Model-based design of industrial
automation solutions using FMI

Charlie Erwall

Oscar Martensson

T4
OngN s

UNIVERSITY
Department of Automatic Control

MSc Thesis
TFRT-6016
ISSN 0280-5316

Department of Automatic Control
Lund University

Box 118

SE-221 00 LUND

Sweden

© 2016 by Charlie Erwall & Oscar Martensson. All rights reserved.
Printed in Sweden by Tryckeriet i E-huset
Lund 2016

Abstract

This thesis defined and investigated a general workflow based on model-based de-
sign using the Functional Mock-up Interface (FMI), involving Hardware-in-the-
Loop (HiL) simulation. The thesis was a direct continuation of Sara Gunnarsson’s
master’s thesis "Evaluation of FMI-based Workflow for Simulation and Testing of
Industrial Automation Applications", where a Software-in-the-Loop (SiL) simula-
tion of the B&R Reaction Wheel Pendulum was conducted in Automation Studio
using a model imported with FMI. A HiL simulation of the pendulum was per-
formed to complete the work done by Sara, thus showcasing the strength and possi-
bilities of using FMI in testing. The performance of the HiL results were evaluated
by comparing the settling time with the SiL test and the real process swing-up.

In addition to the pendulum work, this thesis also aimed to perform model-based
tests of the ABB IRB340 FlexPicker robot, including SiL. and HiL simulations. This
was done in order to define a general workflow for conducting tests using FMI, and
to verify the approach on a more complex process than the pendulum. A MapleSim
model of the robot was exported as a Functional Mock-up Unit and imported in
Automation Studio, where the testing was done.

The results of the pendulum test showed that a HiLL simulation with an FMU can be
performed. The HiL simulation produced a settling time of 2.55 s at best, compared
to 2.46 s of the SiLL simulation and 2.28 s of the process. For the FlexPicker, the
SiLL and HiL tests were never run due to a lack of time. Instead, a recommended
approach for implementing the SiL. and HiL test—along with two less promising
approaches tested—were discussed and evaluated. The conclusion is that the work-
flow and model-based design using FMI is a promising way of conducting tests, but
that there is more implementational work needed before SiLL and HiL results of the
FlexPicker can be successfully collected.

Acknowledgements

Hereby, we would like to extend our thanks to our supervisors Anders Robertsson
at LTH and Christian Tallner at B&R Automation for giving us the opportunity to
do this master’s thesis and for providing us with much needed help along the way.
Also, thank you to Kurt Zehetleitner and Christoph Neukamp for supporting us
from the B&R headquarters in Austria, and for providing a direction for the project
from B&R’s side. Also from B&R Austria, we thank Leopold Griessler for help
with the simulation mode in Automation Studio. Thank you to Elias Palmquvist,
Maria Henningsson and Per-Ola Larsson at Modelon for allowing us to access the
material from Sara’s thesis, and all the help regarding FMI and Dymola. Thank you
to Patrik Lilja and Johan Malmberg at the B&R office in Malmo for being available
and helping us with Automation Studio. Lastly, a thank you to Adam Bickstrom for
clarifications regarding both his and Kristofer Rosquist’s theses.

Acronyms

AR Automation Runtime

AS Automation Studio

CPU Central Processing Unit

EPL Ethernet POWERLINK

FMI Functional Mock-up Interface
FMU Functional Mock-up Unit

GUI Graphical User Interface

HiL. Hardware-in-the-Loop

ICN Intelligent Control Node

I/0 Input/ Output

PLC Programmable Logic Controller
SDRAM Synchronous Dynamic Random-Access Memory
SiLL Software-in-the-Loop

TCP Tool Center Point

Contents

1. Introduction

1.1 Background,

1.2 PreviousWork

1.3 Goals.

1.4 Limitations e e

1.5 Divisionoflabor
2. Theory

2.1 Functional Mock-up Interface

22 Hardware.

23 Software

2.4 FlexPicker robot dynamics

2.5 Software-in-the-Loop

2.6 Hardware-in-the-Loop
3. Method

3.1 Workflow

3.2 Bé&Rreaction wheel pendulum

3.3 ABBIRB340 FlexPicker
4. Results

41 Pendulum

42 FlexPicker
5. Discussion

5.1 Pendulum

52 FlexPicker
6. Conclusions

6.1 Pendulum

6.2 Flexpicker
7. Future work

7.1 Pendulum

7.2 Flexpicker

11
11
12
12
13
13

14
14
15
21
23
25
25

26
26
28
34

40
40
43

45
45
47

51
51
51

53
53
53

Contents

8. Appendix
8.1 Pendulum program variables
8.2 Pendulum control program
8.3 Inverse Kinematics program

Bibliography

10

54
54
55
56

58

1

Introduction

1.1 Background

In today’s industry, simulation of large complex systems become increasingly im-
portant in the development stage of production. Interaction between components
can be investigated without the need of actual hardware which makes it possible
to detect and correct design flaws already at an early stage of development. Test-
ing can also be done in a safer way, since there is no risk of damaging expensive
components.

As of today, there are many simulation software solutions which are very good at
modeling specific functions and sub-parts of a complete system such as electrical
and thermal behavior, deformation, multibody systems etc. What lacks is a general
ability to easily connect all of these programs and subsystem models together to
simulate them as a whole unit. For example, a car is built up by several sub-parts
such as motor, gear box, chassis, exhaust system, which all need to be tested to-
gether to make sure that all communication between these sub-systems work as
intended. The solution to this problem is the Functional Mock-up Interface (FMI)
[Blochwitz et al., 2012], which is a standardized interface that allows all models—
regardless of which modeling program that is used—to be able to communicate with
each other.

While the FMI has already gained ground in the automotive industry, it is still
not widespread in the automation industry. B&R is the first automation company
to support FMI [FMI-Standard, 2016], which has been released in the latest ver-
sion of their software Automation Studio [Bernecker & Rainer Industrie-Elektronik
GMBH, 2016]. As a way of showcasing the versatility and power of the FMI inter-
face in the automation area, this thesis focuses on defining a workflow for model-
based testing using FMI, and also to perform two types of simulations to verify this
workflow: Software-in-the-Loop (SiL) and Hardware-in-the-Loop (HiL). In the SiLL
simulation, the setup consists of the controller and the model, which is simulated

11

Chapter 1. Introduction

exclusively in a software environment. In the HiLL simulation, hardware is added
to the loop to gain more information about the real setup. The SiL and HiL simu-
lations will be performed for two different processes: a reaction wheel pendulum
[B&R Automation, 2009] by B&R Automation and an ABB IRB340 FlexPicker
industrial delta robot [ABB Robotics Products AB, 2000].

1.2 Previous Work

This master’s thesis is a continuation of Sara Gunnarsson’s joint master’s thesis
"Evaluation of FMI-based Workflow for Simulation and Testing of Industrial Au-
tomation Applications" [Gunnarsson, 2016] between Modelon and B&R Automa-
tion. Sara verified the use of FMUs in Automation Studio (AS) by performing a SiLL
simulation of a B&R reaction wheel pendulum. The pendulum model was built by
Sara in Dymola and exported as an FMU, and the controller was C-code generated
from Simulink using the B&R Automation Studio Target for Simulink. The process
was successfully controlled by the controller inside the AS environment, and pro-
duced satisfactory results. The pendulum model developed by Sara is further used
for HiL tests in this project.

Another two master’s theses titled "Modelling and Control of a Parallel Kinematic
Robot" [Rosquist, 2013] made by Kristofer Rosquist for B&R Automation, and
"Time-Optimal Control by Iterating Forward and Backward in Time" by Adam
Bickstrom also contributed to this project. The aim for Kristofer’s thesis was to
model the kinematics of an ABB IRB340 robot [ABB Robotics Products AB, 2000],
and implement the control using software and hardware from B&R Automation.
The implementation of the robot dynamics (inverse kinematics) and control in Au-
tomation Studio is what was primarily used from his thesis. Adam’s thesis con-
cerned a way of generating time-optimal trajectories, which is not a focus of this
thesis, but he also worked with the ABB IRB340 and improved upon Kristofer’s
code, kinematics and dynamics which was useful for this thesis.

1.3 Goals

The primary goal of this thesis is to define a workflow for conducting model-based
design consisting of FMUs exported from different software, and that they can be
imported in Automation Studio and act as process substitutes for HiL testing. The
first sub-goal is to verify that the virtual model of the pendulum that Sara Gunnars-
son created in her thesis can be used in a HiL test. After that, focus lies on verifying
that the HiLL simulation—using the same workflow—works for a more advanced
process that has more practical value than a pendulum. The choice of this process is
the previously mentioned ABB IRB340 industrial robot. This is a suitable choice of

12

1.4 Limitations

process since both Kristofer Rosquist’s and Adam Bickstrom’s theses produced ma-
terial which can be reused to reduce the scope of the project. In addition, the robot
is used in today’s industry and would be a relevant showcase for B&R Automation.

1.4 Limitations

This thesis project contains no controller design neither for the pendulum nor the
FlexPicker robot. The pendulum uses a B&R controller that comes with the pendu-
lum, and the FlexPicker robot utilizes the built-in cascade control structure found
in the B&R ACOPOS servo drives [B&R Automation, 2016a]. In general, time will
primarily be spent on implementation utilizing existing functions in order to reach
the goals that were set up for this project.

The modeling software used is restricted to Dymola [Dassault Systémes, 2016] and
MapleSim [Maplesoft, 2016] since they support FMU export and licenses are avail-
able for use in this thesis. Since this thesis is a collaboration between the Department
of Automatic Control at Lund University and B&R Automation, Automation Studio
studio is the software that is used for writing code for the PLCs and for testing. It is
also the reason why both the studied processes use B&R control systems.

1.5 Division of labor

Throughout the project, in general, the students have not been assigned sub-tasks
within specific areas. The focus has always been for both the students to have knowl-
edge of all parts of the project, but the workload has of course always been split
between the students in order to increase work efficiency. For example, during the
work with the FlexPicker robot, Charlie focused more on figuring out what to sal-
vage of Kristofer’s and Adam’s AS programs while Oscar focused more on the
MapleSim models and how to adjust them for the needs of this specific thesis.

13

Theory

2.1 Functional Mock-up Interface

Functional Mock-up Interface (FMI) [Blochwitz et al., 2012] is a standard for model
exchange and co-simulation of dynamic models that had its first version released in
January 2010, followed by a second version in July 2014. As more tools begin
to support FMI, it becomes viable to use as part of a tool-chain for testing and
improving industrial control systems. To have the possibility of using many different
tools using a common interface makes it much easier to integrate models into the
development process of automation applications. More information on the interface
and its development can be found on the FMI web page [FMI-Standard, 2016].

Another large benefit of using FMI is that many of the tools that support it are based
on the Modelica language [The Modelica Association, 2012], which builds models
upon sets of equations instead of causal relations. This gives the user freedom to
choose the input and output of the model when exporting it using FMI. This is
highly beneficial when using models in a control architecture with feed-forward,
since the same model that can be used in testing can also be used in the controller,
only with different export settings. For instance, if the tool of a milling robot is
replaced with a cutting tool the model could be modified accordingly, a new FMU
exported to replace the old one and thus the load feed-forward has been corrected
for the new tool, without the hassle of recalculating the dynamics equations by hand.

A component that follows the FMI standard is called a Functional Mock-up Unit
(FMU) and consists of a zip-file, although using .fmu as file extension instead. The
archive contains an XML file and C-functions in source code or binary format. The
XML file contains a model description and variable declarations. The C-functions
provide the model equations and optionally the solver [Blochwitz et al., 2012].

14

2.2 Hardware

2.2 Hardware

B&R reaction wheel pendulum

The B&R Reaction wheel pendulum (Figure 2.1) consists of a base segment upon
which a pendulum arm is attached. At the end of the arm, an aluminium wheel
is mounted. When the aluminium wheel is spun, it creates a torque in the opposite
direction which forces the pendulum arm to start swinging. With the right controller
action, one can force the pendulum arm to swing to an upwards position, and make it
balance there. This is the control goal for the pendulum in this project. The process
is suitable for study since it is a relatively simple and well known one.

Figure 2.1 The B&R reaction wheel Pendulum with included PLC and power supply unit.

Controller

The controller used for the pendulum is a Simulink controller designed by B&R
that comes with the pendulum and is known to perform well. For the sake of an
overview, the control structure will be briefly presented here.

The controller is built up by two parts: a bang-bang controller for the swing-up part,
and a state feedback controller for balancing the pendulum arm in its upright posi-
tion. The states of the state feedback are the arm angle (y), the wheel angle (¢) and
the respective angular velocities (s and ¢). The angle measurements are supplied
by encoders on the motor axis and the arm joint. The controller switches from the
bang-bang controller to the balancing controller once the arm angle comes within a
certain threshold according to ||| — 7| < 0.25, i.e., when the arm is approximately
15 degrees from its upright position.

An overview of the controller can be seen in Figure 2.2. Here, a State Variable
Estimation block can be seen as well, which will not be commented on. A more

15

Chapter 2. Theory

detailed view of the Extended Controller block can be seen in Figure 2.3.

[ecore]

GLOBAL LREAL psilncr » osi »
- psilner X x

philncr dPsiE 4P sE

ulncr

State Vaniable Calculation Extanded Controller _GLOBAL LREALTOINT u

_GLOBAL LREAL ghilncr

Figure 2.2 An overview of the pendulum controller. The input can be seen to the far left,
followed by a State Variable Calculation block and after that the Extended Controller block,
which is the core control structure. Lastly, the output can be seen to the far right.

(2.dPsE } - ! dP siE
dPsiE psi
dpsi u
dP hi _LP
ControllerUpswing
ulncr
»=
- oA
] Relay ScalePVWM
xl dPhi
x
psiFi —
x| W x u—‘—>
x B
Seperation Switch
Controllerk

Figure 2.3 A more detailed view of the Extended Controller block seen in Figure 2.2.
The ControllerUpswing block is the bang-bang controller that controls the swing-up of the
pendulum, and the ControllerK is the state feedback controller that controls the balancing of
the pendulum arm when in upright position. Between the two of them, there is a Switch block
that switches between the two controllers

ABB IRB340 FlexPicker

The IRB340 FlexPicker is an industrial parallel-kinematic robot developed and
manufactured by ABB. The robot excels at handling smaller objects up to 1 kg such
as assorted chocolates or mini-sausages. With light weight and strong carbon fibre
arms, the robot can accelerate the tool up to 15 g’s of acceleration [ABB Robotics
Products AB, 2000], enabling it to work at a very fast pace while still maintaining
stability and high precision. The robot can be seen in Figure 2.4.

16

2.2 Hardware

Figure 2.4 The ABB IRB340 FlexPicker robot [Backstrom, 2014].

B&R ACOPOS 1045 servo drive

8V1045.00-2 The ACOPOS 8V1045.00-2 drive (Figure 2.5) is a servo drive from
B&R used in this project to supply a motor with power. The drive has 4 plug-in
module slots, where for example POWERLINK and resolver interfaces can be in-
stalled. The drive also has a built-in 4th order trajectory generator which ensures a
smooth transition from the input value to the output value of the ACOPOS. More
details can be found in the ACOPOS User’s Manual [B&R Automation, 2015].

=
=
@
S
=
S
S
=
.o

Figure 2.5 The ACOPOS 1045 Drive (left) [B&R Automation, 2015] and the ACOPOS
setup used to control the FlexPicker robot (right).

17

Chapter 2. Theory

8AC114.60-2 Plug-in module for ACOPOS drives providing POWERLINK in-
terface.

8AC122.60-3 Plug-in module that provides the drive with a 10kHz resolver inter-
face used for communicating with the motors.

Controller

In addition to physical features, the ACOPOS drive house a cascade controller con-
sisting of position, speed and torque/current loops. The overall structure can be
seen in Figure 2.6. The position controller is a PI controller which runs on 400us
cycles. It is also equipped with both anti-windup and feed forward control. The po-
sition feedback comes directly from the resolver that reads the motor position. This
value is then both fed to the position controller, and differentiated and sent to the
speed controller. More detailed views of the position controller, speed controller and
torque controller can be seen in Figure 2.7, Figure 2.8 and Figure 2.9 respectively
[B&R Automation, 2016a].

Foed Forward
Confroller
only if
conlroller mode=..+ncFF
v_feed
s_set [tis] :
Units]
Set value generator [Units] '—'e‘;"lAI
Position Controller v_set
(Vs Lset
A "
Speed C Current C

T
u_set [V]
¥

§_act

finc] : Motor

Figure 2.6 An overview of the cascade controller available in the ACOPOS drive [B&R
Automation, 2016a].

18

2.2 Hardware

| s_sal (1-1_lotal)

Position Controller
v_feed
load.rav_malor (1]

v_feed (t-(1_total-{_predict)) [Units/s]

s_sat 4 fe
[Units] Brediction [Units] [Units] |
t_predict, t_total [s)
5_act
inc] Unit s_acl
Increments [U-nils]

=

A

kv [1/s]

p_max
[Units/s]

v_corr v_set v_set
[Units/s] ¥ [Units/s] | load.rev_motor | [1/5]

load units

[Units/s])

%4

[T

L
+

load units

Figure 2.7 A more detailed view of the position controller block from Figure 2.6 [B&R
Automation, 2016a].

[inc]

o Speed Controller
v_sat Ly i_feed [A] i_set
[1s] [1rs] _I: Al o)

Revolution
Increments

t_fiter [s]

+

kv [As]

Anti-

motor

Windup |Parmmeter

|

tn[s]

Figure 2.8 A more detailed view of the speed controller block from Figure 2.6 [B&R Au-
tomation, 2016a].

v_feed
[1/s]

torque_load [Nm)|

torque_pos [Nm]

lorque_feed
[Nm]

Feed Forward Controller

i_feed

{+]

torque_neg [Nm]

=

kv_torque [Nms]

2

.

S

intertia [kgm?|

t_filter_a [s]

) -lC) o

mator parameter

Figure 2.9 A more detailed view of the feed forward torque controller block from Figure
2.6 [B&R Automation, 2016a].

19

Chapter 2. Theory

ACOPOS simulation

The ACOPOS drive has the possibility to be run in a simulation mode. This is for
example useful when the hardware is absent or when one wants the whole function-
ality of the ACOPOS drive, but does not want to deal with having to connect to the
drives. The ACOPOS can be put in two different simulation modes: standard and
complete. In order to simulate the ACOPOS, the target system needs to support an
AR version newer than or equal to A4.04.

Standard simulation is the most primitive mode, and does not utilize the cascade
control structure of the ACOPOS drive seen in Figure 2.6. Instead, the input value
is directly copied to the actual value. This simulation mode requires low CPU time,
and does not take potential error conditions such as lag and overheating into ac-
count.

Complete simulation is a more advanced simulation mode. In contrast to the stan-
dard mode, it utilizes the whole cascade controller of the ACOPOS drive. In addition
to the controller, this mode simulates the currents going to and from the motor, the
motor temperature and bus processing stops. Complete mode is therefore necessary
if maximum information about the system is desired, and more suitable for HiLL
simulations than the standard mode.

B&R PLCs

A Programmable Logic Controller is a computation unit commonly used in the
automation industry. The PLC can be used to for example host controllers, visual-
izations, FMUs or other software programs. The X20 is a PLC serie with highly
compact and modular PLCs ranging from low to high performance. In addition,
each PLC can be equipped with several expansion modules, such as analog or digi-
tal I/Os or bus modules. A figure of a B&R X20CP158x PLC can be seen in Figure
2.10, but all PLCs used in the thesis look the same way on the outside. Choosing a
PLC with the right performance can be crucial so that there is no lack of memory
or computation power to perform the task running on the PLC.

X20CP1484 An industrial PLC from B&R Automation suitable for less compu-
tationally heavy tasks. The PLC is equipped with a 266 MHz Celeron 266 CPU and
has 16 MB SDRAM. In addition, it has an EPL interface which allows it to com-
municate with for example the ACOPOS drives. This PLC is suitable for hosting
FMUs or controllers that don’t need much computation power.

X20CP1486 A more powerful PLC than the X20CP1484 with 650 MHz Celeron
650 CPU and 64 MB SDRAM. Just like the X20CP1484, this PLC is equipped
with an EPL interface. This PLC is suitable for hosting programs that require more
memory than the X201484 has, such as visualization.

20

2.3 Software

Figure 2.10 A B&R X20CP158x PLC [B&R Automation, 2016b].

X20CP1584 A newer generation PLC than the X20CP148x ones. Equipped with
an ATOM E620T 600 MHz processor and 256 MB DDR2 SDRAM. The most im-
portant feature is that the X20CP1584 supports AR version A4.04 and later, which
allows the PLC to host a complete ACOPOS simulation.

2.3 Software

Automation Studio

Automation Studio is a software development environment created by B&R. The
software can be used for configuring drives, controllers and visualizations, as well
as debugging and generating data files and plots. The ability to use one single envi-
ronment for many stages of an implementation process makes Automation Studio a
very powerful tool in automation. B&R has recently begun supporting the import of
FMUs in Automation Studio, which further pushes the advantages of the software
and enables the possibility to simulate larger systems more easily.

The Automation Studio version used during this thesis was initially the Beta version
of AS 4.2.5, which was later upgraded to the official 4.2.5.388 version once it was
released.

Automation Runtime

Automation Runtime is the software kernel which allows applications to be run
on a target system. It runs on all of B&R’s target systems, and makes the applica-
tions hardware-independent. It is based on a real-time operating system and ensures
deterministic execution of the task cycles. In addition, it supports an array of pro-
gramming languages such as C, Structured Text and Sequential Function Chart to
name a few.

Ethernet POWERLINK

Ethernet POWERLINK (EPL) [Ethernet POWERLINK Standardisation Group,
2013] is an open-source deterministic, real-time Ethernet protocol maintained by
the EPL Standardization Group and is the standard used by B&R. It is based on the

21

Chapter 2. Theory

existence of a managing node (master) and one or several controlled nodes (slaves).
The cycle time for the network is decided by the managing node and it can be used
as the synchronization base for the PLC as well. Additional PLCs can be added to
an EPL network as controlled nodes in Automation Studio by adding Intelligent
Controlled Node (ICN) modules in the hardware configuration.

MapleSim

MapleSim [Maplesoft, 2016] is a modeling, simulation and analysis tool developed
by Maplesoft. The software is built on the mathematical engine of Maple, which
allows it to utilize the symbolic computations and equation simplification features
of Maple. The modeling is done graphically by dragging and dropping component
blocks with different attributes, which are then connected with each other to form
larger systems. This makes MapleSim suitable for modeling hydraulic, multibody
and electrical systems to name a few. The blocks are described by acausal equations,
which means that energy can flow in both directions in the system, and that no
direction for the flow of energy in the system needs to be chosen. For example, one
could build a model of a wind turbine meant for generating a current by feeding the
rotor with an air flow. With the acausal feature, the turbine could also be fed with a
current, which would then cause the rotor to rotate.

MapleSim Connector for FMI

In addition to being a powerful modeling tool, MapleSim has an add-on which al-
lows the models to be exported as FMUs, both in co-simulation and model exchange
mode. The co-simulation mode comes with a choice of five different embedded
fixed-step solver variants: Implicit and Explicit Euler, and Runge-Kutta order 2, 3,
and 4. The properties of these solvers will not be discussed in this thesis, but details
can be found in [Ascher and Petzold, 1997]. Note that the option to export an FMU
using variable step-size solvers is not available in MapleSim.

Simulink

Utilizing much of the functionality in Matlab, Simulink is a graphical programming
environment for modeling, simulating, and analysing multi-domain dynamic sys-
tems created by Mathworks. Many add-ons are available from both Mathworks and
other companies which gives the software leverage functionality in different areas
such as multibody modeling, automatic code generation, and FMI export/import.

Automation Studio target for Simulink

Automation Studio Target for Simulink is an add-on toolbox for Matlab and
Simulink created by B&R Automation that allows the user to export either C or
C++ code directly to Automation Studio. With this toolbox, controller design or
modeling, for instance, could be done in Simulink and then the system could be
exported to Automation Studio for further use.

22

2.4 FlexPicker robot dynamics

2.4 FlexPicker robot dynamics

All robot dynamics calculations were done by Adam Bickstrom in his thesis [Bick-
strom, 2014], which in turn builds on Kristofer Rosquist’s thesis [Rosquist, 2013].
A summary of the resulting calculations are presented here to provide an overview
for the reader. All details can be found in Adam’s report.

The FlexPicker Robot

The FlexPicker (ABB IRB340) robot has three identical arms located equiangular
from each other at a 120 degree angle. The whole arm consist of an upper arm,
an elbow joint and a lower arm made up from two parallel arms. The underarm
connects to a travelling plate, where tools and gripping modules can be attached. In
addition to the three identical arms, a fourth optional middle arm can be attached
to allow rotation of the tool attached to the travelling plate. This arm will however
not be used in this project. No tool will be attached, so the Tool Center-Point (TCP)
reference will be assumed to be in the middle of the travelling plate, even though
the option to vary this variable will be available in the implementation. Figure 2.11
shows a sketch of an individual robot arm and all of the sub-part names.

Top Upper arm
middle
arm

Bottom
middle

arm Parallel arms

Traveling

plate load

Figure 2.11 A sketch of one of the three robot arms, showing the name of each component
[Backstrom, 2014].

23

Chapter 2. Theory

Inverse Kinematics

The inverse kinematics of a parallel kinematic robot are a set of equations relating
the TCP position in Cartesian coordinate space to the angle of each motor. Contrary
to a serial robot, the motor angles of a parallel robot can be calculated independently.
Specifically for a delta robot (3 arms) the functions become three separate mappings
R3 — R': ¢; = f(px, Py, pz), Where i is the index of an axis and (px, py, p;) are the
Cartesian coordinates of the TCP.

Figure 2.12 Constant parameters and coordinate system (left), projection plane and addi-
tional variables (right) [Backstrom, 2014].

A coordinate system is defined with the x-y plane being the plane of motion for a
chosen motor axis, the x-axis being parallel to the zero position of the motor axis
(¢; = 0). The z-axis is then well defined by the right-hand rule as it is perpendic-
ular to the other two axes. The origin is chosen in the middle of the robot (so the
distance to each motor axis is the same, rg) and at the y-coordinate of the axes. The
motor angle (¢;) can then be unambiguously calculated after projecting the TCP po-
sition on the x-y plane. Figure 2.12 illustrates the plane and the projection as well
as the measurements used to calculate the inverse kinematics. The final equation
can be seen in Equation (2.1) with help-variables defined in Equation (2.2). This
equation will result in an angle that is positive when below the x-axis and negative
above, which is inverse to a regular polar coordinate system definition. A flip of the
sign of Equation (2.1) will change the rotational direction to that of such a system
[Backstrom, 2014].

- 12 _ 12 2
¢; = arccos %13’0 — arccos %llrl -B 2.1)

24

2.5 Software-in-the-Loop

L = \/(ro—Px—r3)2+P§

L = \/r}—p?

To do the same calculations for the other two axes, the coordinate system needs to
be rotated around the y-axis so that the x-axis aligns with another motor axis. This
is done by multiplying the coordinate vector with a rotational matrix dependent on
the angle o between the axes, shown in Equation (2.3).

2.2)

D cosa 0 —sino| [px
pl=10 1 0o ||p 2.3)
Pl sind 0 cosa | |p;

2.5 Software-in-the-Loop

Software-in-the-Loop is a way of testing used in the development process when
for instance designing a new plant or a controller for a plant. The main purpose is
to verify the performance of the whole setup and to make sure that the controller
is able to control the plant as intended, and that the plant acts as intended under
the influence of the controller. In this analysis, all interaction between the different
processes happen inside a software environment, for example B&R’s Automation
Studio. The plant is represented by a virtual model of some sort, which can be built
in MapleSim or Simulink for instance. The controller is then simulated together with
the virtual model of the plant inside some suitable software on the same hardware
where the results are collected and analysed.

2.6 Hardware-in-the-Loop

Hardware-in-the-loop is, just like SiL, a verification step in the testing process. In-
stead of running both the plant and the controller virtually on shared hardware, as in
SiL, the virtual model of the plant is typically placed on a computer or PLC while
all other parts of the complete chain are run on the real hardware. The computer or
PLC that hosts the virtual model of the plant is then connected physically to the real
hardware, and a simulation of the whole system is performed. The goal with this
way of simulating is to come as close as possible to the real process. Unlike SiL, a
HiL simulation implicitly takes additional physical quantities into account such as
currents, temperature and delays, thus making it a more accurate representation of
reality than a SiL simulation.

25

3

Method

3.1 Workflow

The essence of this thesis is the workflow of model-based design using FMI. This
section aims to generally define the components that constitutes this workflow. Fig-
ure 3.1 illustrates the steps that will now be described in some detail.

Controller

Design controller
Process

Design plant model

SiL simulation
Simulate using
software only

HiL simulation Process test
Simulate using -
hardware Run on physical process

IF IF
Unsatisfactory Unsatisfactory
SiL results HiL results

Figure 3.1 The proposed workflow when creating a HiL. simulation in Automation Studio
using an FMU as virtual model.

Modeling The first step in the workflow is the creation of a model of the pro-
cess in question, within a software that supports FMI export such as Dymola or
MapleSim. The model’s inputs and outputs should be chosen so they correspond as
well as possible to the inputs and outputs of the process with regard to units, value
ranges and data types. With the model complete it should be exported with settings
compatible with the target software, e.g., co-simulation or model exchange.

When importing an FMU the implementation may differ among different software
although the interface of FMI guarantees that the functionality is the same. After
importing the FMU into the target software, declaration of variables for inputs and
outputs and corresponding variable mapping may be required for—or simply to
facilitate—the coming verification steps.

26

3.1 Workflow

SiL simulation Before testing any hardware, one should make sure that the de-
sired setup works as intended and meets the requirements in an all-software sim-
ulation. Here, the different sub-parts of the whole process such as motors, drives,
controllers and FMUs should be connected and simulated together in a suitable
software environment such as Automation Studio. It is important to always strive
towards getting as close as possible to the real world setup.

The SiL simulation consists of some sort of performance test—for instance a step
response—where the controller acts on the FMU. The controller is then modified
based on data obtained from such tests and the testing is iterated until the behavior
is satisfactory. The testing could also be used the other way around, to develop
a model using an already well-performing controller. This could be useful in the
scenario described in Section 2.1, where it is suggested that an FMU could be used
as a dynamic load model in a feed-forward control architecture.

HiL simulation This step is a direct continuation of the SiL. simulation, but now
including hardware instead of an all-software simulation. With most of the devel-
opment done in SiLL simulation, this is a final testing and verification step before
running a controller with a real process. A rule of thumb is to include as much hard-
ware as possible in order to come as close as possible to the real setup. The success
of a HiL simulation depends largely on how well the FMU and controller perform,
but there may be additional configurations that may need to be tweaked in this step.

The main difference from a SiL. simulation is that the FMU and the controller
should be executed on independent hardware, e.g., two separate PLCs. The con-
troller should run on the same hardware using the same software that is to be used
in the final step. The hardware for the FMU should simply be chosen such that it
executes without problems. Repeating the same performance tests as in the previ-
ous step the controller (or model depending on what is tested) should be modified
and tuned until the HiL simulation provides results vsimilar to those from the SiLL
simulation.

Process test The final step in the proposed workflow is to test the real process
with all hardware involved. The FMU is basically replaced by the corresponding
hardware and the controller should be acting on the real process. The purpose of
the workflow thus far is to make sure that the controller will run smoothly on the
target hardware, not damage any process components and perform close to what is
expected, but some final tuning is most likely needed as a simulation never fully
includes all details of the real world setup.

27

Chapter 3. Method

3.2 B&R reaction wheel pendulum

This section will describe the hardware and software setup as well as implementa-
tion of the tests for the pendulum. The physical setup for all the tests of the pendu-
lum can be seen in Figure 3.2.

Figure 3.2 The setup for HiL and process test. A PLC can be seen to the far left attached to
an orange plate, with a power supply unit to the left of the PLC. The pendulum can be seen
to the far right.

Modeling

A model of the B&R reaction wheel pendulum was made by Sara Gunnarsson in
her master’s thesis project [Gunnarsson, 2016]. The model, seen in Figure 3.3, was
made in the Modelica-based software Dymola. It consists of a damped revolute
joint, revolutePsi, anchored to a world component worldl and also connected to a
body shape Pendulum representing the mass and inertia of the pendulum arm. An-
other revolute joint, revolutePhi, connects the other end of the arm to an additional
body shape representing the mass of the wheel and rotor as well as the inertia of the
wheel. This revolute joint is driven by the motor and its frame of reference is the
arm. The input to the system is the motor voltage u € [—24,24] volts. The outputs of
the system are the angles in radians of the two revolute joints in the reference frame
of the world component. The joint at the arm attachment is already in that reference
frame and the motor-driven joint is converted to it simply by adding the two joint
angles. The angles are allowed to overflow and are thus unbounded, but within one
full revolution of each joint the angles are naturally ¢, y € [0,27x] radians.

Since AS only supports source-code generated co-simulation FMUs, this setting
was used to export the FMU from Dymola. The only solver that is supported with

28

3.2 B&R reaction wheel pendulum

these settings in Dymola is CVODE [Hindmarsh et al., 2005], which was therefore
used. The step size was set to 5- 1073 (5 ms) and simulation time to 20 s, although

these settings can easily be changed later in AS.

e psi
realExpression
vl

revalutePai phi

.
damper motor
realExpressiont phi
i phi

worldi

il

| A —

n={1.0.0}
X revoiulePsi

Woai ook
wnnpuad

pendulum

1,00} o0

revoluierhi

v

punob

Ineria flangs_b1

WheelMotor

Figure 3.3 Pendulum model in Dymola. The whole system (upper) and the motor block

(lower).

29

Chapter 3. Method

In order to be able to export a pendulum FMU with a different solver than CVODE,
a model of the Pendulum was also made in MapleSim (Figure 3.4). This model
was made to be as an exact copy of Sara’s Dymola model as possible. Since almost
all of the blocks used in the Dymola model were Modelica standard blocks, these
could easily be found in MapleSim as well. In addition, the geometric and electrical
parameters of the blocks were directly copied from the Dymola model and used in
the MapleSim model.

The MapleSim model was exported as a source code FMU in co-simulation mode.
The model was exported with a Backward Euler solver [Ascher and Petzold, 1997]
with step sizes 11073 (1 ms) and 5-1073 (5 ms).

Figure 3.4 Pendulum model in MapleSim. The whole system (upper) and the motor block
(lower). The inertia block missing in the motor subsystem compared with Figure 3.3 was
removed simply because the value was zero and therefore useless to include.

30

3.2 B&R reaction wheel pendulum

SiL simulation

The SiL simulation for the pendulum was the main objective of Sara Gunnarsson’s
master’s thesis [Gunnarsson, 2016] and was successful therein. The test was per-
formed again following the steps in the thesis to try and reproduce the results. The
general approach was the same, although with a few implementational differences
described next.

During her thesis Gunnarsson modified an existing controller for the pendulum
available in Simulink made by B&R such that the inputs and output matched those
of the FMU. The original, unmodified controller’s inputs are encoder increments,
¢ € [0,28000] for the wheel and y € [0,4096] for the pendulum arm and the output
is a signed 16-bit integer u € [—32768,32767] units. These values were used in the
original controller since they are the input and outputs of the process. Another dif-
ference is that the reference frame for the wheel angle in the original controller is
that of the pendulum arm. To easily be able to change between the process and the
FMU the original controller was used and the changes made by Gunnarsson were
implemented in the controller’s main script instead. A macro was used to only in-
clude the changes for the HiL simulation and not the process. To convert the wheel
angle back to the correct reference frame the arm angle y was subtracted from the
wheel angle ¢. The different intervals were simply a matter of scaling the inputs and
outputs, mapping 28000 and 4096 increments to 27 radians for the wheel and arm
respectively and finally mapping 32767 units to 24 volts for the control signal. The
implementation of this can be seen in the controller’s cyclic function in Section 8.2.

In the SiL simulation done by Gunnarsson the FMU was initialized at Wy = 7/2 ra-
dians. The process is usually started at rest, which is around the downright position
i.e., Yo ~ 0. However the controller will not output a control signal if it is started
when the pendulum is in the exact downright position i.e., Yy = 0 so the initial angle
of the FMU was chosen as yy ~ 27t/4096 radians, which corresponds to 1 encoder
increment.

The SiL test was simulated entirely in Automation Studio on the ARsim kernel.

Settling time

A quantity that can be studied with regard to performance of the controller is settling
time. The settling time (#;) can be defined as the time required for the response curve
to reach and stay within a range of certain percentage (usually 5% or 2%) of the final
value [Tay et al., 2012]. The final value of the pendulum is |y| = 7, and the range
(or error band) was chosen as £2% of this value.

The end time—i.e., the last time the response curve enters the error band—was
found by taking the last of all intersections between the error band bounds and the
response curve. A function found on the MATLAB Central File Exchange was used

31

Chapter 3. Method

to find these intersections [NS, 2008].

HiL simulation

In this section the setup for the HiL test for the reaction wheel pendulum will be
described in detail. The controller used was, as mentioned in the previous section,
the original controller supplied by B&R for the reaction wheel pendulum with some
slight modifications after code export.

For the HiL test two PLCs were required, one for the controller and one for
the FMU. The PLCs available at the Automatic Control department were an
X20CP1484 and an X20CP1486, so these were used. The first was used for the
FMU and the latter for the controller and a visualization. The controller cycle time
was set to 1 ms regardless of the cycle time of the PLC for the FMU. Only one
task class was used on each PLC. The communication between the PLCs was done
using EPL with the regulator PLC as managing node and the FMU PLC as con-
trolled node. The PLC tasks were set to synchronize on the EPL, which was set to
communicate with a cycle time of 1 ms since this is the cycle time of the controller.

The controller PLC was monitored during the execution. Since an FMU in Au-
tomation Studio—which is a function block—needs to be enabled an initialization
command was added to the EPL, along with an "enabled" status variable. A reset
command was also added, which simply sets the Enable input variable of the FMU
function block to false. The init and reset commands also turn the controller on
and off, respectively. It should be noted that the rest only worked for the MapleSim
FMUs, whereas the Dymola FMUs crashed when being reset. To reset the Dymola
FMUs the PLC was simply powered off. All the variables on the EPL can be seen
in Table 3.1.

Name | Datatype | Direction* | Description
psi REAL In FMU arm angle
phi REAL In FMU wheel angle
u REAL Out Control signal
init BOOL Out Enable FMU command
enabled BOOL In FMU enabled status
reset BOOL Out Reset FMU command

*From the managing node’s perspective.

Table 3.1 EPL communication variables used in the pendulum HiL simulation.

The quantities that were studied were the same as in the SiL simulation, using the
same tools.

32

3.2 B&R reaction wheel pendulum

Process test

Close to no effort had to be put in to get the real pendulum setup to work, since
the B&R PLC included with the pendulum on delivery already had the controller
presented in Section 2.2 on it. What remained to be done was just to run the setup,
which worked great right away.

Graphical User Interface

To view the swing-up and balancing of the pendulum arm, a Graphical User Inter-
face (GUI) was created in Automation Studio from the visualization tool that the
software provides. The GUI consists of two different plot windows, one for the an-
gle of the pendulum arm, and one for the control signal. There is also a button for
starting the controller and for resetting the process under test. The GUI can be used
for the SiL, HiL. and process test. The GUI can be connected to over Ethernet with
VNC viewer [Real VNC Ltd, 2015], where the IP adress of the target PLC hosting
the visualization is needed. The angle part of the GUI can be seen in Figure 3.5 and
the control signal part in Figure 3.6.

Reaction Wheel Inverted Pendulum 11:40:33

TITTTT T I T T T T T T T I T T T T T T T T I T T T T T T T TT T T TTT T T TTTTITTTT T
39:45 40:00 40:145 40:30

— Arm angle

—— Reference

Figure 3.5 The angle part of the GUI with an example of the pendulum arm angle (red)
seen during the swing-up and balancing phase. The reference angle values of the pendulum
arm, |y| = 7, can also be seen as a light blue curve.

33

Chapter 3. Method

Reaction Wheel Inverted Pendulum 11:40:41

[TITTTTTT T I T T I T I T T T T I T I TT T T T T TT T T TTITTTTTTTTTITITTTTTT
40:00 40015 40:30 40:45

— Ctrl. signal

Figure 3.6 The control signal plot corresponding with the pendulum arm angle seen in
Figure 3.5.

3.3 ABB IRB340 FlexPicker

This section describes the hardware and software setup as well as implementation
of the tests for the FlexPicker. The main difference from the pendulum setup is the
presence of the B&R servo drives. These were not included in the MapleSim model
of the FlexPicker since AS contains support for simulating these drives as described
in Section 2.2.

Modeling

A multibody dynamics software model of the ABB IRB340 FlexPicker robot was
created in MapleSim by Kristofer Rosquist in his master’s thesis [Rosquist, 2013]
and improved by Adam Béckstrom in his master’s thesis [Béackstrom, 2014]. This
model was further modified in MapleSim 2016 during the course of the project so
that it could be exported as an FMU. The resulting modified model can be seen in
Figure 3.7 with its corresponding 3D model in Figure 3.8. An important simplifica-
tion of the real robot model that was made in the original model is that the parallel

34

3.3 ABB IRB340 FlexPicker

underarms are modelled as a single arm, but with the same moment of inertia and
mass as the two parallel rods have.

Examples of changes that were made are the removal of ACOPOS and motor mod-
els that existed in the original FlexPicker model. These were removed since only the
robot model was needed. Another change that was made was the addition of Real
Input and Real Output ports, which are a requirement in MapleSim to be able to
export the model as an FMU [Maplesoft, 2014]. This can be seen in Figure 3.7 with
the real inputs characterized with blue triangle arrows, and the real outputs with
white triangle arrows. The decision was made to feed the torque from the motor
directly into the robot model. The main reason for this is that a real world motor
output usually is torque, and that it is easy to work with since torque in electric mo-
tors is proportional to current according to the general equation T = « - i, where 7 is
the torque, o is some constant related to the motor parameters and i is the current. In
addition, a Real Signal is easily converted to a torque in Maplesim with the Torque
block, seen to the right of the input in Figure 3.7.

The output signals consist of the X, y and z coordinates of the TCP and the motor
angles of the three motors.

The FMU was exported as source code in co-simulation mode with an Explicit Euler
solver. The step size was initially set to 5- 1073 (5 ms).

Figure 3.8 The MapleSim model of the FlexPicker robot seen in the 3D workspace of
MapleSim.

35

Chapter 3. Method

3, [>
n s
> b__“ o= :- gk 7:,3-..
g & L |
m S
Py - = 7
m 4 el
m kD) N/ {/
[~ RS, S =t g 7a
fia i1 L
& >

Figure 3.7 The MapleSim model of the FlexPicker robot. The robot has three torque inputs
(left side of model) and six outputs (right side of model): the X, y and z coordinates of the
TCP and the motor angle of the three motors.

SiL

The implementational goal with the SiLL simulation for the FlexPicker was to suc-
cessfully interface the FlexPicker FMU with the ACOPOS drives and motors in
complete simulation mode. The idea was to use the torques generated by the motors
in Automation Studio as inputs to the FlexPicker FMU, and feedback the motor
angles FMU provided by the FMU. It is important to synchronize the motor angle
of the FMU with the motors in Automation Studio so that there is no mismatch be-

tween them, since the position of the FMU should drive the control system in each
ACOPOS.

Below follows a quick overview of the different parts of the Automation Studio
project used in the SiL. implementation.

Servo drives

The low level control of the motors in the FlexPicker was done using the B&R
ACOPOS servo drives. To interface with these drives AS supports—among other
methods—the standardized motion control library PLCOpen [Wal, 2009]. AS
also includes an application example for two axes implemented in C code called

36

3.3 ABB IRB340 FlexPicker

ACOFOS 1045
ACOFOS 145
ACOFOS 1045

Figure 3.9 The hardware configuration for the SiL simulation which includes a PLC used
to host the FMU, inverse kinematics and other programs. The ACOPOS servo drives and
motors are also seen connected to the PLC.

LibACP10MC_MotionControl_C utilizing the PLCOpen library to control the axes,
which was used with some minor modifications. The connection between the
PLCOpen function blocks and the servo drives is done with axis objects of the type
ACPI0AXIS_typ, which are created along with the setup of the servo drives. For the
SiL test, the drives were set to complete simulation mode which is covered in more
detail in Section 2.2. Simulation mode for the target was also activated (requires
AR version A4.24 or later). This allows for a PLC to be used in the hardware con-
figuration instead of the Standard PC otherwise used for simulation in AS, which
decreases the amount of additional work needed for the HiLL simulation.

Motors

Since the ACOPOS drives in Automation Studio cannot be run in complete simula-
tion mode without being connected to motors, these were necessary to add. The mo-
tors chosen were B&R 8JSA24.E9080D000-0 standard synchronous motors with 3
pole pairs, since these are similar to the actual motors of the FlexPicker. Each ACO-
POS and motor pair was set in complete simulation mode by setting the mode in
the configuration of the ACOPOS in the Physical View. The simulation was initi-
ated automatically by setting the CMD_SIMULATION parameter in the ACOPOS
parameter tables to the value ncSWITCH_ON.

A picture of the hardware configuration in Automation Studio consisting of the
motors and ACOPOS drives connected as described can be seen in Figure 3.9.

37

Chapter 3. Method

ACOFOS 1045
ACOFUS 1045
ACOFOS 1045

T
POWERLINK
ICN
LR

Figure 3.10 The hardware configuration for the HiL. simulation which is identical to the
SiL setup except for the added ICN hosting the FMU.

Inverse Kinematics

The inverse kinematics for the robot proposed in Section 2.4 was implemented as a
cyclic program in Automation Studio directly in C. The program code can be seen in
Section 8.3. In addition to the desired motor positions being calculated, they are also
written to the status variables used by the axis programs described in Section 3.3.

Main program

The purpose of the main program was to tie together all of the parts mentioned
above. The program initiates the drives and runs the homing procedure. The actual
motor positions coming from the feedback of the FMU are cyclically written to
the ACOPOS drives which in turn passes this on to the motors. Error handling and
parsing is also done cyclically in order to make sure that everything is in order each
cycle.

HiL

Similarly to the pendulum setup, the HiL. simulation setup consisted of an additional
component compared to the SiL. simulation, namely an ICN. An X20CP1585 was
used as the [CN—the same model as the controller PLC which was set to be the
managing node. The controlled node was connected to the managing node via the
same EPL network as the ACOPOS drives. The hardware setup is illustrated in
Figure 3.10. The difference in software configuration from the SiLL simulation is
only the relocation of the FMU from the managing node to the controlled node.

38

3.3 ABB IRB340 FlexPicker

Name | Datatype | Direction* | Description
torque0 REAL Out Motor 0 torque
torquel REAL Out Motor 1 torque
torque2 REAL Out Motor 2 torque
pos0 DINT In FMU axis 0 position
posl DINT In FMU axis 1 position
pos2 DINT In FMU axis 2 position
tepX REAL In TCP x-coordinate
tcpY REAL In TCP y-coordinate
tcpZ REAL In TCP z-coordinate

*From the managing node’s perspective.

Table 3.2 EPL communication variables used in the FlexPicker HiLL simulation.

The data flow in the HiL simulation was limited by the fact that only the manag-
ing node can communicate with the ACOPOS drives. Because of this, the position
feedback from the FMU had to be communicated from the controlled node to the
managing node and then written to the servo drives by the main program. Similarly,
the actual motor torques could only be read from the drives by the managing node
and then communicated to the controlled node. The TCP position was also trans-
mitted from the controlled node to the managing node. All variables communicated
between managing and controlled node are presented in Table 3.2.

Process test

The process test for the FlexPicker was never performed.

39

4

Results

4.1 Pendulum
SiL

The results from the SiL tests of the inverted pendulum are presented in this section.
As mentioned in Section 3, the results have been collected by letting the pendulum
swing up from a downward position (Y ~ 0 rad) to balance at the reference position
|w| = m. The SiL simulation results of the y angle for the Dymola model and the
MapleSim model can be seen in Figure 4.1, and the control signal results of the
SiL. simulation can be seen in Figure 4.2. All data has been translated such that the
control starts after 5 seconds for the sake of visualization.

Settling time
Figure 4.3 shows the balancing part of the control procedure, with the settling time
marked by a solid vertical line.

Arm angle (Dymola 1 ms FMU) Arm angle im 1 ms FMU)

angle (rad)
angle (rad)

0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
time (s) time (s)

Figure 4.1 1y angle of the Dymola FMU (left) and the MapleSim FMU (right) of the pen-
dulum. The results are collected for models running on a cycle time of 1 ms.

40

4.1 Pendulum

Control signal im 1 ms FMU)

Control signal (Dymola 1 ms FMU)

T 1o |

voltage (volt)
o

voltage (volt)
o

A5} { A5 {
20} J 20 -
. 25

0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
time (s) time (s)

-25

Figure 4.2 The control signal when controlling the Dymola pendumlum FMU (left) and
MapleSim pendulum FMU (right). The results are collected for models running on a cycle
time of 1 ms.

Settling time (Dymola 1 ms FMU) Settling time (MapleSim 1 ms FMU)

6.5 7 75 8 85 9 95 10 105 11 115 12 6.5 7 75 8 85 9 95 10 105 11 115 12
time (s) time (s)
Figure 4.3 The settling time of the Dymola pendulum FMU (left) and the MapleSim pen-
dulum FMU (right). The black dashed line marks the 2% error band bounds of the control
goal |y| =m.

HiL and process

The results from the HiL and process tests are presented in this section. Figure 4.4
depicts the arm angle of the pendulum and Figure 4.5 depicts the control signal. All
data has been translated such that the control starts after 5 seconds.

Settling time

Figure 4.6 shows the balancing part of the control procedure for both the HiLL and
process tests, with the settling times marked by solid vertical lines. The settling
times for the SiL., HiLL and process tests are also presented in numerical form in
Table 4.1. From the table it can be seen that the settling time for the MapleSim
model 1 ms HiL simulation is 0.263 seconds longer than for the real process.

41

Chapter 4. Results

Arm angle im 1 ms FMU) Arm angle im 5 ms FMU)

angle (rad)
angle (rad)
o

-4 -4
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
time (s) time (s)
4 Arm angle (Dymola 5 ms FMU) 4 Arm angle (Process)

3l 3k T T T T e T e
i
i

2r 2l i

angle (rad)
. o
angle (rad)
o

2 2

3 3

4 4

o 2 4 6 8 10 12 14 16 18 20 o 2 4 6 8 10 12 14 16 18 20
time (s) time (s)

Figure 4.4 y angle of the arm when controlling the pendulum. Top left: 1 ms MapleSim
FMU. Top right: 5 ms MapleSim FMU. Bottom left: 5 ms Dymola FMU. Bottom right:
Process.

Software | Cycle time (ms) | Start time (s) | End time (s) | # (s)

SiL MapleSim 1 5.000 7.4601 2.460
Dymola 1 5.000 7.784 2.784

MapleSim 1 5.000 7.547 2.547

HiL MapleSim 5 5.000 7.967 2.967
Dymola 5 5.000 8.292 3.292

Process - - 5.000 7.284 2.284

Table 4.1 Settling time for the swing-up of the real pendulum and the FMUs exported with
different settings.

42

2 Control signal im 1 ms FMU) 25 Control signal im 5 ms FMU)
20 n 20 M
151 —‘ 15+ r‘
10 10
= 5F = 5F
S S
2 =
& 0 & 0 /\
£ £
S 5F S s ‘ f
A0 A0 *
51 “ A5F { L
20 e 20
25 25
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20

time (s)

Control signal (Dymola 5 ms FMU)

1 Il

voltage (volt)
& 5 &5 o o

0 2 4 6 8 10 12 14 16
time (s)

20

voltage (volt)

4.2 FlexPicker

time (s)

Control signal (Process)

i
i
i
i
i

LN
‘ML[‘W‘ (z’i

A
[T

PR
) ’w‘\““.ﬁﬂ
oW WM M

0 2 4 6

8

10
time (s)

12 14 16 18 20

Figure 4.5 Control signal when controlling the pendulum. Top left: 1 ms MapleSim FMU.
Top right: 5 ms MapleSim FMU. Bottom left: 5 ms Dymola FMU. Bottom right: Process.

4.2 FlexPicker

An FMU was successfully generated from MapleSim using the explicit Euler as
solver. It was imported into Automation Studio and executed there without any
control connected. The simulation ran both in MapleSim and Automation Studio
until the effect of gravity (in combination with no holding torque applied) moved
the robot into a configuration that induced a crash. With an applied constant holding
torque to each motor the simulation ran without problems until it finished. This was
however the full extent of the testing for the FlexPicker since the control from the
ACOPOS simulation could not be integrated with the FMU. No results of neither
a SiL nor HiL simulation were successfully obtained despite trying different meth-
ods. Instead, tested methods and proposed future ways of working to successfully
do the SiLL and HiL simulations will be discussed and presented in Sections 5.2 and
7.2.

43

Chapter 4.

angle (rad)

angle (rad)

Results

Settling time (MapleSim 1 ms FMU)

8 8.5 9 95 10 105 11 115 12
time (s)

Settling time (Dymola 5 ms FMU)

8.5 9 9.5 10 105 11 115 12
time (s)

Settling time (MapleSim 5 ms FMU)

75 8 85 9 9.5 10 105 11 115
time (s)

Settling time (Process)

12

75 8 8.5 9 9.5 10 105 11 115
time (s)

12

Figure 4.6 The black dashed line marks the 2% error band of the control goal |y| = 7.
Top left: 1 ms MapleSim FMU. Top right: 5 ms MapleSim FMU. Bottom left: 5 ms Dymola

FMU. Bottom right: Process.

44

D

Discussion

5.1 Pendulum

SiL

The 24 V peak seen at around ¢ = 7.5 s in the left plot of Figure 4.2 is the real limit
value of the controller, even though it might appear that 20 V is. This is because the
swing-up controller is saturated at 20 V, while the balancing controller is saturated
at 24 V. The sudden rise to 24 V happens when the controller switches from swing-
up to balancing mode. The balancing controller is a state feedback controller driven
by the arm angle, arm angular velocity and wheel angular velocity with a much
higher gain on the arm angle.

A notable difference between the Dymola pendulum model seen in the left plot of
Figure 4.1 and the MapleSim pendulum model seen to the right is that the Dymola
model swings up after 4 turns, whereas the MapleSim models swings up after 5.
An explanation could be that the implicit Euler solver is better suited for the prob-
lem than the CVODE solver used for the Dymola model, since the behavior was
more similar to the real process. However, CVODE contains two different formu-
las suited for different problems. Unfortunately the formula used when exporting
from Dymola was not uncovered and as such a qualitative comparison between the
solvers is not possible.

When comparing the settling times of the Dymola model and the MapleSim model
taken from Table 4.1 there is a 0.324 s difference between the two, where the
MapleSim model is faster. This could be an indication that the pendulum model
in MapleSim is not an exact replica of the Dymola model, or that the values found
in Dymola to be used in the MapleSim model were not correct.

HiL
Looking at the bottom left arm angle plot of the 5 ms Dymola FMU in Figure 4.4
one can notice a few inconsistencies in the movement around the times 6.5 seconds

45

Chapter 5. Discussion

and 8.5 seconds. Comparing with the control signals in Figure 4.5 it is clear that the
control signal for the FMU includes unnecessarily fast switching, which seems to
be the cause of the inconsistencies in the angle. The most likely explanation for this
oscillatory behavior in the control signal is the slow execution speed of the FMU,
compared to the controller. Since the controller is five times faster than the FMU,
the FMU will appear to be standing still during the additional four executions of
the controller. An unwanted effect of this is that any derivative that the controller
calculates will be skewed. The bang-bang control used during the swing-up of the
pendulum relies heavily on the direction of the angular velocity of the arm, esti-
mated using the angular measurement.

This behavior can also be seen to some extent for the 5 ms MapleSim model FMU
upper right plot in Figure 4.4 at around 7.5 s, which is expected since it runs on the
same cycle time as the Dymola FMU. What is notable, however, is that the other
inconsistency found at 6.5 s in the Dymola figure cannot be seen. The explanation
is probably the same as for the SiL differences — that the MapleSim model was
either not a perfect duplicate of the Dymola one, or that the Implicit Euler solver
performs better than the CVODE.

When looking at the upper left plot in Figure 4.4 that represent the 1 ms MapleSim
model FMU, the inconsistencies found previously in both the 5 ms Dymola model,
and to some extent the 5 ms MapleSim model, are gone. This verifies the assumption
that the inconsistencies can be solved by executing faster. In addition, the settling
time of the 1 ms MapleSim model is much closer to that of the real process when
running HiLL simulations than with the other FMUs generated, which can be seen
by studying the data of Table 4.1. The reason for this is probably that both the FMU
and the controller is running on the same execution time, and are therefore better
synced than when running with a 5 ms FMU and a 1 ms controller. Despite the 1 ms
FMU performing better than the 5 ms FMUE s, there are still differences between the
FMU and the process. This is to be expected since the real process is much more
complex than the model, which of course affects the results.

When comparing both the control signal and the arm angle of the process (lower
right plot, Figures 4.6 and 4.5) with the same signals of the FMUs, the steady-
state behavior differs significantly. The process exchibits an oscillating behavior
around the reference point, whereas the simulations balance perfectly at it. The
probable cause for this is that only viscous friction has been modeled for the arm
joint, represented by the damper seen in Figure 3.3. The main friction components
missing are Coulomb friction and Stribeck friction, which temporarily make the arm
stick even though a non-zero torque is applied. If the model include these friction
components, the same steady-state behavior would most likely be seen in the HilL
simulations as well. This shows the importance of testing the real process in addition
to simulation, where a lot can be learned of the final behavior, but not everything.

46

5.2 FlexPicker

General

Another method of doing the HiL. simulation was tried, where the PLCs commu-
nicated via analog I/O modules instead of the POWERLINK interface. The setup
was more complicated since each communication line had to be wired individually,
whereas the EPL allows for up to 255 channels to be configured in the software.
The analog modules have no support for real-time communication, so synchroniza-
tion of the two PLCs was an issue. Another disadvantage of the analog modules
is that they are restricted to handling signed 16-bit variables, and the resolution of
the specific module can be lower than that. The EPL channels support all standard
datatypes up to 32 bits, including unsigned types. The approach using analog mod-
ules was abandoned early in the project because of these reasons.

Additional solvers, specifically explicit Euler and Runge-Kutta 2, 3 and 4, were tried
but none of them managed to solve the system equations. The simulation failed in
MapleSim since the output variables grew rapidly, likely because the specific solvers
mapped the poles of the stable continuous-time system to unstable discrete-time
system poles. An attempt was made to extract the continuous-time transfer function
for the MapleSim model by exporting the equations to Maple and processing them
there, with the purpose of analyzing the mapping of the poles for the solvers. This
did not succeed however, since Maple was not able to construct the transfer function.
The rapid growth of the solution indicates that the problem was stiff and solved
using a non-stiff solver with too large sampling interval. A slightly shorter sampling
interval could of course be tried but it is limited by the computation power of the
PLCs.

5.2 FlexPicker

As mentioned earlier in Chapter 4, neither the SiLL nor HiL simulations were suc-
cessfully run during this thesis despite trying out different methods. In this section,
the outline of the main problem with conducting a HiL test in AS with an FMU will
be given. The methods that were tested will be discussed, and pointers to which
approaches that might provide successful results in the future will be given.

In order for the ACOPOS drive to provide a control signal from the cascade control
structure seen in Figure 2.6, the ACOPOS must be connected with a motor object
in AS, see Figure 3.9. Writing internal variables in the ACOPOS, and especially the
motor, is not something that is easily done, which is what caused problems when
trying to conduct the SiL test. The main reason to why the SiL. and HiL test never
succeeded was because the data exchange between the FMU and the ACOPOS con-
trol system including motor proved harder to implement from a software point of
view than initially thought. The motor angle feedback coming from the FMU could
not be used as intended, and the ACOPOS and motor had no notion of the current

47

Chapter 5. Discussion

state of the FMU. Below follows small descriptions of the methods that were tried
to write the feedback of the FMU to the ACOPOS, and a discussion around the
potential and shortcomings of these methods.

Overwriting PCTRL_S_ACT approach

An idea on how to route the feedback motor angles of the FMU to the ACOPOS
control structure was to simply overwrite the PCTRL_S_ACT parameter in the po-
sition loop of the ACOPOS controller, which contains the actual position of the
motor. This parameter is normally written to by the motor encoder, but the idea
was to simply overwrite this with the motor angle feedback from the FMU, thus
connecting the FMU with the ACOPOS and motor.

The problem with this approach is that the PCTRL_S_ACT has read-only access.
This access is absolute and can in no way be altered by the user in AS.

Virtual encoder approach

To affect the value of the PCTRL_S_ACT parameter, the source of its data (the en-
coder) could potentially be accessed. The control structure of the ACOPOS drives
allows for a choice of encoder, specified through the ParID PCTRL_S_ACT_PARID,
see Figure 5.1. To this parameter a ParID is written which points to the data con-
taining the position value. The ParIDs that can be chosen are limited to a set of
encoders and the set-point value data (used for sensorless control), all read-only
variables as well. Just like PCTRL_S_ACT these read-only variables get their data
from other ParIDs. The only choice where the encoder position value can be mod-
ified at some level is the virtual encoder, chosen by writing ENCODO_S_ACT to
PCTRL_S _ACT_PARID.

The virtual encoder can be set in a few different modes, chosen by setting the first
8 bits of the ParID ENCODO_MODE. The relevant mode for this scenario is the
network encoder mode, chosen by setting the mode bits to Ox1E. In this mode it
can be used as an incremental encoder (with or without reference track) or absolute
encoder. The simplest to set up is the basic incremental encoder, which is chosen
by additionally setting bit 17 of the mode ParID, i.e., setting ENCODO_MODE to
0x2001E.

The information required cyclically by the virtual encoder in this mode is provided
through the ParIDs ENCODO_POS1_IN_PARID and ENCODO_TIME _IN_PARID.
The first needs to be connected to a ParID containing the encoder position counter,
16- or 32-bit datatype. The second needs to be connected to a ParID containing the
encoder timestamp, 16-bit datatype. The idea would then be to retrieve the posi-
tion value from the FMU and manufacture the timestamp. The problem with this
approach arises here, since these ParIDs need to be supplied with ParIDs pointing
to data that can be updated cyclically, which does not seem to be possible in Au-

48

5.2 FlexPicker

A PCTRL
SRR VCTRL_ENCOD_COUNT_DIR
VCTRL_SCALE_LOAD_UNITS
VCTRL_SCALE_LOAD_MOTREV
SGEN S SET | FECTRL |— i W_a
%

l POS_CTRL KV]I POS_CTRL_P_MAX ‘

q 3 '
{ PCTRL_ENABLE PARID } 3 -
e & " PCTRL_S_SET ,.,l — z
—
intern enable |
" PCTRL_S_ACT_PARID Anti

fu Windup
Integrator

| POS_CTRI_I_MAX
| POS_CTRL_TN
—— Pl controller
| Axum_ps_sTop
I ap——"n 77\E—J movement
R PCTRL LAG_ERROR
| S ———— | stop

Figure 5.1 A more detailed view of the control structure seen in Figure 2.7. In addition, the
ParIDs of the position controller can be seen. The PCTRL_S_ACT_PARID parameter can be
seen to the left enclosed in a red box [B&R Automation, 2016a].

W p+

SCTRL_SPEED_REF ||

L..

PCTRL_SPEED_PEF |

tomation Studio. There are function blocks that are referenced by ParIDs and can be
given custom values (e.g., USER_I4_VARI) and these can be written to cyclically
using MC_BR_CyclicWrite.

MC_Simlf approach

An approach was tried which aims to affect the actual motor position via a li-
brary called MC_Simlf. The library can only be used when simulating the ACOPOS
drives, and contains a function block called MC_BR_WriteLoadSimPosition, used
for writing the position of the motor load (Figure 5.2). The main problem encoun-
tered with this approach was that the lag (control) error produced between the value
written by the function block and the actual motor position instantly became large
enough to forcefully deactivate the controller. This happened when a position was
manually given to the function block. The reason for this seems to be that the posi-
tion is compared to the motor position each cycle. This means that the position fed
by the function block must follow approximately the same trajectory as the motor
for the lag error to stay within acceptable bounds. In turn, this means that it is neces-
sary to feed a dynamic load to the motor simulation to get good following between
the motor positions and the corresponding positions in the FMU.

This approach was clearly the simplest and most promising. It was also confirmed
by B&R that the purpose of this library is providing an interface between the ACO-
POS simulation and an external simulation, which is exactly what was sought. The

49

Chapter 5. Discussion

main problem left to be resolved is thus to obtain a load model that can supply motor
torque loads to the ACOPOS simulation.

MC_BR_Writal cadSimPosition MC_BR_WriteLcadSimTorgue
UDINT — Axis valid — BOGL UDINT —ggixia g [BoOL
sooL. —BERable Busy |— BOOL BOOL — Enable Busy [BOOL
Error [BOOL Errer [BOOL
ErrorD [UINT EmroriD [UINT
LREAL —{ Pasition REAL — Torque

Figure 5.2 Function block for writing the actual position of the motor (left) and for writing
the FlexPicker torque load to the motor (right). Only one instance of each function block can
be used per axis [B&R Automation, 2016a].

The MC_Simlf library contains the function block MC_BR_WriteLoadSimTorque,
used for writing the load torques acting on the motors (Figure 5.2). This provides
an easy way of writing an external load torque to the motor simulation. A dynamic
model from Adam Béckstrom’s master’s thesis [Backstrom, 2014] could potentially
provide the load torques, but that required a lot of manual processing of equations
and is therefore outside the scope of the workflow which this thesis covers. Instead,
the load torques could potentially be provided by the FMU. A way of extracting the
load torques from the FMU should exist since there is functionality for this within
MapleSim. However, this was never explored.

50

6

Conclusions

6.1 Pendulum

The SiLL simulation of Sara Gunnarsson’s thesis "Evaluation of FMI-based work-
flow for simulation and testing of industrial automation applications" [Gunnarsson,
2016] was successfully reconstructed using her Dymola pendulum model and work-
flow. The MapleSim duplicate of Gunnarsson’s model created in this thesis differed
more in settling time than expected, which is most likely explained by difference in
solver performance.

The HiL tests using FMUs were successfully implemented and run with different
solvers and execution times. The assumption that the inconsistencies discussed in
Section 5.1 would disappear if the execution time was decreased was verified. Fur-
thermore, the HiL tests show that the models are good representations of the real
process. The differences seen between the process test and the HiLL simulations are
probably mainly due to lack of friction modeling and in the arm joint. The main
friction contribution that lacks is Coulomb, but the Stribeck contribution should not
be neglected either. In general, differences are to be expected since a model will
never be an exact representation of the real world. The differences in the case of the
1 ms MapleSim model HiL. simulation versus the real process are small enough to
be satisfactory, but could be improved with better friction modeling.

In the end the results show that the proposed workflow is a viable method to model-
based design and could potentially be an efficient approach to use in industry.

6.2 Flexpicker

After exploring several approaches to conduct SiLL and HiL simulations with the
FlexPicker FMU, the main hindrance was evidently the interfacing between the
FMU and the servo drives. However, if this seemingly narrow issue is solved, the

51

Chapter 6. Conclusions

proposed workflow could possibly be applied to any practical application that in-
volves the use of the B&R ACOPOS servo drives. In conclusion, the workflow
could not be applied to the FlexPicker setup, but the work on the pendulum proves
the concept is certainly viable and could — with a bit more work — become a
powerful and efficient tool for developing industrial automation solutions.

Although none of the approaches for the FlexPicker tried in this thesis turned out
successful, the FMU and ACOPOS data exchange issue could most likely be re-
solved if more time would be put into the implementation. The recommended ap-
proach would be the MC_Simlf because of its simplicity and since it is designed
for this exact purpose. The information collected in this thesis regarding the virtual
encoder concludes that — although there may be means to use this approach — it
requires in-depth knowledge about the ACOPOS controller structure and is far from
trivial to set up and is thus not be a viable approach.

A torque load model of the FlexPicker would be a necessity in order to put an
accurate load on the motors in simulation. Only having the motor angle feedback
coming from the FMU would most likely not be good enough to produce precise
results, or any results at all considering the issue where the controller switched off
because of the large lag error.

52

7

Future work

7.1 Pendulum

An interesting investigation to showcase the versatility of FMI would be to export
the Simulink controller as an FMU and run with the pendulum model FMU in Au-
tomation Studio. Lack of time and access to the FMI export option put this outside
the scope of the thesis.

7.2 Flexpicker

Since the SiL or HiLL simulations for the FlexPicker robot were never run, further
effort could be put in to complete these tests. In addition to the current MapleSim
model of the FlexPicker, the setup would have to be completed with a torque load
model, cyclically supplying an external torque load to the motor load simulation.
The easiest way to obtain a load model would probably be to extract it from the
MapleSim model of the FlexPicker in some way. Whether this is possible and if so,
how, would have to be investigated.

It would be interesting to use the versatility of the Modelica language to reverse the
signals in the FlexPicker MapleSim model in order to get an FMU that could be
used for inverse kinematics. With the Transcribed Translation and the Conversion
Block, the desired position of the TCP could be used as FMU input, and the output
would then be the motor angles of the FlexPicker.

If a torque load model was available it could also be used for feed-forward con-
trol. If the torque load on each motor is available it can be compensated for by the
controller, resulting in less reliance on the integral action and faster response. An
inaccurate load model could however decrease the performance, which demands a
very high accuracy of the load model.

53

3

Appendix

8.1 Pendulum program variables

Table 8.1 provides an overview of the variables used for the SiL, HiL and process
tests in the pendulum AS project, except for internal variables of the controller
and FMU. The variables are separated into global variables and local variables by

program.

Name | Type | Value | Description
Global
PendDym Pend 0) FMU function block (Dymola)
PendMsim Pendm) FMU function block (MapleSim)
period_duration_pwm | UINT 1 Duration of PWM period (us)
ai_philncr INT 0 Arm encoder analog input
ai_psilncr INT 0 Motor encoder analog input
philncr LREAL 0.0 Arm angle (increments)
psilncr LREAL 0.0 Wheel angle (increments)
u INT 0 Control signal (increments)
phi_float REAL 0.0 Arm angle (radians)
psi_float REAL 0.0 Wheel angle (radians)
u_float REAL 0.0 Control signal (volts)
on BOOL | FALSE | Regulator on command
init BOOL | FALSE | Init FMU and regulator command
reset BOOL | FALSE | Reset FMU and regulator command
enabled BOOL | FALSE | FMU enabled status
command
counter | USINT [0 [Counter for command variable reset
encoder

phi_old LREAL 0.0 Previous wheel angle (radians)
phioffset LREAL 0.0 Difference in arm angle (radians)

Table 8.1 Program variables for the pendulum Automation Studio project.

54

8.2 Pendulum control program

8.2 Pendulum control program

#define _ASMATH_

#define ASSTRING_H_
#include <bur/plctypes.h>
#ifdef _DEFAULT_INCLUDES
#include <AsDefault.h>
#endif

#include
#include

/* Defines */
/* Data Types */

R EXRF KKK F R R KR IRk ¥, kx¥kxx% GLOBAL DATA
I R R R
/* Definitions */

/* Declarations */

R EERKKKFKF RN KR IR kK *kkxkx¥x%% FILE SCOPE DATA
R R R R R4

[EXRFKKFRF R KK KX X KXk xkx*x%x FUNCTIONS
R R T R4
void _INIT plant_mainINIT(void)
{
period_duration_pwm = 1;
on = 0;
init = 0;
enabled = 0
RTInfo_typ rt_inf
rt_info.enable =
RTInfo (&rt_info);
if (rt_info.cycle_time != 1000) {
/* cycle time does mnot match Simulink fized-step size */
ST_tmp_suspend (0) ;
ERR_warning (33310, 0);

;
o3
1;

}

/% dnitialize model */
CodeGeneration_initialize (1);

}

void _CYCLIC plant_mainCYCLIC(void)
{
#ifdef HIL_TEST
/* Convert angles to increments */
phiIncr = (LREAL) ((phi_float - psi_float) * 28000 / (2 =*
PI));

psilncr = (LREAL) (psi_float * 4096 / (2 x PI));
#endif

55

Chapter 8. Appendix

/* call model step function if regulator is on */
if (on)

CodeGeneration_step (0);
else

u = 0;

#ifdef HIL_TEST
/* Convert control signal to float */
u_float = (REAL)(u * 24.0 / 32767.0);
#endif

}

void _EXIT plant_mainEXIT(void)
{
/* terminate model */
CodeGeneration_terminate () ;

}

8.3 Inverse Kinematics program

#include <bur/plctypes.h>
#include <math.h>

#ifdef _DEFAULT_INCLUDES
#include <AsDefault.h>
#endif

void _INIT ProgramInit(void)

{
rl = sqrt(pow(gRobPars.UpperArmLength, 2) + pow(gRobPars.
ElbowJointOffset, 2));
beta = atan(gRobPars.ElbowJointOffset / gRobPars.
UpperArmLength) ;
/* Calculate sine and cosine used in coordinate system
base change later */
for (i = 0; i < 3; ++i) {
axisVars[i].cosa = cos(gRobPars.
MotorAngularSpacing * i);
axisVars[i].sina = sin(gRobPars.
MotorAngularSpacing * i);
}
}

void _CYCLIC ProgramCyclic(void)
{
/* Calculate inverse kinematics for all three motors */
for (i = 0 ; i < 3 ; ++i) {
/* Coordinate system base change for each motor
and add the y-offset for the TCP */
axisVars[i].px = gDesCartPos.x * axisVars[il].cosa
+ gDesCartPos.z * axisVars[i].sina;

56

}

}

/* Write

8.3 Inverse Kinematics program

axisVars[i].py = gDesCartPos.y + gRobPars.
TCPOffset;

axisVars[i].pz = -gDesCartPos.x * axisVars[il].
sina + gDesCartPos.z * axisVars[i].cosa;

/* Distances to TCP attachment projected on the
plane parallel to motor movement */

axisVars[i].1l1 = sqrt(pow((gRobPars.MotorOffset -
axisVars[i].px - gRobPars.PlateCenterOffset)
, 2) + pow(axisVars[il.py, 2));

axisVars[i].12 = sqrt(pow(gRobPars.LowerArmLength
, 2) - pow(axisVars[i].pz, 2));

/* Angles used for final calculation */

axisVars[i].phil = acos((axisVars[i].px +
gRobPars.PlateCenterOffset - gRobPars.
MotorOffset) / axisVars[i].1l1);

axisVars[i].phi2 = acos((pow(axisVars[i].1l1, 2) +
pow(rl, 2) - pow(axisVars[i].1l2, 2))/ (2 *
rl * axisVars[i].11));

/* Motor angular position [Units] */

gDesAngPos [i] = (axisVars[i].phil - axisVars[i].
phi2 - beta) * 1000 * gRobPars.GearRatio /
brmTWOPI;

inverse kinematic result to ACOPOS +*/

Axis [0] . Parameter.Position = gDesAngPos [0];
Axis [1].Parameter.Position = gDesAngPos[1];
Axis [2].Parameter.Position = gDesAngPos [2];

void _EXIT ProgramExit(void)

{

}

// Automatically included function mnot in use.

57

Bibliography

ABB Robotics Products AB (2000). Product Specification IRB 340. [Accessed
2016-06-27]. URL: https : / / library . e . abb . com / public /
ab1536e64dbeff85c12576cb00528£01/Product%5C/20specification
5C%20340%5C%20M98%,5C%20BW0S3. 2. pdf.

Ascher, U. M. and L. R. Petzold (1997). Computer methods for ordinary differential
equations and differential-algebraic equations. Vol. 61. Siam, Cambridge.

Bickstrom, A. (2014). Time-Optimal Control by Iterating Forward and Backward
in Time. ISRN LUTFD2/TFRT-5944-SE. Master’s Thesis. Department of Au-
tomatic Control, LTH, Lund University, Lund, Sweden.

Bernecker & Rainer Industrie-Elektronik GMBH (2016). Automation studio. Ver-
sion 4.2.5.388. URL: http://www.br-automation.com/en/products/
software/automation-studio/.

Blochwitz, T., M. Otter, J. ;\kesson, M. Armold, C. Clauss, H. Elmqvist, M.
Friedrich, A. Junghanns, J. Mauss, D. Neumerkel, H. Olsson, and A. Viel
(2012). “Functional mockup interface 2.0: the standard for tool independent ex-
change of simulation models”. eng. In: Proceedings of the 9th International
Modelica Conference. The Modelica Association, Munich, Germany, pp. 173—
184. 1SBN: 978-91-7519-826-2. URL: http://dx . doi . org/ 10 . 3384/
ecpl12076173.

B&R Automation (2009). B&R Reaction Wheel Pendulum - Operating Manual.
[Accessed 2016-06-10].

B&R Automation (2015). ACOPOS User’s Manual. [Accessed 2016-06-23]. URL:
http://www.br-automation.com/downloads_br_productcatalogue/
BRP44400000000000000332806/MAACP2-ENG_V2.01.pdf.

B&R Automation (2016a). Automation Studio - B&R Help Explorer. Version:
4.1.2.13334. [Accessed 2016-07-25].

58

Bibliography

B&R Automation (2016b). Data sheet X20(c)CPx58x. [Accessed 2016-07-
15]. URL: http : / / www . br - automation . com / downloads _ br _
productcatalogue / BRP44400000000000000428404 / X20CPx58x -
ENG. pdf.

Dassault Systeémes (2016). Dymola. Version 2017. URL: http://www.3ds . com/
products-services/catia/products/dymola.

Ethernet POWERLINK Standardisation Group (2013). Ethernet POWERLINK -
Communication Profile Specification. Version 1.2.0. URL: http : / / www .
ethernet-powerlink.org/en/downloads/technical-documents/.

FMI-Standard (2016). https://www.fmi-standard . org. [Accessed 2016-03-
01].

Gunnarsson, S. (2016). Evaluation of FMI-based workflow for simulation and
testing of industrial automation applications. ISRN LUTFD2/TFRT-6002—-SE.
Master’s Thesis. Department of Automatic Control, LTH, Lund University,
Lund, Sweden.

Hindmarsh, A. C., P. N. Brown, K. E. Grant, S. L. Lee, R. Serban, D. E. Shumaker,
and C. S. Woodward (2005). SUNDIALS: Suite of nonlinear and differential/al-
gebraic equation solvers. Vol. 31. 3. ACM, pp. 363-396.

Maplesoft (2014). Getting Started with the MapleSim FMIConnector. [Accessed
2016-07-18]. URL: https : / / www . maplesoft . com / documentation _
center/toolboxes/MapleSimFMIConnectorGS. pdf.

Maplesoft (2016). Maplesim. Version 2016.1. URL: http://www . maplesoft .
com/products/maplesim/.

NS (2008). Curve intersections. [Accessed 2016-07-19]. URL: http : / / www .
mathworks . com / matlabcentral / fileexchange / 22441 - curve -
intersections.

RealVNC Ltd (2015). VNC Viewer. Version 5.3.0. URL: https://www.realvnc.
com/.

Rosquist, K. (2013). Modelling and Control of a Parallel Kinematic Robot. ISRN
LUTFD2/TFRT-5929-SE. Master’s Thesis. Department of Automatic Control,
LTH, Lund University, Lund, Sweden.

Tay, T.-T., I. Mareels, and J. B. Moore (2012). High performance control. Springer
Science & Business Media, New York.

The Modelica Association (2012). Modelica - a unified object-oriented language
for systems modeling. Version 3.3. URL: https : //www . modelica . org/
documents/ModelicaSpec33.pdf.

Wal, E. van der (2009). “PLCopen”. IEEE Industrial Electronics Magazine 3:4,
p- 25.

59

Lund University Document name

Department of Automatic Control MAS.TER S THESIS
Date of issue
Box 118 August 2016
SE-221 00 Lund Sweden Document Number
ISRN LUTFD2/TFRT--6016--SE
Author(s) Supervisor
Charlie Erwall Christian Tallner, B&R Industrial Automation

Kurt Zehetleitner, B&R Industrial Automation
Christoph Neukamp, B&R Industrial Automation
Anders Robertsson, Dept. of Automatic Control, Lund
University, Sweden

Rolf Johansson, Dept. of Automatic Control, Lund
University, Sweden (examiner)

Oscar Martensson

Sponsoring organization

Title and subtitle
Model-based design of industrial automation solutions using FMI

Abstract

This thesis defined and investigated a general workflow based on model-based design using the
Functional Mock-up Interface (FMI), involving Hardware-in-the-Loop (HiL) simulation. The thesis
was a direct continuation of Sara Gunnarsson’s master’s thesis "Evaluation of FMI-based Workflow
for Simulation and Testing of Industrial Automation Applications", where a Software-in-the-Loop
(SiL) simulation of the B&R Reaction Wheel Pendulum was conducted in Automation Studio using a
model imported with FMI. A HiL simulation of the pendulum was performed to complete the work
done by Sara, thus showcasing the strength and possibilities of using FMI in testing. The performance
of the HiL results were evaluated by comparing the settling time with the SiL test and the real process
swing-up.

In addition to the pendulum work, this thesis also aimed to perform model-based tests of the ABB
IRB340 FlexPicker robot, including SiL and HiL simulations. This was done in order to define a
general workflow for conducting tests using FMI, and to verify the approach on a more complex
process than the pendulum. A MapleSim model of the robot was exported as a Functional Mock-up
Unit and imported in Automation Studio, where the testing was done.

The results of the pendulum test showed that a HiL simulation with an FMU can be performed. The
HiL simulation produced a settling time of 2.55 s at best, compared to 2.46 s of the SiL simulation
and 2.28 s of the process. For the FlexPicker, the SiL and HiL tests were never run due to a lack of
time. Instead, a recommended approach for implementing the SiL and HiL test—along with two less
promising approaches tested—were discussed and evaluated. The conclusion is that the workflow and
model-based design using FMI is a promising way of conducting tests, but that there is more
implementational work needed before SiL and HiL results of the FlexPicker can be successfully
collected.

Keywords

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title ISBN
0280-5316

Language Number of pages Recipient’s notes

English 1-59

Security classification

http://www.control.lth.se/publications/

	Blank Page

