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Interactive Structural Analysis
for the Conceptual Design Phase

by

Mattias Lilja

Abstract

The importance of structural demands is usually overlooked in the conceptual
design phase. Architects commonly conceive the geometry of a structure without
much involvement of an engineer or with regards to structural demands. This is
in part because a lack of tools available to engineers in this phase. The common
paradigm for structural analysis software interface badly with the iterative and
chaotic nature of conceptual design. Developing tools that enables structural
demands to be a more prominent part of conceptual design should hypothetically
result in overall better performing designs leaving the conceptual phase.

This thesis investigates the requirements for, and the development of, a simple
structural design and analysis application using a more direct interaction model
adapted to the conceptual design phase. Emphasis is on creating a user
experience that incite design exploration by developing a suitable user
interaction model and a design comparison tool. A game engine was used to aid
the development of an interactive and engaging environment.

Feedback and observation of users testing the application indicated that a more
direct interaction model can enhance user engagement as well as proneness to
design exploration, strengthening similar results in previous work done in this
field. Feedback also indicated that a developed tool, aimed at design comparison,
became poorly used. Testers argued that the tool was potentially powerful, but
needs a more integrated implementation than the one used in this application,
which did not engage users enough.

The developed application is called StructSTUDIO and is available online at
structarch.org/ids/.

Key words; conceptual structural design, direct manipulation, interactive structural
analysis, structural design comparison





Interaktiv Strukturanalys i den Konceptuella
Designfasen

av

Mattias Lilja

Sammanfattning

Vikten av att beakta strukturella krav redan i den konceptualla designfasen
förbises ofta trots den stora inverkan tidiga designval har p̊a efterföljande
designbeslut. Detta beror delvis p̊a att m̊anga strukturanalysverktyg är d̊aligt
anpassade till den konceptuella designfasen.

I detta arbete utvecklades och undersöktes vilka krav som ställs p̊a ett enklare
strukturanalysprogram med en mer direkt interaktionsmodell anpassad till den
konceptuella designfasen. Den interaktiva miljön möjligges av en spelmotor och
är en möjlighet att fr̊ang̊a den stela och oengagerande upplevelsen i vanligt
förekommande strukturanalysprogram. En mer interaktiv användarmiljö kan
bidra till att användare engageras och skapa incitament till större utforskning av
designalternativ.

Resultatet är ett program där användartester indikerade p̊a att mer direkta
interaktionsmodeller och användarupplevelser engagerar användare, vilket
stärker tidigare indikationer fr̊an andra arbeten inom omr̊adet. Arbetet
producerade även ett verktyg kallat Snapshots, ett sorts fotografi av ett
mekaniskt system. Med verktyget kan designalternativ jämföras mot varandra
med hjälp av en indexerad prestandaparameter. Verktyget ans̊ags som ett
potentiellt starkt verktyg men implementationen i det producerade programmet
behöver förbättras och bli en mer integrerd del i designprocessen.

Arbetet har bidragit med insikt i hur strukturdesign- och analysprogram kan
utformas för att bättre anpassas till den konceptuella designfasen. Tanken är att
verktyg som detta skall hjälpa till att bidra till utvecklingen av nya konceptuella
analysverktyg med p̊aföljden att bättre presterande lösningar lämnar den
konceptuella fasen.

Programmet heter StructSTUDIO och finns tillgängligt online p̊a
structarch.org/ids/.

Nyckelord; konceptuell strukturdesign, direkta interaktionsmodeller, interaktiv
strukturanalys, jämförelse av mekaniska system
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Chapter 1

Introduction

1.1 Background

Structural design can be recognised as a process where the aim is to design a
structure that fulfils an intended functionality with respect to structural demands.
Design work is usually an iterative process [1]. The iterative nature of the process
is especially noticeable in the conceptual design phase. Generally, a structural
engineers daily work can be categorized as [2]:

Conceiving: Considered as the most important design step where major
or significant structural details or concepts are conceived.

Modelling: Part of which a simplified model of the conceived conceptual
structure is created for analytical purposes.

Dimensioning: Establishing dimensions derived from the choice and
combination of materials.

Detailing: Fine detailing of connections and the production of construction
documentation.

Design work can move backwards and forwards between the different categories.
In practice, there is no distinct incident where a team of designers move from
one category to another. The process to a final design manifest itself differently
between projects. Among the many differences is which design tools that are
used. Design tools can be anything that add value or information to the decision
process. Used extensively is structural design and analysis tools. Such software
is commonly designed for the late modelling, dimensioning and detailing steps.
There are few alternatives for the conceptual design phase.

1



INTRODUCTION

This thesis emphasis is on the conceptual design phase. It is the earliest phase of
the structural design process, attributing to the conceiving and early modelling
steps.

The importance of structural design is usually overlooked in the conceptual
design phase [2]. In part, this is due to common structural design and analysis
alternatives interface badly with the iterative nature of conceptual design. A
problem is the fuzzy nature of the process. Lack of defined problem parameters
and the precise input required for proper analysis complicates matters.
Additionally, the time and effort needed to properly set up a model makes
structural analysis of early prototypes potentially unrewarding. This is a
contributing factor to why structural analysis is usually preformed later in the
process [3]. It is problematic as subsequent design choices naturally have
dependencies on previous. Design choices leaving the conceptual design phase
may see little change over time. Impact of design decisions are initially high but
decline as a design matures, further emphasizing the importance of accounting
structural demands early on, see Figure 1.1.

Figure 1.1: Generalisation of the impact of decisions and availability of tools
during the design process [4].

The gemoetry of a structure is often conceived by architects. Commonly without
much involvement of an engineer or with regards to structural demands. Little
regard to structural demands allows for greater design exploration, in contrast to
egineering work where structural demands can restrict design exploration.
Architects have many digital modelling and visualizing tools, available for
different stages of their corresponding design process. These tools seldom include
functionality for structure analysis to verify the geometry [5].

2



INTRODUCTION

Hypothetically, making structural demands a more prominent part of conceptual
design can lead designers to obtain an earlier understanding of the consequences
of their design choices with regard to structural performance. Subsequently, this
leads to more informed decisions. This benefits the design process, resulting in
overall better preforming designs.

In an investigation by M. Fröderberg and R. Crocetti [3], a number of practising
engineers were tasked with a conceptual design task. It indicated that premature
use of advanced analysis tools could negatively affect designers proneness to
search for different, better preforming alternative structural designs. If possible,
tools should allow for or incite users toward design exploration.

The rigid nature of structural design can be a hinderance towards the
implementation of functionallity with the versatility needed to enable design
exploration. Attributing to the rigid nature of structural analysis software is in
part due to its interaction model. This interaction model have not changed much
since the introduction of such software, but work have been done where the
interaction model was made more intuitive [6–9]. The interaction models in [6]
and [7] positively affected users proneness towards design exploration as well as
being able to follow the iterative nature of the conceptual design phase.
Additionally, even with simple interaction models in comparison to more
heavyweight structural analysis software, it was still possible for these
applications to give users constructive and meaningful feedback in regards to
structural response.

1.1.1 Interaction model

The common interaction with structural analysis software can be summarized in
a cyclic 3-step interaction model [10], see Figure 1.2. This 3-step interaction
model is a characteristic which have not changed much since the introduction of
such software. The majority of structure analysis software still use it today.
When making more sophisticated models later in the design process, the steps
are usually more distinctive.

Some of the difficulties conventional structure analysis applications face, if used
in the conceptual design phase, is due to ill adapted interaction models. Jim
Nieters defines an interaction model as ’a design model that binds an application
together in a way that supports the conceptual models of its target users’ [11].
Users will over time create an internal image of the application. It makes actions
predictable. Failure by the application to accurately follow the internalized
image of a user can inaugurate a bad user experience.

3



INTRODUCTION

Figure 1.2: Interaction steps of conventional structural analysis software.

A metaphorical example are Norman Doors [12]. Doors are simple things which
should not require a manual to use. Yet we encounter doors all the time which
do not work the way we think they do. Such could be when there is a handle
attached, indicating that the door is to be pulled, but the door does not open
because it is a push door. In this case, the design did not conform to the
internalized interaction model amongst users, causing irritation and confusion.

Like Norman doors, ill designed user interfaces are everywhere. The user interface
of CAD tools is often their weakest link and least developed feature [13]. Features
and functions can be buried deep within menus and toolbars [6]. A good interface
allows users to discover and understand the interaction model of the application.
Positive user experiences increase the incitement for further or more extensive use
of an application. Good user experience design is seen as paramount by businesses
and is considered vital to product success [14]. In [7] it is briefly mentioned how
important it is to strive for consistency between applications to create a sense of
familiarity.

1.2 Problem statement

Common structural analysis software fails to meet some of the demands of the
conceptual design phase. Few tools are available which allows for structural
analysis in the conceptual design phase. This attributes as a contributing factor
to why structural demands are not incorporated into early design.

4
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When using structural analysis software, it is necessary to create a digital model
which can be analysed. Such software tend to focus on analytical capability over
geometrical modelling tools. It can be difficult to produce complicated shapes and
variations of these [13]. This can limit the expressive freedom needed in conceptual
design, especially from the perspective of an architect. A way to effectively explore
and compare digital models is also absent.

1.3 Aim of work

Figure 1.3: The cyclic design process this work aims to improve.

This work aim to improve the conceptual structure design process, see Figure 1.3.
The aim is to:

• improve the conceptual structure design process as a whole. Should result
in better preforming design leaving the conceptual design phase.

• enhance the interaction model between the modelling and analysing step.
Should result in a more effective way of working with digital prototypes.

• establish a way that incite users to explore and compare designs. Should
result in more informed design decisions with regard to structure demands
in early design.

1.4 Approach and limitations

This work is conducted as a software development project. The goal is to create
an application which implements an interaction model better adapted to the
conceptual design phase. Developing intuitive and interactive tools is
emphasised. In previous work, where tools were developed with more direct
interaction models, yielded positive results. It resulted in an almost playful
experience, improving the human computer interaction. A higher degree of

5
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interactivity, such as real-time feedback, was considered positive aspects of
developed applications. Implementing real-time feedback and direct interaction
models can result in the user being more engaged in the design task [7, 8]

Which tools are used in design impact the final results [1]. A possible approach
is to use a game engine as a development platform. It is a novel approach, but it
is believed that its inherent emphasis on interactive content can positively affect
the development towards creating a more interactive environment and more
direct interaction models. However, using a game engine for non-game related
development can potentially be a hindrance.

The game engine Unity was used in this work. This because it has built-in
support for many different input devices as well as a compiler which can compile
applications to many different platforms. A goal was to deploy the application
online using WebGL (Web Graphics Library). The benefits of developing
applications for the web is the wide availability it entails.

This work focuses on the user interaction with the software. Emphasis is on the
user experience and how it can be improved to incite design exploration - which
entails a positive effect placed onto the conceptual structure design process.

6



Chapter 2

Existing conceptual design
tools

2.1 pointSketch

The pointSketch name was derived from the idea Fixed points in space concept
by Pierre Olsson [15]. The concept consists of creating points in space and later
connect them together. With a very simple implementation of different
modelling tools, simple two dimensional systems can relatively easily be sketched.

The application differentiates the modelling and analysing steps by using
different application states. It enables the application to communicate with users
and hint them what they are supposed to do. Only the tools relevant to the
current task are displayed. This makes tools contextual. It eliminates
unnecessary information to be displayed, attributing to a better user experience.
A cluttered design can cause confusion [16].

The 3D version of pointSketch is less developed and in a beta stage. It
demonstrates the pointSketch idea in 3D. The interaction model for the 3D
version have the user move painting planes around with a set of buttons. Nodes
can be placed onto these. The use of different working planes or the idea of
setting up a workspace-grid is common in Finite Element Analysis software.
From the perspective of conceptual design, it can be an ineffective solution as it
requires many steps to complete a relatively simple task. Although not as
developed as its two dimensional counterpart, it presents one solution to analyse
simple three dimensional models.

7
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(a)

(b)

Figure 2.1: (a) The GUI of pointSketch2D [17]. (b) The GUI of pointSketch3D
(beta) [18].
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2.2 Sketch a Frame

Sketch a Frame is a complete design tool developed for tablets, created by Daniel
Åkesson [19]. The possible advantages of a more direct interaction model using
touch devices lead to the development of Sketch a frame. It implements the
pointSketch idea and is very easy to use due to its very direct interaction model.
Sketch a Frame conforms to touch-based application guidelines and behave in an
expected predictable manner. The loss of accuracy compared to a mouse is
combated with a snap functionality.

The level of interactivity is high. Real-time results are displayed on the same
screen as the active model. The ease of creating, editing and interpreting
feedback yields an almost playful experience. A temptation to move nodes to see
the different responses is present, an experience which incites design exploration.
The application allows for quick and direct drawing of two dimensional systems.
Additionally, it does not use any numerical values. In some respect, actual
values can be of little interest in conceptual design. The system response, such
as deformation or rigid body motions, is clearly visualized and understood by
the user.

The application can yield an intuitive understanding of a systems response in
the conceptual design phase. The direct manipulation and direct touch interface
yields a feeling of strong manipulative control - enabling users to explore designs
more freely and encourages design exploration [7].

Figure 2.2: Sketch a Frame.

9
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2.3 StructureFIT

StructureFIT emphasis on design exploration using a guidance approach [20, 21].
The application is created by Caitlin Mueller and uses genetic algorithms to
present the user with well performing alternative design suggestions. The user
selects a design of interest, evolve it, and receives a new set of designs. The
process is then repeated.

The software enables the ability to define nodal positions, boundary conditions
and other relationships between structural members. It can be done in a live
editing window or a tabular option. It is also possible to model a system in a
free-form style and play with the evolutionary parameters to yield different
design. The different designs are presented side by side indexed by performance
against the base design with a decimal fraction. A designer is thus able to
compare designs using a single value. The visual representation of the systems
helps create an intuitive understanding of how different design alternatives affect
system performance.

Figure 2.3: Design exploration using genetic algorithms.

10
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2.4 Arcade

Arcade [22], created by Kirk Martini, took a different approach to structure
analysis software. The most interesting feature is the use of a physics engine as a
computational method [10]. The application presents a familiar 2D modelling
space and is relatively easy to use. Modelling tools offers only limited
functionality. The flow and playfulness found in Sketch a Frame is not found
here. There is little to no incitement to alter a model, as it can be difficult to set
it up properly.

Figure 2.4: Arcade use several windows within a window design for the GUI.

11





Chapter 3

The Unity game engine

3.1 Environment

Unity is a game engine, a software framework. Game engines includes all the
basic necessities a developer need to develop a video game, such as a rendering
engine enabling graphics and a physics engine enabling physics. Unity supplies a
integrated development environment in which the developed application can be
executed together with debugging tools [23].

A game engines inherit focus on interactive content can be seen as a hindrance
to non-game related software development. Its emphasis on interactive content
could aid in moving away from the generally stiff and rigid nature of common
structure analysis software. Choosing Unity is in part because Unity have its
own integrated development environment. This simplifies the development
process.

Using a game engine as a development environment for structural analysis software
is a novel approach. It is not the first time Unity will be used to create non-game
related software. It has previously been used to create other non-game related
applications [24]. The architectural visualization application Nuovo [25] and land
management application INSIGHT [26] are good examples of non-game related
applications using Unity.

13



THE UNITY GAME ENGINE

Figure 3.1: The integrated development environment supplied with Unity.

One advantage of using Unity is the ability to create applications with a high
degree of interactivity while providing a good amount of control for developers.
Unity come with some ready-made assets, such as panels and buttons for the
user interface or different rendering components allowing meshes to be rendered
with built-in or custom made shaders for enhanced visual fidelity.

Of particular interest is the built in real-time physics engine. K. Martini used
a physics engine as a computational method when developing Arcade. Using a
physics engine have several positive consequences. One such is the ability to
work with unstable structures and large displacements. Additionally, non-linear
behaviour is yielded practically for free [27].

3.1.1 C#, Mono and .Net

Unity implements Mono which is an open source UNIX implementation of the
.Net framework. This enables access to most of the .Net API, limited primarily
by the support of the currently implemented version of Mono [28,29]. It is possible
to use common libraries such as system Input-Output, Collections or Diagnostics.
There are compatibility issues, but most general purpose libraries can be used.
Additionally, the Mono complier is very versatile, allowing for deployment to many
different platforms [30].

14
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3.1.2 MonoBehaviour

MonoBehaviour is a base class which scripts in Unity derive from and provides
the basic interface to the Unity engine [31]. The class enables functions such as
Update(), Start() or Awake(), called upon by the engine at different stages of
execution.

The MonoBehaviour base class is not serializable, meaning it is not possible to
serialize it to a stream of bytes and cast it back to an object type successfully. It
causes problems with persistence as objects interfacing with Unity have to
inherit from this base class. Objects such as Nodes and Elements will need
secondary purposely created serializable classes for persistence as well for
threaded operations, as the MonoBehaviour base class is in addition not
thread-safe.

3.1.3 External libraries

Unitys implementation of C# does not provide a library that supports numerical
matrix operations. An open source initiative, Math.Net, develops and maintain a
.Net toolkit [32] enabling most common matrix operations. The Numerics library
licence is MIT/X11, which means there is no restriction to edit or modify the
library [33]. Additionally, it does not restrict the distribution of the software, as
is or implemented. Numerical operations were implemented with, and enabled by,
Math.NET Numerics.

3.2 Built-in physics

The Unity game engine use PhysX as a computational method for its physics
engine [34]. PhysX was originally created by AGEIA technologies but is
currently owned and maintained by NVIDIA [35].

Unitys implementation of PhysX elevates the API interface to higher level C#,
linked through the MonoBehaviour class. It enables real-time computations and
results, but the method is limited to time-step simulation. The idea was to use
this as an approach for computation in the developed application. Core access to
the physics engine is not possible and the software can only be used as is.

The developers of Unity provide developers with a number of different
object-physical components. Among these are springs, joints, rigidbodies,
collides and much more. The approach in the developed application was to use
them to enable direct computation and real-time results. Early testing indicated,
despite the low level of access to the physics engine, that the usage of the

15
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integrated Physics engine was possible. However, it was eventually dismissed for
a number of reasons, see section 4.4.

16



Chapter 4

Present work - Developing
StructSTUDIO

4.1 Application interaction

4.1.1 Interactive modelling tools

An obstacle to developing a more direct interaction model is to find a good method
that enables users to work effortlessly in three dimensions. A proposed approach
by D. Åkesson was to use the head mounted display Oculus Rift together with
the Leap Motion controller. The Leap Motion controller is a hand tracking device
which D. Åkesson has successfully used in a previous project [8].

Figure 4.1: Left: The Oculus Rift, Right: The Leap Motion controller

17
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An important difference between how the Leap Motion device was implemented
in this work versus that developed in [8], was which tracking mode was used.
The device have two modes, front hand and back hand tracking, see Figure 4.2.
Åkesson utilized the front hand tracking mode and this work used the back hand
tracking mode.

Figure 4.2: Back hand tracking vs. front hand tracking as in [8]

The Leap Motions back hand tracking algorithm could not accurately track
hands from their back with the firmware version of the time. This resulted in a
behaviour where virtual hands inside the game environment could disappear off
screen or break completely. Gesture recognition was poor, and critical gestures
such as grip and pinch only executed a fraction of the time. It made it difficult
to develop good geometric modelling tools. The tracking algorithm have since
been improved significantly [36].

Due to the technical difficulties with the Leap Motion controller, the
development project opted to revert back to a mouse and a keyboard as human
interface devices. It presented a different challenge. As mentioned in previous
chapters, modelling tools in common structural analysis software is not agile
enough to sufficiently enable users the control they need in conceptual design. A
different approach is needed.

A proposed interaction model for the modelling step is that of common three
dimensional modelling software. The vertexes of a mesh can represent the nodes
and the edges the elements, refer to Figure 4.3. Three dimensional modelling
tools have been in development for a long time and the interaction model have
been refined over decades. The model does additionally have established ways of
navigating a scene using camera tools.

18



PRESENT WORK - DEVELOPING STRUCTSTUDIO

Figure 4.3: Vertex being moved in a 3D modelling software using a manipulator-
tool.

The paradigm enables good geometrical modelling tools, but software using the
common three dimensional modelling tool paradigm tend to be shortcut heavy.
To effectively use these applications, a user must learn many key shortcuts or
commands. It is not uncommon that shortcut heavy programs can feel a bit
daunting to new users. It is important that the user interface design can explain
what each tool does and how it works to speed up the learning process.

Using the common three dimensional tool paradigm goes well with research
suggesting that such more direct implementations of the human-computer
interaction model further engage users interaction with a software as well
encourages exploration [9]. To promote users to explore and create alternative
designs, the process of creating or modifying a 3D-model was developed in such
a way that it does not incite fear of altering a model. Exploring design should be
rewarding and fun, like Sketch a Frame.

4.1.2 Structural analysis

Results shall if possible be presented in real or near real-time. Real-time
feedback can create a temptation to alter the design to see what happens next.
As prior explained, a possibility was to utilize Unitys built-in physics engine. It
was however difficult to fully utilize, refer to section 4.4.1.
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After the difficulties with the built-in physics engine, a numerical solver was used
instead. It was implemented in a way that enabled multi-threaded computations,
enabling almost real-time feedback - lagging behind by only a few cycles
depending on system size and computer hardware configuration. A benefit of
multi-threaded computations is the ability to solve larger systems without
blocking the main thread so it cannot continue executing. It was possible to
push almost all computations to separate threads, minimizing the impact on the
main thread execution time.

Enabling modelling tools to be functional during computations regardless of
method was considered a priority to retain as high level of direct manipulation
as possible. The solver and associated scripts have gone through several
iterations during the development in an effort to improve computational times
and the associated performance impact.

4.1.3 Interpreting results

Results can be difficult to interpret. The magnitudes of stresses and strains can
be hard to relate to without context. Numerical values need context to be
understood, such as element section geometry or material properties.
Considering the conceptual design scenario, it is not unthinkable that numerical
values are of less interest. In both Sketch a Frame and StructureFIT it is
possible to obtain valuable information about structure response and
performance without presenting actual numerical values.

A visual interface similar to that of StructureFIT, where designs are presented side
by side indexed by performance, was implemented as it aided the user to interpret
their design alternatives visually. The concept was a slot system, where a user can
save or load designs into different slots. Slotted designs can be compared against
a chosen base design.

Figure 4.4: A slot system for system performance comparison.
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4.1.4 Refining

Refining is an iterative process where changes are presumably made based on the
interpretation of analytical results. This step is omitted as a separate process,
as results presented in real-time enables refinement to occur simultaneously as
modelling.

4.2 User interface

4.2.1 Principles

This works emphasis is on an interactive and intuitive design environment. The
intuitive aspect resides in the user interface and interactivity enabled by software
design. The application need a user interface which is intuitive to the user and
consistent with other applications. Common user interface principles were applied
to this part of the development process [37].

Figure 4.5: The interface of Interactive Structure Design

To ensure that users stay focused to the design task as possible, a clean user
interface design was opted for. Throughout development, unnecessary windows,
buttons and dialogue boxes were continuously removed. Other non-intrusive
ways were developed to communicate with the user without disturbing, such as
turning the model grey when it cannot be solved instead of a dialogue box.
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Tools were made contextual, thus only visible during the active execution of a
certain tool. Figure 4.6 shows the move tool and expose the tool parameters for
that tool only at the bottom of the screen. The different options always appear
at the same place on the screen, which is intuitive for the user.

Figure 4.6: The move tool with its tool parameters.

The user interface consists mainly of a few buttons. Making icons for these was
difficult. Some icons became more intuitive than others, but most make sense
after using the software. To combat potential confusion, tool-tip functionality
was added, see Figure 4.7.

Figure 4.7: Button graphic have seen a few iterations through the project.

The tool-tip also shows the shortcut key. The idea is that the user quickly finds the
logical shortcut key layout on the keyboard, enabling them to use the modelling
tools more effectively. The shortcut key layout consists of keys from left to right
on a keyboard. Each step to the right yields a tool with functionality closer to
analysing and left tools closer to modelling. All keys are within reach of the
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left hand, enabling an experienced user to work very effectively. The figure also
reveals the absence of icons for camera manipulation. In addition, there are no
visual cues when manipulating the camera. This is an oversight on my part.
Thankfully, users commonly try different key combinations, such as ctrl + mouse
or alt + mouse almost immediately when using 3D applications, quickly finding
the familiar orbiting controls and such alike. Camera tools and corresponding
icons was later implemented after a user test, which revealed the issue among
others, see chapter 5. Other icons were also reviewed and remade, as they were
deemed unintuitive.

Figure 4.8: The new menu bar with more intuitive icons as well access to camera
tools.

The user interface of the developed application utilized a coherent colour theme
and icons change colour depending on state. Visual cues are a good way for the
application to communicate with the user. Different information, such as hovering,
active selection or a disabled state, make use of different but consistent colours.

Figure 4.9: Old object design were elements were disproportionated.
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It was surprisingly difficult to establish clear and comfortable visuals of the
active model. Many different shaders (a function containing the visual behaviour
of a mesh surface, such as reflections, colour, light emittance, etc.) and colours
as well as sizes of the geometry representing the different system members, were
changed, and evaluated continuously. This part of the development encountered
many difficulties, especially when compiling the application to the web. WebGL
have compatibility issues when using modern shaders.

During the development of the application, a few simple toon-like shaders was
produced. These could render a dark rim at the edge of objects. It made it easier
to see which objects were currently selected or being hovered. The purpose of
their creation was to create compatibility with WebGL.

4.2.2 Shapshots

Snapshots, a feature inspired by the system comparison visualization from
StructureFIT, is a system where a user can save or load designs to and from
different slots. Snapshots are a photography of the active model at any given
time, thus the name Snapshot. The idea is to enable the user to explore design
alternatives and compare them using the indexed performance like that of
StructureFIT.

Figure 4.10: Early snapshot user interface design with the same model loaded into
all available slots.
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The first iteration of the tool enabled users to save snapshots using buttons
which added entities to something similar to a spreadsheet. This concept proved
to be very ineffective. With increasing number of snapshots it became
increasingly difficult to recognise and differentiate entities. A second iteration
introduced a separate window. Picture frames where added instead of text and
entities could be recognised and compared visually more easily, see Figure 4.10.

But the separate window disconnected the user from the active model. The
snapshots where moved to the main screen instead with transparent fold-in,
fold-out windows, hiding them when not in use. The windows received add,
remove and load-into-active-scene buttons, enabling the user to easily swap
between designs.

Figure 4.11: Improved snapshot UI design.

Using several geometrical systems and cameras, live streams of several snapshots
could be visualized at the same time. Using many cameras and object instances
vastly increase draw calls. Draw calls are expensive operations performance wise,
and in general should be kept as low as possible. To combat lag and poor
performance, an iterative rendering cycle was implemented. It added manual
control to camera rendering calls. Rendering time went from being in the region
of 10 ms down to 2< ms on a decent computer.
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4.3 Implementation

4.3.1 Class structure

The strategy was to create a few heavyweight classes that communicated with
each other. Each class was given methods which was relevant to its purpose. The
classes are assigned to public statics identifiers, meaning they can be called and
accessed by any script in the application. The advantage with this approach is a
structure which can be well organized, something which in the long term proved
valuable as the code base grew. The most important classes are described in this
section.

Figure 4.12: Software overview

4.3.1.1 InputHandler

The initial approach was to use alternative input devices such as the Leap Motion
hand tracking controller. A number of other input devices was also considered.
The input handlers main task was to sort I/O and pair human intention with
appropriate action.

Figure 4.13: The input handler yields different authority to tools and functions
depending on the current application state.

The discontinued development with support for the Leap Motion controller
deprecated the main purpose of the input handler. However, it still served as a
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class which yields layered authority. It serves as one of many safety features
which prevents multiple execution of tools. It also checks for super actions -
which can suspend and execute above normal tools, such as camera
manipulation whilst freezing execution of a current tool preventing mishaps.

4.3.1.2 Toolbox

The toolbox is a class, which utilizes a standard tool structure where tools
functions as a plug-in. The core structure was made to be modular so that tools
could be added continuously. Highly interactive software generally entails a high
probability of the user inadvertently glitching the system. This application,
which implements 3D modelling and structural analysis, will require a good
selection of tools and functions. It was important that these were isolated from
each other to prevent the code from breaking, even if cross execution was to
occur. This was combated trough establishing a routine scheme and structure,
which tools and functions had to conform to.

Among the many tasks delegated to the toolbox class, the most important is to
make only one tool execute at any given time. It is the only class with authority
to start execution of different tools. Upon a call to start execution of a tool, the
class does in addition have to receive appropriate authority from the input
handler, making it even harder for tools to execute unexpectedly.

pub l i c void s t a r tToo l ( ){
r e s e t ( ) ;
Star tCorout ine ( Tool ( ) ) ;

}
pub l i c IEnumerator Tool ( ){

i f ( InputHandler . c . Authority != ” de f au l t ”){
y i e l d break ;

} e l s e i f ( InputHandler . c . Authority == ” de f au l t ”){
InputHandler . c . Authority = ” ed i t i n g ” ;
myTool . c . StartTool ( ) ;
whi l e (myTool . c . IsRunning == true ){

y i e l d re turn nu l l ;
}

}
}

The above code block is a stripped down version of the tool execution template
in C#. Firstly, a check is made to ensure the tool can be given authority by the
input handler. The toolbox class checks whether the tool is running in a
coroutine. A coroutine can pause execution and return control to Unity using
yield commands [38]. This way a script can loop a check, such as whether a tool
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is running or not, without entering an infinite loop. Coroutines are extensively
used in the tool code.

To achieve a direct interaction model, tool execution should not hinder users
intent. Tools were made to execute with only one action and with the ability
to start execution from any point in the program. Whenever a call is made to
activate a tool, the toolbox class resets every tool through a global reset function.
It calls an abort routine which exists in every tool. This effectively resets the
entire application to a known state. This enabled tools to be built from a known
application state. The reset happens very quickly and is unnoticeable to the user.

4.3.1.3 The Model class

The model class handles request to alter or to edit a model. It contains routines
to add or remove nodes, seeding the system members with unique identities or
joining members together using topology information stored in the class. In
addition, it keeps snapshot information and provides routines used by other
scripts to save or load snapshots to and from memory as well as methods used
for persistence, such as loading and saving models to and from a disk.

Figure 4.14: The Model class data structure.

4.3.1.4 The Solver class

The solver class acts as a translator. It translates the object scene to numerical
code which can be sent to the numerical solver. The results from the solver are
later interpreted and translated back to the object scene.
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It is possible for the user to build systems which are unsolvable by the solver.
This could happen when there is not an adequate amount of boundary conditions.
To prevent crashes or code from stop executing, the solver has built in functions
which checks systems to determine whether the system code can be sent to the
solver or not. Invalid results returned by the solver are immediately dismissed.
This can occur if the user modifies the structural topology during computations.
It is only a possible for this to occur if threaded computations are used. The main
thread, where modelling happens, would otherwise have to wait for computations
to finish at which point the system topology will still be the same as it cannot be
changed during computation.

4.3.2 Modelling

Almost all interactions with objects are through the physics engine - namely a
feature called raycast. The users mouse position is placed into a virtual camera
and a ray is shot at a base plane. The hit point becomes the x-y coordinates
for the temporary node. Node height is determined by using the mouse scroll,
changing the working plane which is kept between interactions. This makes it
easy to work on the same floor continuously. The height of the working plane is
displayed at all time, as well the temporary coordinates of the node.

Figure 4.15: Node placement using raycast.

Manual entry of node position is possible after placement. This is done by selecting
a node and enter specific coordinates in the coordinate window. Inspired by the
element creation process in [7], elements are created between nodes by dragging
(click + drag) or linking (click + click), see figure 4.16. In addition, there is also
a delete tool and a move tool, where the latter can be seen in Figure 4.6.
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Figure 4.16: Connecting nodes with elements

The modelling process needs to be easy and intuitive to yield a perceived
experience of direct manipulation. To achieve direct manipulation, real time
feedback of the temporary position of a node is displayed, together with its
symmetry entities if symmetry is enabled. In addition, an audible pop effect is
triggered at the moment of placement as an action feedback notification.

4.4 Computations

4.4.1 Integrated physics

To enable dynamic analysis and object recognition by the integrated physics
engine, node and elements need to have a rigidbody component attached to
them. The added rigidbody component gives objects properties such as mass
and the ability to detect and react to collisions. The rigidbody component is
essential for the object to be recognised by the physics engine.

Figure 4.17: Effects of rigidbody and spring joint components added to an object
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Two physical components of interest. The spring joint [39] and the configurable
joint [40]. The latter is the most configurable of the two. Joints are a collective
name of components which in one way or another ties two or more rigidbodies
together. Spring joints are linear spring connections where the rigidbodies can
be considered the nodes. The joint, in this context, refer to the actual spring
with the property to push or pull a rigidbody. The rigidbodies are attached to
the spring joint, which is the opposite of normal spring which connect to objects.

Extensive testing suggested that the springs behaviour is different from a normal
spring, which can from the perspective of finite element analysis be considered
to push or pull an equal amount to connected bodies. The first observation was
a preferred direction of movement where the joints seemed to want to move one
node over the other. Additionally, the joints have a base connection. The base
connection is rigidly attached to a rigidbody whilst the other end is attached in a
way that allows the rigidbody or the joint to pivot, see Figure 4.18. The conclusion
was that the spring joint does not behave homogeneously.

Figure 4.18: Effect of the different connections

Observe Figure 4.19. The base connection A is locked to the rigidbody it is
attached to. It can not rotate around this connection. It rotates with the
rigidbody. The other connection B, is locked to the second rigidboy by
translation. That rigidbody will push or pull the connection, resulting in the
spring changing length. The physics engine will the try to compensate by
pushing or pulling the ridigbody with the spring. Several factor determine the
amount of which it is moved, such as mass and drag.

Figure 4.19: A spring joint with two connections.

31



PRESENT WORK - DEVELOPING STRUCTSTUDIO

The behaviour of the joints results in a preferred direction of movement and
preferred points where rotation could occur. During early testing it was evident
that this was not going to work. Solving this was difficult. A more true-like
spring behaviour was obtained by using two springs in opposite direction with
half the spring stiffness each, see Figure 4.20. The two springs made up what
was used as a bar element.

Figure 4.20: Spring element with no preferred direction, but more expensive on
performance.

The combined dual spring joint element was implemented but indicated yet
another unwanted behaviour, rotational stiffness. To proceed, an additional
dummy-joint was added which gave the element rotational freedom at each
connection. The added joint caused severe stability issues and decreased
performance significantly. In addition, it yielded unsatisfactory deformations, see
Figure 4.22a.

Figure 4.21: 2D bar elements - top middle node displaced 10m vertically
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Observe the system in Figure 4.21 with deformations that of linear finite bar
elements. Compare the deformations yielded by the spring elements in
Figure 4.22a and 4.22b where the finite system is superimposed into the figures.
Two additional examples in 3D illustrates the different behaviours, see Figure
4.23a and 4.23b. These systems have a central node displaced 10m as in
Figure 4.21 but in the lateral plane instead. They illustrate the different spring
joint elements behaviour.

Further experimentation yielded inconsistent results. It was not possible to
establish a more correct physical behaviour of the elements and make results
predictable. The method which yielded best results was computationally heavy
and could not be improved, in part because the physic core could not be
accessed.
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(a)

(b)

Figure 4.22: (a) Deformation in 2D with no rotational stiffness. (b) Deformation
in 2D with unknown amount of rotational stiffness.
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(a)

(b)

Figure 4.23: (a) Deformation with no rotational stiffness of a 3D structure. (b)
Deformation with unknown amount of rotational stiffness of a 3D structure.
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4.4.2 Numerical analysis

Numerical systems used in structural design are usually created using finite
elements. In the developed application, three-dimensional bar elements are used.
The element have 6 degrees of freedom with the element properties surface area
and modulus of elasticity [41].

Figure 4.24: A three-dimensional bar element.

The element is used to construct a stiffness matrix with a linear elastic material
model. The equation system becomes:

Ka = f (4.1)

where,

K =
EA

L



1 0 0 −1 0 0

0 1 0 0 −1 0

0 0 1 0 0 −1

−1 0 0 1 0 0

0 −1 0 0 1 0

0 0 −1 0 0 1


a =



a1

a2

a3

a4

a5

a6


f =



f1

f2

f3

f4

f5

f6


(4.2)

K is the element stiffness matrix, derived from the element properties and material
model. The a matrix describes displacements and f the forces. The above system
represents one element with one set of degrees of freedom. Every element is
assembled into a global equation system which is solved in the numerical solver
class.
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Internal forces are calculated using strain:

σ = εE =

(
ln
l0

− 1

)
E (4.3)

ε is the element strain, l0 is the initial element length and ln the new element
length. Positive stress represents tension.

4.4.2.1 Performance

Using a numerical approach provides the opportunity to push computations to
another thread on the CPU. This is beneficial for the user interaction with the
application, as threading can result in improved performance. It additionally
reduces the risk of manipulative tools not responding to input if the solver does
not finish fast enough.

Threading computations means that the results can lag behind any number of
update cycles. In general, this is not an issues as the computational time usually
corresponds to less than one or two render cycles depending on hardware. The lag
is barely distinguishable if at all if computation does not limit the manipulation
of objects, if which lag is very noticeable. This is the conclusion for the first
implementation, where manipulation of objects had to wait for the solver to finish
when working with larger systems. This reduced the perceived interactivity of the
application.

Figure 4.25: Potential scenario using threaded computations.

Although unlikely with small systems, but working with bigger systems where
the computational time is greater than a few cycles can yield a solution to a
system which have changed, making the result of that computation invalid.
Results may in addition be incompatible with the new system. This could result
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in invalid array accesses, freezing the main thread. The potential destructive
behaviour was prevented using exception handlers, which can allow a code to
continue even if an exception was thrown [42]. Catch handlers was used to revert
the application back to a runnable state if this scenario occurs.

4.4.2.2 Solver

Calfem is a finite element toolbox [41] with common numerical operations for
numerical computation. It was originally created for Matlab, but a C#
adaptation of its most common methods is available [43], among whose is the
solver.

The solver can only solve numerical systems, making it incompatible with objects
in Unity. This is why the solver need to translate the scene from the object domain
to the numerical domain and back. The solver class distributes the results to the
different objects in the active scene. It allows other routines to immediately colour
objects in colours representing the stresses in the different elements or such alike.

4.4.3 Snapshots

Snapshots use an indexed parameter for system performance comparison. The
performance parameter is the strain energy. Strain energy is potential work stored
in a system whilst undergoing deformation. This parameter is easily computed
from the finite element system in eq. 4.1. For uniaxial stress, the incremental
strain energy is defined as [44]

dW = σdε; W (ε) =

∫ ε

0

σ(ε)dε (4.4)

Using Hooke’s law
σ = Eε (4.5)

yields

W =

∫ ε

0

σ(ε)dε =
1

2
Eε2 (4.6)

Applying 4.6 to the system in 4.1, where forces are determined by the stiffness
matrix K, which is derived from the constitutive relationship between stress and
strain, it is possible to use the same approach to yield [44]

W (a) =
1

2
a>Ka (4.7)

Eq. 4.7 is the expression used to obtain the strain energy. Each snapshot class
stores the last valid strain energy yielded by the solver. The UIs visual
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representation of a snapshots use this parameter to calculate and present an
indexed number, which is normalized against a user chosen design, enabling the
user to compare designs by performance indexes.
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Chapter 5

User testing

5.1 Method

There have been opportunities to observe users as they use the application
throughout the development. Users have mainly been students in programmes
relevant to construction. Some users tested the application remotely where
direct observation was not possible and provided feedback in written form. This
chapter summarizes some of the most interesting interactions observed and
remarks given.

5.2 Application remarks

Comments regarding the application have been mostly positive. Most comments
related to the clean interface and well-chosen colours which made the different
3D elements easy to tell apart. Additional positive remarks were given to the
representation of boundary conditions. Most of the icons felt well-made and
intuitive.

Modelling usually went without much trouble and users could be seen playing
around with nodes. Their goal was usually to achieve a satisfactory and even
stress distribution by trying to move the nodes in such a way that the colours
representing the element stresses became evenly distributed in nice looking
gradients. This was most noticeable when users interacted with one of the
examples shipped with the software, specifically a simple 3D bridge.

The modelling tools were conceived as good. Using the scroll wheel to move
nodes up and down was conceived as slightly alien at first. However, it quickly
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became intuitive after some use. A negative consequence of the interaction
model made it difficult to work with nodes which had a high height value. This
as it was difficult to see the base-plane and node at the same time, making
placement difficult. Refer to Figure 4.15. The implementation did in addition
make it hard to work on a laptop, which in general do not have a scroll wheel
built in.

Almost none of the observed users discovered the snapshot function by
themselves. The snapshot feature had to be manually introduced and sometimes
explained to make sense to users. This was unfortunate. It became evident that
the snapshot feature does a poor job of explaining itself - even when exposed to
the user. The aim for a super-clean interface might have hurt the development of
the tool, as the feature was tucked away to not clutter the UI. Additionally, the
icon for the snapshot feature is also highly non-intuitive, and really only made
sense to a user after the snapshot feature was introduced. Users expressed
positive remarks regarding the potential power in such a tool but wanted to see
a more integrated solution.

The most positive remarks were given to the symmetry tools, which significantly
speeded up the modelling process, which in most cases was a box-like structures or
a simpler bridge structure. Negative remarks were given to the camera tools, which
missed buttons and did not work well with laptop users where a middle-click-hold
was hard to execute. The application environment did in general feel intuitive
and familiar to users. The aim to develop an application with an interactive
environment with a more direct interaction model than common structural design
software is considered to be achieved.

5.3 Summary

The interaction model of the application failed to significantly improve or incite
users towards design exploration beyond playing with their models in a behaviour
similar to that of Sketch a Frame [7]. The snapshot feature was thought to be the
main feature of the application. However, it was not discovered or used by users
in any extensive observable manner. The snapshot feature was however seen as a
potential powerfully tool, but needs a different implementation.
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Chapter 6

Results and discussion

6.1 Discussion

The development of StructSTUDIO have been a learning process. Using a game
engine proved no real hindrance to development. The issues were mainly related
to the online version using WebGL. Due to issues with WebGL, less time could
be spent implementing tools. Apart from adapting the application to the web,
the development process did for the most part proceed without much hindrance.

The Unity integrated development environment and editor provided good tools
and components to design a UI consistent with conventional applications. The
improved control over the UIs shape, form and functionality made up for the
extra development work.

6.2 Application usages

The application can calculate stresses and strains of structural members and
visualize the results to the user. The snapshot tool can be used to compare
designs. It does not incite to it, but the tool is fully functional non the less.

There is great value in design exploration, and using the snapshot feature yields
intuitive understanding of how structural members affect system performance.
Its ability to compare alternatives enables users to learn about structural
performance. This leads to more informed decisions and entails attributes which
makes the application applicable to education.
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The application is not limited to analysis of structural objects. With more versatile
3D modelling tools, which were easier to use than that found in common structural
analysis software, the 3rd dimension became more accessible. It enabled many
different objects, not necessarily related to buildings, to be designed and compared,
see Figure 6.1.

Figure 6.1: A coffee cup modelled in StructSTUDIO.

6.3 Conclusions

According to user feedback, the modelling and analysing aspects of the
application was enhanced by the more direct interaction model as well as the
implementation of real-time results. This further indicate and support
conclusions made in previous work, that more direct interaction models can
enhance the users engagement with the design task [7–9].

Inciting users to design exploration was in part achieved by implementing a more
direct interaction model. The main feature of the software, Snapshots, did not
seem to incite further design exploration - even after being introduced to the
user. If the tool can be successfully developed and integrated to the design
process, it can be used in both practical and educational scenarios. It can also
provide a good middle ground for architects and engineers, where specifically an
engineer has a tool which can in a visual and intuitive way help the engineer
explain how the architects design choices effects structural performance.

Developing for the web also entails an extended availability over different operating
systems as well as web browsers. The absence of an installation process made it
easy for users to start using the application and the feedback they gave was valid
for the same deployment of the application regardless of operating system or web
browsers with only a few exceptions.
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6.4 Suggested future work

With the snapshot feature being regarded as a potentially powerful tool, its true
benefit to conceptual structure design should be further investigated using a
different implementation than that used in this project.

The development with virtual reality and hand tracking devices was discontinued
due to technical difficulties. The small amount of experience earned with such
devices strongly suggested a potentially powerful ability to unlock users from the
normal 2D-interface paradigm. The devices possible benefit to structural design
should be revisited when the technology has matured.

A limiting factor with regards to using Unitys built-in physics is the inability to
access the core physics engine. There are numerous open source engines
available, which might prove to be a better choice for a dynamic computational
approach.

It has throughout this thesis been mentioned that versatile modelling tools are
important to the conceptual design phase. Applications mentioned in chapter 2,
as well as StructSTUDIO, is limited to relatively basic geometry. It could be
beneficial to explore possibilities with expanding applications like these with
more powerful geometric modelling tools while keeping analytical capabilities
and a high level of interactivity. Approaches could involve programmatic and
parametric modelling, both of which could aid in creating or generating more
complex geometries. In addition, applications like these could also benefit from
the capability to generate geometry or suggest possible improvements based on
analytical results like that of StructureFIT.
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