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Abstract 

Forested areas represent a fundamental component of the environment. Deforestation 

and forest fragmentation represent a global issue mostly caused by human influence and 

Romania is not an exception. Nowadays forests cover approximately a third of 

Romania’s surface, meaning that the deforestation is a national issue. To handle this 

problem, a monitoring tool is necessary. 

The aim of the present study is to detect clear-cut deforestation using time series 

analysis between 2005 and 2015 in Covasna County, Romania. To achieve this 

objective, the analysis focuses on solving three main issues: (i) assess if clear-cut 

deforestation can be detected in the study area, (ii) determine the spatio-temporal 

distribution of the clear-cut deforestation, and (iii) confront these results with the 

official deforestation rates. 

A time series decomposition method (BFAST - Breaks For Additive Seasonal and 

Trend) has been used on Landsat imagery to detect forest cover changes. To identify the 

most suitable spectral index for detecting clear-cut deforestation, the algorithm was 

initially tested on a smaller test area. BFAST applied on Normalized Difference 

Moisture Index (NDMI) has been proved to have more consistent results than BFAST 

applied on Normalized Difference Vegetation Index (NDVI). 

This study concludes that clear-cut deforestation can be detected using BFAST 

algorithm considering forest type and the scale of the study area. Between 2005 and 

2015, in Covasna County, Romania, 1.71% of forest cover, representing 2953 ha, was 

deforested. Contrary to the official deforestation rate, that mainly shows an increase of 

the deforestation rate for the last 10 years, the results of this study present a decrease in 

clear-cut deforestation between 2005 and 2015. The detection process was estimated to 

have an overall accuracy of 84%.  

Therefore, the presented method is a promising tool for monitoring clear-cut 

deforestation in Romania at national scale. 

Keywords: deforestation, Covasna, BFAST, Landsat, time series, NDVI, NDMI 
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1. Introduction 

1.1  Context 

Forested areas represent a fundamental component of the environment, playing an 

important role in the global carbon cycle. In the context of climate change, forest 

management can be a powerful tool for reducing greenhouse gas (GHG) emissions, 

forests being one of the Earth’s major carbon stocks (Lawrence and Nicoll, 2016). 

Between 1990 and 2015, the global forest area significantly reduced by 3% (Keenan et 

al., 2015) as a result of both deforestation and forest degradation. Although changes in 

species composition and diameter distribution, as well as reduced stocking density 

caused by natural elements, are an important factor in causing biodiversity loss and 

climate change (Pfaff et al., 2013), the public interest is more focused on deforestation 

(MacDicken, 2015), as human activity mostly influences it.  

The world’s forests can be divided into three major forest types: boreal, temperate and 

tropical, being delineated mainly by the geographic position, elevation and climate 

(Grebner et al., 2013). Considering the global distribution and species composition, 

temperate forests are continuously changing due to human activities, disease and 

climate (Willis, 2009).  

Forests in general, but especially the European ones, cannot be entirely understood 

without assessing their past and their evolution in time. Nowadays, in Europe, 

anthropogenic footprints are obviously reflected, forests covering only 30% of Europe 

(Chertov et al., 2006). Still, unlike  Western Europe’s forests, the Carpathian forests 

remain relatively undisturbed, being rich in biodiversity (Knorn et al., 2012) – “the 

diversity of plant-life in the Balkans is richer than any comparable area in Europe” 

(Willis, 1994). 

Throughout history, changes in forest management were influenced by political, socio-

economic and institutional drivers (Munteanu et al., 2016). Romania has experienced 

multiple shifts in this respect, due to frequent regime changes from Austro-Hungarian, 

to Ottoman and Soviet, and later on, to European Union policy. The changes in 

ownership from private to public property are also influencing the changes in forest 

cover in a negative way (Knorn et al., 2012). Between the end of World War II and 

1960, the Romanian Forest Fund was overexploited to pay the war debts to USSR and, 

after the collapse of the Communism in 1989, the vulnerable system led to ambiguity in 

ownership, which finally leads to fragmentation and decrease of forested areas. The new 

democratic government of Romania, issued the law 18/1991, allowing restitution of 

land rights (abusively confiscated by the communist regime), for state-owned land 

parcels smaller than 1 hectare (Mihășan, 2009). This decision led to an even bigger 

fragmentation of the forest fund, much higher than before the nationalization of the 

forests (Curtea de Conturi, 2014). The main causes of illegal deforestation are 

connected with the fragmentation process, by means of the late implementation of the 

forest fund legislation as well as the absence of a stable system subordinated to the 

central authority responsible for forestry (Curtea de Conturi, 2014). The combination of 

political and economic drivers, influenced by corruption led to a vulnerable security 

system in forest management, which finally resulted in massive deforestation after 1989 

(WWF Danube Carpathian Programme, 2005). 
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The Romanian Ministry of Environment and Forests declared that Romania had a total 

of 6,529,000 hectares of forest land in 2015, which also include the protected areas 

managed mostly by the National Forest Administration “Romsilva” (Knorn et al., 2012). 

Even if the official numbers of total deforested areas are lower than the permitted 

amount, deforestation is an issue, illegal logging being an attack on national security 

(DIGI 24, 2015). 

1.2  Background 

Remote sensing techniques are a successful tool for detecting forest cover change, 

starting with bi-temporal classifications of land use (change/no-change maps generated 

from two land-use maps created at two different moments in time) to time series 

analysis, which could be a solution for a better understanding of vegetation dynamics 

and for actively monitoring these changes.  

The primary issues in forest dynamics analysis are detecting deforestation and also 

reforestation. In this study, detecting clear-cut deforestation is the main concern. 

Recently, several methods were developed for this purpose and they rely on the analysis 

of a succession of satellite images, which in scientific literature is known as a time 

series analysis. 

One of these is Breaks For Additive Seasonal and Trend (BFAST) developed by 

Verbesselt et al. (2010a). This algorithm can use Moderate Resolution Imaging 

Spectroradiometer (MODIS) records (Lambert et al., 2015; Verbesselt et al., 2010a), 

Landsat records (Baumann et al., 2012; DeVries et al., 2015 Dutrieux et al., 2016; 

Hermosilla et al., 2015), or combination between them (Tran et al., 2016). Other 

methods such as the Landsat-based detection of Trends in Disturbance and Recovery - 

LandTrendr (Kennedy et al., 2010) or correlation between Synthetic Aperture Radar 

(SAR) and Landsat (Reiche et al., 2015) are also currently used.  

In Romania, the LandTrendr algorithm was used to detect deforestation in the 

Transilvanian basin between 1984 and 2000 (Knorn et al., 2012). Although a real/near-

real time deforestation monitoring program could be a valuable tool for monitoring 

illegal deforestation, unfortunately, such a program does not exist yet. 

As it is the case all around the world, in Romania forest are affected by both natural and 

anthropic factors. The natural factors include pests, disease, soil erosion, fires (during 

very dry periods), strong winds and heavy snowfall. The principal anthropic influences 

upon the forests are the illegal or improper logging operations (Merce, 2012). It is 

important to mention that generally, in Romania, deforestation can be divided in two 

main parts: clear-cut (when all the trees are cut down) and selective (where the forest 

district employees choose which tree should be cut down, based on species, diameter, 

average quality of the tree and height). In the remote sensing field, detecting selective 

deforestation will be almost impossible (WWF Danube Carpathian Programme, 2005). 
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1.3  Problem definition 

In Romania, the forests mostly surround the Carpathian Mountains, all of the mountain 

areas being threatened by both legal and illegal deforestation. The most influenced 

counties are Dâmbovița, Argeș, Bacău, Olt, Mehedinți and Covasna (WWF, 2016).  

Being situated in the Eastern Carpathian group, with about 46% of its surface covered 

by both deciduous and coniferous forest (RoSilva, 2016) and being entirely covered by 

a single Landsat scene (i.e. path 183, row 28), Covasna County represents an optimal 

area to conduct an exploratory study on detecting clear-cut deforestation based on time 

series analysis, which can afterwards be extended to national scale. 

Although being a pressing matter with deep economic, social and ecologic implications, 

deforestation barely makes the cut for the priorities agenda of Romania’s Government. 

Currently, there is no systematic registration (cadastre) of the whole country. Land-use 

maps are produced by visual interpretation and vectorization of aerial imagery by 

CNGCFT (National Centre of Cartography) (National Cartography Center History, 

2016).  

In Romania, the forest monitoring system is confusing, various small agencies handling 

small areas with no support from the Ministry to manage them all together. The IFN 

(National Forest Inventory), founded in 2006, aims to provide an inventory every five 

years, combining photogrammetry and field data. The first inventory was conducted 

between 2008 and 2013, and the next one will be finished in 2018 (Nostra Silva, 2016). 

Thus, with a five-year cycle, it is hard to identify, trace and verify the legitimacy of 

deforestation. A more often inventory, for example at one-year cycle might improve the 

previously mentioned problems. 

1.4 Research objective and research questions 

The aim of this thesis is to detect clear-cut deforestation in Covasna County, Romania, 

using Landsat time series data sets from 2000 to present.  

To achieve this, the following research questions have to be answered: 

RQ 1. Can deforestation in Covasna, Romania, be detected using BFAST? 

    SRQ1.1 How to translate change to detected clear-cut deforestation? 

    SRQ1.2 What spectral index is most suitable to detect clear-cut deforestation?  

RQ 2. What is the spatio-temporal distribution of clear-cut deforestation between 2005 

and 2015 in Covasna County, Romania?  

RQ 3. What is the difference between the detected clear-cut deforestation and the 

official deforestation rate in Covasna County, Romania?  
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2.  Literature review and theoretical background  

2.1  Detecting deforestation at national scale 

As presented in Introduction, deforestation leads to multiple negative effects. All around 

the world, there are various monitoring systems that make it possible for deforestation 

to be detected and therefore reduce these threats. In order to detect forest change, three 

main tools can be used: ground-based, satellite-based, and airborne (Davis and Petersen, 

2016), each having different usage, depending on scale. Below are presented a few 

examples of how different countries handle this issue. 

Systems as PRODES (Projeto de Monitoramento do Desmatamento na Amazônia Legal 

por Satélite) (PRODES, 2016) and DETER (Sistema de Detecção do Desmatamento em 

Tempo Real na Amazônia) (Deter, 2016), coordinated by the Brazilian Space Agency 

(INPE), are used for monitoring the near real-time deforestation and mapping the annual 

deforestation (DeVries et al., 2015b).  

Also, the “Reducing Emissions from Deforestation and Forest Degradation and the role 

of conservation, sustainable management of forests and enhancement of forest carbon 

stocks in developing countries” (REDD+) mechanism is used to adopt national 

strategies for reducing emissions from deforestation and forest degradation in 

developing countries with tropical forests (The REDD Desk, 2016). Through this 

mechanism, developing countries are financially compensated for afforestation and for 

keeping existing forests undisturbed, forests that are fundamental for reducing global 

warming (The REDD Desk, 2016). “For the farmer that he can make money or more 

money from not cutting the tree than for cutting the tree, that is the idea of REDD+” 

Arild Angelsen – Professor, The Norwegian University of Life Sciences. Three phases 

define the REDD+ programme: Phase 1 defines policies and measures that a country 

needs to apply for implementing the program; Phase 2 implements demonstration 

activities and managing the REDD+ strategies; Phase 3 scales up the program at 

national level and implements the monitoring system, which ensures that the emission 

reduction is real (Food and Agriculture Organization of the United Nations, 2016). 

In Romania, a program called „Radarul Pădurilor” (Forest Radar) was implemented by 

the Government in October 2014 (Government decision no. 470/2014) which states that 

every citizen can verify if a logging transport is legal by calling the emergency number 

112 (Mediafax, 2016). With the support of an initiative that encourages afforestation, 

“Plantăm fapte bune în Romania” (Planting good deeds in Romania) an application 

called „Harta defrișărilor” (Map of deforestation) was released for Android users, where 

every user can add photos of a certain deforested area together with the GPS coordinates 

(Green Report, 2016). In addition, Greenpeace Romania initiated a crowdsourcing 

campaign in 2015 to recruit volunteers for collecting information about deforested areas 

and prevent further deforestation (Greenpeace, 2016). 
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2.2  Time series Analysis 

Time series data are successfully used in fields like medicine, earth sciences, and 

economy (Chen et al., 2012). A time series represents a set of data collected at 

successive times, which may be distributed at constant time intervals. Time series 

analysis comprises several algorithms for analysing the data to obtain statistic 

information or other typical features of the data (Ramsey, 2012).  

Many time series methods were developed over the years. These use both moderate and 

high spatial resolution (MODIS and Landsat, respectively) in order to detect all type of 

changes in the vegetation cover. Some of the most relevant factors that influence the 

results of a time series analysis are: frequency of satellite images, cloud cover and 

seasonality. 

The Sub-annual Change Detection (SCD) algorithm (Cai and Liu, 2015) was used on a 

study site in Ohio USA, which detects dates of abrupt change from a succession of 

frequently recorded satellite images (e.g. 16 days MODIS or Landsat). The SCD 

approach analyses the differences noticed at intervals of two consecutive annual 

segments, in two phases. First, the initial time series is divided into many time series 

with a one-year temporal resolution and after that, the resulted time series are compared 

to detect differences between neighbouring years. In the second phase, the algorithm 

determines the points that do not follow the seasonal model. The authors state that the 

computation time of SCD algorithm take less than the BFAST method but it cannot 

make the difference between trend and seasonality.   

Another method was developed by Kennedy et al. (2010), which introduced a new 

method for extracting spectral trajectories of land changes, from a Landsat Time series 

Stack (LTS), called Landsat-based detection of Trends in Disturbance and Recovery 

(LandTrendr). The method captures the short-duration events and smoothens the long-

term trends. They state in their study that the change is not just a simple contrast 

between the condition of two points in time, but that the landscapes are influenced by 

the processes that are operating at fast and slow rates (Kennedy et al., 2010). The 

second part of the study was to calibrate and validate data for forest change detection 

algorithm with a tool called “TimeSync”. They also state that the algorithm is 

appropriate for detecting disturbances and recovery phenomena. 

The method that was chosen for this study is BFAST, as it has been used so far in 

various locations all around the world. Its flexibility is enhanced by different types of 

land use on which it was used, as presented in the next paragraphs.  

BFAST is a method developed in 2010 that breaks up a time series into trend, seasonal 

and remainder components (Verbesselt et al., 2010a). This method can be applied to 

different remote sensing data (e.g. MODIS, Landsat) to detect and characterize changes, 

being used to provide information about the spatial and temporal position of the 

changes. It is important to use all available images from all months in order to 

determine a stable history and later to know exactly when is the time when deforestation 

occurs. This method was successfully used in Australia, to estimate the time and the 

magnitude of change in forested areas (Verbesselt et al., 2010a) (Figure 1.A). 
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Figure 1. World map indicating the locations where the BFAST algorithm was used (A- Australia - 

Verbesselt et al., 2010a, B- Somalia- Verbesselt et al., 2010b, C- France– Lambert et al. 2013, D- 

Mongolia- Tsutsumida et al. 2013, E- Australia- Watts and Laffan 2014) 

Later, also in 2010, the main author makes an improvement in the algorithm, adding a 

harmonic seasonal model, which can be used with fewer observations. The harmonic 

seasonal model characterizes phenological change easily and is more robust against 

noise (Verbesselt et al., 2010b). In 2012, the same main author developed an 

improvement in the BFAST algorithm called BFAST Monitor (i.e. study area in 

Somalia) (Figure 1.B). To apply the algorithm to a time series, a moment that splits the 

time series into two parts is defined. The first period, called history period, is considered 

stable, where no change has occurred in land cover. The second, monitoring, period is 

where land cover change is detected. The algorithm fits a regression model to the data in 

the stable history period, that is then used to determine whether the observations in the 

monitoring period conform to this stable regression model or if any change is detected 

(Verbesselt et al., 2012b).  

Lambert et al. (2013) present a study in France (Figure 1.C) from 2000 to 2012, where 

they compare the BFAST method with a phenological approach that was aimed to 

average the Normalized Difference Vegetation Index (NDVI) profiles, from a given 

period, in order to establish for each forest stand a mean phenological profile. The main 

tree species that were analysed were Abies alba (silver fir) and Picea abies (Norway 

spruce). The authors state that the two approaches give the same results regarding the 

trend. They also state that the BFAST approach is able to detect breaks in the linear 

trend but it is extremely difficult to use it to detect breaks in clear-cut areas that measure 

less than one hectare. This study is a relevant example of how clear-cut deforestation 

within coniferous forests (especially silver fir and Norway spruce species) can be 

detected using the BFAST algorithm.   

In their paper, Tsutsumida et al. (2013) (Figure 1.D) successfully used the BFAST 

method to analyse the expansion of the urban area of Ulaanbaatar, the capital of 

Mongolia, during the period 2000-2010. They state that this tool can be used to monitor 

the urban expansion, being a robust and applicable method for this type of land use, thus 

confirming that it is adaptable to various types of land cover. 
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In their study, Watts and Laffan (2014) used the BFAST in a semi-arid region, in New 

South Wales, Australia (Figure 1.E). The study aimed to test the effectiveness of the 

algorithm in this type of region. In their case, the algorithm was able to detect changes 

in the vegetation greening caused by floods, but was not able to accurately detect fires 

(only 3%). In this study the spectral index used was EVI (Enhanced Vegetation Index), 

which indicates that the algorithm is able to use different kinds of spectral indices. With 

regard to the time series use, Watts and Laffan (2014) mentioned that “Such methods 

provide advantages over traditional bi-temporal change detection, as they are not scene 

dependent and use data with a finer temporal resolution”.   

2.3 Theoretical background  

For the methodology to be better understood, several notions such as Landsat, surface 

reflectance, cloud mask, spectral indices and forest cover will be further explained in 

this section. 

2.3.1  Landsat 

In 1972, the first Landsat satellite was launched. Since then, Landsat continuously 

provided data for various fields such as environmental sciences and management, land 

use and land cover, agriculture, planning and development, economy, education, human 

needs, legal/security, oil/gas/mineral (Landsat USGS, 2016a). 

Currently, the Landsat constellation has two functional satellites: Landsat 7, Enhanced 

Thematic Mapper Plus (ETM+), and Landsat 8, Operational Land Imager (OLI), the last 

one being launched in February 2013. The production of Landsat 9 already started, the 

satellite being scheduled to launch in 2023 (Landsat USGS, 2016a). 

Landsat 7 ETM+ was launched in April 1999 and was designed with eight spectral 

bands including one thermal and one panchromatic band, with a temporal resolution of 

16 days, and scene size 170 km x 185 km. After May 2003, all the scenes collected by 

Landsat 7 ETM+ cover only 78% of the image due to Scan Line Corrector (SLC) sensor 

failing. This failure leads to gaps that are not recoverable, being generated by a 

combination of its sun-synchronous orbit and side-to-side sweeping. Several software 

products can fill these gaps. Alternatively, United States Geological Survey (USGS) 

SLC-off Gap Mask could be downloaded to exclude affected data (Landsat USGS, 

2016b).  

Landsat 8, the latest satellite launched, has two sensors: OLI, with nine spectral bands 

including a panchromatic band, and Thermal Infrared Sensor (TIRS) with two spectral 

bands. The temporal resolution is 16 days with an 8-day offset from Landsat 7, and the 

scene size is 170 km x 185 km (Landsat USGS, 2016a). 

2.3.2  Surface reflectance 

Landsat surface reflectance, for both Landsat 7 and Landsat 8, is a high-level data 

product, provided directly by USGS. For Landsat 7 ETM+, the Landsat Ecosystem 

Disturbance Adaptive Processing System (LEDAPS) software is used to produce 

surface reflectance. The software was developed by Masek et al. in 2006 with the 

support from National Aeronautics and Space Administration (NASA). Making Earth 

System Data Records for Use in Research Environments (MEaSUREs), and it applies 
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MODIS atmospheric correction to the Landsat 7 Level 1 data products. The software 

uses digital elevation, geopotential height, water vapour and aerosol optical thickness as 

input data, to create surface reflectance, Top Of Atmosphere (TOA), and the mask for 

clouds and cloud shadows (Landsat USGS, 2016b).   

The Landsat 8 Surface Reflectance (L8SR) algorithm is different from LEDAPS, by 

using the scene centre to calculate the sun angle, and hardcoding the zenith angle to 

zero. The cloud mask is produced using both OLI and TIRS (Landsat USGS, 2016b) 

sensors.   

As the actual values of the spectral indices of the pixels can be affected by various 

factors (e.g. cloud cover and humidity), it is important to use high-level data products 

such as the ones mentioned above in order not to obtain anomalous results (Landsat 

USGS, 2016b). 

2.3.3  Clouds 

Clouds are one of the biggest problem in the remote sensing field and, therefore, 

masking the clouds and clouds shadow is one important step in time series analysis.  

In 2012, Zhu and Woodcock developed the “Fmask” algorithm, which can detect clouds 

and cloud shadows for Landsat imagery. This method uses the TOA reflectance for 

Bands 1-7, except Band 6, for which the Brightness Temperature (BT) is used, 

generated by the LEDAPS software (Zhu and Woodcock, 2012). The 2015 Fmask 

comes with some improvements and it also covers Landsat 8. The same Landsat 4-7 

algorithm is also used for Landsat 8, but the cirrus probability is calculated using the 

cirrus band instead (Zhu et al., 2015). 

2.3.4  Spectral indices: NDVI and NDMI 

The spectral indices are results of the combination of two or more spectral bands, which 

are indicating the relative abundance of various features of interest (Harris Geospatial, 

2016). 

The NDVI is one of the most successfully used vegetation spectral index. One of the 

reasons is that it allows comparison between inter-annual and seasonal changes in 

vegetation. The NDVI represents a ratio between the Near Infra-Red (NIR) and the Red 

bands (Huete et al., 2002). For Landsat 7, bands 4 (NIR) and 3 (Red) are used, while for 

Landsat 8, bands 5 (NIR) and 4 (Red) are used (USGS, 2015). 

NDVI =
𝑁𝐼𝑅 − 𝑅

𝑁𝐼𝑅 + 𝑅
 

Another successfully used index is the Normalized Difference Moisture Index (NDMI), 

which represents the ratio between two infra-red bands, NIR and Short-Wave Infra-Red 

(SWIR). For Landsat 7, bands 4 (NIR) and 5 (SWIR) are used and for Landsat 8, bands 

5 (NIR) and 6 (SWIR) are used (USGS, 2015). 

NDMI =
𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅

𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅
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2.3.5  Global Forest Watch 

Global Forest Watch (GFW) is a monitoring network established in 1997, which aims at 

collecting and providing information to better understand, manage and conserve the 

forested landscapes. GFW includes near real-time alerts that display suspected location 

of recent forest cover loss. The GFW database also contains data about previously forest 

covered areas. In which the used methodology is concerned, the GFW recognizes only 

the trees that have a minimum height of 5 meters. The degradation process is not 

included in the GFW database, an example being the selective removals from the 

forests. The engine used for the forest dynamic monitoring is Google Earth Engine that 

combines public data with a large scale computational facility that processes the 

geospatial data. The pre-processing stages of the Landsat data (i.e. Landsat 4, 5, 7, 8) 

include: cloud, shadow and water screening as well as quality assessment and image 

normalization (Hansen et al., 2013). 
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3. Methodology 

3.1 Study area  

3.1.1  General 

Covasna County (Figure 2) is located in the Eastern Carpathians group, between 45˚35’ 

and 46˚18’ N and 26˚4’ and 26˚5’ E, covering a total area of 3,710 km2, which 

represents about 1.6% of Romania’s surface (National Institute of Statistics, 2016a). 

The primary industries of Covasna County are timber, textiles, and food (Global 

Britannica, 2016).   

The topography of Covasna is more than 50% mountains, with the rest being plains and 

foothills, altitude ranging from 468 m (Baraolt Valley) to 1,777 m (Lăcăuți Peak in 

Brețcului Mountains). Most of the soils are brown, brown podzolic and brown acid, 

especially in the mountain areas, and chernozem and brown podzolic in the lower 

altitude areas (ISU Covasna, 2014; National Institute of Statistics, 2016a). The 

hydrographic network is represented by Olt and Negru rivers and their affluents, which 

collect more than 1,000 springs, and three major lakes: Reci, Moacsa and Belin 

(Watercore, 2016). The climate in Covasna is temperate-continental, with cold and dry 

winters and hot summers. The precipitation values vary from 500 to 700 mm/year and 

the medium annual temperature is between 3 and 8 degrees Celsius (Watercore, 2016). 

In Covasna County, there are three protected areas: Mestecănișul Reci – 291 ha, Luci – 

297.7 ha and Vârghişului – 198.7 ha. Within these protected areas, some regions are 

state-owned (RoSilva, 2016).     

 
Figure 2. Geographic location of the study: Covasna County, Romania (map on the left: Romania, 

ESRI Basemap, National Geographic Word Map, map on the right: basemap Landsat 8- 1 January 

2016 and Natura 2000 layer) 
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3.1.2  Forest type 

According to the Ministry of Environment and Forests, the forest area of Romania is 

6,529,000 ha (in 2015), representing 27.3% of Romania’s total surface (Ministry of 

Environment and Climate Change Romania, 2016).  The forests of Covasna County 

cover 46% of the total county area, representing 173,000 ha (RoSilva, 2016). The 

National Institute of Statistics states that the forested area in Covasna increased from 

2000 (161,900 ha) to 2014 (171,300 ha). In 2014, 67,400 ha were coniferous species, 

102,200 ha were deciduous species, and 1,700 ha being defined by another type of land 

use (National Institute of Statistics, 2016a). “Natura 2000” Network covers some of the 

forested areas in Covasna County, protecting both existing birds and habitats (EU 

Natura 2000, 2016).   

The representative species of the forested areas are Norway spruce - Picea abies, silver 

fir - Abies alba (Figure 3), beech - Fagus silvatica (Figure 3), birch - Betula pendula, 

hornbeam - Carpinus betulus, oak varieties - Quercus, pine varieties – Pinus and juniper 

varieties - Juniperus (Bartha et al., 2015; Griffith et al., 2012).  

The following pictures were taken near Ghelința and Pasul Oituz Covasna, with a 

Canon (PowerShot A2500, Tokyo, Japan) camera on the 15th of April 2016. 

        

     

 

 

 

 

 

 

 

 

 

 

3.2 Breaks For Additive Seasonal and Trend 

The present study detects clear-cut deforestation from Landsat time series data by 

applying the BFAST algorithm developed by Verbesselt et al. (2010a). As described by 

the authors, BFAST is a decomposition method, which breaks a time series into trend, 

seasonal and remainder components (Figure 4). Changes in the trend component reveal 

disturbances such as fires and insect attacks while changes into the seasonal component 

reveal phenological changes such as changes in land cover type. The changes to which 

ecosystems are usually predisposed can be classified into three classes: seasonal, 

gradual and abrupt changes (Verbesselt et al., 2010a). The authors explain that the 

Figure 3. Pictures taken near Ghelința and Pasul Oituz Covasna, with a Canon (PowerShot 

A2500, Tokyo, Japan) camera on the 15th of April 2016 representing: silver fir (left) and beech 

(right) 
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seasonal changes are influenced by the temperature and rainfall interactions, which have 

an impact to plant phenology. The gradual changes are correlated with the interannual 

climate variability and gradual change in land degradation or management. The abrupt 

changes are the result of deforestation, urbanization and fires. The remainder consists in 

the remaining data variation aside from the seasonal and trend components (Verbesselt 

et al., 2010a). 

The general equation for BFAST is: Yt = Tt + St + et, t=1,…n where Yt represents the 

observed data at time t, T represents the trend, S seasonality and e the remainder 

(Verbesselt et al., 2010a). 

 

Figure 4. An example of a time series decomposition in Australia (2010) for the 2000 - 2009 period: 

data, seasonal, trend and remainder components (Verbesselt et al., 2010a)  

3.2.1  BFAST Monitor 

BFAST Monitor is a near-real time disturbance monitoring approach, which can be 

applied to various time series and uses the BFAST algorithm. The method was 

successfully used by Verbesselt et al., (2012) in drought-stressed regions in Somalia and 

by DeVries et al., 2015 in a tropical montane forest in southern Ethiopia. The method is 

developed to be used with any newly acquired data, being able to automatically identify 

and model a stable history, and afterwards detect the changes in the most recent data 

(Verbesselt et al., 2012b). The main advantages of this method are short processing 

time, not needing a vegetation-specific threshold, and not requiring techniques of gap 

filling (e.g. masked clouds), while still being able to successfully analyse the full 

temporal detail of a time series (Verbesselt et al., 2012b).   

As described by DeVries et al., (2015), to classify changes in each pixel, BFAST 

algorithm uses three main steps:  

1. Fitting a harmonic model 

2. Detecting changes 

3. Calculate change magnitude within the period of monitoring 

In order to assess if a change in land cover occurs at pixel level, the time series is split 

in two: a history period and monitoring period. A regression model is fit on the 

observations during the history period. This regression model can be specified by the 

user, according to a priori knowledge of the study area. For e.g. in the case of evergreen 
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forests with limited seasonality, the regression model is a constant linear model (the 

mean of the observations), while in the case of deciduous forest with seasonality, the 

regression model is a first order harmonic function. The regression model can be 

applied to the whole history period (defined as starting from the first observation until 

the beginning of the monitoring period), or it can be applied only on a part of the history 

period that can be considered stable (starting from a defined moment until the beginning 

of the monitoring period). This moment that delineates a stable period in the history 

period can be provided by expert knowledge or can be calculated automatically using 

the reverse-order-cumulative sum (ROC or CUSUM) of residuals (Verbesselt et al., 

2012b). This statistical algorithm moves backwards in time, from the starting moment 

of the monitoring period, and evaluates a cumulative prediction error until the season-

trend model breaks down, defining the end of the stable history period. The stable 

history should be long and frequent enough to detect the changes in forest cover 

accurately (i.e. at least two years with an optimal temporal resolution of 16 days, as 

stated by Verbesselt et al., 2012b). It is also important that no limiting factors such as 

clouds or cloud shadows obstruct the satellite images indifferent of the period in which 

these occur (e.g. peak season of the tree growth). 

As described by DeVries et al. (2015), to detect breakpoints in pixel time series, the 

moving sums (MOSUM) approach was used to monitor structural changes. This statistic 

approach checks if the newly acquired data in the monitoring period still fits the 

previously determined model. MOSUM applied on the residuals is a measure of 

discrepancy, having values close to 0 if the model remains stable, or systematically 

deviations from 0, in case a structural change occurs. A structural break is declared if 

the absolute value of the moving sum exceeds a 95% confidence interval of the 

calculated residuals in the history period (Verbesselt et al., 2012b). The magnitude is 

computed as the median of the difference between the data and the model prediction in 

the monitoring period.  

3.2.2  BFAST Spatial 

BFAST Spatial is a tool developed by L. Dutrieux, B. DeVries and J. Verbesselt 

(Introduction to bfastSpatial, 2016) that applies the pixel based approach of BFAST 

Monitor (described above) in a spatial context. As the authors state, by default, the 

output of BFAST Spatial is a three layer stack: (a) timing of breakpoints detected for 

each pixel (breakpoint); (b) the median of the residuals within the monitoring period 

(magnitude) and (c) a value for the pixels which were assigned an error by the algorithm 

(error) (Dutrieux et al., 2015; Dutrieux et al., 2016). 

The magnitude is computed for each pixel regardless if a breakpoint is detected or not in 

the monitoring period. To detect deforestation, a structural change is expected, and so, 

only the magnitude for the pixels where a breakpoint occurred is going to be considered. 

Considering only the presence or absence of breakpoints to define deforestation is not 

sufficient, as breakpoints associated with positive magnitudes or negative, but close to 

zero magnitudes, do not translate directly to deforestation. To avoid false positive 

deforestation detections, only breakpoints with a magnitude above a threshold should be 

considered (DeVries et al., 2015b). This threshold is dependent of the study area and 

calibrating of the magnitude threshold against reference data is an important step of the 

analysis. 
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3.3 Methodology diagram 

In order to answer the research (RQ) and sub-research (SRQ) questions, the 

methodology presented in Figure 5 was followed. Every step is going to be detailed in 

the sections that follow the diagram below. The software used to conduct the analyses 

are presented in Appendix A.   
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Figure 5. The pursued methodology diagram, which indicates the pre-processing steps, research 

(RQ) and sub-research (SRQ) questions  
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3.4 Data acquisition and pre-processing 

The first step of the pre-processing section was to order the products from the USGS 

database (i.e. for both NDVI and NDMI), after which they have been extracted (i.e. 

from the .TAR archives). The next two steps were to apply the cloud and forest masks 

for each scene. These procedures are to be explained in the sections below. 

3.4.1 Landsat products 

For this study, all available Landsat 7 and 8 products corresponding to path 183, row 28 

were freely downloaded from USGS database (.TAR file type) (Landsat USGS, 2016a). 

In total, at the time of the selection, 183 Landsat 7 scenes, and 55 Landsat 8 scenes were 

available from 14 February 2000 to 24 December 2015 (Figure 6), one scene covering 

entirely the area of interest (AOI). For the history period, there have been 39 satellite 

images used (i.e. only Landsat 7 images). The decision regarding the length of the 

monitoring and history periods was made such that both Landsat 7 and 8 scenes were 

used. The NDVI and NDMI derived from the surface reflectance product (see section 

2.3.2 Surface reflectance) and individual cloud masks for each scene, were provided 

directly by the USGS.  

 
Figure 6. Landsat images (Landsat 7 in blue- 183 scenes and Landsat 8 in red- 55 scenes)– Chart 

that indicates the number of available scenes per year from 2000 (beginning of the history period) 

to 2015 (end of the monitoring period)   

3.4.2 Cloud mask 

Using RStudio (Version 0.99.879, RStudio Inc., Boston, United States) with “raster” 

package, the Landsat scenes along with Covasna County shape file extent were cropped, 

generating a new set of rasters. The same step was followed concerning the cloud masks 

for each NDVI and NDMI products. As illustrated in Figure 7, the following step was to 

use the Fmask products (i.e. cloud and cloud shadow; described in section 2.3.3 

Clouds), in order to identify, select and remove the clouds from the scenes. 
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Figure 7. An example of cloud mask procedure (i.e. identifying, selecting and removing the clouds 

using the Fmask products for NDVI) for a small area in Covasna County 

3.4.3 Forest mask 

A forest mask has been applied to exclude non-forested areas from the study area and it 

was used later as a basis for the analyses. For this, rasters with forest cover from 2000 

and forest loss from 2000 to 2015 were freely downloaded from the GFW database and 

later processed in order to determine the forest cover from 2005. To this end, the pixels, 

which represented the loss from 2000 to 2005 were selected and afterwards merged with 

the forest cover from 2000 (Figure 8). The new forest mask representing the forest 

cover in 2005 was therefore created. It represents the end of the history period which is 

considered undisturbed, as well as the beginning of the monitoring period. Since the 

GFW does not provide any yearly gain, but only the gain from 2000 to 2015, newly 

plantations have not been considered, the aim of this study being to detect only clear-cut 

deforestation on the area where there was forest in 2005. As scientific studies 

recommend (Baumann et al., 2012; Knorn et al., 2012), forested areas were defined as 

being pixels where the tree cover exceeds 60%. The GFW cover map has the same 30m 

x 30m spatial resolution as the Landsat imagery. 

 

Figure 8. Map of forest cover in Covasna County in 2005 (Loss 2000-2005 in red, Forest cover 2000 

in green and Covasna County border with black line) 
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3.5  RQ1. Detect clear-cut deforestation in Covasna, Romania, using 

BFAST 

To answer to the SRQ 1.1 (i.e. How to translate change to detected clear-cut 

deforestation?) and SRQ 1.2 (i.e. What spectral index is most suitable to detect clear-cut 

deforestation?), the BFAST algorithm (which is explained in section 3.6.4 Applying 

BFAST) was used on a test area in order to determine the threshold and which of the 

NDVI and NDMI is the most suitable spectral index. The detailed procedures for these 

steps are presented in the following sections. 

3.5.1 Test area 

Directly applying the algorithm on the entire AOI could be inefficient when trying to 

decide what are the optimal parameters, therefore a smaller representative test area, has 

been chosen (Figure 9. ) for this step. The test area was chosen based on GFW loss after 

2005, a particular area where this indicates obvious deforestation. The decision 

regarding the parameters has been made based on the results obtained for this test area. 

 

Figure 9. Map of forest cover in Covasna. The red rectangle indicates the selected test area and 

from brown to green are indicated the values of the NDVI product  

3.5.2  Magnitude threshold 

Only scenes that were not completely covered by clouds were considered for the 

analysis. Therefore, the scenes that contained just not available pixels (NA), after the 

Fmask procedure, were removed. After following the above steps, a time series stack 

was created using RStudio (Figure 11 in section 3.7.1 BFAST output layers), and 

afterwards the BFAST algorithm was applied for both NDVI and NDMI products 

individually.  

As explained in chapter 3.2.2 BFAST Spatial, to determine which of the detected 

change is clear-cut deforestation (Figure 5, section SRQ 1.1- Detect change), a 

threshold for the magnitude of the change has to be determined. This threshold separates 



19 

 

clear-cut deforestation from other types of changes that can be detected in a forest (e.g. 

regrowth and degradation). Therefore, the deforested areas that had a threshold below 

the determined limit (see section 4.1.1 Threshold) were not considered to be clear-cut 

forest. The correct threshold for the magnitude layer was determined for each spectral 

index as illustrated in Figure 5 and detailed below. 

To set the threshold value, 100 pixels were randomly selected for each NDVI and 

NDMI magnitude layers generated by the BFAST algorithm. For each of these random 

pixels, the visual interpretation was made using data from Google Earth (Version 

7.1.2.2041, Google Inc., California, United States) (Figure 10), the threshold being 

selected using thresholding approach on these results. Since the most recent Google 

images analysed, for this test area, date from 2011, the 100 random pixels were chosen 

only from the pixels detected as deforested between 2005 and 2011. The interval 

selection process can be consulted in Appendix B. 

 

Figure 10. Visual interpretation for NDMI magnitude threshold on a Google Earth image. The red 

squares represent the points where clear-cut deforestation was identified by the BFAST algorithm. 

The points coincide with the Google Earth deforested area. 

After applying the BFAST algorithm, three layers have outcome (i.e. change 

magnitude, breakpoint timing and error), which are detailed in section 3.7.1 BFAST 

output layers. The change magnitude layer represents the deforestation layer. 

3.5.3 NDVI vs. NDMI 

To answer SRQ 1.2 (i.e. What spectral index is most suitable to detect clear-cut 

deforestation?; Figure 5, section SRQ 1.2), a deforestation layer was created using the 

resulting magnitude threshold for each index. From both NDVI and NDMI layers, 100 

random pixels were selected from the pixels that were not commonly detected as 

deforested, in order to analyse which spectral index was more suitable for the AOI and 

this type of forest. A visual assessment has been made using Google Earth imagery and 

therefore, the most appropriate spectral index has been identified.  
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3.5.4 Applying BFAST 

Knowing the most suitable spectral index, using RStudio, every scene was cropped with 

the Covasna shape, the NA have been eliminated (i.e. as in section 3.6.1 Test area), the 

time series was created and the BFAST algorithm was applied (Figure 5 Methodology 

diagram).  

All the parameters of the algorithm (history period, monitoring period, as well as the 

formula for the regression model) were chosen based on the literature review (DeVries 

et al., 2016; Verbesselt et al., 2012a) as follows: (a) all the observations before 2005 

were included in the history period instead of determining the stable history (ROC), due 

to the short length of this period, (b) the monitoring period was defined as the period 

after 2005, and (c) the harmonic order 1 was chosen as a regression model to fit the 

historical observations that were made on both coniferous and deciduous forests. 

3.6  RQ2. Spatio-temporal distribution of clear-cut deforestation 

between 2005 and 2015 

3.6.1  BFAST output layers 

In order to answer RQ 2, but also to better understand how the algorithm works, and 

what are its inputs (i.e. .TAR archive ordered from USGS) and outputs, and how can the 

temporal parameter be included in the spatial data, the next diagram (Figure 11) has 

been followed: 



21 

 

Stack

Breakpoint 
timing

Change 
magnitude

Error

Process 
Landsat

Stack

Change 
magnitude

Breakpoint 
timing

Error

 

Figure 11. The pursued BFAST procedure (i.e. extracting the.TAR files, Landsat image processing 

(clouds mask and forest mask), stacking the resulted images, and the final results: change 

magnitude, breakpoint timing and error) 

Three new layers resulted after applying the algorithm: change magnitude, breakpoint 

timing and error. In order to answer to RQ 2 (i.e. What is the spatio-temporal 

distribution of clear-cut deforestation between 2005 and 2015 in Covasna County, 

Romania?), breakpoint timing layer and change magnitude layer were analysed. 

Overlaying the breakpoint timing layer with the new change magnitude layer generated 

after setting the threshold has made it possible to analyse when clear-cut deforestation 

occurred during the monitoring period. 



22 

 

3.7 RQ3. Difference between the detected clear-cut deforestation and 

the official deforestation rate 

 

To answer the last research question, RQ. 3, three data sets have been used (Figure 12): 

the total amount of clear-cut deforestation detected based on BFAST algorithm, the total 

amount of clear-cut deforestation provided by GFW and the National Institute of 

Statistics data sets (i.e. both clear-cut and selective). The latter provides the total cubic 

meters of exploited wood per year in Covasna County. The conversion from cubic 

meters to hectares will be explained in the results chapter. 

Global Forest Watch
National Institute of 

Statistics
BFAST

Cube meters

Hectars

No of pixels No of pixels

Hectars Hectars

Compare

 

Figure 12. Comparison of deforestation between three datasets: GFW (from Global Forest Watch 

Database), National Institute of Statistics (National Institute of Statistics, 2016a) and the BFAST 

results. The conversion from number of pixels and cubic meters, respectively to hectares is detailed 

in chapter 4.2 RQ2. Spatio-temporal distribution of clear-cut deforestation between 2005 and 2015 

A pixel from Landsat imagery measures 30 m on each side, meaning that each pixel 

measures 900 square meters or 0.09 ha. 

Of course, a comparison between the National Institute of Statistics data and the BFAST 

detected clear-cut deforestation or GFW layer is not conclusive enough because it is 

difficult to follow selective logging. Thus, these two data sets will be discussed in 

comparison with the present study results in the Results chapter.   

 

3.8  Validation 

For interpreting forest cover change in Covasna County, Romania, only remote sensing 

data products were available, no "ground truth" data being used. Therefore, to validate 

the data and check the accuracy, a visual assessment has been done to indicate the 

reliability of the method. The visual interpretation has been performed on Google Earth 

images as they have higher spatial resolution than Landsat data, which has 30 meters 

resolution. First, due to the lack of recent Google Earth imagery for the whole study 

area, the results from a specific area situated towards the eastern part of the AOI were 
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excluded (Figure 13). Pixels that represented areas deforested later than 2014 (i.e. the 

Google Earth image used in the visual interpretation process) were also excluded. 

 

Figure 13. The image represents all the available Google Earth images for the study area (Covasna 

County, in red), the central-eastern and north-eastern part being excluded due to the lack of recent 

Google Earth imagery 

As a result, 100 random pixels over the deforested area have been selected for the visual 

interpretation. From these pixels, those that have been correctly detected were assigned 

an agree change value and those which have not been properly detected were defined as 

a commission error.    

For detecting the overall accuracy, another set of 100 random pixels had to be selected 

in the forested area. The forested area being much more widespread than the deforested 

area, selecting pixels from this particular area would not have been relevant. For this 

reason, pixels have been chosen from a one-pixel size width buffer, which was created 

around the edges of the clear-cut deforestation layer. Considering that not all the 

deforested areas are entirely surrounded by forest, the edges situated near other types of 

land use were also excluded from the buffer. An example of this situation will be 

presented in the results chapter. From the selected pixels, the ones that have been 

correctly detected were assigned an agree no change value and those which have not 

been properly detected were defined as an omission error.    
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4.  Results 

4.1  RQ1. Detect clear-cut deforestation in Covasna, Romania using 

BFAST 

4.1.1  Threshold 

As magnitude ranges for NDVI and NDMI differ, a threshold for each range was set. 

Considering that BFAST also detects breaks that have positive or minimal change 

magnitude values that do not reveal deforestation (i.e. degradation or regrowth), the 

threshold range was carefully set. On the test area, the NDVI changes vary between       

-1800 and -500, while for NDMI, the values vary between -1200 and -200. The method 

described in the methodology, regarding the selection of threshold applied on the test 

area for the random pixels, led to the following threshold values: -350 for NDVI and      

-850 for NDMI (see Appendix B). Therefore, SRQ 1.1 (i.e. How to translate change to 

detected clear-cut deforestation?) was answered. 

The answer for SRQ 1.2 (i.e. What spectral index is most suitable to detect clear-cut 

deforestation?) resulted from comparing the deforested areas (change with appropriate 

threshold) detected using NDVI, with deforested areas detected using NDMI. The 

results conclude that out of 100 random pixels in the test area, 73 were correctly 

detected in which NDMI is concerned, while only 67 were correctly identified in the 

NDVI’s case. This result reveals that the NDMI products are more suitable to use on the 

entire AOI. 

By using a suitable spectral index, combined with a proper threshold, clear-cut 

deforestation has been detected on the entire AOI. 

4.1.2  Break detection on individual pixels 

An example of time series analysis for one specific pixel in the test area between 2000 

and 2015, in which a break was detected in 2010 (Figure 14) will be further discussed.  

 

Figure 14. Pixel analysis – the detected break is indicated by the red point in 2010, the images 

representing the NDVI product from USGS database (the history period is considered from 2000 to 

2005 and the monitoring period from 2005 to 2015) 

The period between 2000 and 2005 is considered to be stable history. This interval is 

shown in Figure 15 on the left side of the black dotted line while the monitoring period 
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is displayed on the right side. The continuous black line represents the historical data 

while the blue line describes the prediction of the model, based on the historical data. 

The continuous red line represents new data from the monitoring period. A forest 

disturbance was detected on the 120th day of 2010 (i.e. the 30th of April) highlighted by 

the vertical red dotted line. 

 

Figure 15. An example of pixel analysis from 2000 to 2015, where the black continuous line 

represents the historical data, the red continuous line represents the new data and the blue 

continuous line represents the prediction of the model. The vertical black dotted line represents the 

start of the monitoring period and the red dotted line represents the time of detection (2010) 

In contrast with the above-presented break detection, Figure 16. Pixel analysis – The 

blue points indicates that there is no break detected and Figure 17 displays a case in 

which no break was detected, as the prediction of the model is approximately coinciding 

with the new data from the monitoring period.  

 

Figure 16. Pixel analysis – The blue points indicates that there is no break detected. The images 

represent the NDVI products from USGS database (the history period is considered from 2000 to 

2005 and the monitoring period from 2005 to 2015) 
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Figure 17. An example of pixel analysis from 2000 to 2015 (no break detected), where the black 

continuous line represents the historical data, the red continuous line represents the new data, the 

blue continuous line represents the prediction of the model. The vertical black dotted line 

represents the start of the monitoring period. In this case, the new data (red line) almost coincides 

with the predicted data (blue line) 

 

4.2  RQ2. Spatio-temporal distribution of clear-cut deforestation 

between 2005 and 2015 

4.2.1  Temporal distribution 

In order to compare the total surface of deforested areas and determine the general trend 

throughout the monitoring period, three different data sets have been used: Romanian 

Court of Audit dataset, loss of forested areas provided by GFW and the BFAST results. 

The three distinct data sets have different measure units. Therefore, the data has been 

converted into hectares in all three cases. 

It is important to mention that the data from the National Institute of Statistics which 

include both clear-cut and selective deforestation were provided only in cubic meters. 

Therefore, the conversion was possible by using the information provided by the 

Romanian Court of Audit which states that the mean volume of wood on one hectare is 

218 m3 (Curtea de Conturi, 2014). It is stated that generally, the ratio between the 

coniferous and deciduous trees within a forest in Romania is of 35 and 65, respectively. 

In Covasna, the ratio of tree species composition is similar to the previously mentioned 

ratio (i.e. entire country). Therefore, the mean volume of wood on one hectare (i.e. 218 

m3) was used for this study. The conversion from cubic meters to hectares is presented 

in Table 1 below, the general trend of deforestation being illustrated in Figure 18. 
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Table 1. The conversion from cubic meters of declared deforestation per year for Covasna County 

to hectares from 2005 to 2014 (National Institute of Statistics, 2016b)  

Year 
Year 

2005 

Year 

2006 

Year 

2007 

Year 

2008 

Year 

2009 

Year 

2010 

Year 

2011 

Year 

2012 

Year 

2013 

Year 

2014 
Total 

Covasna 

x103 m3 
545.5 462.8 485.4 443.6 495.7 511.6 545.3 576.4 626.2 632.9 4692.5 

Hectares 2502 2122 2226 2034 2273 2346 2501 2644 2872 2903 21525 

 

 

Figure 18. Chart representing the total amount of deforestation (hectares per year) from the 2005-

2014 time period, declared by the Court of Audit. The lowest amount of deforestation was declared 

in 2008, while the highest amount was declared in 2014 

Concerning the GFW data, knowing that one pixel measures 0.09 ha, the information 

has been transformed from pixels to hectares as shown in the following table (Table 2). 

Table 2. The conversion from number of pixels (i.e. one pixel measures 0.09 ha) per year (GFW) to 

hectares from the 2005-2014 time period 

Year 
Year 

2005 

Year 

2006 

Year 

2007 

Year 

2008 

Year 

2009 

Year 

2010 

Year 

2011 

Year 

2012 

Year 

2013 

Year 

2014 
Total 

Number 

of pixels 
5754 5063 3693 5830 3511 3478 5435 5582 4496 5081 47923 

Hectares 517.9 455.7 332.4 524.7 316.0 313.0 489.2 502.4 404.6 457.3 4313.1 

 

Similarly, the temporal distribution of the clear-cut deforestation resulted from BFAST 

algorithm is presented in Table 3, below. 
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Table 3. The conversion from number of pixels per year (BFAST results) to hectares from the 2005-

2015 time period 

Year 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 Total 

Number 

of pixels 
3103 3356 5249 4069 3361 2874 2782 1776 5183 793 262 32808 

Hectares 279 302 472 366 302 259 250 160 466 71 24 2953 

The highest amount of clear-cut deforestation is recorded in 2007 and 2013.  

4.2.2 Spatial distribution 

Romania's territory is divided in Counties, and the Counties in Territorial 

Administrative Units (TAUs). Covasna County has 43 TAU's, information about the 

spatial distribution of deforested areas from 12 of the most relevant TAUs being 

presented in Table 4, the rest of the territory (31 TAUs) summing a number of 5794 

pixels (i.e. 521.5 hectares). The map which indicates the clear-cut deforestation detected 

in Covasna County can be consulted in Appendix C. 

Table 4. The conversion from number of pixels representing deforested areas to hectares for the 

most affected TAUs in Covasna County from BFAST results. The highest amount of deforestation 

is situated in Zagon, Covasna and Ghelinţa TAUs 
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Figure 19 highlights the 3 most affected TAUs in Covasna County: Ghelinţa, Covasna 

(the TAU has the same naming as the County) and Zagon (Figure 20). 

 

Figure 19. Chart indicating the most affected TAUs from Covasna County by clear-cut 

deforestation (hectares per TAUs). In red are highlighted the highest amounts of clear-cut 

deforestation (Ghelinţa, Covasna and Zagon) 
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Figure 20. Clear-cut deforestation (BFAST results) in Ghelința (blue), Covasna (yellow) and Zagon 

(red) TAUs, which are the three most affected TAUs in Covasna County. The basemap is a Landsat 

8  image from 7 June 2015 

4.3  RQ3. Difference between the detected clear-cut deforestation and 

the official deforestation rate 

4.3.1  Comparison between results 

As described in Figure 21, a comparison between the Court of Audit, GFW and BFAST 

sets of values has been conducted. This comparison helps to a better understanding of 

the ratio between the present study results regarding clear-cut deforestation and the total 

deforestation amount (i.e. clear-cut and selective deforestation), as declared by the 

Court of Audit. From this comparison, it results that the clear-cut deforestation 

represents approximately 15% of the total deforestation (i.e. clear-cut and selective 

deforestation) (Court of Audit) for almost all years of the monitoring period. 
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Figure 21. Chart representing the total amount of deforestation (blue - Court of Audit) and clear-

cut deforestation (red - GFW and yellow - BFAST)  

4.3.2  Clear-cut deforestation rate 

The yearly clear-cut deforestation rates were determined based on the results in Table 3, 

for each year of the monitoring period. The rates are presented in Table 5. These results 

indicate that clear-cut deforestation has decreased from 2007 onwards, but for year 

2013.  

Table 5. Clear-cut deforestation rate (The rates indicate that clear-cut deforestation has decreased 

from 2007 to 2015) 

Year 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 Total 

Hectares 279 302 472 366 302 259 250 160 466 71 24 2953 

Rate 0.16 0.17 0.27 0.21 0.17 0.15 0.14 0.09 0.27 0.04 0.01 1.71 

4.4 Accuracy assessment 

As introduced in the methodology, in order to validate the resulted data, two sets of 

random pixels have been selected from the deforested, respectively forested areas. Thus, 

a buffer was created in order to select the second set of random points. An example of 

the previously described procedure is illustrated in the following figure. 
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Figure 22. An example of buffer created to select random points from the forested area in order to 

check the accuracy (forest cover – green squares, detected deforestation – green squares with dots, 

1 pixel buffer – blue square and excluded buffer – red square) 

Figure 22 describes the status of each visually interpreted pixel. Accordingly, the 

correctly detected pixels from the randomly selected deforested area were considered as 

agree change, while the incorrectly detected pixels were considered commission errors. 

Regarding the second set of points, the correctly determined pixels were declared as 

agree no change, while the rest were considered omission errors. The spatial position of 

the random points is presented in Figure 23, below. 
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Figure 23. Random pixels (i.e. 200) selected to determine the accuracy (agree change – green 

triangle, commission – red triangle, agree no change – green circle and omission – red circle). The 

basemap is a Landsat 8 image from 1 January 2016 

Based on the previously described validation results, an error matrix has been 

determined in order to check the overall accuracy. The overall accuracy concerning the 

two land cover classes (i.e. deforested and forested areas) resulted in a value of 84%, 

which concludes on the adequacy of the algorithm for the present study. The results of 

the visual interpretation and consequently the error matrix are shown in Table 6. 

Table 6. Error matrix used to check the overall accuracy (actual and predicted classes). The overall 

accuracy resulted in a value of 84% 
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  Deforested Forested Total 

Deforested 87 13 100 

Forested 19 81 100 

Total 106 94 
100  

100 
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5. Discussion 

5.1 Detecting clear-cut deforestation with BFAST 

As presented in the Literature Review chapter, the BFAST algorithm was successfully 

used in various locations with different types of forest. 

In their studies, Schultz et al., 2015, DeVries et al., (2015), Hamunyela et al., 2016 and 

Decuyper et al., 2015 used the BFAST algorithm on wet evergreen natural forest 

(Vietnam), moist broadleaf evergreen forest (Kafa Biosphere Reserve, Ethiopia), on 

evergreen tropical forest (Ariquemes, Rondonia State, Brazil), and tropical forests in 

Madre de Dios (Peru) and Para (Brazil), respectively. In contrast, Watts and Laffan, 

2014 and Tsutsumida et al., 2013, used the algorithm on a semi-arid area in Queensland 

(Australia) and an urban area in Ulaanbaatar (Mongolia). Lambert et al., 2013 used the 

algorithm in Massif Central Mountains (France) on coniferous forest and Hutchinson et 

al., 2015 uses the algorithm to detect disturbance created by fire on grassland in Fort 

Riley (Kansas, United States of America). In relation to the previously mentioned 

studies, the results on the temperate forest (which is composed mostly on deciduous and 

coniferous) of the present study indicate that the algorithm is flexible and adaptable. 

The adaptability of the algorithm to different types of land use is highlighted by its 

successful results from the coniferous forest in France to the semi-arid area in Australia 

and urban area in Mongolia. 

Applying the BFAST algorithm to detect clear-cut deforestation is not as data-driven as 

the authors imply it is, since multiple settings have to be thought beforehand and they 

differ from area to area. Decisions have to be made regarding the history period, the 

regression function to fit the stable observations, and a threshold has to be determined to 

define change as clear-cut deforestation.  

In this respect, a longer historical data interval will fit better the stable history period, 

which will finally lead to better accuracy. If there is apriori knowledge that a 

deforestation event followed by a regrowth period occurred in the history period, which 

is supposed to represent observations of stable forest, then the history period has to be 

changed accordingly either manually or by using the ROC approach when applying 

BFAST. The present study highlighted that lower NDVI/NDMI magnitude thresholds 

will led to an enhancement in the commission error while higher threshold values will 

result in enhanced omission error. Moreover, calibrating the threshold on visually 

interpreted reference data, has implications in the repeatability this study or for 

reproducing this method in other similar study areas. Therefore, instead of using Google 

Earth images for the visual interpretation process, it is recommended that field data be 

collected. 

Considering that Covasna is covered by both coniferous and deciduous forest, the 

present method could be successfully extrapolated to country level. 

Regarding the comparison between BFAST results and the forest loss provided by 

GFW, there are a few differences, of which the use of Landsat 5 imagery in the GFW 

data, which could improve the results (i.e. Landsat 5 satellite has the same temporal 

resolution as Landsat 7 and 8, but different crossing time over a specific area). It is 

important to mention that both BFAST results and forest loss provided by GFW do not 

include any forest degradation, as stated in section 2.3.5 Global Forest Watch. 
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5.2 Clear-cut deforestation in Covasna County, Romania 

As highlighted in the Results chapter, clear-cut deforestation is a present-day issue in 

Covasna County. However, the decrease detected from 2008 (Table 5) onwards could 

be due to the law no. 46 art.51, which was adopted on the 19th of March 2008 and states 

as the private owners of the forest are responsible for the security of their property 

regarding illegal logging, destruction, degradation and grazing (Law 46/2008). 

Since a national forest inventory in Romania occurs only every five years, verifying the 

legitimacy of the deforestation could be difficult considering the large time span. Using 

the tool introduced in the present study, which detects clear-cut deforestation in near 

real-time and can produce one-year temporal resolution clear-cut deforestation maps, 

could be useful in order to verify the legitimacy of deforestation regarding clear-cut 

logging. 

5.3 Month discussion 

An interesting correlation might exist between cloud cover and the months when clear-

cut deforestation has been detected. As highlighted in Figure 25, the cloud cover 

percentage suddenly decreases in April, due to the beginning of the warm season. 

Consequently, even if clear-cut deforestation would occur in one of the cold season 

months, it will not be observed from the satellite images until April, due to cloud 

covering. The peak in Figure 24, along with April cloud cover values (Figure 25), show 

that these two sets of values might be interconnected. Likewise, the low cloud cover 

values in November, which follow the rainy season (September-October), are also 

connected to the high values of monthly clear-cut deforestation. In contrast, months 

with high cloud cover values are associated with low detected clear-cut deforestation 

values. Therefore, the detected monthly clear-cut deforestation rate appears to be 

influenced by the cloud cover percentage of each month. This impedes the determining 

of the temporal accuracy. Also, when working with time series, it is important that 

relevant images be as frequent as possible, as stated in section 3.3.1 BFAST Monitor. 

This is the reason why all images, indifferent of their cloud cover percentage, were used 

in this study.   

 

Figure 24. Chart representing the total clear-cut deforestation (all years from the monitoring 

period) per month, the highest values of monthly clear-cut deforestation being detected in April and 

December 
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Figure 25. Chart representing the mean of cloud cover per month. All the images from the 

monitoring period and the Fmask products were used to determine the percent of cloud cover. As 

the chart highlights, late winter and beginning of the spring are the cloudiest period during a year  

5.4 Accuracy comparison 

The overall accuracy determined by the present study has a value of 84%, which is a 

rather satisfying result, considering the total surface of the AOI and the type of forest. 

This result shows that the BFAST algorithm is suitable in order to detect clear-cut 

deforestation in Romania (i.e. both coniferous and deciduous forest in a temperate 

climate). In order to confirm this result, below are presented a few examples of similar 

accuracies that have been obtained in other studies (Table 7). 

Table 7. Accuracy comparison of BFAST algorithm between different scientific studies (the table 

indicates the author, the forest type, the location and the overall accuracy of each study) 

Author Forest type Location Accuracy 

Schultz et al., 2015 Tropical 

Brazil 79.4% 

Ethiopia 60.5% 

Vietnam 82.2% 

Dutrieux et al., 2015 Tropical dry Bolivia 87% 

Lambert et al., 2015 Coniferous France 82% 

Reiche et al., 2015a Evergreen Fiji 87.4% 

Decuyper et al., 2015 Tropical Peru and Brazil 85% 
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5.5 Risk 

According to the illegally harvested wood risk map of Romania (WWF, 2016), Covasna 

is not in the top of the illegal deforestation high-risk category, recording a percentage of 

42%. It is important to emphasize that Figure 26 and the values from Table 8 do not 

indicate illegally deforested areas, but areas that are predisposed to this vulnerability. 

The data regarding the risk of illegally harvested wood was acquired from World Wide 

Fund for Nature (WWF) organization. The map was created based on multiple 

indicators (e.g. the volume of illegal logging in relation to the regular harvesting 

volume, the surface of the unsupervised forested area and the number of penalties 

reported to the administrative area). This map was created to increase the security in the 

vulnerable areas. 

 

Figure 26. Map representing the illegal deforestation risk areas. The green line represents the 

illegal deforestation risk areas, the black line represents the counties, the red areas represent the 

deforestation (BFAST results) and the blue line indicates the boundaries of Covasna County 

(WWF, 2016) 

Table 8. The areas with the highest illegal deforestation risk rate in Romania (WWF, 2016) 

 
County Risk area red code 

Risk area yellow 

code 
Total risk area 

1 Dâmbovița 72% 12% 84% 

2 Argeș 67% 4% 71% 

3 Bacău 53% 4% 58% 

4 Olt 55% 0% 55% 

5 Mehedinți 54% 0% 54% 

6 Covasna 28% 14% 42% 

7 Iași 33% 9% 42% 

8 Alba 15% 27% 42% 

9 Maramureș 36% 2% 38% 

10 Buzău 35% 3%  38%  
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5.6 Recommendations for future research 

A possible improvement for future research could be to differentiate between coniferous 

(i.e. evergreen with limited seasonality) and deciduous (i.e. with seasonality) forest, and 

to apply the algorithm on each forest type. Furthermore, as mentioned earlier in section 

5.1. Detecting clear-cut deforestation with BFAST, it is expected that more satellite 

images will be available for further studies, which means that the history period would 

include more data and therefore it will be more stable. Consequently, this would 

conduct to better and more accurate results. 

The commission error could be reduced if the detected isolated pixels are statistically 

checked for significance through random sampling and visual assessment. 
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6. Conclusions  
 

Deforestation is still an ongoing process in which temperate forest is concerned, this 

issue being noticeable in Covasna County, Romania. The results of this study show a 

decrease in forest area of about 1.71% from 2005 to present. Considering the purpose of 

the study, the type of forest and the scale of AOI, the algorithm can be successfully used 

to detect clear-cut deforestation.  

Choosing a magnitude threshold range could be problematic as a higher value would 

conduct to commission error while a lower value would result in omission error. The 

threshold used in the present study led to an overall accuracy of 84% regarding the 

chosen index (NDMI).  

From the comparison between total deforestation amount declared by the Court of Audit 

with the clear-cut deforestation determined in the present study, results that the clear-cut 

deforestation represents approximately 15% of the total deforestation, which includes 

both clear-cut and selective deforestation (Court of Audit) for almost all years of the 

monitoring period.  

Contrary to the official deforestation rate, that mainly shows an increase of the 

deforestation rate for the last 10 years, the results of this study present a decrease in 

clear-cut deforestation between 2005 and 2015. 
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Appendix A: Used software 
The forest mask, the pre-processing of the Landsat data, the BFAST analysis and the 

random sampling were performed in R environment (Version 0.99.879, RStudio Inc., 

Boston, United States). Visual interpretation was conducted using Google Earth Pro 

(Version 7.1.2.2041, Google Inc., California, United States), the maps were produced 

with Esri ArcMap (Version 10.1, Build 3035, Environmental Systems Research 

Institute, Inc., California, United States) and the graphs, tables and the writing process 

have been done using Microsoft Office Professional Plus (Version 14.0.6112.5000, 

Microsoft Corporation, Washington, United States). 
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Appendix B: Threshold selection 
This table indicates how the decision regarding the NDMI threshold has been made. It 

shows only a part of the complete NDMI table. This table is sorted by magnitude. The 

columns of the table represent as follows: the number of each of the randomly selected 

points, the year when the break was detected, the magnitude and the decision (True or 

False) based on Google Earth visual interpretation. First, every random point was 

checked with Google Earth images, and a value (True or False) was assigned to each 

random point as follows: if clear-cut deforestation occurred the T value was assigned 

and if other type of change was detected, the point was assigned the F value. Then, 

every two points were grouped depending on their values (i.e. if both points were True, 

the resulting value was True; if both points were False, the resulting value was False; if 

one point was True and the other was False, the resulting value was True/False). The 

next group was made in the same way, with the mention that if a True/False was 

grouped with a T value, then the resulting value was True and if a True/False value was 

grouped with an F value, then the resulting value was False. After this step was done, a 

threshold was defined based on the interval (i.e. -942.388 -844.096) where the True and 

False values did not lead to a straightforward decision. Considering that a threshold 

value was needed, an integer value was selected from the interval (i.e. -850). The values 

which were smaller than -850 were considered clear-cut deforestation. The threshold for 

NDVI was determined in the same way (i.e. -350).  
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No. of pixels Year Magnitude

13 2008.222 -1050.246 T

78 2005.858 -1045.105 T

41 2010.589 -1027.969 T

73 2007.304 -1019.301 T

35 2010.808 -1015.632 T

3 2010.326 -1009.370 T

7 2010.677 -1009.037 F

76 2007.041 -1004.815 F

29 2011.247 -985.867 T

5 2007.260 -981.954 F

97 2008.222 -972.216 F

94 2008.441 -969.676 F

44 2008.529 -962.110 T

55 2005.858 -945.267 T

22 2007.567 -943.598 F

62 2007.304 -942.528 T

70 2010.808 -942.388 F

51 2007.304 -930.438 F
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Appendix C:          

              
Map of clear-cut deforestation (BFAST final results) in Covasna County, Romania. 

The blue line represents the Covasna County boundaries, the green area indicates 

the forest cover in 2005 from the GFW database and the red areas represent the 

clear-cut deforestation 
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