–308. USENIX Association.

Mingers, J. (1989). An empirical comparison of selection measures for decision-tree in-
duction. Machine learning, 3(4):319–342.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,
M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau,
D., Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research, 12:2825–2830.

53

http://blogs.sonymobile.com/2015/10/06/sony-xperia-and-android-6-0-marshmallow/
http://blogs.sonymobile.com/2015/10/06/sony-xperia-and-android-6-0-marshmallow/


BIBLIOGRAPHY

Quinlan, J. R. (1986). Induction of decision trees. Machine learning, 1(1):81–106.

Quinlan, J. R. (2014). C4. 5: programs for machine learning. Elsevier.

Van Der Walt, S., Colbert, S. C., and Varoquaux, G. (2011). The numpy array: a structure
for efficient numerical computation. Computing in Science & Engineering, 13(2):22–
30.

Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauly, M., Franklin, M. J.,
Shenker, S., and Stoica, I. (2012). Resilient distributed datasets: A fault-tolerant ab-
straction for in-memory cluster computing. In Presented as part of the 9th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 12), pages 15–
28, San Jose, CA. USENIX.

54



Appendices

55





Table 1: A table of µ for the known data-sets

Feature Training µ0 Test µ0 Training µ1 Test µ1 Training µ2 Test µ2
Constant 132.48 109.18 147.04 105.9 124.79 31.11
Z5 132.48 109.18 147.04 105.9 124.79 31.11
Calendar 27.09 6.16 −134.65 −4.79 −54.15 −94.93
Email 45.11 72.33 378.05 180.14 11.02 207.26
Settings −44.4 −24.8 −80.54 68.49 −27.87 −90.36
Album 184.99 97.45 −12.17 −24.41 65.01 −16.26
Camera 52.82 71.56 64.77 31.05 134.03 74.17
Organizer −14.3 12.14 −68.41 −144.57 −3.24 −48.75
Z5 Calendar 27.09 6.16 −134.65 −4.79 −54.15 −94.93
Z5 Email 45.11 72.33 378.05 180.14 11.02 207.26
Z5 Settings −44.4 −24.8 −80.54 68.49 −27.87 −90.36
Z5 Album 184.99 97.45 −12.17 −24.41 65.01 −16.26
Z5 Camera 52.82 71.56 64.77 31.05 134.03 74.17
Z5 Organizer −14.3 12.14 −68.41 −144.57 −3.24 −48.75
Cold start 102.95 127.94 313.77 63.33 313.55 212.93
Warm start −1.43 17.69 −54.57 −14.01 −1.92 −128.71
Other start 78.49 13.81 −112.15 56.58 −186.83 −53.1
1.5 GHz x 4 0 0 0 0 54.02 54.34 49.48 −256.95 69.16 −242.79
1.5 GHz x 4 0 0 0 2 GHz −18.47 −8.51 −36.33 5.92 −177.0 131.12
1.5 GHz x 4 0 0 2 GHz 0 14.11 23.58 181.94 384.3 13.12 170.31
1.5 GHz x 4 0 0 2 GHz 2 GHz 66.23 4.86 −91.5 −19.84 1.92 0.01
1.5 GHz x 4 0 2 GHz 0 0 5.33 13.98 −64.22 154.02 −73.53 267.52
1.5 GHz x 4 0 2 GHz 0 2 GHz 40.25 37.97 −21.61 −50.4 317.77 −224.28
1.5 GHz x 4 0 2 GHz 2 GHz 0 30.15 23.18 −71.25 −68.14 209.56 0.01
1.5 GHz x 4 2 GHz 0 0 0 3.55 1.94 −13.27 237.62 −36.88 −30.49
1.5 GHz x 4 2 GHz 0 0 2 GHz −20.83 14.54 127.08 −71.67 −54.82 366.01
1.5 GHz x 4 2 GHz 2 GHz 0 0 59.69 29.59 −84.05 −116.03 38.97 0.01
1.5 GHz x 4 2 GHz x 4 61.87 27.35 110.5 −17.05 0.0 −224.28
UNKNOWN 137.91 142.99 104.93 1.03 39.0 −181.97
Mean 329.92 264.56 526.22 412.92 489.21 333.34

57



Table 2: A table of µ for the known data-sets

Feature Training µ3 Test µ3 Training µ4 Test µ4
Constant 153.92 46.68 330.4 230.63
Z5 153.92 46.68 330.4 230.63
Calendar 0.03 0.03 286.28 0.04
Email 77.4 22.25 261.62 507.13
Settings 0.03 10.75 286.28 0.04
Album 144.43 70.4 323.64 −276.46
Camera −67.86 −56.63 317.7 0.04
Organizer 0.03 0.03 286.28 0.04
Z5 Calendar 0.03 0.03 286.28 0.04
Z5 Email 77.4 22.25 261.62 507.13
Z5 Settings 0.03 10.75 286.28 0.04
Z5 Album 144.43 70.4 323.64 −276.46
Z5 Camera −67.86 −56.63 317.7 0.04
Z5 Organizer 0.03 0.03 286.28 0.04
Cold start −31.49 94.38 298.98 230.63
Warm start 0.03 0.03 286.28 0.04
Other start 185.44 −47.67 317.7 0.04
1.5 GHz x 4 0 0 0 0 −314.77 0.03 286.28 0.04
1.5 GHz x 4 0 0 0 2 GHz −67.2 0.38 286.28 0.04
1.5 GHz x 4 0 0 2 GHz 0 42.76 0.03 352.04 0.04
1.5 GHz x 4 0 0 2 GHz 2 GHz 198.66 0.03 286.28 0.04
1.5 GHz x 4 0 2 GHz 0 0 29.29 102.93 286.28 −138.23
1.5 GHz x 4 0 2 GHz 0 2 GHz 0.03 0.03 286.28 0.04
1.5 GHz x 4 0 2 GHz 2 GHz 0 0.03 0.03 286.28 0.04
1.5 GHz x 4 2 GHz 0 0 0 86.08 12.68 286.28 507.13
1.5 GHz x 4 2 GHz 0 0 2 GHz 185.01 0.03 317.7 0.04
1.5 GHz x 4 2 GHz 2 GHz 0 0 16.28 0.03 286.28 0.04
1.5 GHz x 4 2 GHz x 4 0.03 0.03 286.28 0.04
UNKNOWN −21.98 −69.22 233.22 −138.19
Mean 465.09 249.83 430.48 737.59

58



Table 3: A table of σ for the known data-sets

Feature Test σ0 Training σ0 Test σ1 Training σ1 Test σ2 Training σ2
Constant 560.63 615.94 997.81 1076.91 1787.71 1001.38
Z5 560.63 615.94 997.81 1076.91 1787.71 1001.38
Calendar 81.64 220.25 −11.62 −26.07 −430.42 −112.06
Email 168.56 307.87 1220.64 809.07 2064.1 1986.47
Settings −177.36 17.72 −119.64 −48.5 605.94 −565.75
Album 845.47 778.3 538.23 460.63 1722.29 60.34
Camera 465.05 483.75 490.45 451.69 1424.45 629.44
Organizer −3.07 237.55 −227.28 974.69 −122.63 −122.63
Z5 Calendar 81.64 220.25 −11.62 −26.07 −430.42 −112.06
Z5 Email 168.56 307.87 1220.64 809.07 2064.1 1986.47
Z5 Settings −177.36 17.72 −119.64 −48.5 605.94 −565.75
Z5 Album 845.47 778.3 538.23 460.63 1722.29 60.34
Z5 Camera 465.05 483.75 490.45 451.69 1424.45 629.44
Z5 Organizer −3.07 237.55 −227.28 974.69 −122.63 −122.63
Cold start 329.46 493.74 558.66 1174.99 1448.91 1291.1
Warm start 205.52 251.18 −261.84 480.56 597.48 525.38
Other start 353.51 442.82 1058.18 39.2 1131.73 −465.33
1.5 GHz x 4 0 0 0 0 290.51 366.57 108.31 1106.53 2488.04 −230.7
1.5 GHz x 4 0 0 0 2 GHz 144.25 124.8 649.28 347.02 960.98 185.65
1.5 GHz x 4 0 0 2 GHz 0 128.95 117.9 602.3 177.34 −167.8 510.87
1.5 GHz x 4 0 0 2 GHz 2 GHz 255.25 461.65 −313.02 −139.0 −188.18 174.89
1.5 GHz x 4 0 2 GHz 0 0 208.82 221.88 376.7 −162.83 1730.86 579.33
1.5 GHz x 4 0 2 GHz 0 2 GHz 132.31 303.6 416.41 190.0 850.38 312.08
1.5 GHz x 4 0 2 GHz 2 GHz 0 90.36 377.86 −25.93 −311.22 −202.63 174.89
1.5 GHz x 4 2 GHz 0 0 0 167.28 221.2 172.67 985.11 1144.69 −216.56
1.5 GHz x 4 2 GHz 0 0 2 GHz 234.05 222.86 13.47 −117.07 458.86 46.76
1.5 GHz x 4 2 GHz 2 GHz 0 0 200.36 265.18 −306.86 725.63 694.92 174.89
1.5 GHz x 4 2 GHz x 4 165.09 275.51 67.31 225.76 695.2 440.31
UNKNOWN 454.94 803.98 1092.06 1162.12 333.47 772.73
Mean 1394.34 1144.79 2687.36 2428.54 5201.03 3444.51

59



Table 4: A table of σ for the known data-sets

Feature Test σ3 Training σ3 Test σ4 Training σ4
Constant 2566.91 1118.58 2923.87 7071.0
Z5 2566.91 1118.58 2923.87 7071.0
Calendar 1780.74 419.77 2432.76 6810.93
Email 2734.45 −481.21 2520.55 6550.86
Settings 1780.74 −577.81 2432.76 6810.93
Album 1349.73 1302.88 3080.5 7331.07
Camera 2044.21 2134.02 2188.34 6810.93
Organizer 1780.74 419.77 2432.76 6810.93
Z5 Calendar 1780.74 419.77 2432.76 6810.93
Z5 Email 2734.45 −481.21 2520.55 6550.86
Z5 Settings 1780.74 −577.81 2432.76 6810.93
Z5 Album 1349.73 1302.88 3080.5 7331.07
Z5 Camera 2044.21 2134.02 2188.34 6810.93
Z5 Organizer 1780.74 419.77 2432.76 6810.93
Cold start 1726.36 1495.68 3168.29 7071.0
Warm start 1780.74 419.77 2432.76 6810.93
Other start 2621.29 42.67 2188.34 6810.93
1.5 GHz x 4 0 0 0 0 3142.24 419.77 2432.76 6810.93
1.5 GHz x 4 0 0 0 2 GHz 2482.0 −759.17 2432.76 6810.93
1.5 GHz x 4 0 0 2 GHz 0 1669.36 419.77 3996.94 6810.93
1.5 GHz x 4 0 0 2 GHz 2 GHz 2662.78 419.77 2432.76 6810.93
1.5 GHz x 4 0 2 GHz 0 0 −667.72 1305.58 2432.76 6296.42
1.5 GHz x 4 0 2 GHz 0 2 GHz 1780.74 419.77 2432.76 6810.93
1.5 GHz x 4 0 2 GHz 2 GHz 0 1780.74 419.77 2432.76 6810.93
1.5 GHz x 4 2 GHz 0 0 0 456.52 708.09 2432.76 6550.86
1.5 GHz x 4 2 GHz 0 0 2 GHz 594.8 419.77 2188.34 6810.93
1.5 GHz x 4 2 GHz 2 GHz 0 0 2390.99 419.77 2432.76 6810.93
1.5 GHz x 4 2 GHz x 4 1780.74 419.77 2432.76 6810.93
UNKNOWN 4081.88 1123.37 1604.1 7845.58
Mean 4446.43 3518.26 4392.4 8197.98

60



 



INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTATIONSDAG 2016-08-25

EXAMENSARBETE Patterns in live performance data
STUDENT Simon Svensson
HANDLEDARE Prof. Pierre Nugues (LTH) and Jens Gulin (Sony Moblie)
EXAMINATOR Jacek Malec (LTH)

Metod för att hitta förklaringar till
långsamma app start-tider

POPULÄRVETENSKAPLIG SAMMANFATTNING Simon Svensson

Androidmarknaden är en gigantisk marknad som växer för varje dag. Den stora mäng-
den data som genereras måste behandlas på ett bra sätt för att hjälpa utvecklarna att
skapa bättre och snabbare program samt telefoner. Här presenteras ett arbetssätt som
kan hitta problem med Android-appar och därför hjälpa utvecklare att lösa problem.

Sony Moblie samlar viss prestandadata från an-
vändare av telefoner som har tillåtit detta. Denna
data innehåller bland annat tiden det tar för en
app att starta, tiden från att användare klickar
på appen till att den är redo att användas. Denna
data har analyserats av prestandaingenjörer med
hjälp av klassiska statistiska metoder och an-
dra verktyg. I detta examensarbete har denna
data analyseras med hjälp av maskininlärning, en
typ av artificiell intelligens som använder stora
mängder data för att lära programmet. Detta är
för att hitta vad det är som gör starttiden för ap-
par på telefonen långsamma. En metod för att
hitta vad som gör telefoner långsamma har imple-
menterats och testas för att använda i framtiden.
Detta program kallas ”Alarm”.

Det första problemet var att representera tids-
data på ett bra sätt. Först testades det att an-
vända tiden som den är till skapandet av modellen.
Den modellen fungerade inte bra, det blev väldigt
mycket fel i modellen och gav nästintill ingen in-
formation. Modellen byggd på denna tidrepresen-
tationen kunde inte återskapa datan och lärde sig
väldigt lite från datan.
Efter detta testades en metod med att använda

ett medelvärde av tider för att representera en hel
grupp av data, för att skapa en bredare approxi-

mation av datan.
Detta fungerade mycket bättre och gav ett ty-

dligare resultat. Det enda problemet med att
ta medelvärdet är att en stor del av informa-
tionen som finns i datan försvinner när endast
medelvärdet används.
Därför testade att beskrivas datan med nor-

malfördelningar. Detta gav ett liknade resultat
som att använda medelvärdet men, det blev my-
cket lättare för utvecklare som använder program-
met att förstå vad som hade hänt. Detta vidare
utvecklades sen till ”Alarm” programmet. Det
består av fem steg.

1. Förarbete och städning av datan.
2. Hitta en distribution som passar data.
3. Hitta skillnader från tidigare distributioner.
4. Använda linjär regression, en metod för att

beskriva datan som en linje, på datan.
5. Analysera linjära regressions resultatet för att

hitta vad som har ändrats.

När systemet används görs detta genom att an-
vända två olika dataset och jämföra skillnaderna
mellan deras resultat. Via experiment har vi kun-
nat visa att ”Alarm” kan hitta att till exempel en
app har blivit mycket långsammare.


	Abstract
	Introduction
	Background
	Introduction to Android Applications
	The Data Mining and Machine Learning Process
	Previous Work

	The Data
	Overview
	About the Data Set
	Data Storage
	Features
	Software Features
	Hardware Features

	Preprocessing the Data

	Approach
	Method
	Identifying Relevant Features
	Clustering
	Linear Regression

	Theory
	One-Hot Encoding
	Kernel Density Estimator
	Gaussian Mixture Model
	K-Means
	Linear Regression
	Decision Tree

	Visualisation of the Result
	CRISP-DM Revisited
	Introduction of the Alarm Pipeline
	Preprocessing
	Fitting a Distribution
	Differences
	Linear Regression
	Finding the Cause of the Change


	Implementation
	Spark
	K-means
	Kernel Density Estimator
	Gaussian Mixture Models
	Linear Regression
	Decision tree
	Alarm Pipeline

	Evaluation
	Feature selection
	Experimental Setup
	Clustering
	Linear Regression
	Alarm
	Decision Trees

	Results
	Clustering
	Linear Regression
	Alarm
	Decision Trees

	Discussion
	Linear Regression
	Alarm Pipeline

	Conclusions
	Bibliography

