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The Berkeley Innovation Index (BII) is a tool developed for assessment of individual
innovation capability. The index is based on responses to a survey that constitutes of
questions linked to domain abilities, i.e., sub-traits, that are hypothesized to govern an
individual’s overall innovation ability. The underlying algorithm for the BII produces a
score representing the test-takers’ proficiency on the domain ability continua as well as
a score associated with their general innovation ability. In this thesis, the algorithm for
the BII is constructed by applying a Higher-Order Item Response Theory model for hi-
erarchical latent trait estimation. Simultaneous estimation of the vast amount of model
parameters is done by employing a Markov Chain Monte Carlo (MCMC) method that
utilizes a multi-level bayesian inference sampling technique. The validity, feasibility, and
usefulness of the approach is analyzed throughout the thesis. The statistical relevance
of the obtained results is evaluated by examining the Deviance Information Criteria,
the Item Response Theory Information Criteria, the posterior predictive values, different
convergence criteria for the MCMC chains etc. In order to reduce the amount of ques-
tions, and make the index more user-friendly, feature selection techniques are applied
to explore the possibility of discarding items that contribute with the least amount of
information. An easily implementable and scalable algorithm is presented, and the ad-
vantages/disadvantages of the acquired model are discussed. Lastly, recommendations
on how to further improve the Berkeley Innovation Index are proposed.
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To handle failures is an important aspect of an innovative mindset.

— Ancient Swedish entrepreneurial proverb

The Authors during the indian summer of 2010
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Part I

Measuring the Unmeasurable

Key takeaways: In Part I the importance of measuring individual innovation capabil-

ity is presented. Different innovation capability measures are introduced and the past

research on the Berkeley Innovation Index is highlighted. Furthermore, the requirements

for the new Berkeley Innovation Index algorithm are postulated.



Chapter 1

Introduction

In the beginning...

—God (Gen.1:1)

In today’s society, innovation is regarded as one of the key drivers for economic growth,

it is the foundation for technological progress and the ability to innovate is one of the

main competitive advantages for both individuals and organizations.

In November 2015, Brian Quinn (Senior Contributor at Forbes Magazine) wrote an article

with the title Why Measuring Innovation Matters. In the article, Quinn highlights the

old management saying "What gets measured gets done", i.e., if you can set a target and

measure progress, then any type of goal will be attainable.

Quinn writes: "Without measuring these things [innovation], we’re effectively driving

without headlights — faintly hoping once again that innovation will deliver something

useful rather than demanding it, and holding ourselves accountable for achieving it."

However, innovation is quite an abstract and vague concept. It is difficult to precisely

define innovation and even more difficult to measure innovation capability. Therefore, in

order to assess innovation capability one needs to define what it is, in what context it is

applied, and what it ultimately is set out to deliver.

This thesis builds upon innovation research that has been carried out at the Sutardja

Center for Entrepreneurship and Technology (SCET) at the University of California,

Berkeley. At the SCET an international research group have identified characteristics

linked to an individual’s level of innovation capability. The research group has also

developed a survey, composed of a set of questions, that measures individual innovation

capability. The final product of this research is an index called the Berkeley Innovation

Index (BII) which enables individuals to assess their level of innovation capability.

2



Chapter 1. Introduction 3

However, in order for the index to be relevant, there has to be a theoretically valid and

statistically relevant algorithm that calculates the index scores with the use of answers

given to the survey questions. The BII algorithm is what we aim to construct in this

thesis.

1.1 Scope of the Thesis

In this thesis, we set out to quantify and validate the innovation capability scores given

by the BII. We aim to construct an algorithm that is valid according to modern standards

in statistics, psychometrics and applied mathematics. The algorithm should be scalable,

easy to implement, and customizable so that future iterations of the questionnaire and

new entries in the data set also can make use of the findings in this thesis.

As a result, we want to present an algorithm that can be used to evaluate an individual’s

BII scores instantly. We will also analyze the relevance and precision of the measures

obtained as well as give recommendations on how the accuracy of the results can be

improved.

1.2 Thesis Outline

The thesis is structured into three parts, as described below:

Part I contains the Introduction, Background, and Problem Formulation chapters.

In this part, the topic of innovation assessment is presented. We summarize

the past research that has been done and present the foundation for the the-

sis. Then, we state the problems we will try to solve as well as the limitations

of the work.

Part II contains the Theory and the Method chapters. These two chapters have been

merged in order to enhance the reading experience. Here, we will present the

theory behind the methods utilized to construct the index as well as how we

have applied the methods to our specific case. In this part, we will also derive

some pre-results needed in order to conduct the main analysis.

Part III contains the Results, Discussion, and Conclusions chapters. Here, we present

our findings and give our subjective view on the results. We will also give

recommendations on how the BII can be improved.



Chapter 2

Background

Just as energy is the basis of life itself, and ideas the source of
innovation, so is innovation the vital spark of all human change,
improvement and progress.

—Prof. Theodore Levitt

2.1 The Importance of Innovation

Innovation capability is widely regarded as one of the most important assets for a com-

pany, an employee, a university or any type of organization to have in order for them

to compete on the global market. Furthermore, innovation can be seen as the ability

to come up with original ideas, be creative or to act as a pioneer. Innovation is ac-

complished through more effective products, processes, services, technologies, and/or

business models. Rapid changes in market needs and the constantly evolving technolog-

ical landscape pressure entities to present and implement novel solutions to both new

and old problems in order to stay ahead of their competitors. Therefore, without the

ability to be innovative an organization or an individual experience stagnation, and in

a world that encourages constant progress the lack of innovation capability becomes a

major disadvantage (Sidhu et al., 2016a).

Hana (2013) identified the most important characteristics of innovations in an organiza-

tion as:

4
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• A strong relationship between market performance and new products.

New products help maintain market shares and improve profitability.

• Growth also by means of non-price factors (design, quality, individuali-

sation, etc.).

• Ability to substitute outdated products (shortening product life cycles).

• Innovation of processes that lead to production time shortening and speed

up new product development in comparison to competitors.

Developing successful technological innovations is essential for creating and sustaining

competitive advantage and the expenditures on research and development alongside the

ability to introduce innovations are some of the determining characteristics for gaining a

dominant part of the market share. Also, if an organization is not capable of introducing

innovations on an ongoing basis, it risks that it will lag behind in the competition and

the initiative will be taken over by other market actors (Hana, 2013).

The fact that organizations have identified the importance of innovation is also reflected

in the increase of global spending on Research and Development (R&D). Global R&D

investments have increased significantly between the years 2005 to 2014 (with the only

exception being 2010), see Figure 2.1

Global R&D Spending, 2005-2014

Figure 2.1: Global R&D Spending from 2005 to 2014.
Source: Bloomberg Data, Capital IQ data, Strategy and analysis



Chapter 2. Background 6

Innovation is recognized as a variable that organizations and individuals use as an asset,

a competitive advantage and a factor that drives economic growth. Therefore, there is

an evident need to be able to measure the degree of innovation in regards to a project,

a work-group and an individual. This in order to identify behaviors and strategies that

can be implemented in order to increase innovation capability, and develop innovative

mindsets and cultures.

Martín-de Castro et al. (2013) found that the foundation for all innovation processes

in an organization is brilliant, motivated, experienced, and creative employees. The

innovation process is generally a collective achievement of the organization’s members.

An organization with a thriving innovation culture is critical in order for the firm to

pursue technological advancements and constitutes the best incentive towards obtaining

new knowledge and achieving innovations (Martín-de Castro et al., 2013).

Hence, the natural questions that arise are:

How can innovation, and especially innovation capabilitiy be measured?

What are the aspects of innovation that can be assessed, evaluated, and then improved?

2.2 Past Measures of Innovation

Innovation is a rather vague and abstract concept, therefore it is a difficult task to sci-

entifically measure or quantify innovation capability. However, a broad range of metrics,

scales, and indices are and have been used in order to quantify innovation capability

and innovation performance of an organization, i.e., on a firm level. Indicators of a high

degree of innovation could be the number of patents filed in a year, relative increase in

labor productivity, R&D investments, revenues due to products launched in the last three

years etc. However, most past innovation measures have not been insightful or holistic

enough to help companies make the right decisions in order to become more innovative

(Sidhu et al., 2016b). For example, the numbers of patents filed or the amount of money

spent on R&D have not shown any significant relationship with an organizations’ abil-

ity to be innovative nor to make profits (Jaffe, 1986). Overall, the existing variables

for innovation assessment mostly use a quantitative approach inherited from financial

analysis. Almost none of the current innovation metrics, frequently used by companies

today, take the individuals’ innovation capabilities into account (Sidhu et al., 2016a).

Even though not frequently used, there currently exists models and measures that at-

tempt to quantify and assess individual innovation capability. A critical review of these

measures were done by Menold et al. (2014) and they found that a comprehensive, rigor-

ously validated psychometric instrument does not yet exist to assess the aptitudes, skills,
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knowledge, personal traits, and behaviors that are indicative of individual innovation ca-

pability. In their study they state that innovativeness studies in personality research

tend to evaluate individual innovativeness in terms of innate traits and characteristics.

In the study they examined three measures of general, individual innovation capability:

• Kirton’s Adaption-Innovation Inventory (KAI), a psychometric instrument

that exclusively measures an individual’s cognitive style (Kirton, 2004).

• The Jackson Personality Index (JPI) assesses Innovation and Risk-Taking

on two of its subscales. The JPI is a measure of attributes, or innate personality

characteristics, mainly focusing on cognitive style (Jackson and Paunonen, 1996).

• Hunter et al.’s Model of Innovativeness analyzes individual personality traits

from a human resources perspective based on the organizational standpoint of

hiring innovative individuals to increase a company’s overall innovativeness. Hunter

et al. defined innovativeness in terms of innovative output (Hunter et al., 2012).

In summary, the general innovativeness instruments listed above either measured only

internal attributes over external actions or, in the case of Hunter’s model, did not pro-

vide a measurement instrument, but only descriptions. Menold et al. (2014) concluded

that general measures of innovativeness do exist, but they fail to assess domain-specific

traits, skills, knowledge, and behaviors. Hence, while valuable, these general measures

of innovativeness are insufficient for the assessment of individual innovation capability.

Sidhu et al. (2016a) also notes that metrics derived from existing innovation assessment

tools are often past-oriented and do not give a correct overview of the ability to be

innovative in the future.

Evidently there is a need for a novel instrument that measures individual innovation

capability.

2.3 The Berkeley Innovation Index

An international research team at the Sutardja Center for Entrepreneurship and Tech-

nology, UC Berkeley, recognized the need for a new tool that could measure individuals’

overall innovation capabilities. The research team started to develop a new metric that

aimed to assess overall innovation capability as well as six sub-traits linked to innova-

tion (e.g., an individual’s level of trust, resilience, perfection etc.). The measures are

collectively called the Berkeley Innovation Index (BII).



Chapter 2. Background 8

Mindset and Description
Psychological
Construct

Trait

Friend or foe
Learn to trust others without expecting
anything in return.

Social cohesion,
honest behaviour Trust

Plan to fail
It is necessary to be wrong sometimes.
Plan to experiment. Plan to fail (Fail
fast). Analyze, adapt and repeat. The
smarter you think you are, the harder
this is going to be.

Grit, resilience,
entrepreneurial
failure

Resilience

Diversify
Diversify your networks. Connect to
people you would not normally, then go
and listen, open up, and connect them
to others.

Social capital Diversity

Believe
Believe that what you do can change
the world

Self-efficacy Belief

Good Enough
Perfection is not good, but good
enough is perfect.

Perfectionism Perfection

Collaboration
Individual vs. team and competitors
vs. partners.

Cooperation Collaboration

Table 2.1: List of the six traits identified to characterize the mindset of an innovative
individual

The BII is based on previous findings in the fields of psychology, entrepreneurship, and

innovation science. Sidhu et al. (2015) defines entrepreneurship as the act of combining

resources in a novel way in order to create new industries and generate wealth. Sidhu

et al. (2015) also presents the hypothesis that the mindset of entrepreneurship can be

described by ten behavioral patterns (traits) and states that an entrepreneurial mindset

and way of action is well correlated with being innovative. Menold et al. (2014) states that

an entrepreneurial mindset constitutes of three sub-dimensions, namely: innovativeness,

risk-taking, and pro-activeness. The BII aims at deconstructing the sub-dimensions of

innovation capability. Six of the ten traits identified with an entrepreneurial mindset

in Sidhu et al. (2015) were also found to be connected to a measurable psychological

construct linked to an innovative mindset.

It is these six personality traits, and their associated psychological construct, that are

used as the basis for the construction of the BII. The traits, together with their respective
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psychological construct and mindset dimension (presented in Sidhu et al. (2015)), are

shown in Table 2.1.

Based on these six psychological constructs the BII research group developed a survey,

in the form of a questionnaire, that aims to measure and quantify each of these traits.

The questionnaire was validated from a literature review that presented findings from

the fields of social and organizational psychology (Sidhu et al., 2016b).

The BII is based on the assumption that individual innovation capability is something

that can be improved by practice, i.e., it is not a static or constant trait, but a skill that

can be refined and perfected. Therefore, the BII can be used to measure an individual’s

degree of innovation capability over time and track if any improvements have been made.

The first iteration of the BII algorithm can be found in Sidhu et al. (2016b). The algo-

rithm calculates quantitative scores for each of the six domain abilities linked to overall

innovation capability as well as an overall score indicating an individual’s general inno-

vation capability. However, this first iteration of the BII algorithm was not sufficient to

make a scientifically valid analysis of an individual’s innovation capability. The reason is

that the first BII algorithm was built upon the test-takers’ self assessed level of innova-

tion capability, and it failed to take into account that different sub-traits might influence

the overall innovation score differently etc.

As the current research on the BII is in its cradle, the underlying algorithm, the models,

and the data structure need to be improved. The aim of this thesis is to construct a

theoretically valid algorithm for the BII, such that it becomes a useful psychometric

evaluation tool that assesses individuals’ innovation capability.

2.4 Personality Assessment

Innovation, like other abstract concepts or mental properties e.g., intelligence, love, or

kindness, is difficult to quantify. This is partly due to the fact that there is no exact

definition of the concepts, but even if it was, there is no way to directly measure it as

you can with for example mass or temperature. These traits are in that sense hidden,

or latent. The desire to define and measure these types of concepts has been displayed

numerous times with one example being the 80’s band Foreigner and their despair in not

knowing what love is. They asked an arbitrary person (called you) to show it, however

what they do not mention is that actual progress to define love has been accomplished

by researchers in the fields of test theory and psychometric evaluation.
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One of the first widely used statistical approaches to measure latent traits is called Clas-

sical Test Theory (CTT) (Spearman, 1904). CTT evaluates a test taker’s performance

on a test and is based on the proposition that a test taker has an observed score and a

true score and, however due to a random error an observable test score is not the true

value of a subject’s performance on the test. The main purpose of CTT is to determine

in what degree the test scores are influenced by this random error, and in turn be able

to more accurately measure how much of a specific personality trait that an individual

possesses.

CTT has several limitations, and one of the most important ones being that test char-

acteristics and examinee characteristics cannot be separated. This means that the test

score of an individual is dependent on the other subjects taking the same test.

In order to address the limitations of CTT, a new method for the design, analysis, and

scoring of tests and questionnaires called Item Response Theory (IRT) was developed

(Lord (1953), Rasch (1960) et al.). CTT focuses on scoring the entire test by treating

every question the same. IRT on the other hand focuses on the individual questions of

the test, and IRT does not assume that every question is equally difficult.

The One Parameter Logistic (1PL) model (Rasch, 1960) was the first IRT model devel-

oped and it was used to compute latent traits from tests with binary item responses,

i.e., questions with only two possible answers (oftentimes one answer is correct and one

answer is wrong). Since then a framework of models that attempt to explain the con-

nection between different types of observed item responses and an underlying construct,

i.e., the latent trait, have been developed. Item responses can be discrete or continuous;

be dichotomously (binary) or polytomously (more than two possible responses) scored;

there can be one or many abilities that measure the test performance of the subject and

there are many ways, i.e., models, in which the relationship between item responses and

the latent trait(s) can be specified (Hambleton and Jones, 1993). Common for all IRT

models is that they define mathematical relationships between a person’s true ability

and the person’s probability of giving a certain response to an item.

The two IRT models mainly used in this thesis are the Graded Response Model (GRM)

presented by Samejima (1969) and the Generalized Partial Credit Model (GPCM) intro-

duced by Muraki (1992). Both these models allow for use of polytomously scored item

responses and the models map categorical responses to a continuous latent trait scale.

The Berkeley Innovation Index is constructed under the assumption that the level of

general innovation capability can be viewed as a combination of an individuals’ ability

in six different sub-domains (i.e., the traits presented in Table 2.1). For the BII it is
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desirable to not only measure the overall trait, innovation capability, but also present

the test-takers with scores indicating their ability in each of these sub-domains.

This type of hierarchical structure of the abilities is modeled with the use of Higher-Order

Item Response Theory (HO-IRT), in which the scores for all the traits are estimated

simultaneously. The work in this thesis is primarily inspired by the HO-IRT models

developed in de la Torre and Song (2009) and Huang et al. (2013).

2.5 The BII Data Set

The data used as the foundation for the analysis in this thesis is the questionnaire

responses to the BII survey. The responses were collected between November 2015 to

March 2016. The survey was conducted online through the website

https://berkeleyinnovationindex.org/ and the full questionnaire can be found in

Appendix A. The full data set constitutes of responses from 1029 test takers, or subjects.

The questionnaire is constructed such that each sub-trait have four questions, or items,

directly related to that specific domain ability.

The test takers also answered questions regarding their level of Comfort Zone, their Say-

Do-Ratio, their level of past success in business, and their perceived level of innovation

capability. Since these measures are not included in any of the psychological constructs

presented earlier they will be disregarded when constructing the index. However, it

provides material for further studies and extensions of the BII.

The questionnaire also collects demographic statistics related to the test taker’s age,

gender, country of origin, field of study/work, and if the subject works or are still in

school. The demography of the BII data set is presented in table 2.2.

Age Field of Study/Work Geography

< 29 69% Technical 48% North America 62%

29− 40 16% Management 37% Europe 21%

> 40 15% Arts/Humanitarian 15% Rest of the World 17%

Gender Career stage

Male 67% School 65%

Female 33% Work 35%

Table 2.2: Demography of the BII data set

https://berkeleyinnovationindex.org/


Chapter 3

Problem Formulation

The mere formulation of a problem is far more essential than its
solution, which may be merely a matter of mathematical or
experimental skill. To raise new questions, new possibilities, to
regard old problems from a new angle requires creative imagination
and marks real advances in science.

—Albert Einstein

The aim of this thesis is to construct an algorithm, computing the scores of the BII, that

has full theoretical support. We want to construct an index that is a valid measure of an

individual’s overall innovation capability, henceforth called innovation. We also want to

construct six sub-scales indicating the individual’s proficency in each of the six sub-trait

domains, namely: trust, resilience, diversity, belief, perfection and collaboration.

3.1 Requirements of the Index

Since an index or a scale can be presented in many different (often arbitrary) ways the

following requirements on the index and the sub-scales are postulated:

• The index and the sub-scales should be ordinal, i.e., a higher score reflects a higher

level of proficiency on the latent trait continuum.

• The results of the index and the sub-scales should be cast on a scale ranging

from 1-10.

• The index and the sub-scales should be continuous, or at least appear continuous

if the scale only allows scores from a (very large) finite set of discrete scores.

12
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• Extreme results, i.e., the worst/lowest score (1) and the best/highest score

(10) should be possible to obtain if the subjects either have answered all the

questions right or wrong.

• The scale should be robust against outliers and bad samples, e.g., subjects

that have not given trustworthy or typical answers should not (greatly) influence

the resulting output of the algorithm.

• Different items should be able to have a varying degree of impact on the sub-scores

and the overall score. The score in the different sub-trait categories should also be

able to impact the overall ability differently, i.e., the weight of each item and

sub-trait category must not be equal to the others.

3.2 Analysis of Model Relevance and Accuracy

The relevance of the models, and consecutive results, will be evaluated through different

measures of model fit, and the models will be validated in regards to model assumptions

postulated in their respective theoretical frameworks. Moreover, the accuracy of the

algorithm will be evaluated through different test-statistics suitable for the tools used in

the analysis.

3.3 Scalable Algorithm

The final algorithm, that is obtained after the full analysis has been conducted, should be

(easily) implementable and the steps carried out in order to obtain index and sub-scale

scores should be reproducible. Also, the final step in the algorithm, that produces the

scores for the overall trait and the sub-traits, should be of low computational complex-

ity such that a test taker’s final score can be computed instantly. This allows for the

algorithm to be easily modified when the data set gets larger or if the data structure

becomes more complex in a future iteration of the BII.

3.4 Variable Reduction

Test takers are more willing to participate in and complete a shorter survey compared to

a more comprehensive one. Therefore, one aim of the thesis is to identify the question-

s/items that contain low amounts of information, i.e., items that have a low correlation
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with the final scores for the overall trait and the sub-traits. Then, we want to present a

recommendation if these items are to be eliminated from the questionnaire or not.

3.5 Formulate Recommendations to the BII Research Team

After the whole analysis has been conducted and the algorithm for the BII has been

formulated, we aim to present our recommendations on how to improve the BII, i.e.,

how to make the BII as scientifically valid as possible, what the BII research team can

do to improve the accuracy of their results, and what general improvements that can be

made in light of the findings in the thesis.



Part II

Construction of the Berkeley Innovation

Index Algorithm

Key takeaways: In Part II theoretical frameworks and methods are presented. Several

latent trait models are introduced in order to determine what model that is applicable to

the BII case. Simultaneous latent trait estimation is made possible with the use of Higher-

Order Item Response Theory (HO-IRT) and the model parameters can be estimated

through Markov Chain Monte Carlo. To assess the fit, accuracy, and relevancy of the

models several error and convergence statistics are defined. Lastly, in order to (possibly)

omit items/questions with low amounts of information, two feature selection algorithms

are presented.



Chapter 4

An MCMC HO-IRT Approach to

Measure Innovation

In the first place, the best way to convey to the experimenter what
the data tell him about the model parameter(s), θ, is to show him a
picture of the posterior distribution

—Prof. George E.P. Box and Prof. George C. Tiao

4.1 Data Preparation

In order for the algorithm to be as valid as possible it is important that the data set

consists of "true" samples from individuals that have answered the questionnaire. There-

fore, the data set was examined and cleaned from bad samples before the full analysis

was conducted.

The total data set consists of 1029 samples where each subject, stot = 1, ..., 1029, have

responded to 24 test items, i = 1, ...24. For each item, the response was given on a Likert

scale, ranging from one to five, where each possible answer is mapped to an integer, as

described below.

Integer values mapped to the responses in the BII questionnaire

1 = Completely Disagree

2 = Disagree

3 = Don’t Know

16
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4 = Agree

5 = Completely Agree

For 20 out of the 24 questions the answer 5 = Completely Agree represents the "correct"

response, the four remaining questions are reversed and a "correct" response on those

questions is given by answering 1 = Completely Disagree. Each subject’s response to the

24 items constitutes the full item response matrix, Xtot
stot,i

∈ N1029×24.

Removing bad samples

First, the data set was cleaned from bad samples. There are two categories of bad

samples in the BII data set: duplicate answers and bad response patterns.

The first type of bad samples are duplicate or updated answers. These are responses

submitted by the same individual either by mishap or to tweak their answers to achieve

a higher index score. These samples can be identified in the data set by looking for

duplicate entries in the email address column. Even though roughly 14% of the full data

set are duplicate entries and more samples will create a more robust model, these entries

were deemed to affect the result in a negative. This is due to the fact that an individual

only can have a true ability level at one time instant. Therefore, the 147 responses

provided by individuals already in the data set were removed before the analysis was

conducted. However, it should be noted that, over time a person can improve his or her

BII scores.

The second type of bad samples are response patterns where the subject has given the

same response to every question in the questionnaire. These response patterns are

deemed very unlikely, and they are probably provided by individuals who only wants

to complete the test quickly in order to get a result. In the BII data set two subjects

only responded 3 = Don’t Know to each question and two subjects chose the answer 5

= Completely Agree to all 24 questions. These four samples were removed from the data

set.

In total, after removing duplicate entries and improbable response patterns, the item

response matrix, X ∈ N878×24, used in the analysis consists of item responses from 878

subjects, s = 1, ...878. Each element, xs,i, in X represents a response from subject s to

item i.
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X =


x1,1 x1,2 · · · x1,24

x2,1 x2,2 · · · x2,24
...

...
. . .

...

x878,1 x878,2 · · · x878,24

 (4.1)

Handling NA entries in the data set

Some of the first subjects that provided answers to the test have left some questions

unanswered (this was before a restriction was implemented that disabled the possibility

of leaving a question unanswered). In total there are 45 subjects who have left at least

one question unanswered. The subject that has left the most questions unanswered did

not provide a response to 8 items. In total there were 78 item responses missing in the

item response matrix X. Although the method used to construct the index can handle

missing responses the 78 unanswered questions, labeled NA in the data set, were mapped

to the response 3 = Don’t know to facilitate the analysis procedure.

Reversed items

Four of the items in the questionnaire, QT2, QT4, QP1 and QP3, are reversed in relation

to the other items. This means that it is assumed that the response indicating a high

level of related ability for these questions is 1 = Completely Disagree (for all other items

high proficiency is indicated by the response 5=Completely Agree). To facilitate the

construction of the index the item responses for these four questions were reversed, i.e.

[1, 2, 3, 4, 5]→ [5, 4, 3, 2, 1].

4.2 Latent Trait Models

Latent variables are hidden variables that are not directly observable, but instead inferred

through other measurable variables. This means that the effect of the latent variable(s)

can only be measured through observable manifest variables. In the case of the BII, the

manifest variables are the responses given to the survey items, i.e., xs,i. The basic idea

with a latent trait model is to establish a relationship between the manifest and the

latent variables to enable estimation of the latent variables.

There are four different types of latent variable models depending on if the manifest and

the latent variables are continuous or categorical. The different types of latent variable

models are summarized in Table 4.1.
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Manifest Variables
Latent Variables Continuous Categorical

Continuous Factor Analysis Item Response Theory
Categorical Latent Profile Analysis Latent Class Analysis

Table 4.1: Different types of Latent Trait Models

As described in section 3.1 of the Problem Formulation, the resulting indices should

be continuous, hence the latent variables are continuous. The item responses from the

questionnaire are given on a Likert scale, i.e., integers xs,i from the set xs,i ∈ {1, 2, 3, 4, 5},
and these can be seen as both continuous and categorical. Therefore, the possible Latent

Trait Models to use for the analysis of the BII data are Factor Analysis and Item Response

Theory.

Factor Analysis is a linear model and thus a one-unit change in the latent variable relates

to the same increase in the expected response. Implicitly it is therefore assumed that

the response is a continuous variable. Since a Likert scale can, even though only five

different responses are possible, be viewed as a continuous scale on the interval I ∈ [1, 5],

a Factor Analysis model could be used for the analysis. However, Factor Analysis can

only describe a linear relationship between the item responses and the latent trait and,

as McDonald (2013) noted, when applied to categorical responses it is merely a linear

approximation of the non-linear Item Response Theory model. Thus, an Item Response

Theory model is be better suited for the BII analysis.

4.2.1 Item Response Theory

Item Response Theory (IRT) models are a class of statistical models used to describe the

relationship between a latent trait and the probability of certain responses to categorically

scored items.

It is reasonable to believe that each test subject possess a certain level of the latent trait

and that a higher level of this trait will generate a higher test score. Another way to

look at this is to see that a person with a higher level of the latent trait also must have

a higher probability of giving the "correct" item response to an item.

IRT models the response of a subject to an item with the item characteristic curve (ICC).

For the IRT models with binary item responses the ICC is a monotonically increasing

probability function that gives the probability of a subject answering an item correctly,

given a certain level of the latent trait. A higher value of the subject’s latent trait

score, the greater the probability is that the subject answers the item correctly. The IRT

model was originally developed using normal ogives as the ICC (Ferguson, 1942), but this
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function was too computationally demanding in the 1960’s so the standard was changed

to use the similar logistic model, i.e., f(x) = ex

1+ex = 1
1+e−x . Due to its simplicity the

logistic function has become the preferred function to work with in IRT.

The most simple logistic IRT model is the 1PL model that is used for dichotomously

scored data, i.e., binary responses where Y = 1 is the correct answer and Y = 0 is the

wrong answer. This is also called the Rasch model named after the Danish mathematician

George Rasch. The 1PL IRT model is given by

Pi(Y = 1|θs) =
1

1 + e−α(θ−βi)
(4.2)

Here, Pi(Y = 1|θs) is the probability that a subject s with ability level θs answers item

i correctly. Here, α is called the discrimination parameter and in the 1PL model it is

constant for all items. Thus, α is as a constant scaling factor usually set to 1 (or 1.7

if one wants to produce similar results to the ones obtained through the normal ogive

model). Furthermore, bi is the item difficulty parameter for item i.

An extension of the 1PL model is the 2PL model defined as

Pi(Y = 1|θs) =
1

1 + e−αi(θ−βi)
(4.3)

In the 2PL model the 1PL model is extended by introducing a unique discrimination

parameter for each item, αi, which affects the slope of the ICC. For an IRT model with

a binary item responses, different values of the parameters αi and βi affect the shape of

the ICC as shown in Figure 4.1.

βi indicates the value on the ability axis where the subject has a 50% chance to answer

an item correctly, i.e., P (Y = 1|θs) = 0.5. A higher value on βi will result in a shift of

the curve along the x-axis and thus the probability of giving the correct item response

will be lowered over the whole latent trait interval. The αi parameter determines the

speed of the transition between low and high probability of "success". A higher value on

αi value will result in a steeper slope of the probability curve and thus a more sudden

shift between low/high probability of answering the item correctly.
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Figure 4.1: The Item Characteristic Curve for the 2PL model, with varying discrim-
ination and difficulty parameters (αi and βi).

When working with IRT models one has to make sure that certain model assumptions

are met in order obtain a valid measure of the latent trait(s). If the model assumptions

are violated then the IRT estimates will not be trustworthy. The fundamental IRT model

assumptions are listed below.

IRT Model Assumptions

Experimental Independence: The answers from each subject, s, are independent in

regards to the answers given by other subjects (Lord

et al., 1968)

Local Independence: Given θ for a subject, that subject’s item responses are

independent from one another. This means that the

observed item scores are conditionally independent of

each other given an individual’s ability level.

Parameter Invariance: Item parameters are invariant over samples of subjects.

The latent trait(s) are also invariant over test items.

The 1PL and 2PL models above only explain the relationship between latent trait and

item responses for dichotomously scored responses (binary data). In the BII the responses

are polytomously scored, given on an ordinal Likert scale which present the test taker
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with five possible responses, k = 1, 2, 3, 4, 5. To handle item responses with polytomous

data a number of models have been developed. One main difference in these models,

compared to the binary ones, is that each item response has a unique ICC that represents

its probability of over the latent trait continuum.

The two polytomous IRT models that lie within the scope of this thesis are theGraded Re-

sponse Model (GRM) developed by Samejima (1969) and the Generalized Partial Credit

Model (GPCM) developed by Muraki (1992). The main difference between the two

models is that the GRM requires the possible item responses to be ordinal, i.e., that the

responses follow a pattern where a higher level of latent trait implies an item response

of higher order. The GPCM is more general in the sense that it does not impose the

restriction that the item responses need to be ordered.

One of the goals with the thesis is to compare these two models to see which model is most

applicable to the BII. The results produced by the GPCM and the GRM will generally

agree very closely, unless one or more of the possible item responses are underused

(Templin, 2014). Another difference is that the GRM will force the categories’ boundary

parameters to be ordered, the GPCM does not. The comparison between the two models

will also be a way of confirming the goodness of fit in regards to the results obtained. For

the reasons noted above, comparing the results of the GRM and the GPCM will further

validate our results and the final algorithm.

4.2.2 Graded Response Model (GRM)

The Graded Response Model was derived by Samejima (1969). The basic idea of the

model is to make use of the ordinal structure of the item responses by applying the 2PL

model at each category boundary, i.e., each possible item response.

For each subject there is a response pattern Xs = (x1, x2, ...xn). xi is a response to

item i, where i = 1, ..., n. In the case of the BII, n = 24 and the responses are given

on a Likert scale and therefore the response pattern can be expressed as a sequence of

integers, i.e. xi ∈ {1, 2, 3, 4, 5}.

Subjects with different ability levels have varying degrees of probability to give a cer-

tain response to item i. The operating characteristic is the probability of choosing a

response, xi, to an item i given a certain level of latent trait, θ. We define the operating

characteristic as

Pxi(θ) = P (xi|θ) (4.4)
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To derive the operating characteristic we will first make use of the ordinal structure of

the item responses by applying the 2PL model to each possible item response. ki = k =

1, 2, ..., 5 denotes possible item responses to item i (the subscript i on k can be dropped,

since each item in the BII data set has five possible item responses). Note the difference

between ki, which is the possible item responses, and xi, which are the responses given

by a subject. By describing each possible response as the binary probability of either

< k or ≥ k we can transform the problem to a set of linear combinations of the 2PL

model. The cumulative probability of giving an item response greater or equal to k is

given by

P ∗ik = P (xi ≥ k|θ) =
eαi(θ−βik )

1 + eαi(θ−βik )
(4.5)

where xi is the response given to item i, k is a possible item response, αi is the discrim-

ination parameter for item i, βik is the difficulty parameter for response k to item i and

θ the latent trait.

The probability for a subject, given θ, of responding xi = k on a given item, i, is obtained

by subtracting the cumulative probability for that item response, k, with the cumulative

probability of responses greater than k (k′ > k), i.e.,

Pik(θ) = P (xi = k|θ) = P (xi ≥ k|θ)− P (xi ≥ k + 1|θ) = P ∗ik − P
∗
ik+1

(4.6)

In the case of the BII, k ∈ I[1, 5] and therefore P ∗i1 = 1 and P ∗i6 = 0. Thus, we can

obtain all the probabilities for a subject’s item response given their level of θ. These

probabilities are the Item Characteristic Curves (ICCs) of the GRM, given as

Pik(θs) =


1− e

αi(θs−βik )

1−eαi(θs−βik ) if k = 1

e
αi(θs−βik )

1−eαi(θs−βik ) − e
αi(θs−βik+1

)

1−e
αi(θs−βik+1

) if 1 < k < 5

e
αi(θs−βik )

1−eαi(θs−βik ) if k = 5

(4.7)

For each item, we will thus have five ICCs that define the probability for each item

response given a subject’s latent trait value. Three examples of the ICCs of an item

given different values of the discrimination parameter, α, are shown in figure 4.2. As

can be seen a higher α results in a steeper and more distinct probability curve for each

separate response. Thus, it is intuitive to reason that items with a higher α value are able

to better describe the distinction between subjects and therefore should contain more

information compared to items with lower discrimination. The difficulty parameter, β
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shifts the position of the curve as can be seen in figure 4.3. A more disperse distribution

of the βs allows for more distinct ICCs and then it becomes easier to identify a subject’s

level of the latent trait given the item response.

(a) Low α (b) Medium α

(c) High α

Figure 4.2: ICC for the GRM with different values of discrimination parameter, α.
(a) Shows low discrimination, therefore it is difficult to differentiate between subject
responses in the center of the latent continuum. (b) Shows medium discrimination. (c)
Shows high discrimination, therefore it is easy to differentiate between subject responses

around the center of the latent trait continuum
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(a) Low dispersion of β (b) Medium dispersion of β

(c) High dispersion of β

Figure 4.3: ICC for GRM with different sets of difficulty parameters, β. (a) Shows low
dispersion of the difficulty of the item responses making it difficult to differentiate the
trait levels of subjects with item response xi = 2, 3, 4. (b) Shows a medium dispersion of
difficulty parameters making it easier to differentiate the item’s different characteristic
curves. (c) Shows high dispersion of the difficulty parameters resulting in clearly defined

item characteristic curves.

For each subject’s specific response pattern Xs, we can assign m ICCs, one ICC for each

item i. The operating characteristic of a response pattern is the joint probability of this

specific response pattern given θ and is defined as

PXs(θ) = P (Xs|θ) (4.8)

As noted before, local independence is assumed between all items, and thus the operating

characteristic can be expressed as the product of all the item characteristics

PXs(θ) = P ([x1, x2, ..., xn]|θ) = P (x1|θ) · P (x2|θ) · · ·P (xn|θ) =
∏
xi∈Xs

Pik(θ) (4.9)

This means that the response pattern given by a subject can be regarded as a sample

of n independent observations from n (possibly) different distributions, with θ as the

single unknown parameter. Since a subject’s likelihood function is determined by the
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joint probability of the response vector, the operating characteristic and the likelihood

function, which will be used later for model parameter estimation, are equal in the GRM.

L(θ|Xs) =
∏
xi∈Xs

Pik(θ) = P (Xs|θ) (4.10)

4.2.3 Generalized Partial Credit Model (GPCM)

The Generalized Partial Credit Model (GPCM) was derived by Muraki (1992) and it is

an extension of the Partial Credit Model (PCM) developed by Masters (1982) (which in

turn is an extension of the 1PL model that works with polytomous data). The GPCM

is derived from the 2PL model, which can be rewritten as

Pi(xs = 1|θ) =
eαi(θ−βi)

1 + eαi(θ−βi)

where Pi(xs = 1|θ) is the probability that a subject answers an item correctly. This

can be extended for the BII data set, where each item has 5 possible item responses, or

response categories, denoted by ki = k = 1, ..., 5. For each adjacent response category

(where we dichotomize each adjacent response category, i.e. 1-2, 2-3, 3-4, 4-5) the prob-

ability of a subject at ability level θ to score k over k − 1, is given by the conditional

probability

Cik = Pik|k−1,k(θ) =
Pik (θ)

Pik−1
(θ)+Pik (θ)

= e
αi(θ−βik )

1+e
αi(θ−βik ) , k = 2, 3, 4, 5 (4.11)

This can in turn be rewritten as

Pik(θ) =
Cik

1− CikPik−1
(θ)

where Cik
1−Cik

= eαi(θ−βik ) is the ratio of two conditional probabilities. For the BII, we

can define the probabilities
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Pi1(θ) =
1

G

Pi2(θ) =
exp (αi(θ − βi,2))

G

Pi3(θ) =
exp (

∑3
v=2 αi(θ − βiv))

G

Pi4(θ) =
exp (

∑4
v=2 αi(θ − βiv))

G

Pi5(θ) =
exp (

∑5
v=2 αi(θ − βiv))

G

(4.12)

Also note that
∑5

k=1 Pik(θ) = 1 and the normalizing factor G is equal to

G = 1 +

5∑
c=2

exp
[ c∑
v=2

αi(θ − βiv)
]

This can be combined into the final probability expression for the GPCM

Pik(θs) =
e
∑k
v=1 αi(θs−βiv )∑5

c=1 e
∑c
v=1 αi(θs−βiv )

(4.13)

in which Pik(θs) is the probability that subject s scores k on item i. Note that βi,1 = 0.

This value is arbitrarily chosen, as it is not a location (difficulty factor), and will be

canceled both from the numerator and denominator, as

Pik(θ) =
eZi1 (θ) · e

∑k
v=2 Ziv (θ)

eZi1 (θ) +
∑5

c=2 e
[Zi1 (θ)+

∑c
v=2 Ziv (θ)]

=
e
∑k
v=2 Ziv (θ)

1 +
∑5

c=2 e
∑c
v=2 Ziv (θ)

(4.14)

where Zik(θ) = αi(θ−βik). The probability function given in equation (4.13) reduces to

the 2PL item response model when k ∈ {1, 2}.

The βik parameters in equation (4.13) are called step parameters, and these are the

points on the latent trait continuum where the ICCs for Pik−1
(θ) and Pik(θ) intersect,

i.e., where a subject’s response to item i has equal probability to be either k − 1 or k.

This can only happen once on the θ axis. This intersection is attainable anywhere along

the θ scale. Thus, we can form the relationships

Pik(θ) = Pik−1
(θ) if θ = βik

Pik(θ) > Pik−1
(θ) if θ > βik

Pik(θ) < Pik−1
(θ) if θ < βik

(4.15)
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This is under the assumption that αi > 0, which always should be the case. N.B. This

indicates that the difficulty parameters (βik) do not need to be ordered within item i,

as in the GRM, because the parameter represents the relative magnitude of adjacent

probabilities Pik−1
(θ) and Pik(θ). Therefore the GPCM is more general then the GRM

and can be applied to non-ordinal, as well as ordinal, polytomous data.

4.2.4 Information Criteria for the GRM and the GPCM

IRT provides additional reliability measures of test scores and in IRT it is assumed

that the precision of a test is not uniform across the entire range of test scores, i.e.,

across the latent trait continuum. One of the most important reliability measures in the

IRT framework is the Item Information Criteria (IIC). The IIC, Ii(θ), represents the

information contributed by a specific item, i, over the latent continuum θ. Samejima

(1974) defined the IIC for polytomous item response models as

Ii(θ) =

mi∑
k=1

Pik(θ)
[
− ∂2

∂θ2
lnPik(θ)

]
=

mi∑
k=1

Pik(θ)

{[ ∂
∂θPik(θ)

Pik(θ)
−

∂
∂θ2

Pik(θ)

Pik(θ)

}

= D2α2
i

mi∑
k=1

Pik(θ)
{ mi∑
c=1

T 2
c Pi,c(θ)−

[ mi∑
c=1

TcPi,c(θ)
]2}

= D2α2
i

{ mi∑
c=1

T 2
c Pi,c(θ)−

[ mi∑
c=1

TcPi,c(θ)
]2}

D=1
= α2

i

{ mi∑
c=1

T 2
c Pi,c(θ)−

[ mi∑
c=1

TcPi,c(θ)
]2}

(4.16)

where mi is the highest possible response category to item i. In our case mi = 5,

∀i = 1, ..., 24. Tk is the scoring function equal to the item score (i.e., in the case of the

BII Tk = k, ∀k ∈ 1, 2, 3, 4, 5). D is a scaling factor and in the case of the BII D = 1.

D 6= 1 is normally used to be able to map the logit link used in the GPCM/ GRM to

the normal ogive.

For the logistic form of the GRM, Baker (1992) algebraically defined equation (4.16) as

Ii(θ) =

mi∑
k=1

[
P ∗ik(1− P ∗ik)− P ∗ik+1

(1− P ∗ik+1
)
]2

Pik
(4.17)

Due to the local independence assumption on IRT the Item Information Functions (IIF)

are additive. Thus, the combined information of all items, i = 1, ..., n, in a domain is
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called test information, I(θ). It is obtained by summarizing the IIC of each item in the

domain, i.e.

I(θ) =
n∑
i=1

Ii(θ) (4.18)

An important feature of the definition of test information given in equation (4.18) is that

the more items there are in the domain, the greater the amount of information.

For the GPCM, the information that is provided in item i for response category k can

be partitioned into the expression in (4.19), i.e., the Item-Category Information Criteria

(ICIC). N.B. The ICICs for Iik−1
(θ) and Iik(θ) will intersect at the point for the step

parameter βik (where the two response categories have equal probability) on the θ axis.

The ICIC in the GPCM is given by

Iik(θ) = Pik(θ)Ii(θ) (4.19)

4.2.5 Higher-Order Item Response Theory (HO-IRT)

The latent traits in the BII data set are expected to have a hierarchical structure, i.e.,

they are multidimensional and one overall ability (the latent trait innovation capability)

is governed by six domain abilities (the sub-traits trust, resilience, diversity, belief, per-

fection and collaboration). The overall ability is also called the second-order trait and

each of the domain abilities are referred to as first-order traits. It is assumed that a sub-

ject’s second-order latent trait ability level is directly affected by the subject’s first-order

latent trait abilities.

When IRT models are fit to data that supposedly have a hierarchical underlying latent

trait structure, such as the BII data set, Huang et al. (2013) have summarized five model

approaches that can be used in order to conduct the analysis and output ability scores

for the subjects in the data set. These models are presented in Figures 4.4(a) - 4.4(e).

The first model shown in figure 4.4(a) is a consecutive unidimensional approach in which

the first-order latent traits are estimated through a unidimensional IRT model fitted to

each sub-test (one per domain ability). Using this method it is not possible to directly

obtain the second-order trait and a lot of test information is ignored due to the fact

that the correlation between the first-order latent traits are not considered. The second

model shown in figure 4.4(b) is called the multidimensional approach and it addresses

the last problem by invoking a correlation between the first-order traits to improve their
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Figure 4.4: The possible models given the data structure of the BII. (a) Consecutive
Unidimensional IRT (b) Multidimensional IRT (c) Unidimensional IRT (d) Bi-factor

IRT (e) 2nd Order IRT (Higher-Order IRT)
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estimates. However, as in the first model, the second-order trait can not be obtained

directly.

In these two models the second-order latent trait can be indirectly estimated using Con-

firmatory Factor Analysis (CFA), a latent trait model that maps a set of continuous

data (here the estimated values for the domain abilities) to a continuous latent trait

(here overall innovation capability). However, the scores observed for the domain abili-

ties contain measurement errors which the CFA method does not take into account when

estimating the overall score. This, together with the fact that the CFA will treat the

values of the first-order traits as observed values rather than estimates, may result in an

over-estimation of the second-order trait.

Figure 4.4(c) shows the composite unidimensional approach where all items are expected

to measure the same latent trait. It allows for a direct estimation of the second-order

trait, but on the other hand this estimate may not be valid because of the extent to

which the unidimensional assumption is violated. The items supposedly measure several

different first-order traits at the same time (de la Torre and Song, 2009). In addition

to this the composite unidimensional model does not enable estimation of the first-order

traits.

Two models that deal with the disadvantages presented by the three former ones above

is the bifactor model and the Higher-Order IRT (HO-IRT) model (Figure 4.4(d) and

Figure 4.4(e), respectively). Both models enable the estimation of both an item specific

latent trait (first-order), as well as an overall latent trait common to all items (second-

order). It has been shown in Yung et al. (1999) that the bifactor model is mathematically

equivalent to the HO-IRT model when there are two levels of latent trait, with one overall

latent trait and several sub-traits. This is the case for the BII, hence it would be possible

to work both with a bifactor approach and a HO-IRT approach. Due, mainly, to the

previous work done on HO-IRT as well as its more intuitive interpretation this is the

model chosen for the analysis conducted in the thesis.

The over-estimation of the second-order trait, which was a problem for the multidimen-

sional and consecutive unidimensional model, is in the HO-IRT addressed by introducing

an error term in the relationship between first and second-order latent traits (Huang

et al., 2013). de la Torre and Hong (2010) also showed that the HO-IRT is superior to

non-hierarchical approaches when the number of tests, i.e., number of first-order latent

traits, is big and the size of each test is relatively small. Given the structure of the

BII with six different domain abilities and only four items per domain ability this val-

idates the choice of the HO-IRT model over the multidimensional and the consecutive

unidimensional IRT models.
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Inspired by the ideas of de la Torre and Song (2009), Huang et al. (2013) presented a

HO-IRT model that enables the use of polytomously scored data. A model based on

their work is the one used in this thesis.

de la Torre and Song (2009) states that the two orders of latent traits are associated

through the linear relationship between the domain abilities and the overall ability as

θ
(1)
sj = λjθ

(2)
s + εsj (4.20)

where θ(1)sj is the first-order latent trait of domain j for subject s (where j = 1, ...6, and

1 = trust, 2 = resilience etc.). θ
(2)
s is the second-order latent trait governing overall

ability for subject s. λj is the latent coefficient (also called factor loading) regressing

ability j on the overall ability, where 0 ≤ λj ≤ 1. Mathematically λj can be negative, but

here the domain abilities are hypothesized to be related to the overall ability, hence λj is

expected to be nonnegative. Moreover, the constraint on λj guarantees that the overall

and domain abilities are on the same scale. εsj is an error term that is independent of

all other terms.

To obtain the ICCs of the Higher-Order GRM (HO-GRM) the relationship in equation

(4.20) is inserted in the equation for the cumulative probability given in (4.5). Thus, the

cumulative probability for the HO-GRM is given by

P ∗ik = P (xi ≥ k|θ(2)) =
eαi(λjθ

(2)+εj−βik )

1 + eαi(λjθ
(2)+εj−βik )

(4.21)

With the use of equation (4.21), instead of (4.5), the derivation of the item characteristic

curve for the HO-GRM model is analogous to the method presented in section 4.2.2.

The ICCs for the Higher-Order GPCM (HO-GPCM) is directly obtained by inserting

the relationship (4.20) in equation (4.13):

Pik(θ(2)) = P (xi = k|θ(2)) =
e
∑k
v=1 αi(λjθ

(2)+εj−βiv )∑5
c=1 e

∑c
v=1 αi(λjθ

(2)+εj−βiv )
(4.22)

The IIF for the HO-IRT models can be obtained following the derivation steps presented

in section 4.2.4 (and making use of (4.21) and (4.22)).

In order to estimate the model parameters and the ability estimates some assumptions

need to be imposed on the model. Therefore, the distribution of the model parameters

are specified in accordance with the parameter distributions presented in de la Torre and

Song (2009) and Huang et al. (2013).
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θ
(2)
s ∼ N (0, 1)

θ
(1)
sj |θ2s , λj ∼ N (λjθ

(2)
s ,
√

1− λ2j )

εsj ∼ N (0, 1− λ2j )

Furthermore, it is assumed that all the domain-level abilities are independent conditional

on θ(2). The correlation between the first-order trait θ(1)j and the second-order trait is

given by ρ(θ(2), θ(1)) = λj and the correlation between the first-order traits is given by

ρ(θ
(1)
j , θ

(1)
j′ ) = λjλj′ . de la Torre and Song (2009) also points out that if the number of

domains J ≥ 4, then this implies that there exists more correlations between the abilities

than there are regression parameters (factor loadings). As a result the true correlation

structure might be more complex than what the linear model can fit. Furthermore,

de la Torre and Hong (2010) found that first-order latent traits are better estimated

when they are highly correlated with the second-order trait, i.e., have a higher λ-value.

However, a high correlation between latent traits does not indicate that they are the

same latent trait (e.g., longevity and wealth are highly correlated, but they are totally

different attributes).

de la Torre and Song (2009) also highlights that the first-order latent trait estimates

in the HO-IRT model should mainly be used for within-person comparisons (i.e., the

domain ability estimates are not comparable between subjects), whereas the second-

order latent trait estimates can be used for between-person comparisons. This is due to

the fact that the domain scores for the first-order latent traits make use of information

from other domains, due to the correlational structure of the traits. The interpretation of

the domain ability estimates can therefore be somewhat ambiguous, because a subject’s

ability level in one domain is influenced by his or her proficiency level in the other

domains.

In order to estimate all the HO-IRT model parameters a Markov Chain Monte Carlo

(MCMC) method is utilized. It is cast in a hierarchical Bayesian framework, which has

been used successfully by Huang et al. (2013) and de la Torre and Song (2009) when

estimating the parameters of HO-IRT models.

4.3 Markov Chain Monte Carlo (MCMC)

Before the MCMC method was introduced for IRT models the most common practice in

order to recover IRT model parameters was to use the Expectation-Maximization (EM)

algorithm (Bock and Aitkin, 1981). When solving for the model parameters the EM

algorithm first marginalizes the likelihood with respect to the subject parameters (e.g.,
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θs) and solve the Marginal Maximum Likelihood (MML) problem in order to estimate

the item parameters (e.g., αi). These parameters are then fixed in order to solve for the

subject parameters. A problem with this approach is that the two-step nature of the

procedure cannot truly incorporate uncertainty into the item parameter estimates in the

calculations of the subject parameters, and there is no way of knowing to which extent

the standard errors for the subjects are overly optimistic (Tsutakawa and Soltys, 1988).

The development of the MCMC method for IRT models was justified by the fact that

it is beneficial to incorporate more uncertainty in the calculations, due to the fact that

all parameters are estimated simultaneously, and it is still relatively straightforward to

implement the model when the complexity increases compared to e.g., the EM algorithm

(Patz and Junker, 1999).

4.3.1 Derivation of MCMC

The derivation of the MCMC method for IRT models starts by specifying the joint

likelihood function for all test subjects. Due to the assumptions of independence of the

item responses (given the latent trait for subject s, θs) the total joint likelihood for a

general IRT model, given a set of observed item responses (X), is the product of all

probabilities for each of the item responses and all the subjects as shown in equation

(4.23)

P (X|θ(2)s , ε, λ, β, α) =
∏
s

∏
i

P (xsi|θ(2)s , εsj , λj , βi, αi), j =
⌊ i+ 3

4

⌋
(4.23)

εsj is the error term that together with the factor loading λj defines the relationship

given by equation (4.20). βi is the difficulty parameter for item i given the observed

response xsi. αi is the discrimination parameter of item i and θ(2)s is the second-order

latent trait for subject s. θ(1)j can easily be computed using equation (4.20) and thus

only the second-order latent trait needs to be estimated with the MCMC. Therefore, the

notation θ(2)s = θs will be used in the derivation of the MCMC model.

The product over all subjects, s, is possible due to the assumption of experimental

independence among subjects in IRT and the product over all items, i, is possible because

of the assumption of local independence.

Using MCMC requires the inclusion of hyperparameters when specifying the prior distri-

butions. Due to the potential complexity of the priors we will follow the example given

by Patz and Junker (1999) and Huang et al. (2013), i.e., keep all the hyperparameters

of the priors fixed which also allows us to exclude these from the notations.
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The MCMC algorithm is used in order to estimate the model’s joint posterior distribu-

tion:

P (θ, ε, λ, β, α|X) ∝ P (X|θ, ε, λ, β, α)P (θ, ε, λ, β, α) (4.24)

Once the posterior distribution is estimated one can make inferences about each one of

the HO-IRT model parameters.

To ease the notation in the following short explanation of the basics of MCMC we will

use a joint posterior function of the two arbitrary parameters θ and β given an observed

data set X i.e.

P (θ, β|X) (4.25)

The essential idea behind MCMC is to define a (stationary) Markov Chain,M0,M1,M2, ...,

with states Mk = (θk, βk) and then simulate new observations from the Markov chain.

The distribution will, under suitable conditions, converge to the chain’s stationary dis-

tribution π(θ, β), and the simulated observations can then be used to make inferences

about the parameters. To achieve this we want to define the Markov chain in such a way

that the stationary distribution is the posterior distribution defining our parameters, i.e.,

π(θ, β) = P (θ, β|X).

The behaviour of the Markov chain is determined by its transition kernel

t[(θk, βk), (θk+1, βk+1)] = P [Mk+1 = (θk+1, βk+1)|Mk = (θk, βk)] (4.26)

which is the proability of moving to the new state Mk+1 = (θk+1, βk+1) given the old

state Mk = (θk, βk).

If it is feasible to define the kernel such that π(θ, β) = P (θ, β|X), then after the

first K steps of the Markov chain the observed states MK+1 = (θ1, β1),MK+2 =

(θ2, β2), . . . ,MK+L = (θL, βL) will each be distributed as draws from the posterior dis-

tribution and thus give us information about the properties of the parameters. One can

also say that the Markov Chain has converged to the stationary distribution.

The first K steps discarded from the chain are called burn-in iterations. MCMC algo-

rithms often randomly choose a starting point and in high dimensions this point generally

start at an area of low density for the posterior distribution, then after some iterations the



Chapter 4. An MCMC HO-IRT Approach to Measure Innovation 36

MCMC algorithm reaches an area of high density and this is generally a better starting

point in order to make inferences about the posterior distribution.

4.3.2 Metropolis-Hastings within Gibbs Sampling

One of the most common MCMC algorithms is the Gibbs Sampler which makes use of

the transition kernel in (4.27).

t[(θk, βk), (θk+1, βk+1)] = P (θk+1|βk, X)P (βk+1|θk+1, X) (4.27)

The kernel was first introduced by Geman and Geman (1984) and it produces a stationary

distribution that is equal to the posterior distribution. The transition kernel is the

product of all the parameters full conditional probabilities, i.e., a parameter distribution

which is conditional on all other parameters. In (4.27) the full condtional probabilities

are the densities P (θk+1|βk, X) and P (βk+1|θk+1, X). Thus an iteration of the Gibbs

Sampler consists of drawing a new parameter from each of the parameters full conditional

distributions. For the HO-IRT the updating scheme for iteration m is as follows

Pseudocode 1 BII HO-IRT updating scheme, Gibbs sampler (arbitrary iteration m)

1: Draw θms ∼ P (θs|θm<s, θm−1>s , εm−1, λm−1, αm−1, βm−1, X) . ∀s = 1, ..., 878

2: for j ← 1 to 6 do

3: Draw εmsj ∼ P (εsj |θm, εms,<j , εm<s,j , ε
m−1
>s,j , ε

m−1
s,>j , λ

m−1, αm−1, βm−1, X) . ∀s = 1, ..., 878

4: end for

5: Draw λmj ∼ P (λj |θm, εm, λm<j , λ
m−1
>j , αm−1, βm−1, X) . ∀j = 1, ..., 6

6: Draw αmi ∼ P (αi|θm, εm, λm, αm<i, α
m−1
>i βm−1, X) . ∀i = 1, ..., 24

7: Draw βmi ∼ P (βi|θm, εm, λm, αmβm<i, β
m−1
>i , X) . ∀i = 1, ..., 24

where < s = [1, ..., s− 1] and > s = [s+ 1, ..., 878] and the same is true for j and i.

The steps to derive the full conditional probabilities are analogous for all the parameters

and therefore only the derivation of θ will be explained in detail. It is based on consecutive

use of Bayes Theorem (4.28) which explains the relationship between the joint probability

and the conditional probability between two, possibly multidimensional, variables:

P (X,Y) = P (X|Y)P (Y) (4.28)

In the updating scheme in Pseudocode 1 it is implicated which MCMC iteration, m, a

parameter belongs to and thus this notation will be excluded in the derivation. Note
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that due to the experimental independence assumption among subjects and the local

independence assumption among items we can assume that a parameter’s full conditional

distribution is not conditioned on parameters of the same type. It also implicates that

all types of parameters are independent in regards to each other with the exception of ε

which depends on λ. Thus, we can derive the full conditional probability for θ as

P (θs|θ<s, θ>s, ε, λ, α, β,X) = P (θs|ε, λ, α, β,X)

∝ P (θs, ε, λ, α, β,X)

∝ P (X|θs, ε, λ, α, β)P (θs, ε, λ, α, β)

∝ P (X|θs, ε, λ, α, β)P (θ|ε, λ, α, β)

= P (X|θs, ε, λ, α, β)P (θ)

(4.29)

This means that the full conditional distribution for a parameter is its likelihood function,

P (X|θs, ε, λ, α, β), multiplied with its prior distribution, in this case P (θ). The full

conditional probabilities for the other parameters can be derived analogously . They are

presented in equations (4.30) - (4.34).

P (θs|rest) ∝
24∏
i=1

P (xsi|θs, εsj , λj , βi, αi)P (θs), ∀s = 1, ..., 878 (4.30)

P (εsj |rest) ∝
∏
i∈j

P (xsi|θs, εsj , λj , βi, αi)P (εsj |λj), ∀s = 1, ..., 878; ∀j = 1, ..., 6 (4.31)

P (λj |rest) ∝
878∏
s=1

∏
i∈j

P (xsi|θs, εsj , λj , βi, αi)P (λj), ∀j = 1, ..., 6 (4.32)

P (αi|rest) ∝
878∏
s=1

P (xsi|θs, εsj , λj , βi, αi)P (αi), ∀i = 1, ..., 24 (4.33)

P (βi|rest) ∝
878∏
s=1

P (xsi|θs, εsj , λj , βi, αi)P (βi), ∀i = 1, ..., 24 (4.34)

Here the notation rest indicates all other model parameters and i ∈ j indicates all items

i that belong to the domain j.

Gibbs sampling requires, in each iteration, a draw directly from the full conditional

distribution and to be able to do this it is necessary that the distribution for each

parameter can be derived in closed form (i.e., that it can be evaluated in a finite number

of steps). If this is not possible the model can be extended using a Metropolis-Hastings

within Gibbs approach which allows the model to perform Gibbs sampling when possible,
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and when not it takes a so called Metropolis-Hastings step. A Metropolis-Hastings step

(Chib and Greenberg (1995), Hastings (1970), Metropolis et al. (1953)) for an arbitrary

parameter, τ , in the MCMC algorithm is carried out as in Psuedocode 2

Pseudocode 2 Metropolis-Hastings step for an arbitrary parameter τ

1: Draw τ∗k ∼ g(τk|τm−1k )

2: Accept τ∗k with an acceptance rate of α∗ = min

{
f(τ∗k |rest)g(τ

m−1
k |τ∗k )

f(τm−1
k |rest)g(τ∗k |τ

m−1
k )

, 1

}
3: If accepted τmk = τ∗k , else τ

m
k = τm−1k

In the first step of Pseudocode 2 τ∗k is a proposal value which is drawn from an arbitrary

convenient proposal density g. One common choice of proposal density is an independent

density, i.e. g(τmk |τ
m−1
k ) = g(τmk ). In the second step it is determined if the proposal

value is accepted, with an acceptance rate of α∗ which is determined by the values of the

proposal density, g, and the full conditional density, f , given the old value, τm−1k and

the proposal value, τ∗k .

The implementation of the MCMC model is done with the use of JAGS (Just Another

Gibbs Sampler) in R through the package rJAGS. JAGS allows the user to define the

model and the model priors. In JAGS where conjugate distributions (when the posterior

distributions are in the same family as the prior distribution) are used regular Gibbs

sampling is done. When that is not the case, i.e., there is no closed form distribution

for the parameters, then a Metropolis-Hastings step is used (adaptive rejection or slice

sampling might also be used, but those methods are not included in the scope of the

thesis). Earlier work on MCMC for IRT (particularly the GRM) done by Albert and

Chib (1993), Cowles and Carlin (1996) and Kuo and Sheng (2015) has mainly focused

on the development of a Metropolis-Hasting-within-Gibbs method.

When specifying the MCMC model in JAGS one of the major concerns is the prior

selection since this is one of the most evident ways to influence the analysis and make

an impact on the result. Therefore, we will conduct a comprehensive prior analysis in

the section 4.3.3 to see how the choice of prior distributions influences the estimates of

the model parameters.

4.3.3 Prior Selection

The priors are the the only way to adjust a specified MCMC model in order to affect

the results. Hence, it is desirable to analyze the importance of the prior selection and

determine which priors are the best fit for our model.
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The distribution of ε and θ are known since they are defined by the model and the

prior distribution of λ is chosen to cover the interval I ∈ [0, 1] so that all correlations

between the first- and second-order latent traits are attainable (Huang et al., 2013).

Patz and Junker (1999) suggests the use of the lognormal distribution for α and normal

distributions for the other model parameters. The constant prior hyperparameters for

α and β are chosen according to the values presented in Sung and Kang (2006). The

following priors were used as a starting point for the prior analysis:

θs ∼ N (0, 1)

λj ∼ N (0.5, 0.2)I(0, 1)

εs,j ∼ N (0, 1− λ2j )

αi ∼ lnN (0, 1)

βik ∼ N (0, 1)

N.B. The prior λj ∼ N (0.5, 0.2)I(0, 1) was selected because the distribution covers the

whole interval for the factor loading term. I(0, 1) truncates the distribution N (0.5, 0.2)

so that λj only takes values between 0 and 1.

The GRM model poses a requirement that the responses are ordered according to their

difficulty level and thus the difficulty parameter βi is required to have an ordered struc-

ture. Therefore, the priors for βi,j , j 6= 1 are given a lower limit determined by βi,j−1
(and no upper limit), i.e.

βi,1 ∼ N (0, 1)

βi,2 ∼ N (0, 1)I(βi,1, )

βi,3 ∼ N (0, 1)I(βi,2, )

βi,4 ∼ N (0, 1)I(βi,3, )

A prior analysis was conducted on a set of simulated data (see Section 4.6.2) in order to

determine the effect the choice of prior has on the results. The reason why the analysis is

conducted on simulated data, rather than on a real data set, is that it is possible to do a

more general analysis (instead of a specific one) on the data structure of the BII data set.

It also allows us to directly estimate the accuracy of the parameter estimates since we

can compare them with the true values, i.e., the model parameters used when simulating

the data set. For each simulation in the prior analysis only one prior distribution was

changed with respect to the starting priors to determine how that specific prior affects

the outcome. The simulated data set consists of S = 1000 subjects, n = 24 items, J = 6

domains and five possible item responses, k = 1, ..., 5. In order to make the analysis
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2nd order 1st order
Prior Adjustment ρθ

(2)
ρθ

(1)

1 ρθ
(1)

2 ρθ
(1)

3 ρθ
(1)

4 ρθ
(1)

5 ρθ
(1)

6

None 0.930 0.869 0.874 0.892 0.903 0.899 0.915
α ∼ lnN (0, 0.5) 0.930 0.869 0.874 0.892 0.903 0.899 0.915
α ∼ lnN (0, 2) 0.929 0.868 0.874 0.892 0.903 0.899 0.915
α ∼ lnN (1, 1) 0.929 0.869 0.875 0.892 0.903 0.899 0.915
β ∼ N (0, 0.5) 0.929 0.868 0.874 0.891 0.903 0.899 0.915
β ∼ N (0, 2) 0.930 0.869 0.875 0.892 0.903 0.899 0.916
β ∼ N (−1, 1) 0.929 0.869 0.874 0.892 0.904 0.899 0.916
β ∼ N (1, 1) 0.930 0.868 0.874 0.892 0.904 0.899 0.916
λ ∼ N (0.5, 0.1) 0.930 0.868 0.874 0.892 0.903 0.899 0.916
λ ∼ N (0.7, 0.2) 0.930 0.869 0.875 0.892 0.904 0.899 0.916
θ ∼ N (0, 0.5) 0.930 0.869 0.875 0.892 0.903 0.899 0.916
θ ∼ N (0, 2) 0.929 0.868 0.873 0.891 0.903 0.899 0.916

Table 4.2: Prior analysis for the HO-IRT GRM model conducted on simulated data

reproducible the seed in R (the starting point for the random number generator) was set

to 71.

Due to the number of parameters no unique solution exists and a change of prior will lead

to changes in the model parameters. Since the model parameters interact the estimated

parameters might be cast on a different scale than the model parameters used in the

data simulation. Therefore, one can not directly use the root mean square error (RMSE)

of the estimated values as a mean of comparison between models.

Instead, in order to evaluate the goodness of fit of the models, we will make use of the

correlation between the estimated values for the latent traits θ̂ and the "true" values

of the latent traits θ obtained from the simulation, i.e. ρθ(2) = ρ(θ̂(2), θ(2)), ρθ(1)1 =

ρ(θ̂
(1)
1 , θ

(1)
1 ) etc. This is also the preferred statistics used by de la Torre and Song (2009).

The result of the prior analysis is presented in table 4.2

As can be seen by comparing the outcomes of the different choices of prior distribution it

is apparent that the goodness of fit is more or less indifferent to (at least) small changes

of the prior distributions. This means that the data, and not the chosen priors, has the

biggest impact on the estimations. Worth noting is that only one run has been done for

each prior adjustment and therefore the result is not statistically significant, but since

all runs show a very low discrepancy in the correlation this gives a clear indication that

the original priors are sufficient. Therefore, the choice of prior distributions in the thesis

is the one used as a starting point for this analysis.
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4.3.4 Parameter Estimation

After the burn-in period the iterations in the MCMC chain are assumed to constitute of

draws from the stationary posterior distribution. For each parameter in the model, here

labeled as τ , we are interested in using the MCMC output τ (m), where m = 1, ...,M , to

estimate its distribution and make inference about it.

Due to the law of large numbers the mean of the MCMC chain for each parameter will

converge towards the true expectation of the parameter’s posterior distribution, as shown

in (4.35).

E[τ |X] ≈ 1

M

M∑
m=1

τ (m) = τ̄ (4.35)

To determine the accuracy of the parameter estimates an uncertainty measure needs to

be employed. There are mainly two uncertainty measures of interest when estimating

the posterior qualities, the Monte Carlo uncertainty and the posterior uncertainty.

The Monte Carlo uncertainty, SEMCMC , simply expresses the standard error between

the true expected value of all parameters and the estimations of the expected value given

by (4.35) and therefore this error is reduced by increasing the MCMC sample size.

The posterior uncertainty, SDpost, of a parameter is the standard deviation of its poste-

rior distribution and is often used to make inferences and construct confidence intervals

for a parameter. We can make the inference about the parameters more precise by

collecting more data. Increasing the number of MCMC iterations after burn-in, M , can

make our estimates of posterior mean and variance more precise (by reducing SEMCMC),

but it can not improve the precision of our inference about τ (Junker et al., 2016).

To compute the posterior standard error one first needs to estimate the variance of the

sampled values of the Markov Chain, i.e. SDpost = σ2τ = V ar[τ ]. If the Markov chain

is not ergodic, i.e., every state of the chain cannot be reached from any other state in

exactly N finite steps. Then one cannot make use of the naive estimator, because of

the dependency of τ (m). One method one might use instead is overlapping batch means

(OLBM) (Flegal and Jones (2011)). First define the batch length, bm, and then construct

batches B1 = (τ (1), τ (2), ..., τ (bm)), B2 = (τ (2), τ (3), ..., τ (bm+1)) etc. Let

τ̄j =
1

bm

∑
τ (m)∈Bj

τ (m), and (4.36)
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σ̂2OLBM =
Mbm

(M − bm)(M − bm + 1)

M−bm+1∑
j=1

(τ̄j − τ̄)2 (4.37)

Under the condition that bm ≈
√
M it is shown that σ̂2OLBM will be a consistent estimator

of the variance of the posterior distribution. Then the standard error is obtained as

SEMCMC ≈
1√
M

√
σ̂2OLBM (4.38)

and the confidence interval is τ̄ ± t∗ · SEMCMC where t∗ follows a t-distribution with

M − bm degrees of freedom.

4.3.5 MCMC Convergence Diagnostics

Gelman et al. (2011) presents general recommendations for assessing if a Markov chain

has converged. The criteria listed are:

• Simulate three or more chains in parallel with three different, crude estimates of

the starting point.

• Check convergence by discarding the first part of the simulations (the burn-in)

then monitor within-chain stationarity and between/within chains comparisons to

monitor mixing. Good mixing indicates that the stationary distribution is reached

(fairly quick) for all chains, starting from an arbitrary position.

• Once approximate convergence has been reached, mix all the simulations from the

undiscarded parts of the chains together to summarize the target distribution.

The above recommendations are considered when running the MCMC simulations on the

BII data set. For the MCMC chains 2000 iterations (at least) are chosen as the burn-in

period to follow the recommendations given by Huang (2015). Another recommendation

is to have a high dispersion of the initial values for each separate chain such that all the

MCMC chains do not get stuck in a local maximum. The initialization is taken care of

automatically by the R packages used in the analysis conducted for the BII.

Within-chain stationarity is examined through each chain’s trace plot. A trace plot

plots the parameter value for each iteration in the chain. When converged the chain

only takes values drawn from the stationary distribution and thus each single trace plot

should show that the drawn values vary around a specific mean. If the trace plots of
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three parallel chains overlap one another to a great extent, after the burn-in period has

been discarded, this indicates that the MCMC chains are mixing well (the dependence

decays quickly in successive iterations). If the chains converge quickly and if it is not

highly auto-correlated, then samples from the multiple chains can be pooled together to

make valid inferences about the posterior distribution. Because of the vast numbers of

model parameters being estimated, > 11000, it is impossible to present all trace plots

and auto-correlation function plots. However, a vast subset of these have been analyzed

and typical graphical results are shown in section 5.1.

One of the most commonly used convergence diagnostic tools is the Gelman-Rubin di-

agnostic which will be used in this analysis to further validate the convergence of the

results obtained from the MCMC analysis.

4.3.5.1 Gelman-Rubin Diagnostics

The Gelman-Rubin (G-R) diagnostic (Gelman and Rubin, 1992) utilizes the charac-

teristics of multiple chains with different initial values to check if they have reached

convergence. When the chains have converged they should have similar appearance to

one another. Failure to converge could indicate the presence of a multi-mode posterior

distribution (different chains converge to different local modes) or the need to run a

longer chain.

The G-R diagnostic is a variance ratio test statistic. The convergence is assessed by

comparing the estimated between-chains variance, B, and the within-chain variances,

W , for each model parameter. A large difference between these variances indicates that

the chains have not converged (Brooks and Gelman, 1998).

To briefly summarize the G-R diagnostic, suppose there are N chains, all of equal length

M . The model parameter of interest is θ and {θmn }Mm=1 is the n:th simulated chain,

n = 1, ..., N . Let θ̂n and σ̂2n be the sample posterior mean as well as the variance of the

n:th chain. The sample mean for the chain is θ̂n = 1
M

∑M
m=1 θ

m
n and the overall sample

posterior mean is θ̂ = 1
N

∑N
n=1 θ̂n. The definitions of the between-chains variance B and

the within-chain variances W are presented in equations (4.39) and (4.40).

B =
M

N − 1

N∑
n=1

(θ̂n − θ̂)2 (4.39)

W =
1

N

N∑
n=1

σ̂2n (4.40)
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where σ2n = 1
M−1

∑M
m=1(θ

m
n − θ̂n)2. An unbiased estimate of the marginal posterior

variance of θ, V̂ar(θ) can then be calculated as

V̂ar(θ) =
M − 1

M
W +

N + 1

NM
B (4.41)

If all N chains have converged to their target distributions, then V̂ar(θ) should be close to

W . The square root of this ratio is called the Potential Scale Reduction Factor (PSRF)

where a large value indicates that B is greater than W and therefore more iterations in

the MCMC chains are needed. If the chains have converged the PSRF (also called the

G-R diagnostic) should be close to 1. The PSRF presented in Brooks and Gelman (1998)

is defined as

R̂ =

√
d̂+ 3

d̂+ 1

V̂ar(θ)
W

(4.42)

Here, d̂ is the degrees of freedom estimate of a t distribution. If the stringent condition

R̂ < 1.1 holds for all model parameters, one can be fairly confident that convergence has

been reached Brooks and Gelman (1998).

4.4 Model Fit

To assess the accuracy and validity of the parameter estimations and to be able to com-

pare different models with each other, there is a need for some statistics that measure a

model’s goodness of fit. To asses this, one can examine the variation of the parameter

output as well as performing a Posterior Predictive check (PPC). To compare two differ-

ent models with each other one can also use the PPC as well as the Deviance Information

Criteria (DIC) and the Coefficent of variation (CV).

4.4.1 Coefficient of Variation (CV)

General model fit can be assessed by looking at the mean posterior variance for the

parameters recovered. A lower variance indicates that the model has a better fit, but the

magnitude of the estimated parameters will also influence the magnitude of the variance

and thus it is not possible to compare the model fit between two different models by

only examining the parameter variance. Therefore, a better measure of how much a

parameter estimate fluctuates can be obtained by taking the ratio of the mean of the

standard deviation and the mean of the absolute value of the model parameters. This
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measure is called the Coefficient of variation (CV) and a low CV indicates a better

estimate of the model parameters. The total CV for a latent trait θ̂, ctotv , is defined as

ctotv =
1
S

∑S
s=1 σ(θ̂s)

1
S

∑S
s=1 |θ̂s|

(4.43)

Where 1
S

∑S
s=1 σ(θ̂s) is the subject mean of the estimated trait’s standard deviation and

1
S

∑S
s=1 |θ̂s| is the subject mean of the absolute value of the estimated trait. Since the

CV is a dimensionless measure, it allows for comparing different models with varying

mean estimates.

N.B. the regular CV has been modified in order to be an adequate measure for the BII.

The trait and parameter estimates for the BII are not cast on a positive scale, some

latent trait values can be close to zero and then the CV will increase greatly. This is the

reason why we take the absolute value of the subject mean estimate and sum over all

the estimates in the denominator.

4.4.2 Deviance Information Criteria (DIC)

The Deviance Information Criteria (DIC) is a measure of model fit and useful in Bayesian

model selection where the posterior distributions of the model parameters have been

obtained through a Markov Chain Monte Carlo analysis. DICs are comparable only over

models constructed from the same data set, but there is no need for the models to be

nested (Spiegelhalter et al., 2002).

The deviance is defined as D(θ) = −2log(P (X|θ)) where X is the data, θ the unknown

model parameter(s) and P (X|θ) the likelihood function. D(θ) is a function of θ and

thus it can be seen as a posterior distribution with expectation D̄ = Eθ[D(θ)]. D̄ can be

computed, given the law of large numbers, as the mean of the estimated deviance in each

Monte Carlo step. High values of the deviance indicates low values of the log-likelihood

and thus a poorer model fit.

More complex models almost always fit the observed data better and therefore produce

a higher log-likelihood than simpler models. However this does not necessarily mean

that more complex models are a better fit for unobserved data. Thus, the DIC takes

the model’s degrees of freedom, pD, into account to obtain a better estimate of the true

model fit. Hence, the DIC is defined as

DIC = D̄ + pD (4.44)
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The pD value used in JAGS is computed based on an approach suggested by Plummer

(2008). The details of this approach is outside the scope of this thesis, but in short it

is estimated by taking the sample mean of the Kullback-Leibler information divergence

between the chains.

4.4.3 Posterior Predictive Check (PPC)

In Bayesian statistics in order to asses the model fit one can perform a Posterior Predic-

tive Check (PPC). In PPC predicted data is simulated from the fitted model and then

compared to the observed data in order to see how well the model’s estimated parameters

can replicate the original data set.

The predictions are made by draws from the posterior predictive distribution, which is the

distribution of unobserved predictions conditional on the observed data and the estimated

model parameters. In the case of the BII predictions are drawn from a categorical

distribution following the probability distribution of response k to item i for subject s.

The predictions are then compared to the real data, where the mean of the predicted

(replicated) subject responses µ(Xrep
s ) is compared to the mean of the subject responses

in the real data set µ(Xs). An attempt to replicate the full data set is carried out once

for every iteration in the MCMC chains, hence there will be in total 18000 replicated

data sets, all with different parameter estimates, to make comparisons with.

Mean Posterior Predictive Checks The PPC presented in Gelman et al. (2000) are

statistics realted to the mean:

• pmean1 : E(1µ(Xrep
s )=µ(Xs))

• pmean2 : E(1µ(Xrep
s )>µ(Xs))

• pmean3 : E(1µ(Xrep
s )<µ(Xs))

and the standard deviation statistics of interest are:

• pstd1 : E(1σ(Xrep
s )=σ(Xs))

• pstd2 : E(1σ(Xrep
s )>σ(Xs))

• pstd3 : E(1σ(Xrep
s )<σ(Xs))
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The values pmean1 and pstd1 are where the row mean and/or standard deviation of the

replicated data set is exactly equal to the real data set. This is quite unlikely as there

are uncertainties in the estimates. However, if pmean2 and pmean3 as well as pstd2 and pstd3

are equally distributed — i.e., there is an equal probability that the row mean as well

as the row standard deviation is slightly lower or higher than compared to the real data

set — then one can conclude that the model is relatively good at predicting itself. If so,

the model fit is adequate according to the PPC method.

Ideally the distributions of the replicated values for both the mean and the standard

deviation for every subject converge towards a normal distribution. The means of these

standard distributions should ideally be E(µ(Xs)) and E(σ(Xs)), respectively. This can

be graphically checked by plotting a histogram of the resulting statistics for the 18000

replicated data sets and drawing a vertical line for the value of E(µ(Xs)) and E(σ(Xs))

in the plots.

A common argument against using the PPC method is that the data is used twice. The

argument "using the data twice" means that you use your data for estimating the model,

and then for checking if the model fits the data. Even though some argue that it would

be better to validate the model with external data not used for the estimation, the PPC

method is still an accepted method used to assess model fit. All in all, posterior predictive

checks are helpful in assessing if the model yields "valid" predictions. However, it should

be noted that it does not give a definite answer if the model is adequate or if it is better

than another model Gelman et al. (2000).

4.5 Variable Reduction and Construction of the Index Al-

gorithm

The HO-IRT model provides a theoretically valid estimation of the latent traits for each

subject s, but it has practical limitations when applying it to new test-takers. It is

possible to add the new test subjects’ data to the existing set and redo the HO-IRT

MCMC simulations, but this method is time consuming and it would not be possible to

generate an index score instantly after the test-taker has completed the questionnaire

(as the MCMC simulations take several hours to complete on a contemporary, high

performance computer). To enable faster estimation of latent trait scores, even though

the ease of computation comes at the expense of estimate accuracy, we therefore wish to

fit the latent traits to a set of linear regression models, as presented in equation (4.45).

Each model has one of the seven traits θ as its dependent variable and the BII data set

with item responses, X, as the explanatory variables.
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θ2 = XcT0 + ε0

θ11 = XcT1 + ε1

θ12 = XcT2 + ε2

θ13 = XcT3 + ε3

θ14 = XcT4 + ε4

θ15 = XcT5 + ε5

θ16 = XcT6 + ε6

(4.45)

where the linear regression equations in (4.45) make use of the following parameter

matrices:

θ2 =


θ21
...

θ2878

 θ1∗ =


θ1∗,1
...

θ1∗,878

 cT∗ =


c∗,0

c∗,1
...

c∗,24

 ε∗ =


ε∗,1
...

ε∗,878



X =


1 x1,1 .. x1,24
...

...
. . .

1 x878,1 .. x878,24



where the subscript ∗ can take on any of the following values: (0), 1, 2, 3, 4, 5, 6 (which

corresponds to the traits (innovation), trust, resilience, diversity, belief, perfection, col-

laboration respectively). X is the data set with all the answers to the questionnaire,

where xs,i is subject s’ answer to item i. The columns of the X matrix corresponds to

the questions/items in the data set, namely QT1, QT2, ...QC3, QC4 (all the questions

are specified in Appendix A).

One aim of the thesis is to analyze the possibility of a variable reduction, i.e. the

possibility of reducing the number of items without too much loss of estimation accuracy.

In other words, we want to reduce the number of questions such that only the most

important ones are used in the analysis. A set of linear models with differing dependent

variables, but with the same explanatory variable is called a multivariate linear regression

model and there is no known method that can be used for variable reduction on this
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model, where the same explanatory variables are deemed insignificant simultaneously in

each of the separate linear regression models.

The method used here will therefore be based on an iterative use of feature selection

methods over the seven regression models. For each model every variable is assigned an

importance estimate. Thereafter a full feature ranking, for the whole set of models, will

be obtained by ranking the variables given their average importance over all of the fitted

models. The feature ranking methods that will be used are the Boruta and the GBM

and thus two feature rankings will be produced.

For each feature ranking 24 sets of the seven linear regression models are evaluated with

l = 1, ..., 24 regression variables. The model with only one variable, l = 1, will only

regress on the variable that contains most information according to the feature ranking

method employed. When l = 2 the second most important variable is added etc. The

last model contains all possible explanatory variables, i.e. l = 24.

Each linear regression model is fitted using cross-validation. Cross-validation means that

the data set is randomly split in two parts, here 90% of the data is used as training data

to fit the model and 10% is used as test data to test the model fit. This is done 500

times and the model with the best fit, according to the root mean square error (RMSE)

given the test data, is used as the final model.

The goodness of fit for each of the 24 sets of models are then then compared using the

mean of the RMSE, the Akaike Information Criteria (AIC), and the Bayesian Informa-

tion Criteria (BIC) over all the seven linear regression models in the set (4.45). The

final variable reduction will be determined based on a trade-off between goodness of fit

and the number of parameters in the model.

4.5.1 Additional Goodness of Fit Measures

The RMSE determines the size of the average error, i.e., the deviance between true and

the estimated value of the trait, θ, and is given by

RMSE =

√∑S
s=1(θ̂s − θs)2

S
(4.46)

The DIC presented earlier is the hierarchical modeling generalization of the AIC and the

BIC. The AIC and the BIC measures the relative goodness of fit of nested models.

When fitting a model it is possible to increase the likelihood by adding more parameters,

but more complex models might perform worse when they are evaluated on new data
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(the model is over fitted). Therefore, both the AIC and the BIC shown in (4.47) and

(4.48) are computed by adding a penalty term, related to the number of coefficients, to

the estimated deviance D(θ) = −2log(P (X|θ)). Therefore, nested models with differing

numbers of model parameters may be more accurately compared.

AIC = D(θ) + 2l (4.47)

BIC = D(θ) + l log(S) (4.48)

in which l is the number of parameters in the linear regression model and S is the number

of observations in X, i.e. the number of subjects.

4.5.2 Feature Selection

As mentioned earlier the following feature selection methods are used to obtain the

feature rankings:

Boruta: A wrapper around the random forest algorithm

GBM: The Gradient Boosting Method

Boruta

The Boruta algorithm in R is a wrapper built around the random forest classification

algorithm. The algorithm determines relevance of features by comparing them to the

relevance of random probes. The random forest classification gives a numerical estimate

of the feature importance that can be used to compare the importance features in a data

set (Kursa and Rudnicki, 2010).

The Boruta algorithm is performed by voting of multiple unbiased weak classifiers (deci-

sion trees). The importance measure, Z, is calculated as the accuracy loss of classification

caused by random permutation of attribute values between objects. Each tree in the al-

gorithm is given an attribute for classification and the average and standard deviation

of the accuracy loss are computed. The Z score is defined as the importance measure

based on the variations of the mean accuracy loss among trees.

Kursa and Rudnicki (2010) summarizes the Boruta algorithm with the following steps:

1. Produce copies of all attributes and put them in the information system.
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2. Shuffle the copied attributes to remove their correlations with the response and

label the shuffled copies as shadow attributes.

3. Run a random forest classifier on the extended information system and gather the

Z scores.

4. Find the Maximum Z Score among Shadow Attributes (MZSA), and then assign

an importance score to every attribute that scored better than MZSA.

5. For each attribute with undetermined importance perform a two-sided test of equal-

ity with the MZSA.

6. Deem the attributes which have importance significantly lower than MZSA as

"unimportant" and permanently remove them from the information system.

7. Deem the attributes which have importance significantly higher than MZSA as

"important".

8. Repeat the procedure until an importance score Z is assigned for all the attributes,

or the algorithm has reached the user defined limit of random forest runs.

The Boruta algorithm is run on all seven linear regression models in (4.45). The impor-

tance of every question is then labeled Zip, e.g. Z
QT1
0 is the importance of the question

QT1 in the linear regression equation that has overall innovation capability, θ2, as the

dependent variable. Following the subscript notations introduced in (4.45) the subscript

notation p = 0 corresponds to the importance value of some question for θ2, p = 1

corresponds to θ11 etc.

In order to compare the different features for all the seven linear regression models we

also form the mean importance Z̄ for every feature. E.g., the total Z score for QB3 is

Z̄QB3 = 1
7

∑6
p=0 Z

QB3
p .

Gradient Boosting Method (GBM)

The Gradient Boosting Method (GBM) utilizes a prediction model based on decision trees

in order to classify the importance of features. It can be seen as a boosted extension of the

random forest algorithm. It distinguishes weak learners (that are not highly correlated

with the true classification) with strong learners (that are highly correlated with the true

classification).

The GBM algorithm implemented in the R package gbm is explained thoroughly in Ridge-

way (2007).

Briefly the algorithm finds a regression function f̂(x) that minimizes the expectation of

a loss function Ψ(θ, f).
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The regression function f(x) is assumed to be a function with a finite number of pa-

rameters, β. Estimations are carried out by selecting the values that minimize the loss

function over a training sample of N observations for (θ,x):

β̂ = argmin
β

N∑
i=1

Ψ(θi, f(xi;β))

The steps performed in the GBM package implemented in R are shown in Psuedocode

3.

GBM initialization:

Select a loss function (distribution) Ψ, the number of iterations T, the depth of each deci-

sion tree,K, the sub-sampling rate p, and specify the shrinkage (learning rate) parameter

λ.

Pseudocode 3 Steps performed for feature ranking with the GBM

Initialize f̂(x) as constant, f̂(x) = argmin
ρ

∑N
i=1 Ψ(θi, ρ)

1: for t← 1 to T do

2: Compute zi = − ∂
∂f(xi)

Ψ(θi, f(xi))
∣∣∣
f(xi)=f̂(xi)

3: Randomly select p×N cases from the data set

4: Fit regression tree with K terminal nodes, select g(x) = E(z|x) from random

observations

5: Compute ρk = argmin
ρ

∑
xi∈Sk Ψ(θi, f̂(xi) + ρ)

6: Update f̂(x) as f̂(x)← f̂(x) + λρk(x)

7: end for

In the above Pseudocode 3 ρ is the optimal terminal node predictions. Sk is the set

of x:s that define terminal node k. k(x) indicates the index of the terminal node with

features x.

The GBM model above is fitted to all the seven linear regression equations specified in

(4.45). In order to assess the importance of each feature in our data set, we employ

repeated cross-validation on the fitted GBM models. For each iteration, the model is

trained on 90% of the data, selected at random. The prediction accuracy is recorded

as the RMSE at each iteration. Then the same is done after permuting each predictor

variable. The difference between the two accuracies are then averaged over all iterations,

and normalized by the standard deviation. Then the sum of all the importance values is
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calculated over all the boosting iterations. N.B. if the standard error is equal to 0 for a

variable, the division is not done.

4.5.3 Scaling of the Index

After the variable reduction is done, and the latent trait scores for each subject has been

calculated via the linear regression models, the final algorithm scores can be obtained by

casting the regression results on the interval I = [1, 10]. The reason to map the latent

trait estimates to a new interval is partly to meet the requirements of the index, but also

to facilitate comparisons between the latent trait scores.

The HO-IRT model is constructed such that each latent trait estimate is almost equally

distributed with mean µθ = 0. This means that the worst and the best score in each

domain will be roughly equal for all different traits, which is contradictory to the fact

that the mean item response for some traits differ considerably. Thus, the different

trait scores produced by the HO-IRT model are cast on different scales and to enable

comparisons of the scores between domains they must be cast on a common scale.

It should be noted that, as mentioned in Section 4.2.5, a comparison between first-order

traits should only be done for a within-person comparisons and that a between-person

comparison is only valid for the second-order trait.

The lowest latent trait score should be obtained when a subject responds xi = 1, ∀i =

1, ..., 24 and the lowest first-order latent trait score for domain j should be obtained when

a subject responds xi = 1, ∀i ∈ j. Analogously the highest score for the second-order

trait should be obtained when xi = 5, ∀i = 1, ..., 24 and max for each first-order trait

when xi = 5, ∀i ∈ j.

The best and worse scores for the variable θ are annotated min(θ) and max(θ) and they

are used to map θ values to a desired interval, i.e. [min(θ),max(θ)] → [1, 10]. The

algorithm used to map an arbitrary latent score θ to the interval I[1, 10] is presented in

equation (4.49).

θnew =
(θold −min(θ))(10− 1)

(max(θ)−min(θ))
+ 1 (4.49)
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4.6 Further Analysis

4.6.1 Exploratory Analysis

In the BII it is assumed that the model structure is as shown in Figure 4.4 in section

4.2.5, but it is important that we can support this claim regarding the structure of the

data. This can partly be done with an exploratory analysis. The goal of the exploratory

analysis is to confirm, or discard, the assumptions we have made about the data structure.

The structure assumptions on our data is that there exist one second-order trait and six

first-order traits, and that each test item belongs to a domain governed by a specific

first-order trait. E.g., the first-order trait trust can best be explained by the responses

to the items QT1, QT2, QT3 and QT4. The full explanation of the methods used in

the exploratory analysis are outside the scope of this thesis, but short summaries will be

presented below.

To confirm the assumption about the number of latent traits measured by the BII we

will use Principal Component Analysis (PCA) and Exploratory Factor Analysis (EFA)

to confirm or reject the hierarchical model structure.

The goal of the PCA is to find a set of k principal components where k is much smaller

than the dimension of the original data set, but accounts for nearly all of the variability

(information) of the data set. We can see the item response matrix as a set of data vectors

described by i dimensions, in this case items. PCA transforms these vectors into a set

of i new orthogonal vectors called principal components. The first principal component

contains the most information and the following i − 1 components contains as much

information as possible while fulfilling the requirement of being orthogonal to the former

components. The first k principal components will contain most of the information of

the data and thus we can answer the question of how many components are needed to

accurately represent the data.

The results obtained from the PCA when run on the BII data set is presented in Figure

4.5.

In the latent trait model framework the PCA is used to confirm, or reject, the assumption

of the number of underlying traits. The hypothesis is that these latent variables are those

modeling the subjects’ response patterns. Due to the hierarchical structure assumption,

the hypothesis is that we will find one component with a lot of information (the second-

order trait, i.e. innovation) and six components with less information, but still significant

(corresponding to each of the six first-order traits). In the PCA a high level of information

is equivalent with a high eigenvalue.



Chapter 4. An MCMC HO-IRT Approach to Measure Innovation 55

Figure 4.5: Eigenvalues of principal components

One critique against using the PCA method for exploratory analysis is that there does

not exist any statistic to determine the number of high information variables. Therefore,

the interpretation of the results is deemed to be very subjective. However, without

making a big conclusion, what we can see is that the underlying data structure at least

does not reject the idea of one overall latent trait, which accounts for a lot of information,

and a set of six first-order latent traits. The interpretation of what the high information

components represents is also highly subjective, therefore we will not draw the conclusion

that the components actually represents the specified latent traits, but simply state that

we can not reject this assumption.

The Exploratory Factor Analysis (EFA) models the latent data structure as a set of

simultaneous linear models

Xs = µX + ΛFT
s + εp (4.50)

where Fs is, for subject s, a set of n latent variables called factors, Xs is the response

vector for subject s (the subject’s manifest variables), µX is the vector containing a mean

parameter for each linear model, Λ is a matrix of factor loadings and ε is the vector of

residuals for each linear model (one model for each item). The model parameters are

estimated using Maximum Likelihood.

The goal is to estimate how the model would look like if a set of n hypothetical latent

factors had constructed the data set. The ordinary EFA assumes that the factors are

uncorrelated and it assumes a non-hierarchical model structure, but it can be extended to

the higher-order EFA. The higher-order EFA method used here is described in McDonald
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(1985) and in short one makes an ordinary exploratory factor analysis on the data, rotate

the factors to allow for correlation and then performs a Schmid-Leiman transformation

(Schmid and Leiman (1957)) of the rotated factors (i.e., attribute the variation from the

first-order factors to the second-order factors).

The fact that the EFA model is based on a linear assumption makes it less suited for

our analysis, but it allows us to obtain a crude estimate of the factor loadings (given

a set of n factors) and thus identify which domain an item supposedly belongs to and

then confirm or reject the assumed hierarchical model structure. The model structures

given n = 3, 4, 5, 6 are presented in figure 4.6(a)-(d). From the results we can draw the

conclusion that six factors, or first-order latent traits, seems reasonable for the BII data

set and the questions in the data set are also grouped together in the same domain as

defined in the model assumptions (i.e., QT1,..QT4 belong to the trust domain).

4.6.2 Simulated Data

A study of the models on different sets of simulated data have been carried out in

which the goal was twofold. The first reason was to ensure that our model yields a

satisfying result under the assumption made on the data set, i.e., that the data follows

the assumed hierarchical structure. The other aim was to, with simulated data sets of

differing structure, enable an analysis of how different data structures affect the accuracy

of the results. This analysis is conducted to provide a foundation for further development

of the BII.

The simulation of the data sets are done in MatLab and the distribution of the model

parameters are the following:

• θ(2) ∼ N (0, 1)

• ε ∼ N (0, 0.5)

• λ = [x : x = 0.6 + 0.3n/J, n ∈ (0, 1, ..., J)]

• α ∼ N (1.8, 0.25)

• β = [(β0 − 1.5, β0 − 0.5, β0 + 0.5, β0 + 1.5), β0 ∼ U(−1.5, 1.5)]

The θ(1) parameters are computed as in equation (4.20). The simulated response matrix

is also analyzed manually and if it differs too much from the real data set the simulation

is discarded (in order to obtain results that are relevant for the true data set).
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Figure 4.6: Higher-order factor analysis model structure for (a) three first-order latent
traits, (b) four first-order latent traits, (c) five first-order latent traits and (d) six first-

order latent traits
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Since the β parameters are evenly spaced in the simulated data this will guarantee that

the β parameter will not lower the amount of information given by an item. This will

result in a data structure that is easier to model and the correlations will be higher.

The MCMC simulations were carried out in JAGS through the R-package RJags. Each

simulation was run with three parallel chains over 6000 iterations, including 3000 burn

in iterations.

4.6.3 Outlier Analysis

To determine the robustness of the model and how outliers might affect the results two

leave-one-out analyses were conducted where "extreme" values from the BII data set

were omitted. The data entries discarded in the two analyses were the lowest and the

highest (row) means of the subjects’ responses, i.e., E(Xs) = 1
24

∑24
i=1 xs,i. The highest

scoring subject had a row mean value equal to 5, and the lowest scoring subject had a

row mean value equal to 2.375.

Subject responses omitted from the data set in the outliers analysis

• E(X375,i) = 5 ∀i

• E(X205,i) = 2.375 ∀i

The two data sets cleaned from outliers, X′
hi and X

′
low, now has the maximum and min-

imum row mean value of max(E(X′
hi)) = 4.875 and min(E(X′

low)) = 2.667 respectively.

The full HO-IRT MCMC analysis was run on both the reduced data sets, X′
hi ∈ N877×24

and X′
low ∈ N877×24, in order to assess how these "extreme" values in the data set affect

the results.



Part III

Consequences of Measuring the

Unmeasurable

Key takeaways: In Part III the model selection analysis concluded that the Higher-

Order Graded Response Model (HO-GRM) is the model of choice for the BII algorithm.

The resulting index also seems to promote items with less variability. The variable

reduction analysis showed that all items are relevant in the model, however an alternative

reduced question set with the 17 most relevant items is also presented. In the Discussion

chapter the results are analyzed and eventual doubts and inaccuracies are highlighted.

Recommendations as well as improvements that can be made are presented and possible

future research is put forward.



Chapter 5

Results and Analysis

Happy people plan actions, they don’t plan results.

—Denis Waitley, Motivational Speaker

5.1 Model Selection (HO-GRM vs HO-GPCM)

To check for convergence of the MCMC chains two of the most common methods to use

are graphical analysis of chain convergence and the Gelman Rubin (G-R) diagnostic, i.e.

the R̂-value. The graphical analysis is done by inspecting the trace plots, the estimated

posterior distribution of the parameters, the ACF (auto-correlation function) and the

running mean.

Due to the vast number of estimated model parameters it is not feasible to present the

full graphical convergence analysis for the HO-GRM and the HO-GPCM. Instead general

results are presented in figure 5.1 and 5.2 which shows all the convergence graphs for

the parameters β11,1 and θ(1)2,120 for the HO-GRM (figure 5.1a and 5.1b) and for the HO-

GPCM (figure 5.2a and 5.2b). N.B. The top-left graph in each subplot is the estimated

parameter distribution, the top-right plot is the autocorrelation function, the middle-

right plot is the parameter running mean, and the bottom plot is the trace plot (after

the burn-in has been discarded).

60
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(a) (b)

Figure 5.1: Graphical analysis of the convergence for the parameters (a) β11,1 and
(b) θ(1)2,120 in the HO-GRM model.

(a) (b)

Figure 5.2: Graphical analysis of the convergence for the parameters (a) β11,1 and
(b) θ(1)2,120 in the HO-GPCM model

As noted before this is just a (very small) sample to give the reader a notion of the

appearance of the different graphs. The graph in the bottom is the trace plot that shows

each chain over the last 9000 iterations. Since the values of the chain vary around a

mean with more or less the same deviance for the three parallel chains this indicates that

the draws are made from a stable distribution. The running mean for both parameters

slowly converges toward a value that is assumed to be the mean of the parameter posterior

distribution. The ACF indicates that there is little to no correlation between sequential

draws from the distribution and thus the chains mix well, i.e. successive draws from the

distribution are (almost) independent of one another. Overall, the full graphical analysis

for the whole simulation showed no signs of lack of convergence for any parameter.

To further confirm that the chains have converged the G-R diagnostic, R̂, is computed

and the maximum value of this statistic for each type of parameter is presented in 5.1.

If R̂ < 1.1 for all parameter types that indicates that the chains have converged. Thus,
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we can conclude that all the MCMC chains for both the HO-GRM and the HO-GPCM

have fully converged.

max(R̂)

Model α β λ θ(2) θ(1) ε

HO-GRM 1.008 1.008 1.013 1.002 1.004 1.005

HO-GPCM 1.007 1.005 1.011 1.005 1.002 1.005

Table 5.1: Maximum value of the G-R statistic, max(R̂), for each parameter type for
the HO-GRM and the HO-GPCM

To assess which model, HO-GRM or HO-GPCM, is the best one for the BII data set the

goodness of fit measures obtained for both the models are compared. In the comparison

the DIC and the mean variance of the latent trait estimates are employed. Since the

same data set have been used for both models the DIC is a valid measure of comparison.

The DIC and the mean variance for the second-order latent trait, θ(2), and the first-order

latent traits, θ(1)j , for the HO-GRM and the HO-GPCM are presented in table 5.4.

Variance, σ2

Model DIC θ(2) θ
(1)
1 θ

(1)
2 θ

(1)
3 θ

(1)
4 θ

(1)
5 θ

(1)
6

HO-GRM 48497.7 0.214 0.218 0.208 0.203 0.163 0.374 0.214

HO-GPCM 49704.0 0.232 0.224 0.231 0.220 0.183 0.398 0.236

Table 5.2: DIC and mean variance of the latent trait estimates for the HO-GRM and
the HO-GPCM

To compare the accuracy of the latent trait estimates we will also compare the total

Coefficient of variation (CV), ctotv , as defined in (4.43). These values can be found in

Table 5.3

Coefficient of Variation, ctotv
Model θ(2) θ

(1)
1 θ

(1)
2 θ

(1)
3 θ

(1)
4 θ

(1)
5 θ

(1)
6

HO-GRM 0.749 0.706 0.707 0.691 0.593 1.032 0.744

HO-GPCM 0.754 0.718 0.724 0.701 0.621 1.064 0.766

Table 5.3: ctotv for the latent trait estimates obtained from the HO-GRM and the
HO-GPCM models

Furthermore, to assess the model fit we examine the Posterior Predicitive Check (PPC).

PPC estimates how well the model can reconstruct the original data set, X, into a new

set of data Xrep, given the model parameters estimated in each step of the MCMC
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simulation. Even though the PPC should not be used to give a definite answer if one

model is better than another, it will be used here as an indicator if either of the models are

bad or if both yield a satisfactory result. In figure 5.3 the histogram of the frequencies

of the mean item response for each subject at every iteration in the MCMC chains,

E(Xrep
s ) = 1

n

∑n
i=1 x

rep
si , is shown. In figure 5.4 the histogram of the frequencies of the

standard deviation of the item responses for each subject at every iteration of the MCMC

chains, σ(Xrep
s ), is presented.

E(Xrep
s ) σ(Xrep

s )

Model p1 p2 p3 p1 p2 p3

HO-GRM 0.078 0.466 0.455 0.008 0.465 0.527

HO-GPCM 0.079 0.465 0.456 0.007 0.461 0.532

Table 5.4: PPC p-values of the mean item responses and subject standard deviation
for the HO-GRM and the HO-GPCM

(a) HO-GRM (b) HO-GPCM

Figure 5.3: Histogram showing the frequencies of each subject’s mean item response
given the data set Xrep which is reconstructed from the model parameters at each step
of the MCMC simulation. The vertical line represents the mean item response of all

subjects in the original data set X.
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(a) HO-GRM (b) HO-GPCM

Figure 5.4: Histogram showing the frequencies of each subject’s standard deviation
given the data set Xrep which is reconstructed from the model parameters given in
each step of the MCMC simulation. The vertical line represents the mean standard

deviation of all subjects in the original data set X.

All of these statistics indicate that the HO-GRM model performs better on the BII data

set.

Since the data set will change when more data is added we also want to further assess

the general performance of the models given new data with a structure that resembles

the data structure in the BII. To do this we will first simulate a data set given the model

structure of the HO-GRM and then fit both the HO-GRM model and the HO-GPCM to

the same simulated data set. The same, but reversed, is done with data simulated from

the HO-GPCM model. The performance is then evaluated based on the DIC and the

correlation between the simulated "true" values for the latent traits and the estimated

values. The results are presented in table 5.5

2nd order 1st order
Model (Data) DIC ρθ

(2)

ρθ
(1)

1 ρθ
(1)

2 ρθ
(1)

3 ρθ
(1)

4 ρθ
(1)

5 ρθ
(1)

6

GRM (GRM) 63306.3 0.930 0.869 0.874 0.892 0.903 0.899 0.915
GPCM (GRM) 63699.6 0.928 0.867 0.868 0.891 0.902 0.895 0.911
GRM (GPCM) 59487.6 0.937 0.924 0.920 0.931 0.939 0.935 0.948
GPCM (GPCM) 59484.4 0.940 0.917 0.935 0.927 0.943 0.934 0.945

Table 5.5: Comparison of model fit when the HO-GPCM and the HO-GRM models
estimated the model parameters from data generated by the HO-GRM. As well as
the case when the HO-GRM and HO-GPCM estimated model parameters from data

generated by the HO-GRM.

The result shows that, under the assumption that the hierarchical model assumption

of the BII is correct, both models yield a satisfying result. It also further strengthens

the indications that the HO-GRM model is the best fit for this type of data structure.
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Therefore, HO-GRM is the model chosen for the construction of the BII algorithm and it

is the results for this model that is presented throughout the rest of the results chapter.

5.2 HO-GRM Model Results

The full model specifications, i.e. all the model item parameters, of the HO-GRM is

presented in table B.1 in Appendix B together with all the Item Characteristic Curves

(ICC), Figures B.1-B.3, and the Item Information Functions, Figure B.5. In this section

we will only present the curves for one domain of the model, namely Belief, to give the

reader an overview of the resulting model from the MCMC. The domain Belief has been

chosen since it contains items with both high and low item information and thus presents

ICCs that best represents typical results. The ICCs are presented in Figure 5.5 and the

IIC for the items in domain Belief are presented in Figure 5.6.

(a) ICC for item QB1 (b) ICC for item QB2

(c) ICC for item QB3 (d) ICC for item QB4

Figure 5.5: The Item Characteristic Curves for the items in the domain Belief given
by the HO-GRM model
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Figure 5.6: The Item Information Curves for the items in the domain Belief given
by the HO-GRM model

5.3 HO-GRM Ability Estimates

In figure 5.7 the distribution of the second-order trait innovation capability is shown.

The distribution of the MCMC estimates of all the traits can be found in Figure B.4 in

Appendix B.

Figure 5.7: Histogram showing the distribution of the parameter estimates of the
second-order trait innovation capability, θ(2)

Analytically, the correlation between the first-order traits j and j′ is given by ρ(θ
(1)
j , θ

(1)
j′ ) =

λjλj′ and the correlation between the first-order trait j and second-order trait is as the

regression parameter λj . The estimated values for all the λs are given in table 5.6 and

the estimated correlations between the traits are presented in table 5.7.
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Parameter Estimate, (Standard Deviation, σ )
λ̂1(σλ1) λ̂2(σλ2) λ̂3(σλ3) λ̂4(σλ4) λ̂5(σλ5) λ̂6(σλ6)

0.51 (0.04) 0.857 (0.03) 0.80 (0.03) 0.67 (0.03) 0.42 (0.05) 0.75 (0.03)

Table 5.6: Mean of the parameter estimates and the SDpost for the HO-GRM model
parameters λj where j = 1, ...6

θ(2) θ
(1)
1 θ

(1)
2 θ

(1)
3 θ

(1)
4 θ

(1)
5 θ

(1)
6

θ(2) 1 - - - - - -
θ
(1)
1 0.58 1 - - - - -
θ
(1)
2 0.94 0.47 1 - - - -
θ
(1)
3 0.88 0.45 0.77 1 - - -
θ
(1)
4 0.74 0.33 0.67 0.57 1 - -
θ
(1)
5 0.51 0.36 0.43 0.39 0.31 1 -
θ
(1)
6 0.84 0.46 0.72 0.69 0.51 0.42 1

Table 5.7: The estimated correlation matrix of the latent traits estimated by the
HO-GRM model

We can conclude that the estimated correlation does not exactly follow the analytical

assumption, but at least follows the same pattern. As mentioned in section 4.2.5 the do-

mains with the highest λ, i.e., the domain abilities that have the highest correlation with

the overall ability, also have the highest estimation accuracy. This is further validated

and confirmed in the Structure Analysis presented in section 5.6. Thus, we can conclude

that the domains Resilience and Diversity are best at estimating the latent trait score.

Table 5.8 compares the estimated latent trait estimates with the item responses of five

selected subjects. The idea is to get an intuitive sense of the correctness of the esti-

mated traits. If the estimated latent traits of a subject are very high it is hopefully

correlated with generally high item responses. Two of the subjects, s = 95 and s = 375,

are presented because their estimated second-order trait score was lowest and highest

respectively. The three other subjects were chosen randomly.

One interesting result is that in the domain Diversity subjects s = 95 and s = 375 have

identical item responses, but the level of their first-order trait θ(1)3 is not equal. In fact

it is much higher for subject s = 375. This is due to the fact that the first-order latent

traits are correlated with one another as well as with the second-order latent trait. In the

model the correlation between the domains j and j′ are given by λjλ′j and this affects the

estimates of the first-order traits. Therefore, all the item responses given by a subject

in every sub-trait domain affects the estimates of all the first-order traits. Since subject

s = 95 has scored lower in all the other domains this affects the result of θ(1)3 negatively.

However, as noted earlier, the first-order trait should only be used for within-person

comparisons, and not between-person comparisons.
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Item Responses
Subject, s QT1 QT2 QT3 QT4 QF1 QF2 QF3 QF4 QD1 QD2 QD3 QD4

95 1 4 5 4 4 4 5 5 5 5 5 5
205 2 1 2 1 2 1 3 2 3 4 3 3
375 5 5 5 5 5 5 5 5 5 5 5 5
629 4 4 5 4 4 4 4 4 5 2 4 5
730 4 2 4 1 5 5 3 5 4 2 3 5

Subject, s QB1 QB2 QB3 QB4 QP1 QFP2 QP3 QP4 QC1 QC2 QC3 QC4
95 4 5 4 4 2 3 2 3 4 4 4 4
205 1 1 1 3 3 5 1 4 3 4 1 3
375 5 5 5 5 5 5 5 5 5 5 5 5
629 4 4 3 4 2 2 2 2 4 5 2 2
730 5 5 3 4 1 2 4 2 5 5 3 4

Parameter estimates of latent traits (standard deviation)
Subject, s θ̂(2)(σθ(2)) θ̂

(1)
1 (σ

θ
(1)
1

) θ̂
(1)
2 (σ

θ
(1)
2

) θ̂
(1)
3 (σ

θ
(1)
3

) θ̂
(1)
4 (σ

θ
(1)
4

) θ̂
(1)
5 (σ

θ
(1)
5

) θ̂
(1)
6 (σ

θ
(1)
6

)

95 0.48 (0.46) 0.41 (0.63) 0.28 (0.44) 1.00 (0.51) 0.42 (0.38) -0.41 (0.54) 0.23 (0.43)
205 -2.38 (0.42) -1.90 (0.43) -2.47 (0.37) -1.62 (0.38) -3.089 (0.42) 0.04 (0.69) -1.73 (0.43)
375 2.90 (0.66) 2.69 (0.67) 2.53 (0.74) 2.42 (0.74) 2.26 (0.69) 2.61 (0.72) 2.55 (0.67)
629 -0.56 (0.44) 0.95 (0.47) -0.69 (0.39) -0.23 (0.44) -0.48 (0.37) -1.14 (0.59) -0.78 (0.46)
730 -0.01 (0.45) 0.00 (0.48) 0.07 (0.47) -0.58 (0.42) 0.39 (0.41) -0.91 (0.63) 0.48 (0.45)

Table 5.8: Parameter estimations and posterior standard deviation of the first- and
second-order latent trait for five subjects given the their item responses

To give the reader a sense of what type of item characteristics that define an item’s

correlation with the second-order trait the plot in Figure 5.8a and 5.8b was produced.

Figure 5.8a shows the correlation between the item response vector of an item i (Xi) and

the second-order latent trait (θ2), together with the mean item response, 1/N
∑N

i=1Xi.

Figure 5.8b shows the same correlation together with the variance of the item response

vector, V ar(Xi).

(a) (b)

Figure 5.8: Left axis (solid line): The correlation between second-order trait and item
response vector Xi, i = 1, ..., 24. Right axis (dashed line): (a) Mean of item response,∑

Xi/24; (b) Variance of item response, V ar(Xi)

The response pattern of the BII data is heavily weighted towards higher values, as can

be seen on the mean of the item responses. It is natural to assume that "hard" questions
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are characterised by a high variance in the responses, which can be found to be true if we

compare figure 5.8b and 5.8a. Intuitively one might argue that these "hard" questions

should have a high influence on the score of the index, but we clearly see that this is not

the case. Questions with a high mean item response also have the highest correlation

with the second-order trait. The main reason for this is the skewed data set. Since the

majority of questions are "easy", i.e., a majority of the subjects give item response xi = 4

or xi = 5, the score for these subjects will also be quite high in the domains and overall.

If some people give a high response to all items except for a few, and these few questions

are the same for many people, these few low item responses will not lower the overall

score remarkably. The result is that the correlation between the second-order trait score

and the items with a higher difficulty/variance is significantly lower. This relationship

will be relevant in the upcoming feature selection analysis since the feature selection

techniques are based on the correlation between the dependent variable, i.e. the first-

and second-order traits, and the explanatory variables, i.e. the item responses. Due to

this, difficult questions will not be assigned a high value for their regression coefficient

compared to easier questions and therefore the difficult questions will not be as important

in the final result.

Another way to interpret this result is that it is crucial to give the correct answers to

the "easy" questions in order to achieve a high innovation score. If the person does

not answer these fundamental questions correctly it will affect the result severely since

these questions are the foundation of the "innovative mindset". The more difficult items

represents traits that are good to have, but they are not as crucial for an innovative

mindset.

5.4 Variable Reduction

The results of the feature ranking analyses, done with the R packages Boruta and GBM,

are presented below where X1 = QT1, X2 = QT2, ..., X24 = QC4, i.e. the item vectors

are ordered as the questions in the survey (see Appendix A).
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Boruta

X = [X14, X11, X7, X24, X8, X9, X21, X10, X5, X1, X23, X6,

X12, X15, X3, X13, X22, X18, X16, X19, X20, X4, X2, X17]

GBM

X = [X14, X1, X11, X21, X18, X7, X24, X3, X8, X9, X5, X23,

X6, X12, X15, X10, X20, X19, X13, X22, X16, X17, X2, X4]

The feature rankings form the basis of the variable reduction analysis. The first item

in each vector is the one that contains most information according to the corresponding

feature selection method. The number of regression variables, k, is the same as the length

of the feature ranking vector where the last 24 − k elements have been removed. The

goodness of fit of the resulting models given k variables is presented in table 5.9.

Boruta GBM
k 1

7

∑7
l=1RMSEl

1
7

∑7
l=1AICl

1
7

∑7
l=1BICl

1
7

∑7
l=1RMSEl

1
7

∑7
l=1AICl

1
7

∑7
l=1BICl

1 0.540 1633.20 1647.21 0.535 1634.40 1648.42
2 0.473 1464.99 1483.68 0.480 1450.95 1469.64
3 0.453 1369.01 1392.37 0.426 1303.71 1327.07
4 0.407 1214.09 1242.12 0.394 1171.61 1199.64
5 0.390 1120.67 1153.37 0.359 1058.76 1091.46
6 0.373 1034.01 1071.38 0.338 948.64 986.02
7 0.342 935.15 977.20 0.317 838.20 880.25
8 0.337 862.78 909.50 0.294 725.58 772.30
9 0.321 792.76 844.15 0.275 628.86 680.25
10 0.280 617.29 673.36 0.257 534.33 590.39
11 0.273 506.44 567.18 0.247 466.17 526.91
12 0.253 441.48 506.88 0.230 357.87 423.28
13 0.250 368.71 438.79 0.219 287.56 357.64
14 0.234 282.81 357.57 0.216 231.60 306.36
15 0.218 169.27 248.70 0.200 152.50 231.93
16 0.214 96.76 180.85 0.186 35.89 119.98
17 0.203 9.74 98.50 0.173 -30.22 58.55
18 0.171 -127.83 -34.39 0.163 -137.18 -43.74
19 0.161 -184.23 -86.12 0.151 -208.07 -109.95
20 0.148 -241.52 -138.73 0.141 -297.68 -194.90
21 0.139 -361.08 -253.63 0.136 -359.33 -251.88
22 0.131 -422.60 -310.47 0.125 -523.09 -410.96
23 0.125 -522.29 -405.49 0.114 -615.42 -498.62
24 0.111 -683.05 -561.58 0.112 -683.36 -561.89

Table 5.9: The mean of the RMSE, AIC and BIC of the seven linear models given k
explanatory variables ordered according to the ranking given by the adjusted Boruta

and GBM feature selection methods

As we can see in table 5.9 both the RMSE, AIC and BIC improves faster with each added

explanatory variable given the feature ranking of the GBM compared to Boruta. The

reason for this is that, in the GBM, the difference of the information statistic is generally
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higher between variables with high correlation to the dependent variable compared to

variables with low correlation. When summing the information over each of the seven

linear regression the GBM thus promote variables that have a high correlation with

either of the dependent variables. In practice this means that for example item QP2,

X18, receives a higher ranking in the GBM compared to the Boruta. Since each of the

linear models affect the mean of the RMSE, AIB and BIC equally, lower values of these

statistics are obtained by having at least one highly correlated explanatory variable in

each of the linear models. This is a purpose of the design of the feature selection algorithm

to achieve a difference of accuracy between the latent trait estimates.

Our recommendation to the developers of the BII is to keep all the variables since they

all contribute with information to the full model and yield a more accurate result. The

results of the RMSE, AIC and BIC all strengthen this notion. The HO-GRM estimates

of the traits have a mean standard deviance of 1/7
∑7

k=1 σk = 0.48. To add even more

inaccuracy than needed to this estimate is not desirable. On the other hand, if we

remove seven of the lowest information items of the feature ranking vector obtained

through GBM we will only add ∆(RMSE) = 0.173− 0.112 = 0.051. Still the AIC and

the BIC gets higher with each removed parameter which indicates that the variability

lost with that parameter is not compensated by having a smaller set of explanatory

variables. This can also be confirmed when examining the graphical result of the Boruta

analysis, given the full set of items with the second-order trait as dependent variable, in

Figure 5.9. This analysis shows that all the variables are deemed to be important for

the regression by the Boruta (important variables are shown as green box-plots in the

figure).
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Figure 5.9: The result of the Boruta analysis with the second-order trait as the
dependent variable, given the full set of items. It shows that all items are deemed to

be relevant for the linear estimation of innovation capability

Despite the results, one of the goals of the thesis is to conduct a variable reduction and

thus we will remove the seven items with the least information according to the GBM

feature ranking vector (since this yielded a good trade-off between reduced number of

items and loss of information). This will also enable us to compare the results from the

reduced model with the results from the full model. The following items will be kept

after the variable reduction has been performed:

Trust Resilience Diversity Belief Perfection Collaboration

QT1 QF1 QD1 QB2 QP2 QC1

QT3 QF2 QD2 QB3 QP4 QC3

QF3 QD3 QC4

QF4 QD4

Table 5.10: Items left in the model after the variable reduction

5.4.1 Final Algorithm

Once the variable selection is done we can obtain the linear regression coefficients for all

the linear models specified in (4.45). In each linear regression, θ = βX the parameters
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are given by:

X = [X0, X1, X3, X5, X6, X7, X8, X9, X10, X11, X12, X14, X15, X18, X20, X21, X23, X24]

β = [β0, β1, β3, β5, β6, β7, β8, β9, β10, β11, β12, β14, β15, β18, β20, β21, β23, β24]

whereX is a vector representing the response vectors of the items presented in table 5.10

and the linear regression intercept vector is X0 = [1, ..., 1]. βi is the regression parameter

corresponding to item response vector Xi.

The estimates of the regression parameters for each of the models in (4.45) is presented in

table 5.11 and the RMSE for each of the seven models is presented in table 5.12 together

with the RMSE for the models fitted to the non-reduced data set.

Trait, θ β0 β1 β3 β5 β6 β7 β8 β9 β10

θ(2) -7.573 0.073 0.066 0.112 0.121 0.174 0.169 0.110 0.113

θ
(1)
1 -4.521 0.445 0.430 0.028 0.017 0.014 0.035 0.028 0.023

θ
(1)
2 -7.525 0.032 0.036 0.227 0.220 0.315 0.315 0.056 0.077

θ
(1)
3 -6.724 0.021 0.034 0.029 0.058 0.070 0.064 0.277 0.234

θ
(1)
4 -5.767 0.014 0.006 0.008 0.036 0.08 0.047 0.003 0.029

θ
(1)
5 -3.993 0.052 0.029 0.091 0.043 0.015 0.040 0.055 0.012

θ
(1)
6 -6.253 0.026 0.047 0.024 0.038 0.087 0.070 0.042 0.059

Trait, θ β11 β12 β14 β15 β18 β20 β21 β23 β24

θ(2) 0.104 0.115 0.173 0.094 0.060 0.023 0.149 0.099 0.114

θ
(1)
1 0.020 0.012 0.072 0.008 0.001 -0.001 0.030 0.019 0.043

θ
(1)
2 0.048 0.063 0.096 0.057 0.042 0.002 0.078 0.059 0.073

θ
(1)
3 0.273 0.269 0.064 0.045 0.028 0.007 0.049 0.049 0.06

θ
(1)
4 0.046 0.036 0.674 0.338 0.016 0.006 0.031 0.023 0.023

θ
(1)
5 0.022 -0.005 -0.001 -0.007 0.414 0.263 0.024 0.014 0.050

θ
(1)
6 0.034 0.060 0.065 0.031 0.029 0.007 0.444 0.264 0.283

Table 5.11: Regression parameters for final algorithm on the reduced data set

When comparing with RMSEfull we notice that the RMSE for both the second order

trait and domains highly correlated with the second-order trait does not differ much

compared to the reduced set. One reason might be that in the reduced set a lot of

the variables removed where not highly correlated with either of these traits. Since the

new parameters does not contribute with a lot more new information to explain the
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Trait θ RMSEfull RMSEred

Innovation θ(2) 0.122 0.130
Trust θ

(1)
1 0.081 0.186

Resilience θ
(1)
2 0.140 0.144

Diversity θ
(1)
3 0.139 0.144

Belief θ
(1)
4 0.109 0.227

Perfection θ
(1)
5 0.064 0.232

Collaboration θ
(1)
6 0.097 0.159

Table 5.12: RMSE of the final models for the reduced and the full data set

variability of these traits the RMSE will not improve significantly. We notice that all

the items in the domains resilience and diversity are kept in the variable reduction and

thus it might not be possible to improve the RMSE significantly by adding items related

to other domains.

The conclusion is that, even though the variable reduction does not affect the RMSE

of the second-order trait, innovation, it creates a big dispersion of the RMSE for the

first-order traits. This further supports the recommendation to not reduce the number

of items in the BII data set.

Cast results on 1-10 scale

To fulfill the requirement given in Chapter 3 the interval of the index scores produced by

the linear models are mapped to the new interval I = [1, 10] as shown in equation (4.49)

in 4.

The scaling parameters for each of the seven linear models are presented in table 5.13.

Xfull Xred

Trait min(θ) max(θ) min(θ) max(θ)

θ(2) -5.898 1.916 -5.704 1.772
θ
(1)
1 -3.464 1.986 -3.297 1.599
θ
(1)
2 -5.890 1.534 -5.729 1.455
θ
(1)
3 -5.130 1.474 -5.093 1.431
θ
(1)
4 -4.608 1.496 -4.351 1.313
θ
(1)
5 -3.235 2.078 -2.882 1.562
θ
(1)
6 -4.920 1.841 -4.636 1.797

Table 5.13: Scaling parameters for full and reduced model for mapping Iold =
[min(θ),max(θ)] → Inew = [1, 10]. N.B. min(θ) and max(θ) is the values calculated
by the linear regression equations if a subject answered either 1 on all items (that re-
sults in min(θ) i.e. xi = 1,∀i) or if a subject answered 5 on all items (that results in

max(θ) i.e. xi = 5,∀i).
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The distribution of the final score for the second-order trait innovation capability calcu-

lated by the linear models for the full and the reduced model is presented in Figure 5.10a

and 5.10b respectively. All the distributions of the linear estimates of the first-order

latent traits, for the full and the reduced model, can be found in Figures B.6 and B.7 in

Appendix B.

(a) (b)

Figure 5.10: The distribution of the linear approximation of the second-order trait,
innovation capability, given by (a) the full data set and (b) the reduced data set

5.5 Outlier Analysis

The result of the outlier analyses is presented in table 5.14. N.B. In HO-GRMlow the

lowest row mean value in the data set has been discarded, in HO-GRMhi the highest

row mean value has been omitted, in accordance with the procedure presented in section

4.6.3.

Variance, σ2

Model DIC θ(2) θ
(1)
1 θ

(1)
2 θ

(1)
3 θ

(1)
4 θ

(1)
5 θ

(1)
6

HO-GRMfull 48497.7 0.214 0.218 0.208 0.203 0.163 0.374 0.214

HO-GRMhi 49009.0 0.223 0.222 0.217 0.210 0.167 0.380 0.219

HO-GRMlo 48883.1 0.221 0.221 0.217 0.209 0.169 0.373 0.217

Table 5.14: DIC and mean variance of the latent trait estimates for the outlier analyses
compared with the full model

The same data sets are not used and thus the DIC cannot be used to compare the

model fits. However, the DIC at least indicates that the model fit is worse in both

cases when the extreme values of the data set has been eliminated. The variance of

the latent trait estimates shows that the uncertainty is slightly bigger for the models

applied to the reduced data sets and the conclusion is thus that the full model is not
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affected by any outliers. One reason for this is that the occurrence of true outliers is

very improbable since the values in the data set are drawn from a small discrete sample

space, i.e. xsi ∈ [1, ..., 5].

The coefficient of variation is also higher for all ability estimates in the HO-GRMhi

and HO-GRMlow models as compared to the HO-GRMfull model. When performing a

posterior predictive check on the outlier models’ the bayesian p-values were about the

same as for the full model.

5.6 Structure Analysis

In this section the result of the analysis of different data structures will be presented.

Each data set was simulated according to the procedure presented in section 4.6.2. As in

the case with the prior analysis the method used for estimating model fit is the correlation

between the estimated traits given by the MCMC simulation and the ’true’ values used

to simulate the data sets. Since different data structures, and therefore different sets of

data, are compared the DIC cannot be used for comparisons. The result of this analysis

is presented in table 5.15.

Given this result we can see some of the effect that the model structure has on the

accuracy of the estimates. Note that only one simulation has been done for each of the

different models and that the simulated data is not the same in any of the models. Thus,

we can not argue that the result is statistical significant, but at least the indications are

consistent over all of the different model structures. The most dominant patterns that

can be obtained from the result are the following:

• More subjects yield a more accurate estimate for all parameters.

• More items per domain yield a more accurate estimate for first-order traits.

• More domains yield a more accurate result for the second-order trait.

The result that more items per domain yields more accuracy is in line with the definition

of the test information presented in Chapter 4.

The ’true’ λj parameters used for the simulation are constructed such that the they are

evenly spaced out over the interval I ∈ [0.6, 0.9] with λ1 = 0.6 and λJ = 0.9. Thus,

our results confirms the findings of de la Torre and Hong (2010) that domains that are

highly correlated with the second-order trait, i.e., have a high ρ(θ(2), θ
(1)
j ) ≈ λj , will be

more accurately estimated.
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Model Specification Correlation

Subjects, N Items, n Domains, J ρθ
(2) 1

J

∑J
j ρ

θ
(1)
j

1 1000 18 3 0.894 0.918
2 1000 18 6 0.918 0.882
3 1000 24 3 0.891 0.925
4 1000 24 6 0.923 0.889
5 1000 24 8 0.931 0.879
6 1000 36 3 0.904 0.949
7 1000 36 6 0.941 0.920
8 1000 36 9 0.958 0.915
9 3000 24 6 0.943 0.927

Correlation, first-order trait j, ρθ
(1)
j = ρj

ρ1 ρ2 ρ3 ρ4 ρ5 ρ6 ρ7 ρ8 ρ9

1 0.904 0.916 0.934 - - - - - -
2 0.858 0.866 0.877 0.885 0.905 0.898 - - -
3 0.911 0.928 0.934 - - - - - -
4 0.867 0.867 0.895 0.894 0.897 0.911 - - -
5 0.850 0.863 0.867 0.882 0.882 0.895 0.892 0.901 -
6 0.938 0.951 0.959 - - - - - -
7 0.907 0.908 0.916 0.926 0.930 0.934 - - -
8 0.897 0.908 0.897 0.909 0.918 0.917 0.921 0.928 0.936
9 0.911 0.915 0.921 0.933 0.938 0.942 - - -

Table 5.15: Results of the structure analysis on varying simulated data sets. The
models are compared by analyzing the correlation between estimated and ’true’ first-

and second-order traits given different model specifications.
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Discussion

Remember: Rewards come in action, not discussion.

—Tony Robbins

The constructed algorithm and the results obtained from it are deemed satisfactory in

light of the given problem formulation. The aim of the thesis was to construct a valid

measure of individual innovation capability based on the responses in the BII data set. In

this section we will present our subjective view on the results as well as further analyze

the constructed algorithm and its measures, e.g., the confidence interval of the latent

trait scores, the scalability of the model, future improvements that can be made etc.

6.1 Fulfillment of the Requirements

In the requirements, specified in section 3.1, it is stated that the index should be ordi-

nal, i.e., a higher score on each latent trait continuum should reflect a higher level of

proficiency on that specific latent trait scale. In the algorithm developed for the thesis,

the second-order latent trait is an ordinal measure. Therefore, the subjects in the data

set can be ranked in regards to their overall innovation capability. The first-order latent

trait is not ordinal in regards to other subjects, however it is ordinal when compared

to that individual’s other domain abilities. I.e., the second-order latent trait is be used

for between-person comparisons and the first-order latent trait is used for within-person

comparisons. Thus, an individual can rank/order his or her proficiency on the different

sub-trait domains.

Due to the choice of model, HO-IRT, which maps categorical manifest variables to con-

tinuous latent traits, the MCMC parameter estimates will be continuous. The final

algorithm however produces a score through a linear relationship with a finite set of

78
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possible explanatory variables vectors. Thus, the final scale/index will be discrete and

not continuous, with 524 possible scores for each latent trait. However, since the scale is

cast on a 1-10 scale including score 1 and score 10, the large set of possible results

relative to the quite compact scale will yield results that in practice almost can be seen

as continuous.

The HO-IRT model is deemed to be robust against outliers as shown in the Results.

When two leave-one-out analyses were run (where the lowest and highest row mean score

were omitted from the data set respectively) all the model fit indicators were inferior to

the one for the full model in which no outliers had been discarded. N.B. In our opinion

the data set does not contain any true outliers. This is due to the fact that the sample

space of the possible responses is both small and discrete.

In order to make the model robust against bad samples a number of criteria were

listed that specified what a bad sample is. It was postulated that bad entries in the

data set were ones that only had the same response to every question, or entries from

individuals that already had taken the test. In total 151 bad samples were discarded

from the data set (about 15% of the total number of samples) before any model was

constructed or analyzed.

The requirements stated that the different sub-trait categories of innovation should have

a varying degree of impact on the overall innovation capability score. The

HO-IRT models allows for this through the varying factor loading term λj .

The method provided in this thesis, to construct the BII algorithm, is scalable in the

sense that it can be directly applied to any data set consisting of polytomous question-

naire responses on a Likert scale (as long as each item is only measuring one first-order

latent trait). Therefore, the model and the construction steps are also valid if more data

is added or if the questionnaire is changed.

6.2 Strengths and Uncertainties of the Algorithm

What are we measuring?

One of the major issues needed to be addressed is what we are really measuring and if it

really is innovation. As in all social science it is important to note that what we measure

can only be interpreted in the context of the questions that have produced the data. The

data is only a matrix of numbers and does not represent anything by itself. For example,

an identical set of data, contrived from a completely different set of questions not related

to innovation, could produce the exact same results as the ones stored in the BII data
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set. In order to make a distinction between these two data sets one has to put the data

in the context of the questions/items that produced the data set.

Therefore, what the BII is measuring is the interpretation of what innovation capability

is that is presented in Sidhu et al. (2016b) and Sidhu et al. (2016a). This is also under

the assumption that the BII questions accurately reflect the psychological traits they are

constructed to quantify/measure.

The model is built upon the assumption that the subjects answer the questions truthfully

and unbiased. However, since the questionnaire is constructed as a self-assessment it is

not guaranteed that this is always the case. A biased response from a subject will lead

to a difference in the interpretation of his/her score while a lot of untruthful responses

will impact the whole model.

For example if the "correct" answer to a question is too obvious one may argue that

the index score might not reflect the true level of innovation capability, but rather how

good a person is at identifying the best response to an item. The exploratory analysis

in some sense confirm that our current data set is not too corrupted by bad samples or

bad data points, but it would be preferable to limit the possibility to answer questions

untruthfully.

There are two methods to deal with this problem:

1. Include an honesty measure in the evaluation procedure. E.g., a question could

be asked two or three times, but with different phrasings in order to confirm the

consistency of the responses given by a subject.

2. Increase the difficulty of "easy" questions (i.e., questions with a high mean item

response, see Figure 5.8a). An easy question could be rephrased or negated so that

the subject has to provide a reverse response.

Even though easy questions might give subjects the incentive to answer untruthfully, the

easy questions — with a high mean item response — also have the highest correlation

with the final innovation score. While harder questions — with a low mean item response

— have a very low correlation. As explained in 5.3 this is due to the fact that the

distribution of item responses is skewed towards high values and since the majority of

the questions are "easy" the algorithm will favor these over the harder ones since they

will be more correlated with the overall innovation capability trait.

Because of the great differences in the difficulty level of items it is complicated to draw

conclusions about each domain’s importance in the estimation process of the overall level

of innovation capability. We cannot tell for sure if trust and perfection really are less
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important dimensions of an innovative mindset or if this result is just derived from the

current construction of the questionnaire and the answers given to it stored in the BII

data set. Therefore, we will refrain from drawing any conclusions about the importance

of certain domain abilities. Nonetheless, when a HO-IRT model is applied to the current

data set then the resulting model indicates that some domains have a higher correlation

with overall innovation capability.

Inaccuracies of the BII Scores

To see how credible our results are we can form a credible interval for the ability estimates

(the estimated posterior means) for the latent trait parameters derived from the MCMC

analysis , i.e. θ̂. To do this one can utilize the standard deviation of the posterior means.

The credible interval gives an idea of how biased the final estimates of the latent trait

scores are. All the latent trait estimates are spread out on the approximate interval

I ∼ [−2.75, 3]. Given that the mean standard deviation for all the latent trait estimates’

posterior distributions is ≈ 0.5 and given that the posterior distribution of the latent

traits are approximately normally distributed, then the 95% credible interval for all the

ability estimates is approximately θ̂ ± 1.96 ∗ 0.5 = θ̂ ± 0.98. This means that the 95%

credible interval covers almost a third of the total ability continuum. One can argue if

this is good enough.

The standard deviation used in this calculation of the credible interval is the mean of

all the latent trait estimates’ standard deviation derived from their specific posterior

distribution. The standard deviations for the latent trait estimates near the boundaries

of the parameter space are higher, reaching almost 0.8 for a certain subject’s estimated

domain ability. This implies that these estimates, close to the boundary, are even more

uncertain. On the contrary, scores near the mean of the ability estimates have a greater

certainty.

When fitting the seven linear regression models, specified in equation (4.45), a lot of

information is lost. This is due to the fact that the estimates obtained from the MCMC

analysis contain measurement errors and when fitting the linear regression models these

estimated ability measures are seen as observed in order to conduct supervised model

training. Moreover, since the sample space of the independent variables consists of only

five integer values it is difficult to fit a linear model mapping the categorical responses

to continuous ability estimates.

One notable difference is the size of the distribution space given the parameter estimates

of the MCMC and the ones obtained from the linear regressions. While the approxi-

mate interval for the estimated latent traits from the MCMC are I ∼ [−2.75, 3] it is
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approximately I ∼ [−2, 2] after the linear regression (prior to rescaling). This highlights

that the accuracy of the linear approximation has most information loss near the latent

continuum boundaries.

The Feature Selection Method

As mentioned in Chapter 4 the variable reduction methods used in this thesis do not

have a solid theoretical foundation. When researching the topic of variable reduction and

feature selection we came across several sources that stated that no method has been

developed for simultaneous feature selection for multivariate linear regression models

that were applicable to our case.

In order to perform the variable reduction we constructed an ad hoc method based on the

sum of the importance values (for each independent variable in the seven linear regression

models, see equation (4.45)) obtained from the feature selection algorithms. Both the

feature selection methods are statistically valid, but the item importance measure is not

necessarily cast on the same scale for each regression model. Therefore, the sum of the

importance measures is an ad hoc solution.

We should also mention that apart from the feature selection methods presented in

the thesis an additional method for variable selection/reduction was considered. The

method made use of consecutive LASSO regressions over the models to assess which

variables were most relevant. The regression coefficients were manually analyzed as they

gradually converged to zero (when the penalty parameter was increased) to determine

which variables were most relevant to all models.

The reason this method is mentioned here is the fact that it produced very similar results

as the feature selection methods detailed in the thesis, i.e., the variables that were deemed

to be important were more or less the same. Even though it might not necessarily prove

anything, it is still an indication that our variable reduction results obtained from the

ad hoc methods seem reasonable.

Prior Analysis

The same set of simulated data is used for each model in the prior analysis and thus

the goodness of fit of the models can be compared by inspecting the models’ DIC value.

However, the DIC values only measure the model fit for the simulated data set so even

though the DIC might indicate that the model fit is better for specific priors these specific

prior selections might not be the best ones for the real data set.
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The reason why simulated data is used in the prior analysis, instead of real data, is that

it enables us to analyze the correlation between the estimated and the "true" model

parameters as a goodness of fit measure. This would obviously not be possible with real

data since there are no "true" values for the the model parameters. Furthermore, a prior

analysis performed on the real data set would only be applicable on that data set, and

thus the model would lose generality.

An even more extensive prior analysis could be conducted, e.g., by using different sets of

simulated data, analyzing the impact of extreme prior distributions, adjusting multiple

prior distributions simultaneously etc. The reason why this has not been done is that

the time-consuming computations have been a great limiting factor.

Structure Analysis

The results presented in table 5.15 come from one single simulation for each type of

data structure. This should be regarded as a shortcoming of the analysis. The reason

why multiple simulations for each type of data structure have not been carried out

is, once again, due to time constraints and long computational times (the structure

analysis presented in the thesis took over 40 hours to complete). Consequently, these

results should serve as a mere indication of a possible underlying pattern, rather than a

significant proof of any hypothesis.

One should also note that the simulated data sets follow the theoretical structure defined

by the HO-GRM model and that this data structure assumption might not hold true for

the real BII data set (even though the exploratory analysis does not reject our model

structure assumption). Furthermore, the simulated data does not contain any "bad"

samples and the factor loadings, λ, all have relatively high values. As a result the

correlations between the true and the observed values presented in table 5.15 are most

likely higher than the accuracy of the parameter estimates obtained for the real data set.

Therefore, this result should not be used directly to draw any major conclusions about

the accuracy of the parameter estimates. However, the outcome of the simulation study

still provides an indication on how the index can be improved in future iterations of the

BII.

6.3 Recommendations to the BII Developers

The variable reduction analysis indicated that the model fit was worse whenever an item

was removed from the data set since the RMSE, AIC and BIC of the reduced models
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increased, sometimes quite significantly. The two feature selection techniques applied,

i.e. Boruta and GBM, also showed that all items present in the current data set were

relevant. Therefore, in order for the index to be as accurate as possible we recommend the

developers of the BII to either keep all the existing questions, reformulate them or add

new questions that could replace the least relevant ones. This notion is also confirmed

in the structure analysis, where the accuracy of the sub-trait domain estimates increases

when the number of questions related to that domain increases.

There is an evident trade-off between user-friendliness (fewer items make the test more

accessible to individuals as the the time it takes to complete the questionnaire is reduced

when questions are omitted) and the accuracy of the index scores. However, in our

opinion, if the innovation capability assessment is to be of true value the question set

has to be somewhat extensive.

As discussed earlier we can not draw any major conclusion about the true importance

of each domain in regards to the overall innovation capability level. To enable future

iterations of the BII to more accurately determine the effect of each domain on the

overall score we recommend that the difficulty levels of the questions are evened out and

preferably that the difficulty level of the "easy" questions is increased. As can be seen by

examining the ICCs (Figure B.1-B.2) more difficult questions, e.g. QT2 and QP1, might

result in less discrimination, i.e. lower α values. On the other hand the probability of

different item responses is more spread out over the whole latent trait continuum which

is not the case for easier questions (e.g. QF4 ).

We also recommend the BII developers to include items of differing difficulty in each sep-

arate domain and it might be valuable to add a "neutral" question where it is beneficiary

to answer "Don’t Know", instead of "Totally Agree" or "Totally Disagree". This would

probably increase the dispersion of the responses and in turn increase the discrepancy

among subjects. A good mixture of difficulty levels among the questions would result in

lower values of the latent trait scores and therefore it would, we believe, result in a more

accurate estimation of the importance of each separate domain.

The four questions with the highest response pattern variation are also the four reversed

questions, i.e., where the response 1=Completely disagree is the "correct" answer. If

the response variation is higher due to the nature of the question or plainly because

the question is reversed is not possible to tell, but it indicates that reversing a question

might increase the variability of the answers. Reversing a question is also an effortless

procedure that is easy to implement for the BII developers in order to potentially increase

the variability of the answers provided to certain questions.
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The BII algorithm is easily implemented as an individual’s answers to the questions

are mapped to BII scores with the use of the linear regression models presented in the

Results. In order to maintain this algorithm and keep it up-to-date when new entries are

added to the data set we recommend that the developers of the BII set certain milestones

associated with the number of samples collected. When a certain milestone is reached the

full HO-GRM MCMC analysis should be re-run and seven new linear regression models

should be fitted to this result. By redoing the full analysis on a larger data set new and

more precise estimates are acquired (as indicated by the simulation study). Example of

milestone thresholds could be: 1,000, 3,000, 5,000, and 10,000 samples.

6.4 Future Work

Even though our recommendation for the BII is to keep all the current questions in the

questionnaire, it would still be of great use in the future development of the index if a

theoretically valid variable reduction method for the multivariate regression model was

developed. The reason is that it would facilitate to identify if a new item is good or

redundant early, when a few answers to the new question have been provided. Tools to

assess if an item is good or bad already exist in the IRT framework, e.g., the ICC and

the IIC. These tools are good to analyze separate items, but not to assess the validity of

a question in light of the complete model when all data is taken into account. Hence, a

theoretically valid variable reduction method suitable for the BII case would be of great

use in the future development of the index.

One way to deal with biased item responses would be, as mentioned earlier, to imple-

ment some kind of "honesty" measure in the BII. This is quite common in personality

assessments and the basic idea is to measure the truthfulness and the consistency of the

subjects’ item responses. This could be done by reversing questions and asking them

again. An honesty measure like this would be able to identify biased and bad samples,

and modify the model so that this is taken into account. Another idea is to implement a

Graded Response Model based on the 3PL-IRT model, which would include a guessing

parameter, that adds a lower asymptote to the item characteristic function so that even

the person with the lowest ability estimate has a chance to answer an item correctly (due

to guessing).

The formulation of the HO-GRM model assumes multi-unidimensionality. This means

that an item can only belong to one domain. The result of the exploratory analysis

(Figure 4.6) indicates that for the six domains only one item, i.e. QF3, may belong to

more than one domain. Nevertheless, a possible future extension of the index would be

to build a model that can handle items that belong to more than one domain. The model
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presented in the thesis takes into account the correlation between different domains, but

not the direct impact of an item on several domains.

The model in the thesis can also be slightly edited in order to handle missing item

responses. It would be interesting to analyze the affect of this alteration on the current

data set, and it also allows future iterations of the BII to make use of both the data sets

with new items as well as the current data set. There already exists at least one reduced

BII data set where ten items have been removed and two new items have been added.

A revised model that handles NA-values could be used to perform the BII analysis on

these two merged data sets.

To further confirm the hierarchical model structure one could analyze if the six first-

order latent traits are related to one or several second-order latent traits that are related

to a third-order latent trait (i.e. overall innovation capability). This analysis could be

performed on the BII data set and then be compared with the current model.

Latent class analysis (see table 4.1) allows one to map categorical manifest variables to

categorical latent classes. An extension of the BII could therefore include an algorithm

that categorizes the test subjects as different types of innovation personas based on the

entries in the BII data set. This type of clustering model could work as a complementary

analysis.

One interesting analysis to conduct would be to analyze potential item bias in the dif-

ferent strata of the question set. Item bias emerges if the answers to certain items have

significantly different response patterns for a specific subgroup of subjects. In the IRT

framework this implies that the item characteristic curves of the different subgroups do

not coincide. Bias can for e.g. be related to sex, academic background, regional differ-

ences. These three demographic statistics are currently stored in the BII data set. By

performing an item bias analysis the BII developers can for example identify if certain

questions are easier to answer for a specific demographic subgroup. If that is the case,

then the items that show bias should be reviewed and potentially rephrased or discarded

from the questionnaire. N.B. For the item bias analysis to be truly relevant each sub-

group needs to have a large sample of subject responses. Hence, before making any big

statements about item bias we recommend the BII developers to collect more data so

that eventual biased response patterns, for the different strata, are statistically relevant.

The BII research group also hypothesized that the ability to work and be effective outside

ones Comfort Zone would influence an individual’s level of innovation capability. The

structure analysis also implied that the inclusion of Comfort Zone as a first-order trait

could have a positive impact on the accuracy of the second-order latent trait estimate.
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Therefore, to include Comfort Zone as a variable might be an interesting future research

topic for the BII developers.

Overall, the complexity of the model and the accuracy of the index could be increased

in a plethora of different ways. One could for example include non-linear relationships

between different items, apply non-linear relationship between items and traits etc. All

these areas are open for exploration and could potentially increase the precision of the

estimated index.



Chapter 7

Conclusion

Standing on the paving by the office building.
They’ve got so much to do, never time for you.

—Henrik Berggren

The aim of the thesis was to construct a scientifically valid measure of individual inno-

vation capability in regards to the subject responses given to the Berkeley Innovation

Index questionnaire.

The solution proposed is based on a Higher-Order Item Response Theory approach that

utilizes a Graded Response Model. In order to provide each subject in the data set

with an estimate of their overall innovation capability as well as their proficiency in each

sub-trait domain a Markov Chain Monte Carlo method was employed. The bayesian

inference approach made it possible to simultaneously estimate the vast amount of model

parameters.

In order to confirm the proposed HO-GRM model it was compared to a HO-GPCM

model (that produced similar, but less accurate results). In order to further validate the

proposed model for the BII algorithm several test-statistics (e.g., the Deviance Informa-

tion Criterion, the Posterior Predicitve Check, the Gelman-Rubin convergence criteria

etc.) were employed.

To reduce the computational complexity and streamline the scoring procedure a multi-

variate linear regression model was fitted to the parameters estimated by the HO-GRM

model. The regression parameters of these regression models constitutes the final BII

algorithm.

This thesis only takes the first step in the creation process of the Berkeley Innovation

Index algorithm and we strongly believe that once the shortcomings identified in this

88



Chapter 7. Conclusion 89

work have been addressed the resulting index will be greatly improved. The presented

algorithm for the BII is very flexible which opens up the possibility for future iterations

and adjustments of the questionnaire, the data structure and the analysis procedure.

The work on the Berkeley Innovation Index has come a long way and we are very con-

fident that the index will become a globally distinguished and commonly used tool for

estimating individual innovation capability.
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Appendix A

Appendix A. The Questionnaire

TRUST

QT1 Most people can be trusted

QT2 Most people tell a lie when they can benefit by doing so

QT3 I trust other people

QT4 Those devoted to unselfish causes are often exploited by others

RESILIENCE

QF1 I can accept failures as part of a learning process

QF2 Failures often lead to positive outcomes in the long run

QF3 I overcome setbacks to conquer important challenges

QF4 Failures allow opportunities for reflection and consideration

DIVERSITY

QD1 It is important to me to interact with people, that are different from me

QD2 I frequently come in contact with people that are different from me

QD3 I feel comfortable to talk to people that are different from me

QD4 Interacting with other persons makes me interested in things that happen
outside of my field

BELIEF

QB1 I can succeed at any endeavor to which I set myself

QB2 I am able to successfully overcome many challenges

QB3 When facing difficult tasks, I am certain I will accomplish them

QB4 I have been able to achieve most of the goals I set for myself
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PERFECTION

QP1 I consider myself a perfectionist

QP2 I would prefer to hand in a product on time rather than making it perfect

QP3 In general, quality and perfection are more important than effectiveness

QP4 I would rather create something that is cost effective than the
highest possible quality

COLLABORATION

QC1 There are times when it makes sense to collaborate with my competitors

QC2 An active cooperation with my collaborators is important to me

QC3 A cooperation with one of my enemies would be very important to my firm

QC4 There are times when I would be open to share resources and information
with my competitor

RESPONSE ALTERNATIVES TO EACH QUESTION

1 Completely Disagree

2 Disagree

3 Don’t Know

4 Agree

5 Completely Agree



Appendix B

Appendix B. Additional Results

In this appendix complete results for the HO-GRM model applied to the BII data set,

that was not included in chapter 5, are presented:

• HO-GRM item parameter estimations (αi, βik): Table B.1

• Item Characteristic Curves for all items: Figure B.1 (Trust and Resilience), Figure

B.2 (Diversity and Belief), Figure B.3 (Perfection and Collaboration)

• Item and Domain Information Functions: Figure B.5

• The distributions of the first order latent trait estimates obtained from the

– MCMC simulation: Figure B.4

– Linear regression models applied to the full data set: Figure B.6

– Linear regression models applied to the reduced data set: Figure B.7
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B.1 HO-GRM Item Parameter Estimations

Item, i α̂i(σαi) β̂i1(σβi1) β̂i2(σβi2) β̂i3(σβi3) β̂i4(σβi4)

QT1 2.60 (0.23) -2.01 (0.12) .0.89 (0.06) -0.16 (0.05) 1.49 (0.08)
QT2 1.31 (0.09) -2.42 (0.20) -0.14 (0.07) 0.83 (0.09) 3.29 (0.25)
QT3 2.35 (0.20) -2.80 (0.20) -1.48 (0.09) -0.51 (0.06) 1.19 (0.08)
QT4 0.93 (0.08) -3.30 (0.28) -0.84 (0.11) 0.26 (0.08) 2.67 (0.22)
QF1 1.88 (0.15) -3.22 (0.27) -2.36 (0.16) -1.62 (0.11) -0.15 (0.06)
QF2 1.62 (0.13) -3.34 (0.29) -2.29 (0.17) -1.33 (0.10) 0.20 (0.6)
QF3 2.01 (0.16) -3.20 (0.27) -2.50 (0.18) -1.64 (0.11) 0.13 (0.05)
QF4 2.34 (0.22) -2.96 (0.25) -2.52 (0.19) -1.83 (0.12) -0.40 (0.05)
QD1 2.10 (0.18) -3.54 (0.34) -2.21 (0.15) -1.47 (0.10) -0.13 (0.05)
QD2 1.69 (0.13) -4.13 (0.42) -1.70 (0.12) -0.77 (0.07) 0.60 (0.07)
QD3 2.14 (0.17) -2.87 (0.23) -1.60 (0.10) -0.87 (0.07) 0.41 (0.05)
QD4 1.91 (0.16) -3.38 (0.30) -2.67 (0.20) -1.83 (0.12) -0.21 (0.06)
QB1 2.05 (0.15) -3.02 (0.23) -1.82 (0.11) -0.97 (0.07) 0.67 (0.06)
QB2 3.97 (0.47) -3.05 (0.28) -1.81 (0.10) -1.06 (0.06) 0.32 (0.05)
QB3 2.07 (0.15) -3.34 (0.27) -1.76 (0.11) -0.73 (0.06) 0.92 (0.06)
QB4 1.69 (0.12) -3.40 (0.27) -1.96 (0.13) -1.07 (0.08) 0.78 (0.07)
QP1 0.86 (0.09) -1.81 (0.19) 0.31 (0.09) 1.59 (0.16) 3.59 (0.34)
QP2 1.58 (0.18) -2.85 (0.25) -1.05 (0.10) -0.18 (0.06) 1.35 (0.12)
QP3 0.95 (0.10) -2.88 (0.28) -1.30 (0.14) -0.03 (0.08) 2.40 (0.23)
QP4 1.12 (0.11) -2.82 (0.25) -0.82 (0.10) 0.42 (0.08) 2.28 (0.20)
QC1 2.28 (0.20) -3.22 (0.29) -2.40 (0.16) -1.46 (0.09) 0.50 (0.06)
QC2 1.38 (0.11) -4.34 (0.41) -3.11 (0.24) -1.85 (0.14) 0.02 (0.07)
QC3 1.60 (0.12) -2.56 (0.19) -1.21 (0.10) 0.37 (0.06) 1.82 (0.12)
QC4 1.91 (0.15) -2.48 (0.18) -1.30 (0.09) -0.25 (0.06) 1.48 (0.09)

Table B.1: Parameter estimates and SDpost of the HO-GRM model parameters αi
and βik
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B.2 Item Characteristic Curves for all Items

TRUST RESILIENCE

Figure B.1: Item Characteristic Curves for items in the domains Trust (left) and
Resilience (right)
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DIVERSITY BELIEF

Figure B.2: Item Characteristic Curves for items in domains Diversity (left) and
Belief (right)
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PERFECTION COLLABORATION

Figure B.3: Item Characteristic Curves for items in the domains Perfection (left) and
Collaboration (right)
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B.3 Item and Domain Information Functions

Figure B.4: Item and Test information functions for the HO-GRM model
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B.4 Distributions of First Order Latent Traits

Figure B.5: Distribution of the first order latent traits given by the MCMC parameter
estimates
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Figure B.6: Distribution of first order latent trait estimates obtained from the linear
regression models given the full data set
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Figure B.7: Distribution of first order latent trait estimates obtained from the linear
regression models given the reduced data set
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