
GMRES AND

WEIGHTED GMRES FOR

SOLVING NONSYMMETRIC

LINEAR SYSTEMS

GUSTAV KRATZ

Bachelor’s thesis
2016:K16

Faculty of Science
Centre for Mathematical Sciences
Numerical Analysis

C
EN

TR
U

M
SC

IEN
TIA

R
U

M
M

A
TH

EM
A

TIC
A

R
U

M

Abstract

The Implementation and some mathematical properties of GMRES and weighted

GMRES (WGMRES) are described. Numerical experiments originally per-

formed by Essai (1998) are performed to compare the two methods. GMRES

and WGMRES are used to solve a linear system arising from the Poisson

equation and compared with respect to computational effort.

1

Acknowledgements

Thanks to my supervisor Philipp Birken. Solutions of large nonlinear and

linear systems of equations are an inevitable part of his research area, mak-

ing him an expert in the field. Without his guidance, careful reading and

helpful suggestions this paper would not have been accomplished. Thanks to

my examiner Carmen Arévalo for her helpfulness and valuable cooperation.

Lastly I want to express my gratitude to all faculty members and teachers

at the Centre for Mathematical Sciences at Lund University that made this

thesis possible.

2

Contents

1 Introduction 4

2 Arnoldi Iteration and GMRES 6

3 Weighted Arnoldi Iteration and WGMRES 10

4 Convergence properties and links between

GMRES and WGMRES 17

5 Numerical experiments 22

6 Conclusions 32

3

1 Introduction

GMRES and weighted GMRES (WGMRES) are Krylov subpsace methods

suited for solving nonsymmetric linear systems

Ax = b.

It will be assumed throughout that A ∈ Rn×n is invertible so that an exact

solution x = A−1b exists for a given b ∈ Rn. Linear systems arise frequently

in scientific applications, not least in the numerical analysis of differential

equations.

When solving a differential equation numerically, one is often encountered

with the problem of solving a nonlinear system of equations. One way to

approach such a problem is to solve a linear system iteratively until the error

is within an acceptable error margin (e.g. the Newton Raphson method).

The resulting linear systems often exhibit a sparse structure (most elements

are zero). Given an efficient algorithm that exploits this structure when

matrix-vector multiplications are carried out, GMRES is an efficient solver,

being based mainly on matrix-vector multiplications.

A first step of treating a differential equation on a computer is to discretize

the space where the equation is to be solved. For example, an interval [0, T]

can be discretized into n points t1 = 0, t2,…, tn = T , and the equation is then

to be approximated at each of these points. Let x = (x1, x2,…, xn) be an

approximate solution to some differential equation . Let E(x) = (e1, e2,…, en)

represent the difference between x(t) and the exact solution on the middle

of each interval. If the points tk are equally spaced from one another, the

l2-norm of the error vector E is

4

l2(E(x)) =
√∑n

i=1 e
2
i =

√
ETE,

However, some problems requires a non-equidistant discretization (e.g. stiff

problems) and the l2-norm becomes

l2(E(x)) =
√∑n

i=1 e
2
i∆ti =

√
ETDE,

where

d = (∆t1 ,∆t2 , ...,∆tn)

is the length of the intervals between each point and

D = diag(d).

We are faced with a weighted scalar product

(u, v)D = uTDv =
∑n

i=1 diuivi

unlike the Euclidean scalar product (where D = I). Measuring the error

in the Euclidean scalar product would put equally much weight in all the

components of E even though they do not account for an equally large share

of the interval. For our purposes, of course, di > 0 ∀i ∈ {1, ..., n} so (u, v)D

indeed defines a scalar product.

We denote the D-norm by

||x||D =
√
(x, x)D.

This project is based on the paper ”Weighted FOM and GMRES for solving

nonsymmetric linear systems” by Azzedine Essai [1]. The goal is to describe

the mathematics behind GMRES and WGMRES and their implementations.

In section 2 we describe the Arnoldi iteration and GMRES and in section 3

5

we describe the weighted analogues. Links between WGMRES and GMRES

and some convergence properties will be established in section 3 and 4 and

in section 5 we present some numerical experiments aiming to compare the

speed of convergence of the two methods. Conclusions are found in section

6.

2 Arnoldi Iteration and GMRES

The Cayley-Hamilton theorem states that an n×n matrix A satisfies its own

characteristic equation:

χA(A) = An + cn−1A
n−1 + ...+ coI = 0.

Assuming additionaly that A is invertible, we see that the exact solution

A−1b can be written as a linear combination of the form:

− 1
c0
(An−1b+ cn−1A

n−2b+ ...c1b) = A−1b.

This shows that the exact solution A−1b can be expressed entirely in powers

of A times b. The idea of GMRES is to repeatedly approximate the solution

of a linear system Ax = b by a vector in the sequence of Krylov subspaces

Km(A, b) =< b,Ab, ..., Am−1b >

for m = 1, 2... until the approximate solution is sufficiently close to the

real solution. Alteratively, let r0 = b − Ax0, for some arbitrary vector x0.

Then A−1r0 = A−1b − Ix0 so that A−1b = x0 + A−1r0, hence looking for

x ∈ Km(A, b) is equivalent to look for x ∈ x0 +Km(A, r0).

At step m, we solve a least squares problem to find the vector

6

xm ∈ x0+Km(A, r0) that minimizes ||rm||2 = ||b−Axm||2. Solving this least

squares problem directly in each iteration would be a numerically unstable

procedure [2]. It is therefore essential to create a new set of vectors that

span the same space but have better numerical properties. This is what the

Arnoldi iteration takes care of. It creates an orthonormal basis {v1,…, vm} for

the Krylov space and a partial Hessenberg reduction AVm = Vm+1Hm+1. Just

as when computing a QR factorization, Gram-Schmidt orthogonalization has

the advantage that it can be stopped part-way, contrary to e.g. Householder

reflection where the full QR-decomposition is computed. The situation is

analogous when computing a Hessenberg reduction A = V HV T . Exactly

as the Gram-Schmidt algorithm, Arnoldi iteration can stopped part-way to

give a partial Hessenberg reduction AVm = Vm+1Hm+1, where Hm+1 is the

(m + 1) × m upper left section of H and Vm is the first m columns of the

matrix V :

[
A

] [
v1|v2|...|vm

]
=

[
v1|v2|...|vm+1

]


h11 ... h1m

h21 h22
...

. . .

hm,m−1 hmm

hm+1,m


The mth column of this equation can be written

Avm = h1,mv1 + ...+ hm,mvm + hm+1,mvm+1.

This shows that the vector vm+1 satisfies a rucurrence relation involving the

previously produced vectors. Arnoldi iteration implements this idea to create

7

an orthonormal basis by a Gram-Schmidt procedure, such that the relation

AVm = Vm+1Hm+1 holds [2]. We will denote by Hm the matrix Hm+1 with its

last row removed. The starting vector v1 in the Arnoldi iteration is arbitrary,

but we will choose it to be r0 = b − Ax0, where x0 is an initial guess of the

solution of a linear system. (., .)2 denotes the euclidean scalar product.

Algorithm 1: Arnoldi Iteration

v1 = r0/||r0||2
for j=1:m

w = Avj

for i=1:j

hi,j = (w, vi)2

w = w − hi,jvi

end

hj+1,j = ||w||, if hj+1,j = 0, stop

vj+1 = w/hj+1,j,

end

Now that we have an orthonormal basis {v1, ..., vm} of Km(A, r0) and let

Vm be the orthogonal matrix with v1, ..., vm as its columns, we can derive

the minimization problem that defines GMRES. The mth iterate xm can be

written as x0 + Vmy for some y ∈ Rm so for x ∈ x0 +Km(A, r0), we have

||b− Ax||2 = ||b− A(x0 + Vmy)||2 = ||b− Ax0 − AVmy||2 = ||r0 − AVmy||2,

thus

minx∈x0+Km(A,R0)||b− Ax||2 = miny∈Rm ||r0 − AVmy||2 (1)

8

Furthermore, for the vectors v1, ..., vm and the matrix Hm+1 produced by

Algorithm 1, the relation

AVm = Vm+1Hm+1 (2)

holds. Using relation (2), we get

||r0 − AVmy||2 = ||r0 − Vm+1Hm+1y||2.

Since multiplying the vectors by V T
m+1 does not change the norm we get

||V T
m+1(r0 − Vm+1Hm+1y)||2 = ||V T

m+1r0 −Hm+1y||2.

The product V T
m+1r0 in this equation becomes vT1 r0 =

||r0||22
||r0||2 = ||r0||2 and

vTk r0 = ||r0||vTk v1 = 0 for all k > 1.

Thus our final minimization problem becomes

Find y ∈ Rm s.t. ||Hm+1y − βe1|| is minimal (3)

where β = ||r0||2.

The GMRES algorithm is presented in Algorithm 2. This algorithm is in-

efficient for two reasons, and it is not the way GMRES actually should be

implemented.

1. We do not have to compute the solution explicitly in each step to check

the convergence criteria.

2. The QR decomposition can be done by a single Givens rotation since the

9

matrix Hm is Hessenberg.

However, for pedagogical reasons, we present this rather theoretical version

of GMRES and give the more efficient version of WGMRES in the next sec-

tion instead.

Algorithm 2: GMRES

- Choose an initial guess x0, a tolerance ϵ and compute the corresponding

residual r0 = b− Ax0.

- Compute β = ||r0||2, and set v1 = r0/β

- For k=1...

Construct the D-orthonormal basis Vk by Algorithm 1 with starting vector

v1. Solve the least squares problem yk = argminy∈Rk ||βe1 −Hk+1y||2 by QR

factorization. Set xk = x0 + Vkyk and rk = b− Axk.

- Repeat until ||b− Axk|| < ϵ.

3 Weighted Arnoldi Iteration and WGMRES

In the previous section we created orthonormal bases with respect to the

Euclidean norm (2-norm).

The weighted Arnoldi process is the same as the Arnoldi process, the only

difference being the scalar product.

10

Algorithm 3: Weighted Arnoldi Iteration

ṽ1 = v/||v||D
for j=1:k

w = Aṽj

for i=1:j

h̃i,j = (w, ṽi)D

w = w − h̃i,j ṽi

end

h̃j+1,j = ||w||D, if h̃j+1,j = 0 stop

ṽj+1 = w/h̃j+1,j

end

The basis Vm = (v1, ..., vm) constructed by the Arnoldi iteration is orthonor-

mal, thus

V T
mVm = Im.

Multiplying (2) from the left by V T
m gives

V T
mAVm = V T

mVm+1Hm+1.

Looking at the right hand side, V T
mVm+1 becomes the m × m identity plus

an additional column of zeros on the right. This column of zeros, when

multiplied by Hm+1, deletes the last row of Hm+1, which is exactly Hm,

hence

Hm = V T
mAVm

Similar relations hold for the D-orthonormal basis created in the weighted

Arnoldi iteration (everything related to the weighted Arnoldi algorithm will

11

be denoted with a tilde on top):

Ṽ T
mDṼm = Im, (4)

H̃m = Ṽ T
mDAṼm, (5)

AṼm = Ṽm+1H̃m+1, (6)

where also here H̃m is H̃m+1 with it last row removed.

We now prove some relations connecting the matrices generated by Algo-

rithms 1 and 2.

Proposition 1 Assuming that algorithms 1 and 2 do not break down before

the mth step, there exists an upper triangular matrix Um such that

Ṽm = VmUm, (7)

Um = V T
m Ṽm, (8)

U−1
m = Ṽ T

mDVm, (9)

and H̃m+1 can be expressed in terms of Hm+1 as

H̃m+1 = U−1
m+1Hm+1Um (10)

Proof

Vm and Ṽm are bases for the same space and hence Um is a change of basis

matrix, which always exist.

Multiplying (7) from the left by V T
m gives (8).

12

Multiplying (7) from the left by Ṽ T
mD gives Ṽ T

mDṼm = Im = Ṽ T
mDVmUm since

Ṽm is D-orthogonal. Hence U−1
m = Ṽ T

mDVm.

Using (6) and changing Ṽm on the left to VmUm according to (7), we obtain

AVmUm = Ṽm+1H̃m+1.

Also by (7) we have that Ṽm+1 = Vm+1Um+1, hence

AVmUm = Vm+1Um+1H̃m+1

Now changing AVm to Vm+1Hm+1 according to (2) we obtain

Vm+1Hm+1Um = Vm+1Um+1H̃m+1.

Multiplying from the left by V T
m+1 and then by U−1

m+1 gives (10).

Proposition 2. Under the same assumptions as in Proposition 1, H̃m can

be expressed in terms of Hm by the relation

H̃m = U−1
m HmUm + hm+1,mum,mgm+1e

T
m, (11)

where gm+1 ∈ Rm is obtained from column m + 1 of the matrix U−1
m+1 by

deleting its last component.

Proof

Let gi,j (1≤ i, j ≤ m) be the entries of the matrix U−1
m . We can write the

matrix U−1
m+1 as

U−1
m+1 =

 U−1
m gm+1

0 . . . 0 gm+1,m+1

 =

 Û−1
m+1

0 . . . 0 gm+1,m+1

 ,

13

so that Û−1
m+1 is the matrix U−1

m+1 with its last row removed. Using (10), but

omitting the last row of the matrix, we get

H̃m = Û−1
m+1Hm+1Um

from which we can see the result by looking at the above equation in matrix

form:

H̃m =
[
U−1
m gm+1

] Hm

hm+1,me
T
m

Um = U−1
m HmUm + hm+1,mgm+1e

T
mUm.

Since Um is upper triangular, eTmUm = um,me
T
m and we have the desired result.

Now that we have the weighted Arnoldi algorithm in place and some relations

between it and the Arnoldi algorithm we derive the correct minimization

problem and show how WGMRES is implemented.

The mth iterate xm can be written as

xm = x0 + Ṽmy,

for some y ∈ Rm. Hence, the mth residual can be written

rm = b− A(x0 + Ṽmym) = r0 − AṼmym = Ṽm+1(β̃e1 − H̃m+1ym),

where β̃ = ||r0||D and the last equality follows from (6). This gives

||rm||2D = ||Ṽm+1(β̃e1 − H̃m+1ym)||2D = ||β̃e1 − H̃m+1ym||22,

since the matrix Ṽm+1 is D-orthonormal. Thus the minimization problem in

WGMRES is

Find y ∈ Rm s.t. ||β̃e1 − H̃m+1y||2 is minimal. (12)

14

We now present the weighted GMRES algorithm. At step m, this algorithm

requires storing the matrix Ṽm. If m grows large, this storage might be a

constraint. A remedy to such a problem is to restart the process after some

m iterations, where we simply let the approximate solution after m steps be

our new initial guess, i.e. set xm = x0 and restart the process. Following

the idea in [1], we will choose the elements of the weight matrix D to be

di =
√
n

||r0||2 |r0(i)|. The idea of this is to speed up the convergence of the

solution by favoring those elements in the residual at each step that are

large. Furthermore, this weight matrix is updated whenever the algorithm

is restarted to speed up the convergence even more. Restarted WGMRES

is denoted WGMRES(m). Before presenting the algorithm in the way it

is implemented, we describe how the convergence criteria can be checked

without computing the solution in each step, as promised when Algorithm 2

was presented.

Looking at the minimization problem ||β̃e1 − H̃m+1y||2 and given a full QR-

decomposition of H̃m+1 = Q̄R̄, where

R̄ =

 R

0 ... 0


we get

||Q̄β̃e1 − R̄y||2 = ||ḡm − R̄y||2.

Since we know that

gm = Ry

has a unique solution, i.e gm −Ry = 0 we must have that

15

||ḡm − R̄y||2 = ||

 0

γm+1

 ||2 = |γm+1|

Therefore the solution xm = x0 + Ṽmy is computed only if γm+1, the last

component of Q̄βe1, is less than the given tolerance in absolute terms.

The QR-decomposition is done by a single Givens rotation (step 4 in Algo-

rithm 4).

Algorithm 4 WGMRES(m)

1. Choose m, an initial guess x0, a tolerance ϵ and compute the correspond-

ing residual r0 = b− Ax0.

2. Compute β̃ = ||r0||D, ṽ1 = r0/β̃ and choose weight vector d (D = diag(d))

3. For k=1...

Construct the D-orthonormal basis Ṽk by Algorithm 3 with starting vector

ṽ1.

4. For i=1:k-1  hi,k

hi+1,k

 =

 ci si

−si ci

 hi,k

hi+1,k


b =

√
h2
k,k + h2

k+1,k, sk = hk+1,k/b

ck = hk,k/β, hk,k = b

γk+1 = −skγk, γk = ckγk

if |γk+1| ≥ ϵ, vk+1 = wk/hk+1,k else

For i=k,...,1

16

ai =
1

hi,i
(γi −

k∑
j=i+1

hi,jaj)

x = x0 +
k∑

i=1

aivi

END

5. If k=m: form the solution and set x0 = xm, r0 = rm and restart (go to

step 2).

4 Convergence properties and links between

GMRES and WGMRES

First off, we can conclude that the weighted Arnoldi algorithm requires more

operations than the Arnoldi algorithm, coming from the use of a non-standard

scalar product.

Computational cost

Let Nnz denote the number of nonzero elements of A. At each step, one

matrix-vector product is carried out in both Arnoldi iteration and weighted

Arnoldi iteration, requiring ≈ 2mNnz operations after m steps. Secondly,

the Euclidean inner product costs ≈ 2n operations for Arnoldi and ≈ 3n

operations for the D-inner product in the weighted Arnoldi. The inner loop

requires ≈ 2jn operations for Arnoldi and ≈ 3jn operations for weighted

Arnoldi. Forming the vector vj+1 costs 2jn operations for both algorithms.

In total, we have 2mNnz + 2m2n for Arnoldi and 2mNnz + (5/2)m2n for

weighted Arnoldi [1]. WGMRES can only be faster if less iterations are

needed.

17

Convergence properties

If x ∈ x0 +Km, it can be written as

x = x0 +
m−1∑
j=0

cjA
jr0,

so the residual can be written

b− Ax = b− Ax0 −
m−1∑
j=0

cjA
j+1r0 = r0 −

m∑
j=1

cj−1A
jr0.

The minimization problem can therefore be formulated as a polynomial ap-

proximation problem where we seek the polynomial pm ∈ Πm s.t.

||pm(A)r0||2

is minimized, where Πm = {polynomials p of degree ≤ m with p(0) = 1}.

This results in the following theorem.

Theorem 1. Let A be nonsingular and xm be the mth iterate. Then for all

p̂ ∈ Πm,

||rm||2 = minp∈Πm||p(A)r0||2 ≤ ||p̂(A)r0||2. (13)

Note that since ||p̂(A)r0||2 ≤ ||p̂(A)||2||r0||2 we also have that

||rm||2
||r0||2

≤ ||p̂(A)||2. (14)

Assume that A is diagonalizable

A = V ΛV −1

where V is the nonsingular matrix consisting of the eigenvectors of A and

Λ is a diagonal matrix with the eigenvalues on the diagonal. We can then

create the estimate

18

||p̂(A)||2 ≤ ||V ||||p̂(Λ)||||V −1|| ≤ κ(V)maxz∈σ(A)|p̂(z)|,

where σ(A) is the sprectrum of A and κ(V) is the condition number of V [2].

Using this and (14) we get the following result.

Theorem 2. Let A = V ΛV −1 be nonsingular and diagonalizable. Then for

all p̂ ∈ Πm the mth iterate satisfies

||rm||2
||r0||2

≤ κ(V)maxz∈σ(A)|p̂(z)|. (15)

The method that finds a polynomial whose size is small on the spectrum of

A might exhibit faster convergence.

Links between GMRES and WGMRES

Let xW
m = x0 + Ṽmy

W
m denote the approximate solution generated by WGM-

RES at step m. By (7), Ṽm = VmUm. Let ŷWm = Umy
W
m . We can then write

xW
m − x0 = Ṽmy

W
m = Vmŷ

W .

yWm is the solution to the minimization problem (12), i.e.

yWm = argminy∈Rm ||β̃e1 − H̃m+1y||2.

Since yWm = U−1
m ŷWm , we see that

ŷm
W = argminŷ∈Rm ||β̃e1 − H̃m+1U

−1
m ŷ||2.

Using (10) of Proposition 1, we obtain (β = ||r0||2)

ŷWm = argminŷ∈Rm ||U−1
m+1(βe1 −Hm+1ŷ)||2.

19

Now notice that ŷWm is the solution to the same minimization problem as

for GMRES but with the norm induced by U−T
m+1U

−1
m+1 instead of Im+1, the

euclidean one. Therefore we have

ŷWm = argminŷ∈Rm||βe1 −Hm+1ŷ||U−T
m+1U

−1
m+1

(16)

Remark The matrix U−T
m+1U

−1
m+1 is symmetric since (U−T

m+1U
−1
m+1)

T = (U−1
m+1)

T (U−T
m+1)

T =

U−T
m+1U

−1
m+1.

(16) allows us to relate the residuals created in each step of GMRES and

WGMRES [3].

Theorem 3 The mth residuals rm and r̃m created from GMRES and

WGMRES respectively, satisfy

√
λmin(U

−T
m+1U

−1
m+1)||rm||2 ≤ ||r̃m||D ≤

√
λmax(U

−T
m+1U

−1
m+1)||rm||2, (17)

where λmin and λmax are the smallest and largest eigenvalues of the matrix

in question, respectively.

Proof

From (16), we have that ||r̃m||D = minŷ∈Rm ||βe1 −Hm+1ŷ||U−T
m+1U

−1
m+1

.

We also know that U−T
m+1U

−1
m+1 is symmetric, and hence diagonalizable. Let

QΛQT be a diagonalization of U−T
m+1U

−1
m+1, where Λ is a diagonal matrix with

the egeinvalues {λi}m+1
i=1 of U−T

m+1U
−1
m+1 on its diagonal. Let

zm = argminz∈Rm ||βe1 −Hm+1z||2.

20

Then,

||r̃m||2D ≤ ||βe1 −Hm+1zm||2U−T
m+1U

−1
m+1

=

(βe1 −Hm+1zm)
TU−T

m+1U
−1
m+1(βe1 −Hm+1zm) =

(βe1 −Hm+1zm)
TQΛQT (βe1 −Hm+1zm).

For notational simplicity, let w = (βe1 − Hm+1zm). The last expression

becomes

wTQΛQTw = (QTw)TΛ(QTw) =
m+1∑
i=1

λi(q
T
i w)

2

≤ λmax(U
−T
m+1U

−1
m+1)

m+1∑
i=1

λi(q
T
i w)

2.

The summand is the squared norm of the vector w = (βe1 −Hm+1zm). The

norm of this vector is ||rm||2 since zm minimizes ||βe1 −Hm+1z||2. By taking

square roots, it follows that

||r̃m||D ≤
√

λmax(U
−T
m+1U

−1
m+1)||rm||2.

We use a similar procedure for the other inequality. Now let

ym = argminy∈Rm||βe1 −Hm+1y||U−T
m+1U

−1
m+1

Then

||r̃m||2D = ||βe1 −Hm+1ym||2U−T
m+1U

−1
m+1

=

(βe1 −Hm+1ym)
TU−T

m+1U
−1
m+1(βe1 −Hm+1ym).

Again using the diagonalization of U−T
m+1U

−1
m+1, this expression becomes

m+1∑
i=1

λi(q
T
i (βe1 −Hm+1ym))

2

21

We can estimate this by factorizing out λmin(U
−T
m+1U

−1
m+1) out of the expres-

sion. What remains is then the squared norm of the vector (βe1 −Hm+1ym).

We know that zm minimizes this quantity, hence replacing ym by zm can only

make this expression smaller. Still, ||βe1 −Hm+1zm||2 = ||rm||2. We get that
m+1∑
i=1

λi(q
T
i (βe1 −Hm+1ym))

2 ≥ λmin(U
−T
m+1U

−1
m+1)||rm||22

and the proof is complete.

Corollary The mth residuals rm and r̃m created from GMRES and

WGMRES respectively, satisfy

√
λmin(D)||rm||2 ≤ ||r̃m||D ≤

√
λmax(D)||rm||2. (18)

Proof

The result follows from the previous theorem and the calculation

U−T
m+1U

−1
m+1

(9)
= (Ṽ T

m+1DVm+1)
TU−1

m+1 = V T
m+1D

T Ṽm+1U
−1
m+1

(7)
=

V T
m+1DVm+1Um+1U

−1
m+1 = V T

m+1DVm+1,

which shows that U−T
m+1U

−1
m+1 and D are similar and hence have the same

singular values (and also the same eigenvalues since U−T
m+1U

−1
m+1 is symmetric).

5 Numerical experiments

In this section we present some numerical experiments. Examples 1-5 are

the experiments originally presented in Essai [1]. The WGMRES algorithm

presented in Essai updates the weight matrix D at each restart. As our moti-

vation of using WGMRES is different, we will also perform some experiments

22

without re choosing the weight matrix and even investigate what happens if

WGMRES and GMRES without restart is applied to the problems. As will

be seen, the speedup is lost when the two methods is run without restart for

these examples. The matrices tested in examples 1-5 are from the Matrix

Market Web server [4] and the right hand side b is a random vector with

entries uniformly distributed in [0,1]. The initial guess is x0 = (0, ..., 0).

The iteration is stopped after a predefined maximum number of iterations

or when

||r||2/||b||2 < ϵ,

where ϵ depends on the problem. As the right-hand side b in the experiments

is a random vector, the exact results from [1] are never recreated. In example

2 we investigate how the convergence is affected if we do not re choose the

matrix D at each restart. For all other examples we also run the algorithms

without restart. The code was written in MATLAB as described by Algo-

rithm 4. All tables show the average over ten trials if not otherwise stated,

while the figures provide an example of one of those trials. In Example 6 we

solve the linear system arising from the Poisson equation with five different

weight matrices.

Example 1. The matrix add20 is a 2395x2395 matrix with 17319 nonzero

entries. For this matrix we compare GMRES(10) and WGMRES(10) with

ϵ = 10−12. The result is presented in Figure 1 and Table 1.

23

Figure 1: GMRES(10) vs WGMRES(10) on the matrix add20.

Table 1: add20

Method GMRES(10) WGMRES(10) GMRES WGMRES
Iterations 773 112 309 308
Time 2.61s 0.49s 0.64s 0.81s

24

Example 2. orsirr_1 is a 1030x1030 matrix with 6858 nonzero entries.

We let ϵ = 10−11 and compare GMRES(m) and WGMRES(m) for eight

different values of m, ranging from 10 to 80. We also include a third method,

WGMRES(m) but without re choosing the weight matrix D after each cycle.

This is to demonstrate that the speedup caused by WGMRES(m) compared

to GMRES(m) is lost if the weight matrix is not re chosen at each restart

for this example. The results are shown in Table 2. The optimal choice of m

with respect to time agrees with Essai’s findings. * indicates that the method

failed to converge within 2000 iterations for at least one of the ten trials.

Table 2: orrsirr_1

GMRES WGMRES WGMRES (constant D)
m iterations time iterations time iterations time
10 * * * * * *
20 806 3.33 208 1.04 1000 6.06
30 246 1.97 139 1.38 230 2.72
40 127 1.63 70 1.27 111 2.15
50 94 1.68 53 1.19 107 2.92
60 64 1.506 40 1.32 52 2.09
70 48 1.58 31 1.41 37 1.80
80 37 1.510 26 1.41 35 2.25

Example 3. fs_541_2 is a 541x541 matrix with 4285 nonzero en-

tries. Both methods performed poorly on this matrix, failing to converge

for m = 40. Essai found that the convergence curve oscillates for GM-

RES(40) but converges in 138 iterations for WGMRES(40), even though it

also oscillates until iteration 107. This matrix was tested six times for both

GMRES(m) and WGMRES(m) for m = 40, 60, 80, 100, 120. Neither GM-

RES(m) or WGMRES(m) converged for m < 100. ϵ was set to 10−10 and

25

maximum number of iterations to 1000. For m = 100 the result varied as

much as from 11 iterations to not converging at all. The results over six

runs for GMRES(m) are shown in table 3 and for WGMRES(m) in table 4.

kl indicates the number of iterations in trial l and tl time elapsed in trial l.

It failed to converge for both GMRES and WGMRES without restart with

tolerance ϵ = 10−10. The results with ϵ = 10−9 are shown in figure 2.

Table 3: GMRES(m) on fs_541_2

m k1 t1 k2 t2 k3 t3 k4 t4 k5 t5 k6 t6
100 23 1.45 29 1.79 * * * * * * 11 0.69
120 9 0.75 11 0.60 11 0.87 10 0.74 10 0.66 11 0.80

Table 4: WGMRES(m) on fs_541_2

m k1 t1 k2 t2 k3 t3 k4 t4 k5 t5 k6 t6
100 81 6.92 97 7.89 413 29.76 169 12.37 * * 11 1.09
120 8 0.93 9 0.91 9 1.02 9 0.83 11 1.02 9 0.77

26

Figure 2: GMRES vs WGMRES without restart on the matrix fs_541_2
with tolerance ϵ = 10−9.

Example 4. bfw782a is a 782x782 matrix with 7514 nonzero entries.

The result with m=20 and ϵ = 10−12 is presented in Figure 3 and table 5

Table 5: bfw782a

Method GMRES(20) WGMRES(20) GMRES WGMRES
Iterations 418 159 615 607
Time 1.47s 0.92s 5.00s 5.11s

27

Figure 3: GMRES(20) vs WGMRES(20) on the matrix bfw782a.

Example 5. memplus is a 17758x17758 matrix with 126150 nonzero

entries. The result for m=30 and ϵ = 10−12 are shown in figure 4 and table

6.

Table 6: memplus

Method GMRES(30) WGMRES(30) GMRES WGMRES
Iterations 434 126 1048 1046
Time 7.49s 19.97s 190.48s 245.79s

28

Figure 4: GMRES(30) vs WGMRES(30) on the matrix memplus.

The Poisson equation

Example 6. In examples 1-5 the weight matrix D was chosen in a way to

speed up convergence. As mentioned in the introduction, we can imagine

situations where the weight matrix is given from the problem, rather than

chosen in order to speed up convergence. This example aims to investigate

what happens when WGMRES is run with a weight matrix D that is some-

what arbitrarily chosen. Consider the linear system that arising from the

29

Poisson equation on an interval [a,b] with Dirichlet boundary conditions:

−u
′′
= f

u(a) = α, u(b) = β

Applying a finite difference method

−uj+1−2uj+uj−1

∆x2 = f(xj), j = 2, 3, ..., N − 1

u0 = α, uN+1 = β

we get the system

2 −1

−1 2 −1
.

−1 2 −1

−1 2




u1

u2

...

uN

 =


∆x2f(x1) + α

∆x2f(x2)
...

∆x2f(xN) + β



Now let

d = (∆x1,∆x1, ...,m,∆x2, ...,∆x2),

30

representing a non-equidistant discretization, wherem = ∆x1+∆x2

2
. The linear

system arizing from this discretization is then



2
∆x2

1

−1
∆x2

1

−1
∆x2

1

2
∆x2

1

−1
∆x2

1.
−1
m2

2
m2

−1
m2

.
−1
∆x2

2

2
∆x2

2

−1
∆x2

2

−1
∆x2

2

2
∆x2

2




u1

u2

...

uN

 =


f(x1) +

α
∆x2

1

f(x2)
...

f(xN) +
β

∆x2
2



Let [a,b]=[0,1], α = β = 0 and N=500. We solve the first system for two

different right-hand sides, f(x) = sin(πx) and f(x) = x(e1−x − 1). Five tests

are run on this problem for each right-hand side f .

We use D = I which would correspond to an equidistant discretization of the

interval. We then use the same weight matrix as in examples 1-5, namely

Dr0 =
√
n

||r0||2diag(|r0|). Lastly we construct three weight matrices, represent-

ing non-equidistant discretizations of the problem, as

D =
√
n

||r0||2diag(∆x1, ...,∆x1,m,∆x2, ...,∆x2), for three different values of

∆x1 and ∆x2. These three weight matrices will be denoted Dmin=h where h

represent the smallest entry on the diagonal.

The results are found in Table 7 and 8. The tolerance was set to ϵ = 10−10.

Table 7: The Poisson equation with f(x) = sin(πx)

D = I Dr0 Dmin=0.8 Dmin=0.5 Dmin=0.33

Iterations 252 252 252 252 252
Time 0.42s 0.42s 0.44s 0.46s 0.47s

31

Table 8: The Poisson equation with f(x) = x(e1−x − 1)

D = I Dr0 Dmin=0.8 Dmin=0.5 Dmin=0.33

Iterations 500 500 500 500 500
Time 1.46s 1.56s 1.69s 1.66s 1.56s

6 Conclusions

WGMRES(m) performs better than GMRES(m) on all matrices tested in

examples 1-5, verifying the results in Essai [1], although both GMRES(m)

and WGMRES(m) performed poorly on the matrix fs_541_2 for m < 100.

It was also shown that for the matrix orsirr_1, the speedup was lost when the

weight matrix D was not re chosen at each restart. For the other examples,

the two methods needed almost exactly as many iterations when run without

restart. WGMRES needed more time, being more computationally costly.

In example 6, the difference between the five different choices of the weight

matrix was negligible.

32

References

[1] Azeddine Essai. Weighted fom and gmres for solving nonsymmetric linear

systems. Numerical Algorithms, 18(3-4):277–292, 1998.

[2] Lloyd N Trefethen and David Bau III. Numerical linear algebra, vol-

ume 50. Siam, 1997.

[3] Jennifer Pestana and Andrew J Wathen. On choice of preconditioner for

minimum residual methods for nonsymmetric matrices. 2010.

[4] Matrix Market Web Server. http://math.nist.gov/MatrixMarket/, ac-

cessed April 1, 2016.

33

Bachelor’s Theses in Mathematical Sciences 2016:K16
ISSN 1654-6229

LUNFNA-4012-2016

Numerical Analysis
Centre for Mathematical Sciences

Lund University
Box 118, SE-221 00 Lund, Sweden

http://www.maths.lth.se/

