
The Quantum Szilard Engine:
Interactions, Impurities and Dynamics

Master Thesis in Physics

Mikael Nilsson Tengstrand

Division of Mathematical Physics, LTH, September 2016



Abstract

In this thesis, di�erent aspects of the quantum Szilard engine are studied using
the con�guration interaction method. The engine is modelled as a one-dimensional
in�nite well.

The e�ects of a contact-interaction are examined and it is found that attrac-
tive contact-interactions can improve the work output at certain temperatures of an
engine that has bosons as a working medium.

The role of impurities in the engine is investigated and found to have a large
impact on the low-temperature behaviour of the engine.

Dynamics of a single-particle engine are considered in order to identify �nite-
speed e�ects in the engine's cycle.

i



Acknowledgements

I would like to thank Stephanie Reimann for giving me the opportunity to do this
thesis and for welcoming me into her research group. I am grateful for the discussions
we have had and all the guidance she has provided.

I would also like to thank Jakob Bengtsson for sharing his knowledge when we
together found out about the important role of interactions in the bosonic Szilard
engine. Another big thanks to him for always being able to provide excellent expla-
nations to all of my questions and for his con�guration interaction method library
which I have used during this thesis.

Finally, a big thanks to Peter Samuelsson for examining my thesis.

ii



Contents

1 Introduction 1

2 The Szilard Engine 3
2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Maxwell's Demon . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.2 Szilard's Engine . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.3 Erasure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 The Classical Many-Particle Szilard Engine . . . . . . . . . . . . . . . 7
2.3 The Quantum Szilard Engine . . . . . . . . . . . . . . . . . . . . . . 9

2.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.2 Work Output . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Theory and Method 15
3.1 Identical Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.1 Basic Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.2 Second Quantization . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 The Con�guration Interaction Method . . . . . . . . . . . . . . . . . 20
3.3 Parity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.5 B-splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 Interactions 30
4.1 No Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2 Contact-Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2.1 Insertion Position and Temperature Dependence for Bosons . 36
4.2.2 Attractive Interaction Dependence for Bosons . . . . . . . . . 40

5 Impurities 46

iii



6 Dynamics 51
6.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.2 Insertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.3 Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7 Conclusions and Outlook 61

iv



Chapter 1

Introduction

For almost a century, the Szilard engine has acted as a tangible way to study the role
of information in physics. The idea of an engine driven entirely by information was
conceived by Leo Szilard in 1929 [1], and has been studied in many di�erent ways
ever since [2�10]. The simplest instance of the Szilard engine consists of a single
particle in a box connected to a heat bath at a constant temperature. The box is
then divided into two halves with an impenetrable partition, and the position of the
particle is measured. Based on the outcome of the measurement an external load can
be attached to the system and work can be extracted through isothermal expansion.

The ideas of the Szilard engine can also be brought into the quantum realm. While
the work associated with the insertion and removal processes may be assumed to be
zero for the classical engine, this is not the case for the quantum one. For a quantum
Szilard engine, inserting or removing a partition�even an arbitrarily thin one�
changes the system and shifts the energy levels, which implies that these processes
must be associated with non-zero work. Additionally, we have at the quantum level
di�erent particle statistics which govern the behaviour of the engine [4]. The Szilard
engine is described more thoroughly in chapter 2.

Classical information to work conversions with schemes similar to that of the
Szilard engine have been realized experimentally [11, 12], but so far no quantum
versions have been made. The quantum Szilard engine is often treated in a highly
idealized way, so for this master thesis I have studied the engine under less ideal
circumstances. The things that I have looked at are how interactions and impurities
a�ect the work output of the engine, as well as some properties of the processes of
the engine when the steps are not carried out quasi-statically. Much of the work
of this thesis has been carried out numerically, using the con�guration interaction
method.
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The history and theory of the Szilard engine are described in chapter 2. Short
reviews of some of the most important theoretical concepts are given in chapter 3,
along with an outline of the method used to obtain the results in chapters 4 and 5.
Chapter 4 contains results for the quantum Szilard engine when its working medium
consists of interacting particles. Irregularities in the con�ning potential�referred to
as impurities throughout this thesis�are treated in chapter 5 and the dynamics of
the engine in chapter 6. The thesis is concluded in chapter 7.
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Chapter 2

The Szilard Engine

The Szilard engine is the central topic of this thesis, and this chapter is dedicated
to provide theory for the results in the upcoming chapters. Before this can be
done, however, Maxwell's demon has to be introduced. This chapter gives a brief
overview of the historical background relevant to the Szilard engine followed by
sections analysing both its classical and quantum versions in more detail.

2.1 Background

2.1.1 Maxwell's Demon

What would later be known as Maxwell's demon was �rst introduced in 1867 in a
letter from James Clerk Maxwell to Scottish physicist Peter Tait [2]. In this letter,
Maxwell describes a thought experiment with a gas in thermal equilibrium which
is divided into two equally large sections by a wall with a small hole covered by a
shutter that can be opened and closed frictionlessly.

Within the gas, Maxwell envisioned a small intelligent being�today known as
Maxwell's demon�with the ability to distinguish between the particles of the gas,
measuring their positions and momenta. Using this information in conjunction with
the shutter, the demon was thought to be able to allow particles faster than the
average particle to pass from one side, while simultaneously disallowing particles
slower than average to pass in this direction. In the opposite direction, the demon
would let only slower than average particles pass while disallowing the fast ones. This
sorting process creates a temperature di�erence in the gas, without having expended
any work (though it is important to note that the demon has to gain some amount
of information to perform this sorting scheme), which is in violation of the second
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law of thermodynamics. Maxwell used this thought experiment to argue that the
second law is not an absolute law, but rather a statistical principle [2].

2.1.2 Szilard's Engine

Maxwell's demon managed to avoid serious scrutiny for the �rst couple of decades
of its life. It was not until 1929, when Leo Szilard presented an engine assisted by
such an intelligent being [1], that the demon would see renewed interest.

The Szilard engine is a special kind of engine driven by information that utilizes
only a single heat bath of some constant temperature, which is against the Kelvin-
Planck formulation of the second law of thermodynamics [2].

A simple version of the Szilard engine consists of a single particle assumed to obey
the ideal gas law which is initially con�ned to some volume. The cycle of the engine
has four steps: insertion, measurement, expansion and removal, see Fig. 2.1. In the
�rst step, a thin adiabatic partition is inserted which divides the volume into two
new equally sized volumes. Classically, this process is assumed to do no work, and
the particle is now in either of the two volumes with equal probability. In the second
step, a measurement is made by the demon and the particle is found on one side.
The information about the position of the particle is stored by the demon so that an
external load can be attached to the system, depending on which side the particle
is found. In the third step the system is expanded quasi-statically and isothermally
while being connected to a constant temperature heat bath. This expansion is done
until the partition reaches the end of the container and results in work

W = kBT

∫ V

V/2

dV ′

V ′
= kBT ln 2 (2.1)

being transferred to the external load. In expression (2.1), kB is Boltzmann's con-
stant, T the temperature of the heat bath and V the total volume of the box. The
work (2.1) is taken as heat Q from the heat bath. In the fourth and last step, the
partition is removed�again without any work cost or gain�along with the external
load. This step brings the engine back to its initial state again, see Fig. 2.1 for an
illustration of the whole cycle.

In total, due to conservation of energy, heat Q has been lost by the heat bath and
work W = Q = kBT ln 2 has been gained by the external load. Since the system has
been reset to its initial state, the entropy change of the single particle system for the
whole cycle is zero. For the heat bath the entropy change is ∆S = −Q/T = −kB ln 2,
if Q is the heat absorbed by the system. This decrease in entropy clearly violates
the second law of thermodynamics, for the second law to hold there must be an
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Figure 2.1: The cycle of the Szilard engine. (a) A thin wall is inserted without any
work cost. (b) The particle is found on one side through measurement. (c) Work is
done to an external load through isothermal expansion. (d) The system is reset to
its original state. Adapted from Fig. 1 in Ref. [4].

entropy increase somewhere else, greater than or equal to kB ln 2. Szilard ascribed
this entropy increase to the measurement process and claimed kB ln 2 of entropy
production to be a fundamental lower limit for this process [1].

A point that can be raised regarding the cyclic process described in this section
is whether thermodynamics is applicable when the working medium consists of only
a single particle. To solve this problem, one may instead view the system as an
ensemble of identical systems [2], where the behaviour of the ensemble corresponds
to that of an average single-particle system.

2.1.3 Erasure

The next major event in the history of Maxwell's demon occured in 1961, when
Rolf Landauer published a paper on the lower bound of heat and entropy generation
in computers [13]. Here, Landauer de�nes the concept of logical irreversibility for
computing processes, i.e. processes with non-injective mapping between states. That
a process is non-injective means that di�erent initial states may end up in the same
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�nal state for the same process.
To emphasize clarity, I will in the following paragraphs write every logical state

with a special font.
Consider as an example the operation of memory erasure, which takes an arbitrary

state to some reference zero state. This process is obviously not logically reversible if
there are two or more states, since, when the system is found in zero, it is impossible
to know which state the system was in prior to erasure. On the other hand, a logical
operator such as the NOT-operator is logically reversible since it is always possible
to know the state of the system before the operation (true if false and vice versa).

According to Landauer, every logical state must have some physical realization,
which means that any logically irreversible process must cause a reduction in real,
physical degrees of freedom and thus dissipation of heat [13].

To see why erasure must come with dissipation, let us examine an example more
closely. For the Szilard engine, let the memory of the demon be similar to that of
the engine itself, i.e. a single particle in a container of volume V divided into two
equal parts by a partition. After the memory has been coupled to the engine the
particle is on either side of the partition, corresponding to two di�erent memory
states: left or right. By choosing left to be the standard reference state, a
process that causes erasure can be performed by �rst removing the partition and
then compressing the gas from the right in a quasi-static and isothermal fashion.
Here, the erasure operation requires work kBT ln 2 to be provided which dissipates
as heat to the reservoir, increasing the entropy of the reservoir by kB ln 2. When this
process is complete, the particle is de�nitely on the left side of the partition and the
memory has been reset to the left state regardless of the state prior to erasure [14].

Now, why can we not use a better erasure protocol in this example? If the
memory is in the left state before erasure, nothing needs to be done, and so only
measurements which cause the memory to end up in the right state need to be
reset. The answer is that, in order to make use of such a selective protocol, further
measurements would have to be made. The memories corresponding to these mea-
surements would subsequently have to be reset and so forth, resulting in a protocol
that does not improve the erasure operation in terms of work e�ciency and entropy
production [2].

Roughly two decades after the aformentioned article by Landauer was published,
Charles Bennett showed that the entropy production for a two-state process�such as
the single-particle Szilard engine�can be made arbitrarily small [15]. By connecting
these results about measurement and erasure to the Szilard engine, we see that the
process described in section 2.1.2 is not cyclic. For it to be truly cyclic, the memory
that stores the information gained through measurement in the second step has to
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be reset. This requires (at least) work kBT ln 2 to be invested, exactly the amount
obtained from the expansion process. Additionally, the entropy of the heat reservoir
is increased by an amount larger than or equal to kB ln 2 due to heat dissipation.
This entropy compensates for the `missing' entropy in the cycle of the Szilard engine.
Using Bennett's results on measurements, we see that it is the erasure process�not
measurement as thought by Szilard�that saves the second law [14].

2.2 The Classical Many-Particle Szilard Engine

So far, only an engine with a single particle has been considered. In this section I will
examine the classical Szilard engine (CSZE) with an arbitrary amount of particles
assumed to obey the ideal gas law.

I will study a CSZE of volume V with a constant cross section A and a working
medium consisting of N particles. The total length of the engine is Ltot so that
V = ALtot. The insertion position of the partition that separates the volume into
two is denoted xins and measured from one side along the length of the volume, so
that the end points of the volume correspond to 0 and Ltot, see Fig. 2.2.

Figure 2.2: The volume of the Szilard engine described in the text, here a cylinder.

After insertion, the system is expanded to some position xrem
m �based on the

outcome of the measurement�and the partition is subsequently removed. Here m is
the amount of particles found to the left of the partition after measurement. I will
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in this section let the removal positions be at force balance, which from the ideal gas
law can be obtained as {xm/Ltot} = {m/N}.

Since the gas is assumed to be ideal, the particles are independent of each other
and it is equally probable for a particle to occupy each point in the volume. The
probability to �nd a particle in some partial volume Ṽ of the system is then simply
Ṽ /V . If the partition is inserted somewhere such that 0 < xins < Ltot, the probability
to �nd m particles to the left of it is

pm(xins) =

(
N

m

)(
xins

Ltot

)m(
1− xins

Ltot

)N−m
. (2.2)

Here the factor
(
N
m

)
= N !/(m!(N −m)!) is due to the particles being distinguishable.

When m 6= 0 and m 6= N there are particles on both sides of the partition and
thus pressure exerted from both sides. The work associated with the expansion when
m particles are to the left of the partition is then

Wm
exp(xins) =

∫ V m/N

Axins

P (L)dV ′ +

∫ V−V m/N

V−Axins

P (R)dV ′, (2.3)

where P (L) and P (R) are the pressures exerted from the particles in the left and right
chambers, respectively. Since there are m particles to the left and N −m particles
to the right of the partition, we can by using the ideal gas write (2.3) as

Wm
exp(xins) = mkBT

∫ V m/N

Axins

dV ′

V ′
+ (N −m)kBT

∫ V−V m/N

V−Axins

dV ′

V ′
, (2.4)

which can be simpli�ed to

Wm
exp(xins) = −kBT ln


(
xins

Ltot

)m (
1− xins

Ltot

)N−m
(
m
N

)m (
1− m

N

)N−m
 . (2.5)

When all particles are on either side of the partition the expansion work is simply

W 0
exp(xins) = NkBT

∫ V

V−Axins

dV ′

V ′
= −NkBT ln

(
1− xins

Ltot

)
(2.6)

for m = 0 and

WN
exp(xins) = NkBT

∫ V

Axins

dV ′

V ′
= −NkBT ln

(
xins

Ltot

)
(2.7)
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for m = N .
If we assume the work associated with the insertion and removal processes to be

zero as in the previous section, the total average work of a cycle is just the work of
the expansions weighted with the probabilities (2.2), i.e.,

Wtot =
N∑
m=0

pm(xins)Wm
exp(xins). (2.8)

By combining (2.2), (2.5), (2.6) and (2.7) the total work is found to be

Wtot = −NkBT

[(
xins

Ltot

)N
ln

(
xins

Ltot

)
+

(
1− xins

Ltot

)N
ln

(
1− xins

Ltot

)]

− kBT
N−1∑
m=1

(
N

m

)(
xins

Ltot

)m(
1− xins

Ltot

)N−m
ln


(
xins

Ltot

)m (
1− xins

Ltot

)N−m
(
m
N

)m (
1− m

N

)N−m
 . (2.9)

Since only the expansion process contributes to the total work of the CSZE, the
removal positions at force balance must also be optimal with respect to maximizing
the work output of the engine�expansion beyond force balance would go against the
resulting force. To �nd the optimal work value with respect to the insertion position,
the problem is studied numerically, see Fig. 2.3. Here it is found that the maximal
work value is kBT ln 2, which is attained for N = 1 and N = 2, both at xins = Ltot/2.
It may be concluded that the classical Szilard engine with non-interacting particles
as a working medium can not exceed the amount kBT ln 2 in terms of work output.

2.3 The Quantum Szilard Engine

2.3.1 Introduction

One of the earliest treatments of a quantum Szilard engine (QSZE) was made by
Zurek in 1984 [3], who studied a single particle in an in�nite well in the high temper-
ature limit (i.e. at temperatures high compared to the ground state energy). Zurek
then continues on to reach conclusions similar to those made in the classical case.

A more recent study was made by Kim et al. [4], where they derive an expression
for work output of the QSZE for arbitrary trapping potentials and temperatures.
The results in this article are crucial for this thesis and I will in this section adapt
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(a)
(b)

Figure 2.3: Work output of the classical many-particle Szilard engine. (a) Work
output relative to kBT ln 2 as a function of particle number and insertion position.
(b) Optimal work output relative to kBT ln 2 as a function of particle number. From
the left �gure it can be seen that the CSZE is not very sensitive to the insertion
position of the partition, and that this sensitivity is decreased with increasing par-
ticle number. In the right �gure it can be seen that the optimal work output is a
monotonically decreasing function in particle number.

a version of their derivation of the work output of the QSZE, i.e. closely following
Ref. [4].

2.3.2 Work Output

In order to de�ne the work performed by the QSZE, we assume a closed system with
energy levels En according to the time-independent Schrödinger equation:

Ĥ |ψn〉 = En |ψn〉 . (2.10)

Here Ĥ is the Hamiltonian�which contains all information about the system, e.g.
number of particles, trapping potential, interactions etc.�and |ψn〉 its eigenstates.
If we denote the mean occupancies of each energy level by Pn, the internal energy U
can be written as

U = 〈E〉 =
∑
n

PnEn, (2.11)
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which yields the di�erential

dU =
∑
n

(PndEn + EndPn). (2.12)

Next, we de�ne (see Ref. [16])

δW ≡ −
∑
n

PndEn and δQ ≡
∑
n

EndPn, (2.13)

where δW and δQ are in�nitesimal amounts of work and heat, respectively. The
reasonability of these de�nitions can be argued for in the following way: We want
the controllable part of the energy to be associated with work. If we change the
Hamiltonian, we directly change the energy levels of the system. In doing so, the
system can react by changing the occupancies of its states through excitations. This
is done in an uncontrollable way and is thus associated with heat. The de�nitions
(2.13) give us an expression that looks like the classical �rst law of thermodynamics,
dU = δQ− δW , where work is de�ned positive if done by the system.

Assuming a quasi-static and isothermal process, the total amount of quantum
thermodynamic work W performed as some external parameter (for example barrier
height or position) is varied from X1 to X2 can be written as

W ≡
∫
δW = −

∑
n

∫ X2

X1

Pn
∂En
∂X

dX. (2.14)

Since the system is closed and the processes isothermal at some temperature T , the
mean occupancies follow the Boltzmann distribution

Pn =
e−βEn

Z
= − 1

β

∂ lnZ

∂En
, (2.15)

where Z is the partition function Z =
∑

n e
−βEn , and β = 1/kBT . Using (2.15),

(2.14) can be rewritten as

W = kBT
∑
n

∫ X2

X1

∂ lnZ

∂En

∂En
∂X

dX = kBT

∫ X2

X1

d lnZ

dX
dX. (2.16)

If the partition function is continuous in the external parameter X, (2.16) may be
further simpli�ed to

W = kBT [lnZ(X2)− lnZ(X1)]. (2.17)
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Identifying the Helmholtz free energy F = −kBT lnZ, we see that (2.17) can be
written

W = F (X1)− F (X2) = −∆F. (2.18)

This is the classical upper bound to the work performed according to the second law,
−∆F ≥ W , as expected for a quasi-static and isothermal process.

Armed with (2.17), we are now in a position to study the cycle of the QSZE.
Just as in the classical case, the four steps of the cycle are insertion, measurement,
expansion and removal (excluding erasure). The important di�erence here is that
the insertion and removal processes change the energy levels of the system, which
implies that there is a non-zero amount of work associated with these processes.

The insertion process is modelled by slowly increasing the height of an in�nitely
thin barrier. Just as in the previous section, the system is considered in a coordinate
system on the interval [0, Ltot], where Ltot is the total length of the box that the
particles occupy. After insertion�but before measurement�the system is described
by the partition function

Z(xins) =
N∑
m=0

Zm(xins). (2.19)

Here N is the total number of particles and Zm(xins) the partition function of the
system with m particles to the left of the barrier when the partition is inserted at the
position xins, measured from zero in the coordinate system. The partition function
describing the system before insertion is ZN(Ltot) = Z(Ltot). Using (2.17) we �nd
that the work associated with the insertion process is

Wins = kBT [lnZ(xins)− lnZ(Ltot)]. (2.20)

Following the insertion, a measurement is made�here assumed to cost no work�
which puts the system in a state with a de�nite amount of particles on either side.
The expansion is then performed by moving the partition quasi-statically to some
position xrem

m . Since the expansion is dependent on measurement outcome, there
are up to N + 1 di�erent expansion positions xrem

m , each one associated with the
outcome where there are m particles to the left of the barrier. The average work of
the expansion process then becomes

Wexp = kBT

N∑
m=0

pm(xins)[lnZm(xrem
m )− lnZm(xins)]. (2.21)
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The prefactor pm(xins) ≡ Zm(xins)/Z(xins) is the probability of �nding m particles to
the left of the partition as the measurement is performed.

During expansion, the barrier is assumed to be high enough so that tunnelling
through the barrier can be neglected and the number of particles on each side re-
main constant and well-de�ned. Let this barrier height be denoted by V∞. As the
barrier is slowly removed, its height eventually reaches some value V0, low enough to
e�ect delocalization over both sides among the particles. At this point, the partition
function describing the system is no longer Zm(xrem

m ) but rather Z(xrem
m ). Since the

partition function is no longer continuous in the barrier's height, (2.17) can not be
used, and we have to instead take a step back and use (2.16). By separating the
integral into two continuous parts, we can, for some speci�c measurement outcome,
write

Wrem

kBT
=

∫ V0

V∞

d lnZm(xrem
m )

dV
dV +

∫ 0

V0

d lnZ(xrem
m )

dV
dV (2.22)

where V is the height of the barrier. Since the removal process is assumed to be
quasi-static, V0, V∞ →∞ and the �rst term in (2.22) goes to zero. The average work
associated with removal is therefore

Wrem = kBT
N∑
m=0

pm(xins)[lnZ(Ltot)− lnZ(xrem
m )]. (2.23)

Summing up all the di�erent parts of the work from the insertion, expansion and
removal processes, we obtain the total work output of the QSZE as

Wtot = −kBT
N∑
m=0

pm(xins) ln

(
pm(xins)

p∗m(xrem
m )

)
. (2.24)

The function p∗m(xrem
m ) has the same mathematical form as pm(xins), i.e. p∗m(xrem

m ) ≡
Zm(xrem

m )/Z(xrem
m ). The asterisk here indicates the functions' di�erent physical inter-

pretations: The �rst one, pm(xins), is the probability to �nd m particles to the left if
the partition is inserted at the position xins, while p∗m(xrem

m ) is the probability to �nd
m particles to the left in a time-reversed process when the partition is inserted at
xrem
m [10]. A consequence of the possibility for the removal positions to be di�erent

is that the sum of the time-reversed probabilities p∗m(xrem
m ) does not equal to one in

general, i.e.
∑N

m=0 p
∗
m(xrem

m ) 6= 1.
It should be noted that although the expression for work output (2.24) was derived

for a quantum Szilard engine, it turns out to hold for a classical one as well [5]. While
it is expected for quantum mechanics to contain classical mechanics, it is important
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to remember that the irreversibility term containing p∗ in (2.24) appeared as a result
of quantum tunnelling. It turns out that there is a similar term in the classical case,
but here this term is instead due to free expansion [5].

As a �nal side remark, I want to mention that there have been di�ering opinions
about the removal process of the QSZE. In a comment by Plesch et al. [17], it
is claimed that the work output of the QSZE should be higher than the amount
obtained in [4], i.e. the work expression (2.24). This is further discussed in Ref. [8].
In a reply to these claims [18], Kim et al. remark that the results of Plesch et al.

are due to them not accounting for the discontinuity of the partition function. This
discontinuity leads to irreversibility and loss of work during the removal process [10].
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Chapter 3

Theory and Method

As seen in the previous chapter, the only thing we need to know in order to obtain the
total work output of the Szilard engine is the system's energies. When the energies
are known, they can be used to construct the partition functions needed in order to
obtain the probabilities in (2.24), which then give the total work.

I will in this chapter describe the method used to obtain the results in chapters
4 and 5, and give short reviews of the most pertinent theoretical concepts.

3.1 Identical Particles

The quantum-mechanical description of systems consisting of identical particles is
treated in many di�erent textbooks, and I will base this brief section on Refs. [19�21].

3.1.1 Basic Results

In the realm of quantum mechanics, two particles of the same kind are truly indis-
tinguishable [19]. For some orthonormal basis {|ϕn〉} of one-body states, the most
general form of the many-body state describing a system ofN particles can be written
as

|Ψ〉 =
∑

n1···nN

cn1···nN
|ϕn1〉 · · · |ϕnN

〉 . (3.1)

The permutation operator P̂ij that interchanges the one-body state at position i in
the tensor product with the one at position j is de�ned as
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P̂ij |Ψ〉 = P̂ij
∑

n1···nN

cn1···nN
|ϕn1〉 · · · |ϕni

〉 · · · |ϕnj
〉 · · · |ϕnN

〉

=
∑

n1···nN

cn1···nN
|ϕn1〉 · · · |ϕnj

〉 · · · |ϕni
〉 · · · |ϕnN

〉 . (3.2)

We can immediately see that the permutation operator satis�es P̂ 2
ij = 1, i.e. P̂ij =

P̂−1
ij , where 1 is the identity operator. It turns out that the eigenvalues of the

permutation operator are always +1 or −1, and that the eigenvalues of P̂ij are the
same for every i, j for some physical state [20]. Thus, it makes sense to de�ne that

|Ψ〉 is symmetric if P̂ij |Ψ〉 = + |Ψ〉 ,
|Ψ〉 is anti-symmetric if P̂ij |Ψ〉 = − |Ψ〉 ,

where this type of symmetry is known as exchange symmetry. Since the expectation
value of some observable Â is independent of permutations (otherwise there would
be some measurable quantity due to permutations, and the particles would not be
indistinguishable) we must have

〈Ψ| P̂ †ijÂP̂ij |Ψ〉 = 〈Ψ| Â |Ψ〉 . (3.3)

This can be extended to two arbitrary states |Ψ〉 and |Φ〉 by writing [20]

〈Ψ| Â |Φ〉 =
1

4

(
〈Ψ + Φ| Â |Ψ + Φ〉 − 〈Ψ− Φ| Â |Ψ− Φ〉

− i 〈Ψ + iΦ| Â |Ψ + iΦ〉+ i 〈Ψ− iΦ| Â |Ψ− iΦ〉
)
, (3.4)

using short-hand notation according to |Ψ + iΦ〉 = |Ψ〉+ i |Φ〉. The expression (3.4)
implies that Â = P̂ †ijÂP̂ij. When Â = 1, we �nd that

P̂ij = P̂−1
ij = P̂ †ij, (3.5)

but since the permutation operator must be the same for every observable, (3.5) must
be a general property, and hence [Â, P̂ij] = 0. In particular, when the observable

is equal to the Hamiltonian, Â = Ĥ, we have that the permutation operator is
a conserved quantity from the Heisenberg equation of motion, which implies that
exchange symmetry must be time-independent.
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To the best of our knowledge, almost all systems of identical particles have a
Hilbert space consisting of either only symmetric or only anti-symmetric states, which
is known as the symmetry postulate [19] (there is a special type of quasiparticle called
the anyon which is neither a boson nor a fermion [19]). Particles associated with
symmetric states are known as bosons and particles associated with anti-symmetric
states are known as fermions.

The fact that the many-body state is either symmetric or anti-symmetric imposes
strong restrictions on its form. The bosonic many-body states |Φ(S)〉 are usually
referred to as permanents, and must for N identical particles have the form [20]

|Φ(S)〉 =
1√

N !
∏

nNn!
perm


|ϕn1〉

(1) |ϕn2〉
(1) · · · |ϕnN

〉(1)

|ϕn1〉
(2) |ϕn2〉

(2) · · · |ϕnN
〉(2)

...
...

. . .
...

|ϕn1〉
(N) |ϕn2〉

(N) · · · |ϕnN
〉(N)

 (3.6)

in order to be properly symmetrized. Here the upper index describes which space
the ket belongs to, i.e. its position in the tensor product. The permanent (the
mathematical object here denoted by `perm', not the state |Φ(S)〉) is similar to the
determinant except that it has plus signs where there are minus signs in the determi-
nant. The numbers Nn denote how often a speci�c |ϕn〉 occurs in the tensor product.
For example, if there are two particles in total, both in the same state |ϕ1〉, then
N1 = 2 and |Φ(S)〉 = 1/2 |ϕ1〉 |ϕ1〉+ 1/2 |ϕ1〉 |ϕ1〉 = |ϕ1〉 |ϕ1〉 as expected.

The properly symmetrized fermionic many-body states |Φ(A)〉 are known as Slater
determinants, and have for N identical particles the form [20]

|Φ(A)〉 =
1√
N !

∣∣∣∣∣∣∣∣∣
|ϕn1〉

(1) |ϕn2〉
(1) · · · |ϕnN

〉(1)

|ϕn1〉
(2) |ϕn2〉

(2) · · · |ϕnN
〉(2)

...
...

. . .
...

|ϕn1〉
(N) |ϕn2〉

(N) · · · |ϕnN
〉(N)

∣∣∣∣∣∣∣∣∣ . (3.7)

As the states (3.6) and (3.7) are built out of single-particle states they do not
include interactions between particles, and can therefore only describe the non-
interacting case exactly. They can, however, be used as many-body basis states
for systems with interactions, which will be described further in section 3.2.
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3.1.2 Second Quantization

Although most of this section follows Ref. [21], the theory of second quantization can
be found in most standard textbooks on many-particle quantum physics, see also for
example Refs. [19,20].

There is an alternative way to represent the many-body state, known as occupa-
tion number representation, which is used in the second quantization formalism. In
second quantization, the many-body state is denoted by

|Φ〉 = |n1, n2, n3, . . .〉 (3.8)

where ni is the number of particles with eigenvalue λi of some operator, for example
the single particle Hamiltonian (λi is in this case the energy). As an example, let
{|ϕn〉} be a basis of single-particle states, then the many-body state for two particles
where one particle is in |ϕ1〉 and the other in |ϕ3〉 can according to (3.6) and (3.7)
be written as 1/

√
2(|ϕ1〉 |ϕ3〉 ± |ϕ3〉 |ϕ1〉), where the plus sign corresponds to bosons

and the minus sign to fermions. Both of these states are in occupation number
representation written simply as |1, 0, 1, 0, 0, . . .〉, and the symmetry of the state
is instead built into the operators in the formalism of second quantization, to be
explained later in this section.

The states (3.8) belong to a space called the Fock space. A Fock space is a product
of single-particle Hilbert spaces such that its elements are properly symmetrized [20].

One way to build the formalism of second quantization is to postulate that the
states (3.8) satisfy both orthogonality and completeness and to introduce the opera-
tors ĉ†i and ĉi such that these many-body states are eigenstates of the operator ĉ

†
i ĉi for

all i. These operators are then postulated to follow the following (anti-)commutation
relations [21]

Bosons Fermions

[ĉ†i , ĉ
†
j] = 0 {ĉ†i , ĉ

†
j} = 0

[ĉi, ĉj] = 0 {ĉi, ĉj} = 0

[ĉi, ĉ
†
j] = δij {ĉi, ĉ†j} = δij.

where the commutator and anti-commutator are de�ned as [Â, B̂] = ÂB̂ − B̂Â and
{Â, B̂} = ÂB̂ + B̂Â, respectively. From these relations it may be shown that the
operators ĉ†i and ĉi have the properties [20]
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Bosons

ĉ†i |n1, n2, . . . , ni, . . .〉 =
√
ni + 1 |n1, n2, . . . , ni + 1, . . .〉

ĉi |n1, n2, . . . , ni, . . .〉 =
√
ni |n1, n2, . . . , ni − 1, . . .〉

and

Fermions

ĉ†i |n1, n2, . . . , 0i, . . .〉 = (−1)
∑

i<j nj |n1, n2, . . . , 1i, . . .〉
ĉ†i |n1, n2, . . . , 1i, . . .〉 = 0

ĉi |n1, n2, . . . , 0i, . . .〉 = 0

ĉi |n1, n2, . . . , 1i, . . .〉 = (−1)
∑

i<j nj |n1, n2, . . . , 0i, . . .〉 .

It can be seen that the operator ĉ†i increases the amount of particles in state i, and
that ĉi decreases it. These operators are thus known as creation and annihilation op-
erators. Together with the state (3.8), these operators contain the same information
as the many-body states (3.6) and (3.7), but allow for a more tractable formalism,
especially when a computational implementation is desired.

The position representation of a general one-dimensional many-body Hamiltonian
without spin can be written

Ĥ = Ĥ(1) + Ĥ(2) =
N∑
i=1

(
− ~2

2M

d2

dx2
i

+ V (1)(xi)

)
+

1

2

∑
i 6=j

V (2)(xi, xj) (3.9)

where ~ is Planck's reduced constant, M the mass of single particle, V (1) an external
one-body potential and V (2) a two-body interaction potential. The one-body Hamil-
tonian Ĥ(1) corresponds to the �rst sum in the above expression and the two-body
Hamiltonian Ĥ(2) to the second sum. By using second quantization, this Hamiltonian
may be rewritten as [21]

Ĥ =
∑
ij

〈i| Ĥ(1) |j〉 ĉ†i ĉj +
∑
ijkl

〈ij| Ĥ(2) |kl〉 ĉ†i ĉ
†
j ĉlĉk (3.10)

where
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〈i| Ĥ(1) |j〉 =

∫
φ∗i (x)Ĥ(1)(x)φj(x)dx (3.11)

and

〈ij| Ĥ(2) |kl〉 =

∫
φ∗i (x)φ∗j(x

′)Ĥ(2)(x, x′)φk(x)φl(x
′)dxdx′, (3.12)

where φi are the single-particle orbitals of the system. It is important to note that
the transformation to the Hamiltonian written in terms of creation and annihila-
tion operators (3.10) is valid only when the single-particle wave functions φi are
orthogonal [20].

3.2 The Con�guration Interaction Method

There are di�erent numerical methods to obtain the energies of many-particle systems
with interactions and I have for this thesis used the con�guration interaction method
(abbreviated CI). The reason for choosing this method is because it can be used to
calculate the energies of excited states, unlike for example the Hartree-Fock method.

We want to obtain solutions to the time-independent Schrödinger equation (2.10),
with a Hamiltonian of the form (3.9) as described in the previous section. Note
that even though I restrict myself to one dimension in this section, both second
quantization and CI can be used to treat system with more dimensions.

The �rst step of CI is to choose a suitable one-body basis {|ϕn〉}, for example
the solutions to the one-body Schrödinger equation(

p̂2

2M
+ V̂ (1)

)
|ϕn〉 = εn |ϕn〉 , (3.13)

where p̂ is the one-dimensional momentum operator and εn the single-particle en-
ergies. Using the one-body basis, a many-body basis {|Φν〉} can be constructed by
forming the properly symmetrized many-body states. In order to be able to per-
form any calculations, the many-body basis has to be �nite. This is not the case
for many systems of interest, since the one-body bases of these systems are in�nite,
which implies that the many-body bases are also in�nite. In order to proceed, a
truncation has to be made. This truncation can, for instance, be made to either the
one-body basis, many-body basis or both, by choosing only elements under a certain
energy cut-o�. Either way, the amount of elements in the many-body basis becomes
�nite. Let this size be denoted by d. By using this basis in conjunction with the
completeness relation and Eq. (2.10), we obtain
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d∑
ν=1

〈Φξ| Ĥ |Φν〉 〈Φν |Ψ(d)〉 = E(d) 〈Φξ|Ψ(d)〉 (3.14)

where |Ψ(d)〉 and E(d) are the numerical approximations of |Ψ〉 and E due to the
basis truncation. Equation (3.14) can be written in matrix form according to


〈Φ1| Ĥ |Φ1〉 〈Φ1| Ĥ |Φ2〉 · · · 〈Φ1| Ĥ |Φd〉
〈Φ2| Ĥ |Φ1〉 〈Φ2| Ĥ |Φ2〉 · · · 〈Φ2| Ĥ |Φd〉

...
...

. . .
...

〈Φd| Ĥ |Φ1〉 〈Φd| Ĥ |Φ2〉 · · · 〈Φd| Ĥ |Φd〉



〈Φ1|Ψ(d)〉
〈Φ2|Ψ(d)〉

...
〈Φd|Ψ(d)〉

 = E(d)


〈Φ1|Ψ(d)〉
〈Φ2|Ψ(d)〉

...
〈Φd|Ψ(d)〉

 .

(3.15)
The problem is thus to �nd the matrix elements 〈Φξ| Ĥ |Φν〉 and to diagonalize the
matrix in Eq. (3.15). By using the second quantization formalism, �nding the matrix
elements is reduced to �nding which 〈Φξ| Ĥ |Φν〉 are non-zero and then calculating
the one- and two-body matrix elements (3.11) and (3.12). The diagonalization can be
done using standard numerical routines from, for example, the LAPACK library [22].

Typical numerical diagonalization methods have a time complexity proportional
to d3 for d× d matrices [23]. This becomes computationally expensive quickly with
increased particle number. Consider an example where the size of the one-body
basis is n and there are N particles. Without truncation in the many-body basis
there are

(
n
N

)
and

(
N+n−1

N

)
elements in the many-body basis for fermions and bosons,

respectively. In actual calculations we usually have n� N , so the many-body basis
size is very rapidly increasing in N . For example: If the size of the one-body basis is
n = 100, then there are 100 many-body basis states for one fermion, 4950 for two and
161700 for three. We can also conclude that it is computationally more expensive to
perform calculations for bosonic systems than for fermionic when using equally sized
one-body bases and no cut in the many-body basis.

3.3 Parity

The parity operator π̂ in quantum mechanics is an operator that switches the sign
of the position coordinate. The eigenvalues of π̂ can readily be shown to be ±1, so
that we for eigenstates |ψ〉 of the parity operator have

π̂ |ψ〉 = ± |ψ〉 . (3.16)
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By applying 〈x| to Eq. (3.16) we get

ψ(−x) = ±ψ(x). (3.17)

Wave functions that correspond to the plus (minus) sign in (3.17) are said to have
even (odd) parity.

For single-particle Hamiltonians ĥ with external potentials that satisfy V (1)(x) =
V (1)(−x)�which is, for example, the case for the in�nite well or the harmonic
oscillator�we immediately get that [ĥ, π̂] = 0. In this case the solutions to Eq.
(3.13) are simultaneous eigenstates of the Hamiltonian and the parity operator, and
this property can be used to reduce the numerical e�ort when diagonalizing the
Hamiltonian matrix. By separating the solutions to Eq. (3.13) into two sets of even
and odd parity eigenstates, we can also divide the states of the resulting many-body
basis by parity. If the many-body state |Φ〉 = |ψeven〉 |ψodd〉 consists of one even
parity single-particle state and one odd (here omitting the symmetry of the state;
every term in the Slater-determinant or permanent behaves in the same way), then
it must itself have odd parity since

Φ(x1, x2) = 〈x1, x2|Φ〉 = 〈x1|ψeven〉 〈x2|ψodd〉 = ψeven(x1)ψodd(x2) (3.18)

and

Φ(−x1,−x2) = ψeven(−x1)ψodd(−x2) = −ψeven(x1)ψodd(x2) = −Φ(x1, x2). (3.19)

Assume now that the full system uses d many-body states. When the many-body
states have been separated by parity, the many-body Schrödinger equation, i.e. Eq.
(3.15), can be solved twice for each subset of many-body states. Since each subset
has roughly half the amount of elements as the full system, the time complexity
of the problem is reduced to (d/2)3 = d3/8 per subsystem, i.e. d3/4 in total for
some typical diagonalization routine. Since the time complexity for diagonalization
of a system not divided by parity is d3, we can see that the numerical e�ort of the
diagonalization problem has been reduced signi�cantly.

3.4 Method

The method described in this section can be used to obtain results for a QSZE
with non-interacting particles as a medium or particles with contact-interactions
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(the details of this type of interaction will be discussed later in this section). The
notation used in this section follows that of section 2.3.2.

The expression (2.24) for work output of the Szilard engine was derived in section
2.3.2. It is important to remember that the processes in this derivation are carried out
isothermally and quasi-statically. In order to �nd the work output of the QSZE for
some speci�c system, the probabilities pm(xins) and {p∗m(xrem

m )} have to be calculated.
As mentioned, both these probabilities have the same mathematical form, i.e.

pm(x) = p∗m(x) =
Zm(x)

Z(x)
. (3.20)

The partition function Zm(x) describes a system with m particles to the left of a
partition inserted at x and Z(x) =

∑
m Zm(x). For a QSZE such that the subsys-

tems to the left and right of the partition do not interact�which is the case for no
interactions and contact-interactions (since the range of the contact-interaction is
in�nitely short, at least in theory)�we have that

Eij = ε
(L)
i + ε

(R)
j . (3.21)

Here Eij are the energies of the full system and ε
(L)
i and ε

(R)
j the energies of the

subsystems to the left and right of the partition that divides the system, respectively.
The property (3.21) in conjunction with the assumption that the system can be
described by the canonical ensemble allows us to write

Zm(x) =
∑
ij

e−βEij =
∑
i

e−βε
(L)
i

∑
j

e−βε
(R)
j = Z(L)

m (x)Z
(R)
N−m(Ltot − x) (3.22)

where Ltot is the total length of the system considered, and N the total number
of particles. The partition function Z(L) (Z(R)) describes the subsystem to the left
(right) of the partition that separates the composite system.

We can see that all we need in order to calculate the total partition function are
the energies ε

(L/R)
i . Here ε

(L)
i is the ith energy level of a system with m particles in

the region [0, x] to the left of the partition, and ε
(R)
i the ith energy level of a system

with N −m particles in the region [x, Ltot] to the right of the partition.

To calculate the energies ε
(L/R)
i , an external trapping potential has to be chosen to

model the engine. In this thesis, the QSZE is modelled as a system that is eventually
divided in two by a partition that is assumed to be an in�nitely high and thin delta-
like potential. The separation of the initial system yields two new subsystems, both
described by Hamiltonians of the form (3.9).

23



The simplest choice for a trapping potential, and the one I am going to use
throughout this thesis, is the in�nite well described by the one-body potential

V (1)(x) =

{
0 0 < x < Ltot,

∞ otherwise.
(3.23)

The bene�ts of using this potential to model the Szilard engine are many. Since
it is in�nite it has only bound states. Having only bound states can be seen as a
requirement for this description of the engine since we want all particles to always
belong to the engine so that the processes performed make sense in the original
context of the Szilard engine. Additionally, due to the the potential's rectangular
shape, it has a clear boundary, which is a useful property since there is only a well-
de�ned �nite region where the processes of the engine can be performed (for example,
it is only meaningful to insert the partition that divides the system between the edges
of the well, whereas, for instance, for the harmonic oscillator this is not as clear).
Another useful property is that when the in�nite well is separated by the delta-like
partition, it is described by two new in�nite wells. This means that all pertinent
systems are described by in�nite wells which can be exploited computationally.

In order to obtain good results, entire spectra of energies are needed, which
makes the con�guration interaction method an excellent choice for this task. Since
the systems follow the canonical distribution, the lowest energy levels have the largest
impact on the partition function. The amount of energy levels that are needed to
accurately describe the partition function depends on the temperature of the heat
reservoir. At low temperatures, the inverse temperatures β = 1/kBT are large, which
means that terms corresponding to high energies in the partition function vanish
quickly. It is thus possible to describe the partition functions accurately with fewer
energy levels at low temperatures than at high. At high temperatures and, thus small
β, more energy levels are needed which makes the calculations more computationally
expensive.

In chapter 4 the particles' interactions are modelled with a contact-interaction.
The contact-interaction�also known as the delta-interaction�is a good way to
model the interactions of cold atoms [24]. Phenomenologically, it has the form

V (2)(xi, xj) = gδ(xi − xj), (3.24)

where g is the interaction strength. A positive g corresponds to a repulsive interaction
and a negative g to an attractive interaction (g = 0 means there is no interaction).

To present my results in a simpler way I have worked in dimensionless units. By
introducing
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ξ =
10x

Ltot

(3.25)

to the Hamiltonian (3.9) and using (3.24) as the two-body potential, we get

Ĥ =
100~2

L2
totM

[
N∑
i=1

(
−1

2

d2

dξ2
i

+ V (1)(ξi)

)
+
gLtotM

10~2
× 1

2

∑
i 6=j

δ(ξi − ξj)

]
, (3.26)

where Ltot is the physical length of the system. The reason for introducing the
particular dimensionless unit of length in (3.25) is to transform the system from
0 ≤ x ≤ Ltot to a dimensionless system on the interval 0 ≤ ξ ≤ 10 (i.e. to a
new system where the wave functions vanish at ξ = 0 and ξ = 10). The number
10 in (3.25) is chosen simply so that the obtained energies are smaller (than they
would be if we would have chosen 1) in terms of the new dimensionless units. It is
the expression within the brackets of the Hamiltonian (3.26) that has been used in
my calculations. As a result, energies are obtained in units of 100~2/(L2

totM) and
interaction strengths in units of 10~2/(LtotM).

3.5 B-splines

B-splines are piecewise polynomials that can be de�ned according to [25]

Bi,1(x) =

{
1 ti ≤ x < ti+1

0 otherwise
(3.27)

Bi,k(x) =
x− ti

ti+k−1 − ti
Bi,k−1(x) +

ti+k − x
ti+k − ti+1

Bi+1,k−1(x) (3.28)

where Bi,k is a B-spline of index i and order k. The points ti are called knot points
and must satisfy ti+1 ≥ ti. B-splines of order k = 2, 3, 4 can be seen Fig. 3.1.
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(a) (b)

(c) (d)

Figure 3.1: B-splines of di�erent orders in the region [−1, 1] with knot points marked
by blue circles. Note that the boundary knot points are k times degenerate, where
k is the order, so that the maximal amount of B-splines are de�ned everywhere. A
single B-spline has been colored red to illustrate how it is non-zero only in some
region. (a) B-splines of order two. (b) B-splines of order three. (c) B-splines of
order four with a linear knot points distribution. (d) B-splines of order four where
more knot points have been placed around x = −0.5.

Some properties of B-splines are that they are non-orthogonal and that Bi,k(x)
is non-zero only in the region ti < x < ti+k [25], see Fig. 3.1. It follows from the
de�nition that it is possible to have at most k B-splines that are non-zero at every
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x, and in order to achieve this maximal value the boundary knot points have to be
k times degenerate [25].

In the pre-existing CI code that I have used, B-splines are used as a basis. B-
splines are not orthogonal, which is a requirement to be able to use the second
quantization formalism that was introduced in section 3.1.2. In order to be able to
use second quantization, the orthogonal one-body basis states |ϕn〉 are expressed as
a linear combination of B-splines (it should be mentioned that we do not have to use
the one-body basis, any orthogonal basis would do)

|ϕn〉 =
∑
i

ci,n |Bi〉 , (3.29)

where Bi(x) = 〈x|Bi〉 (I will for simplicity omit the order index k from now on).
Note that the expression (3.29) is an approximation since we are working with a
�nite amount of B-splines. The coe�cients ci,n are then obtained by solving the

Schrödinger equation in the B-spline basis. If ĥ is the one-body Hamiltonian and
εn its eigenvalues, we get, by projecting the Schrödinger equation onto the B-spline
basis, the following equation:∑

i

〈Bj| ĥ |Bi〉 ci,n = εn
∑
i

〈Bj|Bi〉 ci,n. (3.30)

This can be written in matrix form

〈B1| ĥ |B1〉 〈B1| ĥ |B2〉 · · ·
〈B2| ĥ |B1〉 〈B2| ĥ |B2〉 · · ·

...
...

. . .


c1,n

c2,n
...

 = εn

〈B1|B1〉 〈B1|B2〉 · · ·
〈B2|B1〉 〈B2|B2〉 · · ·

...
...

. . .


c1,n

c2,n
...

 ,

(3.31)
where

〈Bj| ĥ |Bi〉 =

∫
Bj(x)ĥBi(x)dx (3.32)

and

〈Bj|Bi〉 =

∫
Bj(x)Bi(x)dx. (3.33)

The integrals (3.32) and (3.33) are evaluated numerically using Gaussian quadrature,
which is a numerical method of integration that can be used to obtain results to
machine accuracy for polynomials [26].
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In order to force the wave functions to vanish at the boundary, we remove the two
B-splines that are non-zero at the boundary. Since the wave function is expanded in
B-splines it is thus guaranteed to go to zero at the boundary.

Since B-splines are non-zero only in some region depending on its order, the
Hamiltonian matrix becomes sparse and banded. Banded matrices do not require
much memory to store and can be diagonalized e�ciently using, for example, the
LAPACK library [22] (which is what was used here).

Another bene�t of using B-splines as basis is that the knot points can be placed
to �t the system. If there are some regions that require more accuracy, more knot
points can be placed there and vice versa, i.e. less points can be placed in regions
that are not as interesting, see Figs. 3.1c and 3.1d for an example.

To obtain the results in this thesis I have in all cases used a linear knot point
distribution inside the in�nite well with B-splines of order k = 5. The many-body
basis sizes used for my calculations varied depending on the type of system, see table
3.1.

Bosons Fermions
Two particles 5253 5151
Three particles 30856 27720

Table 3.1: Number of many-body basis states used in my calculations.

One may at this point ask why I have used B-splines as a basis over the analyti-
cally known in�nite well solutions. The main reason is simply that there existed CI
code available for me to use that utilizes the B-splines as a basis. A comparison of
the accuracy between when B-splines and in�nite well solutions are used as a basis
can be seen in Fig. 3.2. The system used for this comparison consists of two bosons
in an in�nite well with an attractive contact-interaction. It can be seen that the
in�nite well solutions and the B-splines are very similar in terms of accuracy, but for
my calculations the B-splines had signi�cantly shorter runtimes.
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Figure 3.2: Comparison between B-splines and in�nite well solutions as a ba-
sis. Shown are the two lowest energy levels of a system with two bosons in
an in�nite well with an attractive contact-interaction of interaction strength g =
−1.0× 10~2/(LtotM). Red squares: In�nite well solutions. Blue circles: B-splines.
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Chapter 4

Interactions

Many facets of the quantum Szilard engine have been studied in the literature, in-
cluding general properties and work output [4], optimal conditions [10], the e�ect
of spin [9], and the role of the third law of thermodynamics [6]. One aspect that
has not yet been studied in great detail is how interactions a�ect the work output
of the QSZE. The e�ect of some interactions is discussed brie�y in Ref. [6], but a
comprehensive study on the subject has yet to be made.

In this chapter I will study the QSZE for particles with contact-interactions and
compare it to the non-interacting case.

4.1 No Interactions

Before we can examine how interactions a�ect the QSZE, results for the non-interacting
case are needed as a reference, i.e. when V (2)(xi, xj) = 0 in (3.9).

To obtain results for the QSZE with a non-interacting medium, it is not necessary
to use the con�guration interaction method since the single-particle energy levels of
the in�nite well are known analytically. The many-body energy levels are then
just sums of di�erent single-particle energy levels with degeneracies determined by
particle type and spin.

The work output for two and three bosons and fermions as a function of temper-
ature and insertion position can be seen in Fig. 4.1. Temperatures will throughout
chapters 4 and 5 be given in units of Etb

1 /kB, where E
tb
1 is the ground state energy

of the non-interacting two-boson system without any partition. This way, the tem-
peratures are the same for all �gures and the data can be compared directly. The
particles are assumed to be spinless (although spinless fermions do not exist, they
can be interpreted as a system of spin-polarized fermions). In these results, optimal
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removal positions xrem
m are used. It turns out that the optimal removal positions are

not at force balance, which is an interesting peculiarity of quantum mechanics [10].
To obtain the removal positions that maximize work output in practice, I calcu-
lated the value of Wtot for many di�erent removal positions over the whole interval
[0, Ltot]. How the optimal removal position for a QSZE with three particles varies
with temperature can be seen in Fig. 4.2. Here the insertion position is chosen to
be xins = Ltot/2 and the particle con�guration such that there is one particle to
the left of the partition. It can be seen from these results how the optimal removal
position di�ers signi�cantly from the classical limit Ltot/3 at low temperatures but
approaches it at high temperatures.
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(a) Two bosons (b) Three bosons

(c) Two fermions (d) Three fermions

Figure 4.1: Work output of the QSZE with non-interacting particles as a function
of barrier insertion position and temperature. At high temperatures it can be seen
that the work output is similar for all systems. This can be explained by the QSZE
approaching the classical limit at high temperatures, i.e. the results in Fig. 2.3a. At
low temperatures Wtot/T is only non-zero at certain insertion points. For bosons it
is only non-zero for a central insertion while for fermions it is non-zero at the same
amount of points as the number of fermions.
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Figure 4.2: Optimal removal position as a function of temperature for three particles
when there is one particle to the left of the partition and the partition is inserted at
xins = Ltot/2. Solid blue line: Three bosons. Solid red line: Three fermions. Dashed
black line: The classical optimal removal position Ltot/3.

In Fig. 4.1, the regions where the work output exceeds the classical upper bound
kBT ln 2 are emphasized by white color. We see that it is possible for the quantum
version of the Szilard engine to exceed the classical one in terms of work output, but
only when the working medium consists of bosons. This is in agreement with the
results in Ref. [4].

An interesting property of the QSZE is its low-temperature behaviour. As can
be seen for all systems in Fig. 4.1, the work output divided by temperature, Wtot/T ,
approaches zero as the temperature approaches zero except at certain insertion po-
sitions. This can be understood in terms of the third law of thermodynamics, which
claims that the entropy of a system approaches a constant value as the temperature
approaches absolute zero. This value is non-zero if the ground state is degenerate
and zero otherwise [27]. In Ref. [6], Kim and Kim show that the entropy production,
which they de�ne as

∆S =
N∑
m=0

pm(xins) ln

(
pm(xins)

p∗m(xrem
m )

)
, (4.1)

vanish as T → 0 unless the ground state of the system is degenerate. A perhaps more
intuitive way to see it is to remember that the Szilard engine is driven by information.

33



The insertion position of the barrier may cause states such that the particles almost
de�nitely are on one side of the barrier after insertion but before measurement, see
Fig. 4.3. By combining this behaviour with the low temperature limit we get a
system where it is known a priori which side of the partition the particles reside.
There is thus no information to be extracted, and no fuel to drive the information
heat engine. Consider as an example a two-boson QSZE directly after insertion with
ground state energies ε

(L)
1 and ε

(R)
1 for the left and right subsystems respectively.

In the T → 0 limit the partition functions can be well approximated by the �rst
term in the sum (if the energies of the subsystems are non-degenerate, which I will
assume here) and the probability to �nd zero particles to the left of the partition
after insertion becomes

p0 =
e−2βε

(L)
1

e−2βε
(L)
1 + e−β(ε

(L)
1 +ε

(R)
1 ) + e−2βε

(R)
1

=
1

1 + eβ(ε
(L)
1 −ε(R)

1 ) + e2β(ε
(L)
1 −ε(R)

1 )
. (4.2)

When the composite system is degenerate, i.e. when ε
(L)
1 = ε

(R)
1 , we get p0 = 1/3,

and in a similar way we �nd that p1 = p2 = 1/3. From (2.24) we get that the total
work in this case reduces to

Wtot =
kBT

3

2∑
m=0

ln(3p∗m), (4.3)

which can be larger than zero, depending on the time-reversed probabilities p∗m. For
the non-degenerate case, when the di�erence in ground state energies between the two
subsystems satis�es ε

(R)
1 − ε(L)

1 � kBT , the exponentials in the denominator on the
right-hand side in expression (4.2) vanish and we get p0 = 1, and thus p1 = p2 = 0.
The total work then becomes

Wtot = kBT ln(p∗0) ≤ 0, (4.4)

which is only non-negative for p∗0 = 1.
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(a) (b)

Figure 4.3: Probability distributions of the six energetically lowest states for a single
particle in an in�nite well with a delta-type barrier of �nite height. (a) Central
barrier. Here the particle can be found on either side of the barrier with equal
probability. (b) Displaced barrier. Here the particle is almost guarantueed to be
found on one side of the barrier, depending on state.

The insertion positions that yield non-zero Wtot/T for the non-interacting QSZE
can be predicted in terms of single-particle states. For bosons, all the particles in the
engine occupy the lowest possible single-particle state in the T → 0 limit. The only
possibility to have a degenerate system is when the left and right wells are equal,
so that the particles may be distributed in di�erent ways between the wells while
still having the same total energy. The only insertion position that yields non-zero
Wtot/T is thus xins = Ltot/2�for any amount of non-interacting bosons.

For fermions, things get a little bit more complicated due to the exclusion prin-
ciple. Consider the case of spin-polarized fermions. Again, all particles will in the
zero-temperature limit occupy the lowest single particle states, up to the Fermi level.
Thus for the system to be degenerate, the single-particle states have to be degenerate
at the Fermi level. This degeneracy can be achieved when energy level i of the left
well is the same as j of the right well, while simultaneously i+ j = N − 1, where N
is the total number of particles [7]. Together with the single-particle energy levels of
the in�nite well this gives a criterion for degeneracies according to

~2i2π2

2ML2
tot

=
~2j2π2

2M(Ltot − xins)2
(4.5)

35



where xins is the insertion position. Using i+ j = N − 1 we �nd that [7]

xins

Ltot

=
i

N + 1
(4.6)

for i = 1, . . . , N , which agrees well with the results in Fig. 4.1.

4.2 Contact-Interactions

In this section I will study the QSZE with contact-interacting bosons as a working
medium to see if it is possible to improve the work output of the engine.

4.2.1 Insertion Position and Temperature Dependence for Bosons

When particles are on di�erent sides of the partition they can never interact due to
the in�nitely short range of the contact-interaction, which means that the systems
on either side of the partition can be treated separately. Results for some di�erent
values of the interaction strength g are shown in Figs. 4.4 and 4.5. Cross sections of
some of these colormap-plots for two bosons can be seen in Fig. 4.6.
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(a) g = −0.5× 10~2/(LtotM) (b) g = −1.0× 10~2/(LtotM)

(c) g = 0.5× 10~2/(LtotM) (d) g = 1.0× 10~2/(LtotM)

Figure 4.4: Work output as a function of temperature and barrier insertion position
of the two-boson QSZE with a contact-interaction of di�erent strengths. We can
see that the work output has decreased for repulsive interactions in the regions that
are white-colored in the non-interacting case. At low temperatures Wtot/T is only
non-zero for a central insertion position for attractive interactions (cf. Fig. 4.1a).
For repulsive interactions this is no longer the case and we instead see two non-
zero points that are moved further away from each other with increased interaction
strength, and the results begin to resemble the results in Fig. 4.1c.
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(a) g = −0.5× 10~2/(LtotM) (b) g = −1.0× 10~2/(LtotM)

(c) g = 0.5× 10~2/(LtotM) (d) g = 1.0× 10~2/(LtotM)

Figure 4.5: Work output as a function of temperature and barrier insertion position
of the three-boson QSZE with a contact-interaction of di�erent strengths. We can
see that the work output has decreased for repulsive interactions in the regions that
are white-colored in the non-interacting case. For attractive interactions this region
is moved (cf. Fig. 4.1b). At low temperatures Wtot/T is only non-zero for a central
insertion position for attractive interactions. For repulsive interactions we see that
we now have three non-zero points that are moved further away from each other with
increased interaction strength, and the results begin to resemble the results in Fig.
4.1d.
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(a) T = 0.1Etb
1 /kB (b) T = 1.0Etb

1 /kB

(c) T = 10.0Etb
1 /kB (d) T = 100.0Etb

1 /kB

Figure 4.6: Work output of the two-boson QSZE as a function of barrier insertion
position. Black solid line: g = 0. Blue dashed-dotted line: g = 1.0× 10~2/(LtotM).
Red dashed line: g = −1.0 × 10~2/(LtotM). The results show how the e�ects of
interactions are most pronounced at low temperatures.

39



For repulsive interactions we see that as the interaction strength increases, the
results look more and more like spinless fermions, cf. Figs. 4.1c and 4.1d. This is no
coincidence, but rather a property of one-dimensional bosons with repulsive interac-
tions. In the in�nite repulsion limit, bosons act like spin polarized fermions. This
limit is known as the Tonks-Giradeau regime [28]. A consequence of this behaviour
is that the regions where the QSZE exceeds the classical maximum in terms of work
output disappears.

For attractive interactions, it is hard to quantitatively determine the e�ects from
these �gures, and it is not clear if we can get any improvement in terms of work
output due to interactions. The role of attractive interactions for bosons will thus
be studied in some more detail in the next section.

4.2.2 Attractive Interaction Dependence for Bosons

A system that allows itself to be examined fairly easily is the two-boson QSZE. Be-
cause of the results of the previous section, where bosons act increasingly as fermions
for repulsive interactions, I will in this section restrict myself to attractive interac-
tions in order to see if it is possible to increase the work output via interactions.

For two bosons, the work output formula (2.24) can be simpli�ed. When both
particles are on either side, the optimal expansion protocol is to expand as far as
possible, i.e. to the boundary of the full system. This implies that p∗0 = p∗2 = 1, and
for symmetry reasons we also have p0 = p2. I am here interested in the optimal work
output of the QSZE, and it may be shown that a central insertion position yields an
extremum for work output as a function of insertion position [10]. That this is in
fact a maximum for interaction strengths g ≤ 0 is supported by the results that were
presented previously in this chapter and can be con�rmed numerically. By using
xins = Ltot/2 we get p1 = p∗1, and the two-boson work output W tb

tot may be reduced
to

W tb
tot = −2kBTp0(g, xins(g)) ln

[
p0(g, xins(g))

]
(4.7)

where the probability p0 is a function of interaction strength g and insertion position
xins(g). Note that in the general case, the insertion position may depend on the
interaction strength. I will for this particular system assume that they do not,
which can be con�rmed numerically for optimal insertion positions. Taking the total
derivative of (4.7) with respect to the interaction strength yields

dW tb
tot

dg
= −2kBT

(
∂p0

∂g
+

∂p0

∂xins
· dx

ins

dg

)
(ln p0 + 1) , (4.8)
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but since xins was assumed to be independent of g, dxins/dg = 0 and

dW tb
tot

dg
= −2kBT

∂p0

∂g
(ln p0 + 1) . (4.9)

From the de�nition of the probability pm = Zm/
∑

n Zn we �nd

∂p0

∂g
=

Z1

(2Z0 + Z1)2

∂Z0

∂g
< 0 (4.10)

since the partition function describing the system when the particles are on di�erent
sides Z1 is independent of interaction strength, ∂Z1/∂g = 0. As the energy levels
increase for increased g, Z0 must be strictly decreasing in g and the inequality above
then follows from the positivity of the partition function.

The negativity of (4.10) implies that the derivative (4.9) is zero precisely when
p0 = 1/e. As shown by Kim et al. [4], 1/4 < p0 < 1/3 for two bosons without
interactions. For interacting particles we have

p0 =
Z0

2Z0 + Z1

→ 1

2
, g → −∞ (4.11)

if we assume that Z0 increases with increased interactions strength to a point where
Z0 � Z1. Since 1/3 < 1/e < 1/2, the existence of extrema is guaranteed at any
temperature, and (4.10) implies that there is only a single one. This is a maximum,
since

d2W tb
tot

dg2
= −2kBT

[
∂2p0

∂g2
(ln p0 + 1)

(
∂p0

∂g

)2
1

p0

]
, (4.12)

which at the point p0 = 1/e simpli�es to

− 2kBT

(
∂p0

∂g

)2
1

p0

< 0. (4.13)

The optimal work output W tb
opt for the two-boson QSZE becomes

W tb
opt =

2

e
kBT. (4.14)

The maximal work performed by the classical Szilard engine isWc = kBT ln 2. It has
been shown [4] that the maximal amount of work performed by the non-interacting
two-boson QSZE is W tb

ni = (2/3)kBT ln 3. This means that
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W tb
opt > W tb

ni > Wc (4.15)

with

W tb
opt =

2

e ln 2
Wc ≈ 1.0615Wc and W tb

opt =
3

e ln 3
W tb

ni ≈ 1.0046W tb
ni . (4.16)

We can thus conclude that the two-boson Szilard engine has a unique maxi-
mal Wtot/T value with respect to attractive contact-interactions. At this maximum
Wtot/T is the same regardless of temperature.

The work output as a function of interaction strength is shown in Figs. 4.7, 4.8
and 4.9. For two bosons, the theoretical results of this section are con�rmed as the
maximal Wtot/T value is found to be the same at any temperature. This maximal
value is assumed for stronger interactions as the temperature increases.

For three bosons we can see that the behaviour of a common maximal value
for Wtot/T is no longer present, but it is found that that the three-boson QSZE
outperforms the CSZE also in the interacting case (since the QSZE transitions to
the CSZE in the high-temperature limit). It may also be observed that the maximal
work output for three bosons is larger than for two bosons. An interesting question is
whether the work output of the interacting QSZE under optimal conditions increases
with increased particle number. One might conjecture that this is the case since the
engine is information driven and there are more possible outcomes for more particles.
Unfortunately, due to computational limitations, I have not been able to study this
any further for this master thesis.
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(a) Two bosons (b) Three bosons

Figure 4.7: Work output as a function of interaction strength and temperature. Note
that the temperature scale is di�erent for two and three bosons due to computational
limitations in the three-boson case. For two bosons we can see that there is a constant
maximalWtot/T value that is independent of the interaction strength. This is not the
case for three bosons, and this maximal value decreases with increasing temperature.
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(a) T = 0.1Etb
1 /kB

(b) T = 1.0Etb
1 /kB (c) T = 5.0Etb

1 /kB

Figure 4.8: Work output as a function of interaction strength of the two-boson QSZE
at some temperatures. The inset �gure in (a) shows the same data over a smaller
interval. Yellow dotted line: maximal work output of the CSZE kBT ln 2. Red

dashed line: work output at zero interaction. Black dashed-dotted line: theoretical
maximum for the two-boson QSZE with interacting particles (2/e)kBT . The results
show how the maximal Wtot/T value is achieved for stronger interaction strengths
as the temperature increases.
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(a) T = 0.1Etb
1 /kB

(b) T = 1.0Etb
1 /kB (c) T = 5.0Etb

1 /kB

Figure 4.9: Work output as a function of interaction strength of the three-boson
QSZE at some temperatures. The inset �gure in (a) shows the same data over a
smaller interval. Yellow dotted line: maximal work output of the CSZE kBT ln 2. Red
dashed line: work output at zero interaction. The results show that the maximal
Wtot/T value is lower for T = 5.0Etb

1 /kB than for T = 1.0Etb
1 /kB and T = 0.1Etb

1 /kB.
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Chapter 5

Impurities

Something that may be interesting for the experimenter striving to realize a quan-
tum version of the Szilard engine is the impact of anomalies in the equipment. By
continuing on in the same fashion as the previous chapter, I will here study this phe-
nomenon by adding a pertubation� here referred to as an impurity�to the con�ning
potential of the QSZE.

The impurity will be modelled as a Gaussian function, i.e. by adding a potential
of the form

V (1)(x) = ae−(x−d)2/(2σ2) (5.1)

to the Hamiltonian describing the system (3.9). Here a, d and σ are constants
that describe the amplitude, displacement and width of the Gaussian respectively.
Removal positions will be chosen such that they maximize the work output of the
engine.

The reason I have chosen a potential of the form (5.1) is simply because it is easy
to implement numerically and can be customized intuitively through the parameters
a, d and σ. Real impurities in experiments can vary in form and are not necessarily
modelled well by (5.1).

Results for the two-boson QSZE with an added potential (5.1) with varying dis-
placement d are shown in Fig. 5.1. Results for the same system with di�erent
amplitudes a can are shown in Fig. 5.2.
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Figure 5.1: Work output as function of temperature and insertion position of the
two-bosons QSZE with and without an impurity. The impurity is described by a
Gaussian according to the well in the right column. The results show how Wtot/T is
strongly dependent on the impurity's position at low temperatures.
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Figure 5.2: Work output as function of temperature and insertion position of the
two-bosons QSZE with and without an impurity. The impurity is described by a
Gaussian according to the well in the right column. It can be observed that as the
impurity grows in size, it a�ects the behaviour of the engine at increasingly higher
temperatures. 48



The importance to accurately account for impurities in an experimental environ-
ment is clearly demonstrated from the results. For asymmetric perturbations, the
insertion positions that yield non-zero Wtot/T are displaced. This behaviour can
again be explained by the energy level degeneracies of the system, as discussed in
chapter 4. Since a displaced impurity a�ects the systems to the left and right of the
well di�erently, the two-boson QSZE is no longer degenerate for a central insertion
position.

Another observation that can be made is that a larger impurity a�ects the high
temperature behaviour more than a small one. This is because a large perturbation
can a�ect states with higher energies, which are only relevant at higher temperatures.

By comparing the two top �gures in Fig. 5.1, we see that when a central impurity
is added to the system, the system is less sensitive to variations in the insertion
position in order to have non-zero Wtot/T . As discussed in chapter 4, we only see

non-zero Wtot/T in the T → 0 limit when the single-particle ground states ε
(L/R)
1 of

the left and right subsystems are equal. Quantitatively speaking for low but �nite
temperatures, this condition relaxes to |ε(L)

1 − ε(R)
1 | � kBT due to the exponential

terms of the partition function. The energy di�erence of the left and right ground
states for a system without an impurity and for a system with a central impurity
can be seen in Fig. 5.3. Here it is demonstrated that the system with an impurity
is closer to degeneracy than the system without one which explains why it is less
sensitive to insertion position.

Even though the insertion position is required to be less accurate in order to get
non-zero Wtot/T , this is only the case for an impurity very close to the center. As
can be seen in the �gure third from the top in Fig. 5.1, a small displacement of
the impurity can change the low temperature behaviour drastically. The need to be
precise has not been removed but rather transferred from the insertion position to
the position of the impurity. Nonetheless, perhaps this knowledge about the central
impurity can be used to create a QSZE which is less sensitive to the insertion position
of the barrier.
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Figure 5.3: Energy di�erence between the ground states of the left and right subsys-
tems |ε(L)

1 − ε
(R)
1 | for the two-boson QSZE as a function of barrier insertion position.

Blue solid line: QSZE with a central impurity. Red dashed line: QSZE without an
impurity. The results show that the system with an impurity has a lower di�erence
between the energies of the ground states, i.e. it is closer to degeneracy than the
system without an impurity.
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Chapter 6

Dynamics

So far, the di�erent steps of the Szilard engine have been assumed to be quasi-static
and isothermal. This is of course an idealization, and in practice these requirements
may not be reasonable. Even though modelling a system's interactions with a heat
bath is outside the scope of this thesis, it can still be interesting to see what happens
for some �nite-time processes of the Szilard engine.

In this section I will �rst brie�y review some theory and then study a single
particle in an in�nite well. I want to see what happens during the insertion and
expansion processes of a Szilard engine that does not interact with a heat bath
(which can be considered an approximation of an engine that is weakly coupled to
its heat bath).

6.1 Theory

The time-evolution of a quantum system is described by the time-dependent Schrödinger
equation

i~
d

dt
|Ψ(t)〉 = Ĥ(t) |Ψ(t)〉 . (6.1)

A standard way of treating time-dependent systems is to expand the states in some
time-independent basis {|Φν〉} and transfer all the time-dependence to the expansion-
coe�cients [29] according to

|Ψ(t)〉 =
d∑

ν=1

cν(t) |Φν〉 , (6.2)

51



where d is the size of the basis. By combining (6.1) and (6.2) and projecting onto
the basis states {|Φν〉}, we get the matrix equation

i~

ċ1

ċ2
...

 =

〈Φ1| Ĥ(t) |Φ1〉 〈Φ1| Ĥ(t) |Φ2〉 · · ·
〈Φ2| Ĥ(t) |Φ1〉 〈Φ2| Ĥ(t) |Φ2〉 · · ·

...
...

. . .


c1

c2
...

 (6.3)

which is a system of ordinary di�erential equations that can be solved numerically in
many di�erent ways. Since the energies corresponding to the basis states used in Eq.
(6.3) can be of very di�erent size, this di�erential equation may be sti� [29], which
means explicit numerical methods are typically unstable. With simpli�ed notation,
Eq. (6.3) can be rewritten as

ċ(t) = − i
~
H(t)c(t). (6.4)

The pre-existing code that I have used propagates the system in time with a second
order exponential propagator (see Refs. [30,31] for a mathematical treatment of the
exponential propagator) which enforces unitarity on the coe�cients c to make the
solutions numerically stable. This propagator has the form:

c(t+ ∆t) = e−
i
~∆tH(t+ ∆t

2
)c(t) +O(∆t3), (6.5)

where O(∆t3) are all terms of order three or higher in ∆t. The size of the basis
{|Φν〉} is often very large, which makes the exponential matrix in (6.5) expensive to
calculate at every time step. To make the problem computationally less expensive,
the matrix exponential is calculated within a Krylov space. The Krylov space is
spanned by the vectors [31]

{c,Hc, . . . ,Hm−1c}, (6.6)

where m is its dimension. A set of orthogonal vectors can, for instance, be obtained
by applying the Gram-Schmidt method so that we get {k0,k1, . . . ,km−1} such that
k0 = c and k1 is the part of Hc that is orthogonal to k0 and so forth.

We can, for some �xed n, write a single coe�cient from (6.5) according to (omit-
ting all terms of order higher than two)

cn(t+ ∆t) =
d∑

ν=1

〈Φn| e−
i
~∆tĤ(t+ ∆t

2
) |Φν〉 cν . (6.7)

If we now de�ne abstract Krylov states {|ki〉} such that
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ki =

〈Φ1|ki〉
〈Φ2|ki〉

...

 , (6.8)

we can insert these states into (6.7) so that

cn(t+ ∆t) ≈
d∑

ν=1

m∑
i,j=1

〈Φn|ki〉 〈ki| e−
i
~∆tĤ(t+ ∆t

2
) |kj〉 〈kj|Φν〉 cν . (6.9)

Typically the dimension of the Krylov space is much smaller than the size of the
many-body basis, which is why this method may help reduce the numerical e�ort.
For example, it was found in Ref. [29] that a Krylov dimension of 30 could yield good
results, while the many-body basis can have many thousand elements. Furthermore,
the elements 〈Φn|ki〉 and 〈ki| e−

i
~∆tĤ(t+ ∆t

2
) |kj〉 can be constructed e�ciently by using

the Lanczos algorithm.
The reason the Krylov method can give good results even though the exponential

matrix is calculated in a basis of signi�cantly smaller size can be seen by expanding
the exponential propagator in a power series (here omitting the argument of the
Hamiltonian to simplify the notation)

c(t+ ∆t) = e−
i
~∆tĤc(t) =

∞∑
k=0

1

k!

(
− i
~

∆tĤ

)k
c(t). (6.10)

By expanding the sum and using (6.7) and (6.8), we get

c(t+ ∆t) = c(t)− i

~
∆tĤc(t)− 1

~2
∆t2Ĥ2c(t) + · · · (6.11)

We can see that the vectors (6.6) used to construct the Krylov vectors act as a natural
basis for the time-propagated coe�cients. The reason that the expression (6.11) is
not used explicitly is that the truncation of this expression is non-unitary. In order
for the truncation of c(t + ∆t) to have an absolute value close to one, the omitted
higher order terms have to go to zero, which can be achieved by using a very small
time step ∆t but becomes computationally expensive.

6.2 Insertion

In previous chapters, the insertion process of the Szilard engine has been considered
in a way such that the system is always able to adjust to the changes and maintain
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a constant well-de�ned temperature. Here I will instead consider a barrier modelled
by a delta function that increases in height at a constant rate until it reaches some
maximal value for a system not coupled to a heat bath. I have chosen this maximal
barrier height to be 20 × 100~2/(L2

totM) for all calculations in this section, which
is a very high barrier compared to the lowest-lying states, cf. Fig. 4.3. This large
value for the barrier height ensures that we at low temperatures have a system which,
after insertion, behaves similarly to two in�nite wells. I will study both a central and
displaced insertion, where I have chosen the insertion point for the displaced barrier
to be Ltot/5 from the center of the system.

As discussed in section 6.1, the state propagating in time is expanded in a basis
such that all time-dependence is transferred to the expansion coe�cients. For the
insertion process, the state can be expanded in a basis corresponding to either the
initial or �nal system according to

|Ψ(t)〉 =
d∑

ν=1

c̃ν(t) |Φf
ν〉 =

d∑
ν=1

cν(t) |Φi
ν〉 (6.12)

The states {|Φi
ν〉} correspond to the in�nite well without any barrier, and {|Φf

ν〉}
to the �nal system, here the in�nite well where the barrier has been fully inserted
(either displaced or in the center).

The systems considered here have been initialized in one of the four lowest states
of the initial system which is just the in�nite well. The height of the delta barrier
is then gradually increased at a constant speed until it reaches its maximal value.
The propagating state is after insertion expressed in the basis of the �nal system.
Results for a central and displaced barrier insertion are shown in Fig. 6.1.
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(a) |Ψ(0)〉 = |Φi
1〉 (b) |Ψ(0)〉 = |Φi

2〉

(c) |Ψ(0)〉 = |Φi
3〉 (d) |Ψ(0)〉 = |Φi

4〉

Figure 6.1: Populations of the four lowest states just as the insertion process is
complete as a function of insertion speed. The state is expanded in states of the �nal
system. Blue solid line: Central barrier. Red dashed line: Displaced barrier. It can
be seen that the displaced insertion reaches the adiabatic limit more slowly than the
central one.

The results show that for a central barrier insertion, only systems initialized to
odd-numbered states are subject to excitations. This is because all even-numbered
states of the initial system have a node in the center of the well, which leaves them
una�ected by the in�nitely thin delta-barrier. Another thing that can be seen is
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that the states initialized to an odd-numbered state only have excitations to other
odd-numbered states. This is due to parity being good quantum number when the
barrier is perfectly central. For the displaced barrier we see no such e�ects since
parity is no longer good quantum number. We may from these results also conclude
that the insertion needs to be slower for the displaced barrier than for the central
one in order to reach the adiabatic limit, i.e. when there are no excitations.

The excitations due to a �nite insertion speed will a�ect the work cost of the
insertion process. I will denote the energies of the initial system by Ej and �nal
system by Ẽi. For a system initialized to the j th state there must be an average
work cost 〈Wj〉 of

〈Wj〉 =

(∑
i

|c̃ ji |2Ẽi

)
− Ej (6.13)

associated with the insertion process. Here c̃ ji are the expansion coe�cients of the
state after insertion in the �nal system, when the system is initialized to the jth
state. If we assume the initial system to be canonically distributed, the total average
work cost 〈Wtot〉 of the insertion process becomes

〈Wtot〉 =
1

Z

∑
j

e−βEj〈Wj〉 =
1

Z

∑
j

e−βEj

[(∑
i

|c̃ ji |2Ẽi

)
− Ej

]
. (6.14)

where Z =
∑

j e
−βEj is the partition function.

The total average work cost of the insertion process as a function of insertion
speed can be seen in Fig. 6.2. Here, each set of data is expressed in units of
the corresponding work cost for an isothermal and quasi-static process according to
(2.20). From these results we can conclude that an insertion at �nite speed costs more
work than a quasi-static and isothermal insertion, and that the work cost increases
rapidly with increasing insertion speeds. Another observation that can be made is
that the work cost for insertion compared to the isothermal and quasi-static case is
much higher for the displaced barrier than for the central at low temperatures. As
demonstrated by Fig. 6.2, the work cost at low temperatures for an isothermal and
quasi-static insertion is lower for a displaced barrier than for a central one. This
lower work-cost is lost when we account for �nite-speed e�ects, which means that
a QSZE which has its optimal work output for non-central insertions�such as, for
example, a QSZE with an even number of fermions�loses more work output than a
QSZE with optimum for central insertions.
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Figure 6.2: Work cost for inserting a barrier as a function of insertion speed. The
work cost is given in units of Wiso, the work cost of inserting the barrier isothermally
and quasi-statically according to (2.20) (i.e. di�erent values of Wiso for each line).
Here E1 is the energy of the ground state of the unperturbed system. Red solid line:

central barrier at T = E1/kB. Blue dashed line: displaced barrier at T = E1/kB.
Black solid line: central barrier at T = 10E1/kB. Green dashed line: displaced
barrier at T = 10E1/kB.

Figure 6.3: Work cost for inserting a barrier isothermally and quasi-statically accord-
ing to (2.20) as a function of barrier insertion position for a QSZE with one particle.
Red solid line: T = E1/kB. Blue dashed line: 10E1/kB.
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6.3 Expansion

The expansion process here is modelled by an in�nite well with one moving wall
that moves at a constant speed until it reaches some maximal value and then stops.
Just as for the insertion process, the states are initialized to some state of the initial
system, here an in�nite well of half the width of the �nal system. The well is then
expanded, and the propagating state is expanded in this new system. Figure 6.4
shows results for the populations after the expansion has been completed.

Figure 6.4: Populations of the four lowest states just as the expansion process is
complete as a function of expansion speed. The state is expanded in states of the
�nal system. Blue solid line: |Ψ(0)〉 = |Φi

1〉. Red dashed line: |Ψ(0)〉 = |Φi
2〉.

We can see from the results that the adiabatic limit is once again obtained as the
expansion speed becomes very slow. For an instantaneous expansion, the expansion
coe�cients of the �nal system can be obtained analytically. Both the initial and �nal
systems are in�nite wells, which have the wave functions [19]

ψn(x) =

√
2

L
sin
(nπx
L

)
(6.15)

for a well of length L. Here the initial width of the system is Li = Ltot/2 and the
�nal Lf = Ltot, where Ltot is the total length of the system. The initial wave function
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ψLi,m can be expressed in wave functions ψLf ,m of the �nal system

ψLi,m(x) =
∑
n

cmn ψLf ,n(x). (6.16)

Orthogonality of the wave functions gives, for a system initialized to the mth state,
the expansion coe�cients cmn as

cmn =
2√
LiLf

∫ Li

0

sin

(
mπx

Li

)
sin

(
nπx

Lf

)
dx. (6.17)

Evaluating the integral gives

|c1
1|2 =

32

9π2
≈ 0.36

|c1
2|2 =

1

2

|c1
3|2 =

32

25π2
≈ 0.13

|c1
4|2 = 0

for a system initially in the ground state and

|c2
1|2 =

128

225π2
≈ 0.058

|c2
2|2 = 0

|c2
3|2 =

128

49π2
≈ 0.26

|c2
4|2 =

1

2

for a system initially in the �rst excited state, which is in good agreement with the
results in Fig. 6.4.

Results for how the probability distribution changes in time for a system which
is initially in the ground state of the initial system is shown in Fig. 6.5. For a slow
expansion, the probability distribution constantly becomes the probability distribu-
tion of the ground state in the new expanded well, but with some oscillations due to
the �nite expansion speed. For the fast expansion, the wave function of the system
does not have time to adjust, and the particle's probability distribution oscillates
between the two halves of the well. This property is of interest for a Szilard engine
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working continuously as the position of the particle will be known before insertion
and thus before measurement. If the position is known beforehand no information
can be extracted and the engine can not perform any work.

(a) (b)

Figure 6.5: Probability distributions for a system initialized to the ground state of
the initial system as a function of space and time. One of the in�nite well's walls is
at all times at x = 0 while the other is marked by the dashed white line. (a) Slow
expansion, vexp = 0.5× ~/(LtotM))). (b) Fast expansion, vexp = 5.0× ~/(LtotM)))
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Chapter 7

Conclusions and Outlook

I have in this project studied a few aspects of the quantum Szilard engine that have
not received much attention previously. The work I have done is mainly numerical,
applying the con�guration interaction method, complemented by a few analytical
considerations.

In chapter 4 the contact-interaction was studied for bosons with a focus on max-
imizing the work output of the QSZE. The contact-interaction was used here mainly
because of it being easy to incorporate into the model. Despite this, interactions that
can be described by a contact-interaction appear experimentally in cold atoms [24].
Quasi one-dimensional systems of cold atoms can be achieved by exposing a system to
strong two-dimensional optical lattices [24]. In these types of systems the interaction
strength depends on the scattering length, which can be controlled by external mag-
netic �elds via Feshbach resonances [32]. The tunability of the interaction strength
suggests cold atoms as one interesting way to realize a quantum Szilard engine. A
big problem with this approach is the heat bath. It is unclear how to implement
a constant temperature heat bath for a system of cold atoms. Additionally, a very
cold system would likely have to work very slowly to �t the isothermal and quasi-
static approximations. Here a complete dynamical study of the interactions between
a QSZE and its heat bath could be of interest. It should also be mentioned that the
con�ning potential for optical lattices is not an in�nite well [33], as has been the case
throughout this thesis. To study the e�ect that di�erent con�ning potentials have
on the Szilard engine is one way to continue the work of this thesis.

An unanswered question from chapter 4 of this thesis is whether the work output
of the QSZE with contact-interacting bosons keeps increasing with particle number
and, if that is the case, in what way and how much. A hint of this behaviour could be
obtained by studying a QSZE with four or perhaps �ve particles in the same manner
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as in this thesis. This would require very lengthy computations but could still be
feasible.

While I have looked mostly at the average work output of a single cycle of the
QSZE, a better measure of an engine's usefulness is its power. How the insertion,
expansion and removal steps of the engine should be carried out in order to maximize
the engine's power is an interesting question. To properly examine these aspects a
full dynamical study, with a model to properly account for the engine's interactions
with a heat bath, would have to be made.
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