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Abstract

The superconductivity under doping in the famous cuprate compounds is believed to origi-
nate in the CuO2 planes. The mediator of pairing is generally accepted to be induced from
electronic degrees of freedom. While many mechanisms, such as spin fluctuations, have
been proposed throughout the years, little research has been carried out on the role of the
retarded attraction due to electronic overscreening.

In this study, the dynamically screened interaction W (r, r′; t) is studied in the CuO2 planes
of the parent compound La2CuO4. To this end, a repulsive test charge, representing an elec-
tron, is introduced at various r′ in the CuO2 plane, and W (r, r′; t) is calculated as a function
of r and t. The aim is to explore the possibility of the existence of an attractive effective
interaction between electrons. The static screened interaction W (r, r′;ω = 0), which is the
time average of W (r, r′; t) is also studied. In addition, the effective interactions U1(r, r′; t)
and U3(r, r′; t), corresponding to the well-known one- and three-band models, are investi-
gated using the constrained random-phase approximation (cRPA). Substantial regions of the
CuO2 plane do indeed exhibit an attractive effective interaction, with both U1 and U3 being
negative. On the other hand, the extent of such regions is significantly smaller in SrVO3, a
non-superconducting metal.

The present work suggests that future studies of electronic overscreening as a possible pair-
ing mechanism is worth consideration. The same ab initio parameters as obtained and uti-
lized in this work can be used to construct a Hubbard-Holstein model, within which the gap
function can be calculated by solving the Eliashberg equations.
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Abbreviations, Units and Symbols

Abbreviations

AF Antiferromagnetic
ARPES Angle-resolved photoemission spectroscopy
BCS Bardeen-Cooper-Schrieffer
BZ (Full) Brillouin zone
cRPA Constrained random-phase approximation
DFT Density functional theory
FLAPW Full potential linearized augmented plane wave
GS Ground state
GWA GW approximation (Σ = iGW )
IBZ Irreducible Brillouin zone
IR Interstitial region
KS Kohn-Sham
LDA Local density approximation
LHB Lower Hubbard band
LMTO Linear muffin-tin orbital
MPB Mixed product basis
MT Muffin tin
PW Polarization wave
RPA Random-phase approximation
TDHA Time-dependent Hartree approximation (= RPA)
UHB Upper Hubbard band
xc Exchange-Correlation
ZRS Zhang-Rice singlet

System of Units

Atomic units: ~ = 1 Planck’s reduced constant me = 1 Electron mass
e = 1 Elementary charge ε0 = 1/4π Permittivity of free space

Symbols

A Spectral function
A0 Non-interacting spectral function
α Smearing factor in Ewald summation
Bk
α Mixed product basis function

B̃k
α Biorthogonal mixed product basis function

ĉσ†nk/ĉσnk Electron creation/annihilation operator (n: Band index. k and σ in this list)
γ̂†kσ/γ̂kσ Quasi-particle creation/annihilation operator
Γ Vertex function
D Boson Green function
δρ Induced electron density
δ̃ρ

cRPA
Induced electron density caused by screening channels in P̃ r0

∆ Superconducting gap function
∆CT Charge transfer energy
ε−1 Inverse dielectric function
εσnk Electron dispersion



EF Fermi energy
Ek Quasi-particle dispersion
Exc Exchange-correlation energy
G Electron Green function
G0 Non-interacting electron Green function
G Reciprocal lattice vector
k Crystal momentum
Λ Electron-plasmon coupling
M Mass operator
µ/µγ Electron/Quasi-particle chemical potential
n̂σnk Electron number operator (= ĉσ†nkĉ

σ
nk)

Nk Number of k-mesh points
Nα Number of mixed product basis functions
P Polarization function
P 0 Non-interacting polarization function
P r0 Non-interacting "high-energy” polarization in cRPA
P̃ r0 Non-interacting ”high-energy” polarization in disentangled cRPA
P Subspace of P̃ r0

Π Boson self-energy
R Linear (electron) density responce function
RRPA Linear density responce function in RPA
R̃cRPA ”High-energy” linear density responce function in disentangled cRPA
ρ Ground-state electron density
σ Electron spin (↑= +1/2 or ↓= −1/2)
σ1, σ2, σ3 Pauli matrices
Σ Electron self-energy
t Time or effective one-electron transfer (”hopping parameter”)
T Temperature
T Time-ordering operator
T Lattice vector
τ Time-delay (t− t′)
TC Superconducting critical temperature
U On-site repulsion (”Hubbard U”)
U (U1, U3) Partially screened interaction (effective interaction in 1- and 3-band model)
U c Correlated part of U (U − v)
U r Retarded partially screened interaction
U cr Correlated part of U r (U r − v)
v Bare Coulomb interaction
VH Hartree potential
Vxc Exchange-correlation potential
φσnk Kohn-Sham eigenstates
ϕ Time-dependent probing field
W Fully screened interaction
W c Correlated part of W (W − v)
χ Shift function
Ylm Spherical harmonic
Z Renormalization factor
ω Electron excitation energy
ωn Matsubara frequency
Ω Unit cell volume or plasmon energy
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Chapter 1

Introduction

Several compounds containing CuO2 planes, called cuprates, become superconducting with a
high critical temperature TC when doped with electrons or holes. [1] The dream of achieving
superconductivity at room temperature and the applications this would have in technology,
such as lossless transmission of electricity, has led to great focus on these materials. The
question arises: "What causes the pairing between electrons in the cuprates?" Several mech-
anisms have been proposed, many of electronic origin. Little attention has been paid on
electronic overscreening, which could occur at different time-scales, and leads to an effec-
tive attraction between two electrons. The essential quantity, the effective electron-electron
interaction U , naturally enters the Eliashberg equations of superconductivity (App. D:2), as
shown in [2], which indicates that screening phenomena are essential in the pairing physics.
The dynamics is hidden in the band structure, and extracted by a Wannier-interpolation pro-
cedure resulting in a few bands (as many as Wannier functions) close to the Fermi energy.
For such a low-energy model, the dynamical effective interaction between electrons in these
bands, U , gets screened by states outside the chosen subspace. [3]

The presence of overscreening in different band models will, due to the limited previous
research, be the central topic of this work. But this requires U as a function of space, not
as matrix elements in an incomplete localized basis constructed from the density functional
theory (DFT) (App. A:1) eigenstates within local density approximation (LDA) (App. A:1),
which is the usual way U is represented. The physics is also more transparent when studying
U in time, not in frequency, as is normally done. The space and time dependence of U will
therefore be extracted in this study in the CuO2 planes of the prototypical cuprate parent
compound La2CuO2, given a test charge (electron) also put in this plane. The main aim of
providing this alternative perspective on the retarded electronic screening is to investigate
the possibility of this constituting an important pairing mechanism. The pairing is gener-
ally believed to be confined to the CuO2 planes [1]. So, if an attractive interaction can be
found somewhere in these planes for a sufficiently long time, it is likely that electronic over-
screening is important in the process of forming Cooper pairs. An effective ab initio model
Hamiltonian (Hubbard-Holstein model [4]) can be constructed using the same interaction
parameters as in this work, and the findings should indicate whether or not it is worthwhile
to solve the Eliashberg equations for the superconducting gap within such a model.

The implementation is performed within the constrained random-phase approximation (c-
RPA), explained in section 2.3. cRPA is based on the assumption of weak vertex corrections
(App. A:3) despite the fact that the Wannier-interpolated LDA-derived band crossing the
Fermi energy (the antibonding combination of Cu dx2−y2 and O px/py) is narrow and par-
tially filled, and with main 3d character. At first, this may seem like a problem, not only
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because of the partial filling, but also since the radial wave function of the 3d state is highly
localized at the Cu sites, meaning that the mean-field assumption in LDA, based on that the
electrons interacts with the average electron density in a finite region, fails. They instead
interact very strongly merely with their closest neighbors. Adding an extra 3d electron on
the same Cu site hence costs more energy than anticipated from LDA, due to the strong on-
site repulsion between electrons, causing the band splitting needed to describe La2CuO4 as
the insulator it actually is. The problem with the one-particle description lies in the local
and energy-independent exchange-correlation potential Vxc, which should be generalized to
a non-local end energy-dependent effective ”potential”, the self-energy Σ, to better take into
account exchange and correlations. [5] However, in cRPA, the strong correlations do not en-
ter the effective interaction U , as shown later, since the terms in the polarization function P
(App. A:3) corresponding to transitions between two states contained within the low-energy
subspace do not enter U . [3] This means that U can be obtained despite the assumption of
weak vertex corrections.

The frequency-dependent U obtained within cRPA is a generalization of the on-site repul-
sion within the Hubbard-model (App. C), which is equal to the static value U(ω = 0). [3]
The fully screened interaction W (App. A:3), which involves the strong correlations, will
also be studied within cRPA. Hence, conclusions in this thesis regarding W will not be on as
firm ground as for U . A ”mixed product basis” derived from the LDA-eigenstates will be used
to expand the linear density response function R, which uniquely determines U/W . These
matrix elements are obtained from the GW code SPEX [6], a postprocessor of the DFT code
FLEUR [7], based on the full potential linearized augumented plane wave (FLAPW) method.
The spatial dependence of U/W will then be extracted by means of an Ewald summation
procedure. The time-dependence is finally obtained by standard Fourier transformation.
The induced electron density δρ will also be studied in space and time, making it easier to
interpret W and U .

All necessary information needed to understand the results will be provided in "Theory and
Motivation" and "Extraction of U in Space and Time". The former starts by presenting some
general features of cuprate compounds, in particular La2CuO4. This follows by a motiva-
tion of why it is interesting to study the screened interaction in the cuprates, and further,
as a function of space and time. ”Theory and Motivation” ends by presenting cRPA, needed
to understand the derivations following in "Extraction of U in Space and Time". To illus-
trate that the implementation seems to be successful, the first presented data in "Results
and Discussion" are from studies of the static W in Nickel, where earlier studies have been
performed in [8]. Comparisons are then made between the static W in La2CuO4 and SrVO3,
a non-superconducting metal. This is followed by a large amount of data of the static U
in space as well as the dynamical U in space and time in La2CuO4, within the famous one-
and three-band models. The report is then rounded off by "Summary and Conclusions" and
"Future Directions".
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Chapter 2

Theory and Motivation

2.1 Cuprates

It came as a great surprise when superconductivity was found in LaBaCuO at 30 K back
in 1986, triggering research and synthesization of cuprate high-TC superconductors, all
with CuO2 planes separated by charge reservoir layers and characterized by strong electron-

Figure 2.1: Typical phase diagram of hole- and
electron-doped high-TC superconductors (from
[1]). AF: Antiferromagnet, SC: Superconduc-
tor. Pseudogap refers to an energy gap with
critical temperature > TC in the normal state,
present at the majority of the Fermi surface. [1]

electron correlations. These are antiferromag-
netic insulators, but when doping the CuO2

planes with electrons or holes, they become poor
metals. When further reducing T they become
superconducting with a characteristic high TC
[1], see Fig. 1. A discussion of conventional
and unconventional superconductivity is given
in App. D:1-2. The large correlations (on-site
repulsions on the Cu site) and detailed phase-
diagram call for a many-body description beyond
BCS-theory. The knowledge of the cuprates is
thereby mainly based on experimental data. The
spectral function A(k, ω) = −(1/π)Im G(k, ω),
for example, is obtained from angle-resolved
photoemission spectroscopy (ARPES). G is the Green function (App. A:2). In terms of the
self-energy Σ (App. A:2), G and A are given by [1]

G(k, ω) =
1

ω − ε(k)− Σ(k, ω)

A(k, ω) = − 1

π

Im Σ(k, ω)

[ω − ε(k)− Re Σ(k, ω)]2 + [Im Σ(k, ω)]2
.

Im G(k, ω) and Re G(k, ω) are related through Kramers-Kronig relations to fulfil causality,
meaning that Σ(k, ω) can be calculated, which contains all the correlation effects. [1] ARPES
has, for reasons like this, proved to be extremely important for the study of the cuprates.

In this thesis, only one prototypical cuprate, La2−xSrxCuO4, will be studied, with a tetrag-
onal crystal structure at high T . It has been shown that even at low T , the properties are
captured assuming the same symmetry. [1] The crystal structure and LDA band structure,
obtained using FLEUR, of the parent compound La2CuO4 is shown in Fig. 2.2, together with
that of SrVO3, a non-superconducting metal which later in this study will be compared with
La2CuO4. In La2CuO4 the CuO2 planes are separated by two LaO planes, and in the doped
system some La atoms are replaced by Sr which induces holes into the CuO2 planes. The La,
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Figure 2.2: a) Crystal structure of La2CuO4 (from [9] but modified). b) LDA band structure of La2CuO4.
c) Crystal structure of SrVO3. d) LDA band structure of SrVO3. Γ = (0, 0, 0), X = (π, 0, 0), K = (π, π, 0).

Sr and O atoms between the CuO2 planes are said to comprise a charge reservoir layer.
La2−xSrxCuO4, which only has one CuO2 plane per unit cell, is categorized as a single-layer
cuprate. The simple structure does not make it less archetypical of cuprates compounds,
rather the opposite. The superconducting properties in La2−xSrxCuO4 are, like in other
cuprates, thought to be confined to the CuO2 planes since the low-energy LDA bands (close
to EF ) are of main Cu 3dx2−y2 and O 2px/py character, thus determining the macroscopic
properties. At zero doping, band structure and mean-field models predict a paramagnetic
metal due to the half-filled narrow d band (Fig. 2.2 b)), but it is an antiferromagnetic (AF)
insulator [1], reflecting the strong electron correlations.

A popular method to introduce many-body corrections necessary to explain this discrepancy
and other properties is the Hubbard model (App. C). The main quantity U , the on-site re-
pulsion, is often treated as a material-dependent adjustable parameter. A realistic model can
however be obtained if U (and possible additional parameters) is obtained by ab initio meth-
ods. The constrained random-phase approximation (cRPA), which will be explained later,
allows the calculation of U from first-principles and also introduces frequency-dependence
into U . This frequency-dependence naturally enters when integrating out high-energy states
from the original Hamiltonian, and the so called partially screened interaction U(ω) is the ef-
fective bare interaction in the resulting subspace. [10] It was found recently that a frequency-
dependent interaction is needed to describe the undoped parent compound La2CuO4 as an
insulator with a gap in the spectral function. [11] Further, the AF nature is understood
directly from the Hubbard model in which electrons due to the large U are localized, but
if electrons at neighbouring sites have opposite spin they can hop back and forth making
antiparallel spin energetically favourable.

2.2 Why Study the Screened Interaction of La2CuO4 in
...... Space and Time?

There are quite a few reasons to study the fully and partially screened interaction, W (r, r′; τ)
and U(r, r′; τ), in space and time of the parent compound La2CuO4. Three reasons will be
discussed, where (i) and (ii) relate to the screened interaction itself, and (iii) to the space-
time extraction.
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(i) U Relates to Superconductivity

The screened interaction has been shown to be intimately related to superconductivity within
the Hubbard model. It is therefore worth spending the first part of this section on explain-
ing this model and its general results for the cuprates, and then discussing superconductivity.

Consider a single CuO2 layer and neglect the small interlayer hopping. The main physics is
captured by only considering a few bands close to EF by means of a downfolding procedure
(see section 2.3). A common downfolding is to a 3-band model with the antibonding and
bonding combination of the Cu 3dx2−y2 and O 2pσ bands (σ = x or y) and a non-bonding
p-orbital. Further downfolding to one band, where only the antibonding combination (with
dominating dx2−y2-component) at the Fermi energy is included, results in nominal Cu sites
connected by an effective one-electron transfer t and on-site repulsion U , represented by the
one-band Hubbard model [12], with Hamiltonian [3] (App. C for details)

Ĥ = t
∑

σ〈ij〉⊂d

ĉ†iσ ĉjσ + U
∑
i⊂d

n̂i↑n̂i↓.

Figure 2.3: Orbitals involved in a 3-band model
(a) and 1-band model (c) and schematic den-
sity of states in a 3-band model (b) and 1-band
model (d). (from [13] but modified)

La2CuO4 has one d-hole resulting in a half-filled
dx2−y2-band of spin 1/2. The minimum charge
excitation energy is not the on-site repulsion U ,
but the charge transfer energy ∆CT between Cu
and O due to hybridization of Cu 3dx2−y2 and
O 2pσ. [13] The large U is the reason for
the failure of the LDA band structure and splits
Cu 3dx2−y2 into an upper and lower ”Hubbard
band” (UHB and LHB) within the 3-band model,
see Fig. 2.3a)-b). When adding an O 2pσ hole
of opposite spin to the Cu 3dx2−y2 hole the low-
est energy state is a local ”Zhang-Rice singlet”’
(ZRS), in which the O 2pσ hole surrounds the
Cu site. One thus interprets ZRS as a LHB within
the 1-band model (Fig. 2.3c)-d)), split from
the band of dx2−y2-symmetry by the effective
Coulomb repulsion Ugap = ∆CT. [13] The static
one-band model ignores the charge transfer in-
sulator property of the cuprates, but has been
used to show (in [12]) that with hole doping,
so that 〈n̂i↑+ n̂i↓〉 < 1, U can give rise to Cooper
pairing within the dx2−y2-state, which avoids spatial regions where the static effective in-
teraction is repulsive. Just like two electrons that correlate in time to avoid the short-time
Coulomb repulsion (vδ(t − t′)) in the case of electron-phonon interaction, two electrons in
the dx2−y2-orbit avoid the irreducible singlet electron-electron interaction. Quantum Monte
Carlo-simulations and experiments also show that the long-range antiferromagnetic order
disappears at non-zero doping. [12]

The static Hubbard model cannot explain superconductivity perfectly, but the screened inter-
action enters naturally into the Eliashberg equations (App. D:2). For simple metals, electrons
may (in a single-band picture) be separated into two classes. 1) Valence electrons: Resem-
bling a homogeneous interacting Fermi liquid, which may form Cooper pairs when screened,
due to Friedel oscillations with regions of attraction (intrinsic superconductivity). 2) Core-
electrons: Quasi-localized and stable against Cooper pairing, adding to the polarizability of
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the ionic system. [2] In analogy to this separation done for simple metals, in the cuprates
Cu 3d make up valence electrons and O 2p play the role of the core electrons. Assuming 1)
and 2) have non-overlapping bands, the dynamics of 1) is described by the plasmons and of
2) by the quantized polarization waves (PW). The PW do, to first order, capture the freedom
of the core electrons to move relative to their nuclei. The PW are thus of dipole character,
and the phonons (following the nuclei) of monopole character in the relative position of the
core electrons. This multipole expansion assumes small overlaps between core-electrons in
different ions. The PW can overscreen an external electron, which thus attracts another, and
in metallic systems the valence electrons also screen the PW. The explicit form of the effec-
tive valence electron-electron interaction U will not be given here, but may be found in [2].
U contains the effects of correlation hole charge fluctuations, spin fluctuations and screened
polarization waves which couple to the former two. These electronic pairing channels do not
fulfil Migdal’s theorem (App. D:2), requiring a strong-coupling picture when determining the
gap function ∆(k, iωn). The l-wave Eliashberg equation reads (at T just below TC)

∆l(k, iωn) = (2.1)

− T

2

∑
ωn′

∑
k′

|G(k′, iωn′)|2
∫ π

0
dθ sin θPl(cos θ)U(k− k′, iωn − iωn′)∆l(k

′, iωn′)

where cos θ = (k · k′)/(kk′), and Pl are Legendre polynomials. The imaginary-axis
formulation† has been used in 2.1 (and App. D:2). The inclusion of polarization waves
increases TC significantly, both for s-wave and d-wave pairing, [2] but the main point of this
section is that U enters naturally in the gap equation 2.1.

j †”Imaginary-axis” refers to that in this formulation operators evolve non-unitarily, like if time
t = it′ is imaginary (t′ real). This is useful for finite T calculations, where the retarded G is dif-
ficult to get by many-body perturbation theory. The imaginary-axis G is 2β-periodic (β = 1/T )
for t′ ∈ [−β, β], allowing for Fourier expansion, with non-zero components for the ”Matsub-
ara frequencies” iωn (see App. D:2). The retarded G is found by analytical continuation
iωn → ω + iη, where η is real and infinitesimal. [14]

(ii) RPA is Valid for U

In La2CuO4, most of the correlations are confined to a single LDA band of dominating Cu
dx2−y2 character at the Fermi energy. This allows for a one-band downfolding, explained in
section 2.3, where this band makes up the low-energy subspace and the partially screened
interaction U1 (the effective bare interaction) takes into account all screening channels ex-
cept within this subspace. A considerable amount of screening is then caused by the O 2p
states, which are close to the Fermi energy. In the three-band downfolding, these are also
captured to a large extent within the low-energy subspace, with effective interaction U3.
This separation of electrons into a low- and high-energy subspace is very similar to the sep-
aration in point (i). Since the strong correlations never enter U1 and U3, the random-phase
approximation (RPA) (App. B) is most likely sufficient, where the interacting polarization
P is replaced by the non-interacting polarization P 0. This will be explained in section 2.3.
If this was not the case a precise implementation would be, if not impossible, much more
demanding. W does however contain the strongly correlated low-energy screening, and the
RPA treatment can be questioned. Nonetheless, to its favour points the LDA Fermi surface of
many cuprates (YBa2Cu3O7 in [15]) which closely resembles measurements. There is thus a
good reason to believe that low-energy excitations are well captured within RPA.
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(iii) A Space-Time Picture of the Screening is Revealing

In space, the screened interaction U is usually associated with a simplified Yukawa potential
e−λr/r, although the information for a spatial extraction is accessible. Instead, U is normally
calculated as matrix elements in an incomplete localized basis derived from the LDA eigen-
states, obtained as a function of frequency. Physical insights may have been overlooked due
to this tradition. A space-time picture should provide knowledge of regions of attractive in-
teraction and the time scales of such an attraction, which may be valuable for investigating
the possibility of pair formation. Further, by comparing the partially screened interaction
within 1- and 3-band downfoldings, the p-d screening can be approximately isolated, mean-
ing that the orbital dynamics of particular screening channels can be studied in space and
time. The p-d channel is already known to be characterized by a sharp 9 eV excitation lo-
calized at the Cu sites [11], and a temporal oscillation of this frequency can be anticipated.
The partially screened interactions U1 and U3 can also be compared with the fully screened
interaction W , keeping in mind the possible limitation of RPA for the latter.

2.3 Constrained Random-Phase Approximation

By downfolding a many-particle problem onto a low-energy subspace (d subspace) a frequency-
dependence is introduced into the Hubbard U within the Green function formalism. The
Dirac field operator can be split into a low-energy d-part and a high-energy r-part [16] (r for
”rest” subspace):

ψ̂D(r) = ψ̂d(r) + ψ̂r(r) =
∑
i⊂d

φi(r)ĉi +
∑
i⊂r

φi(r)ĉi

Figure 2.4: Schematic il-
lustration of transitions
related to P d and P r.

where {|φi〉} are usually Kohn-Sham states and {ĉi} annihilation
operators. Introducing a time-dependent probing field ϕ(r, t) leads
to a Green function Gd connecting states within d and another Grd

connecting d and r. The Hedin equations (App. A:3) are down-
folded to the d subspace. The selfenergy Σ = Σd + Σrd + Σdrd, is no
simple projection on the low-energy subspace d since this couples
to the high-energy subspace r through the latter two terms. The
last term, the d-r hybridization, describes hopping d→r→d. When
neglecting self-energy effects from the r subspace, Σrd and Σdrd,
the downfolded Hedin equations can be reduced to the Hubbard
model, where U(ω = 0) is the ”Hubbard U”. [16] The polarization
is further separated into

P = P d + P r.

P d connects two d-states and P r the rest, that is to say d-r and r-r as shown in Fig. 2.4. Using
the relations (ε−1 and R are defined in App. A:3)

W = ε−1v , ε−1 = 1 + vR , ε = 1− vP
and defining W r = [1− vP r]−1v = (εr)−1v yields [3]

W = W r +W rP dW.

The similarity with W = v + vPW allows W r to be interpreted as the effective interaction
within d, since further screening by P d yields W . The Hubbard U thus generalizes to

U(r, r′;ω) = W r(r, r′;ω). (2.2)

Since U = W r = (εr)−1v is determined only by P r = P − P d, and r, with its extended states,
is weakly correlated, RPA can be applied to P r. This is called constrained RPA or cRPA. P r is
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thus replaced by the non-interacting P r0 (App. B):

P r0(r, r′;ω) =
∑
σ

∑
k,k′∈BZ

(
occ∑
n

unocc∑
n′

P 0,σ
nk,n′k′(r, r

′;ω)−
occ∑
n∈d

unocc∑
n′∈d

P 0,σ
nk,n′k′(r, r

′;ω)

)

P 0,σ
nk,n′k′(r, r

′;ω) = φσ∗nk(r)φσn′k′(r)φσnk(r′)φσ∗n′k′(r′)

×
(

1

ω + εσnk − εσn′k′ + i0+
− 1

ω − εσnk + εσn′k′ − i0+

)
.

The eigenvalues and -states of the mean-field Hamiltonian, {|φσnk〉} and {εσnk}, are usually
taken as Kohn-Sham eigenstates from a self-consistent DFT-calculation. U is more long-
ranged than W since it does not contain low-energy ”metallic” transitions. [3] In the follow-
ing, i will be used to denote the combined labels nk.

Figure 2.5: Black: Disentangled Wannier interpolated
bands of La2CuO4 in a 1- (left) and 3-band model
(right). Grey: LDA band structure. Γ = (0,0,0), X =
(π,0,0), K=(π,π,0).

In La2CuO4, the bands in d are entan-
gled with bands in r and cRPA needs
to be modified to isolate the subspaces.
One way is to choose d as a set
of localized Wannier orbitals obtained
from the Kohn-Sham eigenstates within
an energy-window, and diagonalize the
Hamiltonian in this subspace, yielding
eigenstates {|φ̃i〉} and -energies {ε̃i}.
After checking that the band structure
close to EF is reproduced, P̃ d0 is defined
as P d0 but using {|φ̃i〉} and {ε̃i}. With
P̂ =

∑Nd
i=1 |φ̃i〉〈φ̃i| being the d projec-

tion operator, r is defined by {|χi〉} =
(1 − P̂){|φi〉}, which is orthogonal to
d, yielding disentangled d- and r-bands
(close to the original) with zero Hdr and Hrd. By constructing P̃ 0, the disentangled non-
interacting polarization, P̃ r0 is defined as P̃ 0 − P̃ d0. [3] P̃ r0 is thus used instead of P r0 for
the calculation of U in the case of disentangled bands. The disentangled Wannier interpo-
lated band structures within the 1- and 3-band models are presented in Fig. 3.1, obtained
using SPEX. The different band models yield different effective dynamical interactions U(ω).

The 1-band model in section 2.2(i), based on Wannier functions, has been shown in [11]
to yield a sharp plasmon-like excitation in the imaginary-part of U1 around 9 eV. This exci-
tation was further shown in [11] to be localized at the Cu sites and to have dx2−y2 character.
Since this is not present in U3 within a 3-band model it must come from transitions between
the occupied bands of main O p character to the unoccupied part of the antibonding band
of main Cu d character. The real-part of the Cu d-Cu d (Wannier) matrix element of U1 was
further shown to become negative in the vicinity of the 9 eV peak. W contains an additional
peak at around 3 eV which is also localized at Cu, corresponding to transitions within the
antibonding band. [11]
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Chapter 3

Extraction of U in Space and Time

The extraction ofW (r, r′; τ) is preceded by the calculation of matrix elements of the responce
function {RRPA(k, ω)} within RPA and the extraction of U1(r, r′; τ) and U3(r, r′; τ) by the
calculation of {R̃cRPA(k, ω)} within disentangled cRPA. Here (see App. B),

RRPA = P 0 + P 0vRRPA

R̃cRPA = P̃ r0 + P̃ r0vR̃cRPA.

These matrix elements are obtained using customized SPEX [17], a modified version of the
GW code SPEX [6], which utilizes many-body perturbation theory for one-shot and self-
consistent calculations of quasiparticle properties. The customized and original SPEX are
postprocessors of the DFT code FLEUR [7], based on the full potential linearized augumented
plane wave (FLAPW) method (used for calculating ground-state and excited-state proper-
ties of solids). SPEX takes as inputs LDA eigen-states and -energies from FLEUR obtained
from a self-consistent DFT cycle. Customized SPEX has the additional feature of calculating
maximally localized Wannier functions, allowing for disentangled cRPA and calculation of
{R̃cRPA(k, ω)}.

Figure 3.1: Steps to obtain W (r, r′; τ) and U(r, r′; τ).
Blue box: Code exists (FLEUR and customized SPEX).
Green box: Extensions of the existing code have been de-
veloped in this work.

While obtaining {R̃cRPA(k, ω)} requires
no code writing, the steps connected
to the space-time extraction do. The
flowchart in Fig. 3.1 summarizes the
procedure, where the blue box contains
the parts of the implementation where
customized SPEX and FLEUR were used,
and the green box the parts where addi-
tional code was written specifically for
the space-time extraction. From here
on, U will be used to label both W ,
U1 and U3 since the forms of all equa-
tions for U1 and U3 within disentangled
cRPA are the same as for W within RPA
(App. B) but with P 0/RRPA replaced by
P̃ r0/R̃cRPA. On matrix form,

U = v + U c = v + vP̃ r0U = v + vR̃cRPAv.

Note that the unknown spatial dependence in U(r, r′;ω) is entirely due to the correlation
term U c(r, r′;ω) since v(|r− r′|) = 1/|r− r′| is known.
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3.1 Mixed Product Basis

To obtain U in space and time the polarization P̃ r0 must first be expressed in a basis which is
complete in the subspace P of the polarization P̃ r0. In SPEX, P̃ r0 is given in a ”mixed product
basis” (MPB) obtained from the FLAPW basis. In the FLAPW method space is divided into
spherical muffin tins MT(a) centered at atom a, and an interstitial region, IR=

⋂Na
a=1 MT(a){.

The basis functions read

φσnk(r) =


1√
N

lmax∑
l=0

l∑
m=−l

1∑
p=0

Ankσalmpu
σ
almp(r−Ra) , r ∈ MT(a)

1√
V

∑
|k+G|≤Gmax

cnkσG ei(k+G)·r , r ∈ IR.

V is the crystal volume, N the number of unit cells, uσalm0 the KS solutions of the spherically
averaged effective potential and uσalm1 =∂uσalm0/∂E

σ
al its energy-derivatives. The core states

are obtained by solving the Dirac equation. Ankσalmp and cnkσG ensure continuity up to first
derivative. [18]

A basis in the P subspace is obtained from products of FLAPW functions, but it is more use-
ful to construct non-overlapping product functions, one set defined in the MT spheres, and
the other in the IR. In MT(a), instead of uσ∗almp(r)uσal′m′p′(r) with angular part Y ∗lm(r̂)Yl′m′(r̂)
all YLM (r̂) with |l − l′| ≤ L ≤ l + l′ and −L ≤ M ≤ L are used together with a ra-
dial part UσaLP (r) = uσalp(r)u

σ
al′p′(r). P tracks all {l, l′, p, p′}-combinations. The UσaLP ’s are

not orthonormal, so the overlap matrix is diagonalized and only eigenvectors with eigen-
values above a threshold are kept. Summing over spin yields a spin-independent radial
MT-basis BaLP (r). From BaLP (r)YLM (r̂) Bloch functions Bk

aLP (r) are constructed which
are only non-zero when r ∈ MT(a) up to arbitrary lattice translations. The IR plane wave
products, are instead only non-zero when r ∈ IR up to lattice translations, and given by
Bk

G(r) = Ω−1/2ei(k+G)·r, where Ω is the unit cell volume. The MPB is the combined set of
spatially separated basis functions {Bk

α} = {Bk
aLMP , B

k
G}, and is associated with a biorthog-

onal set {B̃k
α} fulfilling 〈Bk

α|B̃k
β 〉 = 〈B̃k

α|Bk
β 〉 = δαβ and

∑
α |Bk

α〉〈B̃k
β | =

∑
α |B̃k

α〉〈Bk
β | = 1 in

P. [18] In SPEX all MPB functions are given on a k-mesh, a 4× 4× 4-mesh in this work.

3.2 U(r, r′;ω) as a Basis Expansion

Given U cαβ(k;ω) = 〈B̃k
α|Û c(ω)|B̃k

β 〉 in the MPB a naïve approach to obtain U(r, r′;ω) is by a
simple expansion of U c:

U c(r, r′;ω) =
∑
k∈BZ

wk

∑
αβ

Bk
α(r)U cαβ(k;ω)Bk∗

β (r′)

where wk6=Γ = 1/Nk and the Γ-point requires special treatment. Nk is the number of k-
mesh points. Recall that {|Bk

α〉} spans P since constructed from wavefunction products.
Unfortunately, the product basis is not sufficient to calculate U c(r, r′;ω), for which the full
Hilbert space is required.

3.3 U(r, r′;ω) as an Interaction Expansion

That {|Bk
α〉} is restricted to P can be used in a clever way by recognising that the linear

density response function R̃cRPA is also confined to P. This is seen when expanding R̃cRPA in
P̃ r0, which on matrix form reads R̃cRPA = P̃ r0 + P̃ r0vP̃ r0 + . . . . {|Bk

α〉} is thus a complete basis
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for R̃cRPA, and the matrix elements can be obtained in the SPEX-code. Once R̃cRPA is known
U c can be obtained, which is the main idea of this method. U c in terms of R̃cRPA reads

U c(r, r′;ω)=

∫
d3r1d

3r2v(|r−r1|)R̃cRPA(r1, r2;ω)v(|r2−r′|)

=

∫
d3r1v(|r−r1|)δ̃ρ

cRPA
(r1, r

′;ω).

δ̃ρ
cRPA

(r1, r
′;ω) is the induced electron density at r1 caused by the screening channels in P̃ r0

due to a point charge at r′ with potential v(|r2−r′|). The MPB matrix elements R̃cRPA
αβ (k;ω)=

〈B̃k
α|
̂̃RcRPA(ω)|B̃k

β 〉 from SPEX allow for an ”interaction expansion” of U c:

U c(r, r′;ω) =
∑
k∈BZ

wk

∑
αβ

Ikα(r)R̃cRPA
αβ (k;ω)Ik∗β (r′) (3.1)

Ikα(r) =

∫
d3r1v(|r− r1|)Bk

α(r1). (3.2)

wk 6=Γ = 1/Nk and the Γ-point will be discussed in section 2.4.4. Note that the problem of
projecting on P in section 2.4.2 has disappeared, the ”interactions” {Ikα} are not restricted to
P as {Bk

α} are. So, given {R̃cRPA
αβ (k;ω)} and finding implementable expressions for {Ikα(r)}

yields U(r, r′;ω). R̃cRPA
αβ (k, ω) only depends on k ∈ IBZ and one could thus imagine using

only k ∈ IBZ and rotate to BZ using known symmetries. Symmetry will however not be used
in this work making some parts of the code faster, but some slower. Further, r and r′ are
arbitrary, but even if in the same MT (on-site), all basis states must be used contrary to when
using the naïve basis expansion. Before finding implementable expressions for {Ikα(r)}, the
possibility of making use of symmetry will be investigated.

The transformation v(|r2 − r′|) → v(|r2 − r′|) + v′(r′) leaves δ̃ρ
cRPA

(r1, r
′;ω) invariant since

v′ is constant with respect to r2. Charge conservation then implies that

U c(r, r′;ω)→
∫
d3r1

[
v(|r− r1|) + v′(r′)

]
δ̃ρ

cRPA
(r1, r

′;ω) = U c(r, r′;ω).

Ikα(r) is further affected by a constant. So, ignoring constants in Ikα(r) does not affect
U c(r, r′;ω), a conclusion that will be used in the coming derivation. The focus will now
be on obtaining implementable expressions for the interactions {Ikα(r)}.

3.3.1 Muffin-Tin Interactions

MT and IR interactions must be treated separately, starting with the former, where α is the
combined index aLMP and MT(α) ≡ MT(a). Bloch’s theorem applied on 3.2 implies

Ikα(r) =

∫
MT(α)

d3rα
∑
T

eik·T

|rα + Rα + T− r|
Bk
α(rα + Rα).

Here, rα + Rα = r1 where Rα points to the atom of combined index α and

Bk
α(rα + Rα) = eik·Rαbα(rα)Ylαmα(r̂α)

where bα is available in SPEX. Due to the long-ranged behavior ∼ 1/|r − T|, the integral is
impossible to calculate directly, and Ewald summation is called for, where [19]∑

T

eik·T

|r− r1 −T|
=

4π

Ω

 ∑
G6=−k

e−|k+G|2/4α2

|k + G|2
ei(k+G)·(r−r1) + lim

|k+G|→0

e−|k+G|2/4α2

|k + G|2


+ α

∑
T

erfc(α|r− r1 −T|)
α|r− r1 −T|

eik·T. (3.3)
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α is chosen to give rather short-ranged behavior in both |r−T| and |k+G|. The second term,
only present when both G = 0 and k = 0, is constant and can thus be ignored according to
above arguments. With Ikα(r) = Ik(1)

α (r) +Ik(2)
α (r) resulting from the G- and T-terms in 3.3

respectively, the former reads (with AkGα ≡ 4π/Ω× exp(−|k + G|2/4α2)/|k + G|2)

Ik(1)
α (r) =

∫
MT(α)

drαr
2
αdΩα

∑
G6=−k

AkGαe−i(k+G)·rαBk
α(rα + Rα)ei(k+G)·(r−Rα).

Using [20]

e−i(k+G)·rα =4π
∞∑
l=0

(−i)ljl(|k + G|rα)
l∑

m=−l
Y ∗lm(r̂α)Ylm(k̂ + G)

and orthonormality
∫
dΩαY

∗
lm(r̂α)Ylαmα(r̂α) = δl,lαδm,mα results in

Ik(1)
α (r)=4π(−i)lα

∫
MT(α)

drαr
2
αbα(rα)

∑
G 6=−k

AkGαjlα(|k+G|rR)Ylαmα(k̂ + G)ei(k+G)·r.

Ik(2)
α (r) further reads (with rT =r−Rα−T)

Ik(2)
α (r) = α

∫
α
drαr

2
αdΩα

∑
T

erfc(α|rα − rT |)
α|rα − rT |

eik·TBk
α(rα + Rα).

Restricting r to the first unit cell, for some lattice vectors T there is a point rα such that
|rα − rT | → 0, which yields a divergence and requires special treatment. Trivial terms,
denoted t.t., with no divergence are directly integrated by Gaussian integration. Using [19]

erfc(α|rα − rT |)
α|rα − rT |

=

∞∑
l=0

4π

2l + 1

[
rl<

αrl+1
>

−gl(rα,rT )

]
l∑

m=−l
Y ∗lm(r̂α)Ylm(r̂T )

for the other terms (r<=min(rα,rT ), r>=max(rα,rT )) and orthonormality yields

Ik(2)
α (r)=

4πα

2lα+1

∫
α
drαr

2
αbα(rα)

non-triv.∑
T

[
rlα<

αrlα+1
>

−glα(rα, rT )

]
Ylαmα(r̂T )eik·(Rα+T) + t.t.

where Gaussian integration (see [19]) is applied on

4π

2lα + 1
glα(rα, rT )Ylαmα(r̂T )=

∫
dΩα

erf(α|rα− rT |)
α|rα− rT |

Ylαmα(r̂α).

3.3.2 Interstitial Interactions

For the IR interactions the tedious geometry of the IR is circumvented by extending

Bk
G(r1) =

1√
Ω

ei(k+G)·r1

to all of space, integrating, and subtracting the MT’s as follows:

IkG(r)=

∫
d3r1

1

|r1−r|
Bk

G(r1)−
∑
Rα

∫
MT(α)

d3rα
∑
T

eik·T

|rα+Rα+T−r|
Bk

G(rα+Rα).

The first term is a simple Fourier transform, and reads

Ik(1)
G (r) =

4π√
Ω|k + G|2

ei(k+G)·r.

k=G=0 yields a constant, and is thus removed. The rest is split into Ik(2)
G (r) + Ik(3)

G (r) for
G- and T-terms from the Ewald summation respectively. Ik(2)

G (r) takes the form
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Ik(2)
G (r)=−

∑
Rα

∫
MT(α)

drαr
2
αdΩα

∑
G′ 6=−k

AkG′αei(G−G
′)·rα 1√

Ω
ei(k+G′)·rei(G−G

′)·Rα .

Expanding ei(G−G
′)·rR as before and using

∫
dΩαY

∗
lm(r̂α)=

√
4πδl0δm0 implies

Ik(2)
G (r)=−4π

∑
Rα

∫
MT(α)

drαr
2
α

∑
G′ 6=−k

AkG′αj0(|G−G′|rα)
1√
Ω

ei(k+G′)·rei(G−G
′)·Rα .

For Ik(3)
G (r), just as for Ik(2)

α (r), only some T-terms require expansions. Thus,

Ik(3)
G (r)=−α

∑
Rα

∫
MT(α)

drαr
2
αdΩα

non-triv.∑
T

erfc(α|rα−rT |)
α|rα−rT |

1√
Ω

ei(k+G)·(rα+Rα+T)+t.t.

Expanding erfc(α|rα−rT |)/(α|rα−rT |) and ei(k+G)·rα and using orhonormality implies

Ik(3)
G (r)=−(4π)2α√

Ω

∑
Rα

∫
MT(α)

drαr
2
α

non-triv.∑
T

∞∑
l=0

il

2l+1

[
rl<

αrl+1
>

−gl(rα, rT )

]
jl(|k+G|rα)

×
l∑

m=−l
Ylm(r̂T )Y ∗lm(k̂+G)ei(k+G)·(Rα+T)+t.t.

where only terms with l ≤ 4 are kept since quickly decaying in rα for large l. Let once
again α label both MT- and IR-states. Once Ikα(r) is properly implemented, R̃cRPA(r, r′;ω)

and δ̃ρ
cRPA

(r, r′;ω) are given by (U c(r, r′;ω) is included for completeness)

R̃cRPA(r, r′;ω) =
∑
k∈BZ

wk

∑
αβ

Bk
α(r)R̃cRPA

αβ (k;ω)Bk∗
β (r′)

δ̃ρ
cRPA

(r, r′;ω) =
∑
k∈BZ

wk

∑
αβ

Bk
α(r)R̃cRPA

αβ (k;ω)Ik∗β (r′)

U c(r, r′;ω) =
∑
k∈BZ

wk

∑
αβ

Ikα(r)R̃cRPA
αβ (k;ω)Ik∗β (r′).

As pointed out earlier, the contribution from the Γ-point, Γ = (0, 0, 0), requires a different
treatment than other k-points, with wk 6=Γ = 1/Nk. Since this is the last step needed to obtain
U(r, r′;ω), the next section deals with this issue.

3.4 Γ-Point Treatment

In the limit k → 0 v goes as 1/k2 and R̃cRPA = P̃ r0 + P̃ r0vP̃ r0 + . . . goes (like P̃ r0) as k2. On
matrix form U c = vR̃cRPAv, which means that also U c goes like 1/k2 in the limit k → 0. Due
to the anisotropic crystal structure the limit is also influenced by the direction of k. Let U c(ω)
denote U c(r, r′;ω) and U c(k;ω) denote

∑
αβ Ikα(r)R̃cRPA

αβ (k;ω)Ik∗β (r′) for any given r and r′,
so that U c(ω) =

∑
k∈BZwkU

c(k;ω). In spherical coordinates, k = (k, θk, ϕk), according to
the above, U c(k;ω) goes like f(θk, ϕk)/k

2 in the limit k → 0. It thus diverges at the Γ-point,
but yields a finite value using integration instead of summation over k. This short section
will present two different schemes to treat the Γ-point using integrals.

In the first (less exact) scheme, define f̄ = 1
26

∑26
n=1 k

2
nU

c(kn;ω) where {kn} are the 26
Γ-point neighbours on a parallelepiped. Let k1, k2 and k3 be three unit-direction neighbours
and define a sphere around Γ with volume ∆V = |(k1 × k2) · k3| = 4πk̄3

nn/3 = ΩBZ/Nk =
ΩBZwk 6=Γ. Then the Γ-point contribution is approximated as

13



wΓU
c(Γ;ω)≈ 1

ΩBZ

∫
∆V

d3k
f̄

k2
=

4πk̄nnf̄

ΩBZ
=

3

26

(
4πk̄3

nn

3ΩBZ

) 26∑
n=1

(
kn
k̄nn

)2

U c(kn;ω)

=
3

26

26∑
n=1

(
kn
k̄nn

)2

wknU
c(kn;ω).

A second, more exact scheme (see [18]) is used in this work, replacing the integral as follows

1

ΩBZ

∫
∆V

d3k
f̄

k2
 

1

ΩBZ

∫
BZ
d3k

f̄

k2
− 1

Nk

∑
k 6=Γ

f̄

k2

which by construction obeys∑
k∈BZ

wk
f̄

k2
=

1

ΩBZ

∫
BZ
d3k

f̄

k2
.

3.5 From U(r, r′;ω) to U(r, r′; τ)

Since the spatial grid (in-plane r for fix r′) used is only 25×25 it is cheaper to transform
U(r, r′;ω) to time than R̃cRPA

αβ (k;ω). U is the time-ordered interaction and obeys the Kramers-
Kronig relation in the frequency domain but not in time-domain, where it is easy to show
that it is the retarded interaction U r that obeys this relation. U r(r, r′;ω) fulfils (given in [21]
for Rr but is valid also for U r)

Re U r(r, r′;ω) = Re U(r, r′;ω)

Im U r(r, r′;ω) = Im U(r, r′;ω)× sgn(ω).

Inverse Fourier transformation of U r from frequency to time-delay (retardation) τ = t − t′
yields (dropping the supscript r in the time-domain)

U(r, r′; τ) = v(|r− r′|)δ(τ) +

∫
dω

2π
U cr(r, r′;ω)e−iωτ .

U(r, r′; τ) is the response to an impulse at τ = 0, in the non-relativistic limit with instanta-
neous bare interaction. The instantaneous perturbation probes the system - you cannot hold
down a guitar string and expect music. The first instantaneous term is like hitting a guitar
string, and the second retarded term like the following oscillations of the string (the music).
Note that U in the time-domain has dimension [energy/time] rather than [energy]. A useful
relation for this conversion (where H denotes the energy-unit Hartree) is H−1 ≈ 152.26 as
(based on [22]). Since the real- and imaginary-part of U cr are even in ω it follows that
Re U cr(r, r′;ω) transforms to Re U c(r, r′; τ). In the result section U c denotes the real-part.
In SPEX, U cr is obtained for discrete ωi, i = 1, . . . , N where ω1 = 0 and ωN is big enough to
yield imaginary parts of U c close to 0 (ωN = 10 H is used). The integral is then split (using
the even symmetry)

ReU c(r, r′; τ)=
N−1∑
i=1

∫ ωi+1

ωi

dω

π
ReU cri (r, r′;ω) cosωτ+

∫ ∞
ωN

dω

π
ReU cre (r, r′;ω) cosωτ.

Re U cri (r, r′;ω) is a linear interpolation using Re U cr(r, r′;ωi) and Re U cr(r, r′;ωi+1), allow-
ing for partial integration (Filon’s method). ReU cre (r, r′;ω > ωN ) is an extrapolation using
ReU cr(r, r′;ωN ) and that ReU cr(r, r′;ω) goes like 1/ω for large ω.
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3.6 Execution Times

The symmetries associated with the rotation of k from the irreducible to the full BZ is not
utilized, meaning that Nα × Nk different Ikα(r) are calculated, where Nα and Nk are the
number of MPB functions and number of k-mesh points in the full BZ respectively. Since a
4×4×4-mesh is used, Nk = 64. The number of MPB functions (for La2CuO4) is about 600
in the MTs and 400 in the IR for a typical k, so that Nα ≈ 1000, meaning that about 64000
Ewald summations need to be performed.

Still, in this work, this has not been a big obstacle due to the access to a cluster with a
large amount of nodes, out of which 7 was used, each with 6 cores with 2 threads each, with
a CPU speed of 3.7 GHz. The computational time for one k contribution (for La2CuO4) was
spent roughly as follows:

• (∼30 %↔ 1.8 hours) Obtaining the matrix elements R̃cRPA
αβ (k, ω) for all α, β and ω.

• (∼65 %↔ 3.9 hours) Calculating Ikα(r) for all α.

• (∼ 5 %↔ 0.3 hours) Performing
∑

αβ Ikα(r)R̃cRPA
αβ (k;ω)Ik∗β (r′) for all ω.

Once all k-contributions (except the Γ-point) were calculated the Gamma-point treatment
and Fourier transformation to U(r, r′; τ) just took a few seconds each.
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Chapter 4

Results and Discussion

To test the implementation W will first be presented for Ni, and comparisons will be made
with earlier results from [8], based on the linear muffin-tin orbital (LMTO) method. Then,
the fully screened interaction W (within RPA) will be compared for La2CuO4 and SrVO3.
Within LDA La2CuO4 becomes a metal just like SrVO3. This, and that the k-dependence
of the band structure is constrained by the crystal symmetry motivates that the LDA based
calculations mimic the doped system, with a metallic normal state. This will be followed by
a more detailed study of the partially screened interactions (U1 and U3) of La2CuO4 within
the one- and three-band models defined in section 2.3.

4.1 Ni

The Ni unit cell contains a single Ni atom at (0, 0, 0). The fcc lattice vectors are T1 =
3.325(0, 1, 1) au, T2 = 3.325(1, 0, 1) au and T3 = 3.325(1, 1, 0) au. [23] Since Ni is only a test
material the LDA band structure will not be presented, but in figure 4.1 the static values of
R, δρ, W c and W are shown along the (1, 0, 0)-direction for a test charge at (0, 0, 0).

Figure 4.1: R(r, r′, ω = 0), δρ(r, r′, ω = 0), W c(r, r′, ω = 0) and W (r, r′, ω = 0) of Ni with r = (x, 0, 0)
and r′ = (0, 0, 0) au.

The LMTO results in [8] for W are reproduced to a degree that it appears the same. This
does not only mean that the implementation in this work seems to be correct, it also means
that LMTO may be a good approximation for these kind of calculations. The results illustrate
that δρ is a smearing of R (spatial convolution between v and R) and that W c further is a
smearing of δρ. Note the attractive region (where W is negative). Keep in mind that RPA is
used. Due to the weak correlations in Ni, this may be fine for W , but for the La2CuO4 this is
only well-motivated for U1 and U3 when removing the d-d screening channel.
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4.2 SrVO3 vs La2CuO4

The reader is encouraged to revisit the crystal structures and LDA band structures of La2CuO4

and SrVO3 (Fig. 2.2) before continuing. With TS = 7.26 au (S for SrVO3), the cubic lat-
tice vectors of SrVO3 are T1 = TS(1,0,0), T2 = TS(0,1,0) and T3 = TS(0,0,1). The unit cell
contains V at (0,0,0), Sr at TS(0.5,0.5,0.5) and O at TS(0.5,0,0), TS(0,0.5,0) and TS(0,0,0.5).
[24] With TL = 7.212 au (L for La2CuO4), the lattice vectors of La2CuO4 are T1 = TL(1,0,0),
T2 = TL(0,1,0) and T3 = TL(0.5,0.5,1.72835). The unit cell contains Cu at (0,0,0), La at
±TL(0.5,0.5,0.477) and O at TL(0.5,0,0), TL(0,0.5,0) and TL(0,0,±0.5). [25] All plots for SrVO3

Figure 4.2: Valence density ρ(r) in the VO2 plane of SrVO3

(left) and CuO2 plane of La2CuO4 (right). The in-plane crystal
structure is included next to each figure.

Figure 4.3: δρ(r,r′,ω=0) with r in the VO2 plane of SrVO3. r′

is marked by a cross.

Figure 4.4: δρ(r,r′,ω=0) with r in the CuO2 plane of La2CuO4.
r′ is marked by a cross.

and La2CuO4 will be in the
xy(0,0,0) plane in the first unit
cell. So, (x,y) ∈ ([0,TS],[0,TS])
in the VO2 plane of SrVO3 and
(x,y) ∈ ([0,TL],[0,TL]) in the CuO2

plane of La2CuO4. The in-plane
valence density ρ(r) is plotted for
SrVO3 and La2CuO4 together with
the in-plane crystal structure (Fig.
4.2). Since Cu has the con-
figuration [Ar]4s13d10 and V has
[Ar]3d34s2 the density is higher at
Cu in La2CuO4 than at V in SrVO3.
hhhhhhhh
The static induced density δρ(r, r′,
ω = 0) due to a test charge (elec-
tron) at r′, which depends on this
in-plane valence density (Fig. 4.2)
but also on the out-of-plane elec-
tronic structure, is presented for
SrVO3 (Fig. 4.3) and La2CuO4

(Fig. 4.4). r′ is put along a triangu-
lar path: (0,0,0), (T4 ,0,0), (T2 ,0,0),
(T2 ,

T
4 ,0), (T2 ,

T
2 ,0), (T4 ,

T
4 ,0), where

T = TS and TL for SrVO3 and
La2CuO4 respectively. The point
(T2 ,

T
2 ,0) is called M (for ”middle”)

in the following. The labels on
the axes have been removed, but
are the same as in Fig. 4.2. The
screening at r = r′ is stronger in
La2CuO4 than in SrVO3 for all r′.
For SrVO3, the on-site (r = r′) in-
duced density at O is more nega-
tive than at V. For the latter, the
electrons escape from the V dxy (δρ < 0) to the O p orbitals (δρ > 0). With r′ at M the
electrons mainly accumulate close to O, but also on V. Also for La2CuO4, the on-site induced
density is most negative at O, which is more polarizable than Cu. The value at Cu, however,
is greater than at V in SrVO3, and, due to different band symmetries, with a dx2−y2-character
instead of dxy. The major difference from SrVO3 is that the electrons accumulate effectively
at both Cu and O for all r′.
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Figure 4.5: R(r, r′, ω = 0), δρ(r, r′, ω = 0) and W c(r, r′, ω =
0) with r in the VO2 plane of SrVO3 (top) and in the CuO2

plane of La2CuO4 (bottom). r′ is marked by a cross.

Figure 4.6: W (r, r′, ω = 0) with r in the VO2 plane of SrVO3.
r′ is marked by a cross.

Figure 4.7: W (r, r′, ω = 0) with r in the CuO2 plane of
La2CuO4. r′ is marked by a cross.

Before studying W = v + W c

it is instructive to compare the
static R, δρ and W c in both ma-
terials. This is done for r′ at M
(Fig. 4.5). The difference in δρ
between the two materials can be
explained in terms of the differ-
ence in R. For the considered test
charge at M the response R is neg-
ative at V in SrVO3 but positive at
Cu in La2CuO4. There also is a
more pronounced region of posi-
tiveR around M in La2CuO4. Since
δρ is a smearing of R (convolu-
tion between v and R) the behav-
ior of R is mimicked in δρ. The
large positive δρ at both Cu and O
in La2CuO4 comes from the more
negative δρ close to M, which fur-
ther can be explained by the more
negative R in the same region.
W c, which is a further smearing of
δρ thus naturally gets more neg-
ative (by about a factor of two)
close to M in La2CuO4 than in
SrVO3, meaning that the screen-
ing is more effective. In terms
of the higher valence density in
La2CuO4 this makes perfect sense,
since more electrons participate in
the screening. hhhhhhhhhhhhhh-
hhhhhhh
Having obtained an understanding
of the static W c, the static W =
v + W c will now be compared for
SrVO3 (Fig. 4.6) and La2CuO4

(Fig. 4.7), but for all r′ along
the triangular path. For La2CuO4

there is an attractive static interac-
tion (W < 0) for several r′, also
far from Cu, but in SrVO3 r′ needs
to be put close to V to give rise to attractive regions. Taking the case of r′ at M as an ex-
ample, the different magnitudes of W c (Fig. 4.5) between the materials can explain this
significant difference in the signs of W , since the same v = 1/|r − r′| is added to both. As
stated earlier, the LDA based calculations mimic the doping in La2CuO4, and since the doped
system is known to be unstable against Cooper pairing at relatively high temperature, it is
interesting that attractive regions were found to a greater extent in La2CuO4 than in SrVO3.
Still, that the calculations are based on RPA is not necessarily sufficient for W . Since this is
no limitation for the partially screened interactions within a one- and three-band model, U1
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and U3, and since these directly give the effective interaction of the electrons participating
in the Cooper pairing, the next section will focus on comparing W , U1 and U3 in La2CuO4.
This comparison will first be done in the static regime, and then by taking into account the
dynamics (ω 6= 0) and studying these quantities as a function of time.

4.3 La2CuO4

4.3.1 Static Interaction

Figure 4.8: U1(r, r′, ω = 0) with r in the CuO2 plane of
La2CuO4. r′ is marked by a cross.

Figure 4.9: U3(r, r′, ω = 0) with r in the CuO2 plane of
La2CuO4. r′ is marked by a cross.

Similar to W (Fig. 4.7) the ef-
fective static interactions are here
presented for the one- and three-
band models, U1 (Fig. 4.8) and
U3 (Fig. 4.9), based on the earlier
Wannier interpolations (Fig. 2.5).
For U1, the on-site attraction at
Cu is reduced compared to that of
W , and it appears that the differ-
ence between the two has mainly
dx2−y2 component, consistent with
the character of the low-energy
screening channels that have been
removed in U1. With r′ far from
Cu the difference between W and
U1 is much smaller, which indi-
cates that the one-band subspace is
made up of states mainly localized
at Cu, as it should. U3 (Fig. 4.9),
contrary to U1, displays no on-site
attraction at Cu. Since the main
difference between U3 and U1 is
that the Cu d-O p screening chan-
nels have been removed in U3 to
a large extent but not in U1 these
must be responsible for the nega-
tive on-site U1 at Cu. Just as the
states in the one-band subspace were found to be localized at Cu, the same applies to the
screening channel Cu d-O p, as seen by the small difference between U1 (Fig. 4.8) and U3

(Fig. 4.9) when r′ is far from Cu. That this screening channel is mainly localized at Cu has
already been discussed in [11]. Still, there seems to be a weak however noticable difference
between U1 and U3 even with r′ far from Cu.

To better account for the spatial behavior of the different screening channels the differ-
ences W − U1 (Fig. 4.10), U1 − U3 (Fig. 4.11) and W − U3 (Fig. 4.12) are presented in the
following. W − U1 is a measure of the metallic Cu d-d screening within the LDA band at the
Fermi energy (within RPA), U1−U3 of the Cu d-O p screening and W −U3 is simply the sum
of the two contributions.
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Figure 4.10: (W − U1)(r, r′, ω = 0) with r in the CuO2 plane
of La2CuO4. r′ is marked by a cross.

Figure 4.11: (U1 − U3)(r, r′, ω = 0) with r in the CuO2 plane
of La2CuO4. r′ is marked by a cross.

Figure 4.12: (W − U3)(r, r′, ω = 0) with r in the CuO2 plane
of La2CuO4. r′ is marked by a cross.

The metallic low-energy screening
W − U1 (Fig. 4.10) displays vis-
ible dx2−y2 orbitals at Cu, just as
expected. Even when r′ is put at
O, the metallic screening is most
effective at Cu. For all r′ except
at M the difference W − U1 is in
the order of magnitude of one or a
few eV at Cu. With r′ at M how-
ever, the dx2−y2 orbital does not
show up. W − U1 is negative close
to r′ for all r′, since W takes into
account more screening channels.
Additional screening channels do
not mean thatW−U1 must be neg-
ative far from r′, due to the trans-
fer of electron density away from
r′. This explains the change of sign
of W −U1 a couple of atomic units
away from r′, and thus why the
dx2−y2 orbital at Cu is not visible
with r′ at M. hhhhhhhhhhhhhhhh-
hhhhh
The p orbitals at O, which only ap-
pear subtly in W − U1, are more
involved in the Cu d-O p screen-
ing U1 − U3 (Fig. 4.11). Still,
the dx2−y2 orbital at Cu dominates,
just as emphasized earlier and seen
by doing the following compari-
son: With r′ at Cu the p orbitals
at O are barely visible, but with r′

at O the dx2−y2 orbitals at Cu are
almost as visible as the p orbitals
at O. Interestingly, the Cu d-O p
screening (Fig. 4.11) is more local-
ized at Cu than the metallic screen-
ing (Fig. 4.10). This makes sense
since W − U1 mainly couples elec-
trons between Cu sites (large dis-
tance) whereas U1 − U3 between
Cu and O sites (shorter distance).

Regarding the sum of the two channels, W − U3 (Fig. 4.12) a few observations can be
made. For all r′ except when put close to Cu, W − U1 and U1 − U3 display opposite signs at
Cu, but the same sign at O. This results in a suppression of Cu d character and increase of
O p character in W − U3. Still however, the Cu d character dominates. Since short distance
Cu-O transfer as well as long distance Cu-Cu transfer is included in W − U3, the change of
sign occurs at a distance from r′ that is somewhere in between that of W − U1 and U1 − U3.
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4.3.2 Dynamical Interaction

Fig. 4.13 presents W as a function of delay τ (= t with t′ = 0) at the Cu site (row 1),
the O site (row 2) and at M (row 3) for r′ at the same positions (column 1, 2 and 3).
As expected with time-reversal symmetry, interchanging r and r′ does not affect W . W
starts off significantly negative at r = r′, with a magnitude and behavior that is very similar
at Cu and O but only about half as negative at M where also the oscillations are slower.
When putting the test charge either at the Cu or O site the opposite site begins with a
positive interaction, corresponding to the charge transfer between the atoms after apply-
ing the perturbation at t = 0. Due to the weak charge transfer to and from M, when
applying the perturbation at M the interaction start off negative also at the atomic sites.

Figure 4.13: W (r, r′, t) in La2CuO4 with r and r′ specified in each subplot. t′ = 0.

Figure 4.14: (U1−U3)(r,r′,t) in La2-
CuO4 with r=r′= 0 (at Cu). t′=0.

Since the dynamics will be studied both in space and time
in the following, similar plots for U1 and U3 are left out.
However, U1−U3 with both r and r′ at Cu (Fig. 4.14) shows
a decaying oscillation with ω ≈ 9 eV, consistent with [11].

Perturbation at Cu

Figure 4.15: δρ(r, r′; t) (in a−30 (152.26 as)−1) with r in the
CuO2 plane of La2CuO4. r′ = (0, 0, 0) (at Cu). t′ = 0.

To better understand W , U1 and
U3 in space and time it is natural
to first study δρ in space and time
(Fig. 4.15). With r′ = (0, 0, 0)
(at Cu) and t′ = 0 the electrons
very quickly (attoseconds) escape
this atom and accumulate at the
surrounding atoms (both Cu and
O). This ”overpopulation” of elec-
trons then results in further escape
of electrons from these sites due to
the large electron repulsion. While
some electrons escape the first unit
cell, some return and some enter
it for the first time, which explains
why δρ changes sign from negative
to positive at the Cu site at the ori-
gin. The claim that some electrons
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Figure 4.16: W (r, r′; t) (in eV(152.26 as)−1) with r in the
CuO2 plane of La2CuO4. r′ = (0, 0, 0) (at Cu). t′ = 0.

Figure 4.17: U1(r, r′; t) (in eV(152.26 as)−1) with r in the
CuO2 plane of La2CuO4. r′ = (0, 0, 0) (at Cu). t′ = 0.

Figure 4.18: U3(r, r′; t) (in eV(152.26 as)−1) with r in the
CuO2 plane of La2CuO4. r′ = (0, 0, 0) (at Cu). t′ = 0.

enter the first unit cell from
the outside may sound counter-
intuitive since r′ was put at
(0, 0, 0), however, the perturbation
at t = 0 goes like 1/|r − r′| and
thus also affects electrons far away.
In a simple picture, some elec-
trons are reflected in each atomic
layer, forcing these plasma oscil-
lations to continue. The geom-
etry of the electron density be-
comes more and more complex
since each reflected electron car-
ries information about the crystal
structure (also out-of-plane). With
a simple understanding of δρ a dis-
cussion of W (Fig. 4.16) can pro-
ceed. The main features of δρ are
carried over to W , which starts off
negative at Cu and then changes
sign. After 455 attoseconds the
dx2−y2 orbital at Cu becomes vis-
ible, which can be traced back to
δρ at the same time (Fig. 4.15).
Just as for δρ the magnitude de-
cays quite rapidly. This means
that the static interaction, which is
the time-integrated interaction, is
mainly affected by the short-time
behavior. This is quite opposite to
what is usually meant by ”static”,
where the long-time behavior is
refered to. Comparisons between
the short-time and static interac-
tions will be done later. hhhhhh-
hhhhhhhhhhhhhhh
Continuing with U1 (Fig. 4.17),
this looks very similar to W , and
just as anticipated the dx2−y2 or-
bital is still visible. Small differ-
ences can be noticed after 394 at-
toseconds, but it is difficult to tell
whether this is due to the different
scalings or not. Also U3 (Fig. 4.18)
is very similar. The main difference
from W and U1 is the absence of
the dx2−y2 orbital at Cu. The be-
havior at the neighbouring Cu sites
is also quite different from that of
W and U1 after about 455 attosec-
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Figure 4.19: (W − U1)(r, r′; t) (in eV(152.26 as)−1) with r in
the CuO2 plane of La2CuO4. r′ = (0, 0, 0) (at Cu). t′ = 0.

Figure 4.20: (U1 −U3)(r, r′; t) (in eV(152.26 as)−1) with r in
the CuO2 plane of La2CuO4. r′ = (0, 0, 0) (at Cu). t′ = 0.

Figure 4.21: (W − U3)(r, r′; t) (in eV(152.26 as)−1) with r in
the CuO2 plane of La2CuO4. r′ = (0, 0, 0) (at Cu). t′ = 0.

onds. The fact that W , U1 and U3

are so similar makes it more sat-
isfactory to study the differences
W − U1 (Fig. 4.19), U1 − U3 (Fig.
4.20) and W − U3 (Fig. 4.21).
The metallic screening within RPA,
W − U1 (Fig. 4.19), does not de-
cay within the given time interval
(up to 699 attoseconds) as W and
U1 do separately, meaning that it
plays a proportionally greater role
after some time than directly after
the perturbation was applied. This
can be understood in terms of the
dx2−y2-symmetry which makes up
a great proportion of this screen-
ing channel. This orbital does not
have any overlap with the diver-
gence caused by the perturbation
at r = (0, 0, 0) and t = 0. The Cu
s-orbitals however, have an over-
lap and should thus play a rela-
tively greater role in the screening
at short times. hhhhhhhhhhhhhh-
hhhhhhh
While W − U1 is not that local-
ized at Cu, the Cu d-O p screen-
ing U1 − U3 (Fig. 4.20) appears
to be so for all presented times.
This relates to the previous discus-
sion on the static differences W −
U1 and U1 − U3 (Fig. 4.10-4.11).
The short-time form of W − U1,
U1 − U3 and W − U3 (Fig. 4.19-
4.21) very much resemble the cor-
responding static differences (Fig.
4.10-4.12). This could not be said
about W , U1 and U3 separately be-
cause these include the bare inter-
action, v, which contains the effect
of the instantaneous perturbation
at t = 0. In the differences W −U1,
U1 − U3 and W − U3 however, v is
cancelled, making such an identi-
fication possible. The exact shape
of the static differences can thus
now be explained in terms of the
screening phenomena occuring at
different times. Since these differ-
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Figure 4.22: W (r, r′; t) (in eV(152.26 as)−1) with r in the Cu-
O2 plane of La2CuO4. r′ = TL(0.5, 0, 0) (at O). t′ = 0.

Figure 4.23: U1(r, r′; t) (in eV(152.26 as)−1) with r in the Cu-
O2 plane of La2CuO4. r′ = TL(0.5, 0, 0) (at O). t′ = 0.

Figure 4.24: U3(r, r′; t) (in eV(152.26 as)−1) with r in the Cu-
O2 plane of La2CuO4. r′ = TL(0.5, 0, 0) (at O). t′ = 0.

ences do not decay in the pre-
sented time-interval, this would
require looking at longer times.
However, the main channels seem
to be taken into account, as seen
by careful comparisons.

Perturbation at O

Similar results are here presented
for W , U1, U3, W − U1, U1 − U3

and W − U3 (Fig. 4.22-4.27) with
r′ = TL(0.5, 0, 0) (at O). Most has
been said in the case of r′ at Cu but
attention should be paid on O p-Cu
d hybridization, mainly in U1 − U3

but also in W − U1. W − U1 even-
tually becomes localized at Cu de-
spite the test charge at O. W − U1

and U1−U3 are small compared to
the case of r′ at Cu, indicating that
both metallic and Cu d-O p screen-
ing are located at Cu.
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Figure 4.25: (W − U1)(r, r′; t) (in eV(152.26 as)−1) with r in
the CuO2 plane of La2CuO4. r′ = TL(0.5, 0, 0) (at O). t′ = 0.

Figure 4.26: (U1 − U3)(r, r′; t) (in eV(152.26 as)−1) with r in
the CuO2 plane of La2CuO4. r′ = TL(0.5, 0, 0) (at O). t′ = 0.

Figure 4.27: (W − U3)(r, r′; t) (in eV(152.26 as)−1) with r in
the CuO2 plane of La2CuO4. r′ = TL(0.5, 0, 0) (at O). t′ = 0.
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Figure 4.28: W (r, r′; t) (in eV(152.26 as)−1) with r in the Cu-
O2 plane of La2CuO4. r′ = TL(0.5, 0.5, 0) (at M). t′ = 0.

Figure 4.29: U1(r, r′; t) (in eV(152.26 as)−1) with r in the Cu-
O2 plane of La2CuO4. r′ = TL(0.5, 0.5, 0) (at M). t′ = 0.

Figure 4.30: U3(r, r′; t) (in eV(152.26 as)−1) with r in the Cu-
O2 plane of La2CuO4. r′ = TL(0.5, 0.5, 0) (at M). t′ = 0.

Perturbation at M

While previously considering r′ at
different atomic sites (Cu and O),
W , U1, U3, W − U1, U1 − U3 and
W − U3 (Fig. 4.28-4.33) are here
presented for r′ = TL(0.5, 0.5, 0) (at
M), far from any atom. Again, the
results will not be discussed in de-
tail, but note that along the lines of
previous findings, W at short times
(Fig. 4.28) is similar to the static
W c (Fig. 4.5). Also take notice on
the Cu d-O p hybridization which
is visible in U1 − U3 (Fig. 4.32).
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Figure 4.31: (W − U1)(r, r′; t) (in eV(152.26 as)−1) with r in
the CuO2 plane of La2CuO4. r′ = TL(0.5, 0.5, 0) (at M). t′ = 0.

Figure 4.32: (U1 − U3)(r, r′; t) (in eV(152.26 as)−1) with r in
the CuO2 plane of La2CuO4. r′ = TL(0.5, 0.5, 0) (at M). t′ = 0.

Figure 4.33: (W − U3)(r, r′; t) (in eV(152.26 as)−1) with r in
the CuO2 plane of La2CuO4. r′ = TL(0.5, 0.5, 0) (at M). t′ = 0.
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Moving the Perturbation

In an attempt to summarize the results in space and time, U1 is presented (Fig. 4.34) at
chosen times (columns) for r′ along the triangular path introduced earlier: (0,0,0) (row 1),
(TL

4 ,0,0) (row 2), (TL
2 ,0,0) (row 3), (TL

2 ,
TL
4 ,0) (row 4), (TL

2 ,
TL
2 ,0) (row 5) and (TL

4 ,
TL
4 ,0) (row

6). In this way, U1 is resolved not only in r and t, but also in r′ (though more roughly).

Figure 4.34: U1(r, r′; t) (in eV(152.26 as)−1) with r in the CuO2 plane of La2CuO4. r′ = (0, 0,hh
0) (row 1), TL(0.25, 0, 0) (row 2), TL(0.5, 0, 0) (row 3), TL(0.5, 0.25, 0) (row 4), TL(0.5, 0.5, 0)
(row 5), TL(0.25, 0.25, 0) (row 6). t′ = 0.
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Chapter 5

Summary and Conclusions

The main findings made in this study can be summarized as follows, keeping in mind that it
is the real-part of each quantity that is actually referred to:

• The static W has been shown to have a clear V dxy-character (V: Vanadium) in SrVO3

(Fig. 4.6), in accordance with [26], and Cu dx2−y2-character in La2CuO4 (Fig. 4.7).
These symmetries are even more visible in δρ (Fig. 4.3-4.4) of these compounds.
• Large regions of negative static W have been found in La2CuO4 (Fig. 4.7) contrary to

SrVO3 (Fig. 4.6). Very similar regions have also been found for U1 (Fig. 4.8) and U3

(Fig. 4.9) in La2CuO4.
• The comparisons between the static U1 and U3 (Fig. 4.8-4.9, 4.11) in La2CuO4 have

shown that the Cu d-O p screening is highly localized at Cu and also responsible for
the negative on-site interaction at Cu. This screening channel (Fig. 4.11) has further
been shown to change sign closer to the test charge than the static metallic screening
(W − U1) (Fig. 4.10), in accordance with the shorter hopping within the three-band
model. The 9 eV excitation in the Cu d-O p screening has been witnessed dynamically
as a decaying oscillation in time (Fig. 4.14).
• δρ (Fig. 4.15) has also been shown to yield oscillatory behavior in space and time

(plasma oscillations) in La2CuO4, with a high complexity due to the crystal structure.
• The study of W (Fig. 4.16, 4.22, 4.28), U1 (Fig. 4.17, 4.23, 4.29) and U3 (Fig. 4.18,

4.24, 4.30) for La2CuO4 in space and time has shown that briefly after applying an
instantaneous repulsive perturbation (electron) an attraction persists in the vicinity
of this for a brief moment before the interaction starts to oscillate with increasing
complexity. Since these oscillations decay, the time-integrated interaction (ω = 0),
which is usually refered to as static, is actually mainly influenced by the short-time
interaction, with small complexity. The quick temporal decay means that the first
oscillations may determine whether or not the static interaction is attractive or not.
The comparisons of W , U1 and U3 in space and time have also provided insights into
the dynamics of the orbitals responsible for the metallic screening (W − U1) and Cu
d-O p screening (U1 − U3).

Based on these findings a main concluding remark is: The regions of static attractive interac-
tion (related to the short-time screening) in La2CuO4, or rather LDA-mimicked La2−xSrxCuO4,
obtained for W , U1, and U3 for a variety of located test charges, contrary to SrVO3, indicate
that overscreening effects may be important in La2−xSrxCuO4. This is interesting, referring
back to the aim of this work, since U1 and U3 model the effective interaction among the
electrons that are generally believed to form Cooper pairs. Other pairing mechanisms are
discussed more frequently in modern research, but there is no reason to exclude electronic
overscreening, and the negative U1 and U3 open up a window for such further research.
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Chapter 6

Future Directions

By comparing the static and dynamical effective interactions, U1 and U3, in space for dif-
ferent (multi-layer) cuprates, and also for pnictides (another class of high-TC compounds,
see [27]) the correlation between the strength of the attractive interaction and TC can be
investigated. Such a comparison could also provide clues to why some are hole- and some
are electron-doped high-TC superconductors.

Another direction to proceed is to construct an ab initio Hubbard-Holstein Hamiltonian (see
[4]), with on-site interaction U , plasmon energy Ω and electron-plasmon coupling Λ (App.
D:2), using the same frequency-dependent U as in this work. Within this model, the Eliash-
berg equations can be solved in a localized basis for the superconducting gap.
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Appendix A
Fundamental Many-Body Theory

A:1 DFT and LDA

The many-electron Hamiltonian is generally written as

H =

N∑
n=1

[
−1

2
∇2
n + V (rn)

]
+

1

2

∑
n6=m

v(|rn − rm|)

v(|rn − rm|) = 1/|rn − rm| is the bare Coulomb interaction between two electrons at rn
and rm and V (rn) = −

∑
a

Za
|rn−Ra| + Vext(rn) is the interaction between an electron at rn

and all nuclei and a sometimes present external potential. A fruitful simplification is density
functional theory (DFT). The main parts of DFT are: 1) Hohenberg-Kohn theorem (original
paper: [28]): The external potential and thereby the Hamiltonian, and hence also excited
state properties, are by using the variational principle and proof by contradiction shown to be
uniquely determined by the ground-state (GS) density (ensemble density in the degenerate
case). 2) Kohn-Sham scheme: By writing the total energy as a functional of the GS density,
utilizing the variational principle and conservation of charge, the interacting system can
be replaced by a non-interacting (one-electron) system but with the true GS density which
minimizes the energy. The Kohn-Sham equation reads [5] [29][

−1

2
∇2 + V (r) + VH(r)

]
ψn(r) + Vxc(r)ψn(r) = εnψn(r).

VH(r) =
∫
d3r′ρ(r′)v(|r − r′|) is the Hartree potential, Vxc(r) = δExc/δρ(r) the universal

(does not depend on external potential) local exchange (xc) potential (interaction between
an electron and its xc hole, integrating to −1) and ρ(r) =

∑N
i=1 |ψi(r)|2. The local density

approximation (LDA) corresponds to replacing the xc hole with that of the homogeneous
electron gas, a fairly good approximation since: 1) The xc hole still integrates to -1, 2) The
spherical average of the true xc hole happens to be very close to that of the electron gas, and
only the spherical average enters the xc energy Exc. Within LDA: [29]

ELDA
xc [ρ] =

∫
d3rεxc(ρ)ρ(r).

εxc(ρ) is the exchange-correlation energy per electron in a homogeneous electron gas of
density ρ. The Kohn-Sham equation is solved iteratively since ρ(r) enters VH(r) and Vxc(r).
DFT within LDA can be used (as in this thesis) when the strong correlations do not enter, only
enter weakly, or are canceled in the studied quantities. If strong correlations are important
for the particular study however, a many-body description is necessary. One then replaces Vxc
by a non-local and energy-dependent self-energy Σ and solves the ”quasiparticle equation”
for the quasiparticle wavefunctions and energies {Ψn} and {En}: [5][

−1

2
∇2 + V (r) + VH(r)

]
Ψn(r) +

∫
d3r′Σ(r, r′;En)Ψn(r′) = EnΨn(r).
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A:2 Σ and G

Σ enters more naturally in the Green function formalism. In the Heisenberg picture, for a
N-particle system with ground state |N〉, the one-particle Green function reads [5]

G(x, x′) = −i〈N |T [ψ̂(x)ψ̂†(x′)]|N〉.
T is the time-ordering operator, ψ̂ the field operator and x = (r, t). For t > t′ G is the
probability amplitude that an electron propagates from x to x′ and for t′ > t a hole from x
to x′. The equation of motion for G has a term with four field operators corresponding to
a two-particle Green function G(2) whose equation involves G(3) etcetera. By defining the
mass operator M(x, x′) by∫

d4x1M(x,x1)G(x1,x
′)=−i

∫
dt1

∫
d3r1v(|r−r1|)〈N |T [ψ̂†(r1,t1)ψ̂(r1,t1)ψ̂(r,t)ψ̂†(r′,t′)]|N〉

the hierarchy is broken and the equation for G becomes (with δ(4)(x−x′)=δ(3)(r−r′)δ(t−t′))[
i
∂

∂t
− h0(x)

]
G(x, x′)−

∫
dx1M(x, x1)G(x1, x

′) = δ(4)(x− x′)

where h0 is the kinetic energy operator plus additional one-particle fields. Defining the self-
energy as Σ = M − VH and Fourier transforming yields

[ω − h0(r)− VH(r)]G(r, r′;ω)−
∫
d3r1Σ(r, r1;ω)G(r1, r

′;ω) = δ(3)(r− r′).

The non-interaction Green function G0 is solution for Σ = 0. On matrix form, G0 = (ω −
h0 − VH)−1, leading to the Dyson equation [5]

G = G0 +G0ΣG = (G−1
0 − Σ)−1.

A:3 P , R and W

In terms of a probing field ϕ (total field V = ϕ + VH) the inverse dielectric function ε−1,
polarization function P and linear density response function R are defined as [3] [21]

ε−1(x1, x2) ≡ δV (x1)

δϕ(x2)

P (x1, x2) ≡ δρ(x1)

δV (x2)

R(x1, x2) ≡ δρ(x1)

δϕ(x2)
.

The screened interaction W is further defined as W (x1, x2) ≡
∫
d4x3ε

−1(x1, x3)v(|r3−r2|).
The chain rule then yields (on matrix form W = v + vPW = v + vRv)

W (x1, x2) = v(|r1 − r2|) +

∫
dx3dx4v(|r1 − r3|)P (x3, x4)W (x4, x2)

= v(|r1 − r2|) +

∫
dx3dx4v(|r1 − r3|)R(x3, x4)v(|r4 − r2|).

W can be obtained self-consistently using Hedin’s equations, which schematically read [21]

W = v + vPW

P = −iGΓG

G = G0 +G0ΣG

Σ = iWGΓ

Γ = 1 + (δΣ/δG)GGΓ
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Γ is the vertex function, and Γ−1 are called ”vertex corrections”. For a simple interpretation
of W , choosing x2 = (0, 0) implies that W (x1) = v(|r1|) + δVH(x1) where

δVH(x1) =

∫
dx3v(x1 − x3)δρ(x3) , δρ(x3) =

∫
d4R(x3, x4)v(x4)

δρ is the induced electron density and v(x4) has been treated as a perturbation. Since based
on the variational principle, the electrons rearrange themselves to minimize the total en-
ergy, resulting in screening. [3] Fourier transforming W (x1, x2) = W (r1, r2; t1 − t2) yields
W (r1, r2;ω), which is the more commonly used representation.

A:4 Quasiparticles

For infinite periodic crystals the KS eigenstates can be labeled by the wave vector k and
the band index n as φkn(r). Without interactions, the spectral function reads A0(r, r′;ω) ≡
−(1/π)ImG0(r, r′;ω)sgn(ω − µ) =

∑
kn φkn(r)φ∗kn(r′)δ(ω − εkn), where the one-particle ex-

citation energy εkn is relative to the chemical potential µ. The diagonal elements are

A0
kn(ω) = δ(ω − εkn).

With interactions theN±1-particle states |Ψn(N±1)〉 are no longer single Slater-determinants
resulting in broadening and shifting of the peak, describing a quasiparticle. The width is pro-
portional to the inverse of the life-time. Using G = [G−1

0 − Σ]−1 and assuming a diagonal Σ
yields Gkn(ω) = [ω − εkn − Σkn(ω)]−1 and

Akn(ω) = − 1

π

Im Σkn(ω)

[ω − εkn − Re Σkn(ω)]2 + [Im Σkn(ω)]2

peaked at the quasi-particle energy Ekn = εkn+Re Σkn(ω) with a height given by the inverse
of Im Σkn(Ekn). Thus, ReΣ shifts the quasi-particle energy and ImΣ is inversely proportional
to the life-time. Normalization requires

∫
dωAkn(ω) = 1 and

∑
kn

∫
dωAkn(ω) = N . [21]

[30]
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Appendix B
RPA and GWA

The random-phase approximation (RPA) is an approximation for the linear density response
function R. Within RPA the response of the true interacting system to ϕ is assumed to be the
same as that of a non-interacting system to V = ϕ+ VH. In other words

RRPAδϕ = P 0(δϕ+ δVH).

Utilizing δVH = vδρ = vRδϕ results in the RPA equation

RRPA = P 0 + P 0vRRPA

where the non-interacting polarization P 0 replaces the interacting one in the usual equation
R = P + PvR. [3] [21] This implies that W = v + vP 0W = v + vRRPAv, or more explicitly

W (r, r′;ω) = v(|r− r′|) +

∫
d3r1d

3r2v(|r− r1|)P 0(r1, r2;ω)W (r2, r
′;ω)

= v(|r− r′|) +

∫
d3r1d

3r2v(|r− r1|)RRPA(r1, r2;ω)v(|r2 − r′|)

where P 0 can be shown to be given by [3]

P 0(r, r′;ω) =
∑
σ

∑
k,k′∈BZ

occ∑
n

unocc∑
n′

φσ∗kn(r)φσk′n′(r)φσkn(r′)φσ∗k′n′(r′)

×
[

1

ω + εσkn − εσk′n′ + i0+
− 1

ω − εσkn + εσk′n′ − i0+

]
.

RPA is valid in the weak coupling regime, that is, when the kinetic energy of the electrons
dominates the potential energy. Just as RPA is an approximation for R, the GW approxima-
tion (GWA) is an approximation for Σ, which is expanded to linear order in W , on matrix
form:

ΣGWA = iGW.

Actually, both RPA and GWA can be achieved by neglecting variations of the self-energy in
the vertex function Γ. Within RPA δΣ/δϕ is neglected and in GWA δΣ/δV is neglected, both
resulting in a simplified vertex Λ = 1. Still, the variation of VH with respect to the probing
field is taken into account, which is why RPA is sometimes called the time-dependent Hartree
approximation (TDHA). [21]
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Appendix C
The Hubbard Model

An interacting electron system has the Hamiltonian

Ĥ =
∑
ij

h0
ij ĉ
†
i ĉj +

1

2

∑
ijkl

vij,klĉ
†
i ĉ
†
k ĉlĉj

h0
ij =

∫
d3rφ∗i (r)h0(r)φj(r)

vij,kl =

∫
d3rd3r′φ∗i (r)φj(r)v(|r− r′|)φ∗k(r′)φl(r′).

Here, h0(r) = −1
2∇

2+Vext(r). {|φi〉} are typically Kohn-Sham wavefunctions where i denotes
both orbital and spin. Hubbard argued that strongly correlated materials with partially filled
narrow bands (dx2−y2 band in La2CuO4) at the Fermi energi which dominate the macroscopic
properties are well-described by the Hubbard model (tij ≡ h0

ij is called the ”hopping”) [3]

Ĥ =
∑
ij⊂d

tij ĉ
†
i ĉj +

1

2

on-site∑
ijkl⊂d

Uij,klĉ
†
i ĉ
†
k ĉlĉj .

where U is an effective interaction within the narrow bands (this low-energy subspace is
labeled by ”d” in the following), screened by the more extended electrons outside this sub-
space. With sufficient screening only on-site interactions are considered, so that i, j, k, l label
the same site. The Hubbard model can be simplified if assuming only one band per site. This
is the one-band model (spin is written explicitly)

Ĥ = t
∑

σ〈ij〉⊂d

ĉ†iσ ĉjσ + U
∑
i⊂d

n̂i↑n̂i↓.

From this it is clear that U , the on-site repulsion, is the cost of double occupancy. 〈ij〉
limits hopping to the nearest neighbours, which is a common first approximation. This one-
band model has only one independent parameter, U/t. [3] The first ”hopping term” favours
delocalization and the second ”on-site repulsion term” favours localization, and the solution
gets highly material dependent. When modeling the physics in the CuO2 plane in cuprates
the one-band d subspace has dominant Cu dx2−y2-component. In a three-band model, also O
px and O py are included. The interaction terms in such a three-band model read [11] [31]

Udd
∑
i⊂d

n̂di↑n̂
d
i↓ + Upp

∑
i⊂d

n̂pi↑n̂
p
i↓ + Upd

∑
σσ′〈ij〉⊂d

n̂diσn̂
p
iσ

where Udd, Upp and Upd are d-d, p-p and p-d interactions. n̂diσ and n̂piσ are the d and p number
operators in orbital i with spin σ. Note that U is different in the one- and three-band model,
due to different amount of screening from the high-energy subspace.
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Appendix D
Superconductivity

The pairing between electrons will first be studied given an attractive interaction, then
the interaction itself. Pairing is for conventional superconductors modeled by BCS theory,
where electron-phonon coupling is the typical mediator. These have well-defined quasipar-
ticles suitable in a Fermi liquid picture. For unconventional superconductors like the doped
cuprates, this fails, and Eliashberg theory will be discussed, which replaces the non-local and
instantaneous BCS picture by a local and dynamical (retarded) picture.

D:1 Conventional Superconductivity - BCS Theory

Within BCS theory the main equations are the gap equation and the number equation. Given
a pairing interaction Vkk′(q) and assuming singlet spin the Hamiltonian reads [32]

Ĥ =
∑
kσ

εkĉ
†
kσ ĉkσ +

∑
q

∑
kk′

Vkk′(q)ĉ†k′+q/2,↑ĉ
†
−k′+q/2,↓ĉ−k+q/2,↓ĉk+q/2,↑

where Vkk′(q) = −Vk−k′(q) due to symmetric spin. εk is the dispersion relative to the
chemical potential µ. The energy at zero current and magnetic field is minimized if

〈ĉ−k+q/2,↓ĉk+q/2,↑〉 6= 0

only for q = 0 (the pairing term), yielding

Ĥ =
∑
kσ

εkĉ
†
kσ ĉkσ −

∑
k

(
∆∗kĉ−k,↓ĉk,↑ + ∆kĉ

†
k,↑ĉ

†
−k,↓

)
with ∆k = −

∑
k′ Vkk′〈ĉ−k′,↓ĉk′,↑〉 and Vkk′ ≡ Vkk′(0). This describes particle pairs flu-

cutating from and into a reservoir. ∆k is the gap function. Diagonalization yields Ĥ =∑
kσ Ekγ̂

†
k,σγ̂k,σ where γ̂k,σ annihilates a quasi-particle. γ̂k,↑ = Akĉk,↑ − Bkĉ

†
−k,↓ and γ̂k,↓ =

Akĉk,↓ +Bkĉ
†
−k,↑. Then the quasi-particle dispersion Ek is given by (details in [32])

Ek =
√
ε2
k + |∆k|2

and A2
k = 1/2(1+εk/Ek), |Bk|2 = 1/2(1−εk/Ek). Given εk only ∆k is needed to determine

Ek. The zero temperature gap equation reads

∆k = −1

2

∑
k′

Vkk′
∆k′√

|εk′ |2 + |∆k′ |2

where 〈γ̂†kσγ̂kσ〉 = 0 for T = 0 is used. For T > 0: 〈γ̂†kσγ̂kσ〉 = fT(Ek) = (1 + eEk/T )−1, with
quasiparticle chemical potential µγ = 0, [32] yielding the finite temperature gap equation
and number equation (to conserve charge), also called the BCS equations [33] (N(0) is the
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normal density of states at µ)

∆k = −1

2

∑
k′

Vkk′
∆k′√

|εk′ |2 + |∆k′ |2
tanh

(√
|εk′ |2 + |∆k′ |2

2T

)

n = 1− 1

N(0)

∑
k′

εk√
|εk′ |2 + |∆k′ |2

tanh

(√
|εk′ |2 + |∆k′ |2

2T

)
.

These are solved iteratively for ∆k and µ. [33] TC is also obtained from the gap equation.
Since Ek ≥ |∆k| ≥ 0 the BCS-ground state must be proportional to

∏
kσ γ̂kσ|0〉, where |0〉 is

the bare vacuum. [32] It thus costs to break the Cooper pair (↑ k, ↓ −k).

For electron-phonon coupling, semiclassicaly, one electron compresses the positive lattice,
which due to its retarded response attracts another electron. The two electrons form a
Cooper pair, with a typical size of 100-1000 nm. [34] Emission/absorbtion of virtual phonons
is often modeled as Vkk′ = −V θ(ωD − |εk|)θ(ωD − |εk′ |). For conventional superconductors,
µ is very close to that of the normal state and the number equation is skipped. Assuming a
constant density of states when εk ∈ [−ωD, ωD], close to TC in the weak-coupling limit yields
TC = 1.13ωDe−1/N(0)V . A material-independent ratio turns out to be 2∆(T = 0)/TC ≈ 3.53,
but fails for large pairing interactions V for which the quasi-particles are ill-defined. [33]
Then, Eliashberg theory is a more rigorous framework.

D:2 Unconventional Superconductivity - Eliashberg Theory

Superconductors that cannot be described by a Hartree-Fock BCS-theory are unconventional.
Eliashberg theory incorporates frequency-dependence (retardation) and is local, and can
thus describe the overscreening effects. The cuprates require a strong-coupling picture,
where ωD ∼ 0.1 × EF and ωD is the characteristic frequency of the bosons, which may
have both phononic and electronic origin. Due to the pairing among d-electrons they also
require a gap function of d-wave symmetry. They further require a conduction occupation
away from half-filling and a proper treatment of the conduction bandwidth. There are ways
of writing the strong-coupling Eliashberg equations, [33] however the main physics is more
easily explained in a weak-coupling limit N(0)V ωD/EF � 1, using Migdal theory, where
vertex corrections are ignored. The electron-boson interaction is summarized by the Dyson
equations

G−1(k, iωn) = G−1
0 (k, iωn)− Σ(k, iωn) , G0(k, iωn) = (iωn1− εkσ3)−1

D−1(q, iνn) = D−1
0 (q, iνn)−Π(q, iνn) , D−1

0 (q, iνn) = (M(ω2(q) + ν2
n))−1

for the electron (G) and boson (D) Green functions. G, G0 and Σ are 2×2 matrices. εk is
the one-electron Bloch energy, M the boson effective mass and ω(q) the boson dispersion.
σ3 = (1 0 ; 0 -1) is a Pauli matrix. In general, there are many bosonic modes, λ. The
Matsubara frequencies ωn = (2n+1)πT and νn = 2nπT enter through the Fourier expansions

G(k, τ) = −〈T (ψ̂k(τ)ψ̂†k(0))〉 = T
∞∑

n=−∞
e−iωnτG(k, iωn)

Dλ(q, τ) = −〈T (ϕ̂qλ(τ)ϕ̂†qλ(0))〉 = T

∞∑
n=−∞

e−iνnτDλ(q, iνn)

where ψ̂k = (ĉk↑ ĉ
†
−k↓)

T is the electron spinor and ϕ̂qλ = b̂qλ + b̂†−qλ the boson field of

mode λ. The average is within a grand canonical ensemble: 〈Ô〉 = tr(e−Ĥ/T Ô)/tr(e−Ĥ/T ),
requiring a Hamiltonian, which is that of an electron-boson and electron-electron interaction
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[33]

Ĥ =
∑
k

εkψ̂
†
kσ3ψ̂k +

∑
qλ

Ωqλb̂
†
qλb̂qλ +

∑
kk′λ

Λkk′λ(b̂k−k′λ + b̂†−(k−k′)λ)ψ̂†k′σ3ψ̂k

+
1

2

∑
kk′k′′k′′′

vk′′k′′′;kk′(ψ̂†k′′σ3ψ̂k)(ψ̂†k′′′σ3ψ̂k′).

Ωqλ is the bare boson energy, Λkk′λ the electron-boson matrix elements and v the Coulomb
potential. Using Migdal’s approximation (ignoring vertex corrections) the electron self-
energy is

Σ(k, iωn) = −T
∑
k′n′λ

σ3G(k′, iωn′)σ3

[
|Λkk′λ|2Dλ(k− k′, iωn − iωn′) + U(k− k′)

]
= iωn[1− Z(k, iωn)]1 + χ(k, iωn)σ3 + φ(k, iωn)σ1 + φ̄(k, iωn)σ2.

U is the partially screened interaction, assumed to only depend on momentum transfer, and
the second row is a Pauli expansion. [G(k, iωn)]−1 = iωnZ1 − (εk + χ)σ3 − φσ1 − φ̄σ2, so
solving detG(k, ω) ≡ Θ(k, ω) = 0 yields Ek and thus ∆(k, iωn)

Ek =

√(
εk + χ

Z

)2

+
φ2 + φ̄2

Z2
, ∆(k, iωn) =

φ− iφ̄
Z

.

G is diagonal for φ = φ̄ = 0, the normal state. The renormalization Z and shift function
χ are then determined by the normal state Σ. Non-zero φ or φ̄ has lower free energy and
a superconducting state with a gap arises. The 1, σ1, σ2 and σ3 terms in G result in one
Eliashberg equation each when plugging into the Migdal’s approximation for Σ, and the fifth
is the number equation (where φ̃ is either φ or φ̄)

iωn[1− Z(k, iωn)] = T
∑
k′n′λ

|Λkk′λ|2Dλ(k−k′, iωn−iωn′)
iωn′Z(k′, iωn′)

Θ(k′, iωn′)

χ(k, iωn) = T
∑
k′n′λ

|Λkk′λ|2Dλ(k−k′, iωn−iωn′)
χ(k′, iωn′) + εk′

Θ(k′, iωn′)

φ̃(k, iωn) = −T
∑
kn′λ

[|Λkk′λ|2Dλ(k−k′, iωn−iωn′)− U(k−k′)] φ̃(k′, iωn′)

Θ(k′, iωn′)

n = 1− 2T
∑
k′n′

χ(k′, iωn′) + εk′

Θ(k′, iωn′)

where clearly U enters the gap equation through the φ and φ̄ equations. For large electron-
boson couplings it has been shown, with a few simplifications, that there is no upper bound
for TC within Eliashberg theory, contrary to BCS theory. [33] From Ek it is clear that with
∆(k, iωn) → ∆(k), Z(k, iωn) = 1 and χ(k, iωn) = 0 the BCS model is reproduced, which
neglects retardation, strong-coupling and many-body effects.
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