
MasterThesis in Geographical Information Science nr 58 

Julia Hjalmarsson 

 
 
 
 
 
 
 
 

2016 
Department of  
Physical Geography and Ecosystem Science 
Centre for Geographical Information Systems 
Lund University 
Sölvegatan 12 
S-223 62 Lund
Sweden
 

A Weighty Issue: Estimation of Fire 
Size with Geographically Weighted 
Logistic Regression 



Hjalmarsson, J., Lehsten, V., Lindström, J. (2016). A Weighty Issue: Estimation of Fire Size 
with Geographically Weighted Logistic Regression 
Master degree thesis, 30 credits in Master in Geographical Information Science 
Department of Physical Geography and Ecosystem Science, Lund University 
 
  

ii 
 



 
 
 
 
 

A Weighty Issue: Estimation of Fire Size with 
Geographically Weighted Logistic Regression 

 
 
 
 
 
 
 

________________________________________ 
 

Julia Hjalmarsson 
Master Thesis, 30 credits, in Geographical Information 

Science 
 
 

Veiko Lehsten 
Lund University 

 
Johan Lindström 
Lund University 

iii 
 



  

iv 
 



Julia Hjalmarsson 
 

A Weighty Issue: Estimation of Fire Size with Geographically 
Weighted Logistic Regression 

 
Size estimations of fires that occurred centuries ago have been the subject of study for 
many decades. More accurate spatial fire histories from tree rings were possible by 
either drawing the sample location on detailed topographic maps or using GPS 
receivers. A popular method of delineating fire sizes is to draw an outline around the 
fire-scarred samples considering topographic and landscape features. This is a rather 
subjective method that cannot be replicated. Other more replicable methods have also 
been suggested to estimate fire size among them methods that use buffers (kernel 
ranges), grids, or Thiessen polygons. However, even those have a subjective component. 
 
Geographically weighted logistic regression (GWLR), not previously used to estimate fire 
sizes, seemed promising since the method allows for the changing relationships between 
different topographic, landscape, or socioeconomic features to be considered in the analysis. 
Logistic regression is done with binomial data: fire/no fire. Geographically weighted 
regression (GWR) is a relatively new and more objective method that considers the geography 
of the data. Instead of using one regression coefficient over a whole study area, several 
regression coefficients are calculated for the different sample locations which might help 
explain the relationships better. 
 
The GWLR analyses consistently found only one variable that explained fire location. This 
variable changed between the different analyses. The corrected Akaike Information Criterion 
(AICc) increased in every GWLR analysis when adding more variables (a lower AICc value 
means a higher quality model) while the R2 value increased (more variables explain more of 
the variance). The optimal output of such analyses would be that the R2 value increases and 
the AICc decreases which would mean that the added variables help explain more of the 
variance AND that the model has higher quality. 
 
A probability analysis of whether close trees burn at the same time shows that trees closer to 
each other have a higher probability of burning compared to trees that are further apart. This 
is especially true between the years 1400 - 1700 (before human influences on the landscape). 
Between 1700 and 2000, this clear pattern partially vanished. 
 
While GWR could be considered the most objective method of fire-size estimations (of the 
ones studied), it could not be used to estimate fire sizes. Fire size and location seems to 
depend more on the distance from fire-scarred trees than on different landscape features. 
Different methods of estimating fire sizes are more reliable before humans have added to the 
natural fire regimes. After human influence, the uncertainty of the fire sizes increases between 
the different methods of calculating fires sizes (up to 46% in this study). 
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Uppskattning av Brandstorlek med Geografiskt Viktad Logistik 
Regression 

 
Destruktiva skogsbränder är vanliga idag och genererar nyheter varje år. Förr i tiden 
var skogsbränder dock ett viktigt ursprung till förnyelse i många ekosystem. Många 
arter är anpassade och beroende av skogsbränder. Uppskattningen av 
skogsbrandstorleken är viktig för att återinsätta bränder i skogen med en naturlig 
rotation. 
 
Storleksuppskattning av dåtida skogsbränder har undersökts i många årtionden. Mer exakta 
rumsliga brandhistorier från trädringar var möjligt genom att rita den geografiska platsen av 
alla prover på detaljerade topografiska kartor eller genom att använda GPS mottagare. En 
populär metod för att avgränsa brandstorlekar är att rita en kontur runt brandärrade prover 
genom att avväga topografiska och landskapselement. Detta är en ganska subjektiv metod 
som inte kan replikeras. Andra, mer reproducerbara, metoder har också föreslagits för att 
uppskatta brandstorlek bland annat metoder som använder buffer, rutnät eller Thiessen 
polygoner. Även de metoderna har dock en subjektiv komponent. 
 
Geografiskt Viktad Logistik Regression har inte tidigare använts för att uppskatta 
brandstorlekar. Metoden verkade lovande eftersom den tillåter förändrade relationer mellan 
olika topografiska, landskaps-, och socioekonomiska element som ska betraktas i analysen. 
Logistik regression görs med binomiala data: brand/icke brand. Geografiskt Viktad 
Regression är en relativ ny och mer objektiv metod som avväger geografin i data. Istället för 
att använda en regressionskoefficient över hela studieområdet beräknas flera 
regressionskoefficienter för de olika provplatserna. Detta kan hjälpa förklara relationer bättre. 
 
Olika metoder för att uppskatta brandstorlekar är mer tillförlitliga innan människor påverkade 
den naturliga brandrotationen. Efter den mänskliga påverkan har oöverensstämmelse mellan 
olika metoder som uppskattar brandstorleken ökat (med upp till 46 % i denna studie). 
Dessutom har det visats att även om Geografiskt Viktad Regression kan anses vara den mest 
objektiva metoden för att uppskatta brandstorlekar (bland dem som använts i avhandlingen) 
kan det faktiskt inte användas för att uppskatta brandstorlekar. Brandstorlek verkar bero mer 
på avstånd mellan brandärrade träd än på olika landskapselement. 
 
Nyckelord: naturgeografi och ekosystemanalys, GIS, geografiskt viktade logistik regression, 
uppskattning av brandstorlek 
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1 Introduction 
Forest or wildland fire is often seen as destructive by the general public, which is certainly 

true in many countries such as some in southern Europe or in parts of the western United 

States. However, based on reconstructions of fire from tree rings and charcoal, we know that 

fire has been an integral part in, for example, forested landscapes and that some species 

depend on fire for their survival. 

Reconstructing historical fires from tree rings is a method that has been used for many 

decades. These reconstructions can be very accurate in time as fire scars can be dated to their 

exact calendar year. When recording the geographic location of the samples, one would then 

have an exact temporal and spatial reconstruction of fire. However, until the late 20th century, 

spatial reconstructions were very rare. Instead, to delineate between larger and smaller fires, a 

larger or smaller number of fire scars were considered (Swetnam and Baisan 1996) or several 

watersheds were studied (Heyerdahl 1997). These methods lacked, of course, accuracy on 

smaller ecological scales as the spatial properties of fires were neglected. 

As one of the first ecologists to do work on this problem, Per Linder (Linder 1988) 

reconstructed a spatial fire history of Jämtgaveln Nature Reserve (Figure 2.1). Because this 

report was published in Swedish, it did not generate as much attention as the later work of 

Niklasson and Granström (2000). In their often cited work, Niklasson and Granström (2000) 

reconstructed fires spatially over an area of about 19 x 32 km. 

To delineate fires, Niklasson and Granström (2000, pg. 1489) drew outlines of the fire extent 

by relying on their expert knowledge and several rules/assumptions, e.g. “[f]or fires dated at 

only one point and not at the surrounding points, the border was drawn at half the distance to 

the nearest non-recording point in all directions, but never farther than 1 km from the fire-

recording point.” This next quote from their paper (pg. 1489) shows the subjectivity in their 

method, which could, therefore, not be reproduced accurately: “If a probable fuel break 

(peatland, lake, or watercourse) occurred …” (emphasis added). Mires can burn and rivers can 

be jumped in certain (very dry) years and knowing what happened in which year is 

impossible. 

Storaunet et al. (2013) have tried to use a method that is more objective. Using a geographic 

information system (GIS), they estimated fire size and severity by using a kernel range 

application (i.e. buffers) for both trees that did not have a fire scar as non-burners and trees 

that had a fire scar in a particular year. Although this study is more objective, even here fire 

size is estimated by subjectively choosing a buffer size. 

Another study, Hjalmarsson et al. (2015) used a grid over the study area to estimate fire size. 

They used a 10- and 25-hectare grid, and every cell that had a fire-scarred tree in it was 

recorded as having burned. Only cells that had a sample in them were included in the 

calculations for each fire year. Therefore, if 7 of 10 cells had a fire-scarred tree, Hjalmarsson 

et al. (2015) assumed that 70% of the study area had burned. 
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The fire extent in such spatial reconstructions is, therefore, often analyzed by drawing an 

outline around all samples that indicated a fire occurred during a certain year (Niklasson and 

Granström 2000), selecting a buffer distance and overlaying all buffered samples with and 

without fire indications (Storaunet et al. 2013), or using a grid Hjalmarsson et al. (2015).  

These methods give an indication of the size of a fire in the study area. They are, however, 

influenced by subjectively choosing a distance (for the outline, buffer, and grid) in which to 

include areas as burned or unburned, and they also do not allow for the assessment of the 

accuracy of the burned area. 

In different analyses, geographically weighted regression (Fotheringham et al. 2002) has been 

used to delineate areas derived from point data based on varied sorts of phenomena and their 

attributes. Those phenomena have included housing prices in London, using additional 

information such as on, for example, apartment age or apartments having a garage or balcony 

(Fotheringham et al. 2002). Another study used graffiti occurrences in San Francisco as 

related to population age and other variables (Megler et al. 2014). Fire danger and fire risk in 

fire prone countries like Spain (Martínez-Fernández et al. 2011; Martínez-Fernández et al. 

2013; Rodrigues et al. 2014) have also been studied using geographically weighted regression 

(GWR), where researchers tried to explain recent fire events based on topography, land cover, 

climate, or human activity among other explanatory variables (Koutsias et al. 2010; Oliveira 

et al. 2014). 

1.1 Research Objectives and Questions  

We reconstruct historical fire sizes in the Jämtgaveln Nature Reserve based on GWR and 

compare the results to other methods of estimating fire size. In addition, we analyze 

environmental factors with GWR to assess whether these could help predict fire locations. 

We, therefore, try to answer the following questions: 

1. Are there variables that help predict fire location (e.g. elevation, land cover, soil type, 

soil depth, and distance to early dairy farms)? 

2. Can fire size be estimated with a more objective approach (as opposed to, e.g., the 

rather subjective method of drawing a polygon around the fire-scarred samples)? 
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2 Background 

2.1 Dendrochronological Background Study 

The basis for our study is a dendrochronological fire history in Jämtgaveln Nature Reserve in 

Västernorrland, Sweden (Figure 2.1, Hjalmarsson et al. 2015). The samples (e.g. Figure 2.2) 

were from 1986 (Linder 1988) and from 2009/2010 (Hjalmarsson et al. 2015). Linder (1988) 

did not have a GPS receiver or a GIS available and the location of his samples were placed on 

a map by hand. This map was scanned and georeferenced to a GIS map in ArcGIS. For this 

data, we estimate the accuracy to approximately 25m. Sometimes, several samples were 

located on the map with a single dot. For later analyses, the location of the samples could not 

be on the exact same spot. So, each sample that overlapped spatially with another sample was 

moved by a few meters. The samples from 2009/10 were recoded with a GPS receiver. 

 

Figure 2.1: Study area’s location in Sweden (A) and in the state of Västernorrland (B). C shows Jämtgaveln Nature Reserve 

(outlined in green), the study area (black line), and the location of all samples (purple dots). 



4 

 

 

Figure 2.2: Pictures of a stump that was samples in 2009. (A) shows the size of the stump (selective cutting was done during 

winter and, therefore, stumps are often rather high) and (B) shows 4-5 fire scars on that particular stump. 

 

 

 

 

 

Because Linder (1988) did not use formal 

dendrochronological methods and that might have 

introduced some dating mistakes, most of his samples 

from 1986 were dated again with formal 

dendrochronological methods. The samples from 

2009/10 and their fire scars were dated to the year 

with the appropriate dendrochronological methods. 

We dated 278 cross-sections (e.g. Figure 2.3) that 

had, altogether, 673 fire scars. The earliest fire scar 

was in 1311 and the oldest ring was recorded in 1274. 

In 1405, the chronology had 10 samples. 

(A) (B) 

Figure 2.3: The cross-section of a sample taken just outside of the 

Jämtgaveln Nature Reserve in 2010 (Orelund 2015) with nine fire 

scars in approximately 450 years. 
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2.2 Method Comparison 

In this study, several methods will be compared, i.e. Thiessen polygons, a grid analysis 

(Hjalmarsson et al. 2015), the drawing-outline method (Niklasson and Granström 2000), and 

geographically weighted logistic regression. 

2.2.1 Thiessen Polygons 

Thiessen polygons (a.k.a. Voronoi polygons) delineate areas of influence around the sample 

points so that each polygon only has one sample point in it. Every location within such a 

Thiessen polygon is closer to the point that it belongs to than to any other surrounding point. 

2.2.2 Grid 

Hjalmarsson et al. (2015) reconstructed a spatial fire history where the fire sizes are based on 

a grid that was overlaid on the study area. If a fire scar was located within a grid cell, that area 

that the grid cell covered was recorded as having experienced a fire that year. The area that 

had burned according to this method was summed and the percentage to the whole area with 

all samples that year calculated. Therefore, a percentage of the study area burned could be 

estimated. 

2.2.3 Drawing 

Niklasson and Granström (2000, pg. 1489) tried to be as objective as possible by following 

certain rules when they delineated fires, e.g. following “a probable fuel break (peatland, lake, 

or watercourse)”. The decision on what is a fuel break is rather subjective, as in relatively dry 

years peatland can also burn or in larger, intense fires watercourses could be jumped. 

2.2.4 Geographically Weighted Logistic Regression 

According to my literature research, applications of GWR to estimate fire size have not been 

published, yet. However, GWR have been used widely in other areas and have been explained 

in detail elsewhere (e.g. Charlton and Fotheringham 2009; Páez and Wheeler 2009). Logistic 

GWR has not been used to the same extent (but see, e.g., Atkinson et al. 2003; Wu and Zhang 

2013; Zhang et al. 2014). Wu and Zhang (2013) have a good method description of logistic 

GWR (pg. 56-57). 

Geographically weighted regression and its logistic counterpart, geographically weighted 

logistic regression, will be discussed in more detail in the next section. 

2.3 Geographically Weighted Regression 

2.3.1 Why local spatial regression? 

Study areas like Spain or Southern Europe are far from homogeneous in topography, climate, 

land use/cover, population density or other phenomena (Koutsias et al. 2010). Yet, researchers 

apply global regression models to analyze larger study areas to explain occurrences of certain 

phenomena, e.g. Fernandes et al. (2014) who studied fuel and fire dynamics in the public 

forests of Portugal. Global regression models assume spatial stationarity in the relationship 

between dependent and independent variables, which is unreasonable in most ecological 

contexts, as nature is very heterogeneous. A concrete example of such spatial non-stationarity 

comes from modelling housing prices in London. In one part of the town, garages are valued 

very highly, whereas in other parts of the town, garages do not increase property value 
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(Fotheringham et al. 2002). Therefore, a global correlation value might expresses no or a low 

relationship between the two, even though in some locations there is a clear relationship. A 

more ecological example could be that the effect of temperature on species richness might 

change depending on precipitation (Jetz et al. 2005). GWR seems to be one solution to 

approaching these issues (Foody 2004). 

Spatial autocorrelation between spatially dependent observations (two observations might 

have similar values because they are located closely to each other, e.g. elevation) violates 

classical statistical tests that are used in global statistical methods, as these assume 

independence between observations (Dale and Fortin 2002). GWR seems to be a possible 

solution here as well, because studies that compared GWR to global methods (i.e. ordinary 

least squares [OLS]) found a reduction in spatial autocorrelation in the residuals from those 

produced by the global methods as compared to the local GWR method (e.g. Zhang et al. 

2005; Koutsias et al. 2010; Oliveira et al. 2014). 

2.3.2 OLS vs. GWR 

OLS (Ordinary Least Squares), a global linear regression model, is used to globally estimate 

which and to what extent independent variables influence the dependent variable (Table 2.1). 

The main goal is to find a set of variables that best describes the response to another variable, 

then predicts the response with the same variables in a similar population. Statistically, the 

goal is to minimize the difference between the predicted and the observed response. 

GWR (Geographically Weighted Regression), using local linear regression models, is used to 

estimate how independent variables influence the response variable locally, which means that 

not one set of linear regression equations approximates the response, but rather, several 

locally applied regression models help estimate the response (locally). Statistically, the goal is 

also to minimize the difference between the predicted and observed response at each data 

point, and, thereby, to predict the relationship between variables. General inferences, 

however, from the study area to other study areas are difficult, because of this varying 

relationship with which hypothesis testing becomes impossible (Jetz et al. 2005). 

Table 2.1: Main differences between OLS and GWR from an ESRI webinar on Regression Analysis (ESRI 2016). 

OLS GWR 

Global regression model Local regression model 

One equation, which is calibrated using data 

from all features 

One equation for each feature, which are 

calibrated using data from nearby features 

Relationships are fixed across study area Relationships can vary across study area 

 

2.3.3 Geographically Weighted Logistic Regression 

As GWR should only be used with data that have a wide spread in their values (ESRI 2016), 

Geographically Weighted Logistic Regression (GWLR) should be used for binary data such 

as fire data (fire/no fire). As with GWR, GWLR uses also local models, i.e. logistic regression 

models that are fitted at each sample point. 

Within the geographically-weighted framework, a radius (a.k.a. bandwidth) around an 

observation is chosen and all observations within that bandwidth are then weighted. Most 
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often, the closer an observation is located to the observation in question, the more weight that 

observation is assigned. This is based on the premise that closer features are more related to 

each other than features further away from each other (Tobler 1970). 

The weighting scheme is also known as a kernel (Figure 2.4). Commonly used kernels are the 

Gaussian and bi-square kernels, as only those two can be chosen in the program GWR4. The 

results have been found to be usually less sensitive to the choice of kernel than the selection 

of an accurate bandwidth (Brunsdon 2011; Charlton 2011). 

 
Figure 2.4: The different kernel shapes as can be selected in GWmodel (R package, Gollini et al. 2015). 

The bandwidth can be fixed or adaptive. Fixed means that a certain radius, based on a 

Euclidian distance is used (e.g. 2000m). Adaptive means that a certain number of 

observations need to be included, so that the radius in meters might change based on the 

density of observations. Koutsias et al. (2010) decided in their study to work with the adaptive 

bandwidth, because it had slightly better coefficients of determination and because Cho et al. 
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(2009) found that extreme coefficients do not have as strong an influence on coefficient maps 

when using the adaptive approach. 

The optimal bandwidth can be chosen based on different methods, of which three are most 

common. The researcher could (1) predefine the bandwidth, as e.g. based on expert 

knowledge, or could (2) base the bandwidth on a minimized (corrected) Akaike Information 

Criterion (AIC or AICC) (Akaike 1973), or  could (3) base the bandwidth on a cross-

validation method. Estimating the influence of observations further away can be rather 

difficult even with extensive expert knowledge. Therefore, more statistically grounded 

methods like CV or minimizing AIC might be a better solution. 

2.3.4 PCA and GWR 

Within the GWR framework, a principal component analysis (PCA) is also possible. As with 

OLS and GWR, a geographically weighted PCA (GW PCA), as compared to a standard PCA 

(where principal components are not dependent on location), might also be a better choice 

depending on the data used, because principal components (PCs) could also vary based on the 

location of the samples (see Gollini et al. 2015 for a succinct description with examples). 

In this study, we did not run a GW PCA, but calculated the PCs from a standard PCA and 

used those in a GWR. A major problem in GWR is the multicollinearity between the 

independent variables. This multicollinearity is avoided when using principal components in 

GWR, as those PCs are, by definition, independent of each other. 

2.3.5 Advantages and Disadvantages 

GWR has been used in many projects and publications, and those in favor of using GWR have 

found significant improvements in their local model when it is compared to global models 

(like OLS). Those improvements, as compared to global models (such as OLS), include (1) no 

(or less) significant spatial autocorrelation in the residuals, which is indicated by normally 

distributed residuals, (2) the variance explained (of the dependent variable) increases, and (3) 

the size of the residuals in GWR is much less than that of the OLS residuals (Koutsias et al. 

2010). 

Atkinson et al. (2003) argued that GWR was developed for human geography uses, where 

socioeconomic variables are the basis for the statistical calculations. Such socioeconomic data 

and their relationship is likely to vary, e.g. between inner city and suburbs. Atkinson et al. 

(2003) continues that the assumption is different in physical geography, where a more 

positivistic view is taken, i.e. taking samples in one area, one should be able to infer the 

results to another area with the same characteristics because the relationship should not 

change. While the discussion about whether human and physical geography are distinctively 

different has a long history, this is not the place to engage in it. For more information on this 

topic see Goudie (1986) or Massey (1999). 

Some papers that have found improved models when using GWR over OLS, have not been 

very critical of the method, although this method has been criticized widely. While most 

consider the multicollinearity of the covariates, multicollinearity among the coefficients, 

which is not unusual even when the covariates are not collinear (Wheeler and Tiefelsdorf 
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2005; Wu and Zhang 2013), is not always considered (e.g. Rodrigues et al. [2014] for a fire-

related study). Wheeler and Tiefelsdorf (2005) criticized the use of independent variables that 

had high multicollinearity amongst each other, as this could possibly lead to a low correlation 

between the GWR coefficients, which, if undetected, could lead to misinterpretations of the 

spatial pattern. They also tested GWR for correlated coefficients that were based on 

uncorrelated independent input variables, as this is a violation of standard regression 

assumptions. As both of these multicollinearity problems are an issue in GWR, Wheeler and 

Tiefelsdorf (2005) suggest using well-established diagnostic tests, e.g. local VIF (variance 

inflation factor) maps applied to each variable, and to use caution when interpreting GWR 

results. 

Jetz et al. (2005) criticized GWR and Foody's (2004) study in a sharp reply to Foody (2004) 

in which they pointed out several limitations of GWR that need to be addressed before being 

able to use it. Firstly, GWR does not account for spatial autocorrelation in the residuals 

directly. They agree that because the models are allowed to vary locally, the spatial patterns of 

the residuals are likely to be captured; however, much of that autocorrelation seems to remain, 

which in its turn undermines the validity of the regression method. 

Even though GWR might capture all spatial patterns in the residuals (i.e. it accounts for 

nonspatiality), this method of modelling autocorrelation is “rather unparsimonious”, i.e. 

liberal, and other models, e.g. autoregressive ones, should be used (Jetz et al. 2005, pg. 97). 

Koutsias et al. (2010, pg. 234), in addressing this issue, counter these argument with the 

following: “Less structured residuals have been observed in other studies dealing with GWR, 

indicating that although the method does not directly address spatial autocorrelation issues, it 

provides a solution to the problem of spatially autocorrelated errors (Propastin and Kappas, 

2008).” 

Another limitation of GWR, according to (Jetz et al. 2005, pg. 98) is that with varying local 

parameters, “we can not make any general inferences from this analysis about how these 

variables affect [the dependent variable]” and that extrapolation to other regions is not 

possible (as only interpolations are possible in GWR). They argue that: “It is possible that the 

effects of these variables really do vary locally, […]. It seems more likely, however, that the 

relationships are in fact global, but appear to vary locally due to missing variables or 

interactions terms” (pg. 98) and that strong correlations might just point to an excessively 

flexible GWR. To Jetz et al. (2005, pg. 98) “it seems more useful to fit global parameters” to 

be able to test biological hypotheses and make predictions for other geographical areas that 

then could be tested. 

Jetz et al. (2005) also see a couple of benefits with GWR. However, this is mostly in terms of 

data exploration and in support of the global methods, e.g. using GWR to evaluate the 

changing relationship strength when the spatial resolution changes or identifying interaction 

terms or missing variables. 

Páez et al. (2011, pg. 3007), comparing different aspects of the GWR method (bandwidth 

selection, sample size, collinearity, discrimination of stationarity/non-stationarity) using 

simulation methods, agree with Jetz et al. (2005) that the “findings of [their] experiments 
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weigh against” using GWR “as a tool for making spatial inferences”. Páez et al. (2011, pg. 

3008) recommend: (1) using “judicious interpretation of the bandwidth size and/or the degree 

of spatial variability in the estimated coefficient surfaces […] to discriminate between 

spatially stationary and non-stationary processes”, (2) using larger sample sizes, because 

smaller sample sizes could result in higher spurious correlations, or proceeding “with extreme 

caution” when interpreting results, and (3) if using larger sample sizes to visualize the 

estimated coefficients and other diagnostics to better assess the model and its potential 

problems. 

Breyer (2013) summarized the problems that GWR has as being threefold: (1) Differentiating 

between non-stationary and stationary processes has not been consistently done using GWR, 

(2) multicollinearity in the calculated coefficients could result in biased interpretations, and 

(3) reliable diagnostics to identify model problems have not been identified. Roger Bivand 

(2012), who wrote a GWR script (spgwr) in R, went even so far as to call GWR “a 

notoriously unreliable technique” in a blog entry. 

Considering the limitations of GWR, as presented above, and the fact that some researchers 

suggested other methods that more reliably describe the local relationships between 

independent and dependent variables (e.g. Griffith [2008], who suggested spatial filtering 

based on its better handling of the autocorrelation in the standard errors), GWR is more 

popular than ever (Figure 2.5). Many researchers seem to agree that even if GWR has its 

flaws, it is still “a useful exploratory analytical tool that can provide information on spatial 

non-stationarity in the relations between variables (Matthews and Yang 2012). Thus, most 

researchers concur that GWR can be reliably used as an exploratory technique to understand 

how covariates affect response variable of interest differently across geographical regions 

(Ogneva-Himmelberger et al., 2009)” (Wu and Zhang 2013, 53). 

 
Figure 2.5: A Web of Science search of the term “geographically weighted regression” as it occurs in the topic (black bars) 

and title (grey bars) in the database (updated 2016-01-01). 
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2.3.6 Methodological Considerations 

2.3.6.1 Six Checks 

In a webinar from ESRI on regression analysis (ESRI 2016), the presenters talked about the 

GWR feature as it is implemented in ArcGIS 10.1. They introduced six checks when 

analyzing spatial patterns in spatial statistics, which I will base my results on: 

1. Randomly distributed model residuals (over and under predictions should be random 

with no clustering) 

2. Statistical significant coefficients (each/every explanatory variable should be 

important which is the case if coefficient is statistically significant) 

3. Defensible variable relationships (each explanatory variable should have the 

relationship we would expect) 

4. No multicollinearity (VIF needs to be less than 7.5) 

5. Normally distributed residuals (model should perform as well for high as it does for 

low values and as well in one part of the study area as it does in the other parts; verify 

that residuals are normally distributed using Jarque-Bera test which should not be 

significant) 

6. Strong adjusted R2 

2.3.6.2 Multicollinearity 

Researchers that used GWR deal differently with multicollinearity in independent variables. 

Oliveira et al. (2014) calculated the Pearson product-moment correlation and removed 

variables based on a threshold of 0.7 in the correlation coefficients. In addition, they removed 

independent variables that had a “negligible relationship” with the dependent variable 

(Oliveira et al. 2014, pg. 147). The variance inflation factor (VIF, see 2.3.6.5) for the 

independent variables had to be close to one to be included in Oliveira's et al. (2014) study. 

Zhang et al. (2014) removed multicollinearity between the covariates by running a principal 

component analysis (PCA) to get the principal components (PCs) of the data set. The PCs are 

independent from each other and do not contain any collinearity. 

Rodrigues et al. (2014) calculated the Spearman’s Rho correlation index to test for 

multicollinearity. Although they didn’t have any collinear variables in their study, they 

discarded variables that where not significant in a Student’s t-test and whose relationship was 

not consistent with the expectation as based on their (expert) experience and knowledge; just 

as was suggested by ESRI (2016). Rodrigues et al. (2014) did not take into consideration the 

problem of multiple hypothesis testing. Because in GWR, several linear regressions are run 

with (often) the same data, the significance values need to be adjusted (see section 2.3.6.3 

below). 

Sá et al. (2011) worked with VIF values, which in their study was under 1.5, indicated to them 

an absence of multicollinearity problems. They did not discard a coefficient that had a 

counter-intuitive sign in the global analysis. Instead, they saw that as an indication that the 

variable might better explain the response in a local analysis. 

Multicollinearity is judged to be a rather influential aspect when models are created and 

interpreted. Surprisingly, reading through the fire GWR literature, many researchers are vague 
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in their research papers on what the acceptable level of multicollinearity is or how variables 

are judged to be included or not. While Oliveira et al. (2014) included a value (0.7) as a 

threshold in the correlation analysis, their VIF analysis needed to have values of “close to 1”. 

Martínez-Fernández et al. (2013) and Martínez et al. (2009, pg. 1244) used a lower threshold 

(0.5) for the correlation analysis and “[o]ther common statistical tests such as the tolerance 

coefficient, the variance inflation factor (VIF) and eigen-value analysis […] to aid in variable 

selection”. No further explanations are given of the methods mentioned or values used. These 

vague descriptions do not help in reproducing the proposed methods and instead help critics 

of GWR to further criticize using this method.  

2.3.6.3 Multiple Hypothesis Testing 

Running many linear regressions with the same data could result in significant results just by 

chance as we increase the chances (likelihood) that rare event happen. This is a problem of 

multiple hypothesis testing. With multiple testing, we increase the likelihood of making a 

Type I error, i.e. falsely rejecting the null hypothesis. 

Oliveira et al. (2014), as one of the few papers to consider this method, adjusted the p-values 

according to Byrne et al. (2009) and Sá et al. (2011) so that p became 0.000080 (for one study 

area) for an α = 0.05. 

2.3.6.4 AICc vs. CV 

Akaike Information Criterion (AIC, Akaike 1974) measures the quality of a model for a data 

set relative to another statistical model of the same data set, rewarding better model fit and 

penalizing increasing model complexity. Using AIC, the researcher tries to find the model that 

approximates the data best, assuming that the model comes close to but is not the reality. 

AIC is not an absolute quality measure, i.e. a null hypothesis cannot be tested. Several AIC 

values (from the same data set) are compared to each other and the statistical model with the 

lowest AIC value is the best model amongst all the ones tested. AIC is, therefore, a model 

selection measure and is calculated as a tradeoff between the complexity of models (a penalty 

is included when overfitting a model, where overfitting refers to improving the goodness of fit 

by increasing the number of independent variables) and the goodness of fit. AICc is then the 

AIC that is corrected for a low number of samples. 

AIC is often seen as rather liberal, because overfitting (preferring a complex but wrong model 

over a simpler and true model) is a problem. To overcome this problem, cross-validation (CV) 

could be used as a model-selection method (Arlot and Celisse 2010). There are several types 

of CV methods, but what they have in common is a split into two subsets of the data for 

training and testing purposes. Splitting the data is usually done many times with results being 

averaged at the end. 

CV has apparently been preferred in the GWR literature as it can more easily be decomposed 

into its components and tested (Farber and Páez 2007).  However, AIC was used much more 

often in fire-related studies (e.g. Koutsias et al. 2010; Sá et al. 2011; Martínez-Fernández et 

al. 2013; Fernandes et al. 2014). In addition, Farber and Páez (2007) found that spatial outliers 

heavily influence the reliability of the cross-validation method. 
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BIC (Bayesian Information Criterion) and MDL (Minimum Description length) are other 

model-selection criteria. However, these two have not been commonly used in the GWR 

literature (although they can be chosen in the GWR4 program). The reason behind this might 

be due to the fact that BIC should be used to find a model when we know that a true model 

exists, whereas AIC and CV are used when trying to find a model that is the best 

approximation of the real world, i.e. no assumption is made that there exists a model that 

describes the data perfectly. Statistically, BIC might select a model that better fits theoretical 

data. However, real-world data might be better modelled after the AIC indicates that the ideal 

model rarely exists, and if it were to exist that model might not have the most predictive 

power. 

2.3.6.5 Variance Inflation Factor (VIF) 

The variance inflation factor (VIF) quantifies the influence multicollinearity has on an 

estimated regression coefficient. The higher the VIF, the more correlated the predictors. There 

are different guidelines that different researchers use in its application. Oliveira et al. (2014, 

pg. 147) used all covariates that had “VIF values close to 1”. ESRI (2016), in their webinar, 

suggested that all variables with a VIF value larger than 7.5 need to be excluded. Minitab 

(2015) published the following guidelines on their support pages: A VIF of one means that the 

predictors are not correlated; a VIF value between one and five means moderately-correlated 

predictors; and with a VIF value of five to ten, the predictors are highly correlated. Wu and 

Zhang (2013, pg. 58) indicate that a number less than 10 might be sufficient, as they wrote: 

VIFs “were all close to 1 (much less than 10)”. 

An acceptable VIF value that is commonly or consistently used in different studies does not 

seem to exist.  The reason behind that might be the fact that many researchers using VIF are 

vague about their application of it, or do not mention their threshold VIF value in their 

research papers (e.g. Martínez et al. 2009; Martínez-Fernández et al. 2013; Oliveira et al. 

2014). 

2.3.6.6 Programs 

Several programs have the functionality to run GWR; among them ArcGIS 10.2.2 (ESRI 

2014), GWR4 (Nakaya 2014), R (The R Foundation for Statistical Computing 2015), and 

SpaceStat (BioMedware 2016). As ArcGIS’ functionalities do not include logistic GWR, I 

decided to work with R, as several packages have been developed for running logistic GWR. 
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3 Methodology 

3.1 Study Area 

Jämtgaveln Nature Reserve (referred to as Jämtgaveln) is located in the middle of Sweden 

(62.67°N, 15.87°W). This Natura-2000 site (European Commission 2016) consist of 

approximately 3000 ha of forests, mires, and water bodies which comprise roughly 50%, 

25%, and 25% of the Reserve, respectively. This study focuses on approximately 2680 ha of 

this nature reserve. The northeastern part was excluded because it is dominated by Picea 

abies. Such forests could potentially also have stumps of Pinus sylvestris; however, these 

stumps are often very decayed and soft compared to Pinus sylvestris-dominated forests. 

Larger lakes dominate this part of the landscape and humans influenced this location 

relatively early (Länsstyrelsen Västernorrland 2007). For example, until the mid-17th century, 

Jämtgaveln bordered Norway and some battles were fought in this area. Also, a pilgrim’s path 

went through this area from coast to coast, and a larger hut for overnight guests is assumed to 

have been located on Bastunäset (most western part of Jämtgaveln). Cultural artifacts are also 

still visible in some places like, for example, huts or axe marks (Figure 3.1). Widespread 

(partially selective) logging activities occurred in the late 19th century and in the 1930s 

(Linder 1988). In 1995, the area became a nature reserve. Controlled burning was introduced 

in the 1990s and is performed intermittently (Länsstyrelsen Västernorrland 2007). 

Pinus sylvestris and Picea abies dominate the tree layer whereas Vaccinium spp. dominate the 

understory (Figure 3.2). Most of the forest in Jämtgaveln is about 100-140 years old, because 

in the middle of the 19th century, fires renewed the forest and selective cutting removed the 

huge and presumably old Pinus sylvestris (Länsstyrelsen Västernorrland 2007). Some old 

growth characteristics are still present in some parts of Jämtgaveln. However, material 

selected for this study was mostly from stumps. 

 

Figure 3.1: Axe marks on a snag in Jämtgaveln Nature Reserve. Selective logging removed most of the larger and 

presumably older pines (Pinus sylvestris).  
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Figure 3.2: Pictures of the center part of the Jämtgaveln Nature Reserve. These picture nicely illustrate the “blocky” (a.k.a. 

lots of boulders) nature of this reserve. Besides lots of blueberry (Vaccinium spp.), debris of former trees or standing snags 

are also common in the forested parts of the reserve. 
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The bedrock consists mainly of three types; nutrient-poor granite (around the lake Torringen 

in the western part of Jämtgaveln), nutrient-rich diabase (mostly in the eastern part of 

Jämtgaveln), and in between these, granodiorite. Much of Jämtgaveln is very rocky, being 

covered by blocky moraine, whereas other parts are covered by peat. The elevation ranges 

from approximately 390m to 475m. 

The Köppen climate classification for this area is Dfc, which is a subarctic climate type with 

cool summers and no dry season (however, most precipitation comes during the summer) with 

about 603 mm precipitation on average per year (KNMI 2015). The highest average monthly 

temperature in July is 13.7°C whereas the coldest average monthly temperature in January is -

9.6°C (KNMI 2015). 

3.2 Data 

The dependent variable is always a fire year. First, I worked with all the data combined, 

however, only 14 samples of the 278 included did not have a fire scar in any of the years. 

Second, I also worked with a subset of all fire years, which were the 12 fire years that had the 

most fire scars (Table 3.1). 

The independent variables (downloaded from Lantmäteriet’s data service) are the classes of a 

reclassified land cover layer that were represented in the study area (Table 3.2); 2m elevation 

data (DEM); soil depth; soil blocks (how many boulders) which were classified to poor (very 

little boulders), rich (many boulders), and normal (little to normal amount of boulders); and 

soil types which are rocks, moraine, peat, gravel moraine, water, river sediment sand, river 

sediment gravel, and top (surface) layer of peat (not continuous) (Table 3.3). 

Table 3.1: The 12 fire years that had the most fire-scarred trees. 

Fire year 
Fire-scarred 

samples 
Samples 

1521 42 64 

1576 53 69 

1644 16 116 

1677 79 126 

1723 17 163 

1729 51 167 

1770 31 204 

1789 28 206 

1807 18 207 

1831 38 211 

1844 15 193 

1868 41 176 

All Fire Years 264 278 

 

The analyses have been done with selected variables to reduce the multicollinearity 

(redundancy) among the independent variables (Table 3.3). The choice of variables was 

limited by the availability of data and by the multicollinearity. Aspect/slope, for example, 

were not considered as they are direct derivatives of the DEM. Unfortunately, a wetness index 
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was not available for every year. Instead of using a wetness index, I used a land cover 

classification that separated between forest, mires, and forest on mires. The location of two 

dairy farms were, however, available and this variable was included as a more socio-

economic variable even though the dairy farms were likely not present during the whole study 

period (Johnson 2008, pgs. 77-78). Storaunet et al. (2013) found that dairy farms profoundly 

influenced the fire occurrences in their study area. 

Table 3.2: Land cover (marktäcke) for Jämtgaveln Nature Reserve and the surrounding area (from Lantmäteriet). Several 

layers in the original data were reclassified to reduce the number of layers. 

Original 

Code 
Name of Layer New Name 

40 
Deciduous trees not on mire or exposed 

bedrock 

Forest 

43 Coniferous forest on lichen 

44 Coniferous forest not on lichen (7-15m) 

45 Coniferous forest not on lichen (˃15m) 

47 Coniferous forest on exposed bedrock 

48 Mixed forest not on mire or exposed bedrock 

41 Deciduous trees on mire 
Forest on 

mires 
46 Coniferous trees on mire 

49 Mixed forest on mire 

54 Clearcutting 

Rocks 55 Young forest 

59 Exposed bedrock 

70 Fresh-water wetlands 

mires 71 Wet mires 

72 Remaining mires 

81 Lakes and dams (open area) 
Lakes 

82 Lakes and dams (overgrown area) 

 
Table 3.3: All and selected variables (and their names) as used in the analyses separated by grid size. 

All variables 100m grid 

13variables 

100m grid       

10variables 

250m grid      

12variables 

Names in 

Analyses 

Distance to dairy farms Yes Yes Yes Dairyfarm 

2m elevation data (DEM) Yes No Yes dem 

Land cover (forest) Yes No Yes Lc_forest 

Land cover (forest on mires) Yes Yes Yes Lc_formir 

Land cover (open water) No No No Lc_lakes 

Land cover (mires) Yes No Yes Lc_mires 

Land cover (exposed bedrock, 

clearcuts, young forest) 

No No No Lc_rocks 

soil blocks (little to normal 

amount of boulders) 

No No No Sb_normal 

Soil blocks (very little boulders) No No No Sb_poor 

Soil blocks (many boulders) Yes Yes Yes Sb_rich 

Soil depth Yes Yes Yes Soildepth 

soil types (bedrock on surface) No No No St_berg 

soil types (gravel moraine) No No No St_gravmo 
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soil types (moraine) Yes Yes Yes St_morain 

soil types (peat) Yes Yes Yes St_peat 

soil types (river sediment gravel) Yes Yes Yes St_sed_gr 

soil types (river sediment sand) Yes Yes Yes St_sed_sa 

soil types (water) Yes Yes No St_water 

Surface layer of peat (non-

continuous) 

Yes yes yes Sto_peat 

 

3.3 Data Preparation 

After downloading all layers, the projection had to be changed for some of the layers from 

RT90 to SWEREF99TM. I reclassified the land cover from 19 to 6 classes (Table 3.2). I 

created a fishnet with a cell size 250x250m (and 100mx100m) over the study area, used zonal 

statistics to tabulate the area, and joined the results to the fishnet. In that new file, I calculated 

the percentage land cover of each class, which I then converted to raster with each field 

having the percentage of land cover. Therefore, I created five raster (forest, forest on mires, 

mires, lakes, rocks). The other layers were similarly converted to rasters with a 250x250m 

grid (and a 100mx100m). Appendix A has detailed descriptions of this procedure using 

ArcGIS 10.2.2. 

The layer with the dependent variable needed to be prepared in terms of attaching all values 

of the independent variables to the attribute table that included every fire year. This was done 

using the “Extract Multivalue to Point” tool in ArcGIS 10.2.2. 

The fire history data was prepared in Excel so that every column represents one fire year and 

every row one sample. For each sample, a zero (0) was added for every year where no record 

for that sample was available. A one (1) was set for a fire year where this sample did not have 

a fire scar. Two (2) was then for a fire year where the sample had a fire scar. This was mainly 

done for ArcGIS and presentation purposes, but became applicable for almost all analyses as 

well. 

3.4 Analyses 

The analyses were mainly done in two programs: ArcGIS 10.2.2 and R 3.2.2. ArcGIS was 

used to prepare the data (projecting the data, georeferencing, reclassifying, creating raster, …) 

and do some of the analyses, e.g. Thiessen polygon creation, the grid analysis, drawing an 

outline. The geographic weighted regression was done in R although ArcGIS also has GWR 

functionalities. However, these were not appropriate for logistic GWR. Several programs, e.g. 

GWR4, R (GWmodel, spgwr, gwrr), or Space Stats, were available for running GWLR. After 

weighing the pros and cons and trying to run a few GWLR analyses, I decided to use 

GWmodel among the R packages, as it had the best descriptive instructions in form of a 

publication (Gollini et al. 2015). 

3.4.1 Thiessen Polygons 

The Thiessen polygons were created by the “Create Thiessen Polygons” tool in ArcGIS. For 

this analysis, it is important to not have samples at the exact same location, because the 

program just chooses one point and disregards the others. Within the tool, only a rectangular 
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area could be applied as processing area (irregular polygons like the study area could not be 

applied). Therefore, every Thiessen surface needed to be clipped to the study area. For each of 

the 12 major fire years, the areas for all polygons were calculated and the area for all 

polygons that had a burned sample and an unburned sample, respectively, were summarized. 

3.4.2 Grid Analysis 

The grid analysis was done by Hjalmarsson et al. (2015). A grid was calculated for the study 

area using the Fishnet tool (25 ha, polygons). The grid was intersected with the study area (a 

polygon that represented the land area) to get the real dimensions of each grid cell, which 

could be at that point less than 25 ha. For every year, the spatial-join tool (Analysis  

Overlay  Spatial Join) was used to get only the grid cells that had (a) all samples, and (b) all 

fire-scarred samples in it (by selecting either all samples or all fire-scarred samples and 

creating new shapefiles, respectively, and using those in the spatial join1). 

The resulting table (with # of samples, # of fire scars, # of sample grid cells, # of fire-scarred 

grid cells, area of all samples in m2 based on the grid cells, and area of fire-scarred grid cells 

in m2) was then used to calculate several percentages: 

1. Number of scars vs. samples 

2. Number of scarred grid cells vs. sample grid cells 

3. Hectare burned based on (2) and the total land area of 2336 ha 

4. Area that had samples vs. area that had fire scars 

The comparison in this study between the different methods of calculating the fire size is 

based on the percentage of grid burned and the total land area of 2336 ha (#3 above). 

3.4.3 Drawing the Fire Perimeter 

Hjalmarsson et al. (2015) drew the fire perimeter for the fire years with the most fire scars 

(Table 3.1) in ArcGIS and calculations of the fire size could be done easily. The perimeters 

were drawn before doing the grid analysis. This was done in this fashion so as to not be 

influenced by the results of the grid analysis when drawing the fire perimeter. A perimeter 

was drawn around fire-scarred samples. These polygons often also included samples that did 

not have a fire scar, but that were located within the area that did not show an apparent fire 

break. The results of a Finnish study (Piha et al. 2013) show that depending on size of tree 

and fire intensity, only a few trees actually scar during a fire. 

If one area did have many fire scars, but a neighboring area had none (but many non-scarred 

samples), the fire perimeter was drawn between the two areas. In the same fashion, an area 

that had burned was delineated from a (larger) area that did not have any samples. Lakes were 

excluded from the area calculations and the fire perimeter was drawn along the shoreline of 

lakes. Mires were included in area possible to burn as the few samples located on the mire 

also showed repeated fire scars. 

                                                 
1 The options used for spatial join were: (1) I unchecked “Keep all target features”, (2) target features = grid over 

Jämtgaveln, (3) join feature = sample points (for a) or fire-scarred samples (for b), (4) match options = contains, 

and (5) join operation = join_one_to_one. 
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3.4.4 GWLR in R 

The R package I used to run GWLR is called GWmodel (Gollini et al. 2015). In preparation 

for running GWLR, I also calculated a principal component analysis using Minitab version 

15.1.30.0 (Minitab 2007) to identify the most important PCs. The first 7 PCs were used in 

further analysis. 

In order to test the dependency (i.e. collinearity) of the independent variables, two 

corroborating methods were used: a correlogram (Wright 2015) and the “exploratory 

regression” function in ArcGIS. A correlogram of the data will show correlation plots for all 

variables in a matrix (Figure 3.3 A). The output of an exploratory regression will show you 

which variables are correlated (Figure 3.3 B and C). 

 

 
 

In GWmodel, a stepwise GWR is possible which would give spurious results when using with 

binary data. Therefore, a stepwise GWLR (with the command from GWmodel) was 

programmed (by Johan Lindström, Centre for Mathematical Sciences, Lund University). The 

stepwise GWLR was then run on two different scales (a 250m and 100m grid) and with all 

variables, a reduced number of variables, and the seven first principal components (Table 

3.3). 

3.4.5 INLA model 

To test the project’s feasibility at the very beginning of this work, Johan Lindström (Centre 

for Mathematical Sciences, Lund University) used Integrated Nested Laplace Approximations 

(INLA, Rue and Martino 2007; Rue et al. 2009), as implemented in the R-INLA package 

(Lindgren and Rue 2015) to estimate the likelihood of fire  in each grid cell based on an 

model with binomial observations (fire/no fire) at the each observed tree. The model can be 

seen as a logistic regression with a spatial dependence structure (Lindgren et al. 2011) and 

regression coefficients fixed throughout space and time, this is equivalent to doing a GLMM 

B 

A 
C 

Figure 3.3: A correlogram from the analysis of my data: 100m grid and 10 independent variables (A), output of ArcGIS’ 

exploratory regression with (B) and without (C) multicollinearity. 
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(Generalized linear mixed model) with spatially correlated random effects (Johan Lindström, 

personal [e-mail] communication, 2016-03-14 and 2016-03-21).  

3.4.6 Probability Plot (Close Trees Burning at Same Time) 

For this analysis, all samples that were located at the same location were moved by a few 

meters in ArcGIS (max. 15m). The distance between all points to all points were calculated in 

ArcGIS by using the Point Distance Tool, where I used the same data for input and near 

feature (shapefile with the data points for all samples = “fire data”). In Excel, I then calculated 

and visualized the probability of trees burning at the same time, as dependent upon their 

distance from each other (work-process description in Appendix B). 
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4 Result 

4.1 Multicollinearity between the Covariates 

In an exploratory regression in ArcGIS, the results show high multicollinearity between 

variables if all variables are considered (Table 4.1). This can be seen by the VIF values that 

are very high for most of the variables in the 250m analysis. In contrast, using only selected 

variables (250m grid), the VIF values drop significantly and are, according to ESRI (2016), 

acceptable (Table 4.2). 

Table 4.1: Summary of multicollinearity for 250m and all variables (partial output of ArcGIS’ exploratory regression 

analysis tool). The VIF is high for many variables and, therefore, multicollinearity is high between variables. 

Variable VIF Violations Covariates 

DAIRYFARM 1.41 0 -------- 

SOILDEPTH 1.79 0 -------- 

STO_PEAT 1.1 0 -------- 

ST_SED_GR 5.38 0 -------- 

ST_SED_SA 1.23 0 -------- 

ST_WATER 16.79 835 

LC_LAKES (99.88), SB_POOR (0.36), LC_FOREST (0.36), 
ST_MORAIN (0.24), SB_RICH (0.24), LC_MIRES (0.24), 
ST_PEAT (0.12), ST_GRAVMO (0.12), SB_NORMAL (0.12), 
LC_ROCKS (0.12) 

ST_GRAVM
O 

13.23 33 
ST_MORAIN (3.95), SB_POOR (2.16), ST_WATER (0.12), 
LC_LAKES (0.12) 

ST_PEAT 89.24 193 
SB_POOR (16.77), ST_BERG (1.80), ST_WATER (0.12), 
LC_LAKES (0.12) 

ST_MORAIN 23.65 83 
ST_GRAVMO (3.95), SB_POOR (2.16), LC_FOREST (0.24), 
ST_WATER (0.24), LC_LAKES (0.24) 

ST_BERG 19.58 15 ST_PEAT (1.80), SB_POOR (1.80) 

SB_NORMAL 15.73 35 
SB_RICH (4.19), SB_POOR (2.16), LC_FOREST (0.12), 
ST_WATER (0.12), LC_LAKES (0.12) 

SB_RICH 24.96 95 
SB_NORMAL (4.19), SB_POOR (2.16), LC_FOREST (0.24), 
ST_WATER (0.24), LC_LAKES (0.24) 

SB_POOR 
112.4

8 
209 

ST_PEAT (16.77), ST_MORAIN (2.16), ST_GRAVMO 
(2.16), SB_RICH (2.16), SB_NORMAL (2.16), ST_BERG 
(1.80), ST_WATER (0.36), LC_LAKES (0.36) 

DEM 2.57 0 -------- 

LC_LAKES 18.39 837 

ST_WATER (99.88), LC_FOREST (0.60), LC_MIRES (0.48), 
SB_POOR (0.36), ST_MORAIN (0.24), SB_RICH (0.24), 
LC_ROCKS (0.24), ST_PEAT (0.12), ST_GRAVMO (0.12), 
SB_NORMAL (0.12) 

LC_MIRES 14.28 16 
LC_FOREST (1.92), LC_ROCKS (0.48), LC_LAKES (0.48), 
ST_WATER (0.24) 

LC_ROCKS 11 4 
LC_MIRES (0.48), LC_FOREST (0.48), LC_LAKES (0.24), 
ST_WATER (0.12) 

LC_FORMIR 3.06 0 -------- 
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LC_FOREST 31.23 55 
LC_MIRES (1.92), LC_LAKES (0.60), LC_ROCKS (0.48), 
ST_WATER (0.36), ST_MORAIN (0.24), SB_RICH (0.24), 
SB_NORMAL (0.12) 

 

Table 4.2: Summary of multicollinearity for 250m grid with 12 variables (partial output of ArcGIS’ exploratory regression 

analysis). The VIF is low for many variables and, therefore, multicollinearity is low between variables (as suggested by ESRI 

[2016]  who argue that a VIF value of below 7.5 is acceptable). 

Variable VIF Violations Covariates 

DAIRYFARM 1.22 0 -------- 
SOILDEPTH 1.16 0 -------- 
STO_PEAT 1.06 0 -------- 

ST_SED_GR 1.18 0 -------- 
ST_SED_SA 1.05 0 -------- 

ST_PEAT 4.78 0 -------- 
ST_MORAIN 3.11 0 -------- 

SB_RICH 1.88 0 -------- 
DEM 2.51 0 -------- 

LC_MIRES 5.18 0 -------- 
LC_FORMIR 1.39 0 -------- 

 

For the 100m analysis, the results look similar in that most variables show high VIF values 

and multicollinearity when all variables were used, and no multicollinearity when only 13 

variables were used (Table 4.3 and 4.4). Some differences can be seen between the 100m and 

250m grid when using all variables. For example, in the 250m grid, the variables st_water and 

lc_lakes show collinearity issues, whereas in the 100m grid this is not the case. This could be 

due to the fact that many more cells are located next to water in the 250m grid, whereas in the 

100m grid, the cells that have fire data are further away from water, because the cells are 

smaller. 

The principal components from the PCA have per definition a VIF value of 1 and, therefore, 

no multicollinearity. 

Table 4.3: Exploratory Regression output from ArcGIS for the 100m grid and all variables. Many variables have collinearity. 

Variable VIF Violations Covariates 

DAIRYFARM 1.35 0 -------- 

DEM 2.26 0 -------- 

LC_FOREST 17.48 2676 
LC_MIRES (1.74), SB_POOR (0.34), LC_ROCKS (0.21), 
ST_MORAIN (0.15), SB_RICH (0.15), SB_NORMAL (0.12), 
ST_GRAVMO (0.11), ST_PEAT (0.09) 

LC_FORMIR 3.34 0 -------- 

LC_LAKES 3.8 0 -------- 

LC_ROCKS 7.79 46 LC_MIRES (0.21), LC_FOREST (0.21) 

LC_MIRES 9.47 378 
LC_FOREST (1.74), LC_ROCKS (0.21), SB_POOR (0.01), 
ST_MORAIN (0.01), SB_RICH (0.01), ST_PEAT (0.00), 
ST_GRAVMO (0.00), SB_NORMAL (0.00) 
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SB_NORMAL 19.79 6554 
SB_RICH (30.09), SB_POOR (17.66), ST_PEAT (2.53), LC_FOREST 
(0.12), LC_MIRES (0.00) 

SB_POOR 45.82 17547 
ST_PEAT (41.11), ST_MORAIN (19.04), SB_RICH (18.89), 
SB_NORMAL (17.66), ST_GRAVMO (16.21), LC_FOREST (0.34), 
LC_MIRES (0.01) 

SB_RICH 28.33 9552 
SB_NORMAL (30.09), SB_POOR (18.89), ST_PEAT (3.06), 
LC_FOREST (0.15), LC_MIRES (0.01) 

SOILDEPTH 2.14 0 -------- 

ST_BERG 5.24 0 -------- 

ST_GRAVMO 18.52 5387 
ST_MORAIN (24.73), SB_POOR (16.21), ST_PEAT (1.99), 
LC_FOREST (0.11), LC_MIRES (0.00) 

ST_MORAIN 27.54 9678 
ST_GRAVMO (24.73), SB_POOR (19.04), ST_PEAT (3.08), 
LC_FOREST (0.15), LC_MIRES (0.01) 

ST_PEAT 28.03 9110 
SB_POOR (41.11), ST_MORAIN (3.08), SB_RICH (3.06), 
SB_NORMAL (2.53), ST_GRAVMO (1.99), LC_FOREST (0.09), 
LC_MIRES (0.00) 

ST_SED_GR 3.43 0 -------- 

ST_SED_SA 1.45 0 -------- 

ST_WATER 5.23 0 -------- 

STO_PEAT 1.06 0 -------- 
 

Table 4.4: Exploratory Regression output from ArcGIS for the 100m grid and 13 variables. The VIF values are low (or at 

least below 7.5) and no collinearity is recorded. 

Variable VIF Violations Covariates 

DAIRYFARM 1.22 0 -------- 

DEM 2.25 0 -------- 

LC_FOREST 2.4 0 -------- 

LC_FORMIR 1.63 0 -------- 

LC_MIRES 2.83 0 -------- 

SB_RICH 1.68 0 -------- 

SOILDEPTH 1.47 0 -------- 

ST_MORAIN 2.84 0 -------- 

ST_PEAT 2.5 0 -------- 

ST_SED_GR 1.34 0 -------- 

ST_SED_SA 1.08 0 -------- 

ST_WATER 1.65 0 -------- 

STO_PEAT 1.04 0 -------- 

 

The correlograms of the data (100m - all variables, 100m - 13 variables, 100m - 10 variables, 

100m - PCA, 250m - all variables, 250m - 12 variables, and 250m - PCA) show a different 

story (Figures 4.1 and 4.3, Appendix C, the legend for the color code can be seen in Figure 

4.1). Even though only variables with low VIF values (under 7.5) were included, the 

correlograms with only the selected 13 variables (for e.g. 100m) show high correlations 

between some of the remaining variables (Figure 4.2). 
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Figure 4.2: Correlogram for the 100m grid with 13 variables. High positive correlation can be seen between dem and 

st_morain, lc_mires and st_peat, and high negative correlation between lc_forest and lc_mires. 

 

Therefore, disregarding three more variables from the 100m grid (Table 3.3), the resulting 

correlogram (Figure 4.3, Appendix C) shows that there is still some correlation between the 

variables, but not more than 0.7, which is the threshold suggested by Oliveira et al. (2015). 

Figure 4.1: Legend (color scheme) for the correlograms in Appendix D (Friendly 2002, 3). 
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Figure 4.3: Correlogram for the 100m grid with 10 variables. After excluding 3 more variables, the correlation coefficients 

are below 0.7 which was deemed acceptable by Oliveira et al. (2015). 

 

4.2 Principal Component Analysis (PCA) 

4.2.1 PCA 100m Grid 

For this analysis, the first seven PCs were extracted, although PC6 and PC7 do not add much 

to the explanatory power of the analysis (Figure 4.4, Scree Plot). The single PCs were 

interpreted with the help of the correlation coefficients of each variable with the PC (Table 

4.5): 

PC 1. Mires (little forest, low on larger boulders [sb_poor], little moraine, lots of peat) 

PC 2. Low elevation and close to water/lakes 

PC 3. Far from dairy farms; rather shallow soil; not on gravel moraine (but positively 

with moraine?) 

PC 4. Close to dairy farms, rich in larger boulders and/or bedrock on surface (st_berg) 
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PC 5. Bedrock and low soildepth; average amounts of boulders (sb_normal) 

PC 6. Forest on mires with gravel sediments; not on clearcuts, young forest, or exposed 

bedrock (lc_rocks) 

PC 7. Not forest on mires; not gravel sediments; not on clearcuts, young forest, or 

exposed bedrock (lc_rocks) 

 

Table 4.5: The correlation coefficients (for the 100m grid) for each variable and the first 7 PCs (values* ≥0.35, values§ = 

values between 0.30 and 0.35; the loading thresholds of 0.30 and 0.35 was randomly set to ease the interpretation of the 

coefficients).  

 

Coeff 
PC1 

Coeff  
PC2 

Coeff  
PC3 

Coeff  
PC4 

Coeff  
PC5 

Coeff  
PC6 

Coeff  
PC7 

dairyfarm 0.022 -0.125 -0.336§ 0.380* 0.161 -0.038 -0.132 
dem -0.279 -0.321§ 0.274 -0.061 -0.020 0.036 -0.043 
lc_forest -0.381* 0.064 -0.121 0.014 0.284 0.262 0.240 
lc_formir 0.195 -0.093 -0.209 -0.196 -0.112 0.393* -0.356* 
lc_lakes 0.181 0.389* 0.210 0.133 -0.270 0.181 0.077 
lc_rocks 0.064 -0.016 0.032 0.062 -0.202 -0.629* -0.526* 
lc_mires 0.313§ -0.260 0.148 -0.052 -0.026 -0.126 0.280 
sb_normal -0.002 0.212 0.047 -0.614* 0.309§ -0.112 -0.114 
sb_poor 0.402* -0.282 0.024 0.102 0.152 0.109 0.072 
sb_rich -0.328§ -0.108 -0.138 0.401* -0.306§ 0.007 0.049 
soildepth -0.145 -0.267 -0.342§ -0.255 -0.305§ 0.052 0.180 
st_berg 0.080 0.054 -0.023 0.351* 0.611* 0.025 -0.175 
st_gravmo 0.041 0.292 -0.560* -0.077 -0.069 -0.193 0.155 
st_morain -0.367* -0.168 0.357* -0.050 0.008 0.071 -0.173 
st_peat 0.360* -0.299 0.086 -0.001 -0.021 -0.054 0.299 
st_sed_gr 0.150 -0.076 -0.113 -0.059 -0.138 0.444* -0.418* 
st_sed_sa 0.057 -0.053 -0.089 0.005 0.023 0.166 -0.152 
st_water 0.112 0.476* 0.256 0.153 -0.185 0.164 0.076 
sto_peat -0.053 0.027 -0.109 -0.131 0.169 -0.072 0.076 
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Figure 4.4: Results of the PCA with the 100m grid. All variables were included in the PCA. 
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4.2.2 PCA 250 Grid 

The results for the 250m-grid PCA show that the PCs are more distinct (Figure 4.5, Loading 

Plot) as compared to the 100m-grid PCA (Figure 4.4, Loading Plot). The variables are much 

more dispersed in the 100m-grid PCA than with the 250m-grid PCA. Interpreting the PCs was 

a little less challenging in this analysis (Table 4.6): 

 

PC 1. Mires with lots of peat; low on larger boulders (sb_poor); not on morain 

PC 2. close to open water; not on mires/peat 

PC 3. far away from dairy farms; not on exposed bedrock or on gravel moraine; higher 

elevations 

PC 4. high amounts of larger boulders; no surface peat (sto_peat); on deeper soils 

PC 5. on exposed bedrock (st_berg); low soil depths 

PC 6. not on exposed bedrock, clearcuts and young forests (lc_rocks) 

PC 7. On gravel sediments; on forest on mire, but not on mires 

As with the analysis of the 100m grid, PC 6 and PC 7 are not very important to the analysis 

either (Figure 4.5, Scree Plot). 

 
Table 4.6: The correlation coefficients (for the 250m grid) for each variable and the first 7 PCs (values* ≥0.35, values§ = 

values between 0.30 and 0.35; the loading thresholds of 0.30 and 0.35 was randomly set to ease the interpretation of the 

coefficients). 

 
Coeff 
PC1 

Coeff  
PC2 

Coeff  
PC3 

Coeff  
PC4 

Coeff  
PC5 

Coeff  
PC6 

Coeff  
PC7 

dairyfarm -0.006 -0.115 -0.515* 0.155 0.021 -0.108 -0.029 
soildepth -0.125 0.166 0.085 0.290 -0.532* -0.025 -0.141 
sto_peat -0.050 0.057 -0.083 -0.338§ -0.210 0.015 -0.244 
st_sed_gr 0.179 -0.046 -0.027 0.101 -0.129 0.044 0.607* 
st_sed_sa 0.066 -0.057 -0.075 0.107 -0.141 0.079 0.025 
st_water 0.118 0.517* 0.145 0.156 0.187 0.141 -0.089 
st_gravmo 0.078 0.229 -0.464* -0.180 -0.311§ -0.213 -0.118 
st_peat 0.341§ -0.298 0.156 0.119 -0.162 0.070 -0.199 
st_morain -0.370* -0.186 0.288 0.022 0.114 -0.001 0.146 
st_berg 0.077 -0.093 -0.382* -0.153 0.515* 0.268 0.035 
sb_normal 0.045 0.055 0.190 -0.661* -0.141 -0.069 0.118 
sb_rich -0.337§ -0.059 -0.202 0.407* -0.003 -0.100 -0.035 
sb_poor 0.369* -0.311§ -0.030 0.073 0.026 0.185 -0.035 
dem -0.312§ -0.251 0.245 0.006 -0.005 0.018 0.050 
lc_lakes 0.170 0.491* 0.163 0.161 0.155 0.146 0.031 
lc_mires 0.333§ -0.291 0.137 0.066 -0.074 -0.008 -0.318§ 
lc_rocks 0.057 -0.040 0.042 0.003 0.247 -0.795* 0.070 
lc_formir 0.185 -0.008 -0.088 0.048 -0.272 0.031 0.583* 
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Figure 4.5: Results of the PCA with the 250m grid. All variables were included in the PCA. 

 

4.3 Stepwise GWLR 

To find the set of variables that can be used to predict fire location and size, 7 stepwise 

GWLR model sequences were used. Firstly, two grids were used (100m and 250m). Secondly, 

several sets of variables were used: (1) All 19 variables for both grids, (2) 13 variables for the 

100m grid, (3) 10 variables for the 100m grid, 4) 12 variables for the 250m grid, and (5) all 

principal components. For all analyses, a bandwidth of 275 was used, as this was the 

bandwidth calculated as optimal with the bandwidth calculation command that minimized the 

AICc values in GWmodel (Gollini et al. 2015). 

The results show that the best “set of variables” is consistently just one variable, as the AICc 

value increases with each added variable (Table 4.7 – 4.10). These variables change between 

different stepwise regressions. 
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Table 4.7: Results of the stepwise regression with all of the 19 variables (see Table 3.3 for a short description of the 

variables). 

100m, all (19) variables, 

bw=275 

250m, all (19) variables, 

bw=275 

Vars AICc Adj. R2 Vars AICc Adj. R2 

Sb_normal 33.29 0.078 Sb_normal 32.11 0.098 

Dairyfarm 36.13 0.118 Dairyfarm 34.48 0.138 

Sto_peat 38.93 0.191 Soildepth 37.14 0.146 

Soildepth 42.74 0.194 Sto_peat 39.47 0.181 

Lc_formir 45.54 0.208 St_gravmo 42.59 0.180 

 

Table 4.8: Results of the stepwise regression with selected variables with the 100m grid (see Table 3.3 for which variables 

were included and a short description of each variable). 

13 Variables, 100m (bw=275) 10 Variables, 100m (bw=275) 

Vars AICc Adj. R2 Vars AICc Adj. R2 

Dairyfarm 34.76 -0.001 Dairyfarm 34.76 -0.001 

Sb_rich 37.36 0.066 Sb_rich 37.36 0.066 

Lc_forest 40.38 0.071 St_peat 41.12 0.066 

Sto_peat 42.99 0.159 Sto_peat 43.84 0.169 

St_gravmo 45.48 0.257 Soildepth 47.12 0.229 

 

Table 4.9: Results of the stepwise regression with 12 variables and the 250m grid (see Table 3.3 for which variables were 

included and a short description of each variable) 

12 Variables, 250m (bw=275) 

Vars AICc Adj. R2 

Soildepth 34.49 -0.003 

Sto_peat 37.72 0.015 

Sb_rich 40.41 0.123 

Lc_forest 43.26 0.144 

St_morain 45.94 0.170 
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Table 4.10: Results of the stepwise regression with the seven principal components of the 19 variables for the 100m and 

250m grid. 

7 PCs (100m, bw=275) 7 PCs (250m, bw=275) 

Vars AICc Adj. R2 Vars AICc Adj. R2 

PC4 33.65 0.063 PC4 33.77 0.041 

PC6 37.05 0.066 PC5 35.45 0.068 

PC3 40.39 0.092 PC7 37.93 0.066 

PC5 43.81 0.095 PC3 41.58 0.072 

PC1 47.18 0.096 PC1 44.90 0.088 

 

4.4 Method Comparison 

The fire size was compared between the different methods used: Drawing an outline, based on 

a grid, and Thiessen polygons (Figure 4.6, Appendix D for all 12 maps). In the absence of 

usable results from the GWLR, an INLA model was run in R (script provided by Johan 

Lindström, Centre for Mathematical Sciences, Lund University).

 

Figure 4.6: Method comparison between the different methods: Thiessen polygons, drawing an outline, grid method, and an 

INLA model. 

The fire size was largest with the drawing-outline method in 7 out of 12 fire years (Figure 

4.7). Overall, most area was shown as burned using the outline method; however, this number 
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is influenced by the large fires. In 5 out of 12 fire years, more area was burned according to 

the grid method; however, this was mainly during the smaller fire years in the latter part of the 

chronology (Table 4.11). 

 

Figure 4.7: Fire size comparison as based on the grid method, drawing-outline method, and Thiessen polygons. 

 

Table 4.11: Fire sizes for the three different methods including the sum and average. 

years 
Sample 
Depth Grid 

Drawing 
Outlines Thiessen 

Average (range) 

1521 64 1673 1995 1410 1693 (+ 18%, - 17%) 
1576 69 1562 1352 1505 1473 (+ 6%, - 8%) 
1644 116 355 437 307 367 (+ 19%, - 16%) 
1677 126 1482 2018 1126 1542 (+ 31%, - 27%) 
1723 163 162 241 119 174 (+ 38%, - 31%) 
1729 167 903 1000 625 843 (+ 19%, - 26%) 
1770 204 451 374 297 374 (+ 21%, - 21%) 
1789 206 446 242 227 305 (+ 46%, - 26%) 

1807 207 340 412 216 323 (+ 28%, - 33%) 
1831 210 809 947 504 753 (+ 26%, - 33%) 
1844 192 330 168 173 224 (+ 47%, - 27%) 
1868 175 685 615 443 581 (+ 18%, - 24%) 

sum  9198 9802 6954 8651 (+ 13%, - 20%) 
average  767 817 579 721 (+ 13%, - 20%) 

 

 

0

50

100

150

200

250

0

500

1000

1500

2000

2500

1521 1576 1644 1677 1723 1729 1770 1789 1807 1831 1844 1868

Sa
m

p
le

 D
ep

th

A
re

a 
B

u
rn

ed
 (

h
a)

Major Fire Years

Grid Drawing Outlines Thiessen Sample Depth



35 

 

4.5 Probability of Burning 

The probability that a pair of trees burned at the same time as based on their distance from 

each other seems to follow Tobler’s law (Tobler 1970) (Figure 4.8 and 4.9). Trees that are 

close or far from each other have, in general, higher or lower probabilities for burning at the 

same time, respectively. This means that the distance of trees to each other does matter when 

it comes to computing the probability. It also shows that high average probabilities are only 

reached at rather low distances, while low probabilities of co-occurrence are reached over the 

whole range. 

A probability of one means in this context that the tree had an overlapping period, and that all 

fires within that period occurred in the same year. A probability of zero means then that in an 

overlapping period there were fires that effected either one or both of the compared trees that 

did not occur in the same years. The situations where a division error would occur (no 

overlapping period or no fires in an overlapping period) were not considered in these graphs 

(Figures 4.8 to 4.13). 

Box plots summarize the probability data for different time periods: 1400-2000 (Figure 4.9), 

1400-1700 (Figure 4.11), and 1700-2000 (Figure 4.13). The sample size of the probability of 

burning in the 1400-1700 period is much smaller (N=7994) than in the 1700-2000 period 

(N=29563). However, when taking out all zero probabilities, the sample size is about the 

same (N1400-1700=4282, N1700-200=4078). 

 

 

Figure 4.8: The probabilities of a pair of trees burning at the same time as based on the distance to each other (for the whole 

time period 1400-2000). 
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Figure 4.9: Boxplots per distance band of the data in Figure 4.8 (probabilities of a pair of trees burning at the same time for 

the whole time period 1400-2000). 
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Figure 4.10: The probabilities of a pair of trees burning at the same time as based on the distance to each other (for the time 

period 1400-1700). 
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Figure 4.11: Boxplots per distance band of the data in Figure 4.10 (probabilities of a pair of trees burning at the same time 

for the time period 1400-1700). 
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Figure 4.12: The probabilities of a pair of trees burning at the same time as based on the distance to each other (for the time 

period 1700-2000). 
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Figure 4.13: Boxplots per distance band of the data in Figure 4.12 (probabilities of a pair of trees burning at the same time 

for the whole time period 1700-2000). 
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5 Discussion 

5.1 Stepwise GWLR 

As Jetz et al. (2005) pointed out, variable selection is critical for both local and global 

methods. The initial selection of variables to include in this study was difficult. Some 

variables were not included, because they were to 100% derivatives of another variable (e.g. 

aspect and slope as derived from a DEM), others (e.g. wetness indices) were not available and 

replaced by approximations (land cover classes separated between forest, mires, and forest on 

mires), and some were included even though there were issues. For example, variables of 

human influence were not available except for two locations of early dairy farms. While this 

layer is more relevant in some centuries (approximately 1600s to 1800s) then in others, 

GWLR is supposed to extract the variables’ influence as based on the fire data. 

Variables that then passed the multicollinearity analysis (the VIF test) were input to the 

stepwise GWLR analysis.  However, in the stepwise analysis, some of them could not be used 

as (almost) no sample was situated within a grid cell with a value (> than 0%) for that 

variable, e.g. st_sed_gr, st_sed_sa, or lc_rocks. In such cases, where variables were added to 

the model, no R2 value could be calculated and the variable was dropped. 

All AICc values for the first variables for every stepwise regression are so close to each other 

(min = 32.11 and max = 34.76), i.e. less than 3 (Fotheringham et al. 2002), that the models are 

to be seen as equal in quality and could be exchanged with each other, i.e. each variable is 

equally useful for predicting fire location/size. In addition, when adding new variables to the 

model, the AICc values increase, which also indicates that the model does not improve 

sufficiently with an increasing number of variables to offset the penalty associated with 

potential overfitting. 

The adjusted R2 values are all below 0.26. The best model describes, therefore, only 26% of 

its variance with five independent variables (Table 4.9). This larger R2 value is, however, 

from an analysis that still has some multicollinearity between the variables. Additionally, a 

model that only explains 26% of its variance is according to ESRI (2016) not a passing model 

for what they call a “strong adjusted R2 value” in their six checks (see section 2.3.6.1). This 

indicates that fire size cannot be estimated based on the variables used in this analysis. 

While the AICc values increased with more and more variables added (a lower AICc value 

means a higher quality model), the R2 values increased as well (which means more variables 

explain more of the variance). We only focused on the first 5 variables that were added in a 

stepwise GWLR. While models become more difficult to explain with more and more 

variables, adding more variables to the GWLR model might help improve the variance 

explained (although the AICc value would surely increase as well). 

Even the stepwise GWLR of the PCA does not show results that allow for further 

interpretation. PC4 is the first component to be chosen in the stepwise GWLR in both grids. 

However, I have interpreted PC4 in the 100m grid as “Close to dairy farms, rich in larger 

boulders and/or bedrock on surface (st_berg)” and in the 250m grid as “high amounts of 

larger boulders; no surface peat (sto_peat); on deeper soils”, because they had different 
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loadings. So, as with the stepwise GWLR with individual variables, the stepwise GWLR of 

the PCA seem to show problems with multiple hypothesis testing (see section 2.3.6.3) as the 

analyses do not produce in consistent results. 

5.2 Method Comparison 

The three methods compared show rather different fire sizes in one year. The uncertainty in 

one year can be as high as 46% (year 1789). It seems that the three fires in the earlier period 

(before 1650) have a smaller range of uncertainty than the nine fires after 1650. However, it is 

difficult to say something with certainty with this small sample size. 

5.3 Fire Size 

5.3.1 Over- and Underestimate of Fire Size 

The different methods depend on sample size to a large degree. The main problem with such a 

fire size analysis is the lower sample size in earlier parts of the chronology. In 1521, 64 

samples were used in the analysis, which could, however, be considered an adequate number 

of samples. The average Thiessen-polygon size in 1521 was 36.5 ha. In 1868, 176 samples 

were used and the average Thiessen-polygon size was 13.3 ha. 

In the fire-reconstruction community, several aspects have been discussed when 

reconstructing fire. One subject that has gotten much attention is the fact that most researchers 

do target scarred trees in the landscape which could result in a misrepresentation of the fire 

history. This hypothesis could, however, be rejected based on a comparative study by Van 

Horne and Fulé (2006). In their study, Van Horne and Fulé (2006) compared different 

sampling techniques (targeted, grid-based, and random sampling) using a census data set. 

Their results indicate that the sampling approaches were “essentially indistinguishable from 

census data” when ≥50 samples were used (Van Horne and Fulé 2006, pg. 866). Also, as 

researchers are interested in reconstructing a fire history, a systematic search for samples is 

quite inefficient and unreasonable when the efficient expenditure of resources is considered 

(Swetnam and Baisan 1996). 

In addition, if we have a fire scarred tree in an area, that area has clearly burned even if we 

find other trees in the same area that have no scar. A tree that has no scar is not evidence that 

it has not experienced fire, because not all trees get scarred during a fire (Piha et al. 2013). 

Hence, while there is very little chance of a commission error (all fire scars are caused by 

fires) there is a quite high omission error (not all fires leave a scar). One could reason from 

the fact that not every tree scars during a fire (Piha et al. 2013), that targeting both scarred and 

unscarred trees to the same degree might overestimate the area that has not burned. In fact 

only fires with a medium intensity leave detectable fire scars. Hot fires might burn the tree 

and lead to the absence of a sampling point, while too cold fires might not leave a scar.  

The changing severity of a single fire on the landscape and with changing weather could, on 

the other hand, lead to overestimating fire sizes because of its patchiness, as discussed with 

respect to sustainable management and harvests in Bergeron et al. (2002). This patchiness 

leads in many methods to an overestimation of the fire size, as not every square meter burns 

within the fire perimeter (Bergeron et al. 2002). 
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5.3.2 Advantages and Disadvantages of the methods 

Since the true fire size for each year is not available, an optimal method cannot be chosen 

based on ground truth. However, the advantages and disadvantages of the different methods 

will be discussed. 

5.3.2.1 Grid Method 

Although the results produced by the grid method depend somewhat on the size of the grid, 

Hjalmarsson et al. (2015) found in preliminary analyses that the difference between the two 

different grid sizes used might only play a minor role. The final fire size is a percentage of 

study area burned as based on the ratio between cells with fire scars and all cells with a 

sample (in a particular year). Therefore, even if only half of the study area is covered by cells, 

the ratio is extended to all of the study area. Because the grid size does not seem to matter, 

this method could be considered rather objective. 

5.3.2.2 Drawing outlines 

Drawing outlines has been applied to almost every spatial fire history study. In earlier studies, 

this method had been applied based on expert knowledge and arbitrarily set rules (Linder 

1988; Niklasson and Granström 2000). The advantages of this method are that the fire does 

not end at arbitrary lines in the landscape. The fire will follow the contours and features of the 

study area. However, how much the fire expands beyond or stops before such an arbitrary line 

is based on rather subjectively set rules which are difficult to consistently apply in each and 

every case. In addition, a fire break, e.g. a river, might be a fire break in one year, but not in 

another (very dry) year. 

This method is today used after applying more objective methods first, i.e. buffer zones 

around the fire scarred samples, as in Storaunet et al. (2013), and a replication of the methods 

are better possible. Given that my GWLR analysis found only a low correlation of fire extent 

to the environmental conditions of the area, I would not suggest using this method on its own. 

5.3.2.3 GWLR 

GWLR was another method that I thought could possibly be used to calculate fire sizes. With 

a set of variables used to explain fire occurrences in a landscape, you would be able to see 

where all these variables converge and the fire occurred. However, in our analyses, the 

variables included in the different calculations (Table 3.3) do not show a pattern that could 

help estimate the fire size. Therefore, based on my GWLR analyses, the scientific basis for 

the outline method is not in evidence. 

5.3.2.4 Thiessen Polygons 

The advantages of calculating Thiessen polygons to get the fire size are its objectivity and 

replicability, its ease of use, and relative inexpensiveness of computation in GIS programs 

like ArcGIS. While all methods are to some degree affected by the sample size, this method 

seems to have the most problems related to low sample sizes. The average Thiessen-polygon 

size can differ considerably from one fire year to the next, and the area that is covered by the 

polygons is directly affected by the density of points. In an extreme example, the fire year 

1311, which has one sample (which happened to record a fire), is represented by only one 

polygon, and the whole study area burned. 
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5.4 Probability of Burning 

Trees closer to each other have a higher probability of burning compared to trees that are 

further apart. This is especially true in the first half of the time period. In the second half of 

the time period, this clear pattern is partially vanishing. Therefore, the box plots that 

summarize the probability data for each time periods (Figures 4.9, 4.11, 4.13) look strikingly 

different, which could be explained by a couple of reasons: 1) Different sample sizes between 

these two time periods, or 2) a fire-regime shift between the two time periods as Hjalmarsson 

et al. (2015) suggest are potential explanations. 

At first, when including all probability values, the sample sizes between the two time periods 

differ significantly, which could explain the differences between the data. However, after 

taking out all zero probability values, the samples size in the earlier and later time period are 

nearly the same, which indicates to me that, in fact, a shift in fire-regime occurred between 

these two time periods. In the earlier period, larger and less frequent fires occurred, whereas 

in the latter period, smaller and more frequent fires occurred. Therefore, many more zero 

probabilities of trees burning at the same time exist in the latter period. 

This shift from larger, less frequent fires to smaller, more frequent fires can also be seen in the 

fire history, as partially seen in Figure 4.7 (Hjalmarsson et al. 2015). In other studies, such a 

shift has been attributed to the increased density of humans in the area (Niklasson and 

Granström 2000; Storaunet et al. 2013). In the Jämtgaveln and surrounding area, humans have 

been present for a long time (Johnson 2008). First anthropogenic findings date to 880 AD 

(Johnson 2008). Orelund (2015) and Johnson (2008) thoroughly described the human impact 

around the Jämtgaveln area, detailing a “main” road passing through (as early as 1000 A.D.), 

armed conflicts, and slash and burn practices (in the middle of the 17th century). The human 

population had rather low densities in Sweden around 1350 when the first wave of Black 

Death raged through Sweden (Orelund 2015): Population size in the early 1400s was about 

347,000 inhabitants, just 1/3 of the population present at the beginning of 1300s. The 

population recovered slowly, and once again reached its pre-Black Death levels around 1650 

(Orelund 2015). 

The population density in the Jämtgaveln Nature Reserve is not known for any time period. 

However, Orelund (2015, pg. 13) argued that the time between 1400-1600 “is as close as we 

can get to natural conditions when it comes to fire regimes with a minimum of anthropogenic 

impacts”. Therefore, the 1600s are characterized by increasing densities of settlements and 

huts that used fire in this area to clear the forest of its understory or for slash-and-burn 

practices (Orelund 2015). 

In the first part of the chronology, it was more likely to have higher probabilities of trees 

burning at the same time, even at larger distances between trees, because larger fires have 

burned at the same time. In the latter part of the chronology, humans likely influenced (or set 

fires) so that more frequent, but smaller, fires occurred. This could result in either 

overestimation of the high probability in distant trees, since the trees would not have burned 

at the same time under natural conditions; or in underestimation of the high probability in 

close trees, as fires were contained. 
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Depending on the size of the tree and thickness of the bark, a tree might or might not scar. No 

scar is left when the area has not burned, but also when the tree had too thick of a bark that 

the fire did not reach the cambium (or the fire burned too hot and killed the tree). Therefore, 

even if a tree without a scar is next to a tree with a scar, the probability that the tree without a 

scar has burned could be high. Therefore, dependent on fire severity, we might underestimate 

the probability of burning in nearby trees. In other words, the pattern in the early period could 

be much clearer if all trees that experienced fires would have left evidence of burning. 
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6 Conclusion 
Historical fire sizes for the 12 largest fires have been reconstructed for Jämtgaveln Nature 

Reserve. Fire sizes could be estimated using three methods; Thiessen polygons, a grid 

method, and drawing the outlines. Geographically Weighted Logistic Regression could not be 

used to estimate fire sizes, since a set of variables to model fire occurrences as based on 

landscape variables was not found in this study. The assumption that landscape features 

influence fire behavior has been made explicitly when drawing an outline around fire-scarred 

samples. However, in this analysis in the Jämtgaveln nature reserve, these assumptions seems 

incorrect, and the probability of fire depends more on distance from a fire-scarred tree (at 

least in the earlier record).  

Even though the adjusted R2 values increased with added variables, the AICc values also 

increased, indicating a decrease in the quality of the models. Future work needs to include 

logistic regression/OLS analyses to see whether all variables together can better estimate fire 

size. In this analysis, only five variables were considered to calculate the R2 and AICc values 

and more variables might be necessary. 

The variable selection process was challenging as some variables were not available and 

others could not be included (due to multicollinearity issues). Future work could include a 

geographically weighted PCA to see if variables that do not have multicollinearity issues 

might produce better results. 

In this study, only locally changing variables that did not change temporally in our analyses 

were considered. In future work, even global variables might be included as, for example, a 

climate reconstructions that is derived from another chronology than the one that includes the 

fire scars. With this climate reconstruction, wet/dry years could be distinguished and included 

as a global variable that changes throughout time. 

Because we do not have the actual fire size, the correctness of the fire-size estimation 

methods cannot be established. However, comparing those three methods, it seems that a 

pattern emerges. Before 1650, fire sizes had less spread between the methods compared to 

after 1650. The period around 1650 is, incidentally, a time where the density of the human 

population increased in both Sweden and the Jämtgaveln area. Future work needs to check 

whether this pattern holds even when more fires are considered. 
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8 Appendix A 
Instructions for Data Rasterization (example with 100m grid cells): 

Landcover 

- Create a fishnet (Data management – Feature Class – Create Fishnet) 

o 100m, template extent = study area 

- Tabulate Area (Spatial Analyst – Zonal – tabulate Area) 

o Input zone data = 100m fishnet 

o Zone field = FID 

o Input raster or feature class data = e.g. landcover 

o Class field = (if landcover) value 

o Output table = enter a name 

o Processing cell size 1 x 1m 

 Not the cell size of output table or so, but how big cells that gets 

averaged 

- Join resulting table to 100m fishnet 

- Export 100m fishnet (with tabulated-area table attached) 

- Add fields to new shapefile (to attribute table) 

o Double 

o E.g. lc_forest, lc_formir, lc_mires, … 

- Calculate the percentage of each landcover type in the new fields 

- Polygon to Raster (Conversion – to Raster) 

o Cell assignment type = maximum_area; cellsize = 100 

o Each field with % of landcover creates one raster (in my case 5 raster created: 

100_lc_forest, 100_lc_formir, 100_lc_rocks, 100_lc_mires, 100_lc_ lakes) 

DEM 

- Data management – Raster – Raster processing – Resample 

o Output cell size 100m 

o Resampling technique: bilinear 

Soil Types 

o Soil layers to Raster (Conversion – to Raster – Polygon to Raster) 

 1m cell size 

 Max_area 

 Processing extent (under Environment) = study area 

o Tabulate area (some above, but with class field, e.g. BL_TX) 

o Join with fishnet 

 Keep matching data 

o Export joined fishnet to shapefile 

o Add fields 

o Calculate % of each soil type 

o Polygon to raster 
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Soil depth 

- Zonal Statistics (calculates the average value of raster in each polygon) 

o Environmental Settings: cell size = 100m 

o Input raster/zone feature = 100m fishnet 

o Zone field = FID 

o Input value raster = jorddjup… 

o Output raster = insert new name 

o Statistic type = mean 

o Check “Ignore NoData in calculations” 

Dairy Farms 

- Euclidean Distance (Spatial Analyst – Distance) 

o Environmental Settings 

 Snap to Raster = 100m_raster (it doesn’t matter which one) 

 Cell size = 100m 
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9 Appendix B 
Step-by-step instruction for calculating the probability plot (close trees burn at same time): 

In the Point-Distance tool (Analysis  Proximity  Point Distance), the input feature was 

also the near feature) and I chose to only export the FID (feature ID). These FID numbers 

were then used to join the “fire data” to the distance table which had about 77000 possible 

combinations. These combinations included the distance between two points twice as it 

calculated the distance between 1 – 2 and 2 – 1. However, I used this fact to calculate the 

overlapping fires: 

 

After importing the table to Excel, I sorted the distance column (lowest to highest) and added 

a column to filter the data so that only one distance between two points were included. (This 

was done by adding a blank, 1, blank, 2, and so on in the first, second, third, and fourth row, 

respectively, and filling the cells automatically with this pattern.) After copying this table to a 

new sheet, getting rid of the fire data in the new table, and filtering (Data  Filter) the data so 

that only the blank lines were visible (so only one distance per sample pair), I could then 

calculate (by adding each cell of the visible row to the next invisible one) a number that 

represented one of five option: 

(0)no overlap for of the recording sample, 

(1)one sample is recording, 

(2)both samples are recording or one sample has a fire scar and the other sample is not 

recording, 

(3)One sample with a fire scar with the other sample recording, and 

(4)both samples with a fire scar 

 

In this case, I used 3 and 4 to calculate (with countif) how many fires there were that did (#4) 

and did not (#3) overlap. The probability was then calculated by the overlapping fires (#4) 

and total number of fires in overlapping period (#3 + #4). I replaced all division errors with a 

zero. 
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10 Appendix C: Correlograms 

10.1 Correlogram (100m grid – all variables) 

 

Figure 10.1: Correlogram (100m, all variables) showing the correlation values as based on the color scheme of Figure 4.1 

(upper panel) and the point distribution between variables (lower panel). 

#Set working directory 
setwd("C:/temp/gwr_100grid/corrgram") 
 
#load datafile in R  
jamt.corr <- read.table("jamt100av.txt", header = T) 
 
#Convert to data frame 
jamt.corr <- as.data.frame(jamt.corr) 
 
# corrgram with scatter plots 
corrgram(jamt.corr, lower.panel = panel.pts)  
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10.2 Correlogram (100m grid - 13 variables) 

 

 

Figure 10.2: Correlogram (100m, 13 variables) showing the correlation values as based on the color scheme of Figure 4.1 

(upper panel) and the point distribution between variables (lower panel). 

#Set working directory 
setwd("C:/temp/gwr_100grid_sel_var/corrgram") 
 
#load datafile in R 
jamt.corr <- read.table("jamt100_13v.txt", header = T) 
 
#Convert to data frame 
jamt.corr <- as.data.frame(jamt.corr) 
 
# corrgram with scatter plots 
corrgram(jamt.corr, lower.panel = panel.pts) 
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10.3 Correlogram (100m grid – 10 variables) 

 

Figure 10.3: Correlogram (100m, 10 variables) showing the correlation values as based on the color scheme of Figure 4.1 

(upper panel) and the point distribution between variables (lower panel). 

# Correlogram (100m grid - nine variables) 
#Set working directory 
setwd("C:/temp/gwr_100grid_9var/corrgram") 
 
#load datafile in R 
jamt.corr <- read.table("jamt100_10v.txt", header = T) 
 
#Convert to data frame 
jamt.corr <- as.data.frame(jamt.corr) 
 
# corrgram with scatter plots 
corrgram(jamt.corr, lower.panel = panel.pts)  
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10.4 Correlogram (100m grid PCA) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

#Set working directory 
setwd("C:/temp/gwr_100grid_PCs/corrgram") 
 
#load datafile in R 
jamt4.corr <- read.table("jamt100PC.txt", header = T) 
 
#Convert to data frame 
jamt4.corr <- as.data.frame(jamt4.corr) 
 
# corrgram with scatter plots 
corrgram(jamt4.corr, lower.panel = panel.pts) 

  

Figure 10.4: Correlogram (100m, PCA) showing the correlation values as based on the color scheme of Figure 4.1 (upper 

panel) and the point distribution between principal components (lower panel). 
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10.5 Correlogram (250m grid – all variables) 

 

 

Figure 10.5: Correlogram (250m, all variables) showing the correlation values as based on the color scheme of Figure 4.1 

(upper panel) and the point distribution between variables (lower panel). 

#Set working directory 
setwd("C:/temp/gwr_250grid/corrgram") 
 
#load datafile in R 
jamt2.corr <- read.table("jamt250av.txt", header = T) 
 
#Convert to data frame 
jamt2.corr <- as.data.frame(jamt2.corr) 
 
# corrgram with scatter plots 
corrgram(jamt2.corr, lower.panel = panel.pts) 
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10.6 Correlogram (250m grid - 12 variables) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

#Set working directory 
setwd("C:/temp/gwr_250grid_sel_var/corrgram") 
 
#load datafile in R 
jamt2.corr <- read.table("jamt250_12v.txt", header = T) 
 
#Convert to data frame 
jamt2.corr <- as.data.frame(jamt2.corr) 
 
# corrgram with scatter plots 
corrgram(jamt2.corr, lower.panel = panel.pts) 

  

Figure 10.6: Correlogram (250m, 12 variables) showing the correlation values as based on the color scheme of Figure 4.1 

(upper panel) and the point distribution between variables (lower panel). 
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10.7 Correlogram (250m grid PCA) 

 

 

Figure 10.7: Correlogram (250m, PCA) showing the correlation values as based on the color scheme of Figure 4.1 (upper 

panel) and the point distribution between principal components (lower panel). 

#Set working directory 
setwd("C:/temp/gwr_250grid_PCs/corrgram") 
 
#load datafile in R 
jamt3.corr <- read.table("jamt250PC.txt", header = T) 
 
#Convert to data frame 
jamt3.corr <- as.data.frame(jamt3.corr) 
 
# corrgram with scatter plots 
corrgram(jamt3.corr, lower.panel = panel.pts) 
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11 Appendix D: Maps of Fire Size Comparison 

11.1 Year 1521 
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Figure 11.1: Method comparison between the different methods for the year 1521: Thiessen polygons, drawing an outline, grid method, and an INLA model. 
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11.2 Year 1576 

   

542000 544000 546000 548000

6
9

4
7

0
0

0
6

9
4

8
0

0
0

6
9

4
9

0
0

0
6

9
5

0
0

0
0

6
9

5
1

0
0

0
6

9
5

2
0

0
0

1576

0.0

0.2

0.4

0.6

0.8

1.0

INLA Model 

Figure 11.2: Method comparison between the different methods for the year 1576: Thiessen polygons, drawing an outline, grid method, and an INLA model. 
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11.3 Year 1644 

 

Figure 11.3: Method comparison between the different methods for the year 1644: Thiessen polygons, drawing an outline, grid method, and an INLA model.   
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11.4 Year 1677 

 

Figure 11.4: Method comparison between the different methods for the year 1677: Thiessen polygons, drawing an outline, grid method, and an INLA model.  
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11.5 Year 1723 

 

Figure 11.5: Method comparison between the different methods for the year 1723: Thiessen polygons, drawing an outline, grid method, and an INLA model.  
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11.6 Year 1729 

 

Figure 11.6: Method comparison between the different methods for the year 1729: Thiessen polygons, drawing an outline, grid method, and an INLA model.  
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11.7 Year 1770 

 

Figure 11.7: Method comparison between the different methods for the year 1770: Thiessen polygons, drawing an outline, grid method, and an INLA model.  
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11.8 Year 1789 

 

Figure 11.8: Method comparison between the different methods for the year 1789: Thiessen polygons, drawing an outline, grid method, and an INLA model.  
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11.9 Year 1807 

 

Figure 11.9: Method comparison between the different methods for the year 1807: Thiessen polygons, drawing an outline, grid method, and an INLA model.   
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11.10 Year 1831 

 

Figure 11.10: Method comparison between the different methods for the year 1831: Thiessen polygons, drawing an outline, grid method, and an INLA model.  
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11.11 Year 1844 
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Figure 11.11: Method comparison between the different methods for the year 1844: Thiessen polygons, drawing an outline, grid method, and an INLA model. 
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11.12 Year 1868 
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Figure 11.12: Method comparison between the different methods for the year 1868: Thiessen polygons, drawing an outline, grid method, and an INLA model. 
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 Department of Physical Geography and Ecosystem Science 

 

Master Thesis in Geographical Information Science 

 

1. Anthony Lawther: The application of GIS-based binary logistic regression for 
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years. How can we predict past landscape pattern scenario and the impact on 

habitat diversity? (2013). 

26. Christina Fotiou: Evaluating habitat suitability and spectral heterogeneity 
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