

Virtual queue system integration

and optimization of an existing

web platform

Bachelor’s Thesis

By:

Jonas Holmström

Industrial Electrical Engineering

Faculty of Engineering, LTH, Lund University

SE-221 00 Lund, Sweden

2

© Jonas Holmström

LTH Ingenjörshögskolan vid Campus Helsingborg

Lunds universitet

Box 882

251 08 Helsingborg

LTH School of Engineering

Lund University

Box 882

SE-251 08 Helsingborg

Sweden

Tryckt i Sverige

Avd. för Industriell Elektroteknik och Automation

Lunds universitet

Lund 2016

3

Abstract

When a website has critical points in time when the amount of

visitors increases significantly within a very short time frame, it is
extremely important for the underlying system to be prepared to
properly handle these large amount of requests. In Emues’ case it’s

about more than just keeping the services running, but also to
improve on the user experience while purchasing tickets for events.

The objective of this bachelor thesis is to analyze the current system
architecture and provide an extendable starting point where all of
these issues have been improved upon and also to develop a virtual

queue system that can help ease the burden on the system that comes
from a sudden surge of visitors. The live system was successfully

analyzed and the bottle-necks were found. A virtual queue system
was also successfully implemented and tested with satisfying results.
The queue automatically activates whenever a pre-determined load

breakpoint is reached. The queue system was implemented using
mainly Node, Redis and related open source technologies. A few

suggestions for how Emues can improve upon their current system’s
hosting architecture were made.

Keywords: System load, Queue, Open source, Node, Redis,

Automated

4

Sammanfattning

När en webbplats har kritiska tidpunkter då antalet besökare ökar

väsentligt inom en mycket kort tid, är det oerhört viktigt för det
underliggande systemet att vara beredd på att korrekt hantera dessa
stora mängder av förfrågningar. I Emues fall handlar detta om mer än

att bara hålla igång alla tjänster som körs, men också för att förbättra
användarupplevelsen för användare som samtidigt köper biljetter till

samma evenemang. Syftet med detta examensarbete är att analysera
den nuvarande systemarkitekturen och ge en utbyggbar utgångspunkt
där alla dessa områden har förbättrats och även att utveckla ett

virtuellt kösystem som kan bidra till att lätta bördan på systemet som
kommer från en plötslig våg av besökare. Det nuvarande systemet

analyserades framgångsrikt och flaskhalsar hittades. Ett virtuellt
kösystem som lätt kan integreras utvecklades och testades med ett
tillfredsställande resultat. Kön aktiveras automatiskt när en

förutbestämd brytningspunkt av belastning nås. Kösystemet
utvecklades främst i Node, Redis och tillhörande teknologier med

öppen källkod. Några förslag på hur Emues kan förbättra deras
nuvarande systems arkitektur presenterades.

Nyckelord: Systembelastning, Kö, Öppen källkod, Node, Redis,

Automatiserad

5

Acknowledgments

This Bachelor’s thesis would not exist without the support and

guidance of a few people listed below.

First of all, I wish to thank Magnus Jönsson for helping me find
the subject of this thesis and also for providing me with his input in

regards to the developed system’s functionality.

Second, I want to give a big thank you to Emues’ founder and

CEO Markus Wiklander for his commitment to allowing me to carry
out the project for Emues.

I also want to thank my supervisor Christian Nyberg and

examiner Mats Lilja for their guidance.

 Lastly, I want to thank the people at Load Impact for sponsoring

me with their testing service which was a huge part of me being able
to carry out this project.

Jonas Holmström

6

List of contents

Abstract ... 3

Sammanfattning ... 4

Acknowledgments .. 5

Preface... 10

1. Introduction .. 11

1.1. Background and purpose .. 11

1.2. Objectives.. 12

1.2.1. Analysis of existing platform .. 12

1.2.2. Development of a modular virtual queue system 12

1.2.3. Architecture modification suggestions 13

1.3. Problem specification ... 13

1.4. Project scopes.. 14

2. Technical background .. 15

2.1. Node.js .. 15

2.1.1. Example Node.js web server .. 16

2.1.2. Express.js ... 16

2.2. Redis ... 17

2.3. Reverse proxy .. 18

2.4. NGINX [engine x].. 19

3. Analysis... 20

3.1. Test environment... 20

3.1.1. Apache Jmeter.. 20

3.1.2. Load testing as a service .. 21

7

3.2. Development environment ... 21

4. Methodology... 22

4.1. Development method .. 22

4.2. Source criticism.. 22

5. Pre-development... 24

5.1. Planning .. 24

5.2. Setting up the test environment ... 25

5.2.1. Current live architecture ... 25

5.2.2. Laravel Forge .. 25

5.2.3. Test architecture... 26

6. Initial test phase .. 27

6.1. Performance testing ... 27

6.1.1. Load testing.. 27

6.1.2. Stress testing .. 27

6.1.3. Capacity testing .. 28

6.1.4. Smoke test ... 28

6.2. Load Impact ... 28

6.2.1. Virtual users ... 28

6.2.2. User scenarios .. 29

6.2.3. Project test configuration .. 30

6.3. Live system smoke test... 32

6.3.1. Test specification .. 32

6.3.2. Test results ... 32

6.3.3. Test conclusion ... 33

7. Virtual queue system development phase....................................... 35

7.1. Request flow overview ... 35

8

7.2. Code style, guidelines and linting .. 36

7.2.1. ECMAScript 2015 (ES6) .. 36

7.2.2. Promises .. 36

7.2.3. Code linting with ESLint ... 37

7.3. Web server implementation ... 38

7.3.1. Session cookies ... 38

7.3.2. Template engine ... 38

7.4. Queue implementation, phase 1 ... 39

7.4.1. Putting users in the queue... 39

7.4.2. Granting access to users .. 40

7.5. Half-way smoke test ... 41

7.5.1. Test specification .. 42

7.5.2. Test results ... 42

7.5.3. Test conclusion ... 43

7.6. Queue implementation, phase 2 ... 43

7.6.1. Separating routes ... 43

7.6.2. Activating the queue ... 43

7.6.3. Measuring requests per second ... 44

7.6.4. Deploying the system .. 44

7.7. Final test introduction .. 45

7.8. Final test.. 46

7.8.1. Test specification .. 46

7.8.2. Test results ... 46

7.8.3. Test conclusion ... 47

8. Similar product: Queue-It ... 48

9. System architecture improvements .. 49

9

9.1. Separation of concerns ... 49

9.2. Load balancing ... 50

9.3. Database replication .. 51

9.4. Automated scaling ... 51

10. Results .. 52

11. Conclusions ... 53

12. Future Work .. 55

Terminology ... 58

Appendix A: Redis SortedSet commands .. 60

Appendix B: .eslintrc file .. 61

Appendix C. Metrics data structure .. 62

Appendix D. Code example: Adding to queue ... 63

Appendix E. Code example: Granting access ... 64

10

Preface

In this thesis work, Jonas Holmström has been the only author and

system developer with input from project supervisor Magnus Jönsson.

11

1. Introduction

In order to help the reading of this report, this introduction
attempts to provide the reader with the base knowledge needed to
understand each step and each decision that has been taken to carry

out the full project. This first chapter contains the project’s
background, purpose, scope, the objectives that were set and a couple

of questions that are important for the success of the project. In
addition to this, there is also a part about the organization of this
report and finally there is a short discussion about the source criticism

used throughout the sources and citations.

1.1. Background and purpose

Emues is a company that primarily runs the concert platform

Emues.com. It’s a platform developed for users, artists and venues
where anyone can suggest and market events and concerts. They have

created a complete marketplace for concerts which includes both
crowdfunded concerts and also the traditional ticket sale approach.
While the platform at the current point in time is still in its growing

stages, the community already consists of organizers, venues, artists
and concert goers.

Emues currently has a ticket sales system in place, but the aspect
of system performance and load handling is not something that has
yet been taken into serious consideration. System load can increase

dramatically during short time intervals when, for example, tickets to
popular events become available. There is also no solution in place

for how to help prevent concurrency problems during ticket sale
processes that includes steps like seat reservation.

By using modern and open source technologies, Emues wants to

find ways they can optimize and enhance the current system and
identify future bottlenecks and areas where load problems can and

will occur. This project was taken on with the objective to attempt to
solve these problems, while keeping the user experience in mind.

12

Specifically, they want part of the solution to be by implementing a
queue system for the platform.

1.2. Objectives

The main objective of the project is to improve the current
system’s performance and to provide Emues with a good foundation
for how they can continue to improve their platform in this regard.

Ticket sales of events with up to 15 000 max visitors have to be able
to be marketed on the site while still allowing the system to continue

operating without any serious interruptions or crashes. A modular
virtual queue system will be developed that will help alleviate high
loads on the main platform. The complete combined solution should

be able to handle 10 000 virtual users which are spawned using a load
tester. To reach these objectives a couple of tasks have to be carried

out:

1.2.1. Analysis of existing platform

In order to be able to measure any improvements made by the
work in this project, the underlying architecture of the system and its

current performance needs to be known beforehand. Load tests of the
current platform will be carried out using existing tools and their test

results recorded. These results will be analyzed and presented in an
easy to read format.

1.2.2. Development of a modular virtual queue system

A virtual queue system that is able to give a few users at a time

access to certain parts of the platform will be developed. It should be
made in a modular way so that it can be applied on the live system

without any major modifications to the existing source code. It should
also be easily extended and improved upon after the project has been
carried out and delivered.

13

1.2.3. Architecture modification suggestions

The project should propose any additional changes to the

architecture of the existing system that can improve the performance
of the system as a whole. If time allows, the proposed changes will be
implemented in a test environment identical to the live system and

load tests will be carried out to measure the improvements over the
existing solution.

1.3. Problem specification

A few additional points were raised as questions at issue. These
are some core problems that will be faced during the project and

answers to these questions must be found in order to achieve the best
possible end result.

 The virtual queue will be passive/disabled most of the time

and then automatically activate whenever it’s needed. Which
metrics are needed to be monitored to determine when the

queue should activate itself?

 Some parts of the web platform could be more popular than

others e.g. a ticket sales page for a large concert compared to a
random user’s profile page. How can less popular pages be
excluded from the virtual queue?

 The virtual queue system should handle all incoming traffic,
including API calls made from other external platforms such

as Android or iOS apps. How can this be accomplished?

 What are some ways to enhance the user experience despite

being stuck waiting in the queue?

 Which different queue techniques and methods will have to be

considered? FIFO (First-in, First-out), LIFO (Last-in, First-
out), Priority Queue etc.

14

1.4. Project scopes

Because of the time constraints put on the project, it’s important
that the scope is properly defined. Solutions explored in regards to the

system architecture improvements will be constrained to use the same
backend technologies already in use. Development of the virtual
queue system will be primarily made using the Node.js technology

and will only be tested while hosted in a Linux environment, more
specifically on a droplet from the cloud server provider DigitalOcean

(http://www.digitalocean.com).

http://www.digitalocean.com)/

15

2. Technical background

Many different technologies were used for developing the virtual
queue system. This chapter will give a brief introduction to some of
the various tools used throughout the project.

2.1. Node.js

Node.js was created by an American developer named Ryan Dahl.
It was first presented at the conference JSConf EU year 2009. [1]

Since its release there have been several versions and new updates are
regularly being pushed out. As of today the current latest version is

6.2.1, while the current LTS version is 4.4.5. [2] For this project the
latest version available at the time was always used.

Node.js is a JavaScript runtime built on Chrome's V8 JavaScript

engine. [3] Simply put, this means that it provides you with a way to
run JavaScript code on the server side as opposed to the usual way of

running JavaScript which is in a web browser like Google Chrome or
Mozilla Firefox. In Node.js it is primarily used for writing very fast
and highly scalable web servers, especially for applications with some

form of real-time components.

16

2.1.1. Example Node.js web server

The following code snippet is an example of one of the simplest

web servers you can create in Node.js: [4]

const http = require('http');

const hostname = '127.0.0.1';

const port = 3000;

const server = http.createServer((req, res) => {

 res.statusCode = 200;

 res.setHeader('Content-Type', 'text/plain');

 res.end('Hello World\n');

});

server.listen(port, hostname, () => {

 console.log(`Server is running!`);

});

2.1.2. Express.js

While the above web server works, several frameworks have been

introduced to help developers to more easily create advanced web
applications. One of the most popular frameworks for Node.js, as

seen on the amount of stars it has on Github, is called Express.
Express is unopinionated which means it does not force you to
develop your application in a certain manner but allows you to do it

however you like instead. It does not do a whole lot on its own, but
there are several key modules that allow you to work with all

different kinds of aspects to web applications such as sessions,
cookies, middlewares, template rendering, error handling and so
forth. [5]

17

2.2. Redis

“Redis is an open source (BSD licensed), in-memory data
structure store, used as database, cache and message broker.” [6]

Redis is a background service you can run on your server that
gives you access to a very simple data store. Unless configured
differently, Redis saves all data in memory which results in ultra-fast

response times and less reliant on disk I/O. Redis supports a number
of different data structures such as:

 Binary-safe strings

 Lists

 Sets

 Sorted sets

 Hashes

 Bit arrays/Bitmaps

 HyperLogLogs

The simplest example of how you can use a Redis store is with

simple key-value string pairs, like in this very simple example:

“myKey” : “myValue”

Keys can contain any binary sequence, which means it can be
anything from a simple string to the contents of an image file. This

allows for immense flexibility, but it also puts more responsibility on
the user to create its own schema and structure to follow.

In addition to being a data store, Redis can also be used as a
message broker implementing the publish/subscribe (pub/sub)
pattern. Messages can be published to channels without any

knowledge of its receivers. Redis then automatically relays all
messages to the subscribers of those channels. This can be very useful

18

for certain types of applications that require this type of information
flow.

In order to interact with the Redis server, they provide you with a

set of commands that you can use. Some examples of commands are
ZADD to add or update members of a sorted set, ZRANGE to

retrieve a range of members from a sorted set or FLUSHDB to
remove all keys from the currently selected database. [7]

2.3. Reverse proxy

A reverse proxy can be described as an invisible middle man
between clients from the internet and the web server they are trying to
reach. By blocking public connections to the web server and only

allowing the reverse proxy to connect to it, one can effectively hide
the public existence of the web server and it’s characteristics. When a

client connects to the reverse proxy, the information is forwarded to
the web server which then responds back to the proxy which in turn
forwards the response to the client. The use cases for reverse proxies

are many, here are some examples:

 Used as another layer of security.

 Add authentication to a backend service.

 Act as a load balancer

 Route endpoints to their respective internal services.

The following figure shows a simple flowchart of how it could be

set up to work:

19

 Figure 1. An example of a reverse proxy flow chart.

2.4. NGINX [engine x]

NGINX is an HTTP and reverse proxy server, a mail proxy
server, and a generic TCP/UDP proxy server, originally written by
Igor Sysoev. It is one of the most used web servers today and is used

by large companies and organizations such as Netflix and
Wordpress.com. [8]

20

3. Analysis

This chapter describes the different methods that were considered
to be used for different parts of the project.

3.1. Test environment

In order to prove that the result of the project fulfills the
objectives, there needs to be a way to reliably test the stability of a
given system. A baseline has to be set, which is the user load that the

existing system can handle before response times become
unacceptable or even worse, the server crashes completely.

The first thing to consider is how to carry out these tests. Blasting
the live server with virtual users until it crashes is not that great of an
option. Instead a cloned environment of the live system will be

created. Then any test can be carried out without affecting the
performance of the live website.

To establish the baseline, a method to load test a system on
demand must also be found. It turns out that simulating a high load of
user requests is not that simple and requires some special tools. Two

options were found and taken into consideration during the project.

3.1.1. Apache Jmeter

The first alternative to be considered was to use an application

called Apache Jmeter. Unfortunately, running heavy tests with a lot of
virtual users requires a very powerful machine. Luckily, if you have
the resources. you can also use distributed tests using this tool, which

means you can have a cluster of machines running the application as
slaves, while one master machine instructs the slaves which actions

they should perform. Result data is then collected, aggregated and
displayed in the master machine. [9]

21

3.1.2. Load testing as a service

The second approach is to use a service that exists for just this

purpose. An example of such a service is Load Impact
(http://www.loadimpact.com). In their graphical interface you can set
up tests which they then carry out for you and report any data you’re

interested in with nicely formatted graphs. The drawback of using
services like these is that they are quite expensive and often targeted

towards larger corporations. Load Impact were generous enough to
offer their services for free to be used within this project since the
tests would be made with an academic purpose. This was therefore

the clear choice of load testing method that was chosen to be used.
The only negative with this method is that the standard plan that was

provided only supports a maximum of 1000 concurrent virtual users,
but it will still give a good idea of how the system performs.

3.2. Development environment

The development environment will be kept as light-weight as
possible. Most of the development will be done in the text editor
SublimeText 3, since this is what I am already familiar with. Several

plugins are used for things like modern syntax highlighting and auto-
completion.

To keep the development environment as close to the production
environment as possible, a tool called Vagrant was used to run and
manage a virtual machine via VirtualBox. This allows you to run your

code very quickly on a virtual machine hosted on the machine you are
developing on that is almost identical to what the production server

will look like. This saves a lot of time since you don’t have to
continuously update an external server with your changes every time
you need to test the system.

22

4. Methodology

4.1. Development method

Being a single developer on this project, a full-fledged
methodology such as Scrum is not ideal. Instead, a board similar to a

Kanban board was used, however a bit more simplified. All tasks
were created on the fly and those that were left to be carried out were
put on the board and then moved to the right as they progressed

throughout the project. For this a service called Trello
(https://trello.com/) was used. For continuous communication with

Emues, a channel on Slack was used.

For version control a simple Git repository hosted at Bitbucket
(https://bitbucket.org/) was used.

4.2. Source criticism

Considering the tools and techniques used in this project, the
references used are almost exclusively from online sources. When

dealing with online sources, one has to be very meticulous when
determining the credibility of those sources. All online sources used

in this project were carefully researched and evaluated with the help
of the following checklist: [10]

 Who is behind the material?

 Can you see who is responsible for the website?

 Who published the material?

 Was it an individual, organization, company or an institution?

 What do you know about the ‘publisher’?

 Who is the originator – and what is their background?

 What is the professional level?

https://trello.com/)

23

 Is the information documented in the form of references or
similar?

 Are there other sources that are in agreement?

 What is the objective of the website/page?

 Are there special interests behind the individual/organization
who wrote the website?

 Which interests can control their selection of and perspective
on the material?

 Does the originator have an e-mail address or a contact

address?

 When was the website/page last updated?

24

5. Pre-development

5.1. Planning

Before starting the development of the virtual queue system, a list
of features and suggestions to different ways they could be

implemented was produced. This was done through brainstorming in
collaboration with the project supervisor Magnus Jönsson and Emues’
Founder & CEO Markus Wiklander. Some of the discussed features

are reflected in the problem specification in chapter 1.3. These
features were then prioritized and corresponding tasks were created.

Out of these features, a few were selected to be “must-have” while
others were labelled as “nice-to-have” if time allows.

The main features were the following:

Must have

 The queue system must be able to differentiate between URLs

and only queue the most visited pages.

 The queue system should be able to be activated and
deactivated manually and automatically.

 The queue system must be compatible with the current
platform.

 After gaining access, a user will lose access again after a
certain time.

Nice to have

 A user will lose access after purchasing tickets for an event he

or she was queued for.

 The queue should be able to act as a load balancer.

 Admin interface with controls and real-time statistics over the
queue system.

25

5.2. Setting up the test environment

5.2.1. Current live architecture

The existing system architecture is implemented according to
figure 2, found below.

Figure 2. Existing system architecture

The live server is currently hosted as a droplet on DigitalOcean. A
droplet is just DigitalOcean’s definition of a virtual private server.

[11] This single droplet hosts everything related to the current Emues
platform such as NGINX, PHP, MySQL and also an Elasticsearch

server.

5.2.2. Laravel Forge

Laravel Forge is a service for provisioning and managing cloud
servers hosted on either AWS, DigitalOcean, Linode or even your

own custom servers. You can also manage other related things such

26

as SSL certificates, domains, Supervisor, Cron jobs, Load balancing,
SSH keys and horizontal scaling. A server can be linked to a branch
on a Git repository and either deploy new changes manually or

automatically when commits are pushed to the repository. [12]

5.2.3. Test architecture

Since it’s very important that the test environment is as similar to

the live environment as possible, a clone of the live droplet was
created on DigitalOcean and then linked to an account on Laravel
Forge. For security reasons, NGINX was configured to only allow

certain users to access it. With this new droplet set up there was now
a good starting point to begin initial load testing and system analysis.

27

6. Initial test phase

6.1. Performance testing

Performance testing is the overall name for investigating the
speed, scalability and stability of a product. It consists of different

types of tests. In the context of this project it’s important to
understand the differences between the different types of performance
tests and which of them that are relevant to the scope of this project.

This chapter will briefly touch on the different types of performance
tests. [13]

6.1.1. Load testing

Load tests are tests which are designed to investigate how your
application performs under normal to peak load conditions. This
means that these tests are crucial to determine if an application can

meet the performance goals that have been set as the minimum
accepted level assuming you want your application to work during

peak load times. Endurance testing is a certain type of load tests that
are conducted to verify how an application performs during extended
periods of time. [13]

6.1.2. Stress testing

Stress testing is a type of test that are conducted to investigate
how an application behaves when the load conditions go beyond

normal or peak levels. This testing is very useful for finding bugs or
errors that only occur during higher than anticipated load levels.
Spike testing is a type of stress testing that involves repeatedly

pushing an application beyond its limits for short periods of time. [13]

28

6.1.3. Capacity testing

Capacity tests are used to investigate how many users or

transactions that a system can support while still remaining within the
performance goals of the application. This testing strategy is well
suited for the planning of future growth. You can for example

anticipate which resource increases could be needed in the future,
such as network bandwidth and hardware scaling. [13]

6.1.4. Smoke test

A smoke test is a preliminary test that is often used to discover
critical errors in a system. [14] It is used early in the testing phase to
test basic features and to make sure that the system is not broken

enough to render further testing unnecessary. It is sometimes also
referred to as a confidence test and/or a sanity test. [15]

6.2. Load Impact

To satisfy all their customer’s needs, Load Impact offers several
advanced options for performance testing web applications. In order

for the tests to provide useful information, we need to understand the
configuration of the conducted tests. In this chapter the Load Impact
test configuration for this project is briefly discussed as well as some

of the terms used in their tests.

6.2.1. Virtual users

A virtual user is, as the name implies, the term used to describe

each individual simulated user that is created to perform user
scenarios.

29

6.2.2. User scenarios

User scenarios are scripts written in the Lua language to instruct

each virtual user what it should do during the test. You can for
example tell the virtual users which pages they should visit, how
frequent they should visit them and make them take different actions

depending on the result of other actions. This makes the tests
conducted with Load Impact extremely versatile as you can instruct

each virtual user to do almost anything. They provide you with a
collection of functions, methods and associated documentation to
access all of this functionality. Below is an example of what a basic

user scenario might look like:

http.page_start("My page")

responses = http.request_batch({

 { "GET", "http://loadimpact.com/" },

 { "GET", "http://loadimpact.com/style1.css" },

 { "GET", "http://loadimpact.com/image1.jpg" },

 { "GET", "http://loadimpact.com/image2.jpg" }

})

http.page_end("My page")

client.sleep(math.random(20, 40))

The first row marks the start of a metric measurement, in this case

it is named “My page”. After that, the virtual user requests the four
resources listed and saves them in the responses variable. When that

is finished, the script marks the end of the “My page” measurement
and that result is recorded in the test result. Finally, the client sleeps
for a random amount of seconds in the interval [20, 40]. In addition to

being able to script your own user scenarios, there are also browser
extensions that can help you record scenarios while you’re carrying

them out manually in the browser.

30

6.2.3. Project test configuration

When determining the user scenario for this project we came to

the conclusion that it is sufficient to make all virtual users load the
same URL since the load on the server will be the same as if they all
loaded different URLs. However, it is important that the URL chosen

is one that is fairly heavy for the server to generate to make sure the
tests don’t give unrealistic results. One page that matches this

criterion is any specific event page. In the case for this project the
user scenario also doesn’t have to be very advanced, a simple
scenario that loads the page and reports back the result is completely

fine. This is the user scenario used for this initial test that will
determine what the current maximum capacity is (some long URLs

have been shortened for readability, this is just to give an idea of what
it looked like):

http.page_start("Page 1")

http.request_batch({

 {"GET", "http://dev.emues.com/event/king-dude-true-moon-babel"},

})

http.request_batch({

 {"GET", "http://dev.emues.com/css/all.css?c=1"},

 {"GET", "http://dev.emues.com/js/libs.js"},

 {"GET", "http://dev.emues.com/js/app.js"},

 {"GET", "http://dev.emues.com/media/profile/avatar/0.jpg"},

 {"GET", "http://dev.emues.com/media/avatar/avatar/1.jpg"},

 {"GET", "http://dev.emues.com/media/avatar/avatar/2.jpg"},

 {"GET", "http://dev.emues.com/media/avatar/avatar/3.jpg"},

 {"GET", "http://dev.emues.com/media/avatar/avatar/4.jpg"},

 {"GET", "http://dev.emues.com/media/avatar/default/avatar.png"},

})

http.page_end("Page 1")

client.sleep(math.random(20, 40))

Note that all the assets and resources such as the CSS file,

JavaScript file and images must be explicitly included in the script.
You can’t just put the site’s URL in there and be satisfied with that.

Fortunately, there is a fast way to generate these simple user scenarios

31

using their quick scenario feature where all you have to do it put in
the main URL you want to test and Load Impact will find all the
assets that the page requires and add those to the script automatically.

32

6.3. Live system smoke test

6.3.1. Test specification

Number of VUs Duration

1000 5 minutes

6.3.2. Test results

Blue line is number of active VUs

Green line is average response time

Figure 3. Test results from the first load test

All static assets had an average response time of 54.34 ms while
the main PHP generated page had an average response time of 29.42s.

All static files were returned successfully from the server. The main
PHP route experienced a fairly high failure rate as depicted in the
table below:

33

Total requests Successful requests Success ratio

4819 278 5.77%

The failures mainly consisted of the two errors:

504 Gateway Timeout and 502 Bad Gateway

6.3.3. Test conclusion

As shown in the graph, the server becomes unstable very quickly.
It only requires around 200 concurrent requests for the response time

to increase exponentially and for most requests to fail completely.
The reason that the response time is actually decreasing when the
server load becomes higher, is because at this point almost every

single request to the server returns an error. To understand what these
errors mean you have to also understand how a PHP request is

handled by the server. Every request that the server receives goes
through the HTTP server NGINX. Depending on what is requested
and how the server is configured, this request is then handled in

different ways. For static resources such as images, CSS and
JavaScript files, the files are simply returned by NGINX itself. But

when a client requests a PHP page, it works a bit different. PHP is a
server side scripting language that needs to be run and evaluated
before anything can be returned from the server to the client. NGINX

cannot do this on its own, but instead forwards the request to a
process called PHP-FPM where FPM stands for FastCGI Process

Manager. This is a process on the server that can run the PHP script
and return its result to NGINX which in turn returns that result to the
client.

34

Figure 4. Basic PHP request flow

What these gateway errors essentially mean, is that the server
does not have the capacity to spawn new PHP processes for all the

incoming requests. NGINX does therefore not get a result back from
PHP-FPM which results in NGINX returning these errors codes
instead of the result that the client is expecting. This is a very

simplified explanation but should give an idea of what is happening.

With these results there is a baseline for how the current system

performs under high loads.

35

7. Virtual queue system development phase

This chapter describes the development phase of the virtual queue
system. First there is some initial thoughts about the developed
system and what the vision was for how it should work. Some of the

steps taken during development are described and a few of the chosen
implementation solutions are presented. Another already existing

similar product to what was developed is also briefly compared.

7.1. Request flow overview

The first thing that was produced was a sketch of how the overall

request flow of the application was supposed to work (or at least how
it could work).

Figure 5. Request flow overview with the queue system in place.

36

7.2. Code style, guidelines and linting

To make sure the project stays reasonably maintainable and

consistent across all files, a few rules and guidelines were made that
should be followed when implementing the system.

 Use ECMAScript 2015 (ES6) features wherever possible.

 Indent using 4 spaces.

 Omit semicolons.

 Use Promises on all asynchronous operations.

 Every function and method must have a comment explaining
what its purpose is.

 All variable and function names should be written in camel
case (camelCase).

7.2.1. ECMAScript 2015 (ES6)

ECMAScript is a script-language standard specification which
was first based on JavaScript. It defines what functionality a script
language that follows it should have. ECMAScript 2015 specifically

introduced additional features which can be very helpful compared to
the older version of the specification. An overview over the new

features introduced can at the time of writing this be found at
http://es6-features.org/.

7.2.2. Promises

The usual way of handling asynchronous functions in JavaScript
is to provide a callback function that is called whenever the
asynchronous action is completed. See the following example:

http://es6-features.org/

37

myModule.asyncAction(function () {

 console.log(‘Async action is now completed!’)

})

This works fine for a simple example like this. But what if you

want to perform another asynchronous action whenever the first one

is completed, and then another one after that? It quickly becomes very
hard to follow the flow:

myModule.asyncAction(function () {

 myModule.secondAsyncAction(function () {

 myModule.thirdAsyncAction(function () {

 console.log(‘My async actions are now done!’)

 })

 })

})

What Promises does, is it allows you to write the above code in a
way that is much easier to follow:

myModule.asyncAction()
 .then(myModule.secondAsyncAction)
 .then(myModule.thirdAsyncAction)
 .done(() => console.log(‘My async actions are now done!’))

There are many different implementations of Promises but for this

project a well-known package called Bluebird was used.

7.2.3. Code linting with ESLint

In order to follow some of the rules set in regards to code style, a

linting utility called ESLint was used. It checks the source code files
that you create and alerts you of any code style errors it can find.

ESLint is configured using a .eslintrc file which contains the rules
you wish to follow. This file is written in JSON format. With the help

38

of some plugins you can then get it integrated into most editors. The
configuration file used in this project can be seen in Appendix B.

7.3. Web server implementation

The first step in the development phase was to get Express
imported and integrated into the project. This was done first to have a
good foundation to build upon for the rest of the development phase.

A catch-all route was configured so that every single request that is
received goes through the same route. This makes it easy to evaluate

what the requested URL was and to request that URL specifically via
the reverse proxy module.

Additional Express modules that were used were the following:

 Express-session was used to get access to sessions within the
express route.

 Express-handlebars was used as the template engine.

7.3.1. Session cookies

In short, a session cookie is a way for a website to remember who

a user is. Each user is given a unique session identification number
that is saved as a cookie in their browser. This is required to keep
track of which position that a specific user has in the queue.

7.3.2. Template engine

Basic HTML files are not very flexible when it comes to
displaying dynamic content. In order to programmatically generate

HTML responses one can use what is called a template engine. It
usually provides a different syntax than normal HTML and it doesn’t
really matter which one you use. It mostly comes down to personal

preference. You create templates that you can then feed with
variables to make each page different depending on the values of the

39

variables you provide. The templates are rendered on the server and
returned as pure HTML to the requesting client.

7.4. Queue implementation, phase 1

The next part to be developed was the actual queue
implementation. The idea from the start was to use an in-memory data
structure such as a regular array for the queue. That worked fine in

the beginning, however, in order to make the system a lot more
modular and scalable that idea was scrapped and instead the whole

queue was implemented using Redis and its data structure SortedSet.

An entry into a SortedSet takes two values. The actual value you
wish to store, and a floating point number that is that value’s score.

All entries that are added into a SortedSet are automatically sorted on
insertion with a time complexity of O(log(N)) based on the score

provided. Since all values are then already always sorted, fetching
sorted entries from a SortedSet is extremely fast and efficient.

The Redis commands used can be seen in appendix A.

7.4.1. Putting users in the queue

The queue system takes advantage of the SortedSet data structure
to store every user session with the session ID as the value and then

the current Unix time in milliseconds as the score. This way, user
sessions are always stored in the correct order in Redis’ memory and
the actual queue is then given almost for free. All the system has to

do is add each user’s session ID as they visit the site for the first time,
along with the current time. Should two users have the exact same

score, SortedSet falls back to sorting on the value, so they will just be
sorted based on their session ID instead. This is all assuming the
queue is active of course, otherwise the whole queue step is skipped

and every user is granted access immediately.

The drawback of this implementation is that it becomes harder to

implement special queue features such as VIP priority. You could do

40

it by just giving each VIP user a score of zero, in which case they will
always be first in the queue, but for more advanced applications it
becomes more complex.

To communicate with the Redis process from Node.js, a
JavaScript module that is simply called redis was used. It is more or

less just an interface to Redis’ commands in JavaScript. This module
is however not implemented using Promises which would make using
it and sticking to the code guidelines a bit difficult. Thankfully,

Bluebird is able to convert entire modules into being Promise based,
which worked fine in this case.

A code example for adding users to the queue can be seen in
appendix D.

Whenever a user tries to access a route that is currently queued,

they are shown a page where they can see their current position in the
queue. This page automatically refreshes to update the queue status.

7.4.2. Granting access to users

To grant access to users, a very similar approach to how the queue
works was used. There is a separate Redis store that is also a
SortedSet that is used for storing the session IDs of users that have

access to the system. This store is referred to as the access list. When
the queue system is active, a separate process is running which

periodically checks if there is more room in the access list and if so, it
takes as many as can fit from the front of the queue and moves them
over to the access list. The score is changed from whatever Unix time

that user had, to a new value which is the Unix time value of a time in
the future. For example, if a user is granted access at 12:00, the time

that gets set as the score could be 12:10, 10 minutes in the future.
These 10 minutes are how long that user has access to the system.

At the same time, there’s another process running that

automatically purges the access list from entries that have expired. So
at 12:10, the example user will be removed from the access list and

have its access revoked. If the user visits the site again, he or she will

41

be put in the back of the queue and will have to wait to get access for
a second time.

With this system architecture it is very easy to tweak how long

users have access, either on an individual level or globally. For
testing and debugging purposes, the time could be set to something

low as 5-10 seconds just to rotate users quickly.

A code example for granting access to users by putting them in
the access list can be seen in Appendix E.

7.5. Half-way smoke test

At this point in the development phase, it was decided that it was
a good idea to make sure the performance holds up to the goals set in

the objectives of the project. It would be a waste of time to continue
on this development path if the performance on the current system

was already an issue. An identical test to the one that was used to
analyze the live system was performed on the queue system that was
developed so far.

42

7.5.1. Test specification

Number of VUs Duration

1000 5 minutes

7.5.2. Test results

Blue line is number of active VUs

Green line is average response time

Figure 6. Results from testing the first queue implementation.

The average response time was 84.19 ms and the request result

rate can be seen in the table below.

Total requests Successful requests Success ratio

5657 5657 100%

In addition to these metrics, all requests were successfully placed
in the queue and granted access whenever there was more room in the

access list.

43

7.5.3. Test conclusion

The test results were above expectations. The response times were

very fast and it was exceedingly satisfying to see that the queue
implementation was working properly. This provides a good
foundation for continued development of the remaining features.

7.6. Queue implementation, phase 2

7.6.1. Separating routes

One of the requirements set in the pre-development planning
phase was that specific popular routes, for example the routes related

to booking tickets for a big concert, should be able to be queued while
other less popular routes can bypass the queue completely. This is

important to make sure that the overall user experience on the website
is not diminished just because certain parts of the website are more
popular than others.

7.6.2. Activating the queue

In order to activate the queue, there are a couple of different
metrics that can be monitored. Some alternatives are server CPU

usage, memory usage or requests per second. The best solution
probably should combine all of these metrics, but for this project it
was decided that requests per second was a good starting point. This

is because it is very easy to measure which requests per second value
the server starts to perform badly at. This also makes the queue very

flexible since this value can be very easily changed whenever it is
needed.

44

7.6.3. Measuring requests per second

To measure this metric, a node module that is simply called

‘measured’ was used. Measured is an open source module that can be
found on Github at https://github.com/felixge/node-measured.

This module provides something they call a Meter which can be

used to measure the frequency of arbitrary events. The statistics can
then be output in current rate and the rates for the last 1, 5 and 15

minutes. To avoid some spiky behavior, it was decided that the rate
for the last minute should be used instead of the current rate. This
metric is then monitored for each different URL that is requested so

that it is possible to see which different URLs are the most popular. In
this first implementation, whenever an URL reaches 20 requests per

second, that route is queued up and whenever a user tries to access
that URL, they will have to wait until there is room available in the
access list. An example of the data-structure used for these metrics

can be seen in appendix C.

7.6.4. Deploying the system

A droplet with 2 CPU cores and 2 GB RAM was chosen as the

starting server that should host the system. Note that this is a droplet
that costs only $20 / month and for big systems that is very cheap.
Since Node is single-threaded, that means it can only utilize a single

CPU core. The common way to run Node applications across all CPU
cores is to run a separate instance of the application on each core.

This is called a cluster. Using a process manager such as PM2
(http://pm2.keymetrics.io/) makes it very easy to launch an
application in cluster mode. PM2 then automatically load balances all

incoming requests to the different processes. It is important to
remember that each Node process has its own scope and cannot share

variables. Since this system uses Redis to store its state, this is not a
problem because there is still only a single Redis process.

https://github.com/felixge/node-measured

45

7.7. Final test introduction

The final system that was developed needs to be tested under
higher loads than what have been done in previous tests. The account

that was used for Load Impact only supports unlimited tests with
1000 maximum number of virtual users, but the objective goal was to
be able to handle 10000 concurrent users. This brings us to a

discussion about what concurrent users actually mean. If two systems
have a certain same amount of concurrent users, that does not mean

the load on the two systems is the same. What actually matters are the
amount of requests that are made to the server and how much
resources each request requires. For example, a system with 1000

concurrent users that only make a single request each in a certain time
interval is a lot different to a system with 1000 users where each user

makes 10 requests each in the same time interval. For this project the
goal will be to try and reach the minimum, which is when 10000
users perform a single request each.

The tests performed so far have only been using 1000 virtual
users. The way the tests work is that they ramp up the number of

users slowly and in each step every active user performs the user
scenario. Since there was a limit of 1000 users, the final test was
made to simulate that each user acts as if it was 10 users. This was

done by altering the user scenario for the test, and forced each user to
make 10 requests each instead of just the one it did before. This

severely increased the load generated by the test.

46

7.8. Final test

7.8.1. Test specification

Number of VUs Duration

1000, simulated as 10000. 10 minutes

In addition to the much higher load, this test also ran for an extra 5

minutes with full load in order to ensure stability.

7.8.2. Test results

Blue line is number of active VUs

Green line is average response time

The average response time was 62.43 ms and the request result

rate can be seen in the table below.

Total requests Successful requests Success ratio

152994 152994 100%

47

7.8.3. Test conclusion

The graph shown can be a bit misleading because of the scale of
the green line. Despite the line for the average response time in the
graph not being completely straight, the results were very successful.

Having a 100% success ratio and an average response time as low as
109.65 ms is very good considering the price of the droplet and the

system being a first implementation prototype. These results and also
the capacity can likely be improved considerably by increasing the
server hardware to use a more powerful CPU with increased amount

of cores. Then the amount of processes could be further incremented.
All in all, the test was considered successful.

Some other statistics related to this test that was gathered by
observation:

 Max request rate: 308 req/s

 Max bandwidth usage: ~ 9 MB/s

48

8. Similar product: Queue-It

A similar product that already exists on the market today is a
product from a company known as “Queue-It”. They provide their
queue system as a SaaS and have provided their services to

companies such as Toys R us, Telenor, Telia and many more. The
main difference between their system and the one developed in this

project is that their system is not DNS-based. This means they do not
utilize proxies to redirect traffic to the end site. Their system is
developed in .NET / C# as opposed to Node.js that was used in this

project. In order to measure the site load on their customers site to
know when the queue needs to be activated, they have developed a

feature they call SafetyNet. This can be integrated into a user’s site by
adding a small JavaScript to their pages. This is unnecessary in this
project’s implementation since all traffic is routed through the queue

which means the queue itself can measure the amount of traffic that
goes through it.

Queue-it can be found on https://queue- it.com/.

https://queue-it.com/

49

9. System architecture improvements

This chapter discusses some of the improvements that could be
made to Emues’ current system architecture in order to improve
performance and ensure future stability. This is just an overview over

a few techniques and methods that could be used. Most of these
improvements does of course come at a price, most notably increased

cost and complexity. All of the suggestions are based on research and
they were not discussed in-depth with Emues nor were they
implemented and tested for this particular project.

9.1. Separation of concerns

Hosting all your services on a single machine works fine as long
as the load on the server is relatively small. Once your average user

count goes up however, it can be very CPU-intensive. One way to
improve on this is to split your services up over multiple servers. It

could for example be set up like in figure 7.

Figure 7. Server architecture with services separated.

50

9.2. Load balancing

Separating your services into dedicated servers is a good starting
point for improving a system’s performance. Another step that can be

taken is to have multiple servers whose purpose is the same, and then
you spread out the work evenly between them. This is often referred
to as horizontal scaling and can be done by using a load balancer.

NGINX has load balancing built in and can be set up very easily. If
we apply load balancing to the architecture shown in figure 7, we can

achieve a setup like the one shown in figure 8.

Figure 8. Server architecture with load balancing.

51

Certain services such as AWS provides very simple to set up
solutions for load balancing so that you don’t have to do all this
configuration on your own. In AWS’ case it’s called Elastic Load

Balancing. [16]

One thing you have to keep in mind when load balancing servers

like this is if your website supports uploading of files, for example if
users of the website can upload their own pictures. Usually when
having this feature, the uploaded file is stored on the server that is

processing the request. If you have load balanced servers however,
they all need to have access to these uploaded files. If only the server

that processes the request has the file, then that’s the only server with
access to that file. The easiest way to solve this is to have a dedicated
server for file resources where all uploaded files are stored.

9.3. Database replication

Just as the web servers, the database server can also be load
balanced. The problem with databases however, is that you need to

make sure that the data between them is synchronized and consistent.
Doing this yourself can be quite difficult but there are services out

there that can do it for you. One such service is also provided by
Amazon in AWS RDS (Relational Database Services). There you can
set up read replicas that are automatically synchronized with the main

source database. [17] [18]

9.4. Automated scaling

The methods described in chapter 9.2 and 9.3 are often combined

with automated scaling. Automated scaling means that the amount of
servers that are load balanced can be increased and decreased

depending on the current load on the system. By doing this, your
system can support virtually unlimited amount of users while still
keeping the amount of servers down when the load is small.

52

10. Results

In the initial testing phase, the live system was successfully
investigated and tested to find its current breaking point. The errors
found were analyzed to figure out what the root of the problems were.

Continuing into the development phase of the virtual queue system,
all of the “must-have” requirements that were created in the planning

phase were successfully implemented. Unfortunately, due to time
constraints, none of the “nice-to-have” features were developed.
Aside from the hosting solution from DigitalOcean, the system only

makes use of technologies that are open source and available to
everyone at no cost. The code guidelines that were set up were

followed and the virtual queue system is very easy to integrate with
the current live system that is being used at Emues.com. During and
after development, the queue system was thoroughly tested to ensure

that there were no apparent errors, performance issues or stability
concerns when trying to meet the objectives that were set up in the

start of the project.

53

11. Conclusions

The first problem introduced in the problem specification was
about how the queue could automatically activate depending on
certain metrics. The metric that was chosen was the amount of

requests per second averaged over the last minute. This proved to be a
good enough starting point, even though other metrics could also

have been used. By measuring this value for each individual route in
the Emues application, the problem of only queueing popular routes
was also solved. Because of this, certain routes like API calls can also

be queued individually since all traffic passes through the queue
system.

To make sure the user is aware of what’s going on, their current
position in the queue is shown to them on the queue page. This is to
make sure they have some sort of idea about when they will be let

through. This should make the user experience bearable, even though
being stuck in a queue is not very entertaining. Other means to

improve the user experience could be to try and calculate how much
time a user has left to wait, based on how fast the queue has been
moving.

The only queue type that seemed appropriate for this kind of
system was a regular FIFO queue. The only difference is that we are

able to put users at the front of the queue so that VIP customers don’t
have to wait.

In addition to the developed solution being easily integrated with

the intended web platform at Emues.com, the virtual queue system
should also be easily integrated with any other web platform that is

hosted on a single server. Considering the limited amount of similar
solutions on the market, this product therefore has the potential to
become commercially viable if further development is carried out. It

is very easily adaptable to any system size; all you need to know is
the breakpoint for when the current system cannot handle any more

requests.

54

Using a system like this, it is possible to preserve a good user
experience, even when a web platform has a user amount that is
beyond its limits. Being greeted by a queue that displays your

position and an estimated wait time is not particularly fun for a user,
however, it certainly beats just retrieving an error message and have

no idea when or if you will ever be able to access the resource.

The biggest drawback I can think of is that the system currently
separates all routes from each other. What this means is for example

that the route for viewing an event may be queued, while the route for
booking tickets for that event is not. Users can then bypass the queue

by manually going to the URL for ticket booking, while users who
doesn’t know about this gets stuck in the queue. Ideally all routes that
belong together, like everything related to a specific event, should be

grouped up and queued together.

Another drawback is that it is not that straight-forward to set up as

it requires you to set up an entirely new server, deploy the queue
system to it and redirect your domains to the new queue server.
Setting up the server alone takes some time since you need to

configure all the different services that are required for the queue
system to function properly. This is not an issue if you are familiar

with managing a Linux server however. There are also plenty of
guides and tools that can help you with this.

55

12. Future Work

The currently developed system should very much be viewed as a
proof of concept and a prototype. There is an endless amount of
features that could be implemented to enhance the currently

developed system. For starters, all of the “nice-to-have” features that
were left out due to time constraints would increase the quality a lot.

Many other things could also be done to increase the user experience
for the queue administrators. Having a user interface where routes can
be included or excluded from the queue manually, changing the

breakpoints on the fly, grouping certain routes together, showing
statistics and more.

Then of course there is code refactoring and most likely also a lot
of optimizations that could be done to increase the performance of the
system. More research could be done into different load balancing

and automated scaling strategies and these could be tested and
compared in practice. The whole server management part is a rabbit

hole that never ends.

56

Bibliography

[1] R. Dahl, "Ryan Dahl: Original Node.js presentation," 8 11 2009.
[Online]. Available: https://www.youtube.com/watch?v=ztspvPYybIY.
[Accessed 7 6 2016].

[2] Node.js Foundation, "Previous releases | Node.js," [Online]. Available:
https://nodejs.org/en/download/releases/. [Accessed 7 6 2016].

[3] Node.js Foundation, "Node.js," [Online]. Available:
https://nodejs.org/en/. [Accessed 7 6 2016].

[4] Node.js Foundation, "About | Node.js," [Online]. Available:
https://nodejs.org/en/about/. [Accessed 7 6 2016].

[5] Express, 14 7 2016. [Online]. Available: http://expressjs.com/.

[6] Redis, "Redis," [Online]. Available: http://redis.io/topics/introduction.
[Accessed 7 6 2016].

[7] Redis, "Command reference - Redis," [Online]. Available:
http://redis.io/commands. [Accessed 7 6 2016].

[8] NGINX, "NGINX," [Online]. Available: http://nginx.org/en/.
[Accessed 7 6 2016].

[9] Apache, "Apache Jmeter disributed testing step by step," [Online].
Available: http://jmeter.apache.org/usermanual/
jmeter_distributed_testing_step_by_step.pdf. [Accessed 7 6 2016].

[10] Syddansk Universitet, [Online]. Available:
http://www.sdu.dk/en/Information_til/Studerende_ved_SDU/
Vejledning/studieteknik/Informationssoegning/Kilde_kritik_internet.
[Accessed 7 6 2016].

[11] DigitalOcean, "DigitalOcean," [Online]. Available:
https://www.digitalocean.com/help/technical/general/. [Accessed 14 7
2016].

[12] Laravel Forge, Laravel, [Online]. Available:
https://forge.laravel.com/features. [Accessed 14 7 2016].

[13] J.D. Meier, Carlos Farre, Prashant Bansode, Scott Barber, and Dennis
Rea, "Performance Testing Guidance for Web Applications," Microsoft
Corporation, [Online]. Available: https://msdn.microsoft.com/en-
us/library/bb924357.aspx. [Accessed 1 6 2016].

57

[14] J. Rashka and J. Paul, Automated Software Testing Introduction,
Management, and Performance, Addison-Wesley, 1999, pp. 43-44.

[15] International Software Testing Qualifications Board, "Standard
Glossary of Terms used in Software Testing," 4 7 2014. [Online].
Available: https://www.astqb.org/documents/
ISTQB_glossary_of_testing_terms_2.4.pdf. [Accessed 20 6 2016].

[16] Amazon Web Services, "Elastic Load Balancing," [Online]. Available:
https://aws.amazon.com/elasticloadbalancing/. [Accessed 16 7 2016].

[17] Amazon Web Services, "Relational Database Services," [Online].
Available: https://aws.amazon.com/rds/. [Accessed 16 7 2016].

[18] Amazon Web Services, "RDS Read Replicas," [Online]. Available:
https://aws.amazon.com/rds/details/read-replicas/. [Accessed 16 7
2016].

58

Terminology

Term or Acronym Description

Droplet A virtual private server hosted at
DigitalOcean.

LTS Long Term Support

Git A popular version control system.

Github Community site for developers where you can
host public and private Git repositories.

HTTP Hypertext Transfer Protocol

TCP Transmission Control Protocol

UDP User Datagram Protocol

Vagrant A tool that helps manage and configure virtual

machines.

VirtualBox Application used to run virtual machines on a
computer.

URL Uniform Resource Locator. A string that
references a resource on the internet.

PHP PHP: Hypertext Preprocessor. Scripting
language most commonly used for web
development.

MySQL The world’s most popular open source
database software.

Elasticsearch A distributed search and analytics engine.

AWS Amazon Web Services

SSL Secure Sockets Layer

59

SSH Secure Shell

Cron Job scheduler for Unix-based operating
systems.

JSON JavaScript Object Notation

Cookie A small piece of data that a website can save in
the user’s browser.

60

Appendix A: Redis SortedSet commands

These are the Redis commands used by the virtual queue system

ZADD key score value
Adds all specified scores and values to
the set stored at key.

ZREM key value
Removes the specified values from the
set stored at key.

ZRANGE key start stop

Fetches the range of values from the
set stored at key specified by start and
stop. To get the first 10 for example,
you set start to 0 and stop to 9.

ZCARD key
Returns the amount of values in the set

stored at key.

ZRANK key member
Returns the members position in the
set stored at key.

ZREMRANGEBYSCORE key
min max

Removes all elements from the set
stored at key with scores between min
and max.

ZSCORE key member
Returns the score of member in the set
stored at key.

61

Appendix B: .eslintrc file

{

 "globals": {},

 plugins: ["html"],

 parserOptions: {

 ecmaVersion: 6,

 sourceType: "module"

 },

 "env": {

 "browser": true,

 "node": true,

 "es6": true

 },

 "rules": {

 "strict": 0,

 "no-underscore-dangle": 0,

 "quotes": [2, "single", {

 "avoidEscape": true,

 "allowTemplateLiterals": true

 }],

 "camelcase": [2, {"properties": "always"}],

 "semi": [2, "never"],

 "no-new": 0,

 "curly": 0

 }

}

62

Appendix C. Metrics data structure

{

 total: {

 mean: 0.043340388041086975,

 count: 2,

 currentRate: 0,

 '1MinuteRate': 0.021746301622157318,

 '5MinuteRate': 0.0060904037198363445,

 '15MinuteRate': 0.0021556500149239864

 },

 '/': {

 mean: 0.021670411832295615,

 count: 1,

 currentRate: 0,

 '1MinuteRate': 0.008210113258315466,

 '5MinuteRate': 0.0028930685235779457,

 '15MinuteRate': 0.0010598629204630321

 },

 '/event/event-alias': {

 mean: 0.07406813772133873,

 count: 1,

 currentRate: 0,

 '1MinuteRate': 0.014712537947741848,

 '5MinuteRate': 0.0032510706679223385,

 '15MinuteRate': 0.0011018917421948629

 }

}

63

Appendix D. Code example: Adding to queue

/**

 * Adds one or more session IDs to the queue.

 * @param {string} sessionID

 * @return {Promise}

 */

addToQueue(sessionIDs) {

 debug('Adding to queue: '.green + sessionIDs)

 const args = [this.queue]

 const score = new Date().getTime()

 if (Array.isArray(sessionIDs)) {

 sessionIDs.forEach(value => {

 args.push(score)

 args.push(value)

 })

 } else {

 args.push(score)

 args.push(sessionIDs)

 }

 return this.redisClient.zaddAsync(args)

}

64

Appendix E. Code example: Granting access

/**

 * Grants access to the max number of sessions.

 * @return {Promise}

 */

grantAccessToMax() {

 return this.redisClient.zcardAsync(this.access)

 .then(res => {

 if (res >= this.accessMax)

 return Promise.reject('Access list is full')

 return this.getSessionsFromQueue(this.accessMax - parseInt(res))

 })

 .then(res => {

 if (!res.length)

 return Promise.resolve(false)

 debug('These sessions are being granted access: ' + res)

 return this.removeFromQueue(res)

 .then(() => this.grantAccess(res))

 .catch(console.log.bind(console))

 })

 .then(res => {

 if (res) {

 debug('Access list has been filled.')

 }

 })

 .catch(res => debug(res))

}

