
Event based diagnostics on heavy
duty vehicles

Marcus Birksjö, Johan Winér

MASTER’S THESIS | LUND UNIVERSITY 2016

Department of Computer Science
Faculty of Engineering LTH

ISSN 1650-2884
LU-CS-EX 2016-44

Lunds Tekniska Högskola
Institutionen för datavetenskap

Examensarbete

Event based diagnostics on heavy
duty vehicles

by

Marcus Birksjö, Johan Winér

2016-06-18

Handledare: Sven Gestegård Robertz, sven.robertz@cs.lth.se
Examinator: Björn Regnell, Björn.Regnell@cs.lth.se

Abstract

The integration of small computer units in vehicles has made more complex in-vehicle
functionality possible. To troubleshoot these more advanced functions, the diagnostic ser-
vices need to read out more data from the integrated computer units, causing an increased
network load. This has caused a demand on more efficient ways of performing vehicle
diagnostics.

One possible way to decrease the network load is to use an event based service. The
aim of this thesis was to investigate the benefit of an event based service within the do-
main of vehicle diagnostics as well as to present a recommendation of how such a service
should be designed. The thesis also aimed at eliciting obstacles and pitfalls connected
with the implementation of the service in the current software architecture in heavy duty
vehicles.

An industrial case study was performed at the Swedish company Scania to elicit the
advantages, problems and limitations with an event based service for vehicle diagnostics.
First a set of experts representing different domains within vehicle diagnostics were in-
terviewed to investigate the need for an event based service. Requirements were elicited
and compared with the event based service ResponseOnEvent defined in the ISO standard
14229-1:2013. A decision was then made to diverge from the standard in order to increase
the number of fulfilled requirements and flexibility of the service. A new proprietary
service was thus created and evaluated through a proof of concept implementation where
a prototype of the service was implemented in two control unit.

The prototype implementation of the proprietary service highlighted multiple difficulties
connected with the realization of an event based service in the current software architec-
ture. One of the biggest problems was the fact that diagnostic services was assumed to
always have a one-to-one relation between request and response, which an event based
service would not have. Different workarounds were discovered and assessed. Another
problem was the linking between an event triggered response message and the trigger
condition. It was concluded that some restrictions would have to be made to facilitate
the process of linking a response to its trigger condition. Non-determinism was another
problem, since there were no guarantees that an event would not occur too often causing
a network overload. In the final recommendation there are suggestions of how to solve
these problems and some suggested areas for further research.

The thesis argues that there is a need for a new way to diagnose vehicle functionality
due to their increased complexity and the limited bandwidth of today’s in-vehicle net-
works. The event based service ResponseOnEvent offers a good alternative but might
lack some key functionality required by an event based service. Therefore it is valuable to
consider a proprietary service instead to maximize the benefits of an event based service.
Due to its nature, an event based service might require a restructuring of the system
architecture and limitations in the hardware might limit the usability and flexibility of the
service.

Keywords: Event based service, Response on Event, ECU, Vehicle Diagnostics, UDS,
KWP.

Sammanfattning

Integrationen av datorenheter i dagens fordon har gjort nya och mer avancerade funk-
tioner möjliga. För att kunna verifiera att dessa funktioner fungerar och för att felsöka
dem så används så kallade diagnostjänster. Allt eftersom funktionerna i fordon blir mer
avancerade och beroende på data från flera olika sensorer och datorenheter så ställs nya
krav på diagnostjänsterna att kunna läsa ut mer data ur datorenheterna. Detta orsakar
en ökad nätverkslast och eftersom bandbredden på nätverket är begränsad ser man idag
ett behov av nya diagnostjänster som kan utföra diagnos på ett sätt som ger upphov till
mindre nätverkslast.

Målet med denna studie var att undersöka om en eventtjänst kan underlätta diagnos-
tiken av fordonsfunktioner inom olika områden och vilka problem och begränsningar som
finns. En fallstudie gjordes på den svenska motor och fordonstillverkaren Scania för att
undersöka vilka områden som skulle kunna tänkas ha nytta av en eventtjänst och vilka
krav de ställde på tjänsten.

Kraven som erhölls jämfördes med eventtjänsten ResponseOnEvent som är definierad
i ISO standard 14229-1:2013. ResponseOnEvent visade sig inte kunna uppfylla alla de krav
som ställdes på en eventtjänst och därför designades en proprietär tjänst som ett alternativ.
En prototyp av den proprietära tjänsten implementerades i två av Scanias styrenheter för
att undersöka problem och begränsningar i samband med en realisering av tjänsten. Ett av
de största problemen som sågs var det faktum att den befintliga arkitekturen inte hade stöd
för att skicka diagnosmeddelanden per event, något som en eventtjänst skulle kräva. En
omstrukturering av den befintliga mjukvaruarkitekturen skulle krävas. Ett annat problem
var kopplingen mellan ett eventtriggat meddelande och själva eventet. Icke-determinism
var ett annat fundamentalt problem med en eventtjänst. Ett event skulle kunna ge upphov
till skickandet av flera meddelanden vilket momentant skulle kunna överbelasta nätverket,
det är därför viktigt att vidta åtgärder för att hindra ett sådant beteende.

Uppsatsen bekräftar ett behov av ett nytt sätt att diagnostisera funktioner i fordon och
att en eventtjänst kan bidra till att minska nätverkslasten och erbjuda nya sätt att utföra
diagnos på. ResponseOnEvent är ett bra alternativ men kan sakna några efterfrågade funk-
tionaliteter som gör det värt att överväga andra alternativ. På grund av sin utformning kan
en eventtjänst komma att kräva en omstrukturering av den befintliga mjukvaruarkitek-
turen och begränsningar i form av lagringsutrymme och beräkningskraft kan begränsa
tjänstens tillgänglighet.

Nyckelord: Eventtjänst, ResponseOnEvent, ECU, Fordonsdiagnostik, UDS, KWP.

Acknowledgments

We would like to thank all the experts we have been in contact with at Scania during the
thesis, for taking their time to share their knowledge with us. We would also like to extend
a special thank to our supervisor Andreas Jonasson at Scania for his support and guidance
during the thesis. We also want to thank our examiners and supervisors at LTH and The
University of Linköping for their help and feedback.

iv

Contents

Abstract ii

Acknowledgments iv

Contents v

List of Figures vii

List of Tables viii

1 Introduction 1
1.1 Background . 1
1.2 Motivation . 1
1.3 Aim . 2
1.4 Research questions . 2
1.5 Limitations . 3
1.6 Disposition . 3
1.7 Division of the Work . 3
1.8 Definitions . 3

2 Theoretical Background 6
2.1 Vehicle diagnostics . 6
2.2 Electronic Control Unit . 8
2.3 Diagnostic Trouble Code (DTC) . 11
2.4 Controller Area Network . 11
2.5 Diagnostic Domains . 12
2.6 Diagnostic Protocols . 14
2.7 Diagnostic Domain Analysis Theory . 15
2.8 Response On Event . 15

3 Method 20
3.1 Pre-Study . 21
3.2 Diagnostic Domain Analysis . 21
3.3 Interpretation of ROE . 22
3.4 Evaluation of ROE . 22
3.5 Prototype Development & Tools . 22

4 Results 25
4.1 Diagnostic Domain Analysis . 25
4.2 Elicited Requirements . 27
4.3 Interpretation of ROE . 30
4.4 Evaluation of ROE . 30
4.5 Proprietary Service . 31

v

4.6 Prototype . 35
4.7 Suggested Solutions for Other Requirements . 38
4.8 Applicability to Other ECUs . 38

5 Discussion 41
5.1 Method . 41
5.2 ROE and the Proprietary Service . 42
5.3 Future Work . 45

6 Conclusion 48
6.1 Conclusion . 48

A Appendix: Interpretation of ResponseOnEvent 52
A.1 Interpretation of ROE . 52

B Proprietary Service 56
B.1 Event Service setup . 56
B.2 Starting an event logic . 57
B.3 Stopping an event logic . 58
B.4 Clearing Event Logics . 58
B.5 Sub-functions (EventTypes) . 59
B.6 Triggering of an Event . 59
B.7 Sessions . 59
B.8 Window time frame . 59
B.9 MultiClients . 60
B.10 Tables . 60

C Controller Area Network 65
C.1 Protocol and architecture . 65
C.2 Identifier . 66

D Diagnostic Domain Analysis 68
D.1 Semi-structured interview . 68
D.2 Analyzing qualitative interview data . 69

E TMS UML Diagrams 70
E.1 Setup . 70
E.2 Start . 71
E.3 Check for event triggers . 71

F C300 UML Diagrams 72
F.1 System description . 72
F.2 Sequence diagram of request message . 73
F.3 Sequence diagram of response message . 73

G Popular Science Article 74

Bibliography 75

List of Figures

2.1 Usage of diagnostic functions . 7
2.2 Electronic control Unit and its surrounding systems 8
2.3 Photo of the TMS used in the thesis . 9
2.4 Architecture of C300 . 10
2.5 Photo of the C300 used in the thesis . 11
2.6 A CAN network with several buses . 12
2.7 ResponseOnEvent compared to sampling . 16
2.8 The event logic and its components . 17
2.9 ResponseOnEvent basic behaviour . 17

3.1 The working process applied during the thesis. 20
3.2 Test bench . 23

4.1 Multiple trigger conditions . 33

5.1 The network load for an event based service compared to sampling. 46
5.2 The network load for an event based service compared to sampling. 46

C.1 Simplified structure of an extended CAN data frame 66
C.2 Simplified figure of a 29-bit identifier according to J1939 67

E.1 Sequence diagram for setting up an event logic. 70
E.2 Sequence diagram for starting an event logic. 71
E.3 Sequence diagram showing the triggering of an event logic. 71

F.1 System description of the prototype and its surroundings 72
F.2 Sequence diagram describing the process for sending a request message. 73
F.3 Sequence diagram describing the process for receiving a response message. 73

vii

List of Tables

1.1 Frequently used abbreviations and their meanings. 4

2.1 Recommended services in UDS and corresponding services in KWP 15
2.2 ResponseOnEvent request message . 18

4.1 The expressed requirements compared with ResponseOnEvent. 31

5.1 Suggested message format message . 43

B.1 Supported KWP services as serviceToRespondTo . 57
B.2 Message for starting a single event logic with the serviceToRespondTo

equal to ReadDataByCommonIdentifier . 58
B.3 ResponseOnEvent request message used for the setup sub-functions 60
B.4 ResponseOnEvent request used for the control sub-functions 61
B.5 ResponseOnEvent initial positive response message for all eventTypes except Re-

portActivatedEvents (0x04) . 61
B.6 ResponseOnEvent positive response message for ReportActivatedEvents (0x04) . . 62
B.7 ResponseOnEvent positive response message for all control sub-functions except

reportActivatedEvents . 62
B.8 Negative response message . 62
B.9 Supported sub-functions (eventTypes) . 63
B.10 Continuation: Supported sub-functions (eventTypes) 64

C.1 CAN frame . 66
C.2 CAN frame identifier . 67

D.1 Example of questions used during the thesis . 69

viii

1 Introduction

1.1 Background

The automobile was invented for more than 200 years ago. Since then a lot has happened.
Due to the continuous evolution of technology and competition between different vehicle
manufacturers, there has always been a strive to provide more features and advanced func-
tionality in vehicles. In recent years much new functionality have been made possible due
to the integration of electronic control units (ECU) in the vehicles. The number of ECUs in
vehicles today can vary a lot between different brands and models. Some top of the line
models contain over 100 ECUs. This makes a vehicle one of today’s most advanced systems
that an ordinary person owns. [19]

The ECUs in vehicles are connected to each other through a communication bus. Using
this bus the ECUs can exchange information with each other using services defined by differ-
ent communication protocols. The communication also makes it possible to troubleshoot the
vehicle’s electrical system and monitor the internal state of ECUs using diagnostic services
defined in a diagnostic protocol. This has become a very important tool when it comes to
vehicle maintenance and development of new functionality.

1.2 Motivation

The electrical systems in vehicles have kept growing since the introduction of ECUs. Today,
vehicles’ electrical system can consist of a handful of ECUs up to over a hundred. As an ex-
ample the Mercedes S-class uses 72 ECUs spread over seven different communication buses
[17] while a Scania truck has about 19 ECUs [36]. There are also other types of vehicles which
do not contain as many ECUs, for example some of Volvo’s wheel loaders which contains
only four to six ECUs [47].

As electrical systems in vehicles get more advanced and the number of ECUs in them
increases, new demands are being placed on the diagnostic services. To facilitate the process
of troubleshooting the more complex functionality in vehicles the diagnostic services need to
read out more data from the different ECUs. This causes an increased load on the network
bus. The bus load is already high and a need for more efficient diagnostic services has

1

1.3. Aim

therefore been seen. The new and more advanced functionality also calls for new ways of
performing diagnostics.

There are different alternatives to reduce the network load. The thesis evaluates a ser-
vice where an ECU can be configured to send notifications containing diagnostic information
upon a given event, a so-called event based service. If this service could be implemented,
it could possibly reduce the load on the network that the diagnostic services give rise to
and enable new efficient ways of performing diagnostics which in turn could enable more
advanced functionality and services.

The transport industry is a market with a low profit margin and high fees in case a driver
can not deliver on time. Together with high costs for wreckers to carry away the vehicle in
case of a break down, this makes it very important that a truck driver can trust that his or her
vehicle will be able to complete a delivery job without any delays or breakdowns. To help
drivers, Scania and many other companies have help desks to which a driver can call if he is
having trouble with his truck. To improve the work of the help desk it would be beneficial
if they could monitor the truck’s internal status remotely in real time. This would however
require that the whole truck is continuously scanned for changes which would generate a
much higher network load than what the current network can support. An event based
service could possibly perform the same service while creating a lot less network load. This
is just one example of how an event based service could make new functionality possible in
heavy duty vehicles.

The thesis was carried out on behalf of Scania which is a leading manufacturer of heavy
trucks and buses as well as marine and industrial engines. Scania also provides and sells a
wide range of service related products and financial services which is based upon diagnostic
data from the vehicles.[29]

1.3 Aim

The aim of the thesis was to build knowledge concerning an event based service and the
advantages and disadvantages associated with it. The aim was also to bring understanding
about how such a service should be implemented in order to satisfy the potential domains
within the area of vehicle diagnostics. Therefore different domains that might benefit from
an event based service was investigated and what implications those would have on the
implementation of the service. The service ResponseOnEvent described in the ISO-standard
14229-1:2013 [22] was investigated as a potential event based service to be used. It contained
some parts open for interpretation which was interpreted and clarified. As a way to detect
eventual pitfalls and obstacles with an event based service, a prototype was developed.

1.4 Research questions

To guide the project a set of research questions were written down. The aim was to find
answers to these questions during the course of the project.

1. How does ResponseOnEvent defined by the UDS-standard meet existing needs of di-
agnostics on heavy duty vehicles?

2. How can an event based service be realized in order to meet these requirements?

3. Are there any problems connected to an implementation of the service?

2

1.5. Limitations

1.5 Limitations

The investigation that was carried out during the thesis was limited to the embedded systems
within heavy duty vehicles provided by Scania. The communication network was therefore
Controller Area Network (CAN) and the ECUs used was a RTC (Road Traffic Communicator)
also referred to as C300 and a TMS (Transmission Management System). There are a lot of
other ECUs in Scania’s vehicles with different hardware and software and it is desirable that
the event based service should be able to run on any of them. Due to limited time resources
only the C300 and the TMS were used for the implementation and testing and only a su-
perficial study was conducted looking into the possibilities of using the service in other ECUs.

There might be many different domains within heavy duty vehicle diagnostics that can
benefit from an event based service and it would be beneficial if all of them could have been
taken into consideration. However it would have been too time consuming identifying all the
possible domains and therefore only a few domains were looked into due to their previous
indications of a need for a new way to diagnose vehicles.

Some problems concerning the implementation of an event based service were discov-
ered during the thesis. Some of them were due to the software architecture at Scania and
therefore these problems might not have been found if the thesis had been carried out at an-
other company. It is also likely that if the thesis had been carried out at a different company
other problems might have been found.

1.6 Disposition

The report is divided into five parts. In chapter 2 a theoretical background will be given
explaining some of the basic knowledge related to the scope of the thesis. In chapter 3 the
method used during the thesis is introduced followed by chapter 4 containing the results.
Chapter 5 evaluates the findings and the method applied during the thesis as well as suggests
some areas for future research. Chapter 6 summarizes the conclusions drawn from the study.

1.7 Division of the Work

The work presented in this report has been equally divided between its two authors. Johan
has been working on the TMS, implementing the server application of the service and Marcus
has been working on the C300 implementing the client application. Both authors carried
out the interviews where Marcus focused on analyzing the transcripts and Johan formulated
and listed the requirements. Johan was the one responsible for contacting and arranging the
meetings with the interviewee. The interpretation of the service ROE was done by Johan as
well as carrying out the testing of the server application in one of Scania’s trucks.

1.8 Definitions

Many area specific terms and abbreviations are used throughout the report. Table 1.1 ex-
plains the most frequently used. Hexadecimal and binary values are sometimes used and
they follow the convention that hexadecimal values are prefixed with 0x and binary values
are written inside single quotes. The hexadecimal value 1 (one) is therefore written as 0x01
while the binary value of one is written ’1’.

3

1.8. Definitions

Terms Meaning
ADAS Advanced Driver Assistance Systems: Advanced

functionality that helps the driver.
C300 A specific ECU on Scania’s trucks.
CAN Controller Area Network
ComP Common Platform, ECU software platform devel-

oped within Scania.
Downtime Time during which the vehicle cannot be used.
DTC Diagnostic Trouble Code
ECU Electronic Control Unit
Event based service Service that takes certain actions at certain events.
Event logic Combination of event and action to be taken.
ISO International Organisation for Standardization.
KWP Key Word Protocol 2000
Operational Data Data describing how the vehicle has been driven.
ROE ResponseOnEvent, an event based service.
RTC Road Traffic Communicator: ECU that handles the

communication with off-board services.
TMS Transmission Management System: ECU that han-

dles change of gear.
Uptime Time during which the vehicle can serve its pur-

pose.

Table 1.1: Frequently used abbreviations and their meanings.

4

1.8. Definitions

5

2 Theoretical Background

This section presents theory relevant for understanding the final results of the thesis. First a
short introduction to vehicle diagnostics and the vehicle electrical system will be given. Then
follows an introduction to the concept of electrical control units (ECU) together with the two
ECUs used in the thesis. A short introduction to diagnostic trouble codes will also be given
due to its central role in vehicle diagnostics. To understand how the communication between
control units work using the Controller Area Network (CAN), the architecture of CAN will
be described together with two diagnostic protocols. The domains chosen to be the focus
of the thesis will also be introduced. Finally the event based service ResponseOnEvent will
be presented in short if the reader would not have access to the ISO-standard 14229-1:2013
where the service is described in full.

2.1 Vehicle diagnostics

In today’s vehicles there is a wide variety of functionality beyond the one that directly
addresses the driver. For example, functionality such as the collection of statistical data or
functionality used by mechanics to support maintenance and service of the vehicle. These
functionality are all referred to as diagnostic functions since they facilitate diagnostics in
different ways. In this section a brief introduction will be given to how diagnostic functions
can be used for creating value for the vehicle manufacturer and their customers.

During the production of vehicles, diagnostic functions are used to parametrize the ECUs
and verify that the vehicle is working correctly. Later when proprietary extensions are built
onto the vehicle, such as cranes and flatbeds, diagnostics functions are used for configuring
the interface to the extension. Diagnostics is also used continuously throughout the life time
of the vehicle for repair and maintenance. Workshops can for instance order extraction of
operational data and trouble codes from a vehicle before it visits the workshop. This can
reduce the time that the vehicle needs to spend in the workshop. The workshop might also
use the data to preorder spare parts for the vehicle. [7][32]

Diagnostic functions can also be used for creating services which can be provided to the
users of the vehicles, such as fleet management. Through a fleet management system a
manager can monitor a fleet of vehicles and coordinate their work and driving routes. The

6

2.1. Vehicle diagnostics

manager can also monitor vehicle characteristics such as fuel consumption. Another possible
service is assistance from the truck manufacturer or third party which can relieve the truck
in case of a sudden breakdown. The assistance service can diagnose the truck remotely by
for example reading its trouble codes and give recommendations to the driver how to fix a
problem or send an assistance car to deliver spare parts. [7] [23]

Diagnostic functions are also a useful tool during the development of new vehicles and
vehicle functionality. By logging network data and reading error codes in the vehicle, the
new functionality can be tested and its behaviour verified. Diagnostic functions also deal
with retrieving operational data which can be used during the development of new function-
ality. The data can provide insight into how the vehicles are being used and what demands
on new functionality that might give rise to. Reading operational data is also useful for
recommending new vehicles to customers. By looking at how they have been using their
trucks, a seller can recommend a truck optimized for the customer’s needs. [32]

Other functionality that is supported through diagnostic functions is the extraction of data
from the tachograph. A tachograph is a computer log of how the driver has been resting and
driving. Another application area is extraction of data concerning emission levels. Both the
emission levels and the number of hours a driver is allowed to work before the driver has to
take a break are regulated by law and therefore it is important that such data can be accessed
by the organisations that enforce the laws [38]. All the domains within the diagnostic area
mentioned above are summarized in figure 2.1. [9] [11] [23]

Figure 2.1: Usage of diagnostic functions

7

2.2. Electronic Control Unit

2.2 Electronic Control Unit

An electronic control unit (ECU) is a controller that can control one or several systems called
actuators in a vehicle. The management of the actuators is enabled by the ECU’s ability of
reading values from a multitude of sensors as well as interpreting messages that reach the
ECU through a communication medium such as the CAN bus [18]. The ECU can also send
messages using the CAN bus. Examples of functions performed by ECUs in vehicles are
ignition timing and shifting of gears in automatic transmission. In figure 2.2 a schematic
figure of an ECU and its components are shown. [11] [13][23]

Sensors : Monitor and report values from their operating environment to the ECU. A sensor
translates the working surrounding or a position into an electrical signal that can be
interpreted and processed by the ECU.

Actuators: An actuator is a device that controls other mechanical or electrical devices. It
translates electrical signals sent from the ECU into mechanical, hydraulic or electrical
work.

Comm Receiver: Communication Receiver is a device that is connected to an internal net-
work enabling communication between all of the ECUs connected to the network. In-
coming signals to the communication receiver are translated into digital signals that can
be processed by the ECU.

Comm Transmitter: Communication Transmitter is the transmitter of the processed infor-
mation from the ECU. It transforms the digital information that the ECU wants to send
into a physical signal which the transmitter then sends on the connected medium.

Figure 2.2: Electronic control Unit and its surrounding systems

2.2.1 Sessions

Sessions are a set of states which an ECU can be in. Each session defines a set of diagnostic
services that it allows. The sessions are used to prevent an ECU from execute certain tasks
that could be hazardous or in other ways undesired under certain circumstances, for exam-
ple such as overwriting a certain value in the ECU or reprograming the ECU entirely while
driving.

Each ECU starts in the default session and can then transition to another session like the
extended diagnostic session or the programming session upon a request from another unit
on the network. Sometimes certain conditions must be met before a certain session can be

8

2.2. Electronic Control Unit

entered or before certain services can be used. For example an exchange of passwords needs
to be done to get access to certain services. This is called security access. The passwords
can be stored inside the vehicle but sometimes they are stored remotely in a server in which
case the vehicle first needs to establish a connection to the server before it can complete the
security access. [21][43]

2.2.2 TMS

The TMS is one of the ECUs which were used in the thesis and a short description is there-
fore required. The TMS was used as the server ECU for the prototype application and the
reason why the TMS was chosen was since it uses Scania’s software platform and still has
some unused memory and processing power compared to some other ECUs where there are
almost no free memory and processing power left. The fact that is uses Scania’s software
platform was important since any future implementation of the service would be done on
this platform.

The TMS is located on one of the main buses in the communication network of Scania’s
trucks, see figure 2.6. It executes gear changes on vehicles with the Opticruise service (a
service for changing gears). The driver communicates with the TMS through the brake pedal
and accelerator pedal which are connected to the ECU through CAN. In figure 2.3 the TMS
used in the thesis is shown. [27]

Figure 2.3: Photo of the TMS used in the thesis

2.2.3 C300

The C300 is the other ECU which were used in the prototype. The reason why the C300 was
chosen was since it is used to communicate information to off-board applications from on-
board systems by carrying out diagnostic services [28]. Diagnostics can thus be performed
by an off-board system via the C300. A picture of the C300 can be seen in figure 2.5.

The C300 is located on one of the main buses and has the ability to send diagnostics re-
quest messages using either the KWP or UDS protocols. The functionality of the C300 is
divided into applications. Each application can be seen as a separate service which can send
and receive diagnostic messages from the communication network using the Diagnostic
Manager. The different layers of the C300’s software can be seen in figure 2.4.

Diagnostic Manager: There can be several applications within the C300 sending and reciev-
ing diagnostic messages. However the C300 can not handle multiple request simultaneously
since it needs to be able to map the incomming response message to the request message.
The diagnostic manager solves this by only allowing one application at a time to send mes-
sages on the bus. Once the response message has been received and mapped to the request

9

2.2. Electronic Control Unit

message the bus is free again and the next application can use it.

CAN Server: Handles the CAN bus, receives incoming messages and transmits outgo-
ing messages.

System Manager: All applications are monitored by the system manager. It starts the
applications in a specified order and makes sure that they are all running as they should.

Platform Gateway: Handles communication between the higher and lower layers. The
communication is based on overloaded functions and call-back functions which are pro-
vided by the platform gateway.

ResponseOnEvent: Is the application intended to enable the client functionality of an
event based service. This application shall be able to set up, start, stop and handle incoming
response messages from other units.

Figure 2.4: Architecture of C300

10

2.3. Diagnostic Trouble Code (DTC)

Figure 2.5: Photo of the C300 used in the thesis

2.3 Diagnostic Trouble Code (DTC)

Each ECU has the ability to diagnose itself and the subsystems it controls and store a diag-
nostic trouble code (DTC) in its memory if a fault is detected. A DTC can consist of a DTC
number, a DTC status byte, a time stamp, a counter and a freeze frame. The freeze frame
contains the values of some specified parameters from the ECU from the moment when the
freeze frame was stored. For a DTC indicating high engine temperature for instance, the
cooling liquid’s temperature might be stored in the freeze frame. This data can be used to
simplify troubleshooting the system and it can be read out form the ECU using diagnostic
services. However, the memory available for freeze frames is limited and an ECU can there-
fore only store a few freeze frames.

The ECU continuously runs different tests that check for different faults. The test can
end with either of the results "Passed" or "Failed" . At a failed test the corresponding DTC
is set and in its status byte, the testFailed bit is set to ’1’. Every time the test fails the
counter in the DTC is increased. The DTC’s status byte contains seven other bits beyond the
testFailed bit and they can also be updated due to future tests. They can for instance
indicate if the test has failed since the last power on or not. [22]

2.4 Controller Area Network

This section describes the important components of the Controller Area Network (CAN) in
short. Since CAN is the communication protocol that was used on the network in this thesis,
a description of the protocol is needed. For a more thorough description, see Appendix C.

2.4.1 Protocol and architecture

A Controller Area Network consist of one or more CAN buses that connect two or more
ECUs that implement the CAN protocol. Each ECU connected to the same bus will be able
to read all the messages on the bus [25]. To address a message to a certain ECU, a field called
identifier in the CAN messages can be used. [30] [15]

In-vehicle Controller Area Network often consists of several main buses with the purpose
of separating critical components from less critical. Figure 2.6 shows an instance of Scania’s
CAN network with three main buses. The three buses are joined together by a coordinator
unit called COO or Coordinator. [32]

11

2.5. Diagnostic Domains

Figure 2.6: CAN network with several ECUs and different buses connected by a coordinator.
Here the C300 and the TMS can be seen as well.

CAN allows only one ECU at a time to use the bus for sending messages. Each message
that is sent on the bus is called a data frame and it is divided into different fields. One field
determines the message’s priority and target address and another contains the data such as a
diagnostic message or some value like the engine temperature.

2.5 Diagnostic Domains

From the different domains described in section 2.1, three domains were selected to be the
main focus in the thesis. They were chosen due to their previous indications of a need for a
new type of diagnostic service. They were Remote Diagnostics, Diagnostics of ADAS func-
tions, and Function Development and Verification.

2.5.1 Remote Diagnostics

Remote diagnostics is used to communicate the internal state of the truck to an off-board ap-
plication using wireless communication. Through the application a fleet manager or a truck
owner can look at information for specific trucks he owns. The data that is communicated
to the application could for instance be the status of different DTCs. Remote Diagnostics can
also be used by help desks to extract information from the truck that can help them trou-
bleshoot the vehicle remotely. A challenge today for Scania’s help desk is the fact that the
extraction of data from the truck takes too long. It can take between five and fifteen minutes
before help desk receives the information from the vehicle and can start working out what
is wrong. This is valuable time since it affects the uptime of the vehicle and if the truck is
late with its delivery, high fees are charged. Since Scania’s help desk has a policy of sending
an assistance car to the truck within ten minutes, the information sometimes reaches Scania’s
help desk too late for it to be of any use. If the assistance car has already departed to relieve
the truck when the information reaches the help desk, it will be too late to bring any specific
spare parts. If the information of the truck’s internal status could been sent to the off-board
application as soon as any changes have occurred, this could improve the work of the help
desk and valuable time could be saved for the truck driver. [39][37]

12

2.5. Diagnostic Domains

One way of improving remote diagnostics would be to have a service that scans the truck for
new DTCs and sends them to the off-board application every hour or possibly with an even
higher frequency, thus creating a mirror image of the truck. This could improve the work
of all services related to remote diagnostics. It is possible today to carry out such a scan but
the frequency of the service is limited due to the amount of data traffic that it gives rise to.
During a scan for DTCs, a central ECU like the RTC who handles the communication with the
off-board application, needs to ask all the other ECUs for their DTCs and their corresponding
status. The ECUs must respond by sending all the information concerning their DTCs even
if nothing has changed since the last scan. This creates an unnecessary high bus load. To not
disturb other more critical applications in the truck, the service must have a low priority. The
consequence of a low priority is that the service can take some time to complete each scan
which in turn limits the frequency and hence the resolution of the service. [39] [37]

2.5.2 Diagnostics of ADAS Functions

ADAS, short for Advanced Driver Assistance Systems is a collection of advanced functions
that are meant to improve the safety while driving. The functions vary between actively en-
gaging in the vehicles behaviour, to alerting the driver of potential hazards. Some examples
are automatic emergency breaking (AEB) and warning signals indicating to the driver that
he is switching lanes without using the indicator lamps. [40]

As the vehicles are moving towards more autonomous functionality, the ADAS functions
gets more dependent on the collaboration between different functions and ECUs to help the
system understand what is going on inside the truck or in its surroundings. This makes
the functions harder to troubleshoot thus calling for a new type of diagnostics. One way of
simplifying the troubleshooting of ADAS functions could be to activate logging of certain
data when an ADAS function becomes activated. For example storing the id of the ECU who
requested the activation of the brake. Thus if the truck would brake without any obvious
reasons, technicians would know where to start looking for the problem. It could also be
desirable to log the internal status of certain variables of the ECU or ECUs involved in an
activation of an ADAS function. However this would require some amount of memory in
the ECUs and the amount of free memory in most ECUs is very limited. [40]

The need for a better way to diagnose ADAS functions is further motivated by the fact
that the driver might not always understand how the ADAS functions work. For example
a driver could complain about the emergency brake activating without any reason, when it
actually is the speed controller that has activated the break to slow down the vehicle. It can
be hard for a mechanic to know which functionality that actually requested the activation
of the breaks and he might therefore draw wrong conclusions when trying to understand if
something is broken in the vehicle. The mechanic might conclude that some parts, like the
front radar is broken and needs to be replaced. The lack of good methods to diagnose ADAS
functions can thus cause unnecessary costs for the truck owner or a dissatisfaction with the
ADAS functions. [40]

2.5.3 Function Development and Verification

To troubleshoot and verify the behaviour of functions under development, logging of data is
used integrated into different tools. The logging is done on one of the communication buses
in the vehicle and is started for instance by pressing a button or by configuring the logging
tool to start when it sees a certain message on the bus. [35]

When logging messages on a bus, it is possible to see which ECU that sent a message
and when. The problem today is that in some cases it is not possible to see the reason why

13

2.6. Diagnostic Protocols

the message was sent since this depends on internal ECU data which is not visible on the
bus. [33]

The tool used today in this domain at Scania makes use of the CCP-protocol. CCP stand
for CAN Calibration Protocol and it is a protocol used for calibrating ECUs. It can also be
used to get access to ECU internal data by asking ECUs to send the value of some specified
memory address over the bus with a given frequency, thus making the data accessible to
the logging tools. This increases the load on the bus and limits the number of ECU-internal
variables that can be logged using CCP. The load on the bus also puts an upper bound on
the resolution, i.e. with what frequency the data can be transmitted. Furthermore, to set up
this type of frequent data transmission one needs to know exactly which build version of the
software the ECU is running. This is because CCP uses memory addresses to specify which
data the ECU should send and this is likely to differ between different software compilations.
Another drawback with CCP is the fact that it cannot be used on vehicles other than test
vehicles since the protocol is blocked in commercial vehicles. This is due to the fact that
by using the CCP protocol one can access the whole memory space of the ECU and thus
overwrite internal variables which is a big safety and security risk. [35][33][34]

2.6 Diagnostic Protocols

A diagnostic protocol defines a set of diagnostic services. By implementing a diagnostic pro-
tocol, an ECU can receive, execute and respond to the services in the protocol. An example of
a diagnostic service is the readDTCInformation which can be used to read out data connected
to DTCs in an ECU implementing the service. If a client wants to extract some information
from a server using this service, the client sends a CAN message to the server containing a
readDTCInformation request. The server will respond with a CAN message containing the
readDTCInformation response. To minimize the message length, the name of the service
is translated into a single hex value called a service identifier (SID). According to the UDS
protocol, readDTCInformation should be translated to 0x17.

The two protocols used in the thesis were KWP and UDS. The main differences between
the two protocols are the fact that KWP does not define a corresponding event based service
like the one found in the UDS standard, called ResponseOnEvent. The two protocols and the
general structure of a diagnostic service will be described in this section. [2][22]

2.6.1 The Structure of a Diagnostic Service

The ordinary traffic on CAN consist of non-diagnostic messages. An example is how the
engine continuously broadcasts it’s temperature so that other ECUs interested in this value
can monitor it. The ECU controlling the cooling of the engine for example, is interested in
this value. Every time the value reaches the ECU it compares it against a desired value and
regulates the cooling of the engine accordingly.

Diagnostic services such as the ones mentioned in 2.1 consist of one request message and
one response message. The request is sent by a diagnostic client and is addressed to one
or more diagnostic servers. The diagnostic client can be an on-board ECU or a external PC
connected to the network by for instance a mechanic. The diagnostic server is an ECU located
on-board the vehicle. Upon receiving a diagnostic request the server ECU responds with the
corresponding diagnostic response message or an error message. The answer depends on for
instance if the format of the request was correct .

14

2.7. Diagnostic Domain Analysis Theory

2.6.2 Unified Diagnostic Services (UDS)

The unified diagnostic services (UDS) is an international standard for road vehicle diagnos-
tics given by the standard ISO-14229-1 [22]. Most ECU manufacturers are producing ECUs
implementing the UDS protocol. All Scania developed ECUs however are using the KWP
protocol and therefore this will be the protocol focused on. Even though the protocols are
different, it is possible to have ECUs implementing either of them on the same CAN bus.

2.6.3 Key Word Protocol 2000 (KWP)

Scania uses Swedish Implementation standard SSF - 14230-3 [4] which is based on the ISO-
standard for the KWP application layer defined in ISO-14230-3 [2]. Since one part of the
thesis concerns implementing a prototype of ResponseOnEvent in ECUs using the KWP
protocol a brief introduction to the protocol is needed. [2]

On difference between the two protocols is the service identifiers used for different ser-
vices. In table 2.1 some UDS functions and their counterparts in the KWP protocol are listed.
These services are of special interest since they are mentioned in the UDS standard [22] as the
only functions recommended to be used in combination with the ResponseOnEvnet service.

A common term used by diagnostic services is CommonIdentifier. This is simply a list
of data identifiers which each ECU maps to a certain memory address. A client can thus
request a certain data using a data identifier without knowing at which address the data is
stored inside the server ECU.

UDS service KWP service KWP SID
ReadDataByIdentifier ReadDataByCommonIdentifier 0x22
ReadDTCInformation ReadStatusOfDiagnosticTroubleCode 0x17
RoutineControl StartRoutineByLocalID 0x31

StopRoutineByLocalID 0x32
RequestRoutineResultByLocalID 0x33

InoutOutputControlByIdentifier InputOutputControlByCommonIdentifier 0x2F
ReadMemoryByAddress ReadMemoryByAddress 0x23

Table 2.1: Recommended services in UDS and corresponding services in KWP

2.7 Diagnostic Domain Analysis Theory

For studies where the research goals are of a qualitative nature, it is generally appropriate to
rely on qualitative measures. A description of the qualitative method used to investigate the
different domains and the need for an event based service can be seen in appendix D.

2.8 Response On Event

One way to propagate information from one ECU (the diagnostic server) to a diagnostic client
(another ECU or a PC) would be to have the client send a request asking the server for the
specific information using a diagnostic service. By doing this continuously, the client can
monitor values in the server. This process to continuously ask for the same data is called
sampling and it causes the same data to be sent several times over the network if the value
is unchanged between samples. This can sometimes be redundant and it only causes unnec-
essary load on the bus. One way to avoid this, is to instead make the server responsible of
sending information on the bus at certain events using an event based service.

15

2.8. Response On Event

ResponseOnEvent (ROE) defined in the UDS standard is an event based service and since
it is one of the main subjects of the thesis a short summary to it will be given here. For a
complete description of the service see ISO-standard 14229-1:2013. [22]

ROE makes it possible for diagnostic clients to define and set up certain trigger condi-
tions and corresponding diagnostic services that should be executed and responded to every
time the event defined by the trigger condition occurs. The service to execute and respond to
at these times is denoted by serviceToRespondTo and the trigger condition together with its
serviceToRespondTo will be denoted by event logic. One example of an event could be the
setting of a certain DTC. And a serviceToRespondTo could be ReadStatusOfDTC to transmit
that DTC on the bus to the diagnostic client. Figure 2.7 shows how the communication of
ROE works compared to sampling.

Figure 2.7: ResponseOnEvent compared to sampling

To set up ROE, the client sends a responseOnEvent request message containing the event logic
(the trigger condition and the serviceToRespondTo) to the serve. The server answers with a
positive or negative response. If a positive response was sent this means that the server has
set up the event logic. The service is now initialized. The client can then start the service by
sending a start request on which the server responds with a positive response. The service
will then be activated and listening for the specified event to occur. Whenever the event
does occur the server sends a message to the client corresponding to the serviceToRespondTo
specified in the event logic. The server will keep listening for the event and send responses
to the client until a certain amount of time defined as eventWindowTime has passed or until
the ECU powers down or the client sends a stopResponseOnEvent request to the server. ROE
defines a set of possible trigger conditions and serviceToRespondTo. In figure 2.8 a simple
overview is given showing the possible trigger conditions and serviceToRespondTo.

16

2.8. Response On Event

The eventWindowTime starts running first when the client has requested to start the service
through the startResponseOnEvent request message. When the time defined in eventWin-
dowTime has elapsed the server will send a final response to the client. Such a response is
not sent if the service was stopped in any of the other ways. In figure 2.9 the basic behaviour
of the service is shown.

Figure 2.8: The event logic for ResponseOnEvent, with the possible eventTypes and
recommended diagnostic services to be used as serviceToRespondTo.

Figure 2.9: ResponseOnEvent basic behaviour

17

2.8. Response On Event

The request message for setting up an event logic contains the following parameters:

• eventType: Which event the server should be listening for.

• eventWindowTime: Defines for how long the server shall be listening for the event after
the service has been started.

• eventTypeRecord: Contains additional parameters for complementing the eventType.

• serviceToRespondToRecord: Defines which diagnostic service, the so called service-
ToRespondTo that should be executed and responded to at the specified event.

The server must evaluate all the parameters in the responseOnEvent request message except
for the serviceToRespondToRecord before sending a positive or negative response to the
client. If any of the parameters are incorrect the server shall send a negative response. The
serviceToRespondToRecord parameter is evaluated first when the specified event occurs.
Table 2.2 gives a overview of the request message.

Data Byte Parameter Name Byte Value
#1 ResponseOnEvent Request SID 0x86
#2 sub-function = [eventType] 0x00-0xFF
#3 eventWindowTime 0x00-0xFF

#4
..

#4+(m-1)

eventTypeRecord[] = [
eventTypeParameter_1

..
eventTypeParameter_m]

0x00-0xFF
..
0x00-0xFF

#n-(r-1)-1
#n-(r-1)

..
#n

serviceToRespondToRecord[] = [
serviceId

serviceParameter_1
..

serviceParameter_r]

0x00-0xFF
0x00-0xFF
..
0x00-0xFF

Table 2.2: responseOnEvent request message for setting up event logic.

The parameter sub-function, also called eventType defines which type of event the server
shall listen for. This field can also contain, instead of a eventType, a command for starting,
stopping or clearing the event logic. Some eventTypes require additional information which
is then contained in the eventTypeRecord.

The diagnostic service given by the serivceToRespondTo will be executed when the event
occurs. The only diagnostic services that are recommended to be used together with Respon-
seOnEvent are summarized in figure 2.8.

18

2.8. Response On Event

19

3 Method

The method used during this thesis can be divided into multiple separate stages. These
stages are shown in figure 3.1. Initially a qualitative study was performed in order to elicit
the need for an event based service and the requirements on it. These requirements were
then used to assess the usefulness of the service ResponseOnEvent defined by the UDS
standard. But before that could be done, the standard first needed to be interpreted since it
contained some uncertainties. A decision was then made whether or not to look further into
ResponseOnEvent or to design an alternative service. A prototype of the selected service
was then implemented as a way to investigate the potential problems connected with the
realization of an event based service and try to elicit new questions concerning the usability
of the service. The chosen service was then evaluated to give a final recommendation of how
to design and implement an event based service.

Figure 3.1: The working process applied during the thesis.

20

3.1. Pre-Study

3.1 Pre-Study

In order to get a understanding of vehicle diagnostics and the state of the art technology a
pre-study was carried out as a first step of the thesis. The pre-study consisted of a literature
study and interviews related to diagnostics.

The interviews gave general information about vehicle diagnostics and the technology
used in the domain. Keywords for the literature study were also obtained. The literature
study was then carried out by searching through a set of chosen databases using the ob-
tained keywords. The chosen databases were: LUBSearch, CRCnetBase, Google Scholar and
UniSearch. Some of the keywords were responseOnEvent, vehicle diagnostics, event based
service and ECU diagnostics. The found literature was then filtered by reading the abstract,
followed by the introduction and results before the whole paper was read. Useful literature
was also found through snowballing [24]. The literature study continued throughout the
whole thesis as a way to find new relevant information as the research went on. Scania also
provided internal documents describing the electrical system of their trucks and standards
which were studied in order to understand the technology they use.

3.2 Diagnostic Domain Analysis

In order to find the answer to research question 1, a qualitative research was performed in
the initial phase of the thesis to identify how different diagnostic domains could benefit from
an event based service and which requirements they would have on an event based service.
This section describes how the work was carried out.

3.2.1 Semi-structure interviews

The selection process of subjects to interview was originally emanated from an inventory
list of system owners and function developers. To determine which area and experts to
interview, guidance from a supervisor at Scania was initially provided as well. The selected
subjects were then approached by emails were the theme of the interviews was explained
together with some of the questions given in table D.1 so that the interviewee would have
time to prepare themselves. This also gave the interviewee the opportunity come up with
questions of their own.

Preparations were made by formulating questions before each interview, the questions
were adapted to suit the subjects and formulated accordingly to the subjects respective field
without being too specific. The questions aimed at elicit knowledge about the present work
and problems in the domain as well as to gain understanding for what was realizable using
an event based service and where problems might arise. Furthermore the questions aimed
to see what was lacking with current diagnostics technique and what requirements it would
reflect onto an event based service.

Due to the size of the diagnostic domains it was important to select subjects so that there
would be a balance between system owners and function developers from the different di-
agnostic domains. Due to the size of the diagnostic domains the knowledge and competence
are distributed among several employees which meant that some interviews were used to
identify areas of interest and were not used as a basis for the requirement elicitation. A total
of 23 people were interviewed during the thesis.

21

3.3. Interpretation of ROE

3.2.2 Analyzing Qualitative Data from the Interviews

The interviews were always conducted by two persons where one led the interview, while the
other took notes and asked additional questions. Conducting the interview in pairs meant
that the data could later be verified by comparing the two sets of notations and perceptions.
Also the subject generally talks more with two interviewers present which also has an affect
on the credibility of the analysis [12].

In some cases when the data of the transcripts were prepared for further analysis addi-
tional contact with the subject was necessary to clarify some uncertainties. The subject was
generally contacted via email to sort out the ambiguities that were found.

After the interviews, the transcript were studied and the relevant information extracted.
From this information different requirements were elicited. The requirements were later
presented to the interviewee to confirm that they reflected their needs.

3.3 Interpretation of ROE

In order to understand the limitations of ResponseOnEvent and to be able to assess its use-
fulness and answer research question 1, the service needed to be studied. The first step was
to find and interpret all the uncertainties in the description of the service. This was done
by studying the standard and compiling all the uncertainties found and contact the ISO or-
ganisation to ask for clarifications. It turned out that the answer from ISO would not arrive
during the time of the thesis and therefore the interpretation were done without the help
of ISO, using the knowledge gathered so far about vehicle diagnostics. Where possible the
interpretation was done to facilitate the fulfillment of the found requirements. As new uncer-
tainties were discovered new requirements needed to be elicit.

3.4 Evaluation of ROE

When the service had been interpreted and understood the evaluation of its usefulness was
conducted by looking at which of the expressed requirements that it could support. Imple-
mentation details from the service specification was also studied to see if they threatened to
clash with the current software architecture and make the service hard to implement. After
the evaluation a decision was made whether to follow the standard or diverge from it in order
to support additional unfulfilled requirements and fix eventual flaws. During this evaluation
the answer to research question 1 was established.

3.5 Prototype Development & Tools

The purpose of the prototype was to examine more in-depth the different ways of how an
event based service could be designed and realized and which problems that were connected
to the different alternatives in order to answer research question 2 and 3. This section ad-
dresses the interested reader who wants a deeper insight into how the development of the
prototype was carried out and how it was tested.

The implementation was performed according to an agile methodology in the sense of
small increments of functionality and continuous testing and integration between the client
and server application. At first, a goal was established describing the key functionality
that should be supported. It was then divided into smaller increments for implementation.
Overall the implementation was limited to 4-5 weeks.

22

3.5. Prototype Development & Tools

3.5.1 TMS development

The development of the server application for the TMS was preceded by meetings with
representatives from the group responsible for developing software for the TMS. This to get
an insight into how the software in the ECU worked and how to set up the development
environment and connect the ECU to the PC. Since the software consisted of over 4000 files
and many thousand lines of code this contributed to speed up the process of the development
process.

The application was developed on a PC and the compiled software was then written to
the ECU for testing using a vehicle communication interface (Vci3) which is a device that
makes it possible to connect an ECU to a PC. When the software had been written to the
ECU and the unit had booted up it was possible to send diagnostic requests to the ECU over
CAN using the Vci3 and the program XCOM. XCOM is a Scania developed program and it
is enough to say that is contains a window where a diagnostic message can be defined and
sent to any ECU on the CAN network connected to the PC through the Vci3.

XCOM had one flaw when it came to developing the event based service and it was the
fact that it assumes that the ECU always will respond to each diagnostic request with one,
and only one response. If multiple responses would arrive, the first is displayed and the
rest is discarded. This made XCOM insufficient for testing the event based service since
the event triggered responses would be discarded. To be able to detect all the responses a
complementary program was used to log all the CAN traffic which made it possible to detect
the extra responses from the TMS.

The development of the client application for the C300 was carried out in a similar fash-
ion compared to the TMS application.

3.5.2 Test environment

Testing was performed continuously during the development. The applications were tested
separately and when sufficient functionality was in place they were tested together. To sim-
ulate the internal environment of an vehicle the test environment consisted of a C300 located
on one CAN bus, a TMS located on another bus and a coordinator that provided the com-
munication link between the two buses. This structure was chosen since it mimicked the real
structure in Scania’s trucks. One PC was then connected to the TMS’s bus through which the
TMS was programmed and monitored. Another PC was connected to the C300 through an
USB-to-Ethernet connection on the ECU. A photo of the setup can be seen in figure F.3. The
server application of the service was also tested in one of Scania’s trucks.

Figure 3.2: The test bench used to develop and test the service. The TMS and C300 were
located on two different CAN buses and a coordinator (COO) provided a communication

link between the two buses. This structure mimicked the network in a real vehicle.

23

3.5. Prototype Development & Tools

24

4 Results

Here all the results found during the thesis will be presented. First a summary of the inter-
views will be given for each of the different domains followed by the elicited requirements.
The interpretation and evaluation of ROE then follows. Then the proprietary service will
be described together with the prototype implementation and suggested solutions of how to
fulfill some of the requirements which the proprietary service did not fulfill.

4.1 Diagnostic Domain Analysis

An analysis of the collected data from the interviews was necessary in order to identify how
an event based service should be designed. It would also give information about advantages
and disadvantages of an event based service with respect to the different domains. The results
derived from the qualitative research will be presented here. The results are presented for
each diagnostic domain separately.

4.1.1 Remote Diagnostics

As described under 2.5.1 the remote diagnostic domain aims to communicate the vehicle’s
diagnostic status to an off-board application with the purpose of reducing downtime as well
as provide services that can reduce the hauliers’ costs and increase their efficiency. One found
key factor in achieving this is to enable a more continuous update of the mirrored image of
the vehicle in the off-board application compared to what is possible today where a complete
scan of the vehicle’s DTCs are done every 20th hour. To only get a status update every
20th hour leaves help desks unaware of changes for long periods of time and also results in
information being lost in between the updates. Freeze frames and time stamps connected to
the setting of DTCs might have been overwritten many times in between the scans and only
the latest written time stamp and freeze frame will be obtained.

The biggest problem preventing an increased scanning rate is the amount of data that
needs to be transmitted on the bus at every scan to decide which data that has changed. If
there was a way to keep track inside the ECUs of which data that has changed since the
last scan, only new data would have to be communicated on the network, which would
contribute to lower the load. But to keep track of what data that has changed would require

25

4.1. Diagnostic Domain Analysis

additional memory. For instance, to be able to only communicate a DTC when a change has
occurred in its status byte, a copy of the DTC’s old status byte would be needed to compare
against. Another alternative is to use a single bit for indicating that the data has been modi-
fied since the last scan, but this does not give any information of which bit in the status byte
that has been modified. The first alternative is very likely to be too memory consuming to be
realizable in today’s ECUs due to the large amount of possible DTCs. The later is more likely
to be realizable but since the memory is a constrained resource in embedded systems this
solution might also require too much memory. These two alternatives were not something
that was looked into but the idea highlighted another problem with an event based service.
To support the setup and detection of a change in one specific DTC using an event based
service would only increase the memory usage of the service by one byte, to save a copy of
the DTC’s status byte. But to be able to trigger the service on a change in any DTC’s status
byte would require much more memory since some ECUs have many hundreds of possible
DTCs.

One alternative that was seen was to have the event based service receive the DTC’s id
number every time any function has made a change to a DTC. The event based service could
then have a buffer of some fixed size into which the ids were stored. The event service could
then send the DTCs in its buffer over CAN and then empty the buffer with some given
frequency. Another alternative would be to have each function that modifies a DTC also
call the event service and notify it that a change has occurred and that it should check if the
change matches any of its trigger conditions. Both these alternatives would require all the
functions that can modify any DTC to also call an additional function related to the event
based service. This could increase the execution time of DTC-modifying services and the
scheduling of services in the ECU might have to be modified as a consequence.

4.1.2 Diagnostics of ADAS-functions

The need for an event based service for diagnostics of ADAS-functions was motivated by
the need of a new way to diagnose functions with an increasing complexity. One of the ad-
vantages of using an event based service is just as for Remote Diagnostics, the possibility of
decreasing the network load on CAN during the diagnosis. Another benefit is the flexibility
that an event based service could provide. It was clear from the domain experts that it always
has been hard to predict which problems that might occur and which methods that would be
the most efficient for troubleshooting. Therefore an event based service could prove to be of
great value due to its flexibility and versatility.

At the activation of certain ADAS-functions in an ECU, the ECU can saves some data
connected to the function. For instance when the AEB is activated, a picture of the area
in front of the truck is saved in the ECU controlling the AEB. Since some ADAS-functions
are located in one ECU but the activation request comes from another ECU, the values that
caused the activation of the function are not always accessible and can therefore not be saved.
But if these values could be communicated to an ECU responsible for the ADAS-function,
troubleshooting could be facilitated. This type of data communication could also make it
possible to store relevant data inside a completely different device that has nothing to do
with the activation of the ADAS-function. This could be useful if the ECU responsible for
the ADAS-function does not have enough free memory to save the data of interest. The data
could for instance be stored in the C300 and later sent to an off-board application. In such a
way, it would be possible to build up a database of different incidents where ADAS-functions
had been activated and what has caused the activation.

26

4.2. Elicited Requirements

4.1.3 Function Development and Verification

There is room for improvement in today’s logging tools according to the experts interviewed
and an event based service has some beneficial functionality that makes it interesting for the
domain. To be able to use an event based service without having to take the compilation
version of the ECU’s software into account as well as the potential of being able to use the
service in commercial vehicles gives the event based service an edge compared to CCP. The
service also presents the possibility of decreasing the network load compared to CCP which
makes it possible to log more ECU internal data. The fact that the data would be commu-
nicated per event also makes a higher resolution possible compared to if the data would be
sent periodically.

Some of the limitations when it comes to using an event based service for logging pur-
poses is the fact that internal logging inside the ECU is still limited by the amount of free
memory in the ECU. Therefore the best way to log the data using an event based service is
still to send it on the CAN bus and use a logging tool that logs the CAN traffic to pick up and
store the data. Furthermore the event based service is not integrated in the tools used today
and therefore would have to be set up using other tools which might cause some additional
work for the tester. But the experience gained from the prototype showed that the service
could be set up using scripts in on of Scania’s software tools which could be used to limit the
effort.

4.2 Elicited Requirements

Here the elicited requirements are presented with a short context so that the reader can more
easily understand their origin. The requirements have also been given a reference to the do-
main from which they were derived. The references and corresponding domains are Remote
Diagnostics (RemD), Function Development and Verification (Dev) and Diagnostic of ADAS-
functions (ADAS). Some of the requirements were later excluded due to the fact that they did
not directly concern the event based service, but the tools that will use it.

4.2.1 Setup, Start and Stop

-If it is possible to store events in an ECU between power on and power off, vehicles could be
sold with default event logic already set up. But to be able to activate just this logic and not
any other event logic in an ECU it must be possible to start a single event logic. It would also
be beneficial to be able to clear specific event logic.

R 1 Start, Stop and Clear a Single Event Logic: It must be possible
to start, stop and a clear single event logic in ECUs. (RemD)

-If as much as possible of the service can be controlled remotely, the uptime of the vehicles
could be increased compared to if the vehicle would have to visit a workshop to manipulate
the service.

R 2 Remote Start and Stop: It must be possible to remotely start and stop
specific event logic in ECUs. (RemD) (Dev)

R 3 Remote Setup: It must be possible to remotely setup new event logic for the
service. (RemD)

-If the ECU is processing an event and an identical event occurs triggering the service, the
second event should not be discarded since it can be of interest.

27

4.2. Elicited Requirements

R 4 Multiple Events: If the ECU is processing one event and an identical event
occurs in the same ECU, the service must process both. (RemD) (Dev)

-To simplify the setup of event services in multiple vehicles it would be preferable if whole
configurations of the service could be saved in a PC environment.

R 5 Vehicle Configuration: It must be possible to save whole vehicle configu-
rations of the event service on a PC. (Dev)

-To facilitate the synchronization of different CAN-logs from different vehicles it would be
good if event responses could be time stamped.

R 6 Time stamps: It must be possible time stamp event responses. (Dev)

4.2.2 Storing event logic

-It would be good to have predefined event services that are stored in the vehicle’s ECUs
ready to be activated at a certain occasion. Event logic could be set up during the production
of the vehicle or flashed down to the vehicle during a workshop visit or remotely.

R 7 Store Logic: It must be possible to store event logic in ECUs between power
off and power on. (Dev)

4.2.3 Event Triggers

-The service should be able to react to the setting of DTCs to help to communicate DTCs to
an off-board application as soon as possible.

R 8 Trigger on DTC: It must be possible to use DTCs as event triggers. (RemD)
(ADAS)

-By using boolean combinations of ECU data as trigger conditions, more complex trigger con-
ditions could be created making the service more dynamic. For example could the triggering
of events during certain conditions be prevented such as when the engine speed is equal to
zero. This is useful when certain spare parts are changed during workshop visits since this
might cause error codes to be set when there actually is no fault.

R 9 Comparison Logic: It must be possible to compare multiple data using any
of the following comparison logic: "bigger than", "smaller than", "equal to" and "not
equal to" as event logic. (RemD) (ADAS) (Dev)

-It would be good if event trigger conditions could be updated when an event occurs such as
first trigger on “value > 1” and in case the condition becomes fulfilled, change the condition
to “value > 2”. This would make the service more dynamic.

R 10 Update Trigger Condition: It must be possible to automatically update a
trigger condition after a trigger has occurred. (Dev)

-To be able to trigger on more complex errors, a combination of comparisons as trigger con-
dition would be good such as “if (value1 == 2 AND value2 == 6)”.

R 11 AND/OR: It must be possible to combine different comparisons using the follow-
ing logical operations: “AND”, “OR”. (Dev)

-Data interesting to be used as trigger conditions is accessible through the diagnostic function
ReadDataByCommonIdentifier.

28

4.2. Elicited Requirements

R 12 ReadDataByCommonIdentifier: Is must be possible to trigger events
on ECU internal data accessible through the diagnostic function ReadDataBy-
CommonIdentifier. (RemD) (Dev)

-Experts working with function developing and verification expressed a desire to be able to
access ECU internal data through the service without having to know at which address that
data is saved.

R 13 Address Independent: One must be able to set up the service to access ECU
internal data without having to know at which address that data is stored. (Dev)

-If events could be triggered by contradicting messages on the CAN bus like brake and accel-
eration from different sources like the automatic emergency brake and the driver, it would be
possible to provide information about when a driver tries to override an ADAS function.

R 14 CAN-Frames: It must be possible to trigger events on certain CAN frames.
(ADAS) (Dev)

4.2.4 Sessions

-To be useful to Remote Diagnostic, the service needs to work on commercial vehicles while
they are in service.

R 15 Default Session: The service needs to work at least in the default session.
(RemD)

-ADAS perform their diagnostics in the extended session.

R 16 Extended Session: The service needs to work in the extended session.
(ADAS)

4.2.5 Logging of Data

-To facilitate the logging of ECU internal data using the current logging tools available, the
service should be able to send ECU internal data like DTCs on CAN at certain events.

R 17 Internal Data on CAN: The service must make internal ECU data available
on CAN. (Dev)

-To facilitate troubleshooting and verification of functions, it should be possible to store ECU
internal values before and after an event. For example to store the temperature of the cooling
liquid before and after the DTC for high engine temperature is set.

R 18 Logging: The service must provide functions for saving the values of internal
variables before and after an event. (Dev) (ADAS)

4.2.6 Performance

-It is desirable that diagnostic services that should be used during uptime of the vehicle
should take up as little as possible of the CPU power in the ECUs to not disturb other func-
tionality. Representatives for the TMS said that the increased CPU-load must not exceed 1%.

R 19 CPU Usage: The increased CPU usage in the TMS must not exceed 1%.

-The TMS has about 1.6MB free memory. Since the service shall be implemented in the TMS
without any new hardware support, the service must not exceed that number. Other ECUs
have much less free memory so it is desirable if the service could be kept as small as possible.

29

4.3. Interpretation of ROE

R 20 Memory Usage: The amount of memory that the service takes up must not
exceed 1.6MB since that is what is left in the TMS.

-To facilitate the detection of secondary faults, it must be possible to conclude in which order
events have occurred. If for instance multiple DTCs are set, it would be good to know which

R 21 Order of Events: It must be possible to derive in which order different
events from different ECUs occurred using the service. (Dev) (RemD)

4.2.7 Multiservers

-For the service to be useful to Remote Diagnostics the service needs to provide a way to
collect DTCs from multiple servers and send them to an off-board application.

R 22 Multiservers: The client must be able to set up event logic in multiple servers
and listen for responses from them at the same time. (RemD)

4.2.8 Multiclients

-If a service would be stopped due to a session change in the server ECU and not started
again when the ECU returns to the default session, the service might miss to report events.

R 23 Stop on Session Change: If a service is set up and started in session X, a
session change in the server must not cause the service to stop and not start again when
the server returns to session X. (RemD)

4.3 Interpretation of ROE

The uncertainties found concerning ResonseOnEvent in the UDS standard are summarized in
appendix A. Since the answer from ISO did not arrive in time for this report the uncertainties
were interpreted using the gathered knowledge during the thesis.

4.4 Evaluation of ROE

The comparison of ResponseOnEvent with the gathered requirements was done in order to
find the answer to research question 1. The comparison is summarized in table 4.1. There
were some requirements that the service did not fulfill and some which the service did not
specify anything about. One could possibly make extensions to the service to support those
requirements which the standard did not specify anything about and still claim to follow the
standard. But the requirements which clearly differed from what was stated in the standard
would have to be left out. For example one could add the functionality to start and stop
single event logic since there were reserved sub-function identifiers intended for the vehicle
manufacturer to use. But to make changes to the message format of the service would not be
possible. Therefore adding time stamps to the event responses would not be possible if the
standard should be followed.

The most important requirements not supported by ResponseOnEvent were the ones con-
cerning more advanced trigger conditions (R 11, R 14), the requirements concerning logging
inside the ECU (R 18) and the requirement concerning time stamps (R 6). These requirements
were considered to be the most important non-fulfilled requirements since they concerned
functionality that had been central in the discussions with the different domains. Therefore
an attempt to fulfill them was considered valuable. It is important to state that beyond
fulfilling the requirements there was another reason to consider an alternative to Respon-
seOnEvent. That reason was to take height for possible future needs, by for example adding

30

4.5. Proprietary Service

support for additional diagnostic services to be used as serviceToRespondTo such as the
diagnostic service ReadMemoryByAddress. This was considered a flexible and powerful
diagnostic service to have access to through the event based service.

In conclusion there was enough room for improvements on ResponseOnEvent to make
it worth trying to design an alternative service. The answer to research question 1 was
therefore that ResponseOnEvent could not fulfill all the requirements and an alternative
service could be of interest. To answer research question 2 , an alternative service was
therefor investigated. The alternative service, also called the proprietary service was made
to follow ResponseOnEvent as closely as possible but they diverge at some points. Exactly
what differences there are will be pointed out in section 4.5. The reason why the proprietary
service was chosen to resemble ResponseOnEvent was since a lot of time could be saved by
only making changes to an already existing description of an event based service instead
of designing a completely new one. Therefore the proprietary service could be called an
extension of ResponseOnEvent but with some limitations and changes in the design.

Support No support Not specified
R 1

R 2
R 3

R 4
R 5

R 6
R 7
R 8
R 9

R 10
R 11

R 12
R 13

R 14
R 15
R 16
R 17

R 18
R 19
R 20

R 21
R 22
R 23

Table 4.1: The expressed requirements compared with ResponseOnEvent.

4.5 Proprietary Service

Here the answers to research question 2 will be presented in the form of a description of
choices regarding the design of the proprietary service together with the reasons behind them
and their consequences. The complete proprietary service can be seen in appendix B. Since
a lot of the design choices were made in order to solve different problems the answer to re-
search question 3 will also partially be given here. Some of the problems that were discovered
during the implementation of the prototype will also be described in chapter 4.6.

31

4.5. Proprietary Service

4.5.1 Requirements

To decide which requirements to focus on when designing the proprietary service, the re-
quirements were sorted into different groups. One group contained all the requirements
which ResponseOnEvent already fulfilled. It was easy to verify that the proprietary service
supported these as well since it was an extension of ResponseOnEvent. Another group con-
tained all the requirements which were deemed as out of scope of the service or to complex
to design a good support for during the limited time of the thesis. The last group contained
the requirements which were deemed as realizable and not to hard to include in the design
of the proprietary service.

• Already Supported: R4, R7, R8, R9, R12, R13, R15, R16, R17, R22, R23.

• Out of Scope/Too complex: R2, R3, R5, R10, R11, R14, R18, R21.

• Included in the proprietary service: R1, R6, R19, R20.

To start, stop and clear single event logic (R1) was simple to include in the design of the pro-
prietary service since ResponseOnEvent left some eventTypes to the vehicle manufacturer to
define which could be used to fulfill the requirement. To add time stamps (R6) required a
reconstruction of the event responses and thus not compatible with ResponseOnEvent. The
requirements concerning the memory usage and the CPU-load (R19, R20) needed to be sup-
ported for the service to be realizable in the current architecture and therefore a must-include.

The requirements concerning remote start, stop and clear of the service (R2, R3) was some-
thing that was considered out of scope of the service since it had nothing to do with how the
service itself should work. To be able to save a vehicle’s configuration of the service on a PC
(R5) was also considered out of scope since it would not affect the structure of the service.

To update trigger conditions upon an event (R10) and to combine logical comparisons
(R11) would not be hard to support but to do it in a good way that minimizes the message
size and facilitated some amount of flexibility would require a more thorough knowledge
about the intended use cases. Therefore only a short recommendation about how to support
this requirement was given, see section 4.7.

An ECU does not take in and process all the messages on the CAN bus since this would
cause unnecessary CPU-load. Instead a filter is used in the hardware to filter out the mes-
sages that are of interest to the ECU. To be able to trigger events on certain CAN frames (R 14)
the filter would in some cases have to be modified to let more messages through to the CPU.
The possibilities to do this and its consequences were unclear and therefore this requirement
was left out from the design of the proprietary service.

The logging of data inside ECUs, before and after an event (R 18) was excluded from
the design of the proprietary service since there existed no diagnostic service which could be
used as serviceToRespondTo to communicate the logged data to the client at an event. In 4.7
possible solutions for both R 18 and R 14 are discussed in more details.

The requirement concerning the order of multiple events from different ECUs (R 21) was
left out since it seemed impossible to fulfill in a sufficient way since it would require a global
ordering of all the events in the system. The fact that time stamps of event responses was
made possible made this requirement less critical.

32

4.5. Proprietary Service

4.5.2 Design Choices and Limitations

The proprietary service strives to follow ResponseOnEvent as closely as possible but some
changes were made to make it fulfill four additional requirements. The aim was also to make
the service more flexible so that it hopefully would be able to meet future needs. In this
section the most important differences between the two services will be pointed out together
with their consequences.

Since one of the biggest obstacle with the realisation of an event based service turned
out to be the limited amount of free memory and processing power in ECUs, the design
of the proprietary service was a balance between making the service as flexible as possible
while still trying to keep the complexity of the service to a minimum.

One trigger condition per serviceToRespondTo

During the interpretation of ResponseOnEvent it was concluded that is was only possible
to set up one trigger condition per serviceToRespondTo. If it would be possible to set up
multiple trigger conditions for each serviceToRespondTo this could lead to instability prob-
lems. If two client applications in a client ECU sets up two different trigger conditions using
the same serviceToRespondTo, the client ECU will not be able to tell which condition that
has been triggered when it receives the event generated answer. Figure 4.1 describes the
problem with the trigger conditions "A > 4" and "B == 0". The serviceToRespondTo is simply
denoted by X. When receiving X the client ECU can not know which application waiting for
an event triggered message of the type X that it should notify, since both of the applications
are waiting for X but for different reasons.

The proprietary service follows ResponseOnEvent and does only allow one trigger con-
dition per serviceToRespondTo. When a client requests to set up a new trigger condition for
a given serviceToRespondTo, the old trigger condition will be overwritten. Thus when the
response X arrives to the client ECU, it can be sure of which event trigger condition that has
been fulfilled.

Another alternative for updating the trigger condition would be to reject the new trigger
condition until the old one is stopped or cleared. The only motivation for not using this
design was to make the service easier to set up and change.

Figure 4.1: What would happen if multiple trigger conditions (A > 4 and B == 0) would
be combined with the same serviceToRespondTo (Send X).

The decision to only allow one trigger condition per service to respond to simplified the de-
sign of the service and prevents potential problem. However, it also makes the service less
flexible. One alternative would be to not limit the number of times the same serviceToRe-
spondTo is combined with different trigger conditions and leave it to the client to solve any
potential problems when uncertainties arises concerning which condition that was triggered.

33

4.5. Proprietary Service

This could increase the flexibility of the service but it would also increase the complexity of
it. It would for instance require some type of indexing of the event logic in the server to facil-
itate the starting and stopping of specific event logic since they no longer would be uniquely
identified by their serviceToRespondTo.

Multiclient

In ResponseOnEvent nothing was mentioned about the service’s behavior when there were
multiple clients on the same network using the service. ROE was possibly only intended to
be used by one client at a time. But it was not hard to imagine a future where the different
domains looked into during the thesis could require the use of the service at the same time.
Remote Diagnostics might want to mirror the vehicles internal state using the service and at
the same time the service could be needed by Diagnostic of ADAS-functions in order to store
data connected to the activation of ADAS-functions. Due to this possible need the service’s
behaviour in cases of multiple clients was included in the proprietary service.

The support for multiple clients introduced new complexity to the service. One example
is if a client sets up an event logic in one server and then another client tries to start that logic
by sending a start request to the server. Then who would get the responses to the service-
ToRespondTo? It was decided that it should be the first ECU who set up the logic that would
also get the responses. One could also simply prevent the different clients from interacting
with eachothers event logic but no reason was seen to prevent this type of behaviour. So to
not limit the service’s flexibility, the proprietary service allows clients to start, stop and clear
eachothers event logic. This prevents event logic from being permanently set up in a server
if the client is removed from the network without clearing its event logic. Some logic needs
to be implemented in the client so that this type of interaction between clients does not cause
any hazard. There is for instance the risk of two clients continuously overwriting eachothers
event logic. To prevent this, the person configuring the ECUs must have a good knowledge
about which ECU utilizes which serviceToRespondTo.

When the number of event logic setup in servers increases, it will become important to keep
track of each truck’s individual configuration so that different applications are not designed
assuming the possibility to use a certain serviceToRespondTo in an ECU which another ap-
plication already is using. This is not something that will be looked into in this thesis but
a found issue that might need to be addressed if the service starts to be used for more long
term solutions and not simply for setting up a test during a short test run.

Time Stamped Responses

To be able to establish a global order of event as specified according to the requirement R 21
proved to be difficult to fulfill. The difficulty lies in the fact that the diagnosis message has a
lower priority and can therefore be delayed out on the CAN bus if a controller is busy with
higher priority tasks or if the bus is occupied by other messages. Instead of arranging all the
events in the system in a global order, the proprietary service introduces the possibility to
have the server time stamp the serviceToRespondTo responses. This will make it possible to
get information concerning when the event occurred even if its response message becomes
delayed out on the bus.

Since some ECUs lack an internal clock it limits the accuracy of the time stamp down to
the synchronization messages available on CAN. These are messages that are sent with
one second intervals to help the ECUs stay synchronized. The resolution in time for most
ECUs is therefore limited to these messages. But if more accurate internal clocks would
become available this extension could become very valuable both for Diagnostics of ADAS

34

4.6. Prototype

functions and logging purposes since it could be possible to see in which order different
event triggered and compare logs from different vehicles. Even if high accuracy clocks are
added to each individual ECU, there is still an upper bound for the resolution due to the
fact that each ECU needs to synchronize its clock towards a global clock and this process
will always introduce some minor error due to variations in the delays of the communication.

The time stamps will be added to the end of the diagnostic messages thus changing the
format of the message as they were defined by ResponseOnEvent and the KWP protocol. To
deal with this new message format might require some additional work when implementing
the service.

ReadMemoryByAddress

The diagnostic service ReadMemoryByAddress is a powerful service since it can be used
to access memory areas of the ECU which have not been given an identifier. ReadMem-
oryByAddress is however not mentioned in ResponseOnEvent among the recommended
services to be used together with the event service. The reason might be the fact that the
service takes a parameter denoted MemorySize, which defined how much data that should
be read. If the amount of data to be read it too big, the execution of the service might take
to much time to execute which will impact the whole ECU’s performance. Thus not all
diagnostic services are fit to be used together with an event based service due to the real time
constraints in an embedded system. But since ReadMemoryByAddress was such a powerful
service it was included in the proprietary service and a note was left in the proprietary
service that one must taken the execution time of the serviceToRespondTo into account. If
the execution time takes too long there is a risk that other applications running in the ECU
will be affected and the ECU might crash.

Some addresses in ECUs can only be read using the service in combination with secu-
rity access. But according to an expert at Scania [43] most addresses can be read without
security access. To read addresses protected by security access could be problematic since
the password might not be located inside the vehicle. If ReadMemoryByAddress would be
setup to read an address protected by security access, an error message would be sent instead
of the desired response every time the event logic is triggered, if a security access has not
been performed. At these error messages one could possibly perform a security access to
read the protected data. To keep the server ECU in a security accessed state while waiting
for the event based service to trigger is another alternative but it could be problematic since
the security access might require the vehicle to be standing still for instance, which might
limit the service usability. To keep the sever in a security accessed state also opens up the
possibility for other clients to access protected services which could prove a threat against
the security.

4.6 Prototype

The purpose of the prototype was to investigate various implementation alternatives and
to build knowledge about potential problems related to the implementation, thus answer
research question 3. The prototype could also help to elicit questions for further investigation.

4.6.1 C300

Acting as a diagnostic client the main purpose of the C300 are to send and receive diagnos-
tic messages. Functionality that supports sending and receiving diagnostic messages was
already implemented which was why the prototype focused on trying to utilize the existing
functionality. The problem of not being able to receive multiple responses, as explained

35

4.6. Prototype

under section 2.2.3, meant that restructuring the diagnostic manager was necessary in order
to support functionality for an event based service. A system description of the prototype can
bee seen under appendix F as well as a sequence diagram explaining the process of sending
and receiving messages.

The prototype application developed for the C300 supported the actions to send a request
message to the TMS, requesting to set up a given event logic and to start this using a second
message. The C300 application could then send the incoming event triggered responses to
the PC connected to it, which made is possible to observe the messages in a terminal window.

One problem with the existing software architecture was that it assumed that each diag-
nostic message would generate only one response from the server. When an application in
the C300 wants to transmit a request message on the CAN bus it calls the Diagnostic Man-
ager which transmits the message and waits for the response to arrive. When the response
arrives it is mapped to the application which sent the request. Only one application at a time
can await an response like this, making the mapping simple. When the response has been
handled the Diagnostic Manager is again free for other applications to use. The Diagnostic
Manager discards each incoming request which can not be mapped to a pending request.
This way each event triggered response would be discarded unless the Diagnostic Manager
is given an additional requests to which the event responses could be mapped. But by doing
this the Diagnostic Manager would be blocked and no other applications would be able to
send any messages until a response message has arrived which could be mapped to the
pending request.

The prototype was designed to circumvent this by notify the application that implements
the proprietary service when any incoming response were about to be discarded. Thus
each unmapped response message caused a notification of the waiting application which is
something that needs to be dealt with to not cause unnecessary notifications and CPU-load.
One way of doing this could be to check if the response message matched any of the services
that the event based service could generate, and only in those cases notify the application.
To make the event based service accessible to other applications in the C300 an API could be
designed through which they could request to set up event logic and receive the responses.

4.6.2 TMS

Here a description of the server prototype application will be given. The most important
implementation choices will also be highlighted together with their consequences.

Supported Services

There was no time to implement support for all the requirements in the TMS. Therefore only
some of the key functionality were implemented. The finished prototype application sup-
ported the following tasks.

• Set up event logic with the eventType: onChangeOfDataIdentifier and the serviceToRe-
spondTo: readDataByComonIdentifier.

• Start, stop and clear the event logic.

• Send the initial response to the setup request message.

• Detect a fulfilled trigger condition and cause the execution of the serviceToRespondTo.

• Respond to the request reportAllActivatedEvents.

• Store the event logic between power on and off using the ECU’s non-volatile memory.

36

4.6. Prototype

Implementation Details

Since diagnostic services always consist of a request and a corresponding response, there had
been no need when designing the current software architecture to support the transmission
of unrequested responses from the TMS. Therefore it was not possible to send event triggered
responses using the current architecture for diagnostic services. To make this possible would
require a restructuring of the software architecture, which according to a software architect
at Scania could take up to a month only to get the service running [44]. The amount of time
required for implementing regression tests and to verify the service could also take a consid-
erable amount of time. There were two other alternatives which both were not considered
alternatives for a final solution since they went against the logic in the software architecture.
The first alternative was to use something called the "general purpose CAN API" which made
it possible to send an arbitrary CAN message on the bus. The other alternative included call-
ing a function for adding data to the outgoing message buffer. To be able to continue with
the prototype implementation the general purpose API was used since it was considered
easier to get started with compared to the other alternative. To give a overview of the final
software design of the prototype, a couple of sequence diagrams showing the execution of
the prototype can be seen in appendix E. [44]

The checking of the trigger condition was done in a loop running every 10ms. This spe-
cific frequency was chosen because there already existed such a loop in the architecture.
It was possible to create new such loops with different frequencies but it required a good
understanding for the software architecture. The frequency of the loop determined the worst
case delay between the fulfillment of a trigger condition and the triggering of the event and
is thus what puts an upper limit on the resolution of the service’s time stamps. With a loop
that runs every 10ms the worst case delay would be 10ms. To get a higher resolution one
could choose a higher frequency but this also increases the load on the CPU which is a highly
valuable resource in almost any embedded system.

Among the requirements there was a requirement stating that the service should not cause
more than a 1% increase of the CPU-load, (R 19). The CPU-load that the prototype caused
was estimated to 0.15%. This was estimated by measuring the time it took the prototype to
detect an event and execute the serviceToRespondTo. The time was then divided by the loop
time for the service which was 10ms. This gave a value of how much of the 10ms that the
CPU spent executing the service, which is the same as the CPU-load. Using the prototype’s
CPU-load as reference it was deemed possible for the full implementation to use less than
1% of the CPU. Depending on the resolution required of the service and the CPU-load it is
allowed to cause, the frequency of the loop can be changed.

Instead of using an if statement running in a loop checking for new fulfilled trigger con-
ditions every tenth millisecond, it could be possible to add a function pointer to the relevant
functions in the TMS making it possible for these functions to trigger the execution of the
event based service. An example is to let the function handling the writing of new values
to variables in the ECU also start the execution of the event service which then checks for
new fulfilled trigger conditions. This would increase the time resolution of the service but it
could also cause an increase of the CPU-load in the same way as an increased loop frequency
would. Using this solution could contribute to lower the power consumption of the ECU if it
would be possible to let the ECU move into some type of sleep mode between the execution
of other services when no loop is running every tenth millisecond checking for new fulfilled
trigger conditions.

Another constrained resource in embedded systems besides the CPU-load and the power
consumption is the memory. The amount of flash memory that the prototype consumed was

37

4.7. Suggested Solutions for Other Requirements

about 3kilobytes. This was the difference in amount of used flash memory that the building
script calculated with and without the event based service. To implement the complete
proprietary service was estimated to take about four times that memory since the prototype
had partly support for two of the seven different suggested serviceToRespondTo. The total
amount of memory that the service would need was thus estimated to 12 kilobytes. This was
a very rough estimate but since this was far below the limit of 1.6MB (R 20) it was deemed
that it would be possible to implement the complete service using the flash memory current
available in the TMS.

4.7 Suggested Solutions for Other Requirements

Here some potential solutions are listed of how to support the requirements that were not
considered in the proprietary service.

• R 10, R 11: These requirements could be supported by extending the setup request
message for the eventTypes onComparisionOfValue with more fields. Nothing shows
on any complication in doing this but it might require some extra research so that it is
done in a way that minimizes the message length while still offering enough flexibility.
It is also important that the checking of the event does not take too long so that the
service has time to finish its execution before its next loop iteration, otherwise the ECU
will crash.

• R 14: To make it possible to trigger events on certain CAN frames might require a
modification of the ECUs message filter if the event should be triggered by a message
that the ECU usually does not read. This could potentially increase the CPU-load since
the ECU then would read more messages. It is also not clear if there could be any
problems with ECUs starting to listen to new messages than what they usually do [42].
This is a requirement that seems tough to fulfill without a more thorough study focused
in this specific area.

• R 18: No difficulties could be seen in fulfilling this requirement, but just as for R 10 and
R 11 a more thorough insight into the specific use case of the service would be needed
to make the service as flexible and memory efficient as possible. Since the amount of
free memory is often small, it is likely that this service would be deemed too mem-
ory consuming to be implemented if not the value of the service could be clearly proven.

To send the logged data to the client at an event, one could possibly use one of the
existing diagnostic services that are used for reading data, such as ReadMemoryByAd-
dress. Even if the client have no idea about at which addresses the logged data ends up
in the server, the server could still use this service simply as a way of communicating
the data as long as the client receiving the data understands how to interpret it. To give
the logged data a common identifier would be another alternative but the amount of
common identifiers is limited and thus should be used with care.

• R 21: The requirement concerning the order of multiple events from different ECUs
seemed impossible to fulfill in a good way since it would require a global order of
events in a system where the events could occur inside an ECU and be sent on the bus
first after some time has passed. The requirement was therefore deemed as to hard to
fulfill.

4.8 Applicability to Other ECUs

The prototype had only the TMS and C300 as target ECUs but by taking other ECUs into
consideration, the design for the service could be done in a way that facilitated the usage

38

4.8. Applicability to Other ECUs

of the service in other ECUs. One difference that was investigated was the two different
software used at Scania for supplying the applications with platform services. But the ex-
pert talked to meant that the two different software both were able to support the same
services since they both used the same underlying platform [41]. In conclusion, no problems
were found that would make the realization of an event based service harder in other ECUs
compared to the ones used in the thesis with respect to the different software running in them.

It is however uncertain how well the service would work on other ECUs due to the amount
of memory and processing power that it requires. Since most ECUs are designed and opti-
mized for a specific purpose, it is often very little free memory and CPU-power left in them
since this would be a waste of resources. Some ECUs only have a few bytes left while others
might have a bit more. But even if the amount of memory left in the ECU would be enough
for an event based service, it is very unlikely that those remaining bytes would be used for
implementing a diagnostic service instead of some other more important functionality. [46]

39

4.8. Applicability to Other ECUs

40

5 Discussion

In this section the method for carrying out the study will be critically discussed with the pur-
pose of highlight shortcomings that might have affected the outcome. The pros and cons of
introducing new diagnostic messages to support an event based service will also be discussed
as well as the fact that the service introduces non-deterministic network load which can be
a problem if bad trigger conditions are set up. Lastly some areas for future research will be
discussed.

5.1 Method

The interviews were one of the main sources of information during the thesis since very little
documentation was found of the software system architecture and the work in the different
domains. When relying on interviews there is always the risk of misinterpretation and that
not all the facts of interest are brought to light. During the interviews it was easy to lose
focus of the actual intent of an event based service as the interviewee started to come up
with possible ways of using the service without having completely understood its limitations
and how it was meant to work. A lot of different use cases for the event based service were
suggested which later proved to be easier and more preferable to implemented using other
services. Due to this, some additional interviews were required to finally be able to show
that the domain would benefit from an event based service such as ROE.

The aim of the thesis was to examine if the chosen domains could benefit from an event
based service by comparing their needs to ROE. Since ROE only represents one way of
designing an event based service this limited the way an event based service was thought of
which might have affected the requirements elicitation. By only looking at the aspects related
to the functionality present in ROE other important requirements might have been missed.
But to limit the scope of the thesis some assumptions and limitations was needed regarding
what an event based service was and what should be investigated. The proprietary service
was based on ResponseOnEvent and it is therefore possible that better solutions could have
been found if a completely new service had been made from scratch or if other event services
had been investigated besides ROE. But since no other alternative designs for event services
were found during the literature study, ROE was the only alternative to investigate.

41

5.2. ROE and the Proprietary Service

When starting out the requirements elicitation a complete understanding of the service
and the domains was still not achieved causing some of the initial requirements to later
be deemed as out of scope when a better understanding for the service’s limitations and
intentional usage had been acquired. These requirements were not removed from the thesis
as they could prove to be of value for future research. The initial interviews were carried out
with the purpose to both gain knowledge of the domains as well as to elicit requirements
since this was thought of as more time efficient. If a better understanding for the domains
had been achieved before the requirements elicitation it is possible that requirements of
higher quality would have been acquired.

The implementation of the prototype showed on many different problematics both in the de-
sign of the service and the surrounding software architecture. Since the software architecture
differs between vehicle manufacturers it is likely that other problems would have been found
if the implementation had been done in another system at another vehicle manufacturer. It
is also likely that depending on which functionality that was focused on in the prototype
implementation, different limitations and problems would have been discovered.

5.2 ROE and the Proprietary Service

Here the found answers to the research questions will be discussed.

How does ResponseOnEvent defined by the UDS-standard meet existing needs of
diagnostics on heavy duty vehicles?

ResponseOnEvent fulfilled some of the requirements that were found in the different do-
mains and could prove to be a good enough solution for some of the domains. But since
ResponseOnEvent did not fulfill all the requirements a decision was made to implement a
proprietary service instead in order to fulfill additional requirements. It is very hard to tell if
diverging from the standard is worth the additional fulfilled requirements since following a
standard could prove to simplify the integration of the service in the current system.

How can an event based service be realized in order to meet these requirements?

The suggested design of the service that was created during the thesis can be seen in appendix
B. There were still some requirements that this service does not fulfill and some possible ways
to solve this has been given in chapter 4.

Are there any problems connected to an implementation of the service?

Some problems were discovered both during the design of the proprietary service as well as
during the implementation of the prototype. Different design decisions was made in order
to solve these problems and others discovered later in the process has been mentioned and
possible solution has been suggested. Below the different solutions and their consequenses
as well as alternative ways of solving and implemneting the service will be discussed.

After having completed the prototype implementation a good insight into the pros and
cons of event based services had been achieved. ResponseOnEvent and the proprietary
service only allowed one trigger condition per serviceToRespondTo which later were seen as
a big limitation to the flexibility of the service. The problems solved through this limitation
was the mapping between an event response and an event logic in the client and to reduce
the complexity for managing the different event logic in the server. It would be possible to
introduce some type of logic identifier for each event logic, an id through which each event
logic would be uniquely identified in the server. This number must then be communicated

42

5.2. ROE and the Proprietary Service

to the client when it sets up an event logic, for instance in the ROE initial response. This
would make it possible to start, stop and clear individual event logic even when they are no
longer uniquely identified through their serviceToResopndTo. The complexity introduced
by this solution would be small but some changes would be required in the format of some
messages. Also it would no longer be possible for the client application to map the event
triggered responses to a certain event trigger condition if the application has set up multiple
event logic with identical serviceToRespondTo.

If the above suggested id of the event logic could be included in the event responses this
would solve the problem but it would change the format of the responses compared to the
UDS or KWP standard. By following the standards and use the same format as ordinary
diagnostic messages for the event responses, it might be possible to reuse some amount of
code from the current system architecture when implementing the event based service. The
amount of implementation work this would save is not clear tough. There is also a risk
that by introducing new messages with a format similar to other messages, ECUs might
confuse the messages with the original messages which in its turn could lead to problems
and undefined behaviours. Therefore the ECUs’ ability to distinguish the old messages from
the new ones should first be tested before they are introduced in the system.

In the proprietary service the option to add time stamps to the responses was added which
also diverges from ROE and the format of diagnostic messages defined in UDS and KWP.
In conclusion, diverging from the ROE and the format of diagnostic messages would make
the event service more flexible but might cause some additional implementation work. A
suggestion of a new format for the event responses would be to use the ROE SID (0xC6)
instead of the SID given by the serviceToRespondTo. This would reduce any eventual safety
risks connected with the way that event responses were sorted out from the ordinary diag-
nostic responses in the client ECU. In the prototype implementation it was assumed that each
response message that arrived to the client ECU that did not have a pending request, was
an event response message. By using the ROE SID for the event triggered responses instead
the event generated responses could be sorted out from the ordinary messages in a better way.

A suggested format of the event triggered responses that diverge from ROE and ordi-
nary diagnostic format can be seen in table 5.1. Here the ordinary event triggered response
message defined by ROE (here denoted by eventResponse) is packaged inside a message
which uses the ROE SID. The logicIdentifier is the identifier given to the event logic in the
server ECU as suggested above.

Data Byte Parameter Name Byte Value
#1 ResponseOnEvent Response SID 0xC6
#2 logicIdentifier 0x00-0xFF
#3 timeStamp_High Byte 0x00-0xFF
#4 timeStamp_Mid_High Byte 0x00-0xFF
#5 timeStamp_Mid_Low Byte 0x00-0xFF
#6 timeStamp_Low Byte 0x00-0xFF
#7 eventResponse = [0x00-0xFF
: : :

#n] 0x00-0xFF

Table 5.1: Suggestion of event triggered response containing time stamp
and an event logic identifier.

43

5.2. ROE and the Proprietary Service

One weakness with an event based service compared to sampling is that one can not know if
there has occurred a problem in the server that has caused the event service to stop working.
If no event responses are sent it could be because the service has not been triggered or that the
service has stopped working. One way of solving this problem would be to have the client
ask the server for its active event logic from time to time using the reportAllActivatedEvents
service that is defined as a part of ROE. This could be a routine performed every time the
ignition is turned on but there is no guarantee that this happens more than every 12th to 20th
hour [42]. This could allow the service to be stopped for long periods of time before it is
discovered that the service is not running properly. A better alternative would be to perform
the checking for active event logic more frequently which of course gives rise to an increased
network load which needs to be weighted against how important it is that the event service
is running at all times.

5.2.1 Network Load

The most prominent benefit with an event based service is the possibility to perform vehi-
cle diagnostics in a way that gives rise to a smaller amount of network load compared to
sampling. Instead of sending a request and getting a response every second, the data will
automatically be sent from the server when the service has been triggered. As a direct conse-
quence of this the network load will be reduced as long as the service does not get triggered
more often than the ordinary diagnostic service sampling rate. It is easy to understand how
the event based service can gives rise to an increased network compared to sampling if the
event occurs with a higher frequency than the sampling rate. This is illustrated in figure 5.1
and 5.2 where two different cases shows how the network load caused by an event based
service depends on the number of times it gets triggered per time unit. The diagrams are
based on fictitious data. The network load is measured in number of messages sent. The
event based service starts at 10 messages since this is the largest amount of messages that it
would take the proprietary service to setup and start its event logic. This is the case when the
eventType onComparisionOfValue is combined with the serviceToRespond to ReadStatusOf-
DiagnosticTroubleCode. For each event, one message will be sent. The alternative to use the
sampling method does not require any setup messages but for each sample two messages
will be sent, one request and one response and this is independent of if the data of interest
has changed or not.

Even if it is possible, it is very unlikely that the event service would give rise to an in-
creased network load compared to the sampling as in the case shown in figure 5.2 since this
would typically be considered a wrong way of using the service. The event service should
not be setup to trigger on events that occur with a high frequency and thus it requires some
knowledge of the person setting up the service or some type of restrictions in the service.

Due to the diagnostic services’ low priority event triggered messages would not prevent
more prioritised messages to be sent on the network but too many triggers from an event
based service could cause problems inside the server ECU. Each ECU has an outgoing buffer
into which each message is put before being sent on the bus. If the buffer would get flooded
by diagnostic messages, the ECU would not be able to send other more critical messages
which could lead to major faults [45]. This speaks in favor for some type of restriction of the
number of messages that the event service should be allowed to generate.

All the communication on CAN today is deterministic. This means that all messages are
sent with a predefined frequency and thus the bus load can be guaranteed to not exceed a
certain value. The introduction of an event based service however introduces undetermin-
ism. If multiple event logic is set up in a vehicle and they all start to generate messages at
the same time this could cause a momentary overload of the bus. This is something that can

44

5.3. Future Work

happen even if the trigger conditions are set up to trigger on events that only occurs with a
low frequency depending on how many instances of the service has been set up.

One way to prevent the above mentioned problems from happening is to not set up the
service to trigger on events that happens too often. It would be possible to implement a
function that determines what should be allowed to trigger on but it would most likely be
a rather complex and memory intense function. One could also set a limit that prevents the
service from sending more than a certain amount of messages every second. This solution is
better since it would be very simple to implement and not increase the size of the service too
much. These suggested solutions does not solve the problem connected to the undeterminis-
tic behaviour of an event based service. The only way to guarantee that multiple event logic
does not cause a bus overload it to limit the amount of event logic that is allowed to be set up
at the same time and for each of them, limit the amount of responses per second.

5.3 Future Work

During the thesis some areas were found that could be of interest to look further into. The
will be summarised here.

ResponseOnEvent is just one way of defining an event based service for vehicle diagnostics.
During the thesis, a brief investigation was made to find alternative services defined in other
standards but non were found. A more thorough investigation could possibly reveal other
alternatives to ResponseOnEvent which could prove interesting to look into.

The trigger conditions that were included in the final proprietary service were the same
as in ResponseOnEvent. They are one of the key factor when talking about the flexibility of
the service. Excluding a certain trigger condition could possibly render the service useless in
some situations. It is therefore important that all the important trigger condition are found
and included to maximize the flexibility of the service.

As it is now, the service runs every 10 milliseconds and checks for new fulfilled trigger
conditions. This frequency is an upper limit of how fast a change can be detected inside
the ECU. This frequency was not chosen based on any specific measurements and it should
therefore be investigated further which frequency that is the most suitable to get a good
enough resolution.

Possibly the detection of new fulfilled trigger conditions could be handled by function
calls to the event service from the functions writing values to the ECU’s memory. This was
not investigated during the thesis but is an interesting way of increasing the resolution of the
service and possibly reduce the amount of processing power required by it.

Different ECUs will be more attractive than others as the host of an event based service.
Depending on which ECUs that are chosen, different constraints are placed on the service
in the form of processing power and memory usage. In the thesis it was never investigated
which ECUs that was the most interesting ones to implement the service on and this should
therefore be done in order to decide how much resources the service should be allowed to
consume. Maybe it will be discovered that the amount of available resources differ to such
a degree that it could be beneficial to make different implementations of the service, some
more extensive and others smaller.

Most of all it is interesting to look into how the motivation for an event based service

45

5.3. Future Work

measures against other services and if the motivation for the service is strong enough to be
picked in front of other features that could be implemented using the same resources.

Figure 5.1: The network load for an event based service compared to sampling.

Figure 5.2: The network load for an event based service compared to sampling.

46

5.3. Future Work

47

6 Conclusion

6.1 Conclusion

In this study it has been showed that there is a need for an event based service in the area of
vehicle diagnostics. It has also been shown that there are some complications connected with
a realization of such a service. One of the biggest complications is the fact that most embed-
ded systems into which the service should be implemented have a very limited amount of
available memory and CPU-power. An event based service also requires the server to send
diagnostic responses without first getting a diagnostic request which can require a recon-
struction of the current software architecture. But with an event based service comes great
benefits. Beyond the possibility to carry out diagnostics in a more efficient way compared to
sampling, there is the possibility to improve the diagnostics of more complex functions due
to the flexibility of an event based service.

How does ResponseOnEvent defined by the UDS-standard meet existing needs of
diagnostics on heavy duty vehicles?

As pointed out by the elicitation of requirements, the ResponseOnEvent service is not suf-
ficient in order to support all the requirements found in the domains. The interviews did
however indicate that the three domains investigated during the thesis would benefit from
an event based service similar to ResponseOnEvent.

How can an event based service be realized in order to meet these requirements?

The proprietary service taken forth as an alternative to ResponseOnEvent supported four
additional requirements and an additional diagnostic service which could be used together
with the proprietary service. The proprietary service was made to follow ResponseOnEvent
as much as possible to simplify the design and speed up the process. Possibly there are other
alternative ways of how an event based service could be designed.

Are there any problems connected to an implementation of the service?

The prototype developed showed on the need for a reconstruction of the software archi-
tecture as well as some decisions that needed to be made concerning the behaviour of the

48

6.1. Conclusion

service.The design and implementation of the service should aim to keep the service memory
and CPU-efficient so that it can become accessible to more ECUs even though they have a
very limited amount of free memory and CPU-power. But even if the ECU has enough free
resources, the event based service will be competing for these against other future function-
ality which might be deemed more critical.

The proprietary service shows that a service can be implemented using the memory that
is available in the TMS. The service did also manage use less than 1% of the processing
power. The processing power needed could also have been regulated by decreasing or in-
creasing the frequency of how often the service runs its loop inside the ECU.

Another important finding is the importance of trigger conditions. As described under
section 4.5.2 as well as 5.2.1 the selection of trigger conditions is essential for the event based
service performance. By allowing multiple trigger conditions for an event, it would enable
more complex diagnostic. However the client ECU will not be able to conclude which con-
dition that has been triggered when it receives the event generated response message if no
extension is made of the response messages. Furthermore by selecting high frequent trigger
conditions there is a risk of flooding the network with diagnostic data which is why the
service should only be used together with event conditions that do not become fulfilled too
often. This could easily be solved by limiting the amount of responses that the service can
generate every second.

Many of the problems found during the thesis can be solved in different ways. It is however
hard to decide which way is the best since it is still unclear exactly how and when the event
based service will be used. To make the right limitations is crucial to make the service as
flexible and useful as possible.

49

6.1. Conclusion

50

6.1. Conclusion

Appendices

51

A Appendix: Interpretation of
ResponseOnEvent

A.1 Interpretation of ROE

The uncertainties that were found in the UDS’s definition of ROE are summarized below
together with the chosen interpretation (the page numbers refers to the pages in the standard).

1. Page 76: When an event occurs the serviceToRespondTo shall be executed, and if
conditions are not correct a negative response message with the appropriate negative
response code shall be sent.
-It is unclear which conditions the standard is referring to here.

Interpretation
Conditions is assumed to refer to the servers ability to execute the serviceToRespondTo.
The server might not support the serviecToRespondTo in the current session or without
additional security access.

2. Page 76: An implementation hint in the standard states that a request to move to any
non-default session shall stop all instances of the ROE services in that client. On return-
ing to the default session all instances of ROE that were stopped shall be re-activated.
-If the server stops its instances of ROE due to a request to move to a non-default
session from one of its clients, shall the other clients with active instances of ROE in
that ECU be notified? It might be beneficial that they know that their instance of the
service has been stopped.

Interpretation
Nothing was mentioned about this in the standard and thus chosen to be a possible
extension. Since an ECU per default is in the default session and only occasionally
moves to another session due to a request from for instance a mechanic connected to
the vehicle using a PC, the number of event triggers that would be missed during that
time is limited. If the event logic also is re-activated upon returning to the default
session there should be no need for such notifications.

3. Page 76: Concerning the same implementation hint above, shall the event services
activated in any non-default session be re-activated upon returning to that session?

52

A.1. Interpretation of ROE

Interpretation
Reactivation of event logic upon returning to for instance the programming session
could complicate the process of re-programming the ECU for example. If the event
logic is being continuously triggered this can block the access to the ECU for re-
programming. This could easily be solved by sending a stop request to the ECU but no
need for this type of automatic reactivation was seen and thus it was decided that ROE
should only reactivate event logic when returning to the default session.

4. Page 76: The start and stop sub functions for ROE shall control all the initialized ROE
services.
-Does this include services that were initialized in other sessions or just the ones initial-
ized in the current session?

Interpretation
Since nothing else was stated, it was decided that the start and stop function should
activate respectively deactivate all the initialized ROE services, independent of in
which session they were initialized. This might cause error messages to be sent at
certain events instead of the intended serviceToRespondTo. This since the serviceToRe-
spondTo might not be supported in the current session.

5. Page 76: It is stated that "the server shall respond to the client which has set up the
event logic and has started the ROE events".
-It is unclear where the event messages will be sent if one ECU sets up the event logic
and another one starts it.

Interpretation
The responses to events shall be sent to the client who set up the event. The client
who started the event logic shall always receive an initial response message if the
suppressPosRspMsgIndicationBit was not set to "TRUE" (’1’).

6. Page 76: "Multiple events shall be signaled in the order of their occurrence."
-Does this apply for all active services in all ECUs or all active services in one ECU or
for each service individually in each ECU?

Interpretation
Since it seemed impossible to order all events in a whole network it was assumed that
the order only applied for event in each ECU individually.

7. Page 77: If an instance of the service is set up with infinite eventWindowTime and
storage status set to storeEvent, the service shall be automatically started upon power
up.
-Does this apply to services initiated in any session?

Interpretation
Since nothing else was stated, the assumption was made that each event with an infinite
eventWindowTime and storage status set to storeEvent should be started on power up
independent of in which session they were initialized.

8. Page 77: In the UDS standard there is a list of services which the standard recommends
as the only services that should be used as the serviceToRespondTo.
-What is the reason only these services should be used?
-It could be beneficial to be able to use other services such as ReadMemoryByAddress.
Could this service be used together with ROE?

53

A.1. Interpretation of ROE

Interpretation
The responses that the recommended services could generate were not limited to a cer-
tain size, so the reason for the recommendation was not to guarantee that the response
could be generated within the execution time of the service. No reason was seen to not
make it possible to use other services together with ROE, but it was assumed that this
would be considered to go against the standard.

9. Page 79: An instance of the ROE service with the storage status storeEvent, shall be
saved in the ECU until it is cleared using clearResponseOnEvent or overwritten by a
new ROE setup event logic request of the same category.
-It is unclear what category refers to here. Category is not mentioned again in the UDS
standard 14229-1_2013.

Interpretation
It was assumed that the category meant serviceToRespondTo, since this would solve
the problem with identical responses to different trigger conditions.

10. Page 79: The subfunction onDTCStatusChange comes with an implementation hint:
"A server resident DTC count algorithm shall count the number of DTCs satisfying
the client defined DTCStatusMask at a certain periodic rate", "If the count is different
from that which was calculated on the previous execution, the client shall generate the
event that causes the execution of the serviceToRespondTo. The last count shall then be
stored as a reference for the next calculation."
-This would cause events to trigger of not only new DTCs that matches the mask but
also triggered by old DTCs that change state so that they no longer match the status
mask. This stands in conflict with the defenition of the service which stated that it
should trigger on new DTCs.

Interpretation
Scania had previously contacted the ones responsible for writing the ISO standard and
confirmed that the service should be triggered also by DTCs that change state.

11. The same implementation hint mentioned above would sometimes cause the service
not to trigger even if a DTC’s status would changed, as long as the total amount of
DTCs matching the status mask remains the same. It would however be of interest to
trigger the event even at these occasions.
-Should the word "count" in the hint be interpreted as counting the amount of DTCs
for which the comparison results in a different value compared to previous calcula-
tion? This would not be consistent with the trigger condition "If the count is different
from that which was calculated on the previous execution, the client shall generate the
event", since the event should be triggered even if the number of DTCs that change
status between the calculations happens to add up to the same amount as the last time.

Interpretation
Scania had previously contacted the ones responsible for writing the ISO standard and
confirmed that it would be better if the event is triggered by counting the number of
DTCs for which the comparison resulted in a different result this iteration compared to
the previous iteration and if the sum is greater than zero, the event should be triggered.

12. In the above citations from the standard, the word "client" is used in the following
text "the client shall generate the event that causes the execution of the serviceToRe-
spondTo".
-If generate the event means to trigger the execution of the serviceToRespondTo, should
it not be the server who generates the event and not the client? Is this a printing error?

54

A.1. Interpretation of ROE

Interpretation
This was assumed to be a printing error.

13. It is not stated if a client can start and stop another clients event logic in a server, and
who will get the "initial" response and who will get the serviceToRespondTo responses.

Interpretation
To make the service more flexible and take height for future needs it was assumed that
it should be possible for a client to activate other clients event logic in servers. The
initial response should be sent to the client who activated the service and the event
triggered responses should be sent to the client who set up the event logic.

14. Page 88: The response message to sub-function startResponseOnEvent will include a
field called eventType. In the example in table 112 this is set to onDTCStatusChange
which was the eventType of the event logic that was set up in the same example. Since
startResponseOnEvent shall start all the initialized event logic in the ECU, what should
the responseMessage look like if multiple event logic are activated by the startRespon-
seOnEvent request? Should multiple responses be sent, one for each started service?

Interpretation
It was assumed that any of the eventTypes of the activated event logic could be used
in the eventType filed and that only one response should be sent. This did not clash
with the standard but the standard was very unclear about this. A better solution that
would diverge from the standard would be to set the eventType of the response equal
to the eventType of the request, as in all the other cases when a client communicates
with a server.

15. Page 88: The response message to sub-function clear and stop responseOnEvent con-
tains a field called numberOfIdentifiedEvents. It is unclear what this field should
contain in the case that all the event logic in an ECU is cleared or stopped. Should
it be the sum if all the different event logic? What should it contain when the clear
sub-function is used to clear non-active event logic? Should the count from the last
time the event logic was active be returned?

Interpretation
It was assumed that the responses to the stop and clear sub-functions should contain
the sum for all active event logic since this could be valuable information.

55

B Proprietary Service

Here a proprietary service designed as an modification of the service ResponseOnEvent
found in ISO 14229-1:2013 will be described. Where any uncertainties might arise, see Re-
sponseOnEvent for clarification.

B.1 Event Service setup

ServiceToRespondTo

The client sets up the service in another ECU by sending a responseOnEvent request message
to that ECU. For a description of the message see table B.3. The request message contains
the event logic, which consists of a trigger condition (eventType) and a diagnostic service
(serviceToRespondTo) that the server shall respond to when the trigger condition becomes
fulfilled. The diagnostic services supported as serviceToRespondTo are listed in table B.1.

The different eventTypes or sub-functions that can be used as trigger conditions are listed in
table B.9 and B.10. The table also contains sub-functions which are used for manipulating the
service in ways such as setting up, starting and stopping the service.

It is only possible to set up one trigger condition for each serviceToRespondTo in an ECU.
This will prevent the client from setting up identical serviceToRespondTo combined with
different trigger conditions.

Overwrite

The initialization of new event logic replaces the old logic in the server for that specific ser-
viceToRespondTo.

Initial Response

The server will check the following parameters in the ResponseOnEvent request:

• sub-function [eventType]

• eventWindowTime

56

B.2. Starting an event logic

• eventTypeRecord (eventTypeParameter #1-#m)

The server shall send a negative response message with the NRC 0x31 if some of the param-
eters are invalid. See table B.8 for a description of the error message.

If the request message was used for setting up new event logic (sub-function type equal
to setup) and all the parameters were valid, a initial positive response is sent. See table B.5
for description of the message.

Storage State

The storage state bit is used to indicate that an event logic shall be activated when the ECU
powers up. An event logic is automatically activate on power up if storage state is set to
“storeEvent” (‘1’).

The storage state bit can only be set to "storeEvent" (‘1’) if the event window time is in-
finite.
*Time Stamps of Responses
When setting up an event logic, the client can define in the responseOnEvent request message
to have his responses to events being time stamped. This is indicated by setting the timeS-
tamp bit to “TRUE” (‘1’). This will add one or more extra bytes to the response messages that
will be sent when the specified event occurs. The extra bytes should contain a time stamp
for when the event logic was triggered. If time stamps are used this will cause the response
messages to differ from their KWP definitions. An example is to use the first byte for hours,
the second for minutes, third for seconds and fourth for hundredth of a second.

ServiceToRespondTo Request SID
ReadStatusOfDiagnosticTroubleCode 0x17
ReadDataByCommonIdentifier 0x22
ReadMemoryByAddress 0x23
InputOutputControlByCommonIdentifier 0x2F
StartRoutineByLocalIdentifier 0x31
StopRoutineByLocalIdentifier 0x32
RequestRoutineResultsByLocalIdentifier 0x33

Table B.1: Supported KWP services as serviceToRespondTo

B.2 Starting an event logic

To start all the initialized event logic in an ECU the message defined in table B.4 is used, with
the eventType equal to startResponseOnEvent (0x05). The format is equal to the first three
bytes in the responseOnEvent request message, see table B.3

It is possible to start a single event logic using the same message format but using the
eventType startSingleResponseOnEventXX where XX is substituted with the eventType
which should be started. The corresponding hexadecimal number is found in table B.9 and
B.10. Table B.2 shows an example request message for starting a single event logic with the
serviceToRespondTo equal to ReadDataByCommonIdentifier. The positive response message
to the startResponseOnEvent or startSingleResponseOnEventXX request is defined by table
B.7 and is sent only if the suppressPosRresponseMessageIndicationBit was set to “False” (‘0’)

57

B.3. Stopping an event logic

in the request message.

Data Byte Parameter Name Byte Value
#1 ResponseOnEvent SID 0x86
#2 eventType =

startSingleResponseOnEventReadDataByCommonIdentifier 0x24
#3 eventWindowTime (will not be evaluated) 0x00

Table B.2: Message for starting a single event logic with the serviceToRespondTo
equal to ReadDataByCommonIdentifier

The "suppressPosResponseMessageIndicattionBit" should only be set to "TRUE" (’1’) if the
sub-function is any of the following: start, stop and clear response on event. Here start and
stop refers to any of the start and stop sub-functions listed in table B.9 and B.10.

If the specified event logic to be activated was not initialized or already active, an error
message with the NRC "conditionsNotCorrect" (0x22) will be sent. The format is given by
table B.8.

B.3 Stopping an event logic

It is possible to stop (deactivate) a single event logic using the corresponding stopSingleRe-
sponseOnEventXX sub-function. XX is replaced by for the corresponding serviceToRe-
spondTo.

It is possible to stop all the event logic in an ECU using the stopResponseOnEvent sub-
function (0x00).

A positive response message will be sent if the suppressPosRresponseMessageIndicationBit
was set to “False” (‘0’) in the request message. The positive response message has the same
format as in the case of starting event logic, see B.7.

If stopSingleResponseOnEventXX was used and the specified event logic to be stopped
was not active, a NRC "conditionsNotCorrect" (0x22) will be sent.

B.4 Clearing Event Logics

It is possible to clear a single event logic using the clearSingleResponseOnEventXX sub-
function. It is also possible to clear all the event logic in an ECU using the clearResponseOn-
Event sub-function (0x06).

If an event logic was cleared using the sub-function clearSingleResponseOnEventXX, the
server shall respond with a positive response only if the suppressPosRresponseMessageIndi-
cationBit was set to “False” (‘0’).

If clearSingleResponseOnEventXX was used and the specified event to be cleared was
not initialized, a NRC "conditionsNotCorrect" (0x22) should be sent.

The server shall always respond with a positive response if the sub-functiuon clearRespon-
seOnEvent was used and the suppressPosRresponseMessageIndicationBit was set to “False”
(‘0’).

58

B.5. Sub-functions (EventTypes)

A cleared event logic is permanently removed from the server. An active event logic that is
cleared shall be removed and any pending events shall be discarded.

B.5 Sub-functions (EventTypes)

The sub-functions or eventTypes supported by the service are summarized in tabel B.9-B.10.
Of them the following are used for setting up new event logics: onDTCStatusChange, on-
TimerInterrupt, onChangeOfDataIdentifier and onComparisonOfValues. They are all labeled
with the sub-function type "setup". The others are used for controlling the service in ways
such as clearing event logic, starting event logic or stopping event logic. They are labled with
the sub-function type "control".

The response to reportActivatedEvents is extended with two bytes per reported event
logic compared to the UDS standard 14229-1:2013. The additional bytes contains the address
of the ECU to whom the serviceToRespondTo is sent and the setting regarding time stamps.
The response is shown in table B.6.

B.6 Triggering of an Event

Events shall be signaled in the order of their occurrence in each ECU individually.

When event logic is triggered the serviceToRespondTo shall be executed. If there is an
error in the serviceToRespondTo or the serviceToRespondTo is not supported in the current
session the server shall send a negative response with appropriate error code to the client.

In case additional events occur while another event is being processed, the later events
will be stockpiled and processed when the first event is done.

When defining the serviceToRespondTo note must be taken to the execution time of the
service. If the service takes to long to execute it might affect the performance of the whole
system. For instance, when using ReadMemoryByAddress as the serviceToRespondTo, the
parameter MemorySize defining how much data that should be communicated, should not
be taken too large since this might cause the execution of the service to take too long.

B.7 Sessions

Event logic can be set up and activated in any session.

The event logic will be deactivated when the session is changed in the ECU from default to
a non-default session. Upon returning to the default session that event logic will be started
again. No start response message shall be sent to the client ECU.

If an ECU is requested to move to the default session from the default session the event logic
shall not be deactivated.

If an ECU is requested to move to a non-default session from any session the event logic will
be deactivated.

B.8 Window time frame

The server shall return a ”final” response to the client only when the event’s finite event
window time has elapsed. No final response shall be sent if the event logic was stopped

59

B.9. MultiClients

by any other means. The format of this final response message is the same as for the initial
response message shown in table B.5.

When an event window time frame has elapsed the event logic shall be stopped and all
pending events shall be discarded.

B.9 MultiClients

The response to all the start request messages will be sent to the client who sent the start
request, independent of to whom the serviceToRespondTo responses will be sent.

Each client can activate the event logic within an ECU regardless of the client who set
up the event logic.

Each client can deactivate the event logic within an ECU regardless of the client who set
up or activated the event logic.

Each client can initialize new event logic regardless of the client that previously set up the
event logic.

Any client can clear any event logic in a server. (To prevent clients from being permanently
blocked by a lost event logic)

B.10 Tables

Data Byte Parameter Name Byte Value
#1 ResponseOnEvent Request SID 0x86
#2 sub-function [eventType] =

Bit #1-6: eventType
Bit #7: storageState
Bit #8: suppressPosRspMsgIndicationBit

0x00-0xFF

#3 eventWindowTime 0x00-0xFF
#4 responseInformation =

Bit #1: timeStamp 0x00-0xFF
Bit #2-8: vehicle Manufacture Specific

#5
..

#5+(m-1)

eventTypeRecord[] = [
eventTypeParameter_1

..
eventTypeParameter_m]

0x00-0xFF
..
0x00-0xFF

#n-(r-1)-1
#n-(r-1)

..
#n

serviceToRespondToRecord[] = [
serviceId
serviceParameter_1

..
serviceParameter_r]

0x00-0xFF
0x00-0xFF
..
0x00-0xFF

Table B.3: ResponseOnEvent request message used for the setup sub-functions

60

B.10. Tables

Data Byte Parameter Name Byte Value
#1 ResponseOnEvent SID 0x86
#2 eventTypeRecord[eventType] =

Bit #1-6: eventType
Bit #7: storageState (will not be evaluated)
Bit #8: suppressPosRspMsgIndicationBit

0x00-0xFF

#3 eventWindowTime (will not be evaluated) 0x00

Table B.4: ResponseOnEvent request used for the control sub-functions

Data Byte Parameter Name Byte Value
#1 ResponseOnEvent Response SID 0xC6
#2 sub-function [eventType] =

Bit #1-6: eventType
Bit #7: storageState
Bit #8: suppressPosRspMsgIndicationBit

0x00-0xFF

#3 numberOfIdentifiedEvents 0x00-0xFF
#4 eventWindowTime 0x00-0xFF
#5 responseInformation =

Bit #1: timeStamp 0x00-0xFF
Bit #2-8: vehicle Manufacture Specific

#6
..

#6+(m-1)

eventTypeRecord[] = [
eventTypeParameter_1

..
eventTypeParameter_m]

0x00-0xFF
..
0x00-0xFF

#n-(r-1)-1
#n-(r-1)

..
#n

serviceToRespondToRecord[] = [
serviceId
serviceParameter_1

..
serviceParameter_r]

0x00-0xFF
0x00-0xFF
..
0x00-0xFF

Table B.5: ResponseOnEvent initial positive response message for all eventTypes except
ReportActivatedEvents (0x04)

61

B.10. Tables

Data Byte Parameter Name Byte Value
#1 ResponseOnEvent Response SID 0xC6
#2 eventType = ReportActivatedEvents 0x04
#3 numberOfActivatedEvents 0x00-0xFF
#4 eventTypeOfActivatedEvent#1 0x00-0xFF
#5 eventTypeWindowTime#1 0x00-0xFF
#6 responseInformation =

Bit #1: timeStamp 0x00-0xFF
Bit #2-8: Future needs

#7 clientAddress 0x00-0xFF

#8
..

#8+(m-1)

eventTypeRecord#1[] = [
eventTypeParameter_1

..
eventTypeParameter_m]

0x00-0xFF
..
0x00-0xFF

#p-(o-1)-1
#p-(o-1)

..
#p

serviceToRespondToRecord#1[] = [
serviceId
serviceParameter_1

..
serviceParameter_o]

0x00-0xFF
0x00-0xFF
..
0x00-0xFF

: : :
#n-(r-1)-4-(q-1) eventTypeOfActivatedEvent#k 0x00-0xFF
#n-(r-1)-3-(q-1) eventTypeWindowTime#k 0x00-0xFF
#n-(r-1)-2-(q-1) responseInformation =

Bit #1: timeStamp 0x00-0xFF
Bit #2-8: Future needs

#n-(r-1)-1-(q-1) clientAddress 0x00-0xFF

#n-(r-1)-(q-1)
:

#n-(r-1)

eventTypeRecord#k[] = [
eventTypeParameter_1

..
eventTypeParameter_q]

0x00-0xFF
..
0x00-0xFF

#n-(r-1)+1
#n-(r-1)+2

..
#n+2

serviceToRespondToRecord#k[] = [
serviceId
serviceParameter_1

..
serviceParameter_r]

0x00-0xFF
0x00-0xFF
..
0x00-0xFF

Table B.6: ResponseOnEvent positive response message for ReportActivatedEvents (0x04)

Data Byte Parameter Name Byte Value
#1 ResponseOnEvent SID 0xC6
#2 eventType 0x00-0x7F
#3 numberOfIdentifiedEvents 0x00-0xFF
#4 eventWindowTime 0x00-0xFF

Table B.7: ResponseOnEvent positive response message for all control sub-functions except
reportActivatedEvents

Data Byte Parameter Name Byte Value
#1 Negative Response SID 0x7F
#2 Request SID 0x86
#3 NegativeResponseCode (NRC) 0x00-0xFF

Table B.8: Negative response message

62

B.10. Tables

Bits 5-0
Value

Description
sub-
function
type

0x00

stopResponseOnEvent
Used to stop ResponseOnEvent in the server. The event logic is not
cleared from the server’s memory.
Length of eventTypeRecord: 0 byte

control

0x01

onDTCStatusChange
Defines the event when a new DTC is detected that matches the defined
DTCStatusMask supplied in the eventTypeRecord of the message
Length of eventTypeRecord: 1 byte

setup

0x02

onTimerInterrupt
Defines the event as a timer interrupt. Every time the timer elapses an
event is triggered.
Length of eventTypeRecord: 1 byte

setup

0x03
onChangeOfDataIdentfier
Defines the event as an internal data record changes its value.
Length of eventTypeRecord: 2 byte

setup

0x04

reportActivatedEvents
Is used to check which instances of the responseOnEvent service that
are active in the server
Length of eventTypeRecord: 0 byte

control

0x05
startResponseOnEvent
Used to start ResponseOnEvent in the server.
Length of eventTypeRecord: 0 byte

control

0x06
clearResponseOnEvent
Used to clear the event logic that has been set up in the server.
Length of eventTypeRecord: 0 byte

control

0x07

onComparisonOfValues
Used to define event logic that compares data defined by a specified
dataIdentifier and a given value using one of the following specified
comparison operator: >, <, =, <>. The event occurs if the comparison is
positive.
Length of eventTypeRecord: 10 byte

setup

0x20

stopSingleResponseOnEventReadDataByCommonIdentifier
Used to stop a single ResponseOnEvent in the server with the service
ReadDataByCommonIdentifier as serviceToRespondTo.
Length of eventTypeRecord: 0 byte

control

0x21

stopSingleResponseOnEventReadDTCInformation
Used to stop a single ResponseOnEvent in the server with the service
ReadDTCInformation as serviceToRespondTo.
Length of eventTypeRecord: 0 byte

control

0x22

stopSingleResponseOnEventRoutineControl
Used to stop a single ResponseOnEvent in the server with the service
RoutineControl as serviceToRespondTo.
Length of eventTypeRecord: 0 byte

control

0x23

stopSingleResponseOnEventInputOutputControlByIdentifier
Used to stop a single ResponseOnEvent in the server with the service
InputOutputControlByIdentifier as serviceToRespondTo.
Length of eventTypeRecord: 0 byte

control

Table B.9: Supported sub-functions (eventTypes)

63

B.10. Tables

0x24

startSingleResponseOnEventReadDataByCommonIdentifier
Used to start a single ResponseOnEvent in the server with the service
ReadDataByCommonIdentifier as serviceToRespondTo.
Length of eventTypeRecord: 0 byte

control

0x25

startSingleResponseOnEventReadDTCInformation
Used to start a single ResponseOnEvent in the server with the service
ReadDTCInformation as serviceToRespondTo.
Length of eventTypeRecord: 0 byte

control

0x26

startSingleResponseOnEventRoutineControl
Used to start a single ResponseOnEvent in the server with the service
RoutineControl as serviceToRespondTo.
Length of eventTypeRecord: 0 byte

control

0x27

startSingleResponseOnEventInputOutputControlByIdentifier
Used to start a single ResponseOnEvent in the server with the service
InputOutputControlByIdentifier as serviceToRespondTo.
Length of eventTypeRecord: 0 byte

control

0x28

clearSingleResponseOnEventReadDataByCommonIdentifier
Used to clear a single ResponseOnEvent in the server with the service
ReadDataByCommonIdentifier as serviceToRespondTo.
Length of eventTypeRecord: 0 byte

control

0x29

clearSingleResponseOnEventReadDTCInformation
Used to clear a single ResponseOnEvent in the server with the service
ReadDTCInformation as serviceToRespondTo.
Length of eventTypeRecord: 0 byte

control

0x2A

clearSingleResponseOnEventRoutineControl
Used to clear a single ResponseOnEvent in the server with the service
RoutineControl as serviceToRespondTo.
Length of eventTypeRecord: 0 byte

control

0x2B

clearSingleResponseOnEventInputOutputControlByIdentifier
Used to clear a single ResponseOnEvent in the server with the service
InputOutputControlByIdentifier as serviceToRespondTo.
Length of eventTypeRecord: 0 byte

control

0x2C

stopSingleResponseOnEventReadMemoryByAddress
Used to stop a single ResponseOnEvent in the server with the service
ReadMemoryByAddress as serviceToRespondTo.
Length of eventTypeRecord: 0 byte

control

0x2D

startSingleResponseOnEventReadMemoryByAddress
Used to start a single ResponseOnEvent in the server with the service
ReadMemoryByAddress as serviceToRespondTo.
Length of eventTypeRecord: 0 byte

control

0x2E

clearSingleResponseOnEventReadMemoryByAddress
Used to clear a single ResponseOnEvent in the server with the service
ReadMemoryByAddress as serviceToRespondTo.
Length of eventTypeRecord: 0 byte

control

0x2F vehicleManufactureSpecific

Table B.10: Continuation: Supported sub-functions (eventTypes)

64

C Controller Area Network

This appendix describes the important components of the Controller Area Network (CAN)
in a more detailed way compared to chapter 2.4.

C.1 Protocol and architecture

A Controller Area Network consist of one or more CAN buses that connect two or more
ECUs that implement the CAN protocol. Each ECU connected to the same bus will be able to
read all the messages on the bus [25]. But sometimes it can be beneficial to direct messages to
certain ECUs for instance when certain values from the ECU should be read or overwritten.
Therefore the CAN protocol specifies a certain field in the CAN messages called identifier
which can be used by the ECUs to filter the communication so that the ECU only processes
certain messages. [30] [15]

In vehicle CAN often consists of several main buses with the purpose of separating crit-
ical components from less critical. Figure 2.6 shows an instance of Scania’s CAN network
with three main buses. The rightmost bus contains the most critical systems such as engine
management systems, while the middle contains the not as critical systems such as alarm
system. The leftmost bus contains non-critical systems such as climate control. The three
buses are joined together by a coordinator gateway ECU called COO or Coordinator. The
data transmission rates vary between the different buses depending on how critical the sys-
tems on that bus are. CAN allows data rates from 20kbit/s up to 1Mbit/s [14]. Due to its light
protocol management, the deterministic resolution and its error detection and retransmission
CAN is a good way for embedded systems to communicate. [15][18][23]

Each ECU supports a set of different diagnostic messages and each message has its own
unique identifier. The identifier is determined in advance by the developers to make sure
that all message identifiers are unique within the system.

CAN allows only one ECU at a time to use the bus for sending messages. Each mes-
sage that is sent on the bus is called a data frame and it is divided into different fields. There
are two types of CAN messages, the ones using the standard version identifier and the ones
using the extended version identifier. In figure C.1 a CAN frame using the extended version

65

C.2. Identifier

is depicted. It is enough to say that the standard version is similar to the extended version
but uses fewer bits for the identifier field. The extended version is the one that the C300 and
the TMS use and therefore the one that will be focused on here. In table C.1 the different
fields are described. [5]

Figure C.1: Simplified structure of an extended CAN data frame

Bits Abbreviation Description
29 Identifier This field contains 29 bits (extended version). It serves two pur-

poses. The identifier specifies the type of the message and the
target address. It is also used to determine which message that
has the highest priority, i.e. which message should be sent on the
bus when multiple hosts are trying to send their message at the
same time. [5][10] How the different bits of the identifier should
be interpreted is defined in the standard J1939 [31].

1 IDE A single bit that indicates the format of the identifier. It is set to
’0’ if a standard version (11 bits) are used and ’1’ if the extended
(29 bits) version is used.

1 RTR The remote transmission request bit is set to ’0’ when information
should be fetched from another node. Otherwise it is set to 1.

4 DLC 4 bits that tells the length of the data field.
0-64 Data The payload. The first byte defined the number of following sig-

nificant data bytes in the message.
16 CRC To make CAN reliable, a CRC (cyclic redundancy field) field is

used so that the receiving host can determine if the received pay-
load was corrupted or not during the transmission. If a host re-
ceives a corrupted message, the protocol enables the host to send
an error flag on the bus and thus resolve the issue.

1 ACK The bit is used in the response message and is set to ’0’ to indicate
if the receiver received an error free message. If an error was
detected the bit is set to ’1’ and the sending node re-transmits the
original message.

7 EOF The seven End of Frame bits indicated the end of the frame and
must be set to ’1’s.

Table C.1: Fields in a CAN frame with extended identifier [5] [10]

C.2 Identifier

A simplified version of the 29-bit identifier is shown in figure C.2. The different fields are
described in table C.2. [26]

66

C.2. Identifier

Figure C.2: Simplified figure of a 29-bit identifier according to J1939

Bits Abbreviation Description
3 Priority Defines the priority of the frame.
1 Reserved Reserved for future needs. Will be set to ’0’.
1 Data Page Should be set to ’0’.
8 PDU Format (PF) Defines if the message should be broadcast

(0xDB) or sent to a specific address (0xDA).
8 PDU Specific (PS) Contains the address of the target ECU or the

broadcast address.
8 Source Address The sending ECU’s address.

Table C.2: The important fields in the extended identifier version [31]

67

D Diagnostic Domain Analysis

For studies where the research goals are of a qualitative nature, it is generally appropriate
to rely on qualitative measures. This section describes the qualitative method that was used
to investigate the different domains and whether an event based service could improve their
diagnostics.

D.1 Semi-structured interview

Interviewing people provides an opportunity to partake in their opinions, thoughts and
knowing. For the interviews to be as efficient as possible it is important that the interviewees
feel comfortable, so that they are willing to share their experiences.[12]

Semi-structured interviews are a combination of structured and unstructured interviews,
which also can be referred to as focused interviews. These types of interviews use open-
ended questions with the intent to elicit unexpected information. Using open-ended ques-
tions means that the questions are formulated in a structured way that allows follow up
questions [12].

By having few questions asked with respect to a larger perspective brings the conversa-
tion to a more natural state, which then causes the interviewee himself to some extent control
the order of the interview. The purpose is to get the person to tell you as much as possi-
ble without him being lead or boxed in by the questions [20]. Using follow up questions
during the interviews are an important part of the open-ended questions for validating the
information, making sure that interpretations are limited.
Before the interviews are conducted, it is important to select which subjects to interview
carefully in order to achieve the best result [6]. The subject needs to be knowledgeable within
the area and well informed of the purpose of the interview. Selecting a subject higher up
in the hierarchy usually gives a broader perspective, leading to more generalized result. For
more technical accurate result it is more suitable to chose a subject closer to the tool or product
used [3].

68

D.2. Analyzing qualitative interview data

Questions Purpose
Describe what you do? Obtain background of the person and

the area of domain.

Describe why you do what you do? Identify the purpose and goal.

Describe a typical situation when your
area is useful?

Identify in which context it is useful.

What are the tools/services used? What is the situation today.

Describe how they differ from each
other?

What features are provided.

Describe a situation when the current
diagnostic methods are not working.

What the restrictions are.

Describe when an event based service
would be useful to you?

Potential features.

Do you see any potential limitations
with an event based service?

Potential risk.

Table D.1: Example of questions used during the thesis

D.2 Analyzing qualitative interview data

Analyzing qualitative data commonly includes five stages such as data preparation, data
acquaintance, data interpretation, data verification and data presentation. The nature of a
qualitative method is of repetitive character, meaning that the researcher must go back and
forth between the steps. The process of going back and forth is a necessity for comparing
aspects or find recurring themes [16].

During the interviews notes and memos are made on about how to categorize the data.
The difficulties with semi-structured interviews lies in how to analyze the data. Memos
and notes are ideas and theories on how proceed with the analyzes at the initial phase and
the transcripts are read through checking for any inconsistencies, preparing the data for the
following stages. Data acquaintance are made by reading the transcripts and making notes
on general themes within the transcript. The transcripts are read through repeatably and
as many categories as necessary are generated. This stage is known as open coding. [1] [16] [3]

When interpreting the data key decisions are necessary in order to reach generalized conclu-
sions. This involves prioritizing certain parts of the data, meaning that attentions is directed
to certain parts while other is left to the side. The list of generated categories with similar
themes are grouped together. The purpose is to reduce the number of categories by merging
similar themes into wider categories. [8] [1] [16]

Validating the data is important due to the nature of the method. The method described
involves risk of taking the meaning out of its context. For validating the method and the
several steps involved there is need of more than one person. Categories, prioritizing the
data and making key decisions in order to reach generalized decision can be compared if
there are several people involved. [16] [8]

69

E TMS UML Diagrams

This appendix contains UML diagrams describing the communication between different
parts of the event based service in the server application. This appendix addresses the in-
terested reader who have a basic understanding of Scania’s software architecture.

E.1 Setup

Figure E.1: A sequence diagram describing the process for setting up an event logic.
The CAN interface calls the ResponseOnEvent method defined in kwpm_pwpc.c which
interprets the content of the incoming CAN message and in its turn calls the method for
setting up the event logic. This method is located in the roe_tms.c file and it manages the

setup of the event logic.

70

E.2. Start

E.2 Start

Figure E.2: A sequence diagram describing the process for starting an event logic. The CAN
interface calls the ResponseOnEvent method defined in kwpm_pwpc.c which interprets the
content of the incoming CAN message and in its turn calls the method for starting the event

logic.

E.3 Check for event triggers

Figure E.3: A sequence diagram describing the process for checking for fulfilled trigger
conditions at two different times. There is only one active trigger condition in the server.
The loop located in kwpm_pwpc.c runs every 10ms and calls the function do_roe() which

checks all the active trigger conditions. In the first check, the trigger condition is not
fulfilled, but in the second it is. To execute and create the response message according to the
serviceToRespondTo, roe_tms.c call ckwp_kwps.h to get a function pointer to the diagnostic
service defined by the serviceToRespondTo. The response generated by calling the function

pointed to is then sent on the CAN bus by using the function Coms_putCanTxMsg_E in
coms.h.

71

F C300 UML Diagrams

This appendix contains UML diagrams describing the software architecture in the C300 that
is of importance to the client application. This appendix addresses the interested reader who
have a basic understanding of Scania’s software architecture.

F.1 System description

Figure F.1: System description of the prototype. ROE contains the client application and
ROE-Handler handles the diagnostic requests and responses. IDiagnosticClient is a interface
to send and receive diagnostic messages. ROE-Parameter contains information related to the

event message and is used to pass information between the classes.

72

F.2. Sequence diagram of request message

F.2 Sequence diagram of request message

Figure F.2: Sequence diagram describing the process for sending a diagnostic request
message. ROE-Handler: Creates a request message and calls DiagnosticManager to put the
message in the outgoing message queue. The DiagnosticNode sets up a session and starts a

timer for the communication. The BusManager is told to transmit the message on CAN.

F.3 Sequence diagram of response message

Figure F.3: Sequence diagram describing the process for receiving a response message.
The BusManager receives the message and creates a DiagnosicMessage out of it.

DiasgnosticNode closes the session and DiagnosticManager removes the corresponding
request from its pending request queue if there are any and calls ROE-Handler. If there is no
pending request in the queue, DiagnosticManager assumes it is an event generated message

and it then calls ROE.

73

Bibliography

[1] Philip Burnard. “A method of analysing interview transcripts in qualitative research”.
In: Nurse education today 11.6 (1991), pp. 461–466.

[2] ISO. Road vehicles – Diagnostic systems – Keyword Protocol 2000 – Part 3: Application layer:
ISO 14230-3. [Scania provided document]. 1999.

[3] Sanna Talja. “Analyzing qualitative interview data: The discourse analytic method”. In:
Library & information science research 21.4 (1999), pp. 459–477.

[4] ISO. Swedish Implementation Standard - Road Vehicles – Diagnostic systems – Keyword Pro-
tocol 2000 – Part 3: Application layer: ISO 14230-3. [Online accessed 8 February 2016 url:
http://www.alfa145.co.uk/obd/14230-3s.pdf]. 2001.

[5] Steve Corrigan. Introduction to the Controller Area Network (CAN). Tech. rep. Revised
2008. Texas Instruments, 2002.

[6] Lauesen Soren. Software Requirements, Styles and Techniques. Pearson Education Limited,
2002.

[7] Karimi Ali, Olsson Johan, and Rydell Johan. “A Software Architecture Approach to
Remote Vehicle Diagnostics”. MA thesis. Göteborg: Chalmers, 2004.

[8] Ulla H Graneheim and Berit Lundman. “Qualitative content analysis in nursing re-
search: concepts, procedures and measures to achieve trustworthiness”. In: Nurse edu-
cation today 24.2 (2004), pp. 105–112.

[9] Axelsson Jakob et al. The Industrial Information Technology Handbook, chapter 57: Vehicle
Functional Domains and Their Requirements. CRC Press, 2004. ISBN: 978-1-4200-3633-6.

[10] National Instruments. Controller Area Network (CAN) Overview. [Online; accessed 14-
February-2016 url: http://www.ni.com/white-paper/2732/en/toc5]. 2004-08-01.

[11] Marscholik Christoph and Subke Peter. Road Vehicles Diagnostic Communication. Hüthig,
2005.

[12] Siw Elisabeth Hove and Bente Anda. “Experiences from conducting semi-structured
interviews in empirical software engineering research”. In: Software metrics, 2005. 11th
ieee international symposium. IEEE. 2005, 10–pp.

[13] Nicolas Navet and Françoise Simonot-Lion. Automotive embedded systems handbook, chap-
ter 4: A Review of Embedded Automotive Protocols. CRC press, 2008.

75

Bibliography

[14] Marco Di Natale. Understanding and using the Control Area Network. [UML:
http://inst.cs.berkeley.edu/ ee249/fa08/Lectures/handoutcanbus2.pd f .Accessed2016 ´

05 ´ 08]. 2008-10-30.

[15] Marco Di Natale. Understanding and using the Controller Area Network. [Online accessed:
3 April 2016. Url: https://inst.eecs.berkeley.edu/ ee249/fa08/Lectures/handoutcanbus2.pd f].
2008-10-30.

[16] Martyn Denscombe. Forskningshandboken: för småskaliga forskningsprojekt inom
samhällsvetenskaperna. Studentlitteratur, 2009.

[17] M. Galla Thomas. Network Embedded Systems: Standardized System Software for Automo-
tive Applications. CRC Press, 2009.

[18] Richard Zurawski. Network Embedded Systems: An Introduction. Chapter 1, An Overview.
CRC Press, 2009.

[19] Graham Pitcher. Growing number of ecus forces new approach to cars electrical architec-
ture. Sept. 2012. URL: http://www.newelectronics.co.uk/electronics-
technology/growing-number-of-ecus-forces-new-approach-to-car-
electrical-architecture/45039/ (visited on 05/02/2016).

[20] Erik Rautalinko. “Reflective listening and open-ended questions in counselling: Prefer-
ences moderated by social skills and cognitive ability”. In: Counselling and Psychotherapy
Research 13.1 (2013), pp. 24–31.

[21] Swedish Implementation Standard. Road vehicles – Unified diagnostic services (UDS), Part
2: Session layer services, ISO 14229-2:2013. [Scania provided document]. 2013.

[22] International Organization for Standardization. Road vehicles – Unified diagnostic services
(UDS), Part 1: Specification and requirements, ISO 14229-1. 2013.

[23] Shanwell Truls and Svensson Håkan. “Remote diagnostics of heavy trucks through
telematics”. MA thesis. SE-100 44 STOCKHOLM: KTH, 2013.

[24] Wohlin Claes. Guidelines for Snowballing in Systematic Literature Studies and a Replication
in Software Engineering. 2014. URL: http://www.wohlin.eu/ease14.pdf (visited
on 05/04/2016).

[25] CAN Bus and OBD 2, with Examples of how CAN Bus and OBD 2 Work! 2014-02-06. URL:
http://www.oneminuteinfo.com/2014/02/can-bus-obd-ii-explained-
for-dummies.html (visited on 05/08/2016).

[26] SAE. J193921 : 201504. 2015.

[27] Scania. Technical product data, System description TMS2, doc.nr: 2335499. 2015-08-10.

[28] Scania. Technical product data, System description C300, doc.nr: 2183519. 2015-12-11.

[29] Scania AB. Company overview. [Online; accessed 02-February-2016]. 2016. URL: http:
//www.scania.se/om-scania/scaniakoncernen/.

[30] Kvaser. CAN Protocol Tutorial. Introduction: The CAN bus @ONLINE. Apr. 2016. URL:
https://www.kvaser.com/can-protocol-tutorial/.

[31] Kvaser. J1939 Introduction @ONLINE. Apr. 2016. URL: https://www.kvaser.com/
about-can/higher-layer-protocols/j1939-introduction/.

[32] RESD. PowerPoint Presentation by Andreas Jonasson (RESD). 2016.

[33] B. Development Engineer - Driver Assistance Controls. 2016-01-02.

[34] C. Senior Engineer - Embedded Tools and Test Environment. 2016-01-04.

[35] A. Senior Engineer - System and Integration Test. 2016-01-22.

[36] Scania. Read out of the number of ECUs in one of Scania’s test vehicles. 2016-02-02.

[37] B. Senior Engineer - Diagnostic Architect. 2016-02-05.

76

http://www.newelectronics.co.uk/electronics-technology/growing-number-of-ecus-forces-new-approach-to-car-electrical-architecture/45039/
http://www.newelectronics.co.uk/electronics-technology/growing-number-of-ecus-forces-new-approach-to-car-electrical-architecture/45039/
http://www.newelectronics.co.uk/electronics-technology/growing-number-of-ecus-forces-new-approach-to-car-electrical-architecture/45039/
http://www.wohlin.eu/ease14.pdf
http://www.oneminuteinfo.com/2014/02/can-bus-obd-ii-explained-for-dummies.html
http://www.oneminuteinfo.com/2014/02/can-bus-obd-ii-explained-for-dummies.html
http://www.scania.se/om-scania/scaniakoncernen/
http://www.scania.se/om-scania/scaniakoncernen/
https://www.kvaser.com/can-protocol-tutorial/
https://www.kvaser.com/about-can/higher-layer-protocols/j1939-introduction/
https://www.kvaser.com/about-can/higher-layer-protocols/j1939-introduction/

Bibliography

[38] United States Environmental Protection Agency. On-Board Diagnostics. 2016-02-24. URL:
https://www3.epa.gov/obd/basic.htm (visited on 05/03/2016).

[39] E. Software Developer, Remote Diagnostics. 2016-02-25.

[40] G F. Senior Engineer - Driver Assistance Controls, Development Engineer - Driver Assistance
Controls. 2016-02-25.

[41] Andreas Carlén. Development engineer. 2016-03-09.

[42] Anna Beckman. Technical Manager, Electrical System Safety. 2016-03-30.

[43] Annika Westrand. Software Design Engineer. 2016-04-19.

[44] Eskilson Anders. Software Design Engineer. 2016-05-15.

[45] Hans Törnquist. Development engineer. 2016-05-15.

[46] Eskilson Anders. Software Design Engineer. 2016-05-23.

[47] Volvo. Recycling Manual L60F, L70F, L90F, L110F, L120F. URL: https : / / www .
volvoce.com/SiteCollectionDocuments/VCE/Documents%20Global/VCE%
20Corporate/Recycling_Manual_L60F__L120F.pdf (visited on 05/02/2016).

77

https://www3.epa.gov/obd/basic.htm
https://www.volvoce.com/SiteCollectionDocuments/VCE/Documents%20Global/VCE%20Corporate/Recycling_Manual_L60F__L120F.pdf
https://www.volvoce.com/SiteCollectionDocuments/VCE/Documents%20Global/VCE%20Corporate/Recycling_Manual_L60F__L120F.pdf
https://www.volvoce.com/SiteCollectionDocuments/VCE/Documents%20Global/VCE%20Corporate/Recycling_Manual_L60F__L120F.pdf

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTATIONSDAG 2016-08-25

EXAMENSARBETE Event based diagnostics on heavy duty vehicles
STUDENT Johan Winér
HANDLEDARE Sven Gestegård Robertz (Scania)
EXAMINATOR Björn Regnell (LTH)

Eventtjänst för diagnos av tunga fordon

POPULÄRVETENSKAPLIG SAMMANFATTNING Johan Winér

För att kunna diagnosera allt mer avancerade funktionerna i fordon måste mer data
läsas ut ur fordonets inbyggda datorenheter. Men nu är gränsen nådd för vad fordon-
snätverket klarar av. Därför har en eventtjänst undersökts som ett sätt att minska
nätverkslasten.
Under åren har antalet datorenheter i fordon ökat och
med dem kommer också möjligheten till mer avancer-
ade funktioner. För att felsöka dessa behövs mer data
läsas ut ur enheterna vilket lett till en ökad last på for-
donets nätverk. För att möjliggöra diagnoseringen av
de mer avancerade funktionerna måste nätverkslasten
som diagnosfunktionerna ger upphov till minskas. Där-
för tittar man nu efter nya sätt att skicka data mellan
enheterna. Ett alternativ är en eventtjänst.
Vid diagnos av fordon läser man idag datan som man

är intresserad av med jämna intervall, så kallad sam-
pling. Det finns dock ingen garanti för att datan ska
ha ändrat sig sedan förra gången den lästes vilket kan
leda till onödig trafik på nätverket om man bara är in-
tresserad av att upptäcka ändringar. M.h.a. en event-
tjänst kan man istället för sampling, låta enheten som
har datan själv ta ansvar för att skicka den när en viss
händelse (event) har inträffat. Detta kan ha stora posi-
tiva effekter på nätverkslasten. En eventtjänst har där-
för undersökts med syfte att utreda hur behovet av en
sådan tjänst ser ut och hur den skulle implementeras.

Det finns redan en beskrivning av hur en eventtjänst
för diagnos av fordon skulle kunna se ut. Beskrivningen
står i en standard och beskriver en tjänst som kallas
ResponseOnEvent (ROE). Denna tjänst undersöktes
för att se vilka problem som finns med en eventtjänst
och hur en eventtjänst skulle se ut för att kunna möta
behoven från olika potentiella användningsområden.

När ROE jämfördes med de funna områdenas behov
visade det sig att en del av behoven inte skulle gå att
stödja med ROE. Därför togs en alternativ design fram
som byggde vidare på ROE men också gjorde vissa be-
gränsningar för att lösa vissa problem som hade upp-
täckts.

Ett av de största problemen som upptäcktes var att
det inte fanns stöd för att låta en datorenhet själv
skicka data utan att den först fått en förfrågan om att
skicka datan. Kommunikationen av data hade alltid
skett genom att en förfrågan skickats till enheten som
den sedan svarat på. För att kunna implementera tjän-
sten skulle en omarbetning av mjukvaran i datoren-
heterna behöva göras vilket skulle kunna kräva några
månaders arbete. Ett annat problem som också upp-
täcktes var att tjänsten skulle komma att kräva mer
minne än vad man först räknat med. Då mängden
minne i datorenheterna är mycket begränsad så skulle
detta komma att påverka användbarheten av tjänsten.
Skulle tjänsten komma att ta upp för mycket minne
skulle den eventuellt inte gå att implementera alls i
vissa enheter. Mycket av designvalen kring den alter-
nativa tjänsten var därför en övervägning mellan flexi-
bilitet och storleken av tjänsten.

Slutsatserna av arbetet är att det finns begrän-
sningar i tjänsten ROE som gör det fördelaktigt att
istället ta fram en egendesignad tjänst anpassad för
de behov man ser. En eventtjänst har stor potential
att minska nätverkslasten men den kan eventuellt inte
göras så flexibel som man hade hoppats p.g.a. den be-
gränsade mängden minne i datorenheterna. För att
kunna implementera tjänsten kan det också krävas en
del omarbetningar av den befintliga mjukvaran för att
stödja eventbaserad kommunikation.

De upptäckta begränsningarna och problemen med
en eventtjänst kommer kunna underlätta en framtida
design och implementation av en eventtjänst och de lös-
ningsförslag som undersöktes kan förhoppningsvis an-
vändas med fördel.

	Tom sida
	Tom sida
	Tom sida

