
Requirements Engineering in Startups
with Open Source Software Related
Business Strategies

Billy Johansson, Martin Lichstam

MASTER’S THESIS | LUND UNIVERSITY 2016

Department of Computer Science
Faculty of Engineering LTH

ISSN 1650-2884
LU-CS-EX 2016-38

Requirements Engineering in Startups with
Open Source Software Related Business

Strategies

Billy Johansson, ama10bjo@student.lu.se
Martin Lichstam, martin.lichstam@gmail.com

September 29, 2016

Acknowledgements
We would like to thank Peter Neubauer, Christoffer Richardsson and Emil
Sjödin for devoting their time to participate in our interview sessions. We
would also like to thank Johan Linåker and Björn Regnell for their guidance
and supervision throughout the thesis process.

Abstract

The role of startups in today’s economy grows increasingly more im-
portant while more and more companies engage in open source software
(OSS) development. Both startups and open source projects are sources
of, and rely on, innovation. As startups are typically very resource con-
strained and open source potentially offers low cost labour and innovation
sources; the intersection of startups and OSS is worth studying.

In this thesis we perform a literature study on the current state of
Requirements Engineering (RE) in startups and OSS, showing that the
RE process is comparatively more informal in both startups and OSS
than what would be the norm in classical RE. We also present inter-
views with four different startups and examine how they manage their
OSS projects through an RE perspective confirming the results from the
literature study. In addition we identify a set of RE related challenges
faced by the interviewed startups when managing their OSS projects and
present potential actions that can be deployed to alleviate the challenges.
To further aid the startups in this area we identify four different themes
related to the challenges that indicates broader issues in a startups OSS
RE bridging process and present a method for identifying areas of im-
provement in a startup’s ongoing OSS project.

Contents
1 Background 1

2 Problem Description 2

3 Methodology 4

4 Frame of Reference 7
4.1 Startups . 7

4.1.1 Lean Start-up . 7
4.2 Open Source . 8

4.2.1 OS as Part of a Business Model 8
4.2.2 Open Source Licenses . 8
4.2.3 Open Source Community 9

4.3 RE in Startups and Lean Start-up 12
4.3.1 Requirement Specification 12
4.3.2 Elicitation . 12
4.3.3 Release Planning and Validation 13

4.4 RE in OS community . 14
4.4.1 Elicitation . 14
4.4.2 Requirement Specification 14
4.4.3 Release Planning and Validation 15
4.4.4 What to Reveal . 15

5 The Startups 16
5.1 Mapillary . 16

5.1.1 Business Model . 16
5.1.2 OSS Strategy . 17

5.2 Neo Technology . 18
5.2.1 Business Model . 18
5.2.2 OSS Strategy . 18

5.3 Bitcraze . 20
5.3.1 Business Model . 20
5.3.2 OSS Strategy . 20

5.4 RefinedWiki . 22
5.4.1 Business Model . 22
5.4.2 OSS Strategy . 22

5.5 License and Legalities . 24

6 The Internal and External RE Process 25
6.1 Elicitation . 25
6.2 Requirements Specification . 27
6.3 Validation . 30
6.4 Release Management . 32

7 Analysis 33
7.1 The Incentives . 33
7.2 The Startups Summarised . 35

7.2.1 Bitcraze . 35
7.2.2 Mapillary . 35
7.2.3 Neo Technology . 35
7.2.4 RefinedWiki . 36

7.3 What to Reveal . 37
7.4 The Research Questions . 39
7.5 RQ1: Requirements Engineering 39
7.6 RQ2: Challenges . 42

7.6.1 Potential Actions to Challenges 43
7.6.2 Themes . 46

7.7 RQ3: Engineering Solution Design of BOSS 48
7.7.1 BOSS Revealing Guidelines 49
7.7.2 BOSS Challenge Analysis 51
7.7.3 BOSS Macro Analysis . 52
7.7.4 BOSS Action Application 53

8 Validation 56

9 Threats to Validity 60
9.1 Internal Validity . 60
9.2 External Validity . 60
9.3 Construct Validity . 60
9.4 Reliability . 60

10 Discussion 61

11 Conclusions 64

Appendices 65

A Screenshots of validation webpage 65

1 Background
In today’s economy startups have an essential role for a country of being able
to compete on a global scale. The entrepreneurial spirit combined with the
agility – which large corporations often seem to be lacking – enables innovation
to take place. Many corporations are attempting to leverage on this and as
an example, companies like Facebook, Tesla Motors, Apple and Google are
intentionally trying to keep their organisations as much startup as possible [28].

Research shows that startups often are characterised by newly created com-
panies with inexperienced teams that operate in a volatile and highly uncertain
market – thus making flexibility and adaptation two very important factors.
Empowerment of team members is another crucial element due to the time
pressure and lack of resources, which consequently forces startups to keep man-
agement and administration at minimum expense [10].

The ultimate goal of a startup is to find a viable and scalable business
model, hence, one of many possible definitions could be: "a temporary organi-
sation designed to search for a repeatable and scalable business model.". Typical
characteristics are: lack of resources, highly reactive and innovation (ibid.).

Open Source Software (OSS) is software that anyone can contribute to. It is
usually released for free under various licenses that may allow commercial use.
OSS projects can emerge from the need of a single developer or be released by
a company as part of a business strategy.

OSS is becoming increasingly more utilised as part of a business strategy
for startups. This includes incorporation of existing OSS projects in products
as well as releasing internally produced intellectual property to the open source
community. As an example, OSS could be used to create services and prod-
ucts at low cost – something that would otherwise require extensive capital
investment. Another approach is the dual-licensing strategy, where the startup
releases parts of its software as open source, in order to benefit from the commu-
nity and to eventually enhance the proprietary, closed sourced version of their
product.

1

2 Problem Description
From a Requirements Engineering (RE) perspective, the inclusion of OSS in
a business strategy has many issues; including (but not limited to) when to
include, when to release, what and to what extent contributions should be made,
managing OSS stakeholders and steering an OSS project in a direction valuable
to the company.

In OSS projects, classical RE specifications are almost completely absent.
Instead, the requirements are expressed in an informal way and often in relation
to older versions or other competing products. They are found scattered across
work products such as issue trackers, emails and How To-guides [24].

Due to the startup circumstances mentioned earlier in the background sec-
tion, they are forced to adapt quickly to a highly uncertain and rapidly changing
market driven environment. This seems to rule out the practicality of classical
RE specifications which are therefore hardly used in this context. The customers
are rarely known and there might not even be a market for the product, hence,
requirements change rapidly. Some startups have adopted a lean approach with
heavy focus on quickly eliciting and validating requirements, a method that is
gaining more traction [21].

In this thesis the intersection of startups and OSS in an RE context will
be investigated. Currently, the literature on the startup subject is somewhat
limited and close to non-existent for the parts combined. Fortunately OSS is a
more studied field with more material accessible.

The ultimate goal of the thesis is to establish a set of RE guidelines for how
startups engaged in OSS development should structure their internal, as well as
external and bridging RE practices towards OSS communities to maximise value
capture and creation in regards to the startup’s business and product strategies.

RQ1: How is RE currently structured and practiced in startups engaged in
OSS development?

RQ2: What challenges can be identified in regards to current RE structure and
practices in startups engaged in OSS development?

RQ3: How can the problems identified in RQ2 be mitigated?

From the literature study we find that RE practices in OSS projects as
well as startups are done very informally when compared to classical RE. The
results are mirrored in the interviews and in addition we find a set of RE related
challenges faced by the interviewed startups. We propose potential actions to
alleviate the challenges and also bring attention to four different themes that
indicate broader issues in a startup’s OSS RE bridging process and present
a method for identifying challenges related to the themes in an ongoing OSS
project.

The thesis is structured as followed. Section 3 presents the methodology
used and is followed by the literature study presented as a frame of reference
in section 4. The frame of reference briefly introduces startups and OSS as
a concept and then examines previous research on how RE is done separately
in startups and OSS communities. In section 5 the interviewed startups are
presented along with their business models and OSS strategies. Following the
introduction of the startups we present the results from the interviews in section

2

7.1 by examining the different incentives the startups had for releasing an OSS
project, what they have released and how they manage the projects from an RE
perspective. In section 7 the results of the literature study and interviews are
analysed and the research questions answered. We also present a checklist and
a flow chart that can be used by startups releasing an OSS project. In section
10 and 11 the results are discussed and summarised.

3

3 Methodology
This section describes the scientific approach of the thesis in two steps – first
by providing an overview and secondly by specifying each step of the process.

De�nition of RQ and
Literature Study

Identify and
Contact Startups

Craft Interview
Protocols and Perform

Data Analysis and
Literature Comparison

Finalizing - Answering RQ,
Guidelines and Validation

Figure 1: The Process - Overview

Definition of RQ and Literature Study The research begins with a lit-
erature study to map the current state of RE in startups and OSS projects
separately in an attempt to deeper understand the intersection between them.
The material was obtained through Google Scholar, IEEE, Lund University’s
internal portal and our supervisor. The research questions were crafted with
the intention to fulfil certain purposes, in order to be able to derive adequate
conclusions and results.

The objective with RQ1 is to map the current state of how RE is practiced
in connection to OSS communities. More specifically, how the startup com-
municates and coordinates the work, both externally and internally with their
community. How are ideas created and what way do the startup pursue to create
the final product? This involves everything from potential brainstorming to how
the requirements are specified and written down to the development stage – how
tasks are noted and how validation is performed. Also, what communication
channels are used, both internally and with the community to elicit, validate
and specify requirements as well as develop the product. Moreover, it enables
an exploration of the general processes, hence, providing a deeper insight which
in turn leads to RQ2 – what challenges can be identified.

RQ2 ’s objective is to pinpoint issues a startup may be facing regarding RE
structure and practices. This investigation will provide a useful overview as well
as understanding in order to eventually be able to answer RQ3, namely, how to
mitigate these challenges found in the previous research question.

The answer of RQ3 will serve as a base for the creation of the final guide-
lines/framework.

Identify and Contact Startups A case study of an exploratory nature was
performed. Participating startups were the following:

Mapillary

RefinedWiki

4

Neo Technology

Bitcraze

The startups have been carefully selected with the major requirement of OS
community involvement-criterion in mind. A more extensive introduction of the
interviewees as well as the startups is provided in section 5. The companies were
initially found by analysing Malmö’s startup scene1, information that is publicly
available on the web. Secondly, an in-depth analysis was performed in order to
assess whether the particular startup had an OSS involvement. A list of four
potential candidates was created and an email was sent to their representatives
that could be found on each startup’s website. All startups responded positively
to the request for participating in an interview.

The startups were provided with the information regarding the interview’s
nature, which they subsequently used to select an appropriate interviewee.

Craft Interview Protocols and Perform The interview questions were
prepared in advance; however, they served as a guideline rather than a manuscript
– a semi-structured interview. The questions were based on the previous step,
the literature study, and on the author’s empirical knowledge with the main
goal of answering RQ1.

The interviews were performed face to face, at the startups’ offices, recorded
digitally and transcribed in its entirety.

Data Analysis and Literature Comparison The analysis was tightly con-
nected with the answering of RQs, however, sections such as What to Reveal
was conducted separately. This could be seen as a by-product mainly extracted
from the interviews. It should be mentioned that the literature turned out to
be especially limited and rarely delves into specifics on RE in the OSS-Startup
intersection. However, efforts were made to attain information that could be
valuable in order to successfully derive a framework. This was conducted by it-
eratively comparing against the results obtained from the interviews. Also, key-
words that were obtained from the interviews were used for literature searching
and vice versa. In order to be able to fully analyse the data obtained from the
startups, the various parts of the interviews were categorised into the following
themes:

Elicitation

Requirements Specifications

Validation

Release Management

OSS

General process

The interviews were conducted once for each startup and transcribed in their
entirety. The transcription process offered an extensive learning experience
and served as firm support for continued analysis. The amount of material

1http://www.malmostartups.com/

5

http://www.malmostartups.com/

from the interviews was considerable and allowed several iterations between
the literature and the assessed data to take place. These cycles, apart from
the study itself, included plenty of discussions and brainstorming between the
authors, leading to the birth of several hypotheses which served as a foundation
for the next iteration cycle where both the literature and the data from the
interview were revisited. Although the hypotheses were not explicitly written
down, they worked as an informal road map and played a major role in the
development of the cornerstones that eventually shaped this thesis.

All quotes, both in-line and as separate paragraphs in this thesis are, unless
nothing else is mentioned, raw data from the interviews. The following are ex-
amples of how they may look like:

(. . .) reasoning that ‘. . . it’s useful for other third parties and they can help
us with development.’ while also noting that there was ‘no product value
for us’ meaning

or

What’s most interesting for an open source project are things that
are reusable, general and solve problems that a large enough group
of people have.

Generally, the startups disclosed an unambiguous view of their current situ-
ation, thus making it simpler to identify both potential challenges and potential
actions. Furthermore, some startups not only exhibited enormous amount of
experience but an outstanding track record as well, implicitly hinting what kind
of potential actions that can be used.

Finalisation - Answering RQs, Guidelines and Validation The first re-
search question RQ1 was answered by summarising the results obtained from
the interviews. In other words, providing an overview of the information ob-
tained from each startup.

The second research question RQ2 was answered by carefully analysing the
output of the interviews. The challenges were structured and specified in clear
components allowing for further examination of how to mitigate them.

RQ3 was answered by a meticulous comparison between the literature study
and the data acquired from the startups. Each challenge identified in RQ2 was
mapped to a potential action, PA.

The answers above subsequently lead to the formation of the checklist and
the flow chart. These tools were derived by intensive collaboration between the
authors as well as with help of inputs from the supervisors.

Validation was conducted by creating a website which was sent out to the
four interviewees. This is further described in section 8.

6

4 Frame of Reference
This section provides a theoretical foundation of the content that this thesis
brings into focus. The section starts by introducing the startup and lean startup
concepts followed by an explanation of open source and how it can be incor-
porated in a business model. Different licenses, aspects of a community and
preconditions for a successful OSS project are also examined. In sections 4.3
and 4.4 research on how the RE processes of elicitation, specification, validation
and release planning are done in startups and OSS is presented. The OSS section
also includes research on what type of software is suitable for open source.

4.1 Startups
It is important to recognise the differences between a newly founded company
and a startup. The former mentioned often already has a certain path to follow
while the latter seeks to explore new business opportunities, thus lacking a
definite plan. This journey requires extensive effort in being able to rapidly
make adjustments in order to steer the organisation in the right direction [10].

What typically defines a startup is the highly uncertain environment it op-
erates in, the lack of resources, a small team and a gravitation around one,
perhaps a few, products. Clear structures and rigid processes are normally ab-
sent - demanding the organisation to heavily rely on the empowerment of each
team member (ibid.).

4.1.1 Lean Start-up

In an attempt to address the above mentioned issues - and to ease the burden of
the entrepreneurs - the Stanford ex-student Eric Ries together with his professor
Steve Blank created a new methodology called the lean start-up. The approach
has not only received increased attention in the startup communities but is
also becoming more and more recognised by various scholars and institutions.
Prestigious universities, such as Stanford, are currently including the approach
in their curriculum - further indicating the importance of being able to provide
a general framework on how to establish and develop a startup [2].

The lean start-up is tailored to provide a smoother approach by favouring
experimentation over the uncertain resource-heavy and rigid traditional ways.
Instead of trying to presage the market and predicting what it might want, a
minimum viable product (MVP) is constructed to be able to almost instantly
assess customer feedback. The idea is to start a cycle in which the MVP is
iterated in and each time adjusted accordingly with the information received
from the potential future buyers (ibid.).

In the case of a deadlock, meaning that the iterations of the MVP are not
leading to desirable market responses, it is necessary to perform a pivot – a
fundamental redesign of the entire plan in order to test a new hypothesis (ibid.).

7

4.2 Open Source
An open source (OS) project is defined as “any group of people developing
software and providing their results to the public under an Open Source license”.
This is an increasingly common phenomenon in the software world from which
many successful products have been derived [3].

4.2.1 OS as Part of a Business Model

There are several ways for a startup or a company to take advantage of OS.
As an example, a plethora of OS software exist, allowing to avoid unnecessary
spending on expensive licenses. This thesis however, will focus on OS community
- how to build and maintain it as well as attract developers, specifically with
help of RE. According to various studies, these communities appear to have an
upper hand when it comes to innovation [27]. Moreover, OS development seems
to grant an edge in the ability to more rapidly respond to bugs [4].

More specifically, as Chesbrough and Appleyard – researchers from UC
Berkley and Portland State University – define it, four major models will be
investigated: Proprietary Extensions, Dual License, Device and Community
Source. The first two models are categorised as a hybridisation, meaning they
are a combination of open source and proprietary versions. The third and fourth
model falls under the category Complements (vendor sells hardware containing
open source, such as Android) and Self-Service (community where applications
are jointly developed to be used by all), respectively. Apart from the Hybridis-
ation, Self-service and Complements categories a fourth category titled deploy-
ment was found which includes models where revenue streams are based on
support and consulting services targeting open source software. As the authors
also mention these categories are not mutually exclusive, hence, it could be that
one startup turns out to pursue not only some but perhaps even all of them,
simultaneously [5]. Furthermore, Henkel from the Technical University of Mu-
nich uses the term Selective Revealing as he revealed that many companies only
share parts of their source code while keeping the remaining part proprietary
[11].

Due to its many successes, businesses are now attempting to leverage on
the OS approach. One project, by many recognised as very successful, is called
OpenStack and involves more than 200 firms as well as many individual contrib-
utors. Interestingly, there even exist competition among the collaborators for
the same revenue model. This shows how beneficial OS projects can be when
businesses are willing to cooperate despite the risk of potentially losing market
share to rivals [26].

4.2.2 Open Source Licenses

There is a plethora of ‘standard’ open source licenses available to choose from[13].
One could theoretically create a new license specific for the project at hand but
the ‘standardised’ licenses exist to effectively communicate to a potential con-
tributor what their rights and obligations are. In March 2015 the most popular
licenses on GitHub were MIT, Apache and GPLv2/v3 and were collectively used
in more than 3/4 of all published licensed projects[12]. There are some subtle
differences between the different licenses but the major differences between them
concern how derived work and patent usage are affected.

8

Sharing work Open source licenses can be categorised as either copyleft or
permissive. Permissive licenses, such as MIT and Apache 2.0 will allow any type
of use of the software, including reselling it as is and using it as an integral part
of the product. Permissive licenses are sometimes called ‘academic’ licences.
Copyleft licenses, also known as viral licenses, are not as lenient as permissive
licenses and require that any modified work be released under the same license,
or in some cases a compatible license with a copyleft clause. Copyleft licenses can
further be categorised as either weak or strong copyleft. Weak copyleft licenses,
such as LGPL, only requires that work done on the open source component
be published with a copyleft license. If, for example, an open source library is
published with a weak copyleft license that does not require the derived product
to be published as open source. If, however, a strong copyleft license is used,
such as GPL, any work based on the open source component has to be published
with a strong copyleft license as well. This means that if a company tries to
build a product that utilises a strong copyleft license, the entire product could
potentially be required to be released as open source[13].

Patents If a company owns patents, open source licenses will typically grant
contributors and users free use of them. Patent usage is separate from copyleft
and there are weak and strong copyleft licenses with patent clauses as well as
permissive licenses available. Of the most popular licenses listed above MIT is
the only one without a patent clause[13].

Hardware licenses Open source licences for hardware blueprints are typi-
cally not released under the previously mentioned licenses. The Creative Com-
mons Attribution 4.0 International license is a popular open source hardware
license. In its most basic form the license simply requires attribution to the
original creator and any modified work and commercial use is allowed. This ba-
sic licence can then be complemented with clauses regulating adaptations of the
original work and commercial use. Adaptations can either be allowed (similar
to permissive), explicitly forbidden or subject to a ‘share alike’ clause (similar
to copyleft). Commercial use can then be either allowed or forbidden through
another clause[6].

4.2.3 Open Source Community

Importance The importance of user participation in open source communi-
ties have been confirmed by many studies [18]. In some cases, the number of
active developers (counted as members doing at least bug reporting) can even
be used as a measurement of success of an open source project [7].

Roles An open source community can be described with the commonly used
onion model [17]. As can be seen in figure 2, it contains eight different types
of contributors, with the project leader at the core and each subsequent layer
representing a different role with decreasing degree of influence, ending with the
outer layer of the passive users.

The passive users are ‘non contributing’ in the sense that they only use the
system. The readers not only use the system, they also read the source code.
The bug reporters and fixers find and resolve bugs. Peripheral users contribute

9

Pr

oject leader

Core developers
Active developers

Peripheral developers

Bug �xes, issues, readers

Figure 2: Onion model

new features occasionally while active developers do so regularly. Core members
take on a coordinating responsibility and have been involved in the project for
a longer time. The project leader is the person responsible for the direction and
vision of the project.

Types of OS communities Research on open source communities have tra-
ditionally been done on so called ‘community founded’ communities. This is the
classical type of open source community that starts with a programmer trying
to scratch a personal itch. If other developers find the project interesting or
valuable to their personal needs, they will join in and the community will grow
organically. Linux is the prime example of a successful community founded
project.

However, many hugely successful open source projects such as Mozilla Fire-
fox, MySQL, Darwin, OpenOffice and Eclipse are sponsored projects, i.e they
have emerged from a firm. Whether the software was released as open source af-
ter a proprietary attempt or was designed from the beginning with open source
in mind, the governance models are different. It is in the interest of the firm to
steer the project in a direction that adds to the firm’s bottom line, and these
goals might not align with the goals of the community. This tension between
control and growth[29] is something that firms will need to learn how to manage
in sponsored communities.

Depending on how a startup chooses to manage a particular project and
when it is released, the type of community can essentially fall under either

10

category

License and legalities There is a plethora of licences available to choose
from with different characteristics that governs how the derived work can be
used. Permissive licenses have few restrictions and will generally allow derived
work to be closed as proprietary software and commercialised while copyleft
(also known as viral) licences require that derived work be put under the same
license[13].

Depending on the intended use from a potential contributor or user, this
could be a deciding factor in whether she wants to use the project or not. If one
license is not suitable for the entire project, multiple licenses could be used[14].

Initial state of software There has to be some software to base the project
on. Trying to build a community on a set of ideas with no ‘skeleton’ to build
on is most likely not going to work. Software quality is of course important but
as far as quality of the initial code goes, it is not crucial. The code should be
functional and as Raymond puts it: ‘present a plausible promise’, i.e show the
observer that the project has potential to become something usable [22]. Future
developers can always help with bug fixes and while poor documentation might
be a threshold for some it is not imperative for success. It should of course
improve as the project evolves.

Software architecture Having a well thought out, extensible and modular
architecture makes it easier for developers to understand design decisions and
contribute to the code base. A good architecture will help communicate to the
developer how the software is put together and where the intended contribution
should be placed. Designing the architecture to be inherently extensible and
modular will remove some of the friction related to ease of contribution, espe-
cially if it means that a developer only needs to understand a subset of the code
and not the entire system. If applicable, a plug-in system may be designed to
reduce this friction even further. In this case the design choice may allow for
contributions and let the main software remain proprietary.

11

4.3 RE in Startups and Lean Start-up
Due to the nature of startups, the RE mostly resembles an agile process. Also,
a recent mapping study disclosed that the research data available is insufficient
in order to fully understand the entire process [15]. The lean start-up theory
will therefore be used as a complement and foundation to further describe the
RE practices in a startup.

4.3.1 Requirement Specification

Specifications are generally not only ill-defined but from a RE point of view
startups often lack these in written form as well [21]. The reason can be at-
tributed to the avoidance of overhead and processes the organisations tend to
have in order to remain flexible and agile. The general agile approach specifies
requirements in a so called user-story form, which define a set of functions that
the customer wants.

4.3.2 Elicitation

The research clearly emphasises the importance of customer involvement and
as a matter of fact, a major trend in startup communities today is to elicit by
literally testing the way to a final product [10]. From a lean start-up perspective,
the MVP is used as a tool to elicit requirements (see figure 3). This highly agile
method is diametric to the traditional product development not only in the
sense of its rapid and repeated cycles but also due to the openness of the entire
process. Before the revolution towards transparency, stealth-mode was favoured
by the belief that someone or some organisation might steal the business idea.

There are two major benefits of lean start-up:
1. It lowers the cost of getting the first customer and reduces the risk of

creating wrong products.
2. Short development cycles.

12

Analysis & design Deployment

Customer feedback

Minimum Viable Product

 P

la
nn

ing
 Implementation

 Evaluation T
esti

ng

Figure 3: MVP - iteration cycle

4.3.3 Release Planning and Validation

Fast releases shorten the lead time from idea to production and several reports
show the benefit of frequent deployments [21]. The lean start-up’s MVP, as seen
above, favours this technique. The validation tests are most often performed in
connection with the elicitation on the market.

13

4.4 RE in OS community
Requirements engineering in open source communities is vastly different from
classical requirements engineering. Classical requirements engineering offers a
plethora of tools to methodically elicit, specify, analyse and validate require-
ments of a project. In open source projects, the requirements engineering
process is done much more informally and classical requirements engineering
practices are rare and not very pronounced [1] [24].

4.4.1 Elicitation

Requirements elicitation is an area where OS projects differ substantially from
traditional software projects. Instead of a formal elicitation technique with
interviews, focus groups, workshops and other traditional tools; requirements
are often acquired informally through user input or from developers in forums
and issue trackers [24] [9] [18] [20].

Developers and other community users are a major source of requirements for
open source projects and are very important for open source projects [18] [20] [8].
In a corporate sponsored closed sourced project with an intended customer there
is a considerable effort associated with the elicitation process. Communication
needs to be precise, especially if developers do not have domain knowledge of the
problem, and is prone to many errors on several different levels. The customer
might not even know what she needs but somehow the intention needs to be
decoded to specific requirements that the developers can program.

This problem is largely eliminated in open source projects. Since developers
are users themselves[18] [22], requirements may be asserted rather than elicited;
i.e a developer realises she needs a specific function, implements it and if it is
merged into the project it becomes a requirement [24]. Rather than ‘pulling’
requirements from the customer, requirements are ‘pushed’ from the community.

4.4.2 Requirement Specification

In a project where classical requirements engineering is applied it is common
to find a document listing all the requirements of the product, a system re-
quirements specification document. Requirements are normally described on
several different domain levels, as both functional and non-functional require-
ments, and are supposed to communicate to developers what the final system
should be capable of. It can also act as a contract between a customer and a
software developer.

In open source projects this method of doing requirements specification is
very rare. Rather than having a centralised repository of requirements in a
single document or a database, open source projects tend to have very loosely
defined requirements scattered across forums, e-mails and other communication
channels.

While classical requirements are intentionally very specific, requirements in
open source projects are often vague and relies on knowledge of the project
and context. They are often described in relation to a previous version or a
competing product [1].

14

4.4.3 Release Planning and Validation

Feature-based release strategies are common for proprietary software but for
open source software; time-based releases have many advantages. With a feature
based strategy, developers sometimes try to rush their features into a release
because they do not know when the next one will happen. A predictable schedule
makes it easier for developers to plan and if combined with frequent releases,
the penalty of not adding a feature to the next release is not so grave. Sharing
code more often also alleviates some of the issues caused by a geographically
dispersed workplace by keeping the difference to the latest software version small
[16].

One of the 19 principles in Eric Raymond’s popular ‘The Cathedral and
the bazaar‘ is ‘Release early. Release often. And listen you your customers.‘.
Releasing early and often means early feedback and validation from users. It
also enforces the view of users as co-workers or developers[22].

Since developers often are users of the software themselves, and elicitation is
heavily influenced by developers, ‘requirements’ are validated implicitly through
discussions on forums. A formal validation process is rare in an open source
project [18].

4.4.4 What to Reveal

There seems to be few limitations on what types of software one can release
as open source. Successful projects have been observed for consumer appli-
cations such as Firefox, large and complex operating systems such as Linux,
infrastructure as the Apache Web Server and highly specialised software such
as OpenEMR[19].

As for the qualities of good open source software, a study done by Stürmer
and Myrarch on open source community building found some positive precon-
ditions that might increase the chances of success for a project. Some of the
factors identified were public demand, great initial source code and a degree of
novelty [25].

As with any other product, there should be a public demand to motivate
developers to contribute to it. Although public demand is difficult to predict,
Eric Raymond offers some insight in ‘The Cathedral and the bazaar’ where the
first principle states that ‘Every good work of software starts by scratching a
developer’s itch’ and the 18th adds that ‘To solve an interesting problem, start
by finding a problem that is interesting to you.’ [22].

Although Stürmer and Myrarch argues that the initial state of the source
code needs to be great they seem to agree with Raymond who instead argues
that the software can be buggy and incomplete as long as it runs and developers
can test it. The important point is to convince prospective contributors that
there is potential in the software. Stürmer and Myrarch also suggest that a
modular architecture and documentation are important, but not vital at the
inception of the project.

The degree of novelty is not necessarily defined as something entirely new and
innovative. The novelty can also present itself as new features, improvements
over a competing project or as an open source alternative to a proprietary
solution.

15

5 The Startups
This chapter presents the interviewed startups as well as provides descriptions
of their business models and experiences.

5.1 Mapillary
Mapillary was founded in 2013 in Malmö, Sweden. Their main idea is to provide
geographical area overviews on the internet, in the same way Google’s street
view does. However, Mapillary focuses on providing not only street view but
other places inaccessible to motor vehicles as well. The startup does this by
building a strong community through which they receive a lot of data, that in
turn gets published on their platform available for everyone.

According to their website, Mapillary currently has around 57 thousands
photos covering an area of almost 1,4 million km.

One of Mapillary’s major investors is the California based Sequoia Capital,
an American venture capital firm, well-known and respected for several financial
injections and involvements in companies such as Apple, Google, Oracle, PayPal,
Stripe, YouTube, Instagram, Yahoo! and WhatsApp2, marking the hallmark of
Mapillary’s entrepreneurs and the business model itself.

The interviewee is one of the founders, Peter Neubauer – an entrepreneur
with vast experience in startups and open source. To put it in his own words:

I have been chief of software development in a couple of firms and I
am one of the founders of Neo technology. I resigned from Neo and
founded Mapillary because it became too big for my taste (approx.
130 employees). We started out with three persons 2007.

5.1.1 Business Model

The underlying technology that Mapillary created somewhat resembles systems
such as Git, enabling them to capture versioned photos in motion coupled with
highly complex automated data extraction. To exemplify, this means that a
street could be photographed in June and once again in July to later be analysed
with help of Mapillary’s computer vision, allowing to determine whether some
specific objects – such as temporary checkpoints, construction work, temporary
signs, etc – are missing or not. The technology is not limited to streets or
bound to photos by a single vendor, meaning that if a single picture is taken of a
monument from one angle and another one is added from a different perspective,
Mapillary will be able to make sense of them and stitch them together. The
more photos Mapillary obtains from its users, the better the result will be. The
technology essentially allows for a versioned mapping of the world.

Mapillary has a hybrid approach, a proprietary extension, where the com-
munity side of their project allows for massive data collection through crowd
sourcing and a professional side as well, where companies can subscribe to the
underlying technology in various degrees of involvement. To incentivise the
community Mapillary is free for personal, non-profit and educational use. In
addition, some core components essential for the viewing experience are open
sourced. Mapillary offers four different monthly subscriptions for professional

2https://en.wikipedia.org/wiki/Sequoia_Capital

16

https://en.wikipedia.org/wiki/Sequoia_Capital

use: ‘professional’, ‘team’, ‘organisation’ and ‘enterprise’, with various levels
of access to the technology and content. The lowest tier subscription, ‘profes-
sional’, simply gives access to Mapillary photos. Every following tier builds
on the previous one where the ‘team’ subscription allows for web map viewing
and editing with the Mapillary photos and the ‘organisation’ subscription gives
access to automated data extraction. The final ‘enterprise’ tier is negotiated
on a case- by case basis and includes a license to repackage, reuse and resell
the images and data as well as support for private photos and custom solutions
offered by Mapillary.

Mapillary already has some customers – mainly cities, municipalities and
map makers. Currently the startup is heavily investing in the computer vision,
machine learning and AI aspects of the software.

5.1.2 OSS Strategy

Mapillary’s strategy for open source is a type of selective revealing, that involves
the release of several independent projects that are needed for their product
to function. In cases where the startup has found a solution to a problem
it anticipates having other applications, it will simply evaluate whether the
overhead and general interest is worth the cost. So far Mapillary has three
major projects open sourced:

OpenSFM is a python library for ‘structure from motion’ and is built on top
of another open source project, OpenCV. SFM is a technique used to
produce 3D estimates of a series of 2D pictures in ‘motion’.

Traffico is a font made for traffic signs. Mapillary built this to visualise traffic
signs in a vector form after their image recognition software had identified
traffic signs.

MapillaryJS is a Javascript viewer for Mapillary’s street level photos that
was developed after they realised that the previous solution, built with
ThreeJS and AngularJS, had too many dependencies to allow for easy
integration with other map libraries. The new viewer easily integrates
with libraries such as Leaflet, Mapbox and Google Maps.

These packages are all integral parts of the final product, but have been
separated and generalised enough in order for developers outside Mapillary to
find other use cases as well. It is particularly important to note that these
projects combined do not make up the entire Mapillary product. The startup
picks open source candidates in a very conscious and strategic manner.

OpenSFM was originally open sourced partly due to some proprietary algo-
rithms being used. Neubauer says that it is ‘protection against patents’ – making
it a public domain precludes the possibility for someone else to be granted a
patent. Furthermore, he emphasises that they ‘are opposed to patents’. Apart
from patent protection, OpenSFM also resulted in the hiring of an employee
who was an active contributor to the project.

Traffico was open sourced specifically to help with content creation for the
fonts. The team originally had support for 50 different traffic signs which was
far from what they required to cover the world’s traffic signs. At the time of
writing, content to 27 countries has been contributed.

17

5.2 Neo Technology
Neo Technology was founded in 2007, in Malmö, Sweden. The company’s flag
product is called Neo, a graph database used by many organisations such as
Walmart, Cisco, eBay, Hp, and Lufthansa Systems3. The graph database allows
for complex relationships between dependencies to be analysed in a thorough
manner, not achievable by regular relational databases such as MySQL.

In the previous section, the description of Mapillary, it can be seen from
the quote that Peter Neubauer also participated in founding Neo Technology.
Hence, he is the interviewee for this startup as well.

5.2.1 Business Model

Neo offers two different versions of Neo, the community and enterprise editions –
a dual license approach. The community edition is a standard OS project with
a GPLv3 license that is available to the public for internal organisational or
private use. The enterprise edition is offered with four different licenses and adds
functionality related to performance and scalability compared to the community
edition. The various enterprise licenses are available as a purely commercial
license, an evaluation license that allows for a trial period in commercial use,
an educational license and a special open source license. The latter mentioned
license gives access to the enterprise edition under an AGPL license.

5.2.2 OSS Strategy

Neo was originally developed as a proprietary solution to solve problems within
content management systems. The original SQL database solution was unable to
handle the complexity, forcing Neubauer to invent an entirely new graph based
database. Despite the new database actually being first put into production in
2002, even well before the NoSQL movement started, Neo wasn’t founded until
2007. Neubauer explains that the system was ready to be open sourced in 2003,
but it was deemed to risky due to the economical climate. After putting the
project on hold for five years no competing product had yet to enter the market
and a decision to launch was made. They soon realised that ‘we can’t support
a full blown database in a company with 10 employees’ and that what Neo was
building is ‘a component that is really good infrastructure’ – making it an obvious
decision to release it as OS. The original intent of the OS decision was to ensure
the database’s high quality without having to hire a large group of developers.
A decision to release an enterprise edition was later made which required a
more restrictive license. Because the code included external contributions this
required permission from around 50 developers. The developers had all signed
a Contributor License Agreement (CLA) prior to having their code included in
the Neo code base.

Since the year of Neo’s foundation, the startup has experienced an out-
standing growth, putting the early days of the startup behind. Also, Neubauer
explains that the initial goal of the OS community was to build a developer
community but as the company and the product matured the focus has since
shifted to creating a user community instead. A large part of the reason was
the ‘enterprise customers who really dislike if things get unstable’. The effect

3http://Neo.com/customers

18

http://Neo.com/customers

of this is that most of the development is conducted internally by employees at
Neo while external contributions are really difficult to include. Neubauer fur-
ther notes that the transparency provided by the OS aspect is still profoundly
important, especially in alleviating the bug fixing process. This basically means
that community members could take part in the bug investigation; however, not
necessarily have any success in being able to perform a commit.

19

5.3 Bitcraze
Bitcraze was founded in 2011, in Malmö, Sweden. They develop and manu-
facture a small quadcopter called the Crazyflie. The software is open source,
allowing customers to make compelling adjustments in order to satisfy their
true needs. Because of this, Bitcraze has managed to reach out to scientists
and scholars from places such as NASA, Stanford, Microsoft, MIT and ETH
Zurich4.

The interviewee’s name is Kristoffer Richardsson, a developer with vast
amount of experience within IT and agile development. He has both worked
as a consultant and an employee with everything from being an IT architect in
embedded systems to agile coaching.

5.3.1 Business Model

Bitcraze are not targeting a broader audience and hence are not having an
active focus on expansion, except for one reason, namely to ‘be able to do more
cool stuff’. Moreover, the startup wants to focus on creating ‘a flying open
development platform’ for educational use, creators and researchers, instead of
focusing on profits. This is also reflected in Bitcraze’s reluctance to bring in
external investors.

Everything ranging from hardware blueprints to the source code is open
sourced. In order to maximise the time available to support itself and the
community Bitcraze are outsourcing the manufacturing and distribution of the
final product to a company called Seeed studio. The license restrictions that
allow Bitcraze to generate revenue from this model are the share alike, attribute
and non commercial clauses. More specifically, it encourages the purchasing,
production and modification of the hardware as long as it is shared publicly,
attributed Bitcraze and not used for commercial purposes. As the license per-
tains to the hardware blueprints there are no restrictions on what a company
can do with the hardware if they buy it from Bitcraze. The startup is earning
money by selling their hardware, a business model that would fall under the
complement category.

5.3.2 OSS Strategy

Bitcraze’s open source strategy is fundamentally different from the other star-
tups involved in this study. As Bitcraze’s business model is essentially to pro-
duce ‘a flying open development platform’ everything from the software to the
hardware blueprints are made open source – in other words, everything is open
source. The strategy is largely grounded in an ideological view, as Bitcraze’s
Richardsson puts it, ‘values are the biggest motivating factor’ for open sourcing.
Bitcraze even open sourced their website ‘because, why not?’. A large part of
the rationale concerning this attitude is explained by Richardsson as ‘if you’re
open, you’re open for help, if you’re closed you can’t get any help’ and that if
you still do no get any help ‘there was no difference, but if you do get help it’s
better, so why not? What’s the point of closing stuff?’.

Although Bitcraze had considerable amount of initial interest when the prod-
uct was ‘early adopter hot’ Richardsson discloses that they have since lost a sig-

4https://www.bitcraze.io/

20

https://www.bitcraze.io/

nificant part of it, mainly due to the mismanaged communication with the OS
community. This rise and decline of contributors is internally referred to as the
first phase – whereas the second one is the contemporary attempt to recapture
some of the community activity that has been lost. The approach consists of
having an employee spending more time managing the community and working
on raising transparency of their internal development process, in particular by
communicating long and short term goals more extensively.

21

5.4 RefinedWiki
RefinedWiki (also abbreviated Refined) were founded by interviewee Emil Sjödin
and his co-founder in 2009. The startup currently employs ten people and their
main product is RefinedTheme, an addon to Atlassian’s Confluence software.
The component allows a company to tailor their Confluence experience accord-
ing to the needs, by managing layout and organisation as well as styling for the
brand.

Sjödin was studying Information and Communication Engineering Technolo-
gies at LTH when UI company The Astonishing Tribe (TAT) hired him to pro-
duce an intranet using Atlassian Confluence. Realising that the platform could
provide more business opportunities he decided to start RefinedWiki instead of
finishing his master’s thesis.

5.4.1 Business Model

Refined are heavily dependent on Atlassian’s ecosystem and are exclusively pro-
ducing addons to their Confluence and JIRA platforms. They have no plans on
creating their own intranet solutions or standalone products and would rather
focus on addons for other platforms should something happen with Atlassian or
their partnership.

Refined are focused on the engineering aspects of the product development
and are therefore outsourcing sales to consulting partners. The partners in turn
are the ones who not only sell but communicate with the end customers as well.
Refined also sells their products through a marketplace provided by Atlassian.

Apart from their main product, RefinedTheme, Refined also provide a mo-
bile experience for Confluence, a ToDo plugin for Atlassian JIRA and a free
Confluence addon with standard UI components.

The theme, the mobile experience and the ToDo plugin are offered with the
same subscription model applied by Atlassian that is based on the number of
users. There is also a 50% discount available for academic institutions and a free
license for open source projects, non-profits and classrooms. The qualification
for a discount or free license is handled by Atlassian.

5.4.2 OSS Strategy

Refined just recently released their first OS project and have currently no formal
strategy for their open source ventures. The approach could be seen as a comple-
mentary asset and proprietary extension. The project is a tool used to alleviate
some of the issues they faced while developing products that should integrate
with two different Atlassian addon environments. The difficulties stemmed from
that the previous environment they developed for was, in comparison to the new
one, far more open. The new tool Refined developed allowed them to easily in-
tegrate the same addon with both environments. The developer responsible for
this asked if he could open source it. Sjödin then decided that the advantages
of ‘showing commitment to Atlassian’ outweighed the possible disadvantage of
helping their competitors. Sjödin further states that they have no real hope of
getting contributions; branding was the main motivating factor and ‘it’s more
fun for the developers to be able to show what they have done instead of keeping
everything internally.

22

Table 1: Summary of Business Models - Source: [5]
Category Model Description Startup

Hybridisation Proprietary
Extensions

Firms broadly proliferate open source
application and monetise through sale
of proprietary versions or product line
extensions.Variants include mixed open
source/proprietary technologies or
services with free trial or “community”
versions.

RefinedWiki, Mapillary

Dual License

Vendor licenses software under
different licenses (free “Public”
or “Community” license vs. paid
“Commercial” license) based on
customer intent to redistribute.

Neo Technology

Complements Device
Vendor sells and supports hardware
device or appliance incorporating
open source software.

Bitcraze

23

5.5 License and Legalities
Releasing copyrighted assets or intellectual property without proper consent
could be a serious problem and if the source code utilises other open source
projects, the license agreement of that project needs to be honoured. As an
antithesis to these potential legal issues, releasing software as open source can
also be a strategy to mitigate legal issues as explained by Mapillary:

We released a module that converts 2D pictures to 3D. This was
released due to the fact that we didn’t want to own a lot of proprietary
algorithms. We also looked at it as a protection against patents. We
are against patents.

The interviewed startups had a variety of different licensing models. In the
case of Mapillary they released all software under permissive licenses because
it allowed easy contributions and open source is not the main reason why the
company exists.

In Mapillary everything is released under MIT, BSD, Apache and
the likes. We’re not interested in making money or forcing people to
contribute. Contribute with no strings attached, it’s only helpful.

Neubauer also notes the difference when compared to Neo. Neo uses copyleft
type licensing, meaning that derived work needs to be published under the same
license. The reason in this case being that Neo are not primarily looking for
contributions due to the complexity of the software and nervous enterprise cus-
tomers. Instead they are trying to amass a ‘user community’ where participation
is largely in the form of bug reporting.

Bitcraze on the other hand is entirely open source based and have a variety
of different licenses, permissive and copyleft, for various reasons. They note a
potential problem with this.

We can only use the code we ourselves actually wrote. We could close
that and for example sell to another company as a product. But if
you committed code to our code tree then that code cannot be there.

Because Bitcraze develops an open source quadcopter, the blueprints for the
hardware are available as open source. They are released under a Creative Com-
mons license with share alike, attribute and non-commercial clauses, meaning
that derived work needs to be available under a similar license, be attributed
to Bitcraze and cannot be used for commercial purposes. This means that only
Bitcraze are allowed to mass produce and sell the hardware. Unfortunately this
has not stopped immoral manufacturers from producing counterfeits.

They [the immoral company] took our blueprints, produced their own
and are selling them.

Regarding the risk of someone taking the software to develop a competing
product neither Neubauer nor Richardsson were particularly worried. Bitcraze
noted that forking without contributing back to the original source was a bigger
issue than competition.

All of the startups had at least one employee who had previous knowledge
of open source licenses and none of them thought that it was particularly hard
to deal with.

24

6 The Internal and External RE Process
Once the OS community is established the question is how to make sure it re-
mains prosperous and alive. At the same time it is important to ensure the
startup’s consistency and capability in being able to provide support and help.
Moreover, and perhaps most importantly: how can the seeds from an OS com-
munity be harvested?

6.1 Elicitation
The process of eliciting requirements are in this section categorised as either
internal, i.e from within the startup, or external, i.e from partners or the open
source community. The results on how the startups managed these activities
are presented.

Internal Of the four startups studied, the emphasis on internal elicitation
was greater in Refined and Bitcraze than in Neo and Mapillary. The two for-
mer startups had both implemented a formal elicitation process popularised by
Google, the 20% method. The approach dictates that 20% of working hours
should be spent on a personal project. Bitcraze calls the method ‘Fun Fridays’
and Richardsson explains that every Friday is spent on a side project. He says
that ‘the idea is to play around with things that we’re not sure are going to work
or where the idea will end up’ and ‘as long as you’re doing something that you
think is fun you can do it’. If anything done during the 20% time is deemed
valuable the project is elevated and a product is formalised around it.

Both startups successfully created complimentary products through this
technique. Bitcraze developed a local positioning system for the Crazyflie 2.0
designed to give an absolute position in 3D space in an indoor environment.
The system was released as an expansion deck and will greatly enhance the
capacity of autonomous flight. In Refined’s case the 20% method spawned Re-
finedTodo, used internally for task management and later released as a plugin
to the Atlassian platform.

Apart from the ‘20%’ method, no other formal elicitation techniques were
observed. Part of the reason why was explained by Richardsson saying that
‘ideas is not what’s lacking, we have a thousand billion ideas that we want to
implement. The problem is to decide every week what we think is most important
at the moment.’. Informally however, both startups leveraged the fact that they
are small companies and encouraged employees to speak freely when they had
an idea. Sjödin credits the lack of formal elicitation techniques to the size of
the company and says that ‘we’re 10 employees, so we’re not as governed by a
specific process as bigger companies are’ and ‘if anyone has an idea they could
just shout it out.’

Neo and Mapillary have brainstorming sessions where everybody can con-
tribute their ideas.

External The practice of eliciting requirements from external sources, such
as partners and the open source community, was prevalent at all startups. Al-
though no formal techniques were observed, all startups had multiple commu-
nication channels that allowed for external elicitation.

25

Established partnerships were heavily used at Refined as they were effectively
decoupled from their end consumers through partners selling and customising
their products. This also meant that they very rarely elicited requirements
directly from the costumers that actually used the products.

Contrary to how Refined operates, Neo and Mapillary actively utilises their
open source communities to generate customers and elicit requirements from
those customers. If they receive the same request from several sources the
process of implementing it to the startup’s roadmap will escalate. Neubauer
explains that following the accelerating growth of Neo and the subsequent in-
creased difficulty for external participants to contribute code to the repository,
the community has adopted a different role. He notes that ‘open source is the
main component for lead generation and community building in Neo’, adding
that while they currently employ sales personnel, that was not the case in the
early days of the startup. During the first years Neo relied exclusively on the
open source community to generate customers and Neubauer expands on the
advantage with the approach, saying that ‘people come to us and tell us what
they want to do and what they can already do’. He emphasises the fact that the
potential customers already have an intimate knowledge of the product through
the open source project. Having tested the system and analysed how they can
use it Neubauer says that the customers will tell us what they want to pay for
and how the product should be but more importantly ‘how they can help us get
there’

The situation is similar for Bitcraze although they have not had the same
success with requirements elicitation. As mentioned by Richardsson earlier, the
problem for Bitcraze is not in the process of generating ideas but rather the lack
of time to implement them. There are channels set up for discussions about what
the quadcopter is potentially capable of, notably the Bitcraze forum, and it does
exhibit activity but less than during the infancy of the startup. Richardsson
says that ‘people solve a lot of problems and do a lot of interesting things, but
they don’t really share it’ explaining that while there might be a lot of features
for the product, the startup has a problem with curating them and making them
official Bitcraze features.

26

6.2 Requirements Specification
Requirements Specifications (RS) differ not only due to cultural characteristics
but also on the type of OS-strategy the startup pursues. Furthermore, one has
to distinguish between internal and external RS; more specifically, the written
communication in the internal organisation versus the one in the OS community
as well as including the bridged RS between these two.

This section will be divided into the aforementioned categories; internal and
external/bridged.

Internal The internal RS described here is, if nothing else is mentioned, not
accessible to the OS community.

Generally, the startups don’t invest much time in writing down RS; however,
Mapillary’s Peter realises that ’It could’ve been better and I would like people
to write more in order to make it more lenient for others to take over when
needed; for example, if someone goes on vacation. We are only 1-2 persons per
component’.

Moreover, RefinedWiki explained that their RS activities evolved once the
company grew and new departments took shape, quoting Sjödin, ’We actually
started out with requirements in connection to hiring a new employee for testing
tasks. Suddenly it became natural to have concrete requirements specification’.

In order to not spend excessive amount of time in specifying requirements,
’The level of abstraction is very high’. Mapillary’s Peter mentions how they
usually map the data architecture’s design while at the same time taking notes
of important aspects they may have to consider. In Mapillary’s case, the design
requirements are written down in Dropbox paper or Google docs to later be
broken down into tasks, created in Trello. Similarly, requirements were encoded
in tasks and stories in Trello at Neo.

Similarly, RefinedWiki’s requirements are mostly kept on design level; how-
ever, they also specify ’how the functions will work in general in order to be able
to create somewhat reasonable test cases’. Sjödin states that both requirements
combined provide a good overview of how the product actually will work.

In contrast to Mapillary, RefinedWiki uses their own system (wiki) to write
down requirements. They use their own developed ToDo application as well,
mostly for keeping track of ideas.

Bitcraze uses the old fashion post-its on a board solution to write down tasks
for the coming week. However, as highlighted by Kristoffer;

If there is something of great importance we’ll of course save it.
Most of it is located in our heads as well as in our long-term direction
[vision], you could say. This is pretty much how we document things.

Kristoffer also states that he doesn’t believe it’s necessary to write down
ideas, as he mentions that ’I personally think that if you have an idea, it will
come back to you. You don’t have to be afraid that it might disappear. It probably
wasn’t a good idea if you forgot about it’, reflecting Bitcraze’s organisational
culture. On the other hand they realise that even though the requirements
could end up as waste, some sort of plan or direction is still needed. Kristoffer
eventually says, ’It’s a difficult balancing act but we are committed to minimise
as much as possible’.

27

External As mentioned in the introduction the RS procedure depends on the
type of OS approach the startup has. Mapillary does this by splitting their work
into distinct components, allowing them to outsource work as separate entities
decoupled from the main projects. Interestingly, this enables a unique way in
specifying and communicating requirements, namely, by providing a clear vision
as a fundamental part of the component to be outsourced. This, according to
Peter, is achieved by creating something ’that makes it simple to start and that
is already working and displays the vision’. Although Peter consistently remarks
that excellent code quality and documentation is imperative in order to build an
OS community successfully, the component itself shouldn’t be flawless. Peter
mentions that ’it’s actually good with crappy code. People feel that they can
refactor here, it’s going to be great’.

When it comes to the documentation of the process regarding the OS com-
ponents, such as issues and backlogs, everything regarding the open source
projects is available on Github including what Mapillary is working on inter-
nally. To quote Peter, ’all issues, bugs and improvement propositions are posted
in Github’s issues, available to everyone. So, we even perform pull requests’.
Neo adopted a similar approach although they did not have clearly separated
components. Specifications that were developed and refined internally were not
always implemented by Neo but outsourced to the community through issues.

In contrast to Mapillary, Bitcraze’s OS approach differs in the way that they
strive to be as much open source as possible – regardless of the source code’s im-
portance to the startup. Subsequently, communication and requirements turns
out to be crucial and more importantly intertwined with each other. Bitcraze
defines their OS community development with two phases; the first phase de-
scribed as when Crazyflie was state-of-the-art, hence, a time with many early
adopters available – and the second as being the contemporary one. Moreover,
Bitcraze’s Kristoffer points out that they mismanaged the first phase by not
providing sufficient support to the community – which apart from Crazyflie be-
coming somewhat outmoded – has lead not only to a massive decline in general
interest but in amount of contributions as well. In addition, as opposed to Map-
illary, the startup’s community structure is heavily proliferated such that there
exist around 30-40 different repository for Crazyflie. This makes it inherently
complex, requiring even more assistance for outside developers. Kristoffer ex-
plains that ‘most of the time you have to change something in multiple places’
and continues to state that ‘the complexity is a reason why it would be good to
have clearer issues and features so that people can contribute more easily’.

This has been a major concern for Bitcraze, pushing the startup towards an
attempt to revive the OS community. The second phase is therefore described
as ’an attempt to regain interest’. Furthermore, he specifies what the startup
believes it has to improve in order to once again attract developers, quoting
Kristoffer, ’we need to communicate issues on Github as well as our internal
discussions’ – the latter emphasising the need of being transparent. In an at-
tempt to alleviate the issues faced by the complexity of their software, Kristoffer
says that they have ‘created a meta repo that only contains issues so that we can
talk about features’ but also notes that so far it has been unsuccessful. Bitcraze
also uses forums and mails to communicate requirements.

RefinedWiki are still in the process of establishing an OS community; how-
ever, they already have APIs openly available to developers. In Sjödin’s words:

28

Our open APIs are documented. They are intended to describe the
technicalities as well as to provide an overview and tutorials of how to
get going. (. . .) These kind of things are generally well documented,
also including tutorials.

29

6.3 Validation
Without market approval a product is destined to fail and a great deal of money
can be lost, making it inherently important to attain valuable feedback. Gen-
erally, Bitcraze and Refined perform most of their validation internally whereas
Mapillary and Neo also take advantage of the external approach.

As previously, this section will be divided into the categories internal and
external.

Internal It is particularly critical for Bitcraze since they not only ship software
but hardware as well – that could add additional unwanted expenses. This,
combined with the failure of what the startup defines as first phase (mentioned
in earlier sections), pushed Bitcraze to implement four different phases for their
new hardware releases in order to ensure early feedback. In practice this means
that the first stage is to release an early prototype to potential users, citing
Kristoffer, ’We build five or so prototype systems and then we announce that
this product is in an alpha stage on the blog and ask if anyone is interested in
trying it out. We kind of probe the market this way’. As a small side note, it
should be mentioned that the step before alpha stage is called developer stage,
in which prototypes that the company believe would have a market interest are
created. Moreover, the alpha stage consists of, quoting Kristoffer, ’what we call
‘friendly users’ who might buy it at cost’. He emphasises its main purpose being
to obtain feedback on the hardware, such as ’is this what we need? Do we have
the right connectors, the right size? Whatever it can be’. After the validation of
the hardware is completed, the product moves on to what they refer to as early
access, prototypes are ordered to be sold on the web shop. This phase is also
dedicated to software, as highlighted by Kristoffer ’the hardware is finalised but
the software is lacking’. Often, some fundamental drivers and basic software
is available though ’but without higher order functionality’. At this stage the
startup works together with the OS community in order to produce code that
the market wants. The phase cycle is completed ’when we have software with
a bit more functionality and quality we’ll call it a product and remove the early
access logo. So the four stages are ‘development’, ‘alpha’, ‘early access’ and
‘product’.

Although Refined’s validation process is somewhat less formal, the startup
still has defined tactics on how to validate its products. One of those being
a beta testing phase with a selected group of customers that they established
good relations with. Sjödin prides with the fact of doing ’a very good thing for
this release. We implemented a feedback button on almost all admin views’. The
feedback system allowed customers to provide comments together with screen-
shots. It was clear to Sjödin that ’the accessibility and ease of use contributed
to increased feedback during this phase’. Lastly, Refined concludes that ’it was a
great success. I think the main difference was this button and that it’s so simple
to use, otherwise people won’t be bothered to do it’.

Furthermore, Refined’s unfortunate position – in terms of lack of customer
proximity – in the supply chain creates communication challenges with their
end users. Luckily, a significant portion of their sales goes through consultants,
as they refer to as partners, alleviating the process of collecting information.
Their steady contact with partners allows the startup to more comprehensively
understand what the market looks for.

30

When requested, Mapillary release early access versions as well. Moreover,
they will disclose their products to their ambassadors before the official release.
Finally, Mapillary checks with community if the product requested matches
their expectations.

Neo used to provide access to snapshots in their master branch; however,
this has stopped since their shift towards a user community.

External Mapillary’s Neubauer however, argues that OS projects are more
susceptible for feedback. He exemplifies by arguing that ’you won’t obtain
the proliferation and the validity [without OS] that made Mongo[the popular
database] worth three billion dollars’. Moreover, he claims, that the feedback
from an OS is tremendously extensive and valuable, something Mapillary take
full advantage of. When asked how they validate, Neubauer explains, ’lets say
someone wants a red button instead of a green one. We put up an issue named
’make button red’ and if people are interested discussions will take place’.

Bitcraze, to some extent, use their alpha and early access stage to validate
externally in the same way Mapillary would do.

31

6.4 Release Management
All startups stressed the importance of frequent releases in some form or an-
other. None of the startups had a strict time based strategy for their release
planning but Refined differed from the others since they had a fairly strict fea-
ture based release strategy. They noted however that they were not happy with
the frequency of these releases and as a consequence they often had to strip
planned features from the release. Sjödin states that ’we have released a bit too
infrequently so we’re going to try to do that more often. We’ll try to do smaller
releases to increase continuity’. Furthermore, Refined realise ’it’s important to
reach the market quickly and get feedback on what you’re doing’. It should be
noted that this release strategy was applied to their proprietary software.

Bitcraze’s releases are more frequent; however, as opposed to Refined, they
release not only the binaries but the source code as well. As Bitcraze’s Kristoffer
mentions, ’the source code is always available if you want to download the latest
version from the repository and build it yourself ’ whereas ’the binaries however,
that you can download and load into the client, have been released maybe once
every six months or so’. Likewise, Kristoffer is also keen to increase the rate of
releases, he specifically says that ’I’d like to release every day’.

Mapillary on the other hand ’do continuous deployment, almost. The differ-
ent components are upgraded all the time’. This means that code is pushed into
production immediately. Neubauer continues to explain that ‘we don’t have a
staging environment, we stage in production, which is a bit controversial. He
says that they achieve this by having a very forgiving development environment
and that rolling back is always possible if anything breaks. When they have
developed a couple of features they think are ‘cool stuff’ they will notify their
community members through a newsletter.

Neo implemented a feature based release strategy. Neubauer explains that
it was less structured in the beginning and a typical release would stem from a
thought such as ‘oh, this is a big thing for the project, let’s release this as 2.0’.
As the startup matured the strategy has remained feature based but with more
planning and a goal of releasing quarterly.

Moreover, the startups were asked if they were worried that releasing a
product as open source too early could have a strategic disadvantage in the
sense that they would allow for early forking by potential competitors. Refined
had yet to gain the experience to properly answer the question but the other
startups did not worry at all. In fact, Mapillary’s Peter expressed it in this way:

The real problem is to get anyone to care at all.

32

7 Analysis
The first part of this section will provide a summary of each startup’s incen-
tives and strategy and OS community development. The latter part attempts
a summarising overview of the commonalities found among the firms and their
approaches.

7.1 The Incentives
What are the motivational factors for a startup in order to create an OS com-
munity? Four main reasons can be identified, namely; ideology, innovation and
proliferation, bug fixes and human capital.

Ideology It is evident that certain beliefs affect the development of the startup’s
business model. Bitcraze and Mapillary both have extraordinary passion not
only for OS but transparency and collaboration in general. The former men-
tioned went as far as even making their website OS, quoting Kristoffer ’if you’re
open, you’re open for help, if you’re closed you can’t get any help’. Moreover,
he explains ’we’ve received a few [contributions] actually, so that’s fun’ and
’you can correct spelling errors and clarify things and stuff like that. It actually
worked’. Lastly, as the startup’s flagship product is focused entirely around OS
it further indicates how important ideological views are.

Mapillary’s founder also expressed diligent conviction in OS. As an exam-
ple, Peter mentioned that ’we are against software patents. It doesn’t promote
innovation, it’s not nice’. The views are also reflected in the general approach
of being transparent as well as favouring lean startup. As a fun fact, Peter
disclosed that the founder of this business methodology, Eric Ries, is an adviser
for Neo Technology.

On the contrary, Refined is much more reserved and as opposed to Mapillary,
prefer stealth-mode over transparency. It seemingly formed the startup’s busi-
ness model, explaining why their OS strategy is the least developed compared
to the other ones.

Innovation and Proliferation Both Mapillary’s Peter and Kristoffer’s Bitcraze
exemplified numerous times during the interview how important these factors
are for their products. With help of OS, the startups manage to ’get PR, it
proliferates, people speak with each other, they have fun ideas and they help each
other’, as mentioned by Kristoffer. Peter stressed that ’for Neo it was because
of the fact that we couldn’t maintain a huge database engine. You need help. It
would also require too much attention that should otherwise be spent elsewhere’.
Furthermore, he provided a concrete example of how, as mentioned under the
ideology paragraph, they protect themselves against unwanted patents; ’we re-
leased a module [open source] that converts 2D pictures to 3D. This was released
due to the fact that we didn’t want to own a lot of proprietary algorithms. We
also looked at it as a protection against patents’.

Bug fixes Mapillary’s founder greatly emphasised what he perceived as the
only way to truly address complex software issues, namely by OS. In his view,
’having more eyes, if you do it well, on the software. What’s a deep bug for me

33

may be a shallow bug for you and vice versa. In reality, it is a huge problem.
Also, he further noticed, that peer reviews play a major role due to the group
pressure which is created by the hundreds of contributors. Apparently, he ex-
plains, ’many OS project’s source codes are of better quality than closed source
ones, due to precisely this reason’.

Human capital All startups underscore the general importance of having
dedicated people and the ones with OS experience can attest how helpful a
healthy community is in finding those. As an example, Mapillary recruited their
first 30 employees through their community. In addition, Bitcraze managed to
obtain help from various scholars around the world, including from prestigious
universities such as Stanford and MIT.

34

7.2 The Startups Summarised
An overview of each startup’s OSS community involvement will be provided in
this section.

7.2.1 Bitcraze

The startup’s vision is evidently not only affected but also formed by the indi-
vidual’s view on openness and transparency, which lead them to create hardware
with the clear intention of providing a fully open source platform. The firm’s
business model (BM), device, makes it extremely necessary for having a healthy
OS community in order for the product to develop and in turn become more
attractive to the broader market. Based on the results, Bitcraze could be po-
sitioned in the center of the model. Furthermore, only the first layer, namely,
the core members, are currently available in their community. The startup is
investing heavily in expanding these by attracting outside developers, which,
requires time and effort from the employees. Due to, as defined by themselves,
the first phase, Bitcraze implemented processess in an attempt to mitigate the
risk of falling into the same trap of mismanaging the community, thus losing
the interest – clearly indicating their recognition of RE’s important.

7.2.2 Mapillary

Mapillary chose to release several independent projects as open source by ap-
plying. While Mapillary uses the projects as important components of the final
Mapillary product there is a lot of proprietary technology involved. This is
effectively a Proprietary Extensions model within the Hybridisation category.
The released components have their own vision and goals and are easily man-
aged separately. It is an efficient way of mitigating risk while simultaneously
reaping the benefits of open source. Since the final product is not the sum of the
released parts another startup cannot simply fork the projects, combine them
and create a competing product. Furthermore, smaller separate projects have
the benefit of lower complexity, lower management overhead as well as clearer
focus for potential contributors. Another advantage of this approach is that
individual goals can be applied. In the case of Traffico Mapillary needed con-
tributions to build a database of traffic signs while the OpenSFM project and
MapillaryJS projects had other goals. This means that the level of involvement
from Mapillary can vary accordingly among the different projects. As OpenSFM
and MapillaryJS satisfied the internal needs of Mapillary at the time of release,
the startup could apply a more relaxed role in the development and management
of the projects. While the startup initially assumed the Project Leader role, in
reference to the Onion Model, the position could easily be changed according
to Mapillary’s current needs and resource constraints.

7.2.3 Neo Technology

The Neo4J graph database was created by the founders of Neo to solve issues
with content management systems that traditional relational databases could
not. Realising that developing a full blown database while also focusing on build-
ing a business with a very limited set of employees was infeasible, the startup
decided to open source Neo4J. The founders also realised that a database is a

35

type of infrastructure and that such components are of particular interest to
the open source community. As the project grew and matured the business
model shifted to incorporate a dual licensing model. This involved changing
the licensing and getting explicit confirmation from around 50 contributors that
they were allowed to do that. The team had made their contributors sign CLAs
which aided the process. After changing licenses the software is now offered
in a community edition as well as an enterprise edition. The cumulative effect
of a more mature software base as well as the presence of enterprise customers
subsequently resulted in a much higher enforced standard for contributed code.
This means that at the current state it is extremely difficult for external sources
to actually contribute to the code base. Essentially the function of the commu-
nity has shifted from an active developer community to what Neo calls a User
Community. The code is still open (for the community edition) but function-
ally it exists as open source to allow for external scrutiny, not for contributions.
The idea is to leverage the proliferation and branding effects of open source
and because the software acts as infrastructure there is a perceived increased
legitimacy due to external sources being able to access and review the code base.

If Neo’s position in relation the the Onion model is analysed the company has
never left the Project Leader role. The startup established a strong foundation
in the center of the model and decided to rely on the outer layers dynamically
throughout the lifetime of the project. During the time following the creation
of Neo4J all layers served an important role and as the project grew, core de-
velopers were actually recruited as employees of the startup and reliance on the
community gradually shifted to only include the outer layers of the model.

7.2.4 RefinedWiki

As opposed to the above-mentioned startups, Refined has a more sceptical ap-
proach towards releasing their code publicly. Moreover, they seemingly are in
the beginning of their OS venture, hence making them the least experienced firm
in this case study. As the startup currently have no contributions whatsoever,
it remains to be seen if Refined manages to establish some interest.

Historically, Refined have operated on a proprietary basis, which combined
with their ideological views, pushed them towards the same strategy Mapillary
have – proprietary extensions.

36

7.3 What to Reveal
Chesbrough and Appleyard reported on a variety of business models used by
firms creating open source communities[5]. The models can be categorised as
hybridisation, complements, self-service and deployment. In this thesis the star-
tups primarily fell under the hybridisation and complements categories. The
hybridisation category includes models where proprietary software and open
source are combined, while the complements category includes a single model
where software is open sourced to support a hardware product. The self-service
category was not observed but would concern models where organisations de-
velop an application cooperatively. The deployment category includes models
where services related to open source products are the main revenue streams
but was not observed among the startups in this thesis.

Refined, Mapillary and Neo all used the hybrid approach, while Bitcraze used
a complements model. Neo’s model is a dual license model where a community
edition is offered for free and an enterprise edition offers additional features for a
license fee. Refined and Mapillary applied a proprietary extensions model where
parts of the software used internally was released as open source. Bitcraze, in
contrast have no proprietary software and are using a device model. Although
the hardware blueprints are open sourced, production of the hardware for com-
mercial use is disallowed by the license.

Considering the actual software and the applicability of open source, the re-
search does not seem to indicate any discrimination of certain projects types.
Software for a variety of use cases have been observed, ranging from highly spe-
cific medical tooling, such as OpenEMR, to consumer applications, infrastruc-
ture and operating systems. However, there has been research on what qualities
the software should exhibit to increase chances of success[25][22]. There should
be a public demand, a degree of novelty and while the software can be buggy
and lack documentation it should be sufficiently developed to convince develop-
ers that there is potential.

As reported in section 5, the startups generally followed the principles suggested
by the research. The tool developed at Refined solved a problem with their de-
velopment process and was released because they believed other developers in
the Atlassian community could benefit from it. The reasons were primarily for
branding purposes and they noted specifically that there was no product value
in the tool. They were much more reserved when asked about other potentially
open sourcable projects. Mapillary had several open source projects and had
the most defined selection process. When they developed components needed
for their product and found that something could be generalised and was of
value to other developers the component was extracted, made independent and
released. In most cases they wanted external developer help so the selection pro-
cess existed to avoid unnecessary management overhead related to open source
projects. In Neo’s case they actually waited until they could observe a public
demand and then released their database engine. As databases are considered
infrastructure there was significant interest from developers and an apparent
degree of novelty since it was one of the first graph databases released. As the
database matured the startup shifted to a dual licensing model. Bitcraze had

37

no selection process in place and released everything, including their website,
as open source.

Selective revealing All participating startups, except for Bitcraze, applied
a selective revealing process. Bitcraze instead opted to release everything they
developed. While this could be viewed as an edge case of selective revealing,
we would like to treat it as a separate model and compare the two approaches.
Essentially, selective revealing seems to offer more strategic choices.

Intellectual Property If selective revealing is applied, the startup has more
granular control of their intellectual property. When Mapillary released
their patented software as open source, they did so by choice. Bitcraze
would not have the same opportunity to make that decision if everything
is already open sourced.

Project prioritization Selective revealing allows a startup to prioritise be-
tween different projects and apply different levels of involvement accord-
ingly. As Bitcraze has released 30-40 repositories that combined results in
their product, they have applied their external RE process on a product
level. Mapillary’s independent projects have an external RE process ap-
plied on a project level. This means that they can tailor their processes
depending on the current needs of that project and the startup. As an
example, the point of the Traffico project was to get contributions in the
form of more traffic signs and the process can be tailored for that pur-
pose. If they have another project that is released purely as protection
against patents, an external RE process is not necessary at all. Again, as
Bitcraze’s process is applied on a product level the separation is not as
clear.

Risk of theft Bitcraze had their hardware copied by immoral manufacturers.
Although the license applied to the hardware blueprints forbids such activ-
ity, it requires legal actions to enforce. Mapillary on the other hand is not
exposed to the same risk since their open source projects cannot simply
be combined to replicate Mapillary’s product without reverse engineering
the proprietary parts.

Changing licenses Neo initially released everything as open source but when
they decided to produce an enterprise version with a more restrictive li-
cense they needed explicit permission from all 50 contributors to relicense
the code. The Neo team fortunately had CLAs signed from the contribu-
tors but they still needed to contact all of them and get their permission.
In a situation where selective revealing is applied the risk could be spread
out over many projects and potentially not require explicit permission
from as many contributors if one or more of the separate projects are in
need of relicensing.

38

7.4 The Research Questions
The research questions (RQ) are revisited here for the convenience of the reader:

RQ1: How is RE currently structured and practiced in startups engaged in
OSS development?

RQ2: What challenges can be identified in regards to current RE structure and
practices in startups engaged in OSS development?

RQ3: How can the problems identified in RQ2 be mitigated?

Following sections attempt to answer the above-stated questions.

7.5 RQ1: Requirements Engineering
Based on the previous section it can be concluded that the amount of resources
needed to build, maintain and leverage an OS community could potentially
be reduced. Furthermore, the startup’s decision on which BM to pursue will
also affect the level of effort they will eventually need to put in. Despite this,
all startups as well as the literature seem to be indicating the same trend –
transparency and openness. The following paragraphs will provide an in-depth
analysis of the core components of RE.

Elicitation The internal process can be exemplified by the 20 percent rule
that allows employees to spend one day every week on personal projects. This
was the only observed formal technique. The reasons given for the absence of
such processes were that the startups already had many ideas, but no time to
implement them, and that their limited size allowed them to elicit informally
instead.

Although not explicitly using the term minimum viable product (MVP), the
OS optimistic startups seem to have adapted this concept. Even the most OS
sceptic startup, Refined, is mainly eliciting with the help of their consultants
that have access to their products. Partnerships, such as Refined’s, were a
common source of elicitation for all startups.

Elicitation from the open source communities was set up as previously ob-
served by various scholars [24][20], i.e, channels were set up through forums and
issue trackers and the process was done informally.

The internal and external processes had a clear distinction between them
where internal elicitation allowed the startups to control the direction of the
project and external elicitation was used as a supplementary process. In other
words, internal elicitation sets the main focus and scope of the project as a
whole while the external contributes with more specific parts.

Requirement Specification Research predicted that the startups would try
to minimise process management, in part due to the agile nature of them, and
thus not adhere to classical requirements engineering practices[21]. This was
true for all startups in this study. Requirements were found encoded in tasks
using various tools, ranging from commercial tools such as Trello to internally
developed ToDo applications and post it notes. The only formal specifications
document observed was found at Refined. That document spawned as a result

39

of a recently hired tester. Mapillary described requirements on a high abstrac-
tion level but expressed a desire to formalise documentation in order to diffuse
knowledge within the startup to better handle cases where an employee is ab-
sent. In general, the startups seemed to utilise their limited size to forgo a
formal process internally.

The external process was also in line with what the literature has previously
observed[1]. No formal specifications documents were observed and require-
ments were informally described in issue trackers and forum discussions. Map-
illary made a point of adhering to the tools available to the open source com-
munity by posting their own internal issues and discussions on Github and even
performed pull requests for features they implemented. Bitcraze expressed a
desire to do the same, but stated that they did not do so sufficiently at the
moment and would like to improve the process.

Validation As mentioned under the elicitation paragraph – the lean startup
approach was never really defined, however, the majority of the startups, if not
practicing it, were leaning towards this methodology. Also, as with the elici-
tation, validation took place through informal channels (known as informalism
by Scacchi [24]), such as forums and issue trackers. Furthermore, validation
and elicitation are tightly connected causing validation to be done implicitly by
elicitation from the community, allowing some (PA EX) to be reused in this
section.

For the most part validation took place internally with each startup having a
different approach. Bitcraze’s process was the most formal, consisting of specific
stages where the validation took place. As compared to the other startups,
Bitcraze have to perform validation twice – both for hardware and software –
to some extent explaining the necessity of having more rigid plans.

Generally, the main source for validation were some kind of early adopter-
users. In Bitcraze case, the so called friendly users were allowed to buy the
hardware at cost, in exchange for providing feedback to the startup. Refined
implemented feedback functionalities in their products, simplifying the process
for its users. The startup also received valuable response from their consulting
partners.

Mapillary had a more external approach, leveraging the OS community by
enabling developers to post issues and discuss them together.

Release Management Release management can be done based on features
or time. The literature reports that time based releases are favoured in LEAN
startups[21] as well as in open source projects [16]. Not only are time based
schedules favoured, but very frequent releases are encouraged due to faster vali-
dation of the software. In a LEAN context this means that the MVP can iterate
faster and early feedback allows the project to remain agile. For open source
projects, additional benefits of minimising code divergence and a predictable
schedule for external developers also exist[16].

The startups in this thesis generally agreed with the literature, the exception
being Refined. They preferred a feature based schedule but still cited increased
release frequency as important. In an open source context, frequent releases are

40

somewhat trivial since new code can be pushed several times a day. When bi-
nary releases are also considered, Mapillary exhibited a higher release frequency
than the rest of the startups due to continuous deployment. Bitcraze expressed
an intent to do the same. Currently, binary releases were made every six months
and they were not satisfied with that rate.

41

7.6 RQ2: Challenges
In this section the second research question are addressed while sections 7.6.1
and 7.6.2 serves as preconditions for approaching the final research question,
RQ3.

(Ch XX) marks the identified challenge whereas {Ch XX} is a reference.
This applies to the potential actions (PA XX) as well.

RQ2: What challenges can be identified in regards to current RE structure and
practices in startups engaged in OSS development?

Elicitation The startups stated that elicitation is not an issue, it is the re-
sources needed to implement them. In a situation where Bitcraze’s BM
is applied, and the startup so heavily emphasises the use of open source,
this points to a broader challenge. Even if internal elicitation is sufficient
to produce an impressive feature set, the community is not engaged in the
development of the features or even in the discussion of what features to
prioritise. The potential resources of the community are not utilised (Ch
E1).

Bitcraze experienced a lot of activity in their community when the product
was new. While the novelty of the project spurred an initial interest, it
later declined. If continual elicitation is a goal of the project, the startup
needs to keep the community steadily engaged (Ch E2).

Another serious issue faced by Bitcraze was that they observed new fea-
tures for their project in other settings than their own. As explained by the
startup; external developers actually did elicit and produce new features
but they never propagated back up to the original project (Ch E3).

Requirement Specification To a certain degree, the startups seemed to man-
age without an internal formal specification document but as the products
and startups matured, the need for such a document started to present
itself. Refined had already implemented one and Mapillary expressed a
desire to do so. Bitcraze alluded to a need but were resistant due to
their organisational culture. Regardless, a need for a more formal pro-
cess seems to emerge as the startup grows. This presents two distinct
challenges; when to start formalising the process (Ch RS1) and how to
allocate resources to it (Ch RS2).

One challenge faced particularly by Bitcraze was found in the bridging
process. While Mapillary managed to communicate their internal issues
and discussions in the open source community, Bitcraze stated that they
did not do this to a desired extent (Ch RS3).

Validation A potential challenge is to find trustworthy sources that are able
to provide valuable feedback (Ch V1).

Also, despite the majority of the startups claiming that the risk of having
the project stolen is low, it still exists (Ch V2), as experienced in the
case of Bitcraze and how immoral manufacturers copied their platform for
commercial purposes.

42

Moreover, the external validation is dependent on the maturity of the OS
community – as in the case with Bitcraze, if the system is too complex, it
could potentially impede the validation of the product (Ch V3).

Release Management The challenges presented concern the frequency of re-
leases and as it remains trivial in an open source context when only the
source code is considered, we examine only the binary releases.

Both Refined and Bitcraze wanted to increase their release frequency but
had not been successful so far. Since the startups differ in their release
strategies this challenge can be branched into two challenges based on
context.

The first challenge concerns how to increase release frequency in a feature
based strategy. In Refined’s case they stated that even though they had a
schedule based on features, they were not happy with the frequency and
as a consequence would end up with a stripped feature set (Ch RM1).

The second challenge arises from the perspective of Bitcraze where a time
based schedule is applied in a heavily open sourced context. They stated
that even though the source code is updated often, and is always available
for a client to download and build themselves, the binary releases are made
every six months. The intent of the startup is to advance from a biannual
schedule to daily releases (Ch RM2).

7.6.1 Potential Actions to Challenges

In this section a series of potential actions that can be applied to help with the
aforementioned challenges will be presented. The potential actions are based on
literature as well as the interviews with the four startups. This will later serve
as a component of the BOSS process presented in section 7.7.

Elicitation All three challenges presented, {Ch E1}, {Ch E2}, {Ch E3}, con-
cern wasted resources from the community and Bitcraze in particular at-
tribute them to community mismanagement, not the actual elicitation
process.

The first challenge, {Ch E1}, can be adressed by utilising the techniques
observed in many open source projects; forums and issue trackers but in
addition extended to internally elicited requirements as well[24][20], in the
sense that it would allow the community to discuss what features to pri-
oritise and also outsource some of the workload to the community. This
technique was successfully utilised by Mapillary, where they managed to
involve the community to such extent that allowed them to fully exploit
its potential, as described in section 6.2 (PA E1).

The second challenge, {Ch E2}, implies that one cannot simply rely on the
initial burst of interest that a project might experience. Employing (PA
E1) is a good initial step, but if the startup wants to retain the commu-
nity, it is our opinion that the process needs to be continually managed.
This is supported by Bitcraze’s admission of mismanagement and lack of
communication and their subsequent actions to improve those aspects (PA
E2).

43

While the third challenge, {Ch E3}, could possibly be mitigated by (PA
E1) and (PA E2), since this is a communication problem, it might not be
enough. The first two potential actions sets up a functioning environment
for communication, allowing external contributors to actually contribute.
However, we believe that the problem of developers not contributing back
to the original project has other reasons. In Bitcraze’s case, the software
is spread out in 30-40 different repositories while features could poten-
tially concern many of them. In contrast, Mapillary has not had the same
issues with people not contributing, further strengthening the notion that
complexity might be a concern in this challenge. If {Ch E3} cannot be
solved by (PA E1) and (PA E2) the startup should try to re-architect the
software and lower complexity (PA E3).

Requirement Specification Starting by addressing {Ch RS1} of when to
start a formal internal process we need to consider some key aspects of a
startup. Because they are agile in nature, especially if the LEAN startup
approach is adopted, implementing a requirements specification document
too early would add friction to the iteration cycle and slow it down. On
the other hand, doing it too late puts the startup at risk if key employees
are absent.

One potential action is to create a requirements document after the first
few rounds of feedback on the MVP. It is difficult to pinpoint a specific
state of the MVP to do this as it will vary from startup to startup, but
if the MVP is successful and there is no need for a pivot, the iterations
should stabilise towards a final product and hence so should the specifica-
tions document (PA RS1).

Another potential action is to adapt the tools currently used to include
a more persistent state. As specifications are already encoded in tasks,
these could easily be stored as a list of requirements, albeit primitive, with
minor modifications. This would also help alleviate {Ch RS2} as it would
not be as resource intensive considering some of the work involved is al-
ready done. This could be a very reasonable solution as evidenced by the
success with informal requirements in open source projects[1] (PA RS2).

As challenge {Ch RS2} concerns resources that startups tend to want
to spend on development instead of management[21], (PA RS2) should be
an acceptable compromise. However, considering that the real need for a
formal process seems to come as a side effect of growth, the startup should
recognise the importance of RE and re-allocate developer time or hire a
requirements manager when the interim solution is no longer viable (PA
RS3).

The final challenge {Ch RS3} specifically concerned Bitcraze. As ex-
plained in section 6.2, they attribute this to the complexity of software,
spanning over 30 repositories. This is a multifaceted challenge that could
potentially be mitigated by process based, as well as technical, actions.

44

Bitcraze’s own strategy was to create a meta repository that only con-
tained issues with the intention of communicating features through that.
Although this approach had so far been unsuccessful, the idea of creating
a central space for features spanning multiple repositories is a potential
action (PA RS4).

Since the challenge is based on the complexity of the software, the startup
could try to lower complexity. This would also help internal development.
This action is the same as proposed in the elicitation section (PA E3).

Finally, a potential action to {Ch RS3} is to adopt selective revealing
as used by Mapillary and not release everything as open source[11]. This
would make it easier for developers to concentrate their contributions while
the startup can focus on supporting the community. This action has sev-
eral advantages and is described further in the next section as (PA V2).

Validation In order to obtain feedback the startup should not only establish
good connections with their customers but also give something in return,
as Bitcraze do by providing the hardware at cost, or like Refined, that
attempt to alleviate the process for its users as much as possible (PA V1).

Not disclosing essential information could be a difficult balancing act,
especially in startups such as Bitcraze that have a defined ideology of
being open. Our study suggest however, that it could be wise to follow
the example of Mapillary and Refined. It would not only reduce the risk
of eventually losing market shares due to theft but potentially also leads
to more well-defined components, making it simpler for the developers,
which in turn raise the chances for the community to develop successfully.
A potential action to both {Ch V2} and {Ch V3} is therefore to separate
the project into sub projects that can be validated independently (PA
V2).

Release Management In the setting of {Ch RM1} where a startup is con-
stantly behind schedule on their feature releases there are two obvious
potential actions to take. The first one is to learn from their previous
mistakes and perform more realistic effort estimations. If successful, this
would put releases on schedule as well as provide better cost estimates for
future features(PA RM1).

The second potential action is to switch to a time based strategy. This
would mean that the startup is always on schedule and features are added
to a release when they are done. The benefits would also include timely
feedback and the customers would reliably know when to expect an up-
date. For Refined, this is of particular interest since they do a lot of work
through consultants. (PA RM2).

The second challenge, {Ch RM2} can potentially be mitigated with a
simple process action or technical actions of varying complexity. If build-
ing the software is relatively inexpensive, the startup can decide to do it
manually every day (PA RM3). The second potential action is to set up
a build script that runs every night (PA RM4). The final and most ma-

45

ture potential action is to employ the techniques of continuous deployment
successfully used at Mapillary (PA RM5).

A summary of the problems identified and solutions proposed can be found
in table 2.

Table 2: Summary of problems and solutions.
Challenge Potential Actions
Ch E1 PA E1
Ch E2 PA E1, PA E2
Ch E3 PA E1, PA E2, PA E3
Ch RS1 PA RS1, PA RS2
Ch RS2 PA RS2, PA RS3
Ch RS3 PA RS4, PA E3, PA V2
Ch V1 PA V1
Ch V2 PA V2
Ch V3 PA V2
Ch RM1 PA RM1, PA RM2
Ch RM2 PA RM3, PA RM4, PA RM5

7.6.2 Themes

In this section four different themes that were identified when analysing the
challenges and potential actions will be presented. The themes will later be
part of the BOSS Macro Analysis presented in section 7.7.3 and will be used to
identify broader issues in a startup’s management of an open source project.

The potential actions can all be categorised as involving changes to process,
communication, technical aspects or resources. If a startup exhibits multiple
challenges related to the same theme, that might indicate to the startup that
special focus or further actions specific to the startup should be applied in that
area. If a startup can identify the challenges presented in this thesis and the
majority are, for example, communication related challenges, the startup might
have broader issues relating to communication and should focus their efforts on
improving communication and employ additional actions more specific to the
particular startup.

The themes are further explained here.

Process If a potential action is categorised under the process theme, it means
that the action involves changes to how the startup manages certain RE
tasks. In other words, changes to current managerial practices.

Communication The communication theme indicates that a potential action
will increase communication with the community. There might be a side
effect of increased internal communication but the theme is primarily con-
cerned with external communication towards the OSS community.

Technical While the process theme involves changes in how RE tasked are
managed, the technical theme indicates that the potential action requires
changes to the technical foundation on which the process is based. This

46

specifically concerns what tools, such as issue trackers and forums, are
used to carry out the RE processes as well as the software architecture
and organisation of the public repositories.

Resources Potential actions with a resource theme indicates a need to reallo-
cate or increase capital or labour resources.

These themes were mapped to their potential actions as displayed in table
3.

Table 3: Potential Action themes
Potential Action Themes
PA E1 Process, communication
PA E2 Process, communication
PA E3 Technical
PA RS1 Process
PA RS2 Process, technical
PA RS3 Process, resources
PA RS4 Process, technical
PA V1 Process, communication, technical, resources
PA V2 Process, technical
PA RM 1 Process
PA RM 2 Process
PA RM 3 Process
PA RM 4 Technical
PA RM 5 Technical

Reasoning that because a challenge can potentially be mitigated by, for ex-
ample a technical action, this might indicate that the challenge is an indicator of
a broader technical issue. Applying the themes presented in table 3 to the cor-
responding actions in table 2 results in themes mapped to challenges presented
in table 4.

Table 4: Challenges and Potential Action themes combined
Challenge Action themes
Ch E1 Process, communication
Ch E2 Process, communication
Ch E3 Process, communication, technical
Ch RS1 Process, technical
Ch RS2 Process, technical, resources
Ch RS3 Process, technical
Ch V1 Process, communication, technical, resources
Ch V2 Process, technical
Ch V3 Process, technical
Ch RM1 Process
Ch RM2 Process, technical

47

7.7 RQ3: Engineering Solution Design of BOSS
RQ3: How can the problems identified in RQ2 be mitigated?

The third and final research question will be confronted in this section. To
do this a process called Bridging Open Source and Startups (BOSS) has been
designed. BOSS is a tool a startup can use to help with the process of building
and leveraging an open source community. It consists of four steps as shown in
figure 4.

1 2 3 4
Reveal Challenge Macro Action

AnalysisGuidelines Analysis Application

Figure 4: The BOSS method - the darker area is the iterative part of the process.

Reveal Guidelines The first step involves the release of the OSS project. BOSS contributes
by facilitating some advice on attributes of the software to be released,
observed side effects of releasing independent OSS projects as opposed to
releasing the entire product as an OSS and a set of questions to decide
what such an independent project might be. The reveal step is presented
in section 7.7.1.

Challenge Analysis The second step is reached after the release of a project and is the first
step of an iterative process the startup can apply during an ongoing OSS
project. It involves an analysis of the current challenges faced by the
startup in their OSS management process. The Challenge Analysis step
is presented in section 7.7.2.

Macro Analysis While the second step is designed to examine challenges that are explicitly
observable in the startup, the third step lifts the abstraction level to a
macro perspective based on themes. By applying this step the startup
can extract information on broader issues related to the OSS project.
This step is presented in section 7.7.3.

Action Application The last step of the BOSS tool is to apply actions to mitigate the challenges
identified in step 2 and 3. This thesis provides a set of potential actions to
the challenges in step 2. The potential actions are based on the literature
study and interviews with the startups. The details of this step are given
in section 7.7.4.

The BOSS tool is an agile process, allowing the startup to quickly get insight
and help with the initiation of the OSS project with step one. It is also an
iterative process and once the project is up and running the iteration can start
with the second step. Throughout the lifetime of the OSS project, the startup

48

can return and reiterate through steps two, three and four intermittently as
needed. The iterations are needed as the startup and the environment it operates
in changes quickly and as such the outcomes of the steps may change with each
iteration.

The BOSS tool was designed by exploring a variety of hypotheses on how
to best help a startup with an OSS project. These hypotheses largely resulted
in minor tools, drawing inspiration from classical management tools such as
SWOT analysis and Six Forces. The goal was to aid in decision making based
on a variety of parameters such as community maturity, desired involvement,
complexity, etc. The tools were ultimately too scattered, abstract and with
questionable rationale. In the end, a conclusion was made that the tool needed
to include concrete challenges and potential actions as a counter measure to
experienced challenges. This would provide a far more pragmatic approach and
be helpful to a user regardless of previous managerial experience. Realising
however that the current state of a startup and their priorities may change
rapidly, simply providing a list of challenges and potential actions is not enough.
The tool needed a focus mechanism to help a startup evaluate what challenges
to prioritise at a given moment. Additionally, the list of challenges in this thesis
is of course non exhaustive as one startup’s situation may provide more unique
challenges. This lead the design process to two realisations; the tool needed to be
iterative because of the continuously changing environment and it also needed an
additional mechanism to provide help tailored to the operating startup’s unique
situation. The iterative approach is also compatible with the LEAN startup
methodology and other agile methodologies used by startups. Ultimately this
meant a three step iterative design; a Challenge Analysis, a Macro Analysis
and an Action Application step. The Macro Analysis is based on four different
themes identified as general enough to provide a compass for a startup to quickly
search for other challenges not found in this thesis. The combination of the
iterative approach and Macro Analysis would provide a simple way for a startup
to always focus on the most pressing challenges while also drawing attention to
areas of immediate importance. Finally, to be truly useful for new startups and
new projects the tool needed an inception stage. The knowledge extracted from
this thesis was compiled into the Reveal Guidelines step. This step needed to be
very lightweight to enable startups to release quickly. It is useful for all types of
startups since it incorporates advice on software qualities, a view on releasing a
product as opposed to single components as well as a simple way of identifying
suitable components.

What ultimately resulted from the design process is the BOOS tool presented
in this thesis. It is an agile and iterative tool a startup can use for guidance
throughout an OSS venture. The tool is also naturally extensible and further
research can be done to find new challenges and potential actions.

7.7.1 BOSS Revealing Guidelines

The first step of the BOSS process is designed to quickly help the startup with
a major decision; what to release as an OSS project. In section 7.3 results of the
literature study and interviews are presented and in this step they are compiled
as compact general guidelines.

The first decision to make is whether a particular project or product is
suitable for an OSS release. The following are some beneficial preconditions

49

that will help if contributions are desired.

Demand There should be a public demand for the project and it should solve
a problem.

State While good software quality is beneficial, the important aspect is that
developers can test it and it convincingly demonstrates potential.

Novelty The project can be new and innovative, but it can also present new
features or improvements over competing projects or be an OSS alternative
to proprietary software.

The second decision to make is whether to release an entire product as OSS,
or to release smaller components as independent projects. The first situation
seems to be applicable if there are ideological reasons for making an OSS product
or if the product is to serve as an OSS alternative to a commercial competitor.
The latter situation should be applicable in any software startup.

The following side effects were observed when multiple independent projects
were released, as opposed to one large project.

IP More granular control of intellectual property.

Prioritisation The startup can prioritise between different projects and apply
different levels of involvement accordingly. This also means that some
components can be released for low effort reasons such as branding while
other projects can be released with contribution goals and have different
RE frameworks.

Risk of theft Releasing the entire product as OSS puts the startup at an obvi-
ous risk for competing forks. If separate components are released the prod-
uct cannot be copied without reverse engineering the proprietary parts.

Changing licenses If a license needs to be changed to a more restrictive license
after external contributions have been made, permission is needed from
all contributors. Smaller independent projects may lower exposure and
spread the risk.

These side effects may seem biased towards the component model but are
the results of the analysis in this thesis. Further research can explore what
benefits a product model may have over a component model.

Finally, if the decision to release separate components as OSS is made, the
following questions will help identifying such a component.

1. Does this component have a clear purpose?

2. Is it non-critical for the product?

3. Does it have to be maintained?

4. Is it reusable?

This first step of the BOSS process should be done once for every new OSS
venture. After the release of the project the iterative process of steps 2,3 and 4
can be initiated.

50

7.7.2 BOSS Challenge Analysis

The BOSS Challenge Analysis is the second step of the BOSS process and the
first step of the iterative part. This step involves an analysis of the manage-
ment of the OSS project from the RE perspectives of elicitation, requirements
specification, validation and release management. The identification process
can be done with the checklist presented in table 5. For the benefit of startups
not versed in RE terminology the RE areas have been replaced with simplified
categories.

Table 5: Challenge identification
Id Difficulties in obtaining ideas and solutions. Check

Ch E1 Even if features are elicited internally, the community
is not involved in discussions and prioritisation of them.

Ch E2 While novelty of a project might spur initial interest,
continuing to keep the community steadily engaged in
the elicitation process is difficult.

Ch E3 New features can appear in forks or closed projects and
not propagate back to the original project.

Id Difficulties in keeping track of ideas and solu-
tions.

Ch RS1 As a project grows, the need for formal specification
grows with it and deciding when to start formalising a
process is difficult.

Ch RS2 As a project grows, the need for formal specification
grows with it and deciding how to allocate resources
to the process is difficult.

Ch RS3 Communicating internal issues and discussions to the
OSS community is not done to a desired extent.

Id Difficulties in obtaining valuable feedback.
Ch V1 Finding sources that can provide valuable feedback.
Ch V2 Trying to validate the project also puts the startup at

risk for theft.
Ch V3 If the project is very complex it might require a very

mature OSS community and could impede validation.
Id Difficulties related to the release process.

Ch RM1 Increasing release frequency in a feature based release
schedule without constantly ending up with a stripped
feature set.

Ch RM2 Increasing release frequency of binary releases of an
OSS project.

The challenges presented here in table 5 are summarised for convenience
and presentation reasons but the full context and reasons for derivation can be
seen in section 7.6. Once relevant challenges have been identified, step 2 can
be initiated. The data gathered in this step will be used in the checklist that is
part of the next step.

51

7.7.3 BOSS Macro Analysis

This section presents the third step of the BOSS process. The application of
this step consists of applying the tool presented in table 7. While the previ-
ous step will help with identifying specific challenges to a startup’s open source
management practices, this step will identify broader issues relating to process,
communication, technology and resources.

If we extract the four previously mentioned themes detailed in section 7.6.2
and put them in individual columns we can generate a mapping matrix. Table
6 is another way of representing the same information presented in table 4. If
we consider Ch E1, it has been mapped to process and communication in table
4 and hence the same themes are marked with a !in the row of Ch E1 in table
6.

Table 6: Mapping matrix
Challenge Process Communication Technical Resources
Ch E1 ! ! - -
Ch E2 ! ! - -
Ch E3 ! ! ! -
Ch RS1 ! - ! -
Ch RS2 ! - ! -
Ch RS3 ! - ! -
Ch V1 ! ! ! !

Ch V2 ! - ! -
Ch V3 ! - ! -
Ch RM1 ! - - -
Ch RM2 ! - ! -

If we further extend the mapping matrix in table 6 with a Checklist column
and a summarising row, named Checked we get the tool presented in table 7.

Application The final tool is showcased with a filled in example of how a
finished checklist would look after it has been used by a startup. The example
and usage of the tool is further discussed in the paragraph following the table.

52

Table 7: Checklist example
Challenge Process Communication Technical Resources Checklist
Ch E1 ! ! - - !

Ch E2 ! ! - - !

Ch E3 ! ! ! - -
Ch RS1 ! - ! - -
Ch RS2 ! - ! ! -
Ch RS3 ! - ! - -
Ch V1 ! ! ! ! !

Ch V2 ! - ! - -
Ch V3 ! - ! - -
Ch RM1 ! - - - -
Ch RM2 ! - ! - -

Checked 3 3 1 1

In this example, the! indicates that Ch E1 , Ch E2 , Ch V1 have been iden-
tified. The checked sum at the bottom is the number of challenges identified
that are associated with that particular theme column. The example input in-
dicates that the fictive startup might have more general issues related to process
and communication because all three challenges identified were associated with
those themes. Conversely, there is only one identified challenge associated with
the technical and resources themes, indicating that they are of comparatively
lesser concern to the startup. In addition to evaluating and possibly employing
the potential actions suggested in this thesis, the startup should evaluate their
process and communication more closely and implement improvements more
specific to their particular needs. The identification of critical themes will be
valuable when prioritising between different actions in the next step.

7.7.4 BOSS Action Application

The final step of the BOSS process is to apply actions to mitigate the challenges
identified in step 2 and 3.

For challenges identified in step 2, BOSS Challenge Identification, this thesis
provides the potential actions described in section 7.6.1. Table 8 provides the
mappings of challenges to relating potential actions. In table 9 brief summaries
of the actions are given for presentation reasons but the full context should be
reviewed in the previously mentioned section 7.6.1. A summary of the chal-
lenges was given in table 5 and the full context of the challenges is found in
section 7.6.

53

Table 8: Mapping of challenges and actions.
Challenge Potential Actions
Ch E1 PA E1
Ch E2 PA E1, PA E2
Ch E3 PA E1, PA E2, PA E3
Ch RS1 PA RS1, PA RS2
Ch RS2 PA RS2, PA RS3
Ch RS3 PA RS4, PA E3, PA V2
Ch V1 PA V1
Ch V2 PA V2
Ch V3 PA V2
Ch RM1 PA RM1, PA RM2
Ch RM2 PA RM3, PA RM4, PA RM5

Table 9: Summary of potential actions
PA Id Brief Summary
PA E1 Utilise forums and issue trackers for internally elicited require-

ments.
PA E2 Be active and continually communicate with and manage the OSS

community.
PA E3 Re-architect the project to lower complexity.
PA RS1 Establish a requirements specification document after the first

few rounds of a successful MVP
PA RS2 Perform minor modifications to tasks used internally and use

them as primitive specifications.
PA RS3 As the need for specifying requirements seem to be a function of

growth, plan to hire a person that can be tasked with require-
ments management. Alternatively, re-allocate developer time.

PA RS4 Create a meta repository specifically for broader features and is-
sues.

PA V1 Establish good connections with customers. Give something in
return for validation, e.g hardware at cost or spend time simpli-
fying the process as much as possible.

PA V2 Separate components into independent sub projects that can be
validated individually.

PA RM1 Learn from previous mistakes to perform more realistic effort es-
timations.

PA RM2 Switch to a time based release strategy.
PA RM3 If the build process is inexpensive, do it manually every day.
PA RM4 Set up an automated build script that runs every night.
PA RM5 Employ continuous deployment.

To perform this final step of the BOSS process the startup needs to do the
following:

1. Use the data acquired in step 2, BOSS Challenge Identification, to extract
potential actions for the challenges.

54

2. Evaluate the identified potential actions and their applicability for the
startup.

3. Apply the potential actions. If the identified potential actions are too
many, focus on the most critical theme identified in step 3, BOSS Macro
Analysis.

4. Apply additional actions more specific to the individual startup’s situation
with a focus on the most critical theme identified in step 3, BOSS Macro
Analysis.

After applying this step, the startup will have finished their first iteration
of the BOSS process. Because the process is iterative, not all identified actions
need to be applied immediately. It is recommended to implement a subset of the
actions and evaluate the result with the next iteration. Because startups evolve
rapidly and their priorities and relation to their OSS communities might change
it is important to return to the BOSS process intermittently as challenges not
identified during one iteration might present themselves later. By focusing on
the themes identified in step 3, BOSS Macro Analysis, the startup can prioritise
actions in areas that are of particular importance during the current iteration.

55

8 Validation
In order to truly evaluate the BOSS tool an unorthodox approach was under-
taken: A website consisting of six slides (screenshots can be found in the ap-
pendix) was built by the authors to be able to fully demonstrate the outcome of
this thesis. The technology used to build the frontend was a mixture of HTML
and CSS, jQuery/Javascript, Gulp, node.js and Adobe Illustrator. The backend
whose purpose was to assess and store the data collected from the participants
was constructed with jQuery/Javascript, Google Analytics and Google Firebase.
The presentation was essentially divided into two steps, namely, a presentation
of the tool and a questionnaire. Below are detailed descriptions of each slide:

First slide The first slide presented the entire purpose of the validation part
and the BOSS tool as a whole. It also provided an overview of the two parts –
presentations of the tool and questionnaire – as mentioned above. Lastly, a login
animation above the first header indicated whether the user obtained a valid
token. The token, which was incorporated in the link sent to the participants,
is a part of the Google Firebase installation and is required in order to be able
to assess and store.

Second slide This part outlined the BOSS tool with its four steps. It also
explained what it is and how it works.

Third slide This is a questionnaire specifically designed to validate the Reveal
Guidelines. The participants were asked to toggle the switches they believed to
be true. The statements were the following:

S1: Many small projects means more granular control of IP.

S2: Many small projects means more granular control of licensing.

S3: Many small projects means easier to prioritise between the different projects.

S4: It is harder for someone to copy a product if the product also includes
proprietary software.

S5: Changing licensing of an already released open source project with external
contributors can be difficult.

The response to these statements can be seen in table 10. In all following
tables showcasing the responses from the validation, the respondents are marked
R1, R2, R3 and R4 respectively.

Table 10: Reveal Guidelines Response
Statement R1 R2 R3 R4
S1 Yes Yes No Yes
S2 Yes Yes No Yes
S3 No No No Yes
S4 Yes Yes No Yes
S5 Yes Yes Yes Yes

56

Overall, all statements had a majority agreement from respondents expect
for statement S3. Unfortunately no explanation as to why was given but we
believe this particular statement was not properly communicated. Had the full
context been given, as presented in this thesis, we believe the answers would
have been different.

Fourth slide This was an interactive section that not only allowed the partic-
ipants to explore BOSS Challenge Analysis and its components, challenges and
potential actions but to comment as well. This was done by simply hovering
the mouse over each challenge or click, respectively.

The responses from this section can be seen in table 11.

Table 11: Challenge and potential action response
Challenge R3
Even if features are elicited inter-
nally, the community is not involved
in discussions and prioritisation of
them.

True for us. We might not be that
good at making discussions public (it
often happens that we discuss things
in the office) but we have also noticed
that it might be hard to get the com-
munity to participate in the discus-
sions.

Increasing release frequency of binary
releases of an OSS project.

My suggestion is to start with TTD,
CD and other practices that forces
every one to work in a orderly way
as soon as possible.

Unfortunately only one participant, R3, gave any comments on the chal-
lenges and actions. It is unclear if the reason is due to a general agreement on
the challenges and actions or due to time constraints. However, the comments
given are valuable. We interpret the first comment as meaning that even if in-
ternal features are exposed in external issue trackers, the community might still
not engage. This is of course true and hence the suggested actions are termed
‘Potential actions’. It is more clearly communicated in the context of this thesis
and should be considered before the next time the BOSS tool is presented in a
summarised form. The last suggestion is interesting and further research can
explore at what time such implementations are worth considering.

Fifth slide This slide presented BOSS Macro Analysis and Boss Action Ap-
plication. It also provided a recap of the entire process, outlining the iterative
process both visually and textually.

Sixth slide The participants were able to provide feedback if they did not
agree with any of the statements in BOSS Reveal Guidelines, if they had any
comments on Boss Macro Analysis or Boss Action Application and general com-
ments as well. The comments are presented in table 12.

57

Table 12: Comments
Comment type R3
Reveal Guidelines Most of the points are related to IP

and licensing. I think technical rea-
sons could be another good reason for
many small projects, see micro ser-
vices for instance.

Macro / Actions Macro analysis: You will probably
always have all the problems at the
same time to some degree. Maybe
the instruction for step 2 should be
P̈ick the 3 biggest challenges you
have right noẅ. I like the iterative
approach as it goes hand in hand
with many other methods/ideas such
as scrum, lean startup, evolutionary
development and so on. It might be
beneficial to add some suggestions on
the length of the iteration cycle?

General Well done!

Again, only respondent R3 had any comments to give. As with the challenge
responses, this could be due to a general agreement or time constraints. We
interpret the first comment as meaning that smaller projects, as opposed to a
large product, can have technical benefits. This is a good idea and could be
explored in further research.

The second comment is great. It essentially means that the respondent
agrees that the challenges are plausible. Prioritisation between challenges is
already included in the Macro Analysis step. This is most likely better com-
municated in this thesis and should be considered the next time the BOSS tool
is presented. It is positive to see that the iterative approach is appreciated
and for the precise reasons it was implemented; challenges and their importance
change over time and iteration is compatible with other methodologies used by
startups.

The last question asked was wether the respondents thought the BOSS tool
could be helpful to other startups seeking to leverage OSS communities. The
response can be found in table 13.

Table 13: Helpfulness
Question R1 R2 R3 R4
Do you think that the BOSS tool could be helpful
to other startups seeking to leverage OSS communi-
ties?

Yes No Yes Yes

Three of the four respondents believed that the BOSS tool could be helpful
to a startup. It is possible that R2 did not have time to fully understand the

58

tool or genuinely does not see it as useful, however, no comments were given so
the reason remains unknown.

Overall the response was very positive and is a good indicator that the BOSS
tool has potential promise in practice.

59

9 Threats to Validity
This section presents validity threats concerning this thesis. Following threats
have been identified [23]: Internal validity, external validity, construct validity
and reliability.

9.1 Internal Validity
This deals with the mitigation of potential bias. Triangulation was used in the
form of multiple literature sources. However, the insufficiency of academical
papers in the subject that this thesis covers impeded the process to completely
eradicate bias. In addition, the authors’ different viewpoints were used in an
attempt to be as objective as possible.

9.2 External Validity
This concerns with to what degree the results can be generalised to other con-
texts – that in this case remains unclear to what extent the findings in this
thesis can be. On one hand some of the interviewed startup had tremendous
experience and track record, combined with the fact that their way of conduct-
ing RE many times resonated with the literature found. However, there seem
to exist several different strategies on how to build communities which could
potentially hinder the possibility of a generalisation. Further research needs to
be done in order to attain a broader perspective.

9.3 Construct Validity
This regards to the selection of the correct measures for the research. Only
startups involved in OSS communities were selected. The interviews were semi-
structured in order to be able to adjust the questions, to limit any potential
bias. The questions were often repeated in other shapes, such as with different
examples and formulations. The interview questions were carefully crafted by
analysing and understanding the process cycle of a startup and how open source
in works in general.

9.4 Reliability
This refers to what extent this study can be replicated. In order to enhance the
traceability and reliability, all interviews were recorded and transcribed. Also,
a form was sent out to the startups with the purpose to further validate the
results.

60

10 Discussion
It was expected to see very informal RE processes in both the startups and OSS
projects. This was true with all the startups in this thesis and has been observed
in previous research indicating that this is more likely the norm than exception.
It was however interesting to see that the processes are informal in different ways
and ultimately not immediately compatible. They can however be separated in
an internal and an external process that can vary independently. The sample
size of the interviewed startups is small but covers many different situations.
The startups vary with success rate, maturity as a company, complexity of both
the product and OSS projects as well as business models, OSS strategies and
OSS involvement. Although these parameters are represented by the startups,
the sample size is too small to attribute any general conclusions with regard to
any specific parameter.

We expected the OSS projects to be more successful and this probably has
more to do with a selection bias of previous research where studies have mostly
been done on already successful OSS projects. In this thesis we observed early
stage OSS projects that were released for different reasons, possibly requiring
other metrics of success than number of contributions and adoption by devel-
opers.

Startups and OSS projects share many process similarities and ideas such
as minimising management overhead and adopting agile philosophies, especially
when compared to how a larger corporation operates. Combined with the fact
that startups are typically very resource constrained, reliant on innovation and
that OSS might offer a suitable solution to both those problems one might think
that merging startups with OSS is a perfect match. In this thesis we have found
that there are a variety of different ways to implement the combination and
it is not without challenges specific to this situation. It is simply not enough
that both startups and OSS have similar philosophies and typically rely on very
informal RE practices. In fact, sometimes they are very contradictory in the
implementation of the processes.

While a startup might enjoy freedom from management overhead through
less documentation and a very informal RE process, a major reason why this
works is most likely that the startup operates as a very tight knit team with
very efficient communication pathways and a deep understanding of the project
that is being developed. An OSS project on the other hand typically does
not have the luxury of very committed team members that will stay in the
project for a long time. Instead, those projects rely on ease of contribution
and more often than not have few contributions from many developers. This
means that apart from the issue of motivating an external developer, it needs
to be easy to quickly understand a specific part of the project and contribute to
it. This is largely done through documentation of the project and is typically
much more thorough than what is needed in a constantly evolving project where
team members are well versed with the code base. The contradictions do not
mean that the combination of startups and OSS is completely incompatible and
should not be pursued, there are ways of successfully leveraging positive aspects
of both and this is especially evidenced by Mapillary and Neo in this thesis. We
believe a reason as to why this is might be attributed to the selective revealing
aspect that was employed at Mapillary, Neo and Refined. This is contrary to
releasing all source code as done by Bitcraze.

61

By releasing only well selected parts of the code base the startup can employ
separate processes for proprietary development and OSS development. The in-
ternal process can develop and mature as needed by the startup while the OSS
projects can be managed according to the best practices already established in
the OSS community. Releasing certain parts as OSS will require more docu-
mentation and communication with external developers, but the extent to which
the startup chooses to do this can be adjusted according to their current needs.
It also has the potential to mitigate risk of theft by not exposing the entire
code base of the product. Releasing separate components as OSS most likely
also requires some preparation of the code if the OSS project is to succeed in
attracting developers which would likely increase code quality. The extra re-
quirements in more external communication, management, documentation and
code quality will of course be a resource cost for the startup, but those are costs
of any successful OSS project so employing selective revealing can focus those
resources towards areas of the startup’s choice. If the entire code base is released
as OSS those costs will affect a larger code base. Varying the level of engage-
ment in separate projects could potentially be very valuable. Mapillary showed
that if contributions are the main purpose of an OSS release, greater effort can
be put into documenting that project while Refined released a project mainly
for branding purposes, requiring little to no effort in the release process and
documentation of the project. Different projects can have different purposes for
an OSS release where low effort reasons include branding, IP protection, bug
reporting and feature requests. Higher effort purposes would include bug fixes
and feature implementations.

The positive aspects of selective revealing do not necessarily mean that re-
leasing the entire code base is a bad idea. From what was observed in this
thesis however, the particular combination of extremely informal RE practices
combined with a very complex and large code base did not ultimately yield
a satisfactory result. Bitcraze’s aspirations of having as little documentation
as possible internally did not translate well to the open source nature of the
startup. Although they did make a big point of being as open as possible that
does not simply mean releasing all the code, they need to actively communicate
what they are working on and what their plans for the project are as well as
be responsive to input from the community. In Mapillary’s case they would
treat all internal development within the OSS projects as if they were external,
something Bitcraze aspired to but did not actually do. As OSS is such an im-
portant aspect for Bitcraze’s product, they should probably treat the external
community as part of the startup. They should be equal to the members of the
internal development team, meaning that Bitcraze should treat their develop-
ment process as if they had a very large number of remote developers.

Bitcraze’s and Neo’s models are perhaps the most interesting for further re-
search. It is a model where a startup releases the entire, or a vast majority,
of the code base as OSS. It has the potential to alleviate a lot of the resource
constraints naturally put on startups as well as offer a good source for inno-
vation. There has been a lot of research on OSS projects of varying sizes but
those are largely non-profit projects or sponsored by large companies. It would
be interesting to if there is a certain type of product that is suitable for this
‘OSS startup’ model. Infrastructure and tooling for developers seems promising
as Neo4j is a database and the Crazyflie is a development platform. As Bitcraze
initially had a lot of interest and a fair amount of contributions it would be inter-

62

esting to do a follow up study if they improve their processes. Further research
could also include how these ‘OSS startups’ should monetise their products.
Neo was obviously very successful in employing the dual licensing model but it
might require special consideration as to what license should be used. If a dual
licensing model is applied, it would be interesting to see at what point it should
be introduced. Applying it from the start could potentially hinder external con-
tributions and spawn a competing free product while doing it too late requires
careful licensing planning or explicit permission from all contributors at that
point.

The method of selective revealing employed at the other startups is po-
tentially applicable to any software startup. Identify a component that is, as
excellently put by Neubauer, ‘a clearly separate component that has its own
purpose and is not critical to my project, it’s more of a by-product that I also
have to maintain and is reusable’ , release it and tailor the process according to
the need for contributions. At this point the research on OSS in general should
be applicable and research on startups could be applied internally. It is a much
clearer separation of the startup and an OSS project. It would however be in-
teresting to find out if there is a more well defined selection process for such
components that also incorporates the current state of the startup and maturity
of the component.

From a pure RE point of view it would be interesting to see if there are
other processes and tools that can be developed specifically for the ‘OSS startup’
model. This would mean a unified process and toolset for internal and external
development that satisfies both the internal desire to keep overhead in the form
of documentation and formal RE processes from slowing down development
while also enabling remote external developers to easily understand the code
base, follow internal progress and contribute to the product development process
by taking part in RE tasks and contribute to the code base.

63

11 Conclusions
In this thesis we have answered three research questions:

RQ1: How is RE currently structured and practiced in startups engaged in
OSS development?

RQ2: What challenges can be identified in regards to current RE structure and
practices in startups engaged in OSS development?

RQ3: How can the problems identified in RQ2 be mitigated?

We have presented a literature study on the state of requirements engineering
as practiced in startups and open source projects respectively. The results
in the literature study have been compared with data from interviews with
four local startups on how they do open source requirements engineering. The
combined results of the literature study and analysis of the interviews were
used to gain an understanding of the current state of RE within the intersection
of OSS and startups. RQ1 is answered from the perspectives of elicitation,
specification, validation and release management in section 7.5. We conclude
that RE in OSS and startups are both informal when compared to classical RE
practices but are not immediately compatible. We believe this is largely due
to differing communication needs. More specific results concerning the four RE
areas includes among others; a view on internal elicitation as a scope setting
mechanism for the startup, difficulties concerning the communication of internal
specifications, the OSS community as a pool of validation sources and a firm
focus on release frequency.

The second research questions concerns challenges experienced by the star-
tups in the context of requirements engineering. Eleven challenges have been
identified from our interviews with the four participating startups and are cat-
egorised in the four main RE areas mentioned earlier. The full set of challenges
can be found in section 7.6 and brief summaries are given in table 5 in section
7.7.2, page 51.

The challenges are addressed in the third research question by the BOSS
tool which we have developed in this thesis and is found in section 7.7. BOSS
is an acronym for Bridging Open Source & Startups and is a tool designed
to quickly and iteratively help a startup with an OSS venture. It consists of
four distinct steps; Reveal Guidelines, Challenge Analysis, Macro Analysis and
Action Application. The first step quickly helps a startup with critical decisions
related to the release of an OSS project while the latter three iteratively helps
the startup with identifying challenges, focusing on what is currently important
and taking action to mitigate the challenges. The last step includes 14 potential
actions designed in this thesis and are based on interviews and literature. The
BOSS tool is expandable and further research can be done to identify a larger
set of challenges and potential actions.

In summation; we investigate the current state of RE within the boundaries
of a startup engaged in an OSS release (section 7.5), identify eleven challenges
in this context (section 7.6) and present a tool to aid a startup in the venture
(section 7.7).

64

Appendices
A Screenshots of validation webpage

Figure 5: Presentation of the validation process in general

Figure 6: The BOSS tool - Overview

66

Figure 7: BOSS Reveal Guidelines

67

Figure 8: BOSS Challenge Analysis without hover/click

68

Figure 9: BOSS Challenge Analysis without hover

69

Figure 10: BOSS Challenge Analysis with hover and click

70

Figure 11: BOSS Macro Analysis and BOSS Action Application

71

Figure 12: Questions

72

References
[1] Thomas Alspaugh, Walt Scacchi, and others. Ongoing software develop-

ment without classical requirements. In Requirements Engineering Confer-
ence (RE), 2013 21st IEEE International, pages 165–174. IEEE, 2013.

[2] Steve Blank. Why the lean-startup changes everything. Harvard Business
Review, May 2013.

[3] Andrea Bonaccorsi and Cristina Rossi. Why Open Source software can
succeed. Research Policy, 32(7):1243–1258, July 2003.

[4] Alan Boulanger. Open-source versus proprietary software: Is one more
reliable and secure than the other? IBM Systems Journal, 44(2):239–248,
2005.

[5] Henry W. Chesbrough and Melissa M. Appleyard. Open innovation and
strategy. California management review, 50(1):57–76, 2007.

[6] Creative Commons. About the licenses.
https://creativecommons.org/licenses/, 2016. Accessed 2016-05-23.

[7] Kevin Crowston, Hala Annabi, James Howison, and Chengetai Masango.
Towards a portfolio of FLOSS project success measures. Syracuse Univer-
sity Surface, 2004.

[8] Joseph Feller and Brian Fitzgerald. A framework analysis of the open
source software development paradigm. In Proceedings of the twenty first
international conference on Information systems, pages 58–69. Association
for Information Systems, 2000.

[9] Daniel M. German. The GNOME project: a case study of open source,
global software development. Software Process: Improvement and Practice,
8(4):201–215, 2003.

[10] Carmine Giardino, Michael Unterkalmsteiner, Nicolo Paternoster, Tony
Gorschek, and Pekka Abrahamsson. What do we know about software
development in startups? IEEE, Software, 31(5):28–32, 2014.

[11] Joachim Henkel. Selective revealing in open innovation processes: The case
of embedded Linux. Research Policy, 35(7):953–969, September 2006.

[12] GitHub Inc. Open source license usage on github.com.
https://github.com/blog/1964-open-source-license-usage-on-
github-com, 2016. Accessed 2016-05-23.

[13] Open Source Initiative. Open Source licenses standards. https://
opensource.org/licenses, 2016. Accessed 2016-05-23.

[14] Terhi Kilamo, Imed Hammouda, Tommi Mikkonen, and Timo Aaltonen.
From proprietary to open source—Growing an open source ecosystem.
Journal of Systems and Software, 85(7):1467–1478, July 2012.

73

https://creativecommons.org/licenses/
https://github.com/blog/1964-open-source-license-usage-on-github-com
https://github.com/blog/1964-open-source-license-usage-on-github-com
https://opensource.org/licenses
https://opensource.org/licenses

[15] Eriks Klotins, Michael Unterkalmsteiner, and Tony Gorschek. Software
Engineering Knowledge Areas in Startup Companies: A Mapping Study.
In João M. Fernandes, Ricardo J. Machado, and Krzysztof Wnuk, editors,
Software Business, volume 210, pages 245–257. Springer International Pub-
lishing, Cham, 2015.

[16] Martin Michlmayr, Brian Fitzgerald, and Klaas-Jan Stol. Why and How
Should Open Source Projects Adopt Time-Based Releases? IEEE Software,
32(2):55–63, April 2015.

[17] Kumiyo Nakakoji, Yasuhiro Yamamoto, Yoshiyuki Nishinaka, Kouichi
Kishida, and Yunwen Ye. Evolution patterns of open-source software sys-
tems and communities. In Proceedings of the international workshop on
Principles of software evolution, pages 76–85. ACM, 2002.

[18] John Noll. Requirements acquisition in open source development: Firefox
2.0. In Open Source Development, Communities and Quality, pages 69–79.
Springer, 2008.

[19] John Noll, Sarah Beecham, and Dominik Seichter. A Qualitative Study
of Open Source Software Development: The Open EMR Project. pages
30–39. IEEE, September 2011.

[20] John Noll and Wei-Ming Liu. Requirements elicitation in open source soft-
ware development: a case study. In Proceedings of the 3rd International
Workshop on Emerging Trends in Free/Libre/Open Source Software Re-
search and Development, pages 35–40. ACM, 2010.

[21] Nicolò Paternoster, Carmine Giardino, Michael Unterkalmsteiner, Tony
Gorschek, and Pekka Abrahamsson. Software development in startup com-
panies: A systematic mapping study. Information and Software Technology,
56(10):1200–1218, October 2014.

[22] Eric S. Raymond and Thyrsus Enterprises. The cathedral and the bazaar.
2012.

[23] Per Runeson, Martin Höst, Austen Rainer, and Björn Regnell. Case Study
Research in Software Engineering. Wiley, 2012.

[24] W. Scacchi. Understanding the requirements for developing open source
software systems. IEE Proceedings - Software, 149(1):24, 2002.

[25] Matthias Stürmer and Thomas Myrach. Open source community building.
Licentiate, University of Bern, 2005.

[26] Jose Teixeira, Gregorio Robles, and Jesús M. González-Barahona.
Lessons learned from applying social network analysis on an industrial
Free/Libre/Open Source Software ecosystem. Journal of Internet Services
and Applications, 6(1), August 2015.

[27] Eric von Hippel. Innovation by user communities: Learning from open-
source software. MIT Sloan Management Review, pages 82–86, 2001.

74

[28] Tobias Weiblen and Henry W. Chesbrough. Engaging with Startups to
Enhance Corporate Innovation. California Management Review, 57(2):66–
90, 2015.

[29] Joel West and Siobhán O’mahony. The Role of Participation Architecture
in Growing Sponsored Open Source Communities. Industry & Innovation,
15(2):145–168, April 2008.

75

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTATIONSDAG 2016-08-25

EXAMENSARBETE Requirements Engineering in Startups
with Open Source Software related business strategies
STUDENT Billy Johansson, Martin Lichstam
HANDLEDARE Björn Regnell (LTH)
EXAMINATOR Martin Höst (LTH)

Leveraging volunteer communities for
product development in new software
companies.

POPULÄRVETENSKAPLIG SAMMANFATTNING Billy Johansson, Martin Lichstam

Small and innovative software companies, startups, are becoming increasingly more
important. They strive to create ambitious solutions with a minimal team while facing
constant resource constraints. In this thesis we examine how startups can leverage
volunteer communities for product development.

Open Source Software (OSS) is software that is de-
veloped openly and available to anyone. Require-
ments Engineering (RE) is the notoriously difficult
process of determining what a consumer actually
wants from a product. By releasing software as
OSS, a startup can gain access to a volunteer com-
munity that can contribute to the development of
the software while simultaneously acting as con-
sumers. We interview four different startups with
ongoing OSS projects, examine how they manage
the projects from an RE perspective, identify chal-
lenges related to the process and produce BOSS;
a tool designed to guide a startup through an OSS
venture.
Traditionally, the RE process has been a very

formal and slow process with well defined tools for
acquiring, specifying and validating requirements
before releasing the product. In startups, a new
methodology called LEAN has emerged. In the in-
terest of quickly verifying a consumer’s needs, the
LEAN method advocates developing a Minimum
Viable Product (MVP) showcasing the bare mini-
mum of core features and getting it in the hands of
consumers extremely early. After consumer feed-
back, features are adjusted and the process starts

over. The OSS RE process is similarly very infor-
mal compared to traditional RE. However, we find
that informality is not enough to make startups
compatible with OSS, in fact there are a number
of challenges related to merging the two.
Startups want to be able to change rapidly while

OSS projects need to allow new developers to
quickly understand the current state and intended
future of the project. This results in very differ-
ent RE processes. To further complicate matters,
a startup can choose to release an entire prod-
uct, or components of a product, as OSS. This
brings challenges of identifying such components
and applying different RE processes internally and
towards the community.
In our thesis we produce a tool called Bridging

Open Source and Startups (BOSS) to help star-
tups leverage OSS communities for product de-
velopment. The tool allows a startup to quickly
identify components for an OSS release and iter-
atively guides the startup through the manage-
ment process. This is done by identifying chal-
lenges we have extracted from interviews, diagnos-
ing broader issues and applying potential actions
suggested by us.

	Background
	Problem Description
	Methodology
	Frame of Reference
	Startups
	Lean Start-up

	Open Source
	OS as Part of a Business Model
	Open Source Licenses
	Open Source Community

	RE in Startups and Lean Start-up
	Requirement Specification
	Elicitation
	Release Planning and Validation

	RE in OS community
	Elicitation
	Requirement Specification
	Release Planning and Validation
	What to Reveal

	The Startups
	Mapillary
	Business Model
	OSS Strategy

	Neo Technology
	Business Model
	OSS Strategy

	Bitcraze
	Business Model
	OSS Strategy

	RefinedWiki
	Business Model
	OSS Strategy

	License and Legalities

	The Internal and External RE Process
	Elicitation
	Requirements Specification
	Validation
	Release Management

	Analysis
	The Incentives
	The Startups Summarised
	Bitcraze
	Mapillary
	Neo Technology
	RefinedWiki

	What to Reveal
	The Research Questions
	RQ1: Requirements Engineering
	RQ2: Challenges
	Potential Actions to Challenges
	Themes

	RQ3: Engineering Solution Design of BOSS
	BOSS Revealing Guidelines
	BOSS Challenge Analysis
	BOSS Macro Analysis
	BOSS Action Application

	Validation
	Threats to Validity
	Internal Validity
	External Validity
	Construct Validity
	Reliability

	Discussion
	Conclusions
	Appendices
	Screenshots of validation webpage

