
Prototype Implementation of a 5G
Group-Based Authentication and Key

Agreement Protocol

Markus Ahlström
ims11mah@student.lu.se

Simon Holmberg
simon.holmberg632@gmail.com

Department of Electrical and Information Technology
Lund University

Advisors:
Christian Gehrmann, SICS Swedish ICT/Lund University

Rosario Giustolisi, SICS Swedish ICT

December 12, 2016

Printed in Sweden
E-huset, Lund, 2016

Abstract

The number of machine-type communications (MTC) devices is predicted to in-
crease enormously in the near future, and this increase is expected to be accommo-
dated by 5G. However, the Authentication and Key Agreement (AKA) mechanism
used in the fourth generation of mobile telecommunications systems, EPS, may
prove too inefficient for handling a large number of MTC devices simultaneously
trying to connect. In order to address this issue a number of group-based authenti-
cated key agreement protocols have been proposed. In this thesis we review six
of the proposed protocols. For the purpose of implementing such a protocol in
a realistic setting, we also review eight open-source EPS platforms of which one
was chosen as a basis for an implementation.

The main contribution of this thesis is a prototype implementation of a group-
based authenticated key agreement protocol designed by Giustolisi et al. Moreover,
we provide a detailed specification that aims to serve as a reference for a possible
standardization of the new protocol. The secondary contribution of this thesis is a
performance analysis of the protocol.

i

ii

Acknowledgements

We would like to thank our friends and families for their encouragement during
this degree project. We also thank our supervisors Rosario Giustolisi and Christian
Gehrmann for their guidance and support. Lastly, we thank everyone at SICS
Swedish ICT for providing us with a stimulating work place.

iii

iv

Table of Contents

1 Introduction 1
1.1 Objectives . 2
1.2 Limitations . 2

2 Background 3
2.1 Evolved packet system – introduction, terms and entities 3
2.2 EPS AKA . 7
2.3 3GPP definitions . 10

3 Related work 13
3.1 Broustis et al. schemes . 13
3.2 GBAAM . 14
3.3 SE-AKA . 14
3.4 Choi–Choi–Lee scheme . 15

4 A lightweight group-based authentication protocol 17
4.1 Overview . 17
4.2 Further description . 18
4.3 Security of the protocol . 20

5 Tools and methodology 25
5.1 Evaluation of EPS platforms . 25
5.2 Details of OpenAirInterface . 29
5.3 Approach . 31

6 Our implementation 33
6.1 MILENAGE . 33
6.2 New parameters . 33
6.3 Messages . 35
6.4 Functions and commands . 41
6.5 Storage of new structures . 47
6.6 OAI reference implementation . 48

7 Performance analysis 51

v

7.1 Bandwidth consumption . 51
7.2 Latency . 58

8 Discussion and conclusion 61
8.1 GID and PATH parameters . 61
8.2 OpenAirInterface . 61
8.3 Backwards compatibility . 62
8.4 f1 derivative and f2–f5 . 62
8.5 Conclusion . 63
8.6 Future work . 63

References 65

A AKA messages 69

B Perfect binary inverted hash tree 73

C Prototype code 75
C.1 Traverse Tree function . 75
C.2 F1 Derivative function . 76
C.3 Group Authenticate function . 79

D ProVerif code 81
D.1 Corrupted MTCs ProVerif code . 81
D.2 Mutual authentication properties ProVerif code 91
D.3 MTC privacy related ProVerif code 101

vi

Nomenclature

3GPP 3rd Generation Partnership Project

AAA Authentication, Authorization and Accounting

AAA Authentication, Authorization and Accounting

AIA Authentication Information Answer

AIR Authentication information request

AK Anonymity key

AKA Authentication and Key Agreement

AMF Authentication Management Field

AS Access Stratum

AuC Authentication Centre

AUTN Authentication Token

AV Authentication Vector

AVP Attribute Value Pair

CK Ciphering Key in 3G

CN Core Network

EMM EPS Mobility Management protocol

eNodeB E-UTRAN Node B

EPS Evolved Packet System

ESM EPS Session Management protocol

GUTI Globally Unique Temporary Identity

HSS Home Subscriber Server

vii

IE Information Element

IK Integrity Key in 3G

IMEI International Mobile Equipment Identity

IMSI International Mobile Subscriber Identity

KASME Local master key in EPS

LTE Long Term Evolution

MAC Message Authentication Code

MCC Mobile Country Code

ME Mobile Equipment

MME Mobility Management Entity

MNC Mobile Network Code

MSIN Mobile Subscriber Identification Number

MTC Machine-Type Communications

NAS Non-Access Stratum

OAI OpenAirInterface

PLMN-ID Public Land Mobile Network Identity

RAND Random 128-bit string

SNID Serving Network identity

SQN Sequence number used in AKA

UE User Equipment

UICC Universal Integrated Circuit Card

UMTS Universal Mobile Telecommunications System

USIM Universal Subscriber Identity Module

XRES Expected Response

viii

List of Figures

2.1 Overview of the trust model of EPS. 6
2.2 EPS AKA protocol up to mutual authentication (UE/CN) [1] 10

4.1 The message sequence chart of the proposed group-based AKA
when the MME cannot derive the keys for the MTC device. The
chart was provided by SICS. 21

4.2 The message sequence chart of the proposed group-based AKA
when the MME can derive the keys for the MTC device. The chart
was provided by SICS. 22

6.1 The structure of GID. 34
6.2 Network set-up for OAI. 48
6.3 Wireshark output when running standard EPS AKA. 49
6.4 Wireshark output when running Case A. 50
6.5 Wireshark output when running Case B. 50

7.1 Bandwidth consumption comparison between EPS AKA and the
group-based AKA in the NAS. 56

7.2 Bandwidth consumption comparison between EPS AKA and group-
based AKA in the S6a interface. 57

7.3 Increase in NAS bandwidth consumption and decrease in S6a
bandwidth consumption when the group-based AKA is used in-
stead of EPS AKA. 57

7.4 Latency comparison between procedures. 59

B.1 An inverted hash tree of height 3 . 74

ix

x

List of Tables

2.1 UMTS AV parameters. Sizes of the parameters are based on
MILENAGE [2]. 8

2.2 EPS AV . 9
2.3 Information element format . 11
2.4 AVP example (Grouped type) . 11

4.1 Description of the terms introduced in the group-based AKA. The
table was provided by SICS. 20

5.1 Comparison of EPS platforms . 30

6.1 Modified ATTACH REQUEST message content 37
6.2 AUTHENTICATION REQUEST DERIVABLE message content . . 40

7.1 Sizes of AKA parameter IEs for EPS AKA. 52
7.2 Sizes of AKA parameter IEs for the group-based AKA, Case A. The

values are given in bytes. 53
7.3 Sizes of AKA parameter IEs for the group-based AKA, Case B. The

values are given in bytes. 53
7.4 NAS bandwidth consumptions for EPS AKA and the group-based

AKA. The values are given in bytes. 53
7.5 Parameter sizes in Diameter for EPS AKA 54
7.6 Parameter sizes in Diameter for Case A 54
7.7 Bandwidth consumption for EPS AKA and the group-based AKA

on the S6a interface. 55
7.8 Ping results . 58

A.1 ATTACH REQUEST message content 70
A.2 AUTHENTICATION REQUEST message content 71
A.3 AUTHENTICATION RESPONSE message content 71
A.4 Authentication information request message 71
A.5 Authentication information answer message 72
A.6 Requested-EUTRAN-Authentication-info 72
A.7 Authentication-Info . 72

xi

A.8 E-UTRAN-vector . 72

xii

Chapter1
Introduction

The 5th generation of mobile telecommunications systems (5G) is under devel-
opment and envisioned to provide higher bandwidth and lower latency than
its predecessors, i.e. the third-generation Universal Mobile Telecommunications
System (UMTS) and the fourth-generation Evolved Packet System (EPS) [3]. So
far, mobile telecommunication has been dominated by mobile telephony and the
provision of Internet connectivity to user-controlled terminals. The 3rd generation
paved the way for smartphones and the 4th generation further increased data
rates.

With the fifth generation, the aim is to incorporate a broader part of society
such as manufacturing, smart grids and e-health into the network. A lot of the
future applications envisioned concerns connected devices that have no direct
user interaction, called machine-type communications (MTC) devices [3][4][5]. As
the number of connected devices in 5G consequentially will not be limited by the
number of people, the number of connected devices might increase enormously.
However, this is a huge technical challenge not only because the devices are poten-
tially so numerous, but also because devices not attended by humans cannot be
expected to behave in ways that the human-attended devices have been behaving.

For example, a large number of MTC devices can be programmed to syn-
chronously attach to the network. The challenge that this scenario constitutes has
been identified and studied. Because the devices attach synchronously, the attach-
ment signalling might lead to congestion in the radio access network, congestion in
the core network and overload of authentication servers. According to Ericsson [6],
there have already been cases where millions of MTC synchronised attachments
have been made in mobile networks, causing authentication avalanches which
produced peaks of up to 40 times more signalling in the network than expected
during the busy hour.

When a device attaches to a mobile telecommunications network, it is required
that the device and the network be mutually authenticated and that they agree
on a session key so that integrity and confidentiality of data can be obtained. The
protocol used for this in the 4th generation, EPS Authentication and Key Agreement
(AKA), accounts for a large part of each attachment procedure, including signalling
in the backhaul of the network. Optimizing this protocol for MTC devices could
prove to be a solution to the aforementioned challenge.

One class of optimizations is group-based AKA protocols, which are protocols

1

2 Introduction

that let a group of MTC devices authenticate to the mobile network based on
shared attributes. Several group-based AKA protocols have been proposed in
research articles in recent years [7][8][9][10]. However, none of them has emerged
as an obvious future standard solution, so the field is still open to new suggestions.
Two criteria that a new solution must meet are that it is practical and that the gain
in performance when applied to the new MTC scenario is sufficient. Thus, it is
important that new solutions be evaluated with regards to these factors.

This degree project was done at the security lab of the research institute SICS
Swedish ICT. The lab participates in the security project 5G-ENSURE, which is
a part of the 5G Infrastructure Public Private Partnership (5G-PPP). Within this
project, the lab is doing research on potential security enablers for 5G in the area
of authentication, authorization and accounting (AAA). One such enabler that the
lab is developing is a group-based AKA protocol.

1.1 Objectives
The primary goal of this degree project is to produce a prototype implementation
of an early version of the aforementioned group-based AKA protocol. The first part
of the project is to review group-based AKA protocols proposed in related work.
The second part is to find and evaluate open-source mobile telecommunications
platforms on which the protocol can be implemented in a convincing manner.
The third part is to implement the protocol. One goal of this part is to be able to
produce a specification in support of the protocol. The final part is to analyse how
well the protocol performs regarding latency and data traffic.

1.2 Limitations
It is not within the scope of this thesis to analyse the security of the protocol.

This thesis considers only open-source mobile telecommunications platforms
for the task of implementing the group-based AKA protocol. In other words, no
proprietary platforms, even though they might otherwise be good choices, are
considered.

This thesis considers the implementation of a successful group-based authen-
tication procedure. Any divergence from the straight-forward cases is out of
scope, including handling of unknown, unforeseen or erroneous protocol data.
For example, we do not consider how the protocol relates to handover procedures.

For our purposes, a protocol run is completed when the user equipment (UE)
and the mobility management entity (MME) has authenticated each other and
produced the local master key. Any protocol behaviour exceeding this phase, such
as the derivations of further keys, is out of scope.

Furthermore, all references to the 3GPP standardization of the EPS are to the
Release 10 version of the standard.

Finally, the storage of new parameters that would reside in the UICC is not
considered in detail, because the EPS platform used in this thesis abstracted away
the UICC file system.

Chapter2
Background

This chapter is dedicated to introducing the underlying context on which the
thesis is built. It is centred around the Authentication and Key Agreement (AKA)
protocol in modern telecommunication networks; therefore, this chapter intro-
duces how the AKA procedure is currently performed in such a network. This
includes presenting terms, main entities and mechanics used by the procedure.
The chapter provides a background in order to understand the related work and
implementation chapters in the thesis.

2.1 Evolved packet system – introduction, terms
and entities

Evolved Packet System (EPS) is the name for a fourth-generation mobile telecom-
munications network architecture that is specified in [11]. The architecture usually
involves a mobile device using a radio interface in order to communicate with a
gateway node, which supplies it with Internet connectivity. It is sometimes known
by the brand name Long Term Evolution (LTE), which in more technical contexts
(including this thesis) refers only to the new radio access technology standard
used in the EPS.

The EPS is an evolution of 3G UMTS, the previous generation of mobile
telecommunications networks. It offers higher data rates and lower latencies than
its predecessor and supports multiple radio access technologies [12]. It consists of
multiple entities running a set of protocols in order to supply users with mobile
network connectivity and services.

The security approach of EPS is based on the previous generation of mobile
telecommunication networks and has inherited the requirements of authentication
and privacy. The security has evolved with the help of public review of security
functions. The result of this is a standardization of security procedures that has
had great success. The organization that standardizes the EPS is called the 3rd
Generation Partnership Project (3GPP). The standardization is a mix of clearly de-
fined protocols and abstract procedures. Some aspects are standardized to ensure
interoperability, while others are not standardized, which allows for differentiation
and quick changes in order to extend to new technologies.

3

4 Background

The EPS AKA protocol is the AKA protocol used in the EPS [13]. In order to
present the EPS AKA, we first introduce the entities which are involved.

2.1.1 User equipment
A user equipment (UE) is an entity which enables network access to a user by a
radio interface [12]. It is defined as the combination of a mobile equipment (ME)
and a Universal Integrated Circuit Card (UICC). The ME includes the terminal
which can run access protocols, and the UICC is a physically secure smart card
platform on which a Universal Subscriber Identity Module (USIM) application
can be run. The USIM is an application used to register to certain network services
using appropriate security. A typical example of a UE is a mobile phone including
a USIM card.

IMSI, IMEI and GUTI

The UE contains various identities which are defined in clause 2 of TS 23.003
[14]. Firstly, it stores the international mobile subscriber identity (IMSI), which
is an identity parameter stored in the UICC. As the name suggests the IMSI
uniquely identifies a mobile subscriber of the mobile communications network.
It consists of three fields: the mobile country code (MCC), the mobile network
code (MNC) and the mobile subscriber identification number (MSIN). The MCC
and MNC internationally identifies the mobile network operator of the subscriber
and the MSIN identifies the subscriber. The international mobile equipment
identity (IMEI) is an identity which uniquely identifies the ME. Lastly, a globally
unique temporary identity (GUTI) is a temporary identity whose purpose is to
unambiguously identify a subscriber in the network.

MTC device

A machine-type communications (MTC) device can be defined as a terminal that
is made for MTC, which means that it is not attended by humans. In most of this
thesis and in at least one 3GPP specification document [15], it is assumed to be a
UE, which means that it includes a UICC.

2.1.2 Serving network
The serving network is the network providing the immediate network access to
the UE. Which serving network that a UE is connected to depends on where the
UE is located at the moment.

2.1.3 E-UTRAN Node B
The Evolved Universal Terrestrial Radio Access Network Node B (E-UTRAN Node
B, or eNodeB) is the base station that communicates directly with the UE over
radio and provides it with connectivity to the backhaul of the EPS. [16].

Background 5

2.1.4 Mobility management entity
The mobility management entity (MME) is an entity on the serving network that
manages mobility, sessions and authentication of UEs.

Public Land Mobile Network Identity

The Public Land Mobile Network Identity (PLMN-ID) identifies a Public Land
Mobile Network Operator, which is the operator providing services over an air
interface [12]. In this thesis, we also refer to the PLMN-ID as SNID when the
PLMN is a serving network.

2.1.5 Home Subscriber Server
The Home Subscriber Server (HSS) is the entity that stores all subscription data of
the subscribers to an operator [17]. It resides in the home network of the subscriber.
The home network, in contrast with the serving network, is the network that is
controlled by the subscriber’s operator. The HSS includes storage of security
credentials and identification parameters, typically in an authentication centre
(AuC). The HSS is also responsible for receiving and processing authentication
requests of UEs sent by MMEs. It identifies UEs and generates authentication data
which then is sent to the MME in question.

2.1.6 User plane and control plane
The network is usually divided into two conceptual planes. One is called the user
plane and involves all transport of user data, e.g. speech, in the network. The other
is called the control plane (sometimes called the signalling plane) and includes all
protocols which transfer control data, e.g. attachment and detachment of UEs.

2.1.7 Access and core network, Access Stratum (AS) and
Non-Access Stratum (NAS)

The access network provides the UE with immediate connectivity (through wire-
less or wire). The core network (CN) is the part of the telecommunications network
that is not part of the access network. It includes both the serving network and the
home network, both the MME and the HSS [18]. Furthermore, the communication
between the UE and the network is conceptually divided into two strata: the
Access Stratum (AS), which includes protocols for communication between the
UE and the access network; and the Non-Acccess Stratum (NAS), which includes
protocols for communication between the UE and the core network.

2.1.8 Trust model
Based on [19] we illustrate a trust model of EPS in Figure 2.1. It can be summarized
as illustrating that the CN is in a trusted environment and the AS is not. In other
words, the CN is assumed to run protocols such as Internet Key Exchange and the

6 Background

IP security protocol which ensures that the communication of these elements are
secure [13]. The untrusted part of the model is the AS, radio access network, which
is the communication between the UE and the eNodeB using a radio interface. This
communication can be intercepted and modified by an attacker and is therefore
untrusted. The main reason behind an authentication an key agreement protocol
being deployed here is in order to secure the AS and provide mutual authentication
between MME and UE.

Figure 2.1: Overview of the trust model of EPS.

2.1.9 AAA
Authentication, authorization and accounting (AAA) is a term used to describe
a framework with a set of properties that are desirable in networks that need
both connection security, policy security and a platform for business models.
"Authentication" describes the need for two communicating nodes to ensure that
the other node is authentic – not an impersonator. "Authorization" has to do

Background 7

with ensuring that certain nodes only have access to resources it is allowed to.
Lastly, "accounting" is the property that when a certain node does something in
the network it can later be proven, preferably so it can be convincing in a court of
law.

2.2 EPS AKA
The EPS AKA protocol is an enhancement of UMTS AKA. It uses a AAA frame-
work, credential infrastructures (e.g the USIM, MME and HSS) together with an
authenticated key agreement mechanism in order to solve, among other things,
the trust issue described in Section 2.1.

The EPS AKA procedure itself is described below and is based on its descrip-
tion in [13], [1] and [18].

2.2.1 Prerequisites

The security behind the EPS AKA protocol is based on a symmetric 128-bit key
shared between the HSS and the UICC smart card, hereafter denoted by K. This
key is uniquely associated to an IMSI. Furthermore, it is assumed that a SNID has
already been communicated to the UE before the protocol is initiated.

2.2.2 Key derivation functions used in EPS

The EPS uses a key hierarchy based on the root key K. In order to derive father
keys and security parameters, a set of functions which use K as input have been
suggested by the 3GPP. The most central functions of that sort are named f1, f2,
f3, f4 and f5 and are described in [20]. The output of these functions are used for
both authentication and in order to derive the local master key KASME, which is
done through another function called KDF. The KASME key is then used to derive a
multitude of children keys for the purpose of NAS and AS ciphering and integrity
protection. One motivation for generating different keys from one master key
is that if one child key is compromised then the others would still be safe and
another motivation is that key changes or updates are easier to perform without
changing the master key.

An example algorithm set for the f1–f5 functions is provided by 3GPP in [2]
and is called MILENAGE. The algorithms allow each operator to have a unique
implementation of the functions by specifying a certain value in the algorithms
which is called the Operator Variant Algorithm Configuration Field (OP).

2.2.3 EPS AKA procedure description

Assuming now that a UE, holding K and IMSI in its UICC, wants to connect to
EPS services with the help of the MME, we describe a typical EPS AKA procedure
as seen in Figure 2.2.

8 Background

1. Attach request (UE –> MME)

The first message sent in EPS AKA is the Attach Request message wherein the
UE requests access to EPS services from the serving network MME. The message
includes UE supported capabilities and the IMSI (or GUTI or IMEI, but those
cases we will not describe) of the UE. The UE in this stage cannot trust the serving
network.

2. Authentication information request (MME –> HSS)

The MME receives the Attach Request. The MME in this stage cannot trust the UE,
so it needs to authenticate that this UE is allowed to attach to its services. This is
initiated by sending an Authentication Information Request (AIR) message to the
HSS. This message includes the IMSI of the UE and an identifier for the serving
network.

3. Generate UMTS authentication vector (HSS)

Upon receiving the AIR message, the HSS starts to prepare an authentication
vector (AV) based on the shared secret K which is coupled with the IMSI.

The first authentication vector (AV) generated is called the UMTS AV, which is
generated for legacy reasons. The vector consists of the expected authentication
response (XRES), a ciphering key (CK), an integrity key (IK), a random challenge
called RAND and an authentication token (AUTN). The AUTN consists of a param-
eter called the authentication management field (AMF), a message authentication
code (MAC) and a sequence number (SQN) exclusive OR an anonymity key (AK).
The MAC is made with K, AMF, SQN and RAND. The AK is constructed from K
and RAND. The XRES is also constructed from K and RAND. See Table 2.1 for an
overview of the UMTS AV parameters.

Table 2.1: UMTS AV parameters. Sizes of the parameters are
based on MILENAGE [2].

Param. Produced by Description Size (bits)
RAND N/A Authentication challenge 128
AMF N/A Unspecified, exists for future use 16
SQN N/A Synchronization value (UE/HSS) 48
XRES/RES f2(K, RAND) (Anticipated) response by the UE 64
CK f3(K, RAND) Used to generate KASME 128
IK f4(K, RAND) Used to generate KASME 128
MAC f1(K, AMF, SQN, RAND) Message authentication code 64
AK f5(K, RAND) Value used to conceal SQN 48
AUTN (SQN exclusive or AK) || AMF || MAC) Authentication token 128

4. Generate EPS authentication vector (HSS)

The UMTS AV is used to produce the EPS AV. A new parameter is generated by
using a key derivation function with CK, IK, a serving network identifier (SNID)
and SQN exclusive OR AK. The new parameter is a 256-bit local master key called

Background 9

KASME. One improvement that is achieved by the introduction of KASME to the
AKA is that SNID is bound to the encryption and integrity keys.

The EPS vector consists of AUTN, KASME, XRES and RAND. See Table 2.2 for
an EPS AV parameter overview.

Table 2.2: EPS AV

Param. Produced by Descr. Size (bits)
KASME KDF(CK, IK, SQN XOR AK, SNID) Local master key 256
AUTN See Table 2.1 See Table 2.1 See Table 2.1
XRES See Table 2.1 See Table 2.1 See Table 2.1
RAND See Table 2.1 See Table 2.1 See Table 2.1

5. Authentication information answer (HSS –> MME)

The HSS sends the EPS AV in the Authentication Information Answer (AIA)
message to the MME.

6. Authentication request (MME –> UE)

The MME sends the message Authentication Request to the UE. The message
includes the aforementioned AUTN and RAND. It also holds a key set identifier,
which identifies the key set to be used between the MME and the UE.

7. Generate authentication response (UE)

Using the same set of algorithms as the HSS, the UE produces its own version
of MAC, named XMAC. It compares these two values and if they are the same
the UE has authenticated the serving network. The UE continues by producing a
response parameter called RES, which is made in the same way as XRES. It also
produces CK and IK and lastly KASME just as the HSS has done.

8. Authentication response (UE –> MME)

The UE sends the RES parameter to the MME in the Authentication Response
message.

9. Mutual authentication complete (MME)

The MME checks that the received value of RES is the same as the XRES. If this
is true then mutual authentication between the UE and the network has been
achieved. A shared session local master key, KASME, has been established between
the UE and the MME. This key can now be used to generate integrity keys and
ciphering keys for both the NAS and the AS.

The EPS AKA message exchange and parameter generation can be seen in in
Figure 2.2. Note that for the intents of this thesis the exchange is finished when

10 Background

Figure 2.2: EPS AKA protocol up to mutual authentication
(UE/CN) [1]

mutual authentication and master key agreement between the CN and the UE has
been achieved. The protocol continues after this point by deriving integrity and
encryption keys from the KASME used for NAS and AS signalling.

2.3 3GPP definitions
3GPP have defined certain elements and procedures that are considered the stan-
dard of EPS. We present a number of such 3GPP terms and definitions here in
order to supply the reader with an understanding of the implementation presented
in Chapter 6. In particular, the NAS protocols, the S6a interface and the USIM
characteristics are presented.

2.3.1 Non-access stratum
Control plane messages between the UE and the MME are included in the NAS
protocols, specifically the EPS mobility management (EMM) protocol and the
EPS session management (ESM) protocol. These are also defined as layer 3 (L3)
protocols. Their structure is described in the 3GPP documents [21] and [22]. Each
message contains a number of parameters called information elements (IEs).

Information elements

IEs use a standard type-length-value (TLV) format and come in four different
standardized types: TLV, LV, V and TLV-E [21]. "TLV-E" types simply uses a larger
length value.

Background 11

Table 2.3: Information element format

8 7 6 5 4 3 2 1
Information element identifier octet 1

Length of IE contents octet 2
octet 3...

Value part
octet n

Table 2.4: AVP example (Grouped type)

Name Identifing header Description
Example-AVP ::= <AVP header: Identifier of the AVP> Header

{ AVP1 } Child AVP1 mandatory
1*{AVP2} 1 (or more) child AVP2 mandatory
*[AVP3] 0 (or more) child AV3 optional
[AVP4] child AVP4 optional
*[AVP] Additional AVP of various types can optionally be appended

When an IE occurs in a NAS protocol message, it is flagged as either manda-
tory (M), optional (O) or conditional (C) in that message. The condition which
determines the existence of a conditional IE in a message may only be based on an
indicator in the message itself, no outer state machine should indicate this. See
Table 2.3 for the general structure of an IE.

2.3.2 S6a interface
The EPS AKA signalling between the MME and the HSS is included in the S6a
interface protocols. The format of the messages in these protocols are defined in
[23]. Specifically, the messages 2 and 3 described in Section 2.2.3 are included in
the S6a protocol – the AIR and the AIA messages. The S6a protocol is based on
Diameter [24]. A Diameter message consists of a header followed by one or more
attribute-value pairs (AVPs).

Attribute-value pair

An attribute-value pair (AVP) in the S6a protocol is analogous to an IE in the NAS
protocol. It consists of a header which encapsulates data or possibly one or more
AVPs. The format of the data field of an AVP must be one of the base data types
defined for Diameter in [24] or a data type derived from those base data types [24].
The ones mainly used in this thesis are the Unsigned32, OctetString and Grouped
types. A Grouped type AVP is simply an AVP which holds more AVPs. See Table
2.4 for the general structure of an AVP.

2.3.3 USIM
The USIM application is described in [25]. This includes specifications of com-
mand signatures and file formats used in the USIM and the UICC. The main

12 Background

points of interest in the USIM are firstly the authentication command in the USIM
application and secondly storage of resources such as security keys.

Authenticate command

The USIM has a command called AUTHENTICATE. This command is used after
the UE has received the Authentication Request. The command uses functions
f1 to f5 as described in Section 2.2.3 in order to produce the parameters RES,
CK and IK. It takes as input the RAND, SQN exclusive or AK, AMF and MAC,
which are all described in Table 2.1. First the command computes AK by using
function f5 and then it retrieves SQN by XORing with (SQN XOR AK). Thereafter
it produces XMAC using function f1. If the received MAC is different from XMAC
authentication failure occurs. Afterwards the command checks if SQN is in the
correct range. If it is, the command computes RES using f2, CK using f3 and lastly
IK using f4.

Storage in the UICC with elementary files (EFs)

Storage of files in the UICC is done in a file format called elementary files (EFs).
The files stored include parameters IMSI, RAND, KASME and the long-term key K.

Chapter3
Related work

We examine here six proposed group-based AKA protocols. For each of the
protocols we explain its general idea, give an overview of its inner workings and
assess its feasibility of being implemented in current mobile telecommunications
systems.

3.1 Broustis et al. schemes
Broustis et al. propose three group-based authentication schemes in [7], published
in 2012. All three schemes use a dedicated gateway node between the MTC devices
and the network.

The security mechanism behind the schemes is based on a global challenge and
on a group key which is placed differently depending on which scheme is used.
What is meant by a global challenge is that for every group-based authentication,
every device in the group receives an identical random challenge. The challenge
is accompanied with an authentication token, produced with the group key. The
token is verified either in the gateway node or in each MTC device depending on
which scheme is used.

In the first scheme, it is the gateway node that holds the group key and is
responsible for verifying the authentication token. If the verification is successful,
the gateway broadcasts the global challenge to the MTC devices. Upon receiving
the challenge, the devices use individual keys, shared with the network, to com-
pute individual response values and session keys. They then send the responses
via the gateway node to the MME, which uses the responses to authenticate the
devices.

In the second and the third scheme, each MTC device (and not the gateway)
holds the group key and verifies the authentication token. As for the difference
between the second and the third scheme, it lies in where the responses from the
MTC devices are verified. In the second scheme they are verified by the gateway,
in the third by the MME.

We assess that an advantage with these schemes is that they do not introduce
any new cryptographic function not existing in EPS AKA. This makes it attrac-
tive for implementation since many elements in EPS could possibly be reused.
However, a disadvantage with the schemes is that a gateway node is present

13

14 Related work

and adding the gateway node to the EPS architecture could prove cumbersome.
Another disadvantage is that little signalling is saved between the HSS and the
MME because the expected response parameters for every device must be sent for
every group-based authentication.

3.2 GBAAM
Cao et al. propose a group-based authentication scheme named Group-Based
Access Authentication for MTC (GBAAM) [9], published in 2015. GBAAM is
based on identity-based cryptography. This is a form of public-key cryptography
where the identity of an entity is used to construct the public key of this entity,
giving the benefit that the public keys need not be distributed in advance.

The protocol has two phases, the register phase and the group-based access
authentication phase. In the register phase, the MTC devices perform authenticated
key agreement procedures that are similar to the EPS AKA protocol. The main
difference is that the HSS additionally provides the MTC devices with private
keys. Also in the register phase, the HSS provides the MME with a private key. An
MTC group ID is included in the attach request, and the private keys are specific
to this group.

In the second phase, MTC devices of a group simultaneously want to attach to
the network, but this time the HSS will not be involved and the signalling goes via
a group leader MTC device. The MTC devices make signatures with their private
keys and send them to the group leader. The group leader then aggregates the
signatures and sends the aggregated signature to the MME. The MME verifies
the aggregated signature, and if the verification is successful the MME in turn
produces a signature with its private key and sends this to the group leader, which
then broadcasts this signature to the MTC devices in the group. Elliptic curve
Diffie-Hellman data is also included in this scheme so that every MTC can agree
on a session key with the MME.

We find that a disadvantage with the protocol is that it is based on using
identity-based signatures which does not exist in the EPS security architecture,
making it complex to implement. Even though the use of identity-based cryptogra-
phy means that a PKI is not needed, public key parameters and private keys must
be distributed to all the MMEs used by the group, and there should not be any
geographical limitation to where a group might roam. We think that this makes
the scheme impractical.

3.3 SE-AKA
Lai et al. propose a group-based authentication scheme named SE-AKA [8], pub-
lished in 2013. In this scheme each MTC device holds a group key, a long-term key
and a parameter called a synchronization value. The general idea of the protocol is
that the HSS provides the MME with additional authentication information during
an attachment of an MTC device that is a member of a group. The MME then
uses this additional information in subsequent attachments of group members in

Related work 15

order to authenticate them, saving signalling between the HSS and MME. More
specifically, the additional information sent from the HSS to the MME includes
a synchronization value for each MTC device in the attaching group. Between
the UEs and the MME, elliptic curve Diffie-Hellman exchanges are performed for
session keys. The protocol also offers a privacy enhancement by using a public-key
infrastructure (PKI) to encrypt the IMSI in the initial attachment message.

We find that a disadvantage with the scheme, just as with the Broustis et
al. schemes, is that the signalling between the MME and the HSS still contains
information for every device in a group. This means that when a lot of MTC
devices are attaching, this initial message could still possibly congest the network.
Another disadvantage with the protocol is that it introduces a PKI; we believe this
makes the scheme impractical to implement.

3.4 Choi–Choi–Lee scheme
Choi et al. propose a group-based authentication scheme in [10], published in
2014. In this protocol the session key derivations between the MME and the MTC
devices in a group are based on a binary tree associated with the group. Every
node in the tree is associated with a value. The value of every node except the
root node is the result of applying a hash function on the value of the parent of the
node. One hash function is used if it is a left child and another if it is a right child.
Every MTC device in the group is assigned a leaf node in the tree, and the MTC
device holds the values associated with all nodes in the tree except for the value of
the node assigned to it and the values of the ancestors of this leaf node.

A core idea of the scheme is that a designated MTC device group leader is
used as an intermediate between the network and the rest of the MTC devices in
the group. The leader attaches to the network in a way similar to EPS AKA, but
the IMSIs of all MTC devices in the group are also included in the initial attach
message. The MME then fetches expected responses for each MTC in the group
from the HSS. Thereafter, the network is authenticated using a MAC broadcast
from the MME to the devices. The MTC devices send their responses to the leader
which in turn sends these to the MME, which authenticates them. During the
protocol, the MME gets included in the aforementioned binary tree. This enables
each MTC device to agree on a session key with the MME by applying a hash
function to all the tree values that are known by both the MTC and the MME.

We find that an advantage with this protocol is that it uses easily implemented
functions and ideas. However, as is the case with the SE-AKA scheme and the
Broustis et al. schemes, the HSS needs to produce and send data for each individual
MTC device in the group. This would perhaps congest the network when a
group contains a great number of MTC devices. We also identify a large security
drawback with this scheme: if two compromised MTC devices with no common
ancestors in the binary tree (except the root node) collude, they can obtain all the
session keys of the other MTC devices.

16 Related work

Chapter4
A lightweight group-based

authentication protocol

In this chapter we describe the protocol of which we in Chapter 6 present a
prototype implementation. We also summarize the results of a security verification
of the protocol. The protocol was developed by SICS Swedish ICT in parallel with
the thesis work. It is based on analysis of existing group-based authentication
proposals, among them the ones we discussed in the last chapter, and constructed
with the aim of being efficiently and easily implemented into current mobile
telecommunications networks. Since the protocol was still under development
during the project work, it is an early version of the protocol that is considered in
this thesis. For the purpose of this thesis we simply refer to it as the group-based
AKA.

4.1 Overview
The protocol has one thing in common with the Choi–Choi–Lee scheme: it uses
perfect1 binary inverted hash trees. Figure B.1 in Appendix B shows the structure
of such an inverted hash tree, using the terminology that will be described in this
section. The trees are built from the root downwards by using two different hash
functions called h0 and h1 on a parent node and defining that the result from one of
the functions represents the left child and the result from the other represents the
right child. More specifically, the functions h0 and h1 and the root value are used
to construct the tree in the way specified by the following recursive definition2,
where nij denotes the node at the ith position and the jth level.

nij =


h0(nk(j−1)) if i = 2k (left children)
h1(nk(j−1)) if i = 2k + 1 (right children)
given value if i = j = 0 (root)

Two such trees are used in the protocol for every group. The basic idea is to
use the leaf values as authentication parameters and to assign a leaf position, valid

1A perfect binary tree is a binary tree in which all leaf nodes are on the same level.
2Taken with permission from researchers at SICS.

17

18 A lightweight group-based authentication protocol

for both trees, to each MTC device. One of the trees holds keys, called group keys,
and the other holds challenges. Before any authentication and key agreement has
been performed, the home subscriber server (HSS) has access to the root nodes of
the trees, whereas each MTC device has access only to a value that is the result of
obfuscating the group key of the device.

The general idea is that the HSS can provide an MME with sub-root nodes
of these trees during an attach request for a single MTC device. The MME can
then from these sub-root nodes derive authentication parameters for subsequent
attachments of MTC devices that are members of the group. This allows the MME
to authenticate devices without having to contact the HSS.

4.2 Further description
The two trees are called the CH tree and the GK tree. The CH tree is the tree that
holds challenges and the GK tree is the tree that holds group keys. The nodes in
the trees at the ith position and the jth level are denoted by GKij and CHij. The leaf
nodes coupled with an MTC device are denoted by GKMTC and CHMTC.

At registration time, the network operator of the group – which must be same
as the network operator of the MTC devices – provides each MTC device with
a long-term key K, as is also done in EPS AKA. The network operator moreover
provides each MTC device with a value that is produced with K, GKMTC and
CHMTC. More specifically, this value, called OMTC, is produced in the following
way:

OMTC = hash (K, CHMTC) ⊕ GKMTC

OMTC is thus an obfuscation of the group key, obfuscated with K and CHMTC.
The reason behind the obfuscation is to bind the long-term key K and the challenge
CHMTC to the group key GKMTC, preventing GKMTC from being compromised
after distribution. For instance, two corrupted MTC devices cannot swap their
group keys in order to break authentication because they cannot retrieve GKMTC
without both K and CHMTC.

The network operator at registration time additionally provides the MTC
devices with an ID that globally uniquely identifies the group, called GID.

When a device wants to connect to the network it sends an Attach Request to
the MME. This message contains the GID, a random number called NONCE and
the tree position of the device, called PATH. On receiving the Attach Request, the
MME checks whether it stores ancestor nodes of the leaf nodes defined by GID
and PATH. If the answer is no, Case A is performed, and if the answer is yes, Case
B is performed. We will now describe the two cases separately.

Case A

The MME sends to the HSS an Authentication Data Request containing the parame-
ters received from the Attach Request (GID, PATH and NONCE) and an ID of the
serving network (SNID). On receiving the Authentication Data Request, the HSS
first checks whether GID and PATH are valid and whether it has never received an

A lightweight group-based authentication protocol 19

Authentication Data Request for this device previously. If both conditions are met,
the HSS then does two things. The first thing is that it finds IMSI and K associated
with GID and PATH and then uses K and SNID to do the same derivations as is
done by the HSS in EPS AKA. The other thing is that it, according to a policy
decided by the operator of the group, selects indices i and j for nodes CHij and GKij
that are ancestor nodes of the nodes defined by GID and PATH (i.e. CHMTC and
GKMTC). The policy might be based on a trade-off between security and efficiency
considerations or a division of the group into smaller groups. Next, the HSS sends
to the MME an Authentication Data Response containing the parameters included in
the corresponding EPS AKA message and, additionally, CHij, GKij, GID, PATH
and IMSI. The MME stores CHij and GKij for future use with other devices and
mutually authenticates and agree on a key with the device in the same way as is
done in EPS AKA.

Case B

The MME first checks whether it has performed a group-based AKA run with the
device previously. If not, the MME then computes CHMTC and GKMTC by using
PATH and the stored ancestor nodes CHij and GKij. These derivations are done
by iteratively applying two hash functions in the way described in Section 4.1. In
addition to this an authentication token parameter, named AUTD, is calculated as
follows.

AUTD = (f5 (GKMTC,NONCE), MACGKMTC (NONCE, CHMTC, GID, SNID, PATH)).

The MME then generates a new message named the Authentication Request
Derivable. This message includes the parameters SNID, CHMTC and AUTD and is
sent to the MTC device.

Upon receiving the Authentication Request Derivable message, the MTC uses
the CHMTC parameter and the long term key K in order to de-obfuscate the OMTC
that it has stored. This is done as follows.

GKMTC = hash (K, CHMTC) ⊕ OMTC

The MTC device proceeds by verifying the MAC inside the AUTD. If it is
correct then the network has been authenticated. Thereafter the MTC generates a
new message named Authentication Response Derivable that contains a parameter
called RESD. It is generated as follows.

RESD = f2 (GKMTC, CHMTC)

This message is sent to the MME which computes a parameter XRESD in the
same way as RESD was computed, using the stored GKMTC and CHMTC. XRESD
is then compared with the received RESD and if they are the same the MTC device
is authenticated.

At this point the MTC device and the MME have authenticated themselves to
each other and they can now compute a shared session key named KasmeD. KasmeD
is generated as follows.

20 A lightweight group-based authentication protocol

Table 4.1: Description of the terms introduced in the group-based
AKA. The table was provided by SICS.

Term Description
GID Group identifier
PATH The path assigned to the MTC. Each MTC is assigned

with the same path in both trees.
NONCE Random number
GKij The (sub)group key assigned to the i-th subroot of GK

tree at j-th level.
CHij The challenge key assigned to the i-th subroot of CH

tree at j-th level.
GKMTC The key associated to the MTC. It is the hash value of

the leaf of the GK tree at PATH.
CHMTC The challenge key associated the MTC. It is the hash

value of the leaf of the CH tree at PATH.
OMTC The obfuscated value that hides the key associated to

the MTC
AUTD The authentication parameter in the group authentica-

tion
RESD The response parameter in the group authentication
KasmeD The session key generated in the group authentication

KasmeD = kdf (f5 (GKMTC,NONCE),f3 (GKMTC,CHMTC), f4 (GKMTC,CHMTC),SNID).

See Table 4.1 for a listing of the terms introduced by the new protocol. Figure
4.1 and Figure 4.2 illustrate the signalling used.

4.3 Security of the protocol
As stated in Chapter 1, analysis of the security of the protocol is outside the scope
of the thesis. Nevertheless, we will in this section briefly summarize the results of a
ProVerif verification that has been carried out by our supervisor Rosario Giustolisi.
ProVerif is a software tool that can be used to automatically verify the security of
cryptographic protocols [26]. The verification is at the time of thesis submission
not published in any paper but the code that specifies the protocol with the input
language of ProVerif can be seen in Appendix D.

The ProVerif code is based on an updated version of the protocol. In this
version, additional hashing of the group key leaf nodes is performed in order to
enable re-authentications. Although the two versions differ, the difference in terms
of security is probably small or non-existent, so the results are probably valid for
both versions.

A lightweight group-based authentication protocol 21

MTC MME HSS

Attach request

GID, PATH, NONCE
Auth. data req.

GID, PATH, SNID

Generate
AV

Auth. data resp.

RAND, XRES, Kasme
AUTN, GKij, CHij
GID, PATH, IMSIAuth. request

SNID, RAND, AUTN

Verify
AUTN

Auth. response

RES
Verify
RES

Compute
Kasme

Case A: Non-derivable MTC keys

Figure 4.1: The message sequence chart of the proposed group-
based AKA when the MME cannot derive the keys for the
MTC device. The chart was provided by SICS.

22 A lightweight group-based authentication protocol

MTC MME

Attach request

GID, PATH, NONCE

Auth. request derivable

SNID, CHMTC, AUTD

Verify
AUTD

Auth. response derivable

RESD

Verify
RESD

Compute
KasmeD

Case B: Derivable MTC keys

Figure 4.2: The message sequence chart of the proposed group-
based AKA when the MME can derive the keys for the MTC
device. The chart was provided by SICS.

A lightweight group-based authentication protocol 23

The ProVerif code in Appendix D.2 considers the mutual authentication be-
tween MTC devices and the serving network. The code in Appendix D.1 considers
the same scenario but includes corrupted MTC devices. Lastly, the code in Ap-
pendix D.3 considers the privacy of the MTC device identity when using the new
protocol.

Preliminary results using the ProVerif code in Appendix D have shown that
the protocol is secure regarding four aspects: session master key confidentiality,
serving network authentication, MTC device authentication and MTC identity
privacy.

24 A lightweight group-based authentication protocol

Chapter5
Tools and methodology

We evaluated eight open-source platforms that simulated the Evolved Packet Sys-
tem (EPS). The goal was to modify a suitable EPS platform so that it implemented
the group-based AKA in a realistic environment.

In this chapter we present the evaluation and describe the platform that we
chose. Lastly, we state the approach we took to the project work that remained
after we had chosen a platform.

5.1 Evaluation of EPS platforms
This section is structured as follows: Subsection 5.1.1 gives the requirements for
the platform; Subsection 5.1.2 gives the evaluation of how the different platforms
meet the requirements; and Subsection 5.1.3 gives the reasoning behind the final
choice of platform.

5.1.1 Requirements

Codebase

The codebase of the platform should be open source so that we may publish
code modifications. It should also be stable and easy to understand, not least
by being well structured and extensively documented. Moreover, it should be
supported by an active community which can provide support. Furthermore, the
codebase should be implemented in a programming language that supports good
cryptographic libraries.

Realism

The platform should offer a high degree of realism with regards to the internal
structure of EPS. In particular, the platform should simulate or emulate the MME,
the HSS, the UE, the USIM application and the UICC. Moreover, in order to enable
modification of functionality related to authentication and key agreement, the
platform should support the EPS AKA protocol. This includes NAS signalling, the
Diameter protocol, the security functions f1–f5 and the USIM AUTHENTICATE
command.

25

26 Tools and methodology

Traffic measurements

The platform should be able to log communication channels between certain
entities in EPS, in order to provide a basis for signalling tests. In particular, the
platform should be able to log the AKA exchanges between the UE, the MME and
the HSS. This would entail that the following EPS interfaces can be logged.

• S6a interface (MME – HSS) for the Diameter protocol

• S1-MME (eNodeB – MME) for NAS protocols signalling

Security measurements

It is good if the platform supports some form of security analysis tool, so that an
analysis of the security of the new protocol might be facilitated.

Computational measurements

It is good if the platform supports some form of computational analysis tool, so
that an analysis of the performance of the new protocol might be facilitated.

MTC devices

Regarding the number of MTC devices the platform is able to simulate or emulate
at the same time, it would be best if the platform could simulate a massive amount
of MTC devices. However, if the platform cannot do that, the more MTC devices
the platform can simulate, the better.

5.1.2 Platforms
Here we describe and evaluate each of the platforms one by one. A summary of
the evaluation can be seen in Table 5.1.

LTE-Sim

LTE-Sim [27] is an event-driven simulator used for simulating uplink and down-
link scheduling strategies. It is mainly used for radio interface simulation. It
supports simulation of the entities UE, eNodeB and MME with regards to radio
interfaces. It offers an open-source codebase written in C++. It also partially
implements the core network. However, no EPS AKA protocol elements were
found in the codebase and no HSS entity is supported. Hence, we do not choose
to use this platform.

OpenLTE

OpenLTE [28] is an open-source radio interface simulator written in Octave,
Python and C++. It is mainly used to simulate an eNodeB and to extend the capa-
bilities of GNU Radio applications, which is an open-source toolkit for software-

Tools and methodology 27

defined radio. The focus is on transmission and reception of downlink communi-
cation from an eNodeB to a UE. This platform does include certain elements of
interest as it has partly implemented an HSS and an MME. Moreover, there exist
parts of the EPS AKA protocol in the codebase. However, it cannot simulate the
actual radio communication, instead it actually performs it. This means that in
order to use this simulator, a radio transmitter and a physical UE are needed. Such
a transmitter is out of scope for this thesis. Thus, we do not choose to use this
platform.

srsLTE + srsUE

srsLTE [29], written in C, and srsUE [30], written in C++, are open-source sim-
ulators used for software-defined radio. They are mainly used for testing radio
interfaces. However, they do support EPS AKA to a certain extent as the functions
f1–f5 are included in the codebase, and it is also stated that the UE supports the
full EPS protocol stack. However, no HSS entity is provided. Another drawback
with these simulators is that the radio transmission between a UE and the network
is not simulated, which means that radio hardware is required. Thus, we do not
choose to use this platform.

ns-3 + LTE Module

ns-3 [31] with the LTE Module [32] is a popular open-source discrete-event net-
work simulator written in C++. It is used for a large range of purposes, for
example packet scheduling, radio resource management and inter-cell interference
coordination. It supports simulation of multiple UEs, eNodeBs, GW nodes and
MMEs. The simulation is complete in the sense that the radio interface is also
simulated. Furthermore, the platform offers extensive documentation of the code
and an active community. However, the platform does not offer control signalling.
In particular, the EMM protocol and the Diameter protocol are not included or
grossly abstracted. We conclude that adding this logic to the simulator would be
time consuming. However, since the platform offers the possibility of simulating a
large amount of UE, it was considered.

OMNet++ and 4GSIM

OMNet++ and 4GSIM [33] is an open-source discrete-event simulator written in
C++. It is used for 4G simulation. It simulates the eNodeB, the MME and the
HSS. It does not have an active community and is missing a UE simulation, which
would require some external UE simulation platform to be integrated with this
platform. Thus, we do not choose to use this platform.

SimuLTE

SimuLTE [34] is a discrete-event simulator used for EPS simulation written in C++.
It is mainly used for simulation of user-plane signalling. It supports a UE and an

28 Tools and methodology

eNodeB and has an active community. It does not include EPS AKA or any control
signalling and is missing key entities. Thus, we do not choose to use this platform.

Python Protocol Simulator

Python Protocol Simulator [35] is an open-source protocol simulator written in
Python. It includes simulation of the Diameter protocol and an HSS entity. How-
ever, it does not implement any other entity or protocol related to the EPS. Thus,
we do not choose to use this platform.

OpenAirInterface

OpenAirInterface is an open-source wireless technology platform [36] written
in C. It is a fully-stacked EPS implementation with the goal of being used for
development and research. It supports an MME, an HSS, an eNodeB and an
abstracted UE. It does not require any radio hardware in order to run since it can
simulate the radio interface used in EPS by Ethernet. It can run the EPS AKA
protocol from the UE to the HSS and back. Furthermore, it does have an active
community. A disadvantage with the platform is that the high ambitions of the
people behind it make it complex, and since it is in rapid development it could
also prove to be unstable. Moreover, it currently does not support more than a few
UEs at a time.

5.1.3 Conclusion
In this evaluation a number of EPS platforms have been investigated. A compari-
son of the platforms is depicted in Table 5.1. From this we identify two directions
that can be taken. The first direction is to use ns-3 and the LTE Module because it
is able to simulate many UE devices. Also, in contrast to the 4GSim which also can
simulate many MTC devices, ns-3 supports the complete user plane of the EPS
network and has an active community. However, the EPS AKA protocol and in
fact all control signalling is missing from ns-3. If this platform was chosen many
parts would most likely be required to be built from the bottom up.

The other direction is OpenAirInterface. This platform is very complex since
it offers an almost complete implementation of EPS. By using this platform, EPS
AKA signalling and functions can be reused or modified. However, it cannot,
currently, support more than a few UEs. This means that any analysis aspect of
looking at a massive amount of MTC devices connecting might be complicated.

Regarding the other platforms, they simply do not support enough parts of
EPS or they require additional hardware that cannot be obtained in accordance
with the thesis scope. Therefore, they will not be considered.

We select OpenAirInterface (OAI) instead of ns-3 and the LTE module as the
platform for this thesis work. The main motivation behind using OAI is that it
provides a realistic basis for implementing the group-based protocol. Since the
goal of the OAI project is to provide a realistic implementation of a fully-stacked
core network, it follows closer to our objective of investigating and providing
a prototype that is feasible to implement in current mobile telecommunication

Tools and methodology 29

networks as stated in Section 1.1. Furthermore, OAI provides a basis on which
signalling and security functions can be re-purposed or re-defined in. However,
a consequence of this decision is that testing the new protocol using a massive
amount of MTC devices can only be done in future work.

5.2 Details of OpenAirInterface
The goal of the OAI wireless technology platform is to enable an open EPS ecosys-
tem released as free software under the OSA license model 1. It was founded by
EURECOM 2 together with a number of supporting companies. The platform
offers an open-source implementation of the EPS radio interface, EUTRAN, and
the core network. This also includes NAS integrity and encryption using AES, a
popular encryption algorithm, and SNOW 3G, a stream cipher used by 3GPP as
encryption algorithm. Furthermore, it can handle attach, authentication, service
access and radio bearer establishment. In particular, the NAS protocols and the
S6a interface mentioned in Section 2.3 are implemented in the codebase. OAI
offers a platform on which researchers and companies can develop EPS and 5G
deployment solutions and experimentation.

OAI is also able to simulate an eNodeB and a UE that can connect to the core
network with a simulated radio interface. However, this is currently under early
development so certain aspects are abstracted in this scenario. In particular, the UE
is simulated in such a way that the USIM application file system is non-existent,
instead a simple file is written to and read from the host. The USIM does have the
security functions implemented (AUTHENTICATE and f1–f5), which are the main
functions needed for remodelling in the implementation of the group-based AKA
protocol.

OAI is divided into two projects: Openair-cn and Openairinterface5G.

5.2.1 Openair-cn
Openair-cn consists of the MME and the HSS entities and the protocol stack
running on top of them. In particular, the MME and HSS are run as their own
processes and each major protocol or procedure is run as threads in these processes.
The threads communicate to each other within an MME or an HSS by using
something called the inter-task interface, which is a scheduler for message passing.

HSS

The HSS process consists of an S6a thread and a database. The database application
used is MySQL: it represents the AuC and stores user authentication parameters.
The HSS also includes an authentication and key derivation codebase for the KDF
and the f0 function. The lower-level cryptographic functions, such as an HMAC

1OSA Public License V1.0 and the Apache V2.0 License.
2EURECOM is a graduate school and research centre in communication systems located

in France. Website: http://www.eurecom.fr/en.

30 Tools and methodology

Table
5.1:

C
om

parison
ofE

P
S

platform
s

Entities
Signalling

Logging
EPS

A
K

A
M

TC
H

W
req.

Progr.language
U

E
M

M
E

H
SS

S6a
N

A
S

(EM
M

)
f1–f5

&
K

D
F

A
U

T
H

C
M

D
Fullsupport

#
LT

E-SIM
Y

Y
N

N
Partly

Y
N

N
N

A
tleast1

N
C

++
O

penLT
E

N
Partly

Partly
Partly

Partly
Y

Partly
Partly

N
A

tleast1
Y

O
ctave,Python

&
C

++
srsLT

E
+

srsU
E

Y
Y

N
N

Y
Y

Y
(U

SIM
)

Y
N

A
tleast1

Y
C

&
C

++
ns-3

+
LTE

M
odule

Y
Y

Partly
N

Partly
Y

N
N

N
Lots

N
C

++
O

M
N

et++
and

4G
SIM

N
N

N
Y

Y
Y

N
N

N
Lots

N
C

++
Sim

uLT
E

Y
N

N
N

N
Y

N
N

N
A

tleast1
N

C
++

Python
protocolsim

ulator
N

N
Y

Y
N

Y
Partly

Y
N

0
N

Python
O

penA
irInterface

Y
Y

Y
Y

Y
Y

Y
Y

Y
A

tleast1
N

C

Tools and methodology 31

used in the system, stem from an open-source library called Nettle [37], which is
included in the HSS.

An open-source Diameter implementation called freeDiameter [38] is used for
S6a signalling. During the building of the HSS and the MME, the freeDiameter
source code is fetched and subsequently patched for the purpose of introducing
an S6a extension.

MME

The MME process runs several threads, where the ones of main interest are the
NAS protocols thread and the S6a thread. Just like with the HSS, the S6a thread
uses freeDiameter to send and receive Diameter messages in the S6A interface.

5.2.2 Openairinterface5g
Openairinterface5G is responsible for the eNodeB and UE simulation in this setup.
It consists of an abstracted UE and eNodeB combination that provides realistic
radio stack signalling and NAS signalling when connected to the Openair-cn.

5.3 Approach
Our main task was to translate the group-based AKA from the high-level descrip-
tion seen in Chapter 4 to a specification and implementation as seen in Chapter 6.
The purpose was to showcase the feasibility of the protocol. We reasoned that the
best way to do this was by developing the protocol on the realistic EPS platform
OAI and taking into account the existing 3GPP documentation surrounding EPS
AKA.

The approach for the implementation was centred around evolving the EPS
AKA protocol so that the group-based AKA could be supported by EPS. A first
step to this was to identify the signalling differences between classic AKA and the
group-based AKA. From this information a set of new messages were specified
for the protocol which were based on EPS AKA. The next step in the approach
was to identify the size, structure and function of any new parameter introduced
in the group-based AKA. The choice of the sizes and structure of the parameters
took into account how they interact with the classic EPS AKA functionality and
how they could fit into classic EPS AKA signalling so that the realistic property of
OAI could be retained. This approach would inherently enable detection of any
backwards compatibility issues.

Our secondary task was to analyse the performance of the protocol. The
purpose of the analysis was to evaluate how the group-based AKA protocol fares
against the EPS AKA protocol and draw a comparison between them. This analysis
is meant to further the question of the feasibility of the protocol. The analysis was
based around the scenario of a lot of MTC devices attaching to the network and
the properties of interest in the analysis were latency and traffic size.

The analysis had both empirical and theoretical components. For the empirical
components we used the code that we wrote and the already existing OAI code.

32 Tools and methodology

The same configuration was used for the tests as for when we ran the implemen-
tation when we tested the general feasibility of the implementation. Wireshark
and ping provided us with measurement data. For the theoretical components,
simplifications were made. However, the aim was to motivate every choice we
had to make.

Chapter6
Our implementation

In Chapter 4 we described the group-based AKA in broad terms. In this chapter
we provide a detailed specification that aims to serve as a reference for a possible
standardization of the protocol. The guiding principles for the design choices
we make in this chapter is that the security should be good, the performance
should be good and the implementation should be as practical as possible in every
possible respect, for example in terms of backwards compatibility.

6.1 MILENAGE
With EPS AKA, the cryptographic algorithms used for authentication and key
agreement are not standardized. The reason behind this is that the same organi-
sation controls both the Universal Integrated Circuit Card (UICC) and the Home
Subscriber Server (HSS), which is the places where the algorithms are executed.
The situation looks entirely different with the new group-based AKA protocol:
the cryptographic algorithms that are executed on the network are executed at
the Mobility Management Entity (MME) and not at the HSS. Consequentially, the
algorithms must be standardized. Since our approach, which we described in the
last chapter, is to stay as close to the 3rd Generation Partnership Project (3GPP)
specifications as possible, we decide to take the MILENAGE definitions of the
functions f2–f5 as a point of departure for the specifications of our versions of the
functions. The kernel function specified for MILENAGE, Rijndael/AES, is also
specified by us for the functions MACGKMTC and f2–f5.

6.2 New parameters
The parameters we introduce in this section are based on the parameters of the
new protocol which can be seen in Table 4.1 in Chapter 4.

GID

When a serving network receives an attach request, it must somehow deduce
to which home network the device belongs, so that it can send a request for
authentication information. In EPS AKA the serving network identifies which

33

34 Our implementation

mobile network operator, and hence which home network, the device belongs to
by looking at two fields in the international mobile subscriber identity (IMSI): the
mobile country code (MCC) and the mobile network code (MNC). In the group-
based AKA the IMSI is not sent in the attach request, but instead GID, PATH and
NONCE is sent. One of these parameters should take the place of IMSI in the
sense that it provides the serving network with the previously mentioned mobile
network operator identifier. The only one of the three new parameters for which it
makes any sense to include this identifier is the GID. More generally, the function
of GID is similar to the function of IMSI: it is an identifier which partially identifies
which AKA parameters that is paired with the device.

Therefore, we design the GID just like the IMSI is designed. An advantage with
this solution is that it allows current implementations to reuse the structure of IMSI
in storage and processing. Furthermore, the variable size of the parameter allows
any implementer to construct any size up to 15 digits based on their preference.
The structure of GID can be seen in Figure 6.1.

Figure 6.1: The structure of GID.

PATH

Regarding the length of the PATH, it is difficult to assess what length would be
suitable since it depends on how large the largest groups will typically be and
whether the division of a group tree into sub trees will entail that a lot of PATH
values will have to be unused. Nevertheless, since we have to make a decision,
we decide that the the length of PATH is 1 to 32 bytes. With this length range, a
group can consist of up to 2256 members.

NONCE

In EPS AKA, f5 is a function that is applied on the parameter RAND and yields the
anonymity key (AK) [20]. In the group-based AKA, the input to f5 is not RAND
but NONCE. To meet the existing requirements of f5, NONCE must thus have the
same size as RAND. Therefore, we decide that NONCE consists of 16 bytes.

Our implementation 35

GKij, CHij, GKMTC, CHMTC and OMTC

The hash functions h0 and h1 that are used to compute the hash values of a node’s
left and right child, respectively, have to output 128 bits since this is the key length
used in the functions f2, f3, f4 and f5, and the length of the other, non-key, input
parameters to the functions f2, f3 and f4. Consequently, 128 bits must be the length
of the parameters GKij, CHij, GKMTC, CHMTC and OMTC. This length allows an
implementer to reuse the current structure and functions in the EPS.

AUTD

We specify here the size of the authentication parameter AUTD. It contains a
MAC value which we specify as 64 bits. The reason for this is that the function
which computes the MAC in the classic EPS AKA also outputs 64 bits. The AUTD
parameter also consists of the data f5(GKMTC, NONCE) which we specify is 48
bits. The size of this parameter is based on the fact that the f5 function outputs 48
bits. This structure was chosen so that it resembles the parameter AUTN in EPS
AKA. For the purpose of this thesis we denote the parameter f5(GKMTC, NONCE)
by TEMP from now on.

RESD

Because RESD is the output of the function f2 and the output of this function as
specified in the MILENAGE algorithm set is 8 bytes, we specify that RESD is also
8 bytes in size.

Auxiliary parameters: TREE HEIGHT and NODE DEPTH

We introduce two auxiliary parameters which are related to the PATH parameter
and are needed for practical reasons.

The first is called TREE HEIGHT and gives the height of the inverted hash
trees. It is used as an indicator of how many bits in the PATH parameter that
should be used when giving the path in the inverted hash trees. The parameter is
needed because PATH must be communicated in full bytes even though the size
of the actual PATH does not have to be divisible by eight. We specify that the size
of TREE HEIGHT is one byte.

The second is called NODE DEPTH and gives the level on which the sub-root
nodes GKij and CHij are placed in the inverted hash trees. It is used in the MME
during Case B of the group-based AKA protocol. When the MME receives GID
and PATH from the MTC device, the NODE DEPTH is needed in order to correctly
interpret which bits in PATH signifies the path to take in the inverted hash trees
from the sub-root nodes GKij and CHij.

6.3 Messages
In this section we describe our implementation of the messages sent in the group-
based AKA. There are in total seven of them, but two of them, the last two sent

36 Our implementation

in Case A, are identical to the corresponding messages in EPS AKA. A design
principle that we follow when we design the group-based AKA messages is to
base them on the EPS AKA messages and only make changes to the messages that
are required by the changes that the new protocol introduces. Therefore, every
message in the group-based AKA has a corresponding message in EPS AKA. The
EPS AKA messages can be viewed in Appendix A.

We distinguish between three different ways in which we can base a message
on an existing message. The first is that we use the existing definition of the
message, including which information elements (IEs) are used, in which order the
IEs must be coded, etc. The changes in this case are limited to the meaning that
the parameters have and possibly a restriction of the size of some IE. The second is
that we modify the definition of the message without changing the name and the
type identifier of the message. The third is that we change the type identifier of
the message and adds the word derivable to the end of the name of the message.
In this case there may, of course, also be other changes to the definition of the
message. The five new messages in the group-based AKA protocol are as follows.

6.3.1 Attach Request

For the message called Attach Request in Chapter 4, we modify the EPS AKA
message that is also called Attach Request, which has the structure shown in
Table A.1 in Appendix A. The differences between the EPS AKA version and this
new version are firstly that a GID is sent instead of an IMSI, a GUTI, or an IMEI,
and secondly that the additional parameters PATH and NONCE are included in
the message. As mentioned in Section 2.3.1, this signalling is done through L3
protocols, so IEs are used in the description of the message. The composition of
the message can be seen in Table 6.1. The IEs called PATH IE and NONCE IE
are introduced by us. PATH IE contains the PATH and NONCE IE contains the
NONCE.

The original Attach Request message includes an EPS mobile identity IE [22],
which is an IE that contains the UE identity parameter: either the IMSI, the GUTI
or the IMEI. In order to identify which one of these three types of identity that
is used, an EPS mobile identity type value is included in this IE. We choose to
extend the EPS mobile identity IE to also support the GID. The new type value is
specified as follows.

Bits 3 2 1
1 0 1 GID

Note that the presence requirements of the PATH IE and the NONCE IE are
set to conditional (C) in Table 6.1. The condition for both of them is whether the
GID parameter is present or not in the EPS mobility identity IE. The idea is that if
the type is GID in this IE, then this indicates that the PATH IE and the NONCE IE
are also present in the message. It also indicates to the MME that the group-based
AKA should be run rather than EPS AKA.

Our implementation 37

Table 6.1: Modified ATTACH REQUEST message content

IEI Information Element Type/Reference [22] Presence Format Length

Protocol discriminator Protocol discriminator M V 1/2
9.2

Security header type Security header type M V 1/2
9.3.1

Attach request message identity Message type M V 1
9.8

EPS attach type EPS attach type M V 1/2
9.9.3.11

NAS key set identifier NAS key set identifier M V 1/2
9.9.3.21

EPS mobile identity EPS mobile identity M LV 5-12
9.9.3.12

UE network capability UE network capability M LV 3-14
9.9.3.34

ESM message container ESM message container M LV-E 5-n
9.9.3.15

19 Old P-TMSI signature P-TMSI signature O TV 4
10.5.5.8

50 Additional GUTI EPS mobile identity O TLV 13
9.9.3.12

52 Last visited registe TAI Tracking area identity O TV 6
9.9.3.32

5C DRX parameter DRX parameter O TV 3
9.9.3.8

31 MS network capability MS network capability O TLV 4-10
9.9.3.20

13 Old location area identification Location area identification O TV 6
9.9.2.2

9- TMSI status TMSI status O TV 1
9.9.3.31

11 Mobile station classmark 2 Mobile station classmark 2 O TLV 5
9.9.2.4

20 Mobile station classmark 3 Mobile station classmark 3 O TLV 2-34
9.9.2.5

40 Supported Codecs Supported Codec List O TLV 5-n
9.9.2.10

F- Additional update type Additional update type O TV 1
9.9.3.0B

5D Voice domain preference and UE’s
usage setting

Voice domain preference and UE’s
usage setting

O TLV 3

9.9.3.44
D- Device properties Device properties O TV 1

9.9.2.0A
E- Old GUTI type GUTI type O TV 1

9.9.3.45
C- MS network feature support MS network feature support O TV 1

9.9.3.20A
– PATH IE PATH IE C LV 2-33

– NONCE IE NONCE IE C V 16

38 Our implementation

6.3.2 Authentication Information Request
For the message called Authentication Data Request in Chapter 4, we modify the
EPS AKA message Authentication Information Request, which has the structure
shown in Table A.4 in Appendix A. The changes between the old and the new
versions are firstly that a GID is sent instead of an IMSI and secondly that the
parameter PATH is included. As mentioned in Section 2.3.2, this signalling is done
with Diameter, so AVPs are used in the description of the message. The message
structure is as follows.

<Authentication-Information-Request> ::= <Diameter Header: 318, REQ, PXY, 16777251 >
<Session-Id >
[Vendor-Specific-Application-Id]
{ Auth-Session-State }
{ Origin-Host }
{ Origin-Realm }
[Destination-Host]
{ Destination-Realm }
{ User-Name }
*[Supported-Features]
[Requested-EUTRAN-Authentication-Info]
[Requested-UTRAN-GERAN-Authentication-Info]
{ Visited-PLMN-Id }
*[AVP]
*[Proxy-Info]
*[Route-Record]

The message includes a User-Name AVP, which is used for sending user-names
in Diameter. In EPS AKA the User-Name AVP contains an IMSI, but for the new
protocol we specify that the GID parameter can also be included in this AVP.

The message also includes an AVP named Requested-EUTRAN-Authentication-
Info which shall, according to [23], contain information related to authentication
requests for Evolved Universal Terrestrial Radio Access Network (E-UTRAN).
Since the parameter PATH is related to authentication procedures for E-UTRAN
services we introduce the PATH as an optional AVP to the Requested-EUTRAN-
Authentication-Info AVP. The modified Requested-EUTRAN-Authentication-Info
AVP is as follows.

Requested- EUTRAN-Authentication-Info ::= <AVP header: 1408 10415>
[Number-Of-Requested-Vectors]
[Immediate-Response-Preferred]
[Re-synchronization-Info]
[PATH AVP]
*[AVP]

The presence of the new PATH AVP indicates that the new protocol is run and
consequently that the User-Name AVP holds a GID and not an IMSI.

According to the new protocol, SNID should also be sent in this message, but
this must also be sent in EPS AKA, so the inclusion of SNID does not necessitate
any additional change of the message.

Our implementation 39

6.3.3 Authentication Information Answer
For the message called Authentication Data Answer in Chapter 4, we modify the
EPS AKA message Authentication Information Answer, which can be seen in Table
A.5 in Appendix A. The difference between the two is that the parameters CHij,
GKij, GID, PATH, IMSI, TREE HEIGHT and NODE DEPTH are also included in the
modified message. As mentioned in Section 2.3.2, this signalling is done through
Diameter, so AVPs are used in the description of the message. The message
structure is as follows.

<Authentication-Information-Answer> ::= <Diameter Header: 318, PXY, 16777251>
<Session-Id >
[Vendor-Specific-Application-Id]
[Result-Code]
[Experimental-Result]
[Error-Diagnostic]
{ Auth-Session-State }
{ Origin-Host }
{ Origin-Realm }
* [Supported-Features]
[Authentication-Info]
*[AVP]
*[Failed-AVP]
*[Proxy-Info]
*[Route-Record]

The message includes an AVP named Authentication-Info which in turn in-
cludes authentication vector AVPs. One such vector is the E-UTRAN-Vector AVP
which consists of the EPS AKA authentication parameters. The AVP is as follows.

Authentication-Info ::= <AVP header: 1413 10415>
*[E-UTRAN-Vector]
*[UTRAN-Vector]
*[GERAN-Vector]
*[AVP]

We choose to construct a new such vector including the aforementioned group-
based AKA parameters. This new vector is then appended to the Authentication-
Info AVP. The new Group-authentication-vector is as follows.

Group-auth-vector ::= <AVP header: >
[Item-Number]
{ NODE DEPTH }
{ TREE HEIGHT }
{ GKij }
{ CHij }
2{User-Name}
{PATH}
*[AVP]

40 Our implementation

Table 6.2: AUTHENTICATION REQUEST DERIVABLE message
content

IEI Information Element Type/Reference Presence Format Length

Protocol discriminator Protocol discriminator M V 1/2
9.2

Security header type Security header type M V 1/2
9.3.1

Authentication request derivable Message type M V 1
message type 9.8
NAS key set identifier ASME NAS key set identifier M V 1/2

9.9.3.21
Spare half octet Spare half octet M V 1/2

9.9.2.9
CHMTC IE CHMTC IE M V 16

AUTD IE AUTD IE M LV 15

6.3.4 Authentication Request Derivable
For the message called Authentication Request Derivable in Chapter 4, we in-
troduce a new message, also called Authentication Request Derivable. We base
this message on the corresponding message in EPS AKA, Authentication Request,
which can be seen in Table A.2 in Appendix A. Authentication Request Derivable
differs from Authentication Request in that it includes the parameters CHMTC
and AUTD instead of the parameters RAND and AUTN. For these parameters
we introduce the IEs CHMTC IE and AUTD IE. AUTD is coded as the concatena-
tion of TEMP and MAC. Table 6.2 shows the structure of Authentication Request
Derivable.

When defining a new message, a new type identifier is required. This is done
by specifying a new EPS mobility management message type. The new message
type identifier is specified as follows.

Bits 8 7 6 5 4 3 2 1
0 1 0 1 0 1 1 1 Authentication Request Derivable

6.3.5 Authentication Response
For the message called Authentication Response in Chapter 4, we use the message
in EPS AKA also called Authentication Response. We do not change its definition,
which can be seen in Table A.3 in Appendix A. The difference in the interpretation
of the parameters when the message is sent in EPS AKA and when it is sent in the
group-based AKA is that in the latter case the authentication response parameter
IE contains RESD rather than RES. As can be seen in Table A.3, the length of the
authentication response parameter IE is defined to be in the range 5–17 bytes.

Our implementation 41

Note that in the group-based AKA, the IE is always 9 bytes, since we specified in
Section 6.2 that RESD consists of eight bytes and the format of the IE is LV.

6.3.6 Notes on AVP parameters
The AVP parameters introduced in the modified authentication information re-
quest and authentication information answer messages must also be specified by
data types used in the Diameter protocol. We specify these as follows.

Attribute name Defined in Value type
PATH AVP Section 6.2 OctetString
GKij AVP Section 6.2 OctetString
CHij AVP Section 6.2 OctetString
TREE HEIGHT AVP Section 6.2 Unsigned32
NODE DEPTH AVP Section 6.2 Unsigned32

6.3.7 Note on identifier values
Identifier values are used in the 3GPP specifications for each information element
(IE) and each attribute-value pair (AVP) in order to differentiate them in the Non-
Access Stratum (NAS) protocol stack and in the S6a interface, respectively. For
the purpose of this thesis we specify that any new IEs or AVPs introduced in this
section have values that are currently not in use by any other IE or AVP.

6.4 Functions and commands
We introduce new functions and commands that extend the functionality currently
in use in EPS AKA. This can be done since the new protocol reuses many of the
current security functions.

6.4.1 Assumptions
As stated in Section 6.1, we use the MILENAGE algorithm set for the functions
f2–f5. However, since the subscriber operator does not necessarily control the
MME, an Operator Variant Algorithm Configuration Field (OP) cannot be used.
The OP and K is used to derive the value OPc in EPS AKA, and in the specification
of MILENAGE [2] this value is an input to the algorithms f2–f5. To get around
this, we specify that OPC is defined as all zeros.

6.4.2 Hash function choices
The group-based AKA protocol uses three cryptographic hash algorithms named
h0, h1 and hash as stated in Section 4.2. We choose to use the SHA-256 hash
algorithm for h0 and h1 since SHA-256 outputs a reasonable amount of bits for
the purpose of these functions. Additionally, during the writing of this thesis,

42 Our implementation

SHA-256 is generally considered secure. We choose to reuse the current USIM f3
function for hash for reasons mentioned below.

h0 and h1

We specify that SHA-256 shall be used for the h0 and h1 hash functions. A h0 hash,
the left hash, will be done by appending a zero byte to the input CHij or GKij before
using SHA-256. The h1 hash, the right hash, will be performed by appending a
byte of all ones to the input CHij or GKij before using SHA-256. The result of the
hash will be truncated to 128 bits and this value represents the children node of
CHij and GKij. See pseudo-code 2 for a more detailed description.

USIM: hash

According to clause 6.2 of [25], the cryptographic functions supported by the USIM
do not include any hash function. But for the new protocol to work as specified
in Chapter 4, it is required that the USIM be able to compute a hash value. Since
hash takes the long term key K as input and it is not recommended that K leave
the USIM, hash should not be performed outside of the USIM. A solution to this
issue is to instead re-use the current USIM functions f3 or f4 for hash.

The f3 and f4 functions, as described in Section 2.2.2, are used to produce the
CK and IK parameters. The input parameters to these functions are K and the
128-bit value RAND and the output is a 128-bit value. This is almost the same
signature as hash needs for our implementation. Furthermore, the requirement
of f3 and f4 as stated in clause 5.1.6.7 of [20] is that it shall be computationally
infeasible to derive K from knowledge of RAND and the output. It is reasonable
to assume that these functions would also provide the same for the parameters
K, CHMTC, and OMTC, which would protect K in case the parameters OMTC and
CHMTC are compromised. Moreover, since we choose static sizes for the parameter
CHMTC and K is set at 128 bits, the hash will always use the same input size and
therefore lose the compression property of hash functions. Hence, reusing f3 or f4
for hash is acceptable and therefore we choose to use f3 for the hash function.

6.4.3 Reuse of f2–f5
The sizes chosen for the new parameters in Section 6.2 fit into functions f2–f5 just
as the current EPS AKA parameters seen in Section 2.2.3. This means that we can
produce the new parameters just as specified in Section 4.2. The way we reuse the
functions f2–f5 is specified as follows.

Param. Produced by
XRESD f2(GKMTC, CHMTC)
CKD f3(GKMTC, CHMTC)
IKD f4(GKMTC, CHMTC)
TEMP f5(GKMTC, NONCE)
KasmeD kdf(TEMP, CKD, IKD, SNID)

Our implementation 43

6.4.4 USIM and MME: f1 derivative
The new protocol requires a parameter called MACGKMTC to be produced in the
USIM and the MME, as seen in Section 4.2. Because MACGKMTC is generated by a
larger input than the function that computes the MAC in EPS AKA, f1, the function
f1 cannot be reused. Therefore, we introduce a new MAC function which we call
f1 derivative. This function has the following signature.

Input: (GKMTC, NONCE, CHMTC, GID, SNID, PATH,
nbr of bytes in GID, nbr of bytes in PATH)

Output: (MACGKMTC)

The function is a cipher block chaining (CBC) MAC which is based on the
CBC MAC function f1 used in the OAI platform. The major difference between
f1 derivative and f1 is that f1 derivative has a larger input which does not have a
fixed size. As already mentioned an OPC is also not used in our implementation
and therefore f1 derivative does not use it when f1 does.

Since f1 derivative has a variable size input, some new methods are introduced
in order to provide the same security aspects as f1. These methods are based on
the recommendations of [39] which state that variable size inputs to a CBC MAC
can be securely authenticated by pre-pending the size of the input message in
the first block. Moreover, since each block must be 16 bytes there is a need for
padding during the situation when the input size in bytes is not divisible by 16.
When padding is done it is recommended by [39] that the padding bits should be
started by a 1 and then followed by 0s. We implement the f1 derivative function
in accordance with these recommendations and the code for f1 derivative can be
found in Appendix C.2.

6.4.5 USIM: GROUP-BASED AUTHENTICATE
In order for the USIM application to authenticate the serving network and produce
RESD we introduce a new USIM command named GROUP-BASED AUTHENTI-
CATE. This new command is based on the AUTHENTICATE command described
in Section 2.3.3. This command should be used after Authentication Request
Derivable has been received by the MTC device. The command must be standard-
ized for interoperability between ME and USIM applications, since these could be
represented by different manufacturers. It has the following signature.

Input: (CHMTC, SNID, MACGKMTC , NONCE)
Output: (RESD, CK, IK)

The function first computes GKMTC using the CHMTC and the stored OMTC value as
described in Section 4.2. The GKMTC is now used with the CHMTC, NONCE, GID,
SNID together with the PATH variable in order to compute XMACGKMTC using the
f1 derivative function. The next step will be to verify the received MACGKMTC by
comparing it with the XMAC. If successful, the function continues by producing
RESD, CK and IK using the functions f2, f3 and f4. The output from this command

44 Our implementation

together with the SNID can now be used with the KDF function in order to produce
KasmeD. Pseudocode for the command can be seen in pseudo-code 1.

Pseudo-code 1: USIM: GROUP-BASED AUTHENTICATE

input : CHMTC, SNID, MACGKMTC , NONCE
output : RESD, CK, IK

GKMTC← f3(K, CHMTC) XOR OMTC;

XMACGKMTC
← f1d(GKMTC, NONCE, CHMTC, GID, SNID, PATH) ;

if XMACGKMTC
do not equals MACGKMTC

then

Abandon Function;
end

RESD← f2(GKMTC, CHMTC);

CK← f3(GKMTC, CHMTC);

IK← f4(GKMTC, CHMTC);

6.4.6 MME and HSS: Traverse Tree
In order for the MME and HSS to find a node in the inverted hash trees we
introduce a general purpose function named Traverse Tree.

Input: (PATH, TREE HEIGHT, Noderoot)
Output: (Nodepath)

The function reads TREE HEIGHT number of bits from PATH and for each bit
SHA-256 is performed. Depending on the bit that is read from PATH either h0 or
h1 is performed, as defined in Section 6.4.2. If the bit is 0 then a byte of zeros is
appended to the input node value, otherwise a byte of ones is appended to the
input node value. This function must be standardized since it must be performed
the same way by MME and HSS of different operators. Pseudo-code for this
function is provided in pseudo-code 2.

6.4.7 ME: Generate NONCE
We are not aware of any pseudo-random generator function defined for the USIM
application; therefore, we introduce such a function to the ME instead. It is
required by every MTC device that want to be a part of the group-based AKA.

Our implementation 45

Pseudo-code 2: MME and HSS: Traverse Tree

Function for computing the node Nodepath at position PATH in an inverted
hash tree
input : Noderoot, PATH, TREE HEIGHT
output : Nodepath

Digest← Noderoot;

for i← 0 to TREE HEIGHT do
current Bit← bit i of PATH;
if current Bit equals 0 then

Append byte of zeros to Digest;

else
Append byte of ones to Digest;

end
Digest← SHA256(Digest);
Digest← truncate to 128 bits(Digest);

end
Nodepath← Digest;

46 Our implementation

6.4.8 MME: Get GKMTC and CHMTC

The MME must be able to compute the CHMTC and GKMTC parameters by using
the information received from Authentication Information Request and Attach
Request; therefore, we introduce a function with the following signature.

Input: (PATH, TREE HEIGHT, NODE DEPTH, CHij, GKij)
Output: (CHMTC, GKMTC)

The function can be realized with the following algorithm. First the corrected path
is computed. The corrected path is then used to traverse the inverted hash trees
with roots CHij and GKij using the function in Section 6.4.6. Finally, the function
returns CHMTC and GKMTC.

Pseudo-code 3: MME: Get GKMTC and CHMTC

Pseudo-code for computing the leaf values GKMTC and CHMTC

input : PATH, TREE HEIGHT, NODE DEPTH, GKij, CHij
output : GKMTC, CHMTC

Corr. Path Pos← (TREE HEIGHT − NODE DEPTH);
Corr. PATH← bit number Corr. Path Pos to TREE HEIGHT in PATH

GKMTC← Traverse Tree(Corr. PATH, NODE DEPTH, GKij);
CHMTC← Traverse Tree(Corr. PATH, NODE DEPTH, CHij);

6.4.9 HSS: Generate group-authentication parameters

When the HSS receives the Authentication Information Request, it must produce
CHij, GKij, IMSI, TREE HEIGHT and NODE DEPTH in order to reply. We intro-
duce the following function to the HSS in order to achieve this.

Input: (GID, PATH)
Output (CHij, GKij, IMSI, TREE HEIGHT, NODE DEPTH)

The function first identifies the IMSI coupled to the GID and PATH. The function
also identifies the inverted hash trees tied to the GID and retrieves the TREE
HEIGHT coupled to them. Depending on policy choices made by the operator of
the HSS, the function chooses a certain NODE DEPTH and traverses the inverted
hash trees from the root to the these sub-tree roots using the function defined
in Section 6.4.6. The function then returns CHij, GKij, IMSI, TREE HEIGHT and
NODE DEPTH.

Our implementation 47

Pseudo-code 4: HSS: Generate group-authentication parameters

Pseudo-code for HSS retrieval of GKij and CHij and others

input :GID, PATH
output :GKij, CHij, IMSI, TREE HEIGHT, NODE DEPTH

IMSI← Database look-up(GID, PATH);
Policy← Database look-up(GID, PATH);
NODE DEPTH← Database look-up(GID, PATH, Policy);

GKroot← Database look-up(GID);
CHroot← Database look-up(GID);
TREE HEIGHT← Database look-up(GID);

Corr. PATH← bit number 0 to NODE DEPTH in PATH
GKij← Traverse Tree(Corr. PATH, NODE DEPTH, GKroot);
CHij← Traverse Tree(Corr. PATH, NODE DEPTH, CHroot);

6.5 Storage of new structures

6.5.1 MME and HHS

How to specifically store the new structures and parameters in the MME and HSS
is out of scope for this thesis. However, since these entities can be assumed to
have high memory capacity we can assume the storage itself is not an issue and
can therefore be left up to the implementer. We have introduced the following
parameters to be supported by the MME: RESD, GID, PATH, NONCE, TREE
HEIGHT, NODE DEPTH, GKij and CHij. Futhermore, we have introduced the
following parameters to be supported by the HSS: GID, PATH, NONCE, GKij,
CHij, NODE DEPTH and TREE HEIGHT.

6.5.2 USIM

How to specifically store the new structures and parameters in the USIM is out of
scope for this thesis. However, we think that certain elementary files in the UICC
could be reused for storage of the new parameters. In particular, the elementary
files GID1 and GID2 are specified to be used "to identify a group of USIMs for a
particular application" as stated in clause 4.2.10 in [25]. These could be used to
store the parameters PATH and GID. In this thesis, we introduce the following
parameters to be supported by the USIM and the UICC: GID, PATH, NONCE,
RESD, CHMTC, GKMTC and OMTC.

48 Our implementation

6.6 OAI reference implementation
In this section we showcase how our implementation of the aforementioned
parameters, functions and messages perform in OAI by presenting some signalling
examples. Moreover, the configuration of our OAI setup and the scenarios which
were considered are also presented. The traverse-tree function, f1-derivative
function and group-authenticate function reference implementation can be found
in Appendix C. A patch file for our reference implementation in OAI can be found
at https://bitbucket.org/Thremore/group-aka.

6.6.1 Configuration
OAI was run on three virtual machines (VMs) inside a single host computer. The
host was running Linux and had an Intel Core i7 processor, 4GB RAM and used
the operating system UBUNTU LTS 14.04. An overview of the setup used in this
thesis can be seen in Figure 6.2.

Figure 6.2: Network set-up for OAI.

The communication between the MTC device, the MME, the HSS and the
eNodeB are performed through Ethernet interfaces. The channel between VM1
and VM2 represent the S1-MME interface in EPS, which supports NAS signalling.
The communication between the MTC device and the eNodeB is done through
VM1 and represents the S1-U interface. VM3 was running the HSS which uses a
MySQL server for storage of subscriber data.

We retrieved the signalling information by using the packet analyser tool
Wireshark. In accordance with the scope of the thesis, the only messages of the
protocols which are analysed are between the Attach Request message and the
point when KASME has been generated in both the MTC device and the MME.

6.6.2 Scenarios
We performed tests of the prototype implementation based on three different
scenarios. In the first scenario an MTC device authenticates and derives keys with

https://bitbucket.org/Thremore/group-aka

Our implementation 49

a serving network MME and an HSS by performing the classic EPS AKA.
In the second scenario an MTC device authenticates and derives keys with

a serving network MME and an HSS by performing Case A of the new protocol.
The MTC device is part a group and has been given GID and PATH parameters to
which the HSS holds the corresponding authentication information.

In the third scenario an MTC device authenticates and derives keys with a
serving network MME and an HSS by performing Case B of the new protocol.
The MTC device is part of the same group as in the Case A scenario. The MME
has been pre-loaded with the required information about the group that was
established during the scenario running Case A.

6.6.3 Signalling example standard EPS AKA
Performing standard EPS AKA in OAI produces the signalling depicted in Figure
6.3, as captured by Wireshark. Messages number 2 to 11 and 13 and 14 in the
figure represent MME and HSS Diameter signalling and MySQL queries from the
HSS. Messages 1, 12 and 15 represent the NAS signalling performed between UE
and MME.

6.6.4 Signalling example group-based AKA Case A
Performing Case A of the new protocol implementation in OAI produces the
signalling depicted in Figure 6.4, as captured by Wireshark. Messages 2 and 11
represent the modified Authentication Information Request and Authentication
Information Answer messages between MME and HSS.

Figure 6.3: Wireshark output when running standard EPS AKA.

6.6.5 Signalling example group-based AKA Case B
Performing Case B of the new protocol implementation in OAI produces the
signalling depicted in Figure 6.4, as captured by Wireshark. Message number 1 is
the same modified Attach Request message as in Case A. The second message is
the new message introduced to EPS, namely the Authentication Request Derivable.
Note that Diameter signalling is not performed in this scenario.

50 Our implementation

Figure 6.4: Wireshark output when running Case A.

Figure 6.5: Wireshark output when running Case B.

Chapter7
Performance analysis

In this chapter we analyse the performance of the new group-based Authentication
and Key Agreement (AKA) protocol. The analysis is based on our prototype
implementation and OpenAirInterface (OAI) configuration, which we presented
in the previous chapter. The analysis is divided into two different parts: bandwidth
consumption and latency.

7.1 Bandwidth consumption
In this section the bandwidth consumption in the Non-Access Stratum (NAS) and
in the S6a interface for the group-based AKA is analysed.

7.1.1 Assumptions and analysis approach
Only the AKA parameters discussed in the last chapter are considered in the anal-
ysis. Since some parameters have variable sizes, for the analysis we assume some
reasonable example sizes, which are given and motivated later in this subsection.
The same example sizes are assumed throughout in the bandwidth consumption
analysis. Two steps are taken for the analysis. The first is to separate the three
cases EPS AKA, Case A and Case B and count their bandwidth consumption, for
NAS communication on the one hand and for S6a communication on the other.
The next step is to use the results of the first step to calculate (for NAS and S6a
respectively) the total bandwidth consumption (for EPS AKA on the one hand
and the group-based AKA on the other) when some different numbers of MTC
devices want to connect.

Not only the actual parameters are counted in the analysis; we also include
the information element headers and the attribute-value pair headers.

Two further assumptions are made in the second step for the group-based
AKA case: 1) All the devices belong to the same group. 2) The devices are located
in the tree such that only one Case A AKA have to be performed.

For the AKA parameters that is used in EPS AKA we assume that the sizes
implied by the MILENAGE algorithm set is used.

We set the GID to 15 digits since this would allow, if the MSIN is 9 digits, to
have 1 000 000 groups for the operator. It seems reasonable that an operator would

51

52 Performance analysis

Table 7.1: Sizes of AKA parameter IEs for EPS AKA.

Parameter Information Ele-
ment

Size range Example size

IMSI EPS mobile iden-
tity

5–9 [14] 9

RAND Authentication pa-
rameter RAND

16 [22] 16

AUTN Authentication pa-
rameter AUTN

17 [22] 17

Authentication
response parameter

Authentication re-
sponse parameter

9 [2] 9

like to use that many digits for the MSIN, since this is the usual amount of digits
used for IMSI MSINs, if the number of digits used for the MNC is three.

For PATH and its auxiliary parameters TREE HEIGHT and NODE DEPTH
we cannot find example sizes that are obviously the best ones. Nevertheless, we
have to decide sizes for the values. We let TREE HEIGHT be a function of the
number of MTC devices according to the following rule. TREE HEIGHT equals 2
multiplied with the ceiling of the two logarithm of the number of MTC devices.
We set the size of PATH to be the smallest number that is at least as large as TREE
HEIGHT and at the same time divisible by eight. We let NODE DEPTH have the
size of TREE HEIGHT divided by two. One thing can be said in defence of our
assumptions: TREE HEIGHT and NODE DEPTH are proportional to the logarithm
of the number of MTC devices.

We let the IMSI consist of 15 digits since 15 is the typical number of digits
used.

7.1.2 Non-Access Stratum (NAS)
In the calculation of the first step of the NAS bandwidth consumption, we include
bytes used for giving the types and sizes of the Information Elements (IEs) to
the degree that they are specified to be included in the corresponding messages.
Tables 7.1, 7.2 and 7.3 show the sizes of the IEs for EPS AKA, Case A and Case B,
respectively.

The result of the second step is shown in Table 7.4.

7.1.3 S6a interface bandwidth consumption
We derive the bandwidth consumption comparison in the S6a interface by counting
the bytes of the sent AKA/group-AKA parameters in the authentication infor-
mation request (AIR) message and the authentication information answer (AIA)
message. The AIA and AIR messages are based on the Diameter protocol, which
means that each parameter is encapsulated in an AVP as described in Section 2.3.2.
Every AVP value must be aligned with 32 bits and also include a header that varies

Performance analysis 53

Table 7.2: Sizes of AKA parameter IEs for the group-based AKA,
Case A. The values are given in bytes.

Parameter Information Ele-
ment

Size range Example size

GID EPS mobile identity 5–9 9
PATH PATH IE 2–33 Depends
NONCE NONCE IE 16 16
RAND Authentication pa-

rameter RAND
16 [22] 16

AUTN Authentication pa-
rameter AUTN

17 [22] 17

Authentication re-
sponse parameter

Authentication
response parameter

9 [2] 9

Table 7.3: Sizes of AKA parameter IEs for the group-based AKA,
Case B. The values are given in bytes.

Parameter Information Ele-
ment

Size range Example size

GID EPS mobile identity 5–9 9
PATH PATH IE 2–33 Depends
NONCE NONCE IE 16 16
CHMTC CHMTC IE 16 16
AUTD AUTD IE 15 15
RESD Authentication

response parameter
9 9

Table 7.4: NAS bandwidth consumptions for EPS AKA and the
group-based AKA. The values are given in bytes.

of MTC devices PATH IE size EPS AKA Group-based AKA
1 2 51 69

100 3 5,100 6,802
1,000 4 51,000 69,002

10,000 5 510,000 700,002
100,000 6 5,100,000 7,100,002

1,000,000 6 51,000,000 71,000,002

54 Performance analysis

Table 7.5: Parameter sizes in Diameter for EPS AKA

Parameter AVP type Size (bytes)
IMSI User-Name 16
RAND OctetString 28
XRES OctetString 20
AUTN OctetString 28
KASME OctetString 44
SNid OctetString 16

Table 7.6: Parameter sizes in Diameter for Case A

Parameter AVP type Size (bytes)
IMSI/GID User-Name 16
RAND OctetString 28
XRES OctetString 20
AUTN OctetString 28
KASME OctetString 44
PATH OctetString 16 to 20
GK OctetString 28
CH OctetString 28
TREE HEIGHT Unsigned32 16
NODE DEPTH Unsigned32 16
SNID OctetString 16

between 8 and 12 bytes depending on an extra header structure that sometimes
occur [24]. These rules give us the EPS parameter sizes in S6a shown in Table 7.5
and the group-based AKA parameter sizes in S6a shown in Table 7.6.

We extrapolate this data in order to construct Table 7.7 which presents the
bandwidth consumption for when 1 up to 1,000,000 MTC devices attach in the
S6a interface for EPS AKA and group-based AKA. Note that the PATH parameter
grows in size with larger groups of MTC devices, so for 100,000 devices and over
it is 20 bytes in size rather than 16 bytes.

7.1.4 Conclusion

In this section we present three graphs based on the bandwidth consumption
functions 7.1, 7.2, 7.3 and 7.4. The functions are derived from the aforementioned
parameter sizes and the EPS AKA and group-based AKA protocols. In these
functions we denote by n the number of MTC devices in a group. Note that the
size of the PATH parameter varies according to the size of the MTC group. It must
also be transmitted on full bytes in NAS and on 32-bits in the S6a interface, which
gives the expressions for PATHsize seen in the functions.

Performance analysis 55

Table 7.7: Bandwidth consumption for EPS AKA and the group-
based AKA on the S6a interface.

of MTC devices EPS AKA (bytes) Group-based AKA (bytes)
1 152 304
100 15,200 304
1,000 152,000 304
10,000 1,520,000 304
100,000 15,200,000 312
1,000,000 152,000,000 312

EPS AKA NAS bandwidth consumption:
Bandwidth = n ∗ (IMSI + RAND + AUTN + RES) (7.1)

Group-based AKA NAS bandwidth consumption:
Bandwidth = n ∗ (gid + PATHsize + NONCE)+

(n− 1) ∗ (CH + AUTD + RESD)+

RAND + AUTN + RES
Where

PATHsize = (dlog2 ne ∗ 2− 1)\8 + 2
(7.2)

EPS AKA S6a interface bandwidth consumption:
Bandwidth = n ∗ (IMSI + RAND + XRES + AUTN + KASME + SNID)

(7.3)

Group-based AKA S6a interface bandwidth consumption:
Bandwidth = IMSI + 2 ∗ GID + RAND+

XRES + AUTN + KASME + GK + CH+

TREE HEIGHT + NODE DEPTH + SNID + PATHsize

56 Performance analysis

Where

PATHsize = 2 ∗ (min(PATH) + (dlog2 ne ∗ 2− 1)\32) ∗ 4)
(7.4)

A graph of the comparison of NAS bandwidth consumption of EPS AKA
and the group-based AKA can be seen in Figure 7.3. It illustrates a steady
increase of NAS bandwidth usage when using the group-based AKA in-
stead of EPS AKA. Figure 7.2 illustrates the EPS AKA and group-based
AKA bandwidth consumption on the S6a interface. It shows that by using
the group-based AKA instead of classic EPS AKA a significant amount of
bytes can be saved as the MTC group size grows larger. In fact, already
when more than two devices are in the same group, bandwidth is decreased
on the S6a interface when using the group-based AKA instead of EPS AKA.

In Figure 7.3 it is illustrated how the increase of the NAS bandwidth
fares against the decrease of S6a interface bandwidth when using group-
based AKA instead of classic EPS AKA. In fact, already at a group size of
three MTC devices, less bandwidth is used by the group-based AKA in
total compared to EPS AKA.

0 2 4 6 8 10

x 10
5

0

1

2

3

4

5

6

7

8
x 10

7

Number of devices

B
y
te

s

EPS AKA

The group−based AKA

Figure 7.1: Bandwidth consumption comparison between EPS
AKA and the group-based AKA in the NAS.

Performance analysis 57

0 2 4 6 8 10

x 10
5

0

2

4

6

8

10

12

14

16
x 10

7

Number of devices

B
y
te

s

EPS AKA

The group−based AKA

Figure 7.2: Bandwidth consumption comparison between EPS
AKA and group-based AKA in the S6a interface.

0 2 4 6 8 10

x 10
5

−2

0

2

4

6

8

10

12

14

16
x 10

7

Number of devices

B
y
te

s

NAS increase

S6a decrease

Figure 7.3: Increase in NAS bandwidth consumption and de-
crease in S6a bandwidth consumption when the group-based
AKA is used instead of EPS AKA.

58 Performance analysis

Table 7.8: Ping results

City, Country Distance from MME (km) RTT (ms)
Lund, Sweden 1 1
Valencia, Spain 2066 65
Cape Town, South Africa 9989 188

7.2 Latency

One of the goals of the new protocol is to reduce traffic and latency between
the MME and the HSS when a massive number of MTC devices attach to
the network. In order to advance this goal with some empirical data, here
follows a study of how the implementation of the new protocol in OAI
compared to the EPS AKA implementation with regards to latency. The
latency in this study is measured as the time in milliseconds from that the
UE sends the Attach Request message to when the MME sends the message
Security Mode Command after computing KASME/KasmeD.

The study is based on a number of assumptions regarding the round-
trip times (RTTs) between the MTC device, the MME and the HSS. First,
we consider an HSS which has a geographically varied distance from the
MME. The reason for this is to emulate the scenario of a UE attaching from
a different country than where its operator, and consequently the HSS
responsible for its subscriber data, is located. Moreover, since the channel
of interest is between the MME and HSS, we assume that the RTT between
the UE and the MME is static in this study.

In order to estimate the RTT between the MME and the other countries,
the Linux software utility Ping was used. By using WonderProxy servers
[40] which were stationed all around the world as a reference, a number of
RTTs between Lund and cities in other countries were measured. The result
of this testing can be seen in Table 7.8, where each RTT value is the average
of 100 trials. The estimated RTTs were used as a basis for emulating latency
in the S6a interface in OAI by using the Linux traffic control tool [41].

Figure 7.4 shows the result of the latency study. It depicts the average
latency when running the three different procedures 20 times in OAI for
each emulated HSS distance. The result showcases that when the HSS is
further away from the MME, the latency rises for EPS AKA and Case A of
the group-based AKA implementation. In fact, Case A of the new protocol
seems to produce more latency than EPS AKA. We suspect this is because
more data is communicated. However, the latency for running Case B of
the group-based AKA protocol does not rise significantly with the distance
of the HSS. The reason for this is, not surprisingly, that in Case B of the new

Performance analysis 59

Lund Valencia Cape Town
0

100

200

300

400

500

600

700

A
vg

.l
at

en
cy

(m
s)

EPS AKA
Case A
Case B

Figure 7.4: Latency comparison between procedures.

protocol the HSS is not contacted at all. From these results it follows that
when an MTC device is running Case B of the new protocol, the latency is
reduced.

60 Performance analysis

Chapter8
Discussion and conclusion

In this chapter we discuss topics which have affected the implementation
of the new group-based AKA protocol. In particular, we discuss certain
choices which have affected the implementation, the backwards compati-
bility of the new protocol and the general feasibility of the implementation.

8.1 GID and PATH parameters

The parameters PATH and GID were chosen to have variable sizes with
the parameter TREE HEIGHT masking out the significant bits in PATH.
Another solution that was discussed was using smaller and fixed sizes
for these parameters. For example reusing the current IMSI structure of
maximum size 15 digits to represent both the GID and the PATH. Then,
after using MCC and MNC for specifying the operator’s country and the
operator, at least 36 bits would be left for specifying the identity of the
group and giving the PATH. Simply splitting these 36 bits in half would
provide each operator with 262,144 groups with equally many members for
each group. Exactly the same amount of IMSIs as can be supported by each
operator today could then also be placed in some group. This solution was
discarded because we did not want to limit the amount of MTC devices
that much. However, using fixed GID and PATH sizes could be worth
considering since it might be easier to implement.

8.2 OpenAirInterface

The validity of the implementation of the new group-based AKA is limited
by the fact that OpenAirInterface (OAI) is not a perfect implementation of
EPS. In particular, it was found during the development of the group-based
protocol implementation that OAI was lacking in areas of the EPS AKA

61

62 Discussion and conclusion

protocol. This was because OAI was still in relatively early stages of devel-
opment. For example, the handling of the IMSI, MNC and MCC values
in the MME was done in a manner that did not follow 3GPP specifica-
tion. This has had the affect that the internal workings of the MME while
running the new group-based AKA had to be simplified regarding SNID
management. However, since this simplification did not directly affect the
EPS AKA signalling or authentication functions, it was ignored and should
not affect the credibility of the implementation with regards to security
functions and signalling accuracy.

8.3 Backwards compatibility

As shown by the implementation in this thesis, EPS networks can run the
new group-based AKA with regards to signalling. However, a compati-
bility issue could occur when a UE that supports the implementation of
the group-based AKA tries to attach to an MME which does not. Since
this attach includes a GID parameter, and the MME does not support this
parameter, the MME would reject any such connection. If, in the future,
each MME supports the group-based AKA protocol, this becomes a non-
issue. Another way to approach this issue is to always include the IMSI in
the attach message and have the GID as an optional additional informa-
tion element (IE). Since optional IEs do not need to be comprehended by
MMEs, an MME which can not run the group-based AKA would simply
ignore the GID, PATH and NONCE parameters in this solution. In fact,
using this approach, such an MME would perform an EPS AKA procedure
instead. However, we disregard this solution since it is too different from
the protocol specification.

8.4 f1 derivative and f2–f5

Another question concerning feasibility involves the new functions in the
USIM application and the MME. The new f1 derivative function that we
introduced, and the functions f2–f5, which all run a specific MILENAGE
version in this implementation, must be standardized in order for the
group-based AKA protocol to be run. This means that all MMEs and
all MTC devices that want to use the group-based AKA implementation
must support these functions. This raises the question of whether all
companies and organizations using the future 5G will be able to agree on
this standardization or if this issue can be solved in another way.

Discussion and conclusion 63

8.5 Conclusion

In this master’s thesis, state-of-the-art group-based authentication protocols
have been studied and reviewed. As a result of the review it was discovered
that many of the protocols were too impractical to be implemented in
modern telecommunications networks. Furthermore it was also found that
the proposed protocol by Choi et al. suffered from an extensive security
flaw. Based on these results another group-based AKA protocol was chosen
which was provided by SICS.

In the evaluation of the different EPS open-source platforms, several
were found to be lacking the necessary security elements and entities
needed to enable EPS AKA modification and experimentation. OAI and
ns-3 were both options of interest as they both offered an extensive im-
plementation of EPS and also supplied active communities. However, the
study found that ns-3 did not provide enough security functionality to
support group AKA development. We concluded that the OAI platform
was best suited for implementing group-based AKA protocols and that it
can provide a basis for future work in this field.

To achieve backwards compatibility and in order to provide a basis for
future implementations in 5G, we provide a specification suggestion for
the group-based authentication protocol. This specification reuses much
of the current EPS AKA functionality. However, novel functionality and
signalling has also been introduced, such as the new f1 derivative function
and the new Authentication Request Derivable message.

Based on this specification, this thesis provides a reference prototype
implementation of the group-based AKA protocol in OAI. Since OAI was
chosen and it provides a realistic core network platform, the implementa-
tion showcases how a realistic EPS platform could be modified in order
to run the new protocol. Therefore, the implementation also proves that
it is in fact plausible for current mobile telecommunications systems to be
modified in order to run the group-based AKA.

Lastly, a performance analysis was done which showed that the new
protocol reduced traffic in the S6a interface when a lot of devices attached
to the network. It was also found that the new protocol reduced latency
under certain conditions in comparison with classic EPS AKA.

8.6 Future work

In order to improve the proposed group-based AKA protocol implementa-
tion, the focus should firstly be on identifying the state-machine modifica-
tions needed in the EPS AKA protocol. With the current implementation,

64 Discussion and conclusion

no such considerations are taken. For example, what should happen during
the event of a MTC device disconnecting or when authentication failure
occurs is undefined – currently the protocol is simply terminated. Introduc-
ing these aspects to the protocol implementation could not only improve
the stability of the implementation but perhaps also reveal logical issues
with it. Moreover, broadening the protocol to other procedures of EPS, such
as hand-over procedures and re-authentication of MTC devices, should be
considered for the same reason.

Concerning performance tests, the next step to take would be to extend
the OAI platform for support of a massive amount of MTC devices. During
the writing of this thesis, OAI was under early development and offered
little support for multiple UE and eNodeB simulations per CN. Implement-
ing this kind of support would enable for a more realistic testing of network
latency and computational effort during the scenario of a large number of
MTC devices performing the EPS AKA. This could then be contrasted by
similar tests using the group-based AKA, which would provide relevant
research data on which to base further development.

The issue of storing the authentication parameters introduced by the
group-based AKA must also be addressed. How and where such param-
eters should be stored in the USIM or whether its file system must be
extended for this purpose requires further study.

In this thesis a UE and an MTC device have been assumed almost
interchangeable. However, an MTC device cannot be assumed to have
the same properties as a UE. Further study is therefore required regarding
ramifications of implementing this in possibly resource-constrained MTC
devices. An example study would be whether an MTC device can be
expected to provide a random generator for the NONCE parameter or not.

A significant question also remains concerning the provisioning of pa-
rameters OMTC, GID and PATH to the USIM application. How this could be
achieved and when is something that must be specified in future implemen-
tations of this protocol. Providing a definite solution to this would further
the plausibility of putting this protocol to use in 5G. There does exist certain
relevant studies which have been made by 3GPP regarding over-the-air
distribution of parameters to embedded UICC and trusted platforms inside
MTC [42]. How the new protocol and this kind of functionality can be
combined is also a question for future work.

Lastly, the implementation must also be updated since the group-based
AKA protocol has been developed with additional mechanisms during this
degree project.

References

[1] M. Svensson, N. Paladi, and R. Giustolisi, “5G: Towards secure ubiqui-
tous connectivity beyond 2020.” http://soda.swedishict.se/5933/,
2015. [Online; accessed 29 June 2016].

[2] 3GPP, “Universal Mobile Telecommunications System (UMTS); LTE;
3G Security; Specification of the MILENAGE algorithm set: An ex-
ample algorithm set for the 3GPP authentication and key generation
functions f1, f1*, f2, f3, f4, f5 and f5*; Document 2: Algorithm specifi-
cation,” TS 35.206 V10.0.0, April 2011.

[3] 5G Infrastructure Public Private Partnership, “5G vi-
sion.” https://5g-ppp.eu/wp-content/uploads/2015/02/
5G-Vision-Brochure-v1.pdf, 2015. [Online; accessed 29 June
2016].

[4] NGMN Alliance, “NGMN 5G white paper.” https://www.ngmn.org/
fileadmin/ngmn/content/downloads/Technical/2015/NGMN_5G_
White_Paper_V1_0.pdf, 2015. [Online; accessed 29 June 2016].

[5] Ericsson AB, “5G radio access.” https://www.ericsson.com/res/
docs/whitepapers/wp-5g.pdf, 2016. [Online; accessed 29 June 2016].

[6] Ericsson AB, “Handling of signaling storms in mobile
networks.” https://www.ericsson.com/res/docs/2015/
handling-of-signaling-storms-in-mobile-networks-august.
pdf, 2015. [Online; accessed 29 June 2016].

[7] I. Broustis, G. S. Sundaram, and H. Viswanathan, “Group authentica-
tion: A new paradigm for emerging applications,” Bell Labs Technical
Journal, vol. 17, no. 3, pp. 157–173, 2012.

65

http://soda.swedishict.se/5933/
https://5g-ppp.eu/wp-content/uploads/2015/02/5G-Vision-Brochure-v1.pdf
https://5g-ppp.eu/wp-content/uploads/2015/02/5G-Vision-Brochure-v1.pdf
https://www.ngmn.org/fileadmin/ngmn/content/downloads/Technical/2015/NGMN_5G_White_Paper_V1_0.pdf
https://www.ngmn.org/fileadmin/ngmn/content/downloads/Technical/2015/NGMN_5G_White_Paper_V1_0.pdf
https://www.ngmn.org/fileadmin/ngmn/content/downloads/Technical/2015/NGMN_5G_White_Paper_V1_0.pdf
https://www.ericsson.com/res/docs/whitepapers/wp-5g.pdf
https://www.ericsson.com/res/docs/whitepapers/wp-5g.pdf
https://www.ericsson.com/res/docs/2015/handling-of-signaling-storms-in-mobile-networks-august.pdf
https://www.ericsson.com/res/docs/2015/handling-of-signaling-storms-in-mobile-networks-august.pdf
https://www.ericsson.com/res/docs/2015/handling-of-signaling-storms-in-mobile-networks-august.pdf

66 References

[8] C. Lai, H. Li, R. Lu, and X. S. Shen, “SE-AKA: A secure and efficient
group authentication and key agreement protocol for LTE networks,”
Computer Networks, vol. 57, no. 17, pp. 3492–3510, 2013.

[9] J. Cao, M. Ma, and H. Li, “GBAAM: group-based access authentication
for MTC in LTE networks,” Security and Communication Networks, vol. 8,
no. 17, pp. 3282–3299, 2015.

[10] D. Choi, H.-K. Choi, and S.-Y. Lee, “A group-based security protocol
for machine-type communications in LTE-advanced,” Wireless Net-
works, vol. 21, no. 2, pp. 405–419, 2015.

[11] 3GPP, “LTE; General Packet Radio Service (GPRS) enhancements for
Evolved Universal Terrestrial Radio Access Network (E-UTRAN) ac-
cess,” TS 23.401 V10.13.0, January 2015.

[12] 3GPP, “Digital cellular telecommunications system (Phase 2+); Uni-
versal Mobile Telecommunications System (UMTS); LTE; Vocabulary
for 3GPP Specifications,” TR 21.905 V10.3.0, March 2011.

[13] 3GPP, “Digital cellular telecommunications system (Phase 2+); Univer-
sal Mobile Telecommunications System (UMTS); LTE; 3GPP System
Architecture Evolution (SAE); Security architecture,” TS 33.401 V10.5.0,
July 2013.

[14] 3GPP, “Digital cellular telecommunications system (Phase 2+); Uni-
versal Mobile Telecommunications System (UMTS); Numbering, ad-
dressing and identification,” TS 23.003 V10.10.0, October 2014.

[15] 3GPP, “3rd Generation Partnership Project; Technical Specifica-
tion Group Services and System Aspects; Service requirements for
Machine-Type Communications (MTC); Stage 1,” TS 22.368 V13.1.0,
March 2016.

[16] 3GPP, “LTE; Evolved Universal Terrestrial Radio Access (E-UTRA)
and Evolved Universal Terrestrial Radio Access Network (E-UTRAN);
Overall description; Stage 2,” TS 36.300 V10.12.0, February 2015.

[17] 3GPP, “Digital cellular telecommunications system (phase 2+); Uni-
versal Mobile Telecommunications System (UMTS); LTE; Network
architecture,” TS 33.102 V10.6.0, July 2014.

[18] D. Forsberg, G. Horn, W.-D. Moeller, and V. Niemi, LTE security. John
Wiley & Sons, 2012.

References 67

[19] R. Blom, K. Norrman, M. Näslund, S. Rommer, and B. Sahlin, “Security
in the Evolved Packet System,” Ericsson Review, no. 2, pp. 4–9, 2010.

[20] 3GPP, “Universal Mobile Telecommunications System (UMTS); LTE;
Cryptographic algorithm requirements,” TS 33.105 V10.0.0, April 2011.

[21] 3GPP, “Digital cellular telecommunications system (Phase 2+); Univer-
sal Mobile Telecommunications System (UMTS); LTE; Mobile radio
interface signalling layer 3; General Aspects,” TS 24.007 V10.0.0, March
2011.

[22] 3GPP, “Universal Mobile Telecommunications System (UMTS); LTE;
Non-Access-Stratum (NAS) protocol for Evolved Packet System (EPS);
Stage 3,” TS 24.301 V10.5.0, January 2012.

[23] 3GPP, “Universal Mobile Telecommunications System (UMTS);LTE;
Evolved Packet System (EPS); Mobility Management Entity (MME)
and Serving GPRS Support Node (SGSN) related interfaces based on
Diameter protocol,” TS 29.272 V10.9.0, July 2014.

[24] V. Fajardo, J. Arkko, J. Loughney, and G. Zorn, “Diameter base pro-
tocol.” RFC 6733 (Proposed Standard), Oct. 2012. Updated by RFC
7075.

[25] 3GPP, “Universal Mobile Telelecommunications System (UMTS); LTE;
Characteristics of the Universal Subscriber Identity Module (USIM)
application,” TS 31.102 V10.12.0, January 2016.

[26] B. Blanchet, “ProVerif: Cryptographic protocol verifier in the formal
model.” http://prosecco.gforge.inria.fr/personal/bblanche/
proverif/. [Online; accessed 14 August 2016].

[27] G. Piro, “LTE-Sim - the LTE simulator.” http://telematics.poliba.
it/index.php/en/lte-sim. [Online; accessed 29 June 2016].

[28] B. Wojtowicz, “OpenLTE.” https://sourceforge.net/projects/
openlte. [Online; accessed 29 June 2016].

[29] I. Gomez-Miguelez, A. Garcia-Saavedra, P. D. Sutton, P. Serrano,
C. Cano, and D. J. Leith, “srsLTE.” https://github.com/srsLTE/
srsLTE. [Online; accessed 29 June 2016].

[30] I. Gomez-Miguelez, A. Garcia-Saavedra, P. D. Sutton, P. Serrano,
C. Cano, and D. J. Leith, “srsUE.” https://github.com/srsLTE/
srsue. [Online; accessed 29 June 2016].

http://prosecco.gforge.inria.fr/personal/bblanche/proverif/
http://prosecco.gforge.inria.fr/personal/bblanche/proverif/
http://telematics.poliba.it/index.php/en/lte-sim
http://telematics.poliba.it/index.php/en/lte-sim
https://sourceforge.net/projects/openlte
https://sourceforge.net/projects/openlte
https://github.com/srsLTE/srsLTE
https://github.com/srsLTE/srsLTE
https://github.com/srsLTE/srsue
https://github.com/srsLTE/srsue

68 References

[31] “ns-3.” https://www.nsnam.org/. [Online; accessed 12 December
2016].

[32] “LTE Module.” https://www.nsnam.org/docs/models/html/lte.
html. [Online; accessed 12 December 2016].

[33] “4Gsim.” htts://github.com/4Gsim/4Gsim. [Online; accessed 12
December 2016].

[34] “SimuLTE-A modular system-level simulator for LTE/LTE-
A networks based on OMNeT++.” https://github.com/
inet-framework/simulte. [Online; accessed 29 June 2016].

[35] S. Srepfler, “Python Protocol Simulator.” https://sourceforge.net/
p/pyprotosim/wiki/Home. [Online; accessed 29 June 2016].

[36] “OpenAirInterface.” https://gitlab.eurecom.fr/oai. [Online; ac-
cessed 29 June 2016].

[37] N. Moeller, “Nettle - a low-level crypto library.” https://www.
lysator.liu.se/~nisse/nettle/, 2005. [Online; accessed 29 June
2016].

[38] “freeDiameter.” http://www.freediameter.net/. [Online; accessed
29 June 2016].

[39] M. Bellare, J. Kilian, and P. Rogaway, “The security of the cipher block
chaining message authentication code,” Journal of Computer and System
Sciences, vol. 61, no. 3, pp. 362–399, 2000.

[40] “Global proxy servers for geoip testing - WonderProxy.” https://
wonderproxy.com/. [Online; accessed 29 June 2016].

[41] “Traffic control.” ttp://tldp.org/HOWTO/Traffic-Control-HOWTO/
intro.html. [Online; accessed 29 June 2016].

[42] 3GPP, “3rd Generation Partnership Project; Technical Specification
Group Services and System Aspects; Feasibility study on the security
aspects of remote provisioning and change of subscription for Machine
to Machine (M2M) equipment,” TR 33.812 V9.2.0, June 2010.

https://www.nsnam.org/
https://www.nsnam.org/docs/models/html/lte.html
https://www.nsnam.org/docs/models/html/lte.html
htts://github.com/4Gsim/4Gsim
https://github.com/inet-framework/simulte
https://github.com/inet-framework/simulte
https://sourceforge.net/p/pyprotosim/wiki/Home
https://sourceforge.net/p/pyprotosim/wiki/Home
https://gitlab.eurecom.fr/oai
https://www.lysator.liu.se/~nisse/nettle/
https://www.lysator.liu.se/~nisse/nettle/
http://www.freediameter.net/
https://wonderproxy.com/
https://wonderproxy.com/
ttp://tldp.org/HOWTO/Traffic-Control-HOWTO/intro.html
ttp://tldp.org/HOWTO/Traffic-Control-HOWTO/intro.html

AppendixA
AKA messages

The following message structures are based on [22] and [23]. References
for IEs are found in [22].

69

70 AKA messages

Table A.1: ATTACH REQUEST message content

IEI Information Element Type/Reference Presence Format Length

Protocol discriminator Protocol discriminator M V 1/2
9.2

Security header type Security header type M V 1/2
9.3.1

Attach request message identity Message type M V 1
9.8

EPS attach type EPS attach type M V 1/2
9.9.3.11

NAS key set identifier NAS key set identifier M V 1/2
9.9.3.21

EPS mobile identity EPS mobile identity M LV 5-12
9.9.3.12

UE network capability UE network capability M LV 3-14
9.9.3.34

ESM message container ESM message container M LV-E 5-n
9.9.3.15

19 Old P-TMSI signature P-TMSI signature O TV 4
10.5.5.8

50 Additional GUTI EPS mobile identity O TLV 13
9.9.3.12

52 Last visited registered TAI Tracking area identity O TV 6
9.9.3.32

5C DRX parameter DRX parameter O TV 3
9.9.3.8

31 MS network capability MS network capability O TLV 4-10
9.9.3.20

13 Old location area identification Location area identification O TV 6
9.9.2.2

9- TMSI status TMSI status O TV 1
9.9.3.31

11 Mobile station classmark 2 Mobile station classmark 2 O TLV 5
9.9.2.4

20 Mobile station classmark 3 Mobile station classmark 3 O TLV 2-34
9.9.2.5

40 Supported Codecs Supported Codec List O TLV 5-n
9.9.2.10

F- Additional update type Additional update type O TV 1
9.9.3.0B

5D Voice domain preference and UE’s
usage setting

Voice domain preference and UE’s
usage setting

O TLV 3

9.9.3.44
D- Device properties Device properties O TV 1

9.9.2.0A
E- Old GUTI type GUTI type O TV 1

9.9.3.45
C- MS network feature support MS network feature support O TV 1

9.9.3.20A

AKA messages 71

Table A.2: AUTHENTICATION REQUEST message content

IEI Information Element Type/Reference Presence Format Length

Protocol discriminator Protocol discriminator M V 1/2
9.2

Security header type Security header type M V 1/2
9.3.1

Authentication request message Message type M V 1
type 9.8
NAS key set identifierASME NAS key set identifier M V 1/2

9.9.3.21
Spare half octet Spare half octet M V 1/2

9.9.2.9
Authentication parameter RAND
(EPS challenge)

Authentication parameter RAND
9.9.3.3

M V 16

Authentication parameter AUTN
(EPS challenge)

Authentication parameter AUTN
9.9.3.2

M LV 17

Table A.3: AUTHENTICATION RESPONSE message content

IEI Information Element Type/Reference Presence Format Length

Protocol discriminator Protocol discriminator M V 1/2
9.2

Security header type Security header type M V 1/2
9.3.1

Authentication response Message type M V 1
message type 9.8
Authentication response parameter Authentication response parameter M LV 5-17

9.9.3.4

Table A.4: Authentication information request message

<Authentication-Information-Request> ::= <Diameter Header: 318, REQ, PXY, 16777251 >
<Session-Id >
[Vendor-Specific-Application-Id]
{ Auth-Session-State }
{ Origin-Host }
{ Origin-Realm }
[Destination-Host]
{ Destination-Realm }
{ User-Name }
*[Supported-Features]
[Requested-EUTRAN-Authentication-Info]
[Requested-UTRAN-GERAN-Authentication-Info]
{ Visited-PLMN-Id }
*[AVP]
*[Proxy-Info]
*[Route-Record]

72 AKA messages

Table A.5: Authentication information answer message

<Authentication-Information-Answer> ::= <Diameter Header: 318, PXY, 16777251>
<Session-Id >
[Vendor-Specific-Application-Id]
[Result-Code]
[Experimental-Result]
[Error-Diagnostic]
{ Auth-Session-State }
{ Origin-Host }
{ Origin-Realm }
* [Supported-Features]
[Authentication-Info]
*[AVP]
*[Failed-AVP]
*[Proxy-Info]
*[Route-Record]

Table A.6: Requested-EUTRAN-Authentication-info

Requested- EUTRAN-Authentication-Info ::= <AVP header: 1408 10415>
[Number-Of-Requested-Vectors]
[Immediate-Response-Preferred]
[Re-synchronization-Info]
*[AVP]

Table A.7: Authentication-Info

Authentication-Info ::= <AVP header: 1413 10415>
*[E-UTRAN-Vector]
*[UTRAN-Vector]
*[GERAN-Vector]
*[AVP]

Table A.8: E-UTRAN-vector

E-UTRAN-Vector ::= <AVP header: 141410415>
[Item-Number]
{ RAND }
{ XRES }
{ AUTN }
{ KASME }
*[AVP]

AppendixB
Perfect binary inverted hash tree

73

74 Perfect binary inverted hash tree

n
0
0

n
0
1
=

h
0
(n

0
0
)

n
0
2
=

h
0
(n

0
1
)

n
0
3
=

h
0
(n

0
2
)

n
1
3
=

h
1
(n

0
2
)

n
1
2
=

h
1
(n

0
1
)

n
2
3
=

h
0
(n

1
2
)

n
3
3
=

h
1
(n

1
2
)

n
2
1
=
h
1
(n

0
0
)

n
2
2
=

h
0
(n

2
1
)

n
4
3
=

h
0
(n

2
2
)

n
5
3
=

h
1
(n

2
2
)

n
3
2
=

h
1
(n

2
1
)

n
6
3
=

h
0
(n

3
2
)

n
7
3
=

h
1
(n

3
2
)

Fi
gu

re
B

.1
:

A
n

in
ve

rt
ed

ha
sh

tre
e

of
he

ig
ht

3

AppendixC
Prototype code

C.1 Traverse Tree function

1
2
3 void
4 t r a v e r s e _ t r e e (
5 u i n t 8 _ t ∗ root ,
6 u i n t 8 _ t ∗ path ,
7 u i n t 8 _ t path_size , /∗ how many b y t e s pa th ∗ /
8 u i n t 3 2 _ t path_len ,
9 u i n t 8 _ t ∗ out)

10 {
11
12 s t r u c t sha256_ctx c t x ;
13 u i n t 8 _ t d i g e s t [3 2] ,
14 r i g h t o r l e f t ,
15 currpath ;
16
17 u i n t 8 _ t i , j , k ;
18
19 for (i = 0 ; i < 1 6 ; ++ i) {
20 d i g e s t [i] = root [i] ;
21 }
22 i n t count = 0 ;
23 for (i = 0 ; i < path_s ize ; i ++) {
24
25 currpath = path [i] ;
26
27

75

76 Prototype code

28 for (k = 0 ; k < (path_len > 8 ? 8 : path_len) ;
k++) {

29 r i g h t o r l e f t = (currpath & (1 << (7 − k))) >>
(7 − k) ;

30
31 i f (r i g h t o r l e f t) {
32 d i g e s t [1 6] = 0 ;
33 } e lse {
34 d i g e s t [1 6] = 2 5 5 ;
35 }
36
37 s h a 2 5 6 _ i n i t (& c t x) ;
38 sha256_update(& ctx , 17 , d i g e s t) ;
39 sha256_digest (& ctx , 32 , d i g e s t) ;
40 ++count ;
41
42 }
43
44 i f (path_len <= 8) {
45 break ;
46 } e lse {
47 path_len −= 8 ;
48 }
49
50 }
51
52 for (i = 0 ; i < 1 6 ; ++ i) {
53 out [i] = d i g e s t [i] ;
54 }
55
56 }

C.2 F1 Derivative function

1 void
2 f 1 _ d e r i v a t i v e (
3 const u i n t 8 _ t const gk [1 6] ,
4 const u i n t 8 _ t const nonce [1 6] ,
5 const u i n t 8 _ t const ch [1 6] ,
6 const u i n t 8 _ t const sn_id [3] ,

Prototype code 77

7 const O c t e t S t r i n g const ∗ path ,
8 const groupid_t const ∗ gid ,
9 const u i n t 8 _ t gid_s ize ,

10 u i n t 8 _ t mac_gk [8])
11 {
12 u i n t 8 _ t temp [1 6] ;
13 u i n t 8 _ t in1 [1 6] ;
14 u i n t 8 _ t out1 [1 6] ;
15 u i n t 8 _ t

r i j n d a e l I n p u t [1 6] ;
16 u i n t 8 _ t i , j , k ;
17 u i n t 1 6 _ t f u l l _ s i z e ;
18 u i n t 8 _ t

f u l l _ i n p u t [8 0] ; /∗ Max b y t e s t h a t can be i n p u t
i s 16+16+3+32+8 ∗ /

19
20 RijndaelKeySchedule (gk) ;
21
22 /∗ Prepend i n p u t s i z e i n t o f i r s t b l o c k , max i n p u t

s i z e : (f i x e d) 16+16+3 + (v a r i a b l e) Path 256
+ GID 8 = 315 g i v e s 2 b y t e s ∗ /

23
24 f u l l _ s i z e = 16+16+3 + path−>length + g i d _ s i z e ;
25
26 f u l l _ i n p u t [0] = (u i n t 8 _ t) (f u l l _ s i z e >> 8) ;
27 f u l l _ i n p u t [1] = (u i n t 8 _ t) (f u l l _ s i z e) ;
28
29 /∗ f i l l f u l l i n p u t v e c t o r wi th a l l p a r a m e t e r s ∗ /
30
31 j = 2 ;
32
33 for (i = 0 ; i < 1 6 ; i ++) {
34 f u l l _ i n p u t [j] = nonce [i] ;
35 j ++;
36 }
37
38 for (i = 0 ; i < 1 6 ; i ++) {
39 f u l l _ i n p u t [j] = ch [i] ;
40 j ++;
41 }
42
43 for (i = 0 ; i < g i d _ s i z e ; i ++) {

78 Prototype code

44 f u l l _ i n p u t [j] = gid−>u . value [i] ; ;
45 j ++;
46 }
47
48 for (i = 0 ; i < 3 ; i ++) {
49 f u l l _ i n p u t [j] = sn_id [i] ;
50 j ++;
51 }
52
53 for (i = 0 ; i < path−>length ; i ++) {
54 f u l l _ i n p u t [j] = path−>value [i] ;
55 j ++;
56 }
57
58 k = 0 ;
59
60 for (i = 0 ; i < 1 6 ; i ++) {
61 r i j n d a e l I n p u t [i] = f u l l _ i n p u t [k] ;
62 k++;
63 }
64
65 Ri jndaelEncrypt (r i j n d a e l I n p u t , temp) ;
66
67 while (k < j) {
68
69 for (i = 0 ; i < 1 6 ; i ++) {
70
71 i f (k == j) {
72
73 r i j n d a e l I n p u t [i] = (u i n t 8 _ t) 1 2 8 ;
74
75
76 } e lse {
77
78 r i j n d a e l I n p u t [i] = f u l l _ i n p u t [k] ;
79
80 }
81
82 k++;
83
84 }
85

Prototype code 79

86 for (i = 0 ; i < 1 6 ; i ++)
87 r i j n d a e l I n p u t [i] ^= temp [i] ;
88
89 Ri jndaelEncrypt (r i j n d a e l I n p u t , temp) ;
90
91 }
92
93 for (i = 0 ; i < 8 ; i ++)
94 mac_gk [i] = temp [i] ;
95
96 return ;
97
98 }

C.3 Group Authenticate function

1
2 i n t us im_api_authent i ca te_der ivab le (
3 const O c t e t S t r i n g ∗ cH_mtc_pP ,
4 const O c t e t S t r i n g ∗ autd_pP ,
5 O c t e t S t r i n g ∗ res_pP ,
6 O c t e t S t r i n g ∗ ck_pP ,
7 O c t e t S t r i n g ∗ ik_pP ,
8 const u i n t 8 _ t const ∗ plmn)
9 {

10 LOG_FUNC_IN;
11
12 i n t i ;
13 u i n t 8 _ t gk [1 6] ,
14 xmac [8] ;
15
16 /∗ De−o b f u s c a t e t h e group key ∗ /
17 f3 (_usim_api_k , cH_mtc_pP−>value , gk) ;
18 for (i = 0 ; i < 1 6 ; ++ i)
19 gk [i] = gk [i] ^ _usim_obfuscated_gk [i] ;
20
21 /∗ Compute t h e a u t h e n t i c a t i o n r e s p o n s e RES_D = f2GK

(CH_MTC) ∗ /
22 /∗ Compute t h e c i p h e r key CK = f3GK (CH_MTC) ∗ /
23 /∗ Compute t h e i n t e g r i t y key IK = f4GK (CH_MTC) ∗ /

80 Prototype code

24 f234_opc0 (gk ,
25 cH_mtc_pP−>value ,
26 res_pP−>value ,
27 ck_pP−>value ,
28 ik_pP−>value) ;
29
30 f 1 _ d e r i v a t i v e (gk ,
31 _emm_data . s e c u r i t y−>groupnonce . value ,
32 cH_mtc_pP−>value , plmn ,
33 &_emm_data . grouppath ,
34 _emm_data . gid , xmac) ;
35
36 # define USIM_API_TEMP_SIZE 6
37 # define USIM_API_AUTD_SIZE 8
38
39 i f (memcmp(xmac ,

&autd_pP−>value [USIM_API_TEMP_SIZE] ,
40 USIM_API_AUTD_SIZE) != 0) {
41 LOG_TRACE(INFO ,
42 "USIM−API−Comparing the XMAC with the MAC

included in AUTD
43 Fa i l ed ") ;
44 } e lse {
45 LOG_TRACE(INFO ,
46 "USIM−API − Comparing the XMAC with the MAC

included in AUTD
47 Succeeded ") ;
48 }
49 LOG_FUNC_RETURN (RETURNok) ;
50 }

AppendixD
ProVerif code

Here follows a security proof of the group-based AKA done in ProVerif
and made by researchers at SICS Swedish ICT. Since an article describing
the group based AKA protocol has not been published yet, the following
ProVerif code is presented here to act as motivation for the security of the
protocol in replacement of the future article.

The protocol was under development during the degree project and
therefore an additional mechanism is included in the code which is not
present in this degree project. The additional mechanism concerns a new
sequence number parameter used for re-authentication. Even if the proof
differs slightly from the protocol described in this degree project the main
points of the protocol are still represented in the proof.

D.1 Corrupted MTCs ProVerif code

1 (∗ GAKA − Mutual Authent ica t ion and Secrecy
P r o p e r t i e s in presence of corrupted MTCs. Resul t :
OK∗)

2
3 f r e e ch : channel .
4
5 type key .
6 type id .
7 type path .
8 type rand .
9 type i n t .

10 type b i t .
11
12 (∗Honest MTC∗)
13 f r e e imsi_honest : id .

81

82 ProVerif code

14
15 const l e f t : b i t .
16 const r i g h t : b i t .
17
18 const caseA : i n t .
19 const caseB : i n t .
20
21 f r e e nas_complete_msg : b i t s t r i n g .
22
23 event debugENDMTC1 .
24 event debugENDMTC2 .
25 event debugENDMME1.
26 event debugENDMME2.
27
28
29 event beginMTCa (id , id , id , key) .
30 event endMTCa(id , id , id , key) .
31 event beginMMEa (id , id , id , rand , key) .
32 event endMMEa(id , id , id , rand , key) .
33
34
35 event beginMTCb (path , id , id , b i t s t r i n g) .
36 event endMTCb(path , id , id , b i t s t r i n g) .
37 event beginMMEb(path , id , id , rand , key) .
38 event endMMEb(path , id , id , rand , key) .
39
40 query event (debugENDMTC1) .
41 query event (debugENDMTC2) .
42 query event (debugENDMME1) .
43 query event (debugENDMME2) .
44
45 (∗ Check a u t h e n t i c a t i o n of MME to MTC case A ∗)
46 query x1 : id , x2 : id , x3 : id , k : key ; event

(endMTCa(x1 , x2 , x3 , k)) ==> event
(beginMTCa (x1 , x2 , x3 , k)) .

47 (∗ Check a u t h e n t i c a t i o n of MME to MTC case B ∗)
48 query x1 : path , x2 : id , x3 : id , k : b i t s t r i n g ; event

(endMTCb(x1 , x2 , x3 , k)) ==> event
(beginMTCb (x1 , x2 , x3 , k)) .

49
50 (∗ Check a u t h e n t i c a t i o n of MTC to MME case A ∗)
51 query x1 : id , x2 : id , x3 : id , r : rand , k : key ; event

ProVerif code 83

(endMMEa(x1 , x2 , x3 , r , k)) ==> event
(beginMMEa (x1 , x2 , x3 , r , k)) .

52 (∗ Check a u t h e n t i c a t i o n of MTC to MME case B ∗)
53 query x1 : path , x2 : id , x3 : id , r : rand , k : key ; event

(endMMEb(x1 , x2 , x3 , r , k)) ==> event
(beginMMEb(x1 , x2 , x3 , r , k)) .

54
55 f r e e s e c r e t : b i t s t r i n g [p r i v a t e] .
56 query a t t a c k e r (s e c r e t) .
57
58
59
60
61
62 (∗ P r o b a b i l i s t i c symmetric key encryption ∗)
63 (∗ Simulate communication between HSS and MME ∗)
64 fun i n t e r n a l s e n c (b i t s t r i n g , key , rand) : b i t s t r i n g .
65 reduc f o r a l l m: b i t s t r i n g , k : key , r : rand ;
66 sdec (i n t e r n a l s e n c (m, k , r) , k) =m.
67 l e t f u n senc (x : b i t s t r i n g , y : key) =new r : rand ;

i n t e r n a l s e n c (x , y , r) .
68
69 (∗ Binary Hash Tree ∗)
70 fun set_node (b i t s t r i n g , b i t) : b i t s t r i n g .
71
72 (∗ Hash f u n c t i o n s ∗)
73 fun f2 (b i t s t r i n g) : b i t s t r i n g .
74 fun f3 (b i t s t r i n g) : b i t s t r i n g .
75 fun f4 (b i t s t r i n g) : b i t s t r i n g .
76 fun f5 (b i t s t r i n g) : b i t s t r i n g .
77 fun h (b i t s t r i n g) : b i t s t r i n g .
78 fun hash (b i t s t r i n g , b i t s t r i n g) : b i t s t r i n g .
79 fun kdf (b i t s t r i n g) : key .
80 fun kdf_nas_enc (key) : key .
81 fun kdf_nas_int (key) : key .
82 fun nas_mac (b i t s t r i n g , key) : b i t s t r i n g .
83
84 (∗ Mac ∗)
85 fun f1 (b i t s t r i n g , key) : b i t s t r i n g .
86
87 (∗ XOR ∗)
88 fun xor (b i t s t r i n g , b i t s t r i n g) : b i t s t r i n g .

84 ProVerif code

89 equation f o r a l l m1: b i t s t r i n g , m2: b i t s t r i n g ; xor (m1,
xor (m1, m2)) = m2.

90
91 fun bs_to_key (b i t s t r i n g) : key [data , typeConverter] .
92 fun bs_to_rand (b i t s t r i n g) : rand [data , typeConverter] .
93
94
95 (∗ Path ∗)
96 fun g e t _ c h i l d (path , b i t) : path .
97 reduc f o r a l l parent_path : path , pos : b i t ;

get_parent (g e t _ c h i l d (parent_path ,
pos)) =parent_path .

98
99 t a b l e hss_keys (path , id , key , id , b i t s t r i n g ,

b i t s t r i n g , b i t s t r i n g , b i t s t r i n g) .
100 t a b l e mme_keys (b i t s t r i n g , b i t s t r i n g , id , path ,

b i t s t r i n g) .
101
102
103 (∗−−−−−−−−−−−−−−−Protocol−−−−−−−−−−−−−−−−−∗)
104
105 (∗−−MTC−−∗)
106 l e t MTC (imsi_mtc : id , key_mtc : key , gid : id ,

path_mtc : path , sqn : b i t s t r i n g , o_mtc : b i t s t r i n g ,
pos : b i t) =

107 new nonce_mtc : rand ;
108 out (ch , (gid , path_mtc , nonce_mtc , pos)) ;
109 in (ch , (case_x : int , aut_x : b i t s t r i n g , sn_id : id ,

rand_x : rand)) ;
110 i f case_x=caseA then
111 (l e t (xored_sqn : b i t s t r i n g , mac_sn :

b i t s t r i n g) =aut_x in
112 i f sqn=xor (f5 ((key_mtc , rand_x)) , xored_sqn) then
113 (i f mac_sn=f1 ((sqn , rand_x) , key_mtc) then
114 l e t r es=f2 ((key_mtc , rand_x)) in
115 l e t ck=f3 ((key_mtc , rand_x)) in
116 l e t ik=f4 ((key_mtc , rand_x)) in
117 l e t kasme=kdf ((xored_sqn , ck , ik , sn_id)) in
118 event beginMMEa (imsi_mtc , gid , sn_id ,

rand_x , kasme) ;
119 out (ch , r es) ;
120 l e t knasenc_mtc = kdf_nas_enc (kasme) in

ProVerif code 85

121 l e t knasint_mtc = kdf_nas_int (kasme) in
122 out (ch , senc (s e c r e t , knasenc_mtc)) ;
123 in (ch , (nasmsgmac : b i t s t r i n g , mac_nas :

b i t s t r i n g)) ;
124 i f mac_nas=nas_mac (nasmsgmac , knasint_mtc) then
125 l e t enc_complete_msg=senc (nas_complete_msg ,

knasenc_mtc) in
126 out (ch , (nas_complete_msg , enc_complete_msg ,

nas_mac (enc_complete_msg , knasint_mtc))) ;
127 event debugENDMTC1 ;
128 event endMTCa (imsi_mtc , gid , sn_id , kasme)
129 e lse 0)
130 e lse 0)
131 e lse i f case_x=caseB then
132 l e t (f5_hgkmtc_nonce : b i t s t r i n g , mac_hgkmtc :

b i t s t r i n g) =aut_x in
133 l e t hgk_mtc=xor (h ((key_mtc , rand_x)) , o_mtc) in
134 i f f5 ((hgk_mtc , nonce_mtc)) =f5_hgkmtc_nonce then
135 i f mac_hgkmtc=f1 ((nonce_mtc , rand_x , gid ,

sn_id , path_mtc) , bs_to_key (hgk_mtc)) then
136 l e t res_b=f2 ((hgk_mtc , rand_x)) in
137 l e t ck_b=f3 ((hgk_mtc , rand_x)) in
138 l e t ik_b=f4 ((hgk_mtc , rand_x)) in
139 l e t kasme_b=kdf ((f5_hgkmtc_nonce , ck_b , ik_b ,

sn_id)) in
140 event beginMMEb (path_mtc , gid , sn_id , rand_x ,

kasme_b) ;
141 out (ch , res_b) ;
142 l e t knasenc_mtc = kdf_nas_enc (kasme_b) in
143 l e t knasint_mtc = kdf_nas_int (kasme_b) in
144 out (ch , senc (s e c r e t , knasenc_mtc)) ;
145 in (ch , (nasmsgmac : b i t s t r i n g , mac_nas :

b i t s t r i n g)) ;
146 i f mac_nas=nas_mac (nasmsgmac , knasint_mtc) then
147 l e t enc_complete_msg=senc (nas_complete_msg ,

knasenc_mtc) in
148 out (ch , (nas_complete_msg , enc_complete_msg ,

nas_mac (enc_complete_msg , knasint_mtc))) ;
149 event debugENDMTC2 ;
150 event endMTCb (path_mtc , gid , sn_id ,

hgk_mtc) ;
151 0 .

86 ProVerif code

152
153
154 (∗−−MME−−∗)
155 l e t MME_a (gid : id , path_mtc : path , sn_mme : id ,

hss_mme : key) =
156 out (ch , senc ((gid , path_mtc , sn_mme) , hss_mme)) ;
157 in (ch , from_hss : b i t s t r i n g) ;
158 l e t (= gid , GKij : b i t s t r i n g , CHij : b i t s t r i n g , autn :

b i t s t r i n g , xres : b i t s t r i n g , rand_hss : rand , kasme :
key , imsi_mtc : id , n : b i t s t r i n g ,
=path_mtc) =sdec (from_hss , hss_mme) in

159 l e t pathx=get_parent (path_mtc) in
160 i n s e r t mme_keys (GKij , CHij , gid , pathx , n) ;
161 event beginMTCa (imsi_mtc , gid , sn_mme , kasme) ;
162 out (ch , (caseA , autn , sn_mme , rand_hss)) ;
163 in (ch , =xres) ;
164 l e t knasenc_mme = kdf_nas_enc (kasme) in
165 l e t knasint_mme = kdf_nas_int (kasme) in
166 new nasmsgmac : b i t s t r i n g ;
167 out (ch , (nasmsgmac , nas_mac (nasmsgmac , knasint_mme))) ;
168 in (ch , (= nas_complete_msg , enc_msg : b i t s t r i n g ,

mac_nas : b i t s t r i n g)) ;
169 i f mac_nas=nas_mac (enc_msg , knasint_mme) &&

nas_complete_msg=sdec (enc_msg , knasenc_mme) then
170 i f imsi_mtc=imsi_honest then
171 out (ch , senc (s e c r e t , knasenc_mme)) ;
172 event debugENDMME1;
173 event endMMEa (imsi_mtc , gid , sn_mme , rand_hss ,

kasme) ;
174 0 .
175
176
177 l e t MME_b (gid : id , path_mtc : path , nonce_mtc : rand ,

sn_mme : id , pos : b i t) =
178 get mme_keys (GKij , CHij , =gid , =get_parent (path_mtc) ,

n) in
179 l e t GKmtc=set_node (GKij , pos) in
180 l e t hgkmtc=hash (GKmtc , n) in
181 event beginMTCb (path_mtc , gid , sn_mme , hgkmtc) ;
182 l e t CHmtc=set_node (CHij , pos) in
183 l e t hchmtc=hash (CHmtc , n) in
184 l e t f5_hgkmtc_nonce=f5 ((hgkmtc , nonce_mtc)) in

ProVerif code 87

185 l e t mac_hgkmtc=f1 ((nonce_mtc , hchmtc , gid , sn_mme ,
path_mtc) , bs_to_key (hgkmtc)) in

186 out (ch , (caseB , (f5_hgkmtc_nonce , mac_hgkmtc) ,
sn_mme , hchmtc)) ;

187 l e t ck=f3 ((hgkmtc , hchmtc)) in
188 l e t ik=f4 ((hgkmtc , hchmtc)) in
189 l e t kasme=kdf ((f5_hgkmtc_nonce , ck , ik , sn_mme)) in
190 in (ch , res_d : b i t s t r i n g) ;
191 i f res_d=f2 ((hgkmtc , hchmtc)) then
192 l e t knasenc_mme = kdf_nas_enc (kasme) in
193 l e t knasint_mme = kdf_nas_int (kasme) in
194 new nasmsgmac : b i t s t r i n g ;
195 out (ch , (nasmsgmac , nas_mac (nasmsgmac , knasint_mme))) ;
196 in (ch , (= nas_complete_msg , enc_msg : b i t s t r i n g ,

mac_nas : b i t s t r i n g)) ;
197 i f mac_nas=nas_mac (enc_msg , knasint_mme) &&

nas_complete_msg=sdec (enc_msg , knasenc_mme) then
198 (∗ honest MTC i s l e f t− l e f t ∗)
199 i f

g e t _ c h i l d (g e t _ c h i l d (get_parent (get_parent (path_mtc)) ,
l e f t) , l e f t) =path_mtc then

200 out (ch , senc (s e c r e t , knasenc_mme)) ;
201 event endMMEb (path_mtc , gid , sn_mme ,

bs_to_rand (hchmtc) , kasme) ;
202 event debugENDMME2;
203 0 .
204
205
206 l e t MME_init (sn_mme : id , hss_mme : key) =
207 in (ch , (gid : id , path_mtc : path , nonce_mtc : rand ,

=sn_mme , pos : b i t)) ;
208 i f (path_mtc= g e t _ c h i l d (get_parent (path_mtc) , l e f t)

&& pos= l e f t) || (path_mtc= g e t _ c h i l d (
get_parent (path_mtc) , r i g h t) && pos= r i g h t) then

209 (MME_a(gid , path_mtc , sn_mme , hss_mme) | MME_b(gid ,
path_mtc , nonce_mtc , sn_mme , pos)) .

210
211
212 (∗−−HSS−−∗)
213 l e t HSS (sn_mme : id , mme_hss : key) =
214 in (ch , from_mme : b i t s t r i n g) ;
215 l e t (gid : id , path_mtc : path , =sn_mme) =sdec (from_mme ,

88 ProVerif code

mme_hss) in
216 get hss_keys (= path_mtc , imsi , key_mtc , =gid , sqn ,

rootG , rootR , n) in
217 new rand_hss : rand ;
218 l e t xored_sqn=xor (f5 ((key_mtc , rand_hss)) , sqn) in
219 l e t mac_hss=f1 ((sqn , rand_hss) , key_mtc) in
220 l e t xres=f2 ((key_mtc , rand_hss)) in
221 l e t ck=f3 ((key_mtc , rand_hss)) in
222 l e t ik=f4 ((key_mtc , rand_hss)) in
223 l e t kasme=kdf ((xored_sqn , ck , ik , sn_mme)) in
224 l e t autn =(xored_sqn , mac_hss) in
225 out (ch , senc ((gid , rootG , rootR , autn , xres ,

rand_hss , kasme , imsi , n , path_mtc) , mme_hss)) .
226
227
228
229
230
231
232 (∗−−−−−−−−−−Main−−−−−−−−−−−−−−−−−∗)
233 process
234
235 ! (
236
237 new hss_mme_key : key ;
238 new gid : id ;
239 new sn_id : id ;
240 new n : b i t s t r i n g ;
241 out (ch , n) ;
242
243 out (ch , gid) ;
244 out (ch , sn_id) ;
245
246
247 ! (
248 HSS(sn_id , hss_mme_key)
249) |
250
251
252 ! (
253 MME_init (sn_id , hss_mme_key)
254) |

ProVerif code 89

255
256 new rootCH : b i t s t r i n g ;
257 new rootGK : b i t s t r i n g ;
258 new path_ int : path ;
259 out (ch , path_ int) ;
260
261
262 ! (
263
264
265
266 l e t pathl= g e t _ c h i l d (path_int , l e f t) in
267 out (ch , pathl) ;
268 l e t GKl=set_node (rootGK , l e f t) in
269 l e t CHl=set_node (rootCH , l e f t) in
270
271 l e t pathr= g e t _ c h i l d (path_int , r i g h t) in
272 out (ch , pathr) ;
273 l e t GKr=set_node (rootGK , r i g h t) in
274 l e t CHr=set_node (rootCH , r i g h t) in
275
276 (∗ Honest MTC ∗)
277
278 l e t imsi_1=imsi_honest in
279 new mtckey_1 : key ;
280 new sqn_1 : b i t s t r i n g ;
281
282 out (ch , imsi_1) ;
283
284 l e t path_1= g e t _ c h i l d (pathl , l e f t) in
285 l e t GKmtc_1=set_node (GKl , l e f t) in
286 l e t CHmtc_1=set_node (CHl , l e f t) in
287 l e t Hgkmtc_1=hash (GKmtc_1 , n) in
288 l e t Hchmtc_1=hash (CHmtc_1 , n) in
289
290 l e t o_1=xor (h ((mtckey_1 , Hchmtc_1)) , Hgkmtc_1) in
291 i n s e r t hss_keys (path_1 , imsi_1 , mtckey_1 , gid , sqn_1 ,

GKl , CHl , n) ;
292
293
294 (∗ Corrupted MTCs ∗)
295

90 ProVerif code

296 new imsi_2 : id ;
297 new mtckey_2 : key ;
298 new sqn_2 : b i t s t r i n g ;
299
300 out (ch , imsi_2) ;
301 out (ch , mtckey_2) ;
302 out (ch , sqn_2) ;
303
304
305 l e t path_2= g e t _ c h i l d (pathl , r i g h t) in
306 l e t GKmtc_2=set_node (GKl , r i g h t) in
307 l e t CHmtc_2=set_node (CHl , r i g h t) in
308 l e t Hgkmtc_2=hash (GKmtc_2 , n) in
309 l e t Hchmtc_2=hash (CHmtc_2 , n) in
310
311 l e t o_2=xor (h ((mtckey_2 , Hchmtc_2)) , Hgkmtc_2) in
312 i n s e r t hss_keys (path_2 , imsi_2 , mtckey_2 , gid , sqn_2 ,

GKl , CHl , n) ;
313
314 out (ch , path_2) ;
315 out (ch , o_2) ;
316
317
318 new imsi_3 : id ;
319 new mtckey_3 : key ;
320 new sqn_3 : b i t s t r i n g ;
321
322 out (ch , imsi_3) ;
323
324 l e t path_3= g e t _ c h i l d (pathr , l e f t) in
325 l e t GKmtc_3=set_node (GKr , l e f t) in
326 l e t CHmtc_3=set_node (CHr , l e f t) in
327 l e t Hgkmtc_3=hash (GKmtc_3 , n) in
328 l e t Hchmtc_3=hash (CHmtc_3 , n) in
329
330 l e t o_3=xor (h ((mtckey_3 , Hchmtc_3)) , Hgkmtc_3) in
331 i n s e r t hss_keys (path_3 , imsi_3 , mtckey_3 , gid , sqn_3 ,

GKr , CHr , n) ;
332
333 out (ch , mtckey_3) ;
334 out (ch , sqn_3) ;
335 out (ch , path_3) ;

ProVerif code 91

336 out (ch , o_3) ;
337
338
339 new imsi_4 : id ;
340 new mtckey_4 : key ;
341 new sqn_4 : b i t s t r i n g ;
342
343 out (ch , imsi_4) ;
344
345 l e t path_4= g e t _ c h i l d (pathr , r i g h t) in
346 l e t GKmtc_4=set_node (GKr , r i g h t) in
347 l e t CHmtc_4=set_node (CHr , r i g h t) in
348 l e t Hgkmtc_4=hash (GKmtc_4 , n) in
349 l e t Hchmtc_4=hash (CHmtc_4 , n) in
350
351 l e t o_4=xor (h ((mtckey_4 , Hchmtc_4)) , Hgkmtc_4) in
352 i n s e r t hss_keys (path_4 , imsi_4 , mtckey_4 , gid , sqn_4 ,

GKr , CHr , n) ;
353
354 out (ch , mtckey_4) ;
355 out (ch , sqn_4) ;
356 out (ch , path_4) ;
357 out (ch , o_4) ;
358
359
360
361 MTC(imsi_1 , mtckey_1 , gid , path_1 , sqn_1 , o_1 , l e f t)
362)
363
364
365
366
367)

D.2 Mutual authentication properties ProVerif code

1 (∗ GAKA − Mutual Authent ica t ion P r o p e r t i e s . Resul t :
OK∗)

2
3 f r e e ch : channel .

92 ProVerif code

4
5 type key .
6 type id .
7 type path .
8 type rand .
9 type i n t .

10 type b i t .
11
12 const caseA : i n t .
13 const caseB : i n t .
14
15 const l e f t : b i t .
16 const r i g h t : b i t .
17
18
19 f r e e nas_complete_msg : b i t s t r i n g .
20
21
22 event debugENDMTC1 .
23 event debugENDMTC2 .
24 event debugENDMME1.
25 event debugENDMME2.
26
27
28 event beginMTCa (id , id , id , key) .
29 event endMTCa(id , id , id , key) .
30 event beginMMEa (id , id , id , rand , key) .
31 event endMMEa(id , id , id , rand , key) .
32
33
34 event beginMTCb (path , id , id , b i t s t r i n g) .
35 event endMTCb(path , id , id , b i t s t r i n g) .
36 event beginMMEb(path , id , id , rand , key) .
37 event endMMEb(path , id , id , rand , key) .
38
39 query event (debugENDMTC1) .
40 query event (debugENDMTC2) .
41 query event (debugENDMME1) .
42 query event (debugENDMME2) .
43
44 (∗ Check a u t h e n t i c a t i o n of MME to MTC case A ∗)
45 query x1 : id , x2 : id , x3 : id , k : key ; event

ProVerif code 93

(endMTCa(x1 , x2 , x3 , k)) ==> event
(beginMTCa (x1 , x2 , x3 , k)) .

46 (∗ Check a u t h e n t i c a t i o n of MME to MTC case B ∗)
47 query x1 : path , x2 : id , x3 : id , k : b i t s t r i n g ; event

(endMTCb(x1 , x2 , x3 , k)) ==> event
(beginMTCb (x1 , x2 , x3 , k)) .

48
49 (∗ Check a u t h e n t i c a t i o n of MTC to MME case A ∗)
50 query x1 : id , x2 : id , x3 : id , r : rand , k : key ; event

(endMMEa(x1 , x2 , x3 , r , k)) ==> event
(beginMMEa (x1 , x2 , x3 , r , k)) .

51 (∗ Check a u t h e n t i c a t i o n of MTC to MME case B ∗)
52 query x1 : path , x2 : id , x3 : id , r : rand , k : key ; event

(endMMEb(x1 , x2 , x3 , r , k)) ==> event
(beginMMEb(x1 , x2 , x3 , r , k)) .

53
54 f r e e s e c r e t : b i t s t r i n g [p r i v a t e] .
55 query a t t a c k e r (s e c r e t) .
56
57
58
59
60 (∗ P r o b a b i l i s t i c symmetric key encryption ∗)
61 (∗ Simulate communication between HSS and MME ∗)
62 fun i n t e r n a l s e n c (b i t s t r i n g , key , rand) : b i t s t r i n g .
63 reduc f o r a l l m: b i t s t r i n g , k : key , r : rand ;
64 sdec (i n t e r n a l s e n c (m, k , r) , k) =m.
65 l e t f u n senc (x : b i t s t r i n g , y : key) =new r : rand ;

i n t e r n a l s e n c (x , y , r) .
66
67 (∗ Binary Hash Tree ∗)
68 fun set_node (b i t s t r i n g , b i t) : b i t s t r i n g .
69
70 (∗ Hash ∗)
71 fun f2 (b i t s t r i n g) : b i t s t r i n g .
72 fun f3 (b i t s t r i n g) : b i t s t r i n g .
73 fun f4 (b i t s t r i n g) : b i t s t r i n g .
74 fun f5 (b i t s t r i n g) : b i t s t r i n g .
75 fun h (b i t s t r i n g) : b i t s t r i n g .
76 fun hash (b i t s t r i n g , b i t s t r i n g) : b i t s t r i n g .
77 fun kdf (b i t s t r i n g) : key .
78 fun kdf_nas_enc (key) : key .

94 ProVerif code

79 fun kdf_nas_int (key) : key .
80 fun nas_mac (b i t s t r i n g , key) : b i t s t r i n g .
81
82 (∗ Mac ∗)
83 fun f1 (b i t s t r i n g , key) : b i t s t r i n g .
84
85 (∗ XOR ∗)
86 fun xor (b i t s t r i n g , b i t s t r i n g) : b i t s t r i n g .
87 equation f o r a l l m1: b i t s t r i n g , m2: b i t s t r i n g ; xor (m1,

xor (m1, m2)) = m2.
88
89 fun bs_to_key (b i t s t r i n g) : key [data , typeConverter] .
90 fun bs_to_rand (b i t s t r i n g) : rand [data , typeConverter] .
91
92
93 (∗ Path ∗)
94 fun g e t _ c h i l d (path , b i t) : path .
95 reduc f o r a l l parent_path : path , pos : b i t ;

get_parent (g e t _ c h i l d (parent_path ,
pos)) =parent_path .

96
97 t a b l e hss_keys (path , id , key , id , b i t s t r i n g ,

b i t s t r i n g , b i t s t r i n g , b i t s t r i n g) .
98 t a b l e mme_keys (b i t s t r i n g , b i t s t r i n g , id , path ,

b i t s t r i n g) .
99

100
101 (∗−−−−−−−−−−−−−−−Protocol−−−−−−−−−−−−−−−−−∗)
102
103 (∗−−MTC−−∗)
104 l e t MTC (imsi_mtc : id , key_mtc : key , gid : id ,

path_mtc : path , sqn : b i t s t r i n g , o_mtc : b i t s t r i n g ,
pos : b i t) =

105 new nonce_mtc : rand ;
106 out (ch , (gid , path_mtc , nonce_mtc , pos)) ;
107 in (ch , (case_x : int , aut_x : b i t s t r i n g , sn_id : id ,

rand_x : rand)) ;
108 i f case_x=caseA then
109 (l e t (xored_sqn : b i t s t r i n g , mac_sn :

b i t s t r i n g) =aut_x in
110 i f sqn=xor (f5 ((key_mtc , rand_x)) , xored_sqn) then
111 (i f mac_sn=f1 ((sqn , rand_x) , key_mtc) then

ProVerif code 95

112 l e t r es=f2 ((key_mtc , rand_x)) in
113 l e t ck=f3 ((key_mtc , rand_x)) in
114 l e t ik=f4 ((key_mtc , rand_x)) in
115 l e t kasme=kdf ((xored_sqn , ck , ik , sn_id)) in
116 event beginMMEa (imsi_mtc , gid , sn_id ,

rand_x , kasme) ;
117 out (ch , r es) ;
118 l e t knasenc_mtc = kdf_nas_enc (kasme) in
119 l e t knasint_mtc = kdf_nas_int (kasme) in
120 out (ch , senc (s e c r e t , knasenc_mtc)) ;
121 in (ch , (nasmsgmac : b i t s t r i n g , mac_nas :

b i t s t r i n g)) ;
122 i f mac_nas=nas_mac (nasmsgmac , knasint_mtc) then
123 l e t enc_complete_msg=senc (nas_complete_msg ,

knasenc_mtc) in
124 out (ch , (nas_complete_msg , enc_complete_msg ,

nas_mac (enc_complete_msg , knasint_mtc))) ;
125 event debugENDMTC1 ;
126 event endMTCa (imsi_mtc , gid , sn_id , kasme)
127 e lse 0)
128 e lse 0)
129 e lse i f case_x=caseB then
130 l e t (f5_hgkmtc_nonce : b i t s t r i n g , mac_hgkmtc :

b i t s t r i n g) =aut_x in
131 l e t hgk_mtc=xor (h ((key_mtc , rand_x)) , o_mtc) in
132 i f f5 ((hgk_mtc , nonce_mtc)) =f5_hgkmtc_nonce then
133 i f mac_hgkmtc=f1 ((nonce_mtc , rand_x , gid ,

sn_id , path_mtc) , bs_to_key (hgk_mtc)) then
134 l e t res_b=f2 ((hgk_mtc , rand_x)) in
135 l e t ck_b=f3 ((hgk_mtc , rand_x)) in
136 l e t ik_b=f4 ((hgk_mtc , rand_x)) in
137 l e t kasme_b=kdf ((f5_hgkmtc_nonce , ck_b , ik_b ,

sn_id)) in
138 event beginMMEb (path_mtc , gid , sn_id , rand_x ,

kasme_b) ;
139 out (ch , res_b) ;
140 l e t knasenc_mtc = kdf_nas_enc (kasme_b) in
141 l e t knasint_mtc = kdf_nas_int (kasme_b) in
142 out (ch , senc (s e c r e t , knasenc_mtc)) ;
143 in (ch , (nasmsgmac : b i t s t r i n g , mac_nas :

b i t s t r i n g)) ;
144 i f mac_nas=nas_mac (nasmsgmac , knasint_mtc) then

96 ProVerif code

145 l e t enc_complete_msg=senc (nas_complete_msg ,
knasenc_mtc) in

146 out (ch , (nas_complete_msg , enc_complete_msg ,
nas_mac (enc_complete_msg , knasint_mtc))) ;

147 event debugENDMTC2 ;
148 event endMTCb (path_mtc , gid , sn_id ,

hgk_mtc) ;
149 0 .
150
151
152
153 (∗−−MME−−∗)
154 l e t MME_a (gid : id , path_mtc : path , sn_mme : id ,

hss_mme : key) =
155 out (ch , senc ((gid , path_mtc , sn_mme) , hss_mme)) ;
156 in (ch , from_hss : b i t s t r i n g) ;
157 l e t (= gid , GKij : b i t s t r i n g , CHij : b i t s t r i n g , autn :

b i t s t r i n g , xres : b i t s t r i n g , rand_hss : rand , kasme :
key , imsi_mtc : id , n : b i t s t r i n g ,
=path_mtc) =sdec (from_hss , hss_mme) in

158 l e t pathx=get_parent (path_mtc) in
159 i n s e r t mme_keys (GKij , CHij , gid , pathx , n) ;
160 event beginMTCa (imsi_mtc , gid , sn_mme , kasme) ;
161 out (ch , (caseA , autn , sn_mme , rand_hss)) ;
162 in (ch , =xres) ;
163 l e t knasenc_mme = kdf_nas_enc (kasme) in
164 l e t knasint_mme = kdf_nas_int (kasme) in
165 out (ch , senc (s e c r e t , knasenc_mme)) ;
166 new nasmsgmac : b i t s t r i n g ;
167 out (ch , (nasmsgmac , nas_mac (nasmsgmac , knasint_mme))) ;
168 in (ch , (= nas_complete_msg , enc_msg : b i t s t r i n g ,

mac_nas : b i t s t r i n g)) ;
169 i f mac_nas=nas_mac (enc_msg , knasint_mme) &&

nas_complete_msg=sdec (enc_msg , knasenc_mme) then
170 out (ch , senc (s e c r e t , knasenc_mme)) ;
171 event debugENDMME1;
172 event endMMEa (imsi_mtc , gid , sn_mme , rand_hss ,

kasme) ;
173 0 .
174
175
176 l e t MME_b (gid : id , path_mtc : path , nonce_mtc : rand ,

ProVerif code 97

sn_mme : id , pos : b i t) =
177 get mme_keys (GKij , CHij , =gid , =get_parent (path_mtc) ,

n) in
178 l e t GKmtc=set_node (GKij , pos) in
179 l e t hgkmtc=hash (GKmtc , n) in
180 event beginMTCb (path_mtc , gid , sn_mme , hgkmtc) ;
181 l e t CHmtc=set_node (CHij , pos) in
182 l e t hchmtc=hash (CHmtc , n) in
183 l e t f5_hgkmtc_nonce=f5 ((hgkmtc , nonce_mtc)) in
184 l e t mac_hgkmtc=f1 ((nonce_mtc , hchmtc , gid , sn_mme ,

path_mtc) , bs_to_key (hgkmtc)) in
185 out (ch , (caseB , (f5_hgkmtc_nonce , mac_hgkmtc) ,

sn_mme , hchmtc)) ;
186 l e t ck=f3 ((hgkmtc , hchmtc)) in
187 l e t ik=f4 ((hgkmtc , hchmtc)) in
188 l e t kasme=kdf ((f5_hgkmtc_nonce , ck , ik , sn_mme)) in
189 in (ch , res_d : b i t s t r i n g) ;
190 i f res_d=f2 ((hgkmtc , hchmtc)) then
191 l e t knasenc_mme = kdf_nas_enc (kasme) in
192 l e t knasint_mme = kdf_nas_int (kasme) in
193 out (ch , senc (s e c r e t , knasenc_mme)) ;
194 new nasmsgmac : b i t s t r i n g ;
195 out (ch , (nasmsgmac , nas_mac (nasmsgmac , knasint_mme))) ;
196 in (ch , (= nas_complete_msg , enc_msg : b i t s t r i n g ,

mac_nas : b i t s t r i n g)) ;
197 i f mac_nas=nas_mac (enc_msg , knasint_mme) &&

nas_complete_msg=sdec (enc_msg , knasenc_mme) then
198 event endMMEb (path_mtc , gid , sn_mme ,

bs_to_rand (hchmtc) , kasme) ;
199 event debugENDMME2;
200 0 .
201
202
203 l e t MME_init (sn_mme : id , hss_mme : key) =
204 in (ch , (gid : id , path_mtc : path , nonce_mtc : rand ,

=sn_mme , pos : b i t)) ;
205 i f (path_mtc= g e t _ c h i l d (get_parent (path_mtc) , l e f t)

&& pos= l e f t) || (path_mtc= g e t _ c h i l d (
get_parent (path_mtc) , r i g h t) && pos= r i g h t) then

206 (MME_a(gid , path_mtc , sn_mme , hss_mme) | MME_b(gid ,
path_mtc , nonce_mtc , sn_mme , pos)) .

207

98 ProVerif code

208
209 (∗−−HSS−−∗)
210 l e t HSS (sn_mme : id , mme_hss : key) =
211 in (ch , from_mme : b i t s t r i n g) ;
212 l e t (gid : id , path_mtc : path , =sn_mme) =sdec (from_mme ,

mme_hss) in
213 get hss_keys (= path_mtc , imsi , key_mtc , =gid , sqn ,

rootG , rootR , n) in
214 new rand_hss : rand ;
215 l e t xored_sqn=xor (f5 ((key_mtc , rand_hss)) , sqn) in
216 l e t mac_hss=f1 ((sqn , rand_hss) , key_mtc) in
217 l e t xres=f2 ((key_mtc , rand_hss)) in
218 l e t ck=f3 ((key_mtc , rand_hss)) in
219 l e t ik=f4 ((key_mtc , rand_hss)) in
220 l e t kasme=kdf ((xored_sqn , ck , ik , sn_mme)) in
221 l e t autn =(xored_sqn , mac_hss) in
222 out (ch , senc ((gid , rootG , rootR , autn , xres ,

rand_hss , kasme , imsi , n , path_mtc) , mme_hss)) .
223
224
225
226
227
228
229 (∗−−−−−−−−−−Main−−−−−−−−−−−−−−−−−∗)
230 process
231
232 ! (
233
234 new hss_mme_key : key ;
235 new gid : id ;
236 new sn_id : id ;
237 new n : b i t s t r i n g ;
238 out (ch , n) ;
239
240 out (ch , gid) ;
241 out (ch , sn_id) ;
242
243
244 ! (
245 HSS(sn_id , hss_mme_key)
246) |

ProVerif code 99

247
248
249 ! (
250 MME_init (sn_id , hss_mme_key)
251) |
252
253 new rootCH : b i t s t r i n g ;
254 new rootGK : b i t s t r i n g ;
255
256 new path_ int : path ;
257 out (ch , path_ int) ;
258
259
260 (
261
262
263 l e t pathl= g e t _ c h i l d (path_int , l e f t) in
264 out (ch , pathl) ;
265 l e t GKl=set_node (rootGK , l e f t) in
266 l e t CHl=set_node (rootCH , l e f t) in
267
268
269 l e t pathr= g e t _ c h i l d (path_int , r i g h t) in
270 out (ch , pathr) ;
271 l e t GKr=set_node (rootGK , r i g h t) in
272 l e t CHr=set_node (rootCH , r i g h t) in
273
274
275 new imsi_1 : id ;
276 new mtckey_1 : key ;
277 new sqn_1 : b i t s t r i n g ;
278
279 out (ch , imsi_1) ;
280
281 l e t path_1= g e t _ c h i l d (pathl , l e f t) in
282 l e t GKmtc_1=set_node (GKl , l e f t) in
283 l e t CHmtc_1=set_node (CHl , l e f t) in
284 l e t Hgkmtc_1=hash (GKmtc_1 , n) in
285 l e t Hchmtc_1=hash (CHmtc_1 , n) in
286
287 l e t o_1=xor (h ((mtckey_1 , Hchmtc_1)) , Hgkmtc_1) in
288 i n s e r t hss_keys (path_1 , imsi_1 , mtckey_1 , gid , sqn_1 ,

100 ProVerif code

GKl , CHl , n) ;
289
290
291 (∗ honest MTCs ∗)
292
293 new imsi_2 : id ;
294 new mtckey_2 : key ;
295 new sqn_2 : b i t s t r i n g ;
296
297 out (ch , imsi_2) ;
298
299 l e t path_2= g e t _ c h i l d (pathl , r i g h t) in
300 l e t GKmtc_2=set_node (GKl , r i g h t) in
301 l e t CHmtc_2=set_node (CHl , r i g h t) in
302 l e t Hgkmtc_2=hash (GKmtc_2 , n) in
303 l e t Hchmtc_2=hash (CHmtc_2 , n) in
304
305 l e t o_2=xor (h ((mtckey_2 , Hchmtc_2)) , Hgkmtc_2) in
306 i n s e r t hss_keys (path_2 , imsi_2 , mtckey_2 , gid , sqn_2 ,

GKl , CHl , n) ;
307
308
309
310
311 new imsi_3 : id ;
312 new mtckey_3 : key ;
313 new sqn_3 : b i t s t r i n g ;
314
315 out (ch , imsi_3) ;
316
317 l e t path_3= g e t _ c h i l d (pathr , l e f t) in
318 l e t GKmtc_3=set_node (GKr , l e f t) in
319 l e t CHmtc_3=set_node (CHr , l e f t) in
320 l e t Hgkmtc_3=hash (GKmtc_3 , n) in
321 l e t Hchmtc_3=hash (CHmtc_3 , n) in
322
323 l e t o_3=xor (h ((mtckey_3 , Hchmtc_3)) , Hgkmtc_3) in
324 i n s e r t hss_keys (path_3 , imsi_3 , mtckey_3 , gid , sqn_3 ,

GKr , CHr , n) ;
325
326
327

ProVerif code 101

328 new imsi_4 : id ;
329 new mtckey_4 : key ;
330 new sqn_4 : b i t s t r i n g ;
331
332 out (ch , imsi_4) ;
333
334 l e t path_4= g e t _ c h i l d (pathr , r i g h t) in
335 l e t GKmtc_4=set_node (GKr , r i g h t) in
336 l e t CHmtc_4=set_node (CHr , r i g h t) in
337 l e t Hgkmtc_4=hash (GKmtc_4 , n) in
338 l e t Hchmtc_4=hash (CHmtc_4 , n) in
339
340 l e t o_4=xor (h ((mtckey_4 , Hchmtc_4)) , Hgkmtc_4) in
341 i n s e r t hss_keys (path_4 , imsi_4 , mtckey_4 , gid , sqn_4 ,

GKr , CHr , n) ;
342
343
344
345 (MTC(imsi_1 , mtckey_1 , gid , path_1 , sqn_1 , o_1 , l e f t)

| MTC(imsi_2 , mtckey_2 , gid , path_2 , sqn_2 , o_2 ,
r i g h t) | MTC(imsi_3 , mtckey_3 , gid , path_3 , sqn_3 ,
o_3 , l e f t) | MTC(imsi_4 , mtckey_4 , gid , path_4 ,
sqn_4 , o_4 , r i g h t)

346
347
348
349)
350)
351)

D.3 MTC privacy related ProVerif code

1 (∗ GAKA − Privacy IMSI . Resul t : OK∗)
2
3 f r e e ch : channel .
4
5 type key .
6 type id .
7 type path .
8 type rand .

102 ProVerif code

9 type i n t .
10 type b i t .
11
12 f r e e imsi_honest : id .
13
14 const caseA : i n t .
15 const caseB : i n t .
16
17 const l e f t : b i t .
18 const r i g h t : b i t .
19
20 f r e e nas_complete_msg : b i t s t r i n g .
21
22 (∗ event debugENDMTC1 .
23 event debugENDMTC2 .
24 event debugENDMME1.
25 event debugENDMME2.
26
27
28
29 query event (debugENDMTC1) .
30 query event (debugENDMTC2) .
31 query event (debugENDMME1) .
32 query event (debugENDMME2) .
33 ∗)
34
35 f r e e s e c r e t : b i t s t r i n g [p r i v a t e] .
36
37
38 (∗ P r o b a b i l i s t i c symmetric key encryption ∗)
39 (∗ Simulate communication between HSS and MME ∗)
40 fun i n t e r n a l s e n c (b i t s t r i n g , key , rand) : b i t s t r i n g .
41 reduc f o r a l l m: b i t s t r i n g , k : key , r : rand ;
42 sdec (i n t e r n a l s e n c (m, k , r) , k) =m.
43 l e t f u n senc (x : b i t s t r i n g , y : key) =new r : rand ;

i n t e r n a l s e n c (x , y , r) .
44
45 (∗ Binary Hash Tree ∗)
46 fun set_node (b i t s t r i n g , b i t) : b i t s t r i n g .
47
48 (∗ Hash f u n c t i o n s ∗)
49 fun f2 (b i t s t r i n g) : b i t s t r i n g .

ProVerif code 103

50 fun f3 (b i t s t r i n g) : b i t s t r i n g .
51 fun f4 (b i t s t r i n g) : b i t s t r i n g .
52 fun f5 (b i t s t r i n g) : b i t s t r i n g .
53 fun h (b i t s t r i n g) : b i t s t r i n g .
54 fun hash (b i t s t r i n g , b i t s t r i n g) : b i t s t r i n g .
55 fun kdf (b i t s t r i n g) : key .
56 fun kdf_nas_enc (key) : key .
57 fun kdf_nas_int (key) : key .
58 fun nas_mac (b i t s t r i n g , key) : b i t s t r i n g .
59
60 (∗ Mac ∗)
61 fun f1 (b i t s t r i n g , key) : b i t s t r i n g .
62
63 (∗ XOR ∗)
64 fun xor (b i t s t r i n g , b i t s t r i n g) : b i t s t r i n g .
65 equation f o r a l l m1: b i t s t r i n g , m2: b i t s t r i n g ; xor (m1,

xor (m1, m2)) = m2.
66
67 fun bs_to_key (b i t s t r i n g) : key [data , typeConverter] .
68 fun bs_to_rand (b i t s t r i n g) : rand [data , typeConverter] .
69
70
71 (∗ Path ∗)
72 fun g e t _ c h i l d (path , b i t) : path .
73 reduc f o r a l l parent_path : path , pos : b i t ;

get_parent (g e t _ c h i l d (parent_path ,
pos)) =parent_path .

74
75 t a b l e hss_keys (path , id , key , id , b i t s t r i n g ,

b i t s t r i n g , b i t s t r i n g , b i t s t r i n g) .
76 t a b l e mme_keys (b i t s t r i n g , b i t s t r i n g , id , path ,

b i t s t r i n g) .
77
78
79 (∗−−−−−−−−−−−−−−−Protocol−−−−−−−−−−−−−−−−−∗)
80
81 (∗−−MTC−−∗)
82 l e t MTC (imsi_mtc : id , key_mtc : key , gid : id ,

path_mtc : path , sqn : b i t s t r i n g , o_mtc : b i t s t r i n g ,
pos : b i t) =

83 new nonce_mtc : rand ;
84 out (ch , (gid , path_mtc , nonce_mtc , pos)) ;

104 ProVerif code

85 in (ch , (case_x : int , aut_x : b i t s t r i n g , sn_id : id ,
rand_x : rand)) ;

86 i f case_x=caseA then
87 (l e t (xored_sqn : b i t s t r i n g , mac_sn :

b i t s t r i n g) =aut_x in
88 i f sqn=xor (f5 ((key_mtc , rand_x)) , xored_sqn) then
89 (i f mac_sn=f1 ((sqn , rand_x) , key_mtc) then
90 l e t r es=f2 ((key_mtc , rand_x)) in
91 l e t ck=f3 ((key_mtc , rand_x)) in
92 l e t ik=f4 ((key_mtc , rand_x)) in
93 l e t kasme=kdf ((xored_sqn , ck , ik , sn_id)) in
94 out (ch , r es) ;
95 l e t knasenc_mtc = kdf_nas_enc (kasme) in
96 l e t knasint_mtc = kdf_nas_int (kasme) in
97 out (ch , senc (s e c r e t , knasenc_mtc)) ;
98 in (ch , (nasmsgmac : b i t s t r i n g , mac_nas :

b i t s t r i n g)) ;
99 i f mac_nas=nas_mac (nasmsgmac , knasint_mtc) then

100 l e t enc_complete_msg=senc (nas_complete_msg ,
knasenc_mtc) in

101 out (ch , (nas_complete_msg , enc_complete_msg ,
nas_mac (enc_complete_msg , knasint_mtc)))

102 (∗ event debugENDMTC1 ; ∗)
103 e lse 0)
104 e lse 0)
105 e lse i f case_x=caseB then
106 l e t (f5_hgkmtc_nonce : b i t s t r i n g , mac_hgkmtc :

b i t s t r i n g) =aut_x in
107 l e t hgk_mtc=xor (h ((key_mtc , rand_x)) , o_mtc) in
108 i f f5 ((hgk_mtc , nonce_mtc)) =f5_hgkmtc_nonce then
109 i f mac_hgkmtc=f1 ((nonce_mtc , rand_x , gid ,

sn_id , path_mtc) , bs_to_key (hgk_mtc)) then
110 l e t res_b=f2 ((hgk_mtc , rand_x)) in
111 l e t ck_b=f3 ((hgk_mtc , rand_x)) in
112 l e t ik_b=f4 ((hgk_mtc , rand_x)) in
113 l e t kasme_b=kdf ((f5_hgkmtc_nonce , ck_b , ik_b ,

sn_id)) in
114
115 out (ch , res_b) ;
116 l e t knasenc_mtc = kdf_nas_enc (kasme_b) in
117 l e t knasint_mtc = kdf_nas_int (kasme_b) in
118 out (ch , senc (s e c r e t , knasenc_mtc)) ;

ProVerif code 105

119 in (ch , (nasmsgmac : b i t s t r i n g , mac_nas :
b i t s t r i n g)) ;

120 i f mac_nas=nas_mac (nasmsgmac , knasint_mtc) then
121 l e t enc_complete_msg=senc (nas_complete_msg ,

knasenc_mtc) in
122 out (ch , (nas_complete_msg , enc_complete_msg ,

nas_mac (enc_complete_msg , knasint_mtc))) ;
123 (∗ event debugENDMTC2 ; ∗)
124 0 .
125
126
127 (∗−−MME−−∗)
128 l e t MME_a (gid : id , path_mtc : path , sn_mme : id ,

hss_mme : key) =
129 out (ch , senc ((gid , path_mtc , sn_mme) , hss_mme)) ;
130 in (ch , from_hss : b i t s t r i n g) ;
131 l e t (= gid , GKij : b i t s t r i n g , CHij : b i t s t r i n g , autn :

b i t s t r i n g , xres : b i t s t r i n g , rand_hss : rand , kasme :
key , imsi_mtc : id , n : b i t s t r i n g ,
=path_mtc) =sdec (from_hss , hss_mme) in

132 l e t pathx=get_parent (path_mtc) in
133 i n s e r t mme_keys (GKij , CHij , gid , pathx , n) ;
134 out (ch , (caseA , autn , sn_mme , rand_hss)) ;
135 in (ch , =xres) ;
136 l e t knasenc_mme = kdf_nas_enc (kasme) in
137 l e t knasint_mme = kdf_nas_int (kasme) in
138 new nasmsgmac : b i t s t r i n g ;
139 out (ch , (nasmsgmac , nas_mac (nasmsgmac , knasint_mme))) ;
140 in (ch , (= nas_complete_msg , enc_msg : b i t s t r i n g ,

mac_nas : b i t s t r i n g)) ;
141 i f mac_nas=nas_mac (enc_msg , knasint_mme) &&

nas_complete_msg=sdec (enc_msg , knasenc_mme) then
142 out (ch , senc (s e c r e t , knasenc_mme)) ;
143 (∗ event debugENDMME1; ∗)
144 0 .
145
146
147 l e t MME_b (gid : id , path_mtc : path , nonce_mtc : rand ,

sn_mme : id , pos : b i t) =
148 get mme_keys (GKij , CHij , =gid , =get_parent (path_mtc) ,

n) in
149 l e t GKmtc=set_node (GKij , pos) in

106 ProVerif code

150 l e t hgkmtc=hash (GKmtc , n) in
151 l e t CHmtc=set_node (CHij , pos) in
152 l e t hchmtc=hash (CHmtc , n) in
153 l e t f5_hgkmtc_nonce=f5 ((hgkmtc , nonce_mtc)) in
154 l e t mac_hgkmtc=f1 ((nonce_mtc , hchmtc , gid , sn_mme ,

path_mtc) , bs_to_key (hgkmtc)) in
155 out (ch , (caseB , (f5_hgkmtc_nonce , mac_hgkmtc) ,

sn_mme , hchmtc)) ;
156 l e t ck=f3 ((hgkmtc , hchmtc)) in
157 l e t ik=f4 ((hgkmtc , hchmtc)) in
158 l e t kasme=kdf ((f5_hgkmtc_nonce , ck , ik , sn_mme)) in
159 in (ch , res_d : b i t s t r i n g) ;
160 i f res_d=f2 ((hgkmtc , hchmtc)) then
161 l e t knasenc_mme = kdf_nas_enc (kasme) in
162 l e t knasint_mme = kdf_nas_int (kasme) in
163 out (ch , senc (s e c r e t , knasenc_mme)) ;
164 new nasmsgmac : b i t s t r i n g ;
165 out (ch , (nasmsgmac , nas_mac (nasmsgmac , knasint_mme))) ;
166 in (ch , (= nas_complete_msg , enc_msg : b i t s t r i n g ,

mac_nas : b i t s t r i n g)) ;
167 i f mac_nas=nas_mac (enc_msg , knasint_mme) &&

nas_complete_msg=sdec (enc_msg , knasenc_mme) then
168 out (ch , senc (s e c r e t , knasenc_mme)) ;
169 (∗ event debugENDMME2; ∗)
170 0 .
171
172
173 l e t MME_init (sn_mme : id , hss_mme : key) =
174 in (ch , (gid : id , path_mtc : path , nonce_mtc : rand ,

=sn_mme , pos : b i t)) ;
175 i f (path_mtc= g e t _ c h i l d (get_parent (path_mtc) , l e f t)

&& pos= l e f t) || (path_mtc= g e t _ c h i l d (
get_parent (path_mtc) , r i g h t) && pos= r i g h t) then

176 (MME_a(gid , path_mtc , sn_mme , hss_mme) | MME_b(gid ,
path_mtc , nonce_mtc , sn_mme , pos)) .

177
178
179 (∗−−HSS−−∗)
180 l e t HSS (sn_mme : id , mme_hss : key) =
181 in (ch , from_mme : b i t s t r i n g) ;
182 l e t (gid : id , path_mtc : path , =sn_mme) =sdec (from_mme ,

mme_hss) in

ProVerif code 107

183 get hss_keys (= path_mtc , imsi , key_mtc , =gid , sqn ,
rootG , rootR , n) in

184 new rand_hss : rand ;
185 l e t xored_sqn=xor (f5 ((key_mtc , rand_hss)) , sqn) in
186 l e t mac_hss=f1 ((sqn , rand_hss) , key_mtc) in
187 l e t xres=f2 ((key_mtc , rand_hss)) in
188 l e t ck=f3 ((key_mtc , rand_hss)) in
189 l e t ik=f4 ((key_mtc , rand_hss)) in
190 l e t kasme=kdf ((xored_sqn , ck , ik , sn_mme)) in
191 l e t autn =(xored_sqn , mac_hss) in
192 out (ch , senc ((gid , rootG , rootR , autn , xres ,

rand_hss , kasme , imsi , n , path_mtc) , mme_hss)) .
193
194
195
196
197
198
199 (∗−−−−−−−−−−Main−−−−−−−−−−−−−−−−−∗)
200 process
201
202 ! (
203
204 new hss_mme_key : key ;
205 new gid : id ;
206 new sn_id : id ;
207 new n : b i t s t r i n g ;
208 out (ch , n) ;
209
210 out (ch , gid) ;
211 out (ch , sn_id) ;
212
213
214 ! (
215 HSS(sn_id , hss_mme_key)
216) |
217
218
219 ! (
220 MME_init (sn_id , hss_mme_key)
221) |
222

108 ProVerif code

223 new rootCH : b i t s t r i n g ;
224 new rootGK : b i t s t r i n g ;
225
226
227 ! (
228
229
230 new path_ int : path ;
231 out (ch , path_ int) ;
232
233
234 l e t pathl= g e t _ c h i l d (path_int , l e f t) in
235 out (ch , pathl) ;
236 l e t GKl=set_node (rootGK , l e f t) in
237 l e t CHl=set_node (rootCH , l e f t) in
238
239 l e t pathr= g e t _ c h i l d (path_int , r i g h t) in
240 out (ch , pathr) ;
241 l e t GKr=set_node (rootGK , r i g h t) in
242 l e t CHr=set_node (rootCH , r i g h t) in
243
244 (∗ Honest MTC ∗)
245
246 l e t imsi_1=imsi_honest in
247 new mtckey_1 : key ;
248 new sqn_1 : b i t s t r i n g ;
249
250 out (ch , imsi_1) ;
251
252 l e t path_1= g e t _ c h i l d (pathl , l e f t) in
253 l e t GKmtc_1=set_node (GKl , l e f t) in
254 l e t CHmtc_1=set_node (CHl , l e f t) in
255 l e t Hgkmtc_1=hash (GKmtc_1 , n) in
256 l e t Hchmtc_1=hash (CHmtc_1 , n) in
257
258 l e t o_1=xor (h ((mtckey_1 , Hchmtc_1)) , Hgkmtc_1) in
259 i n s e r t hss_keys (path_1 , imsi_1 , mtckey_1 , gid , sqn_1 ,

GKl , CHl , n) ;
260
261
262 (∗ Corrupted MTCs ∗)
263

ProVerif code 109

264 new imsi_2 : id ;
265 new mtckey_2 : key ;
266 new sqn_2 : b i t s t r i n g ;
267
268 out (ch , imsi_2) ;
269 out (ch , mtckey_2) ;
270 out (ch , sqn_2) ;
271
272
273 l e t path_2= g e t _ c h i l d (pathl , r i g h t) in
274 l e t GKmtc_2=set_node (GKl , r i g h t) in
275 l e t CHmtc_2=set_node (CHl , r i g h t) in
276 l e t Hgkmtc_2=hash (GKmtc_2 , n) in
277 l e t Hchmtc_2=hash (CHmtc_2 , n) in
278
279 l e t o_2=xor (h ((mtckey_2 , Hchmtc_2)) , Hgkmtc_2) in
280 i n s e r t hss_keys (path_2 , imsi_2 , mtckey_2 , gid , sqn_2 ,

GKl , CHl , n) ;
281
282 out (ch , path_2) ;
283 out (ch , o_2) ;
284
285
286 new imsi_3 : id ;
287 new mtckey_3 : key ;
288 new sqn_3 : b i t s t r i n g ;
289
290 out (ch , imsi_3) ;
291
292 l e t path_3= g e t _ c h i l d (pathr , l e f t) in
293 l e t GKmtc_3=set_node (GKr , l e f t) in
294 l e t CHmtc_3=set_node (CHr , l e f t) in
295 l e t Hgkmtc_3=hash (GKmtc_3 , n) in
296 l e t Hchmtc_3=hash (CHmtc_3 , n) in
297
298 l e t o_3=xor (h ((mtckey_3 , Hchmtc_3)) , Hgkmtc_3) in
299 i n s e r t hss_keys (path_3 , imsi_3 , mtckey_3 , gid , sqn_3 ,

GKr , CHr , n) ;
300
301 out (ch , mtckey_3) ;
302 out (ch , sqn_3) ;
303 out (ch , path_3) ;

110 ProVerif code

304 out (ch , o_3) ;
305
306
307 new imsi_4 : id ;
308 new mtckey_4 : key ;
309 new sqn_4 : b i t s t r i n g ;
310
311 out (ch , imsi_4) ;
312
313 l e t path_4= g e t _ c h i l d (pathr , r i g h t) in
314 l e t GKmtc_4=set_node (GKr , r i g h t) in
315 l e t CHmtc_4=set_node (CHr , r i g h t) in
316 l e t Hgkmtc_4=hash (GKmtc_4 , n) in
317 l e t Hchmtc_4=hash (CHmtc_4 , n) in
318
319 l e t o_4=xor (h ((mtckey_4 , Hchmtc_4)) , Hgkmtc_4) in
320 i n s e r t hss_keys (path_4 , imsi_4 , mtckey_4 , gid , sqn_4 ,

GKr , CHr , n) ;
321
322 out (ch , mtckey_4) ;
323 out (ch , sqn_4) ;
324 out (ch , path_4) ;
325 out (ch , o_4) ;
326
327
328 (MTC(choice [imsi_1 , imsi_2] , mtckey_1 , gid , path_1 ,

sqn_1 , o_1 , l e f t) | MTC(choice [imsi_2 , imsi_1] ,
mtckey_2 , gid , path_2 , sqn_2 , o_2 , r i g h t))

329)
330
331)

	Introduction
	Objectives
	Limitations

	Background
	Evolved packet system – introduction, terms and entities
	EPS AKA
	3GPP definitions

	Related work
	Broustis et al. schemes
	GBAAM
	SE-AKA
	Choi–Choi–Lee scheme

	A lightweight group-based authentication protocol
	Overview
	Further description
	Security of the protocol

	Tools and methodology
	Evaluation of EPS platforms
	Details of OpenAirInterface
	Approach

	Our implementation
	MILENAGE
	New parameters
	Messages
	Functions and commands
	Storage of new structures
	OAI reference implementation

	Performance analysis
	Bandwidth consumption
	Latency

	Discussion and conclusion
	GID and PATH parameters
	OpenAirInterface
	Backwards compatibility
	f1 derivative and f2–f5
	Conclusion
	Future work

	References
	AKA messages
	Perfect binary inverted hash tree
	Prototype code
	Traverse Tree function
	F1 Derivative function
	Group Authenticate function

	ProVerif code
	Corrupted MTCs ProVerif code
	Mutual authentication properties ProVerif code
	MTC privacy related ProVerif code

